51
|
Alcantara-Gonzalez D, Kennedy M, Criscuolo C, Botterill J, Scharfman HE. Increased excitability of dentate gyrus mossy cells occurs early in life in the Tg2576 model of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.09.579729. [PMID: 38645244 PMCID: PMC11027210 DOI: 10.1101/2024.02.09.579729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
INTRODUCTION Hyperexcitability in Alzheimer's disease (AD) emerge early and contribute to disease progression. The dentate gyrus (DG) is implicated in hyperexcitability in AD. We hypothesized that mossy cells (MCs), regulators of DG excitability, contribute to early hyperexcitability in AD. Indeed, MCs generate hyperexcitability in epilepsy. METHODS Using the Tg2576 model and WT mice (∼1month-old), we compared MCs electrophysiologically, assessed c-Fos activity marker, Aβ expression and mice performance in a hippocampal-dependent memory task. RESULTS Tg2576 MCs exhibit increased spontaneous excitatory events and decreased inhibitory currents, increasing the charge transfer excitation/inhibition ratio. Tg2576 MC intrinsic excitability was enhanced, and showed higher c-Fos, intracellular Aβ expression, and axon sprouting. Granule cells only showed changes in synaptic properties, without intrinsic changes. The effects occurred before a memory task is affected. DISCUSSION Early electrophysiological and morphological alterations in Tg2576 MCs are consistent with enhanced excitability, suggesting an early role in DG hyperexcitability and AD pathophysiology. HIGHLIGHTS ∘ MCs from 1 month-old Tg2576 mice had increased spontaneous excitatory synaptic input. ∘ Tg2576 MCs had reduced spontaneous inhibitory synaptic input. ∘ Several intrinsic properties were abnormal in Tg2576 MCs. ∘ Tg2576 GCs had enhanced synaptic excitation but no changes in intrinsic properties. ∘ Tg2576 MCs exhibited high c-Fos expression, soluble Aβ and axonal sprouting.
Collapse
|
52
|
Li Z, Zheng W, Liu H, Liu J, Yan C, Wang Z, Hu B, Dong Q. Estimating Functional Brain Networks by Low-Rank Representation With Local Constraint. IEEE Trans Neural Syst Rehabil Eng 2024; 32:684-695. [PMID: 38236673 DOI: 10.1109/tnsre.2024.3355769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The functional architecture undergoes alterations during the preclinical phase of Alzheimer's disease. Consequently, the primary research focus has shifted towards identifying Alzheimer's disease and its early stages by constructing a functional connectivity network based on resting-state fMRI data. Recent investigations show that as Alzheimer's Disease (AD) progresses, modular tissue and connections in the core brain areas of AD patients diminish. Sparse learning methods are powerful tools for understanding Functional Brain Networks (FBNs) with Regions of Interest (ROIs) and a connectivity matrix measuring functional coherence between them. However, these tools often focus exclusively on functional connectivity measures, neglecting the brain network's modularity. Modularity orchestrates dynamic activities within the FBN to execute intricate cognitive tasks. To provide a comprehensive delineation of the FBN, we propose a local similarity-constrained low-rank sparse representation (LSLRSR) method that encodes modularity information under a manifold-regularized network learning framework and further formulate it as a low-rank sparse graph learning problem, which can be solved by an efficient optimization algorithm. Specifically, for each modularity structure, the Schatten p-norm regularizer reduces the reconstruction error and provides a better approximation of the low-rank constraint. Furthermore, we adopt a manifold-regularized local similarity prior to infer the intricate relationship between subnetwork similarity and modularity, guiding the modeling of FBN. Additionally, the proximal average method approximates the joint solution's proximal map, and the resulting nonconvex optimization problems are solved using the alternating direction multiplier method (ADMM). Compared to state-of-the-art methods for constructing FBNs, our algorithm generates a more modular FBN. This lays the groundwork for further research into alterations in brain network modularity resulting from diseases.
Collapse
|
53
|
Bakhtiari A, Benedek K, Law I, Fagerlund B, Mortensen EL, Osler M, Lauritzen M, Larsson HBW, Vestergaard MB. Early cerebral amyloid-β accumulation and hypermetabolism are associated with subtle cognitive deficits before accelerated cerebral atrophy. GeroScience 2024; 46:769-782. [PMID: 38102439 PMCID: PMC10828321 DOI: 10.1007/s11357-023-01031-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/02/2023] [Indexed: 12/17/2023] Open
Abstract
AIMS Alzheimer's disease (AD) is characterized by the accumulation of amyloid beta (Aβ) in the brain. The deposition of Aβ is believed to initiate a detrimental cascade, including cerebral hypometabolism, accelerated brain atrophy, and cognitive problems-ultimately resulting in AD. However, the timing and causality of the cascade resulting in AD are not yet fully established. Therefore, we examined whether early Aβ accumulation affects cerebral glucose metabolism, atrophy rate, and age-related cognitive decline before the onset of neurodegenerative disease. METHODS Participants from the Metropolit 1953 Danish Male Birth Cohort underwent brain positron emission tomography (PET) imaging using the radiotracers [11C]Pittsburgh Compound-B (PiB) (N = 70) and [18F]Fluorodeoxyglucose (FDG) (N = 76) to assess cerebral Aβ accumulation and glucose metabolism, respectively. The atrophy rate was calculated from anatomical magnetic resonance imaging (MRI) scans conducted presently and 10 years ago. Cognitive decline was examined from neurophysiological tests conducted presently and ten or 5 years ago. RESULTS Higher Aβ accumulation in AD-critical brain regions correlated with greater visual memory decline (p = 0.023). Aβ accumulation did not correlate with brain atrophy rates. Increased cerebral glucose metabolism in AD-susceptible regions correlated with worse verbal memory performance (p = 0.040). CONCLUSIONS Aβ accumulation in known AD-related areas was associated with subtle cognitive deficits. The association was observed before hypometabolism or accelerated brain atrophy, suggesting that Aβ accumulation is involved early in age-related cognitive dysfunction. The association between hypermetabolism and worse memory performance may be due to early compensatory mechanisms adapting for malfunctioning neurons by increasing metabolism.
Collapse
Affiliation(s)
- Aftab Bakhtiari
- Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet Glostrup, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
- Department of Clinical Neurophysiology, The Neuroscience Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
- Faculty of Health and Medical Sciences, Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.
- Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Krisztina Benedek
- Department of Neurology, Neurophysiology, Zealand University Hospital, Roskilde, Denmark
| | - Ian Law
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, , University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Fagerlund
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
- Child and Adolescent Mental Health Center, Copenhagen University Hospital - Mental Health Services CPH, Copenhagen, Denmark
| | | | - Merete Osler
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Martin Lauritzen
- Department of Clinical Neurophysiology, The Neuroscience Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
- Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik B W Larsson
- Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet Glostrup, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Mark B Vestergaard
- Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet Glostrup, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
54
|
Niraula S, Yan SS, Subramanian J. Amyloid Pathology Impairs Experience-Dependent Inhibitory Synaptic Plasticity. J Neurosci 2024; 44:e0702232023. [PMID: 38050105 PMCID: PMC10860629 DOI: 10.1523/jneurosci.0702-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 12/06/2023] Open
Abstract
Alzheimer's disease patients and mouse models exhibit aberrant neuronal activity and altered excitatory-to-inhibitory synaptic ratio. Using multicolor two-photon microscopy, we test how amyloid pathology alters the structural dynamics of excitatory and inhibitory synapses and their adaptation to altered visual experience in vivo in the visual cortex. We show that the baseline dynamics of mature excitatory synapses and their adaptation to visual deprivation are not altered in amyloidosis. Likewise, the baseline dynamics of inhibitory synapses are not affected. In contrast, visual deprivation fails to induce inhibitory synapse loss in amyloidosis, a phenomenon observed in nonpathological conditions. Intriguingly, inhibitory synapse loss associated with visual deprivation in nonpathological mice is accompanied by subtle broadening of spontaneous but not visually evoked calcium transients. However, such broadening does not manifest in the context of amyloidosis. We also show that excitatory and inhibitory synapse loss is locally clustered under the nonpathological state. In contrast, a fraction of synapse loss is not locally clustered in amyloidosis, indicating an impairment in inhibitory synapse adaptation to changes in excitatory synaptic activity.
Collapse
Affiliation(s)
- Suraj Niraula
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, Kansas 66045
| | - Shirley ShiDu Yan
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, Kansas 66045
- Department of Surgery, Vagelos College of Physicians and Surgeons of Columbia University, New York, New York 10032
| | - Jaichandar Subramanian
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, Kansas 66045
| |
Collapse
|
55
|
McArdle CJ, Arnone AA, Heaney CF, Raab-Graham KF. A paradoxical switch: the implications of excitatory GABAergic signaling in neurological disorders. Front Psychiatry 2024; 14:1296527. [PMID: 38268565 PMCID: PMC10805837 DOI: 10.3389/fpsyt.2023.1296527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/04/2023] [Indexed: 01/26/2024] Open
Abstract
Gamma-aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the central nervous system. In the mature brain, inhibitory GABAergic signaling is critical in maintaining neuronal homeostasis and vital human behaviors such as cognition, emotion, and motivation. While classically known to inhibit neuronal function under physiological conditions, previous research indicates a paradoxical switch from inhibitory to excitatory GABAergic signaling that is implicated in several neurological disorders. Various mechanisms have been proposed to contribute to the excitatory switch such as chloride ion dyshomeostasis, alterations in inhibitory receptor expression, and modifications in GABAergic synaptic plasticity. Of note, the hypothesized mechanisms underlying excitatory GABAergic signaling are highlighted in a number of neurodevelopmental, substance use, stress, and neurodegenerative disorders. Herein, we present an updated review discussing the presence of excitatory GABAergic signaling in various neurological disorders, and their potential contributions towards disease pathology.
Collapse
Affiliation(s)
- Colin J. McArdle
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Alana A. Arnone
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Department of General Surgery, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Chelcie F. Heaney
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Kimberly F. Raab-Graham
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
56
|
Srivastav S, van der Graaf K, Jonnalagadda PC, Thawani M, McNew JA, Stern M. Motor neuron activity enhances the proteomic stress caused by autophagy defects in the target muscle. PLoS One 2024; 19:e0291477. [PMID: 38166124 PMCID: PMC10760831 DOI: 10.1371/journal.pone.0291477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/12/2023] [Indexed: 01/04/2024] Open
Abstract
Several lines of evidence demonstrate that increased neuronal excitability can enhance proteomic stress. For example, epilepsy can enhance the proteomic stress caused by the expression of certain aggregation-prone proteins implicated in neurodegeneration. However, unanswered questions remain concerning the mechanisms by which increased neuronal excitability accomplishes this enhancement. Here we test whether increasing neuronal excitability at a particular identified glutamatergic synapse, the Drosophila larval neuromuscular junction, can enhance the proteomic stress caused by mutations in the ER fusion/GTPase gene atlastin (atl). It was previously shown that larval muscle from the atl2 null mutant is defective in autophagy and accumulates protein aggregates containing ubiquitin (poly-UB aggregates). To determine if increased neuronal excitability might enhance the increased proteomic stress caused by atl2, we activated the TrpA1-encoded excitability channel within neurons. We found that TrpA1 activation had no effect on poly-UB aggregate accumulation in wildtype muscle, but significantly increased poly-UB aggregate number in atl2 muscle. Previous work has shown that atl loss from either neuron or muscle increases muscle poly-UB aggregate number. We found that neuronal TrpA1 activation enhanced poly-UB aggregate number when atl was removed from muscle, but not from neuron. Neuronal TrpA1 activation enhanced other phenotypes conferred by muscle atl loss, such as decreased pupal size and decreased viability. Taken together, these results indicate that the proteomic stress caused by muscle atl loss is enhanced by increasing neuronal excitability.
Collapse
Affiliation(s)
- Saurabh Srivastav
- Department of BioSciences, Rice University, Houston, TX, United States of America
| | - Kevin van der Graaf
- Department of BioSciences, Rice University, Houston, TX, United States of America
| | | | - Maanvi Thawani
- Department of BioSciences, Rice University, Houston, TX, United States of America
| | - James A. McNew
- Department of BioSciences, Rice University, Houston, TX, United States of America
| | - Michael Stern
- Department of BioSciences, Rice University, Houston, TX, United States of America
| |
Collapse
|
57
|
Naderi S, Motamedi F, Pourbadie HG, Rafiei S, Khodagholi F, Naderi N, Janahmadi M. Neuroprotective Effects of Ferrostatin and Necrostatin Against Entorhinal Amyloidopathy-Induced Electrophysiological Alterations Mediated by voltage-gated Ca 2+ Channels in the Dentate Gyrus Granular Cells. Neurochem Res 2024; 49:99-116. [PMID: 37615884 DOI: 10.1007/s11064-023-04006-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/07/2023] [Accepted: 07/29/2023] [Indexed: 08/25/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that is the main form of dementia. Abnormal deposition of amyloid-beta (Aβ) peptides in neurons and synapses cause neuronal loss and cognitive deficits. We have previously reported that ferroptosis and necroptosis were implicated in Aβ25-35 neurotoxicity, and their specific inhibitors had attenuating effects on cognitive impairment induced by Aβ25-35 neurotoxicity. Here, we aimed to examine the impact of ferroptosis and necroptosis inhibition following the Aβ25-35 neurotoxicity on the neuronal excitability of dentate gyrus (DG) and the possible involvement of voltage-gated Ca2+ channels in their effects. After inducing Aβ25-35 neurotoxicity, electrophysiological alterations in the intrinsic properties and excitability were recorded by the whole-cell patch-clamp under current-clamp condition. Voltage-clamp recordings were also performed to shed light on the involvement of calcium channel currents. Aβ25-35 neurotoxicity induced a considerable reduction in input resistance (Rin), accompanied by a profoundly decreased excitability and a reduction in the amplitude of voltage-gated calcium channel currents in the DG granule cells. However, three days of administration of either ferrostatin-1 (Fer-1), a ferroptosis inhibitor, or Necrostatin-1 (Nec-1), a necroptosis inhibitor, in the entorhinal cortex could almost preserve the normal excitability and the Ca2+ currents. In conclusion, these findings suggest that ferroptosis and necroptosis involvement in EC amyloidopathy could be a potential candidate to prevent the suppressive effect of Aβ on the Ca2+ channel current and neuronal function, which might take place in neurons during the development of AD.
Collapse
Affiliation(s)
- Soudabeh Naderi
- School of Medicine, Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereshteh Motamedi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Shahrbanoo Rafiei
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nima Naderi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahyar Janahmadi
- Neuroscience Research Center, Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
58
|
Fide E, Yerlikaya D, Güntekin B, Babiloni C, Yener GG. Coherence in event-related EEG oscillations in patients with Alzheimer's disease dementia and amnestic mild cognitive impairment. Cogn Neurodyn 2023; 17:1621-1635. [PMID: 37974589 PMCID: PMC10640558 DOI: 10.1007/s11571-022-09920-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 11/02/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Objectives Working memory performances are based on brain functional connectivity, so that connectivity may be deranged in individuals with mild cognitive impairment (MCI) and patients with dementia due to Alzheimer's disease (ADD). Here we tested the hypothesis of abnormal functional connectivity as revealed by the imaginary part of coherency (ICoh) at electrode pairs from event-related electroencephalographic oscillations in ADD and MCI patients. Methods The study included 43 individuals with MCI, 43 with ADD, and 68 demographically matched healthy controls (HC). Delta, theta, alpha, beta, and gamma bands event-related ICoh was measured during an oddball paradigm. Inter-hemispheric, midline, and intra-hemispheric ICoh values were compared in ADD, MCI, and HC groups. Results The main results of the present study can be summarized as follows: (1) A significant increase of midline frontal and temporal theta coherence in the MCI group as compared to the HC group; (2) A significant decrease of theta, delta, and alpha intra-hemispheric coherence in the ADD group as compared to the HC and MCI groups; (3) A significant decrease of theta midline coherence in the ADD group as compared to the HC and MCI groups; (4) Normal inter-hemispheric coherence in the ADD and MCI groups. Conclusions Compared with the MCI and HC, the ADD group showed disrupted event-related intra-hemispheric and midline low-frequency band coherence as an estimate of brain functional dysconnectivity underlying disabilities in daily living. Brain functional connectivity during attention and short memory demands is relatively resilient in elderly subjects even with MCI (with preserved abilities in daily activities), and it shows reduced efficiency at multiple operating oscillatory frequencies only at an early stage of ADD. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-022-09920-0.
Collapse
Affiliation(s)
- Ezgi Fide
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Deniz Yerlikaya
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Bahar Güntekin
- Department of Biophysics, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
- REMER Clinical Electrophysiology, Neuroimaging and Neuromodulation Lab, Istanbul Medipol University, Istanbul, Turkey
| | - Claudio Babiloni
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Rome, Italy
- Hospital San Raffaele of Cassino, Cassino, Italy
| | - Görsev G. Yener
- Faculty of Medicine, Izmir University of Economics, 35330 Izmir, Turkey
- Brain Dynamics Multidisciplinary Research Center, Dokuz Eylul University, Izmir, Turkey
- Izmir Biomedicine and Genome Center, Izmir, Turkey
| |
Collapse
|
59
|
Keramidis I, McAllister BB, Bourbonnais J, Wang F, Isabel D, Rezaei E, Sansonetti R, Degagne P, Hamel JP, Nazari M, Inayat S, Dudley JC, Barbeau A, Froux L, Paquet ME, Godin AG, Mohajerani MH, De Koninck Y. Restoring neuronal chloride extrusion reverses cognitive decline linked to Alzheimer's disease mutations. Brain 2023; 146:4903-4915. [PMID: 37551444 PMCID: PMC10690023 DOI: 10.1093/brain/awad250] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/23/2023] [Accepted: 07/09/2023] [Indexed: 08/09/2023] Open
Abstract
Disinhibition during early stages of Alzheimer's disease is postulated to cause network dysfunction and hyperexcitability leading to cognitive deficits. However, the underlying molecular mechanism remains unknown. Here we show that, in mouse lines carrying Alzheimer's disease-related mutations, a loss of neuronal membrane potassium-chloride cotransporter KCC2, responsible for maintaining the robustness of GABAA-mediated inhibition, occurs pre-symptomatically in the hippocampus and prefrontal cortex. KCC2 downregulation was inversely correlated with the age-dependent increase in amyloid-β 42 (Aβ42). Acute administration of Aβ42 caused a downregulation of membrane KCC2. Loss of KCC2 resulted in impaired chloride homeostasis. Preventing the decrease in KCC2 using long term treatment with CLP290 protected against deterioration of learning and cortical hyperactivity. In addition, restoring KCC2, using short term CLP290 treatment, following the transporter reduction effectively reversed spatial memory deficits and social dysfunction, linking chloride dysregulation with Alzheimer's disease-related cognitive decline. These results reveal KCC2 hypofunction as a viable target for treatment of Alzheimer's disease-related cognitive decline; they confirm target engagement, where the therapeutic intervention takes place, and its effectiveness.
Collapse
Affiliation(s)
- Iason Keramidis
- CERVO Brain Research Centre, Quebec Mental Health Institute, Québec, QC G1E 1T2, Canada
- Graduate Program in Neuroscience, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Brendan B McAllister
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Julien Bourbonnais
- CERVO Brain Research Centre, Quebec Mental Health Institute, Québec, QC G1E 1T2, Canada
| | - Feng Wang
- CERVO Brain Research Centre, Quebec Mental Health Institute, Québec, QC G1E 1T2, Canada
- Faculty of Dentistry, Université Laval, Québec, QC G1V 0A6, Canada
| | - Dominique Isabel
- CERVO Brain Research Centre, Quebec Mental Health Institute, Québec, QC G1E 1T2, Canada
| | - Edris Rezaei
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Romain Sansonetti
- CERVO Brain Research Centre, Quebec Mental Health Institute, Québec, QC G1E 1T2, Canada
| | - Phil Degagne
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Justin P Hamel
- CERVO Brain Research Centre, Quebec Mental Health Institute, Québec, QC G1E 1T2, Canada
| | - Mojtaba Nazari
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Samsoon Inayat
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Jordan C Dudley
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Annie Barbeau
- CERVO Brain Research Centre, Quebec Mental Health Institute, Québec, QC G1E 1T2, Canada
| | - Lionel Froux
- CERVO Brain Research Centre, Quebec Mental Health Institute, Québec, QC G1E 1T2, Canada
| | - Marie-Eve Paquet
- CERVO Brain Research Centre, Quebec Mental Health Institute, Québec, QC G1E 1T2, Canada
- Department of Biochemistry, Microbiology, and Bio-informatics, Université Laval, Québec, QC G1V 0A6, Canada
| | - Antoine G Godin
- CERVO Brain Research Centre, Quebec Mental Health Institute, Québec, QC G1E 1T2, Canada
- Graduate Program in Neuroscience, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
- Department of Psychiatry and Neuroscience, Université Laval, Québec, QC G1V 0A6, Canada
| | - Majid H Mohajerani
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Yves De Koninck
- CERVO Brain Research Centre, Quebec Mental Health Institute, Québec, QC G1E 1T2, Canada
- Graduate Program in Neuroscience, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
- Department of Psychiatry and Neuroscience, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
60
|
Littlejohn J, Blackburn DJ, Venneri A. Testing central auditory processing abilities in older adults with and without dementia using the consonant-vowel dichotic listening task. FRONTIERS IN DEMENTIA 2023; 2:1207546. [PMID: 39081992 PMCID: PMC11285700 DOI: 10.3389/frdem.2023.1207546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/30/2023] [Indexed: 08/02/2024]
Abstract
Background Hearing loss and dementia are linked, although the roles of peripheral and central auditory dysfunction are not well defined. Many behavioral measures of hearing are confounded by the overlapping cognitive functions required to perform the tests. Objective To collect pilot data to identify how central auditory function, measured using a dichotic listening test that indexes both auditory and cognitive components under different attentional conditions, differs among people with mild cognitive impairment (MCI), dementia and controls, and how performance relates to neuropsychological results. Method Fifty-eight participants (17 MCI, 11 dementia and 30 controls) undertook hearing screening, the Bergen consonant-vowel dichotic listening paradigm, and a short battery of neuropsychological tests chosen to index attention and executive control. Dichotic listening was assessed under three attentional conditions (non-forced, forced right ear and forced left) amongst older adults with normal cognitive function, MCI and dementia. Results We report two main findings: (a) The expected right ear advantage under non-forced conditions, was seen in controls and patients with dementia but not in people with MCI, who showed equal numbers of correct responses from both ears (i.e., a lack of asymmetry); (b) Performance under forced attentional conditions was significantly associated with disease progression (i.e., control > MCI > dementia) and performance on the cognitive tasks. Conclusion The reduction in asymmetry on dichotic listening tasks may be a marker of MCI and reflect underlying compensatory mechanisms. Use of this test could aid stratification of patients with memory disorders. Whether abnormalities could predict dementia onset needs longitudinal investigation in a larger sample.
Collapse
Affiliation(s)
- Jenna Littlejohn
- Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester, United Kingdom
| | - Daniel J. Blackburn
- Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Annalena Venneri
- Department of Life Sciences, Brunel University London, London, United Kingdom
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
61
|
Diao Y, Lanz B, Jelescu IO. Subject classification and cross-time prediction based on functional connectivity and white matter microstructure features in a rat model of Alzheimer's using machine learning. Alzheimers Res Ther 2023; 15:193. [PMID: 37936236 PMCID: PMC10629161 DOI: 10.1186/s13195-023-01328-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND The pathological process of Alzheimer's disease (AD) typically takes decades from onset to clinical symptoms. Early brain changes in AD include MRI-measurable features such as altered functional connectivity (FC) and white matter degeneration. The ability of these features to discriminate between subjects without a diagnosis, or their prognostic value, is however not established. METHODS The main trigger mechanism of AD is still debated, although impaired brain glucose metabolism is taking an increasingly central role. Here, we used a rat model of sporadic AD, based on impaired brain glucose metabolism induced by an intracerebroventricular injection of streptozotocin (STZ). We characterized alterations in FC and white matter microstructure longitudinally using functional and diffusion MRI. Those MRI-derived measures were used to classify STZ from control rats using machine learning, and the importance of each individual measure was quantified using explainable artificial intelligence methods. RESULTS Overall, combining all the FC and white matter metrics in an ensemble way was the best strategy to discriminate STZ rats, with a consistent accuracy over 0.85. However, the best accuracy early on was achieved using white matter microstructure features, and later on using FC. This suggests that consistent damage in white matter in the STZ group might precede FC. For cross-timepoint prediction, microstructure features also had the highest performance while, in contrast, that of FC was reduced by its dynamic pattern which shifted from early hyperconnectivity to late hypoconnectivity. CONCLUSIONS Our study highlights the MRI-derived measures that best discriminate STZ vs control rats early in the course of the disease, with potential translation to humans.
Collapse
Affiliation(s)
- Yujian Diao
- Animal Imaging and Technology Section, CIBM Center for Biomedical Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Bernard Lanz
- Animal Imaging and Technology Section, CIBM Center for Biomedical Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Ileana Ozana Jelescu
- Animal Imaging and Technology Section, CIBM Center for Biomedical Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
62
|
Perrin F, Anderson LC, Mitchell SPC, Sinha P, Turchyna Y, Maesako M, Houser MCQ, Zhang C, Wagner SL, Tanzi RE, Berezovska O. PS1/gamma-secretase acts as rogue chaperone of glutamate transporter EAAT2/GLT-1 in Alzheimer's disease. RESEARCH SQUARE 2023:rs.3.rs-3495211. [PMID: 37986905 PMCID: PMC10659539 DOI: 10.21203/rs.3.rs-3495211/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The recently discovered interaction between presenilin 1 (PS1), a catalytic subunit of γ-secretase responsible for the generation of amyloid-β(Aβ) peptides, and GLT-1, the major glutamate transporter in the brain (EAAT2 in the human) may provide a mechanistic link between two important pathological aspects of Alzheimer's disease (AD): abnormal Aβoccurrence and neuronal network hyperactivity. In the current study, we employed a FRET-based approach, fluorescence lifetime imaging microscopy (FLIM), to characterize the PS1/GLT-1 interaction in its native environment in the brain tissue of sporadic AD (sAD) patients. There was significantly less interaction between PS1 and GLT-1 in sAD brains, compared to tissue from patients with frontotemporal lobar degeneration (FTLD), or non-demented age-matched controls. Since PS1 has been shown to adopt pathogenic "closed" conformation in sAD but not in FTLD, we assessed the impact of changes in PS1 conformation on the interaction. Familial AD (fAD) PS1 mutations which induce a "closed" PS1 conformation similar to that in sAD brain and gamma-secretase modulators (GSMs) which induce a "relaxed" conformation, reduced and increased the interaction, respectively. This indicates that PS1 conformation seems to have a direct effect on the interaction with GLT-1. Furthermore, using biotinylation/streptavidin pull-down, western blotting, and cycloheximide chase assays, we determined that the presence of PS1 increased GLT-1 cell surface expression and GLT-1 homomultimer formation, but did not impact GLT-1 protein stability. Together, the current findings suggest that the newly described PS1/GLT-1 interaction endows PS1 with chaperone activity, modulating GLT-1 transport to the cell surface and stabilizing the dimeric-trimeric states of the protein. The diminished PS1/GLT-1 interaction suggests that these functions of the interaction may not work properly in AD.
Collapse
|
63
|
Ma G, Kim TH, Son T, Ding J, Ahmed S, Adejumo T, Yao X. Intrinsic signal optoretinography revealing AD-induced retinal photoreceptor hyperexcitability before a detectable morphological abnormality. OPTICS LETTERS 2023; 48:5129-5132. [PMID: 37773402 PMCID: PMC10963897 DOI: 10.1364/ol.501851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/08/2023] [Indexed: 10/01/2023]
Abstract
Neuronal hyperexcitability promises an early biomarker of Alzheimer's disease (AD). However, in vivo detection of neuronal hyperexcitability in the brain is technically challenging. The retina, one part of the central nervous system, presents a unique window for noninvasive monitoring of the brain function. This study aims to test the feasibility of using intrinsic signal optoretinography (ORG) for mapping retinal hyperexcitability associated with early-stage AD. Custom-designed optical coherence tomography (OCT) was employed for both morphological measurement and functional ORG of wild-type mice and 3xTg-AD mice. Comparative analysis revealed AD-induced retinal photoreceptor hyperexcitability prior to detectable structural degeneration.
Collapse
Affiliation(s)
- Guangying Ma
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Tae-Hoon Kim
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Taeyoon Son
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Jie Ding
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Shaiban Ahmed
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Tobiloba Adejumo
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Xincheng Yao
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois 60607, USA
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, Illinois 60612, USA
| |
Collapse
|
64
|
Niraula S, Yan SS, Subramanian J. Amyloid pathology impairs experience-dependent inhibitory synaptic plasticity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.04.539450. [PMID: 37205469 PMCID: PMC10187277 DOI: 10.1101/2023.05.04.539450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Alzheimer's disease patients and mouse models exhibit aberrant neuronal activity and altered excitatory-to-inhibitory synaptic ratio. Using multicolor two-photon microscopy, we test how amyloid pathology alters the structural dynamics of excitatory and inhibitory synapses and their adaptation to altered visual experience in vivo in the visual cortex. We show that the baseline dynamics of mature excitatory synapses and their adaptation to visual deprivation are not altered in amyloidosis. Likewise, the baseline dynamics of inhibitory synapses are not affected. In contrast, visual deprivation fails to induce inhibitory synapse loss in amyloidosis, a phenomenon observed in nonpathological conditions. Intriguingly, inhibitory synapse loss associated with visual deprivation in nonpathological mice is accompanied by the broadening of spontaneous but not visually evoked calcium transients. However, such broadening does not manifest in the context of amyloidosis. We also show that excitatory and inhibitory synapse loss is locally clustered under the nonpathological state. In contrast, a fraction of synapse loss is not locally clustered in amyloidosis, indicating an impairment in inhibitory synapse adaptation to changes in excitatory synaptic activity.
Collapse
Affiliation(s)
- Suraj Niraula
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Shirley ShiDu Yan
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
- Department of Surgery, Vagelos College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
| | - Jaichandar Subramanian
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
65
|
Geissmann L, Coynel D, Papassotiropoulos A, de Quervain DJF. Neurofunctional underpinnings of individual differences in visual episodic memory performance. Nat Commun 2023; 14:5694. [PMID: 37709747 PMCID: PMC10502056 DOI: 10.1038/s41467-023-41380-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/01/2023] [Indexed: 09/16/2023] Open
Abstract
Episodic memory, the ability to consciously recollect information and its context, varies substantially among individuals. While prior fMRI studies have identified certain brain regions linked to successful memory encoding at a group level, their role in explaining individual memory differences remains largely unexplored. Here, we analyze fMRI data of 1,498 adults participating in a picture encoding task in a single MRI scanner. We find that individual differences in responsivity of the hippocampus, orbitofrontal cortex, and posterior cingulate cortex account for individual variability in episodic memory performance. While these regions also emerge in our group-level analysis, other regions, predominantly within the lateral occipital cortex, are related to successful memory encoding but not to individual memory variation. Furthermore, our network-based approach reveals a link between the responsivity of nine functional connectivity networks and individual memory variability. Our work provides insights into the neurofunctional correlates of individual differences in visual episodic memory performance.
Collapse
Affiliation(s)
- Léonie Geissmann
- Division of Cognitive Neuroscience, Department of Biomedicine, University of Basel, Basel, Switzerland.
- Research Cluster Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland.
| | - David Coynel
- Division of Cognitive Neuroscience, Department of Biomedicine, University of Basel, Basel, Switzerland
- Research Cluster Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | - Andreas Papassotiropoulos
- Research Cluster Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
- Division of Molecular Neuroscience, Department of Biomedicine, University of Basel, Basel, Switzerland
- University Psychiatric Clinics, University of Basel, Basel, Switzerland
| | - Dominique J F de Quervain
- Division of Cognitive Neuroscience, Department of Biomedicine, University of Basel, Basel, Switzerland.
- Research Cluster Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland.
- University Psychiatric Clinics, University of Basel, Basel, Switzerland.
| |
Collapse
|
66
|
Yang X, Qu H. Bibliometric review on biomarkers for Alzheimer's disease between 2000 and 2023. Medicine (Baltimore) 2023; 102:e34982. [PMID: 37682187 PMCID: PMC10489337 DOI: 10.1097/md.0000000000034982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/07/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a common cause of dementia and frailty. Therefore, it is important to develop biomarkers that can diagnose these changes to improve the likelihood of monitoring and treating potential causes. Therefore, this study aimed to examine the relationship between biomarkers and AD, identify journal publications and collaborators, and analyze keywords and research trends using a bibliometric method. METHODS We systematically searched for papers published in the Web of Science Core Collection database on biomarkers and AD. The search strategy was as follows: (TS) = (Alzheimer's OR Alzheimer's OR Alzheimer OR "Alzheimer's disease" OR "Alzheimer disease") AND TS = (biomarker OR biomarkers). Only articles and reviews were included as document types, with English as the primary language. The CiteSpace software was used to analyze the retrieved data on countries/regions, institutions, authors, published journals, and keywords. Simultaneously, the co-occurrence of the keywords was constructed. RESULTS There were 2625 articles on biomarkers and AD research published by 51 institutions located in 41 countries in 75 journals; the number of articles has shown an increasing trend over the past 20 years. Keywords analysis showed that Alzheimer's disease, cerebrospinal fluid, mild cognitive impairment, amyloid beta, and tau were also highly influential. CONCLUSION This was the first study to provide an overview of the current status of development, hot spots of study, and future trends in biomarkers for AD. These findings will provide useful information for researchers to explore trends and gaps in the field of biomarkers and AD.
Collapse
Affiliation(s)
- Xiaojie Yang
- Department of The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China
| | - Huiling Qu
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
67
|
Cai W, Li L, Sang S, Pan X, Zhong C. Physiological Roles of β-amyloid in Regulating Synaptic Function: Implications for AD Pathophysiology. Neurosci Bull 2023; 39:1289-1308. [PMID: 36443453 PMCID: PMC10387033 DOI: 10.1007/s12264-022-00985-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022] Open
Abstract
The physiological functions of endogenous amyloid-β (Aβ), which plays important role in the pathology of Alzheimer's disease (AD), have not been paid enough attention. Here, we review the multiple physiological effects of Aβ, particularly in regulating synaptic transmission, and the possible mechanisms, in order to decipher the real characters of Aβ under both physiological and pathological conditions. Some worthy studies have shown that the deprivation of endogenous Aβ gives rise to synaptic dysfunction and cognitive deficiency, while the moderate elevation of this peptide enhances long term potentiation and leads to neuronal hyperexcitability. In this review, we provide a new view for understanding the role of Aβ in AD pathophysiology from the perspective of physiological meaning.
Collapse
Affiliation(s)
- Wenwen Cai
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Linxi Li
- Basic Medical College, Nanchang University, Nanchang, 330031, China
| | - Shaoming Sang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiaoli Pan
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Chunjiu Zhong
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science & Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
68
|
Baumgartner TJ, Haghighijoo Z, Goode NA, Dvorak NM, Arman P, Laezza F. Voltage-Gated Na + Channels in Alzheimer's Disease: Physiological Roles and Therapeutic Potential. Life (Basel) 2023; 13:1655. [PMID: 37629512 PMCID: PMC10455313 DOI: 10.3390/life13081655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/11/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and is classically characterized by two major histopathological abnormalities: extracellular plaques composed of amyloid beta (Aβ) and intracellular hyperphosphorylated tau. Due to the progressive nature of the disease, it is of the utmost importance to develop disease-modifying therapeutics that tackle AD pathology in its early stages. Attenuation of hippocampal hyperactivity, one of the earliest neuronal abnormalities observed in AD brains, has emerged as a promising strategy to ameliorate cognitive deficits and abate the spread of neurotoxic species. This aberrant hyperactivity has been attributed in part to the dysfunction of voltage-gated Na+ (Nav) channels, which are central mediators of neuronal excitability. Therefore, targeting Nav channels is a promising strategy for developing disease-modifying therapeutics that can correct aberrant neuronal phenotypes in early-stage AD. This review will explore the role of Nav channels in neuronal function, their connections to AD pathology, and their potential as therapeutic targets.
Collapse
Affiliation(s)
| | | | | | | | | | - Fernanda Laezza
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX 77555, USA; (T.J.B.); (Z.H.); (N.A.G.); (N.M.D.); (P.A.)
| |
Collapse
|
69
|
Buss SS, Fried PJ, Macone J, Zeng V, Zingg E, Santarnecchi E, Pascual-Leone A, Bartrés-Faz D. Greater cognitive reserve is related to lower cortical excitability in healthy cognitive aging, but not in early clinical Alzheimer's disease. Front Hum Neurosci 2023; 17:1193407. [PMID: 37576473 PMCID: PMC10413110 DOI: 10.3389/fnhum.2023.1193407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/05/2023] [Indexed: 08/15/2023] Open
Abstract
Objective To investigate the relationship between cortico-motor excitability and cognitive reserve (CR) in cognitively unimpaired older adults (CU) and in older adults with mild cognitive impairment or mild dementia due to Alzheimer's disease (AD). Methods Data were collected and analyzed from 15 CU and 24 amyloid-positive AD participants aged 50-90 years. A cognitive reserve questionnaire score (CRQ) assessed education, occupation, leisure activities, physical activities, and social engagement. Cortical excitability was quantified as the average amplitude of motor evoked potentials (MEP amplitude) elicited with single-pulse transcranial magnetic stimulation delivered to primary motor cortex. A linear model compared MEP amplitudes between groups. A linear model tested for an effect of CRQ on MEP amplitude across all participants. Finally, separate linear models tested for an effect of CRQ on MEP amplitude within each group. Exploratory analyses tested for effect modification of demographics, cognitive scores, atrophy measures, and CSF measures within each group using nested regression analysis. Results There was no between-group difference in MEP amplitude after accounting for covariates. The primary model showed a significant interaction term of group*CRQ (R2adj = 0.18, p = 0.013), but no main effect of CRQ. Within the CU group, higher CRQ was significantly associated with lower MEP amplitude (R2adj = 0.45, p = 0.004). There was no association in the AD group. Conclusion Lower cortico-motor excitability is related to greater CRQ in CU, but not in AD. Lower MEP amplitudes may reflect greater neural efficiency in cognitively unimpaired older adults. The lack of association seen in AD participants may reflect disruption of the protective effects of CR. Future work is needed to better understand the neurophysiologic mechanisms leading to the protective effects of CR in older adults with and without neurodegenerative disorders.
Collapse
Affiliation(s)
- Stephanie S. Buss
- Division of Cognitive Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Department of Neurology, Harvard Medical School, Boston, MA, United States
| | - Peter J. Fried
- Division of Cognitive Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Department of Neurology, Harvard Medical School, Boston, MA, United States
| | - Joanna Macone
- Division of Cognitive Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Department of Neurology, Harvard Medical School, Boston, MA, United States
| | - Victor Zeng
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Emma Zingg
- Division of Cognitive Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Program of All-inclusive Care for the Elderly (PACE), Cambridge Health Alliance, Cambridge, MA, United States
| | - Emiliano Santarnecchi
- Division of Cognitive Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Department of Neurology, Harvard Medical School, Boston, MA, United States
- Precision Neuromodulation Program, Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Alvaro Pascual-Leone
- Department of Neurology, Harvard Medical School, Boston, MA, United States
- Deanna and Sidney Wolk Center for Memory Health, Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, United States
| | - David Bartrés-Faz
- Division of Cognitive Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
70
|
Robinson B, Bhamidi S, Dayan E. The spatial distribution of coupling between tau and neurodegeneration in amyloid-β positive mild cognitive impairment. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.13.23288533. [PMID: 37131677 PMCID: PMC10153340 DOI: 10.1101/2023.04.13.23288533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Synergies between amyloid-β (Aβ), tau, and neurodegeneration persist along the Alzheimer's disease (AD) continuum. This study aimed to evaluate the extent of spatial coupling between tau and neurodegeneration (atrophy) and its relation to Aβ positivity in mild cognitive impairment (MCI). Data from 409 subjects were included (95 cognitively normal controls, 158 Aβ positive (Aβ+) MCI, and 156 Aβ negative (Aβ-) MCI) Florbetapir PET, Flortaucipir PET, and structural MRI were used as biomarkers for Aβ, tau and atrophy, respectively. Individual correlation matrices for tau load and atrophy were used to layer a multilayer network, with separate layers for tau and atrophy. A measure of coupling between corresponding regions of interest/nodes in the tau and atrophy layers was computed, as a function of Aβ positivity. The extent to which tau-atrophy coupling mediated associations between Aβ burden and cognitive decline was also evaluated. Heightened coupling between tau and atrophy in Aβ+ MCI was found primarily in the entorhinal and hippocampal regions (i.e., in regions corresponding to Braak stages I/II), and to a lesser extent in limbic and neocortical regions (i.e., corresponding to later Braak stages). Coupling strengths in the right middle temporal and inferior temporal gyri mediated the association between Aβ burden and cognition in this sample. Higher coupling between tau and atrophy in Aβ+ MCI is primarily evident in regions corresponding to early Braak stages and relates to overall cognitive decline. Coupling in neocortical regions is more restricted in MCI.
Collapse
|
71
|
Zhao F, Tomita M, Dutta A. Operational Modal Analysis of Near-Infrared Spectroscopy Measure of 2-Month Exercise Intervention Effects in Sedentary Older Adults with Diabetes and Cognitive Impairment. Brain Sci 2023; 13:1099. [PMID: 37509027 PMCID: PMC10377417 DOI: 10.3390/brainsci13071099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The Global Burden of Disease Study (GBD 2019 Diseases and Injuries Collaborators) found that diabetes significantly increases the overall burden of disease, leading to a 24.4% increase in disability-adjusted life years. Persistently high glucose levels in diabetes can cause structural and functional changes in proteins throughout the body, and the accumulation of protein aggregates in the brain that can be associated with the progression of Alzheimer's Disease (AD). To address this burden in type 2 diabetes mellitus (T2DM), a combined aerobic and resistance exercise program was developed based on the recommendations of the American College of Sports Medicine. The prospectively registered clinical trials (NCT04626453, NCT04812288) involved two groups: an Intervention group of older sedentary adults with T2DM and a Control group of healthy older adults who could be either active or sedentary. The completion rate for the 2-month exercise program was high, with participants completing on an average of 89.14% of the exercise sessions. This indicated that the program was practical, feasible, and well tolerated, even during the COVID-19 pandemic. It was also safe, requiring minimal equipment and no supervision. Our paper presents portable near-infrared spectroscopy (NIRS) based measures that showed muscle oxygen saturation (SmO2), i.e., the balance between oxygen delivery and oxygen consumption in muscle, drop during bilateral heel rise task (BHR) and the 6 min walk task (6MWT) significantly (p < 0.05) changed at the post-intervention follow-up from the pre-intervention baseline in the T2DM Intervention group participants. Moreover, post-intervention changes from pre-intervention baseline for the prefrontal activation (both oxyhemoglobin and deoxyhemoglobin) showed statistically significant (p < 0.05, q < 0.05) effect at the right superior frontal gyrus, dorsolateral, during the Mini-Cog task. Here, operational modal analysis provided further insights into the 2-month exercise intervention effects on the very-low-frequency oscillations (<0.05 Hz) during the Mini-Cog task that improved post-intervention in the sedentary T2DM Intervention group from their pre-intervention baseline when compared to active healthy Control group. Then, the 6MWT distance significantly (p < 0.01) improved in the T2DM Intervention group at post-intervention follow-up from pre-intervention baseline that showed improved aerobic capacity and endurance. Our portable NIRS based measures have practical implications at the point of care for the therapists as they can monitor muscle and brain oxygenation changes during physical and cognitive tests to prescribe personalized physical exercise doses without triggering individual stress response, thereby, enhancing vascular health in T2DM.
Collapse
Affiliation(s)
- Fei Zhao
- Department of Rehabilitation Science, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY 14214, USA
| | - Machiko Tomita
- Department of Rehabilitation Science, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY 14214, USA
| | - Anirban Dutta
- School of Engineering, University of Lincoln, Lincoln LN67TS, UK
| |
Collapse
|
72
|
Mijalkov M, Veréb D, Canal-Garcia A, Hinault T, Volpe G, Pereira JB. Nonlinear changes in delayed functional network topology in Alzheimer's disease: relationship with amyloid and tau pathology. Alzheimers Res Ther 2023; 15:112. [PMID: 37328909 DOI: 10.1186/s13195-023-01252-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/31/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Alzheimer's disease is a neurodegenerative disorder associated with the abnormal deposition of pathological processes, such as amyloid-ß and tau, which produces nonlinear changes in the functional connectivity patterns between different brain regions across the Alzheimer's disease continuum. However, the mechanisms underlying these nonlinear changes remain largely unknown. Here, we address this question using a novel method based on temporal or delayed correlations and calculate new whole-brain functional networks to tackle these mechanisms. METHODS To assess our method, we evaluated 166 individuals from the ADNI database, including amyloid-beta negative and positive cognitively normal subjects, patients with mild cognitive impairment, and patients with Alzheimer's disease dementia. We used the clustering coefficient and the global efficiency to measure the functional network topology and assessed their relationship with amyloid and tau pathology measured by positron emission tomography, as well as cognitive performance using tests measuring memory, executive function, attention, and global cognition. RESULTS Our study found nonlinear changes in the global efficiency, but not in the clustering coefficient, showing that the nonlinear changes in functional connectivity are due to an altered ability of brain regions to communicate with each other through direct paths. These changes in global efficiency were most prominent in early disease stages. However, later stages of Alzheimer's disease were associated with widespread network disruptions characterized by changes in both network measures. The temporal delays required for the detection of these changes varied across the Alzheimer's disease continuum, with shorter delays necessary to detect changes in early stages and longer delays necessary to detect changes in late stages. Both global efficiency and clustering coefficient showed quadratic associations with pathological amyloid and tau burden as well as cognitive decline. CONCLUSIONS This study suggests that global efficiency is a more sensitive indicator of network changes in Alzheimer's disease when compared to clustering coefficient. Both network properties were associated with pathology and cognitive performance, demonstrating their relevance in clinical settings. Our findings provide an insight into the mechanisms underlying nonlinear changes in functional network organization in Alzheimer's disease, suggesting that it is the lack of direct connections that drives these functional changes.
Collapse
Affiliation(s)
- Mite Mijalkov
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Dániel Veréb
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Anna Canal-Garcia
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Hinault
- Normandie Univ, Unicaen, PSL, Université Paris, EPHE, Inserm, U1077, CHU de Caen, Centre Cyceron, 14000, Caen, France
| | - Giovanni Volpe
- Department of Physics, Goteborg University, Goteborg, Sweden
| | - Joana B Pereira
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
73
|
Whitfield JF, Rennie K, Chakravarthy B. Alzheimer's Disease and Its Possible Evolutionary Origin: Hypothesis. Cells 2023; 12:1618. [PMID: 37371088 PMCID: PMC10297544 DOI: 10.3390/cells12121618] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/29/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
The enormous, 2-3-million-year evolutionary expansion of hominin neocortices to the current enormity enabled humans to take over the planet. However, there appears to have been a glitch, and it occurred without a compensatory expansion of the entorhinal cortical (EC) gateway to the hippocampal memory-encoding system needed to manage the processing of the increasing volume of neocortical data converging on it. The resulting age-dependent connectopathic glitch was unnoticed by the early short-lived populations. It has now surfaced as Alzheimer's disease (AD) in today's long-lived populations. With advancing age, processing of the converging neocortical data by the neurons of the relatively small lateral entorhinal cortex (LEC) inflicts persistent strain and high energy costs on these cells. This may result in their hyper-release of harmless Aβ1-42 monomers into the interstitial fluid, where they seed the formation of toxic amyloid-β oligomers (AβOs) that initiate AD. At the core of connectopathic AD are the postsynaptic cellular prion protein (PrPC). Electrostatic binding of the negatively charged AβOs to the positively charged N-terminus of PrPC induces hyperphosphorylation of tau that destroys synapses. The spread of these accumulating AβOs from ground zero is supported by Aβ's own production mediated by target cells' Ca2+-sensing receptors (CaSRs). These data suggest that an early administration of a strongly positively charged, AβOs-interacting peptide or protein, plus an inhibitor of CaSR, might be an effective AD-arresting therapeutic combination.
Collapse
Affiliation(s)
- James F. Whitfield
- Human Health Therapeutics, National Research Council, Ottawa, ON K1A 0R6, Canada
| | | | | |
Collapse
|
74
|
Torrealba E, Aguilar-Zerpa N, Garcia-Morales P, Díaz M. Compensatory Mechanisms in Early Alzheimer's Disease and Clinical Setting: The Need for Novel Neuropsychological Strategies. J Alzheimers Dis Rep 2023; 7:513-525. [PMID: 37313485 PMCID: PMC10259077 DOI: 10.3233/adr-220116] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 03/19/2023] [Indexed: 06/15/2023] Open
Abstract
Despite advances in the detection of biomarkers and in the design of drugs that can slow the progression of Alzheimer's disease (AD), the underlying primary mechanisms have not been elucidated. The diagnosis of AD has notably improved with the development of neuroimaging techniques and cerebrospinal fluid biomarkers which have provided new information not available in the past. Although the diagnosis has advanced, there is a consensus among experts that, when making the diagnosis in a specific patient, many years have probably passed since the onset of the underlying processes, and it is very likely that the biomarkers in use and their cutoffs do not reflect the true critical points for establishing the precise stage of the ongoing disease. In this context, frequent disparities between current biomarkers and cognitive and functional performance in clinical practice constitute a major drawback in translational neurology. To our knowledge, the In-Out-test is the only neuropsychological test developed with the idea that compensatory brain mechanisms exist in the early stages of AD, and whose positive effects on conventional tests performance can be reduced in assessing episodic memory in the context of a dual-task, through which the executive auxiliary networks are 'distracted', thus uncover the real memory deficit. Furthermore, as additional traits, age and formal education have no impact on the performance of the In-Out-test.
Collapse
Affiliation(s)
- Eduardo Torrealba
- Department of Neurology, Hospital Universitario de Gran Canaria Dr. Negrin, Las Palmas de Gran Canaria, Spain
- Faculty of Medicine, Universidad de Las Palmas De Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain
| | - Norka Aguilar-Zerpa
- Universidad Nacional de Educación a Distancia (UNED), Las Palmas de Gran Canaria, Spain
| | - Pilar Garcia-Morales
- Department of Psychiatry, Complejo Hospitalario Universitario Insular Materno-Infantil, Las Palmas de Gran Canaria, Spain
| | - Mario Díaz
- Department of Physics, University of La Laguna, Membrane Physiology and Biophysics, Tenerife, Spain
- Instituto Universitario de Neurociencias (IUNE), Universidad de La Laguna, Tenerife, Spain
| |
Collapse
|
75
|
Perrin F, Sinha P, Mitchell S, Maesako M, Berezovska O. Identification of PS1/gamma-secretase and glutamate transporter GLT-1 interaction sites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542955. [PMID: 37398024 PMCID: PMC10312500 DOI: 10.1101/2023.05.30.542955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The recently discovered interaction between Presenilin 1 (PS1), a catalytic subunit of γ-secretase responsible for generating amyloid-β (Aβ) peptides, and GLT-1, a major glutamate transporter in the brain (EAAT2) provides a mechanistic link between these two key factors involved in Alzheimer's disease (AD) pathology. Modulating this interaction can be crucial to understand the consequence of such crosstalk in AD context and beyond. However, the interaction sites between these two proteins are unknown. Herein, we utilized an alanine scanning approach coupled with FRET-based fluorescence lifetime imaging microscopy (FLIM) to identify the interaction sites between PS1 and GLT-1 in their native environment within intact cells. We found that GLT-1 residues at position 276 to 279 (TM5) and PS1 residues at position 249 to 252 (TM6) are crucial for GLT-1/PS1 interaction. These results have been cross validated using AlphaFold Multimer prediction. To further investigate whether this interaction of endogenously expressed GLT-1 and PS1 can be prevented in primary neurons, we designed PS1/GLT-1 cell-permeable peptides (CPPs) targeting the PS1 or GLT-1 binding site. We used HIV TAT domain to allow for cell penetration which was assayed in neurons. First, we assessed the toxicity and penetration of CPPs by confocal microscopy. Next, to ensure the efficiency of CPPs, we monitored the modulation of GLT-1/PS1 interaction in intact neurons by FLIM. We saw significantly less interaction between PS1 and GLT-1 with both CPPs. Our study establishes a new tool to study the functional aspect of GLT-1/PS1 interaction and its relevance in normal physiology and AD models.
Collapse
|
76
|
Chen L, Wick ZC, Vetere LM, Vaughan N, Jurkowski A, Galas A, Diego KS, Philipsberg P, Cai DJ, Shuman T. Progressive excitability changes in the medial entorhinal cortex in the 3xTg mouse model of Alzheimer's disease pathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542838. [PMID: 37398359 PMCID: PMC10312508 DOI: 10.1101/2023.05.30.542838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder that is characterized by memory loss and progressive cognitive impairments. In mouse models of AD pathology, studies have found neuronal and synaptic deficits in the hippocampus, but less is known about what happens in the medial entorhinal cortex (MEC), which is the primary spatial input to the hippocampus and an early site of AD pathology. Here, we measured the neuronal intrinsic excitability and synaptic activity in MEC layer II (MECII) stellate cells, MECII pyramidal cells, and MEC layer III (MECIII) excitatory neurons at early (3 months) and late (10 months) time points in the 3xTg mouse model of AD pathology. At 3 months of age, prior to the onset of memory impairments, we found early hyperexcitability in MECII stellate and pyramidal cells' intrinsic properties, but this was balanced by a relative reduction in synaptic excitation (E) compared to inhibition (I), suggesting intact homeostatic mechanisms regulating activity in MECII. Conversely, MECIII neurons had reduced intrinsic excitability at this early time point with no change in the synaptic E/I ratio. By 10 months of age, after the onset of memory deficits, neuronal excitability of MECII pyramidal cells and MECIII excitatory neurons was largely normalized in 3xTg mice. However, MECII stellate cells remained hyperexcitable and this was further exacerbated by an increased synaptic E/I ratio. This observed combination of increased intrinsically and synaptically generated excitability suggests a breakdown in homeostatic mechanisms specifically in MECII stellate cells at this post-symptomatic time point. Together, these data suggest that the breakdown in homeostatic excitability mechanisms in MECII stellate cells may contribute to the emergence of memory deficits in AD.
Collapse
Affiliation(s)
- Lingxuan Chen
- Icahn School of Medicine at Mount Sinai, New York NY
- University of California Irvine, Irvine CA
| | | | | | - Nick Vaughan
- Icahn School of Medicine at Mount Sinai, New York NY
| | - Albert Jurkowski
- Icahn School of Medicine at Mount Sinai, New York NY
- CUNY Hunter College, New York NY
| | - Angelina Galas
- Icahn School of Medicine at Mount Sinai, New York NY
- New York University, New York NY
| | | | | | - Denise J. Cai
- Icahn School of Medicine at Mount Sinai, New York NY
| | | |
Collapse
|
77
|
Håglin S, Koch E, Schäfer Hackenhaar F, Nyberg L, Kauppi K. APOE ɛ4, but not polygenic Alzheimer's disease risk, is related to longitudinal decrease in hippocampal brain activity in non-demented individuals. Sci Rep 2023; 13:8433. [PMID: 37225733 DOI: 10.1038/s41598-023-35316-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 05/16/2023] [Indexed: 05/26/2023] Open
Abstract
The hippocampus is affected early in Alzheimer's disease (AD) and altered hippocampal functioning influences normal cognitive aging. Here, we used task-based functional MRI to assess if the APOE ɛ4 allele or a polygenic risk score (PRS) for AD was linked to longitudinal changes in memory-related hippocampal activation in normal aging (baseline age 50-95, n = 292; n = 182 at 4 years follow-up, subsequently non-demented for at least 2 years). Mixed-models were used to predict level and change in hippocampal activation by APOE ɛ4 status and PRS based on gene variants previously linked to AD at p ≤ 1, p < 0.05, or p < 5e-8 (excluding APOE). APOE ɛ4 and PRSp<5e-8 significantly predicted AD risk in a larger sample from the same study population (n = 1542), while PRSp≤1 predicted memory decline. APOE ɛ4 was linked to decreased hippocampal activation over time, with the most prominent effect in the posterior hippocampi, while PRS was unrelated to hippocampal activation at all p-thresholds. These results suggests a link for APOE ɛ4, but not for AD genetics in general, on functional changes of the hippocampi in normal aging.
Collapse
Affiliation(s)
- Sofia Håglin
- Department of Integrative Medical Biology, Umeå University, 901 87, Umeå, Sweden
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Elise Koch
- Department of Integrative Medical Biology, Umeå University, 901 87, Umeå, Sweden
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
- Division of Mental Health and Addiction, NORMENT, Centre for Mental Disorders Research, Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Fernanda Schäfer Hackenhaar
- Department of Integrative Medical Biology, Umeå University, 901 87, Umeå, Sweden
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
| | - Lars Nyberg
- Department of Integrative Medical Biology, Umeå University, 901 87, Umeå, Sweden
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
- Department of Radiation Sciences, Diagnostic Radiology, University Hospital, Umeå University, Umeå, Sweden
| | - Karolina Kauppi
- Department of Integrative Medical Biology, Umeå University, 901 87, Umeå, Sweden.
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden.
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Solna, Sweden.
| |
Collapse
|
78
|
Kwon YJ, Kwon OI, Hwang HJ, Shin HC, Yang S. Therapeutic effects of phlorotannins in the treatment of neurodegenerative disorders. Front Mol Neurosci 2023; 16:1193590. [PMID: 37305552 PMCID: PMC10249478 DOI: 10.3389/fnmol.2023.1193590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 04/27/2023] [Indexed: 06/13/2023] Open
Abstract
Phlorotannins are natural polyphenolic compounds produced by brown marine algae and are currently found in nutritional supplements. Although they are known to cross the blood-brain barrier, their neuropharmacological actions remain unclear. Here we review the potential therapeutic benefits of phlorotannins in the treatment of neurodegenerative diseases. In mouse models of Alzheimer's disease, ethanol intoxication and fear stress, the phlorotannin monomer phloroglucinol and the compounds eckol, dieckol and phlorofucofuroeckol A have been shown to improve cognitive function. In a mouse model of Parkinson's disease, phloroglucinol treatment led to improved motor performance. Additional neurological benefits associated with phlorotannin intake have been demonstrated in stroke, sleep disorders, and pain response. These effects may stem from the inhibition of disease-inducing plaque synthesis and aggregation, suppression of microglial activation, modulation of pro-inflammatory signaling, reduction of glutamate-induced excitotoxicity, and scavenging of reactive oxygen species. Clinical trials of phlorotannins have not reported significant adverse effects, suggesting these compounds to be promising bioactive agents in the treatment of neurological diseases. We therefore propose a putative biophysical mechanism of phlorotannin action in addition to future directions for phlorotannin research.
Collapse
Affiliation(s)
- Yoon Ji Kwon
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Oh Ig Kwon
- Botamedi Brain Health and Medical Care Company Limited, Central, Hong Kong SAR, China
| | - Hye Jeong Hwang
- Center for Molecular Intelligence, SUNY Korea, Incheon, Republic of Korea
| | - Hyeon-Cheol Shin
- Botamedi Brain Health and Medical Care Company Limited, Central, Hong Kong SAR, China
- Center for Molecular Intelligence, SUNY Korea, Incheon, Republic of Korea
| | - Sungchil Yang
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| |
Collapse
|
79
|
Kumar P, Goettemoeller AM, Espinosa-Garcia C, Tobin BR, Tfaily A, Nelson RS, Natu A, Dammer EB, Santiago JV, Malepati S, Cheng L, Xiao H, Duong D, Seyfried NT, Wood LB, Rowan MJ, Rangaraju S. Native-state proteomics of Parvalbumin interneurons identifies novel molecular signatures and metabolic vulnerabilities to early Alzheimer's disease pathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.17.541038. [PMID: 37292756 PMCID: PMC10245729 DOI: 10.1101/2023.05.17.541038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
One of the earliest pathophysiological perturbations in Alzheimer's Disease (AD) may arise from dysfunction of fast-spiking parvalbumin (PV) interneurons (PV-INs). Defining early protein-level (proteomic) alterations in PV-INs can provide key biological and translationally relevant insights. Here, we use cell-type-specific in vivo biotinylation of proteins (CIBOP) coupled with mass spectrometry to obtain native-state proteomes of PV interneurons. PV-INs exhibited proteomic signatures of high metabolic, mitochondrial, and translational activity, with over-representation of causally linked AD genetic risk factors. Analyses of bulk brain proteomes indicated strong correlations between PV-IN proteins with cognitive decline in humans, and with progressive neuropathology in humans and mouse models of Aβ pathology. Furthermore, PV-IN-specific proteomes revealed unique signatures of increased mitochondrial and metabolic proteins, but decreased synaptic and mTOR signaling proteins in response to early Aβ pathology. PV-specific changes were not apparent in whole-brain proteomes. These findings showcase the first native state PV-IN proteomes in mammalian brain, revealing a molecular basis for their unique vulnerabilities in AD.
Collapse
|
80
|
Calafate S, Özturan G, Thrupp N, Vanderlinden J, Santa-Marinha L, Morais-Ribeiro R, Ruggiero A, Bozic I, Rusterholz T, Lorente-Echeverría B, Dias M, Chen WT, Fiers M, Lu A, Vlaeminck I, Creemers E, Craessaerts K, Vandenbempt J, van Boekholdt L, Poovathingal S, Davie K, Thal DR, Wierda K, Oliveira TG, Slutsky I, Adamantidis A, De Strooper B, de Wit J. Early alterations in the MCH system link aberrant neuronal activity and sleep disturbances in a mouse model of Alzheimer's disease. Nat Neurosci 2023:10.1038/s41593-023-01325-4. [PMID: 37188873 DOI: 10.1038/s41593-023-01325-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 04/10/2023] [Indexed: 05/17/2023]
Abstract
Early Alzheimer's disease (AD) is associated with hippocampal hyperactivity and decreased sleep quality. Here we show that homeostatic mechanisms transiently counteract the increased excitatory drive to CA1 neurons in AppNL-G-F mice, but that this mechanism fails in older mice. Spatial transcriptomics analysis identifies Pmch as part of the adaptive response in AppNL-G-F mice. Pmch encodes melanin-concentrating hormone (MCH), which is produced in sleep-active lateral hypothalamic neurons that project to CA1 and modulate memory. We show that MCH downregulates synaptic transmission, modulates firing rate homeostasis in hippocampal neurons and reverses the increased excitatory drive to CA1 neurons in AppNL-G-F mice. AppNL-G-F mice spend less time in rapid eye movement (REM) sleep. AppNL-G-F mice and individuals with AD show progressive changes in morphology of CA1-projecting MCH axons. Our findings identify the MCH system as vulnerable in early AD and suggest that impaired MCH-system function contributes to aberrant excitatory drive and sleep defects, which can compromise hippocampus-dependent functions.
Collapse
Affiliation(s)
- Sara Calafate
- VIB Center for Brain & Disease Research, Leuven, Belgium.
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium.
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Gökhan Özturan
- VIB Center for Brain & Disease Research, Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | - Nicola Thrupp
- VIB Center for Brain & Disease Research, Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | - Jeroen Vanderlinden
- VIB Center for Brain & Disease Research, Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | - Luísa Santa-Marinha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rafaela Morais-Ribeiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Antonella Ruggiero
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ivan Bozic
- Zentrum für Experimentelle Neurologie, Department of Neurology, Inselspital University Hospital Bern, University of Bern, Bern, Switzerland
| | - Thomas Rusterholz
- Zentrum für Experimentelle Neurologie, Department of Neurology, Inselspital University Hospital Bern, University of Bern, Bern, Switzerland
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Blanca Lorente-Echeverría
- VIB Center for Brain & Disease Research, Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | - Marcelo Dias
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Wei-Ting Chen
- VIB Center for Brain & Disease Research, Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | - Mark Fiers
- VIB Center for Brain & Disease Research, Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | - Ashley Lu
- VIB Center for Brain & Disease Research, Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | - Ine Vlaeminck
- VIB Center for Brain & Disease Research, Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | - Eline Creemers
- VIB Center for Brain & Disease Research, Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | - Katleen Craessaerts
- VIB Center for Brain & Disease Research, Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | - Joris Vandenbempt
- VIB Center for Brain & Disease Research, Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | - Luuk van Boekholdt
- VIB Center for Brain & Disease Research, Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
- KU Leuven, Department of Otorhinolaryngology, Leuven, Belgium
| | - Suresh Poovathingal
- VIB Center for Brain & Disease Research, Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | - Kristofer Davie
- VIB Center for Brain & Disease Research, Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | - Dietmar Rudolf Thal
- Department of Imaging and Pathology, Laboratory of Neuropathology, and Leuven Brain Institute, KU-Leuven, O&N IV, Leuven, Belgium
- Department of Pathology, UZ Leuven, Leuven, Belgium
| | - Keimpe Wierda
- VIB Center for Brain & Disease Research, Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | - Tiago Gil Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Inna Slutsky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Antoine Adamantidis
- Zentrum für Experimentelle Neurologie, Department of Neurology, Inselspital University Hospital Bern, University of Bern, Bern, Switzerland
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Bart De Strooper
- VIB Center for Brain & Disease Research, Leuven, Belgium.
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium.
- UK Dementia Research Institute (UK DRI@UCL) at University College London, London, UK.
| | - Joris de Wit
- VIB Center for Brain & Disease Research, Leuven, Belgium.
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium.
| |
Collapse
|
81
|
Liu J, Zhou S, Wang Y, Liu J, Sun S, Sun Y, Xu P, Xu X, Zhu B, Wu H. ZeXieYin Formula alleviates TMAO-induced cognitive impairment by restoring synaptic plasticity damage. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116604. [PMID: 37178985 DOI: 10.1016/j.jep.2023.116604] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/29/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Treating cognitive impairment is a challenging and necessary research topic. ZeXieYin Formula (ZXYF), is a traditional herbal formula documented in the book of HuangDiNeiJing. Our previous studies demonstrated the ameliorative effects of ZXYF on atherosclerosis by reducing the plasma trimethylamine oxide (TMAO) level. TMAO is a metabolite of gut microorganisms, our recent research found that the increasing level of TMAO may have adverse effects on cognitive functions. AIM OF THE STUDY Our study mainly focused on the therapeutic effects of ZXYF on TMAO-induced cognitive impairment in mice and explored its underlying mechanism. MATERIALS AND METHODS After the TMAO-induced cognitive impairment mice models were established, we applied behavioral tests to estimate the learning and memory ability of the ZXYF intervention mice. Liquid chromatography-mass spectrometry (LC-MS) was used to quantify the TMAO levels in plasma and the brain. The effects of ZXYF on the hippocampal synaptic structure and the neurons were observed by transmission electron microscopy (TEM) and Nissl staining. In addition, western-blotting (WB) and immunohistochemical (IHC) staining were used to detect the level of related proteins in the synaptic structure and further verify the changes in synaptic plasticity and the mTOR pathway after ZXYF administration. RESULTS Behavioral tests showed that the learning and memory ability of mice impaired after a period of TMAO intervention and ZXYF could alleviate these changes. A series of results showed that ZXYF partly restored the damage of hippocampal synapse and neurons in TMAO-induced mice, at the same time, the expression of synapse-related proteins and mTOR pathway-related proteins were significantly regulated compared with the damage caused by TMAO. CONCLUSION ZXYF could alleviate TMAO-induced cognitive impairment by improving synaptic function, reducing neuronal damage, regulating synapse-associated proteins, and regulating the mTOR signaling pathway.
Collapse
Affiliation(s)
- Jing Liu
- College of Traditional Chinese Medicine and College of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210046, China; Key Laboratory of Integrative Biomedicine for Brain Diseases, College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210046, China
| | - Shihan Zhou
- College of Traditional Chinese Medicine and College of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210046, China; Key Laboratory of Integrative Biomedicine for Brain Diseases, College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210046, China
| | - Yanqing Wang
- College of Traditional Chinese Medicine and College of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210046, China; Key Laboratory of Integrative Biomedicine for Brain Diseases, College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210046, China
| | - Jinling Liu
- College of Traditional Chinese Medicine and College of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210046, China; Key Laboratory of Integrative Biomedicine for Brain Diseases, College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210046, China
| | - SuPing Sun
- College of Traditional Chinese Medicine and College of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210046, China; Key Laboratory of Integrative Biomedicine for Brain Diseases, College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210046, China
| | - Yan Sun
- College of Traditional Chinese Medicine and College of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210046, China; Key Laboratory of Integrative Biomedicine for Brain Diseases, College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210046, China
| | - Ping Xu
- College of Traditional Chinese Medicine and College of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210046, China; Key Laboratory of Integrative Biomedicine for Brain Diseases, College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210046, China
| | - Xu Xu
- Nantong TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Nantong, Jiangsu, 226001, China
| | - Boran Zhu
- College of Traditional Chinese Medicine and College of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210046, China; Key Laboratory of Integrative Biomedicine for Brain Diseases, College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210046, China.
| | - Haoxin Wu
- College of Traditional Chinese Medicine and College of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210046, China; Key Laboratory of Integrative Biomedicine for Brain Diseases, College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210046, China.
| |
Collapse
|
82
|
Press DZ, Musaeus CS, Zhao L, Breton J, Shafi MM, Dai W, Alsop DC. Levetiracetam Increases Hippocampal Blood Flow in Alzheimer's Disease as Measured by Arterial Spin Labelling MRI. J Alzheimers Dis 2023:JAD220614. [PMID: 37125545 DOI: 10.3233/jad-220614] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
BACKGROUND Patients with Alzheimer's disease (AD) have an increased risk of developing epileptiform discharges, which is associated with a more rapid rate of progression. This suggests that suppression of epileptiform activity could have clinical benefit in patients with AD. OBJECTIVE In the current study, we tested whether acute, intravenous administration of levetiracetam led to changes in brain perfusion as measured with arterial spin labeling MRI (ASL-MRI) in AD. METHODS We conducted a double-blind, within-subject crossover design study in which participants with mild AD (n = 9) received placebo, 2.5 mg/kg, and 7.5 mg/kg of LEV intravenously in a random order in three sessions. Afterwards, the participants underwent ASL-MRI. RESULTS Analysis of relative cerebral blood flow (rCBF) between 2.5 mg of levetiracetam and placebo showed significant decreases in a cluster that included the posterior cingulate cortex, the precuneus, the posterior part of the cingulate gyrus, while increased cerebral blood flow was found in both temporal lobes involving the hippocampus. CONCLUSION Administration of 2.5 mg/kg of LEV in patients without any history of epilepsy leads to changes in rCBF in areas known to be affected in the early stages of AD. These areas may be the focus of the epileptiform activity. Larger studies are needed to confirm the current findings.
Collapse
Affiliation(s)
- Daniel Zvi Press
- Berenson-Allen Center for Non-invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Christian Sandøe Musaeus
- Berenson-Allen Center for Non-invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Danish Dementia Research Centre, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Li Zhao
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jocelyn Breton
- Berenson-Allen Center for Non-invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Mouhsin M Shafi
- Berenson-Allen Center for Non-invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Weiying Dai
- Department of Computer Science, State University of New York at Binghamton, NY, USA
| | - David C Alsop
- Department of Radiology, Division of MRI Research, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
83
|
Brown J, Camporesi E, Lantero-Rodriguez J, Olsson M, Wang A, Medem B, Zetterberg H, Blennow K, Karikari TK, Wall M, Hill E. Tau in cerebrospinal fluid induces neuronal hyperexcitability and alters hippocampal theta oscillations. Acta Neuropathol Commun 2023; 11:67. [PMID: 37095572 PMCID: PMC10127378 DOI: 10.1186/s40478-023-01562-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/03/2023] [Indexed: 04/26/2023] Open
Abstract
Alzheimer's disease (AD) and other tauopathies are characterized by the aggregation of tau into soluble and insoluble forms (including tangles and neuropil threads). In humans, a fraction of both phosphorylated and non-phosphorylated N-terminal to mid-domain tau species, are secreted into cerebrospinal fluid (CSF). Some of these CSF tau species can be measured as diagnostic and prognostic biomarkers, starting from early stages of disease. While in animal models of AD pathology, soluble tau aggregates have been shown to disrupt neuronal function, it is unclear whether the tau species present in CSF will modulate neural activity. Here, we have developed and applied a novel approach to examine the electrophysiological effects of CSF from patients with a tau-positive biomarker profile. The method involves incubation of acutely-isolated wild-type mouse hippocampal brain slices with small volumes of diluted human CSF, followed by a suite of electrophysiological recording methods to evaluate their effects on neuronal function, from single cells through to the network level. Comparison of the toxicity profiles of the same CSF samples, with and without immuno-depletion for tau, has enabled a pioneering demonstration that CSF-tau potently modulates neuronal function. We demonstrate that CSF-tau mediates an increase in neuronal excitability in single cells. We then observed, at the network level, increased input-output responses and enhanced paired-pulse facilitation as well as an increase in long-term potentiation. Finally, we show that CSF-tau modifies the generation and maintenance of hippocampal theta oscillations, which have important roles in learning and memory and are known to be altered in AD patients. Together, we describe a novel method for screening human CSF-tau to understand functional effects on neuron and network activity, which could have far-reaching benefits in understanding tau pathology, thus allowing for the development of better targeted treatments for tauopathies in the future.
Collapse
Affiliation(s)
- Jessica Brown
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
| | - Elena Camporesi
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, 43180, Mölndal, Sweden
| | - Juan Lantero-Rodriguez
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, 43180, Mölndal, Sweden
| | - Maria Olsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, 43180, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 43180, Mölndal, Sweden
| | - Alice Wang
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Blanca Medem
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, 43180, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 43180, Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, WC1E 6BT, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin, Madison, WI, 53792, USA
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, 43180, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 43180, Mölndal, Sweden
| | - Thomas K Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, 43180, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 43180, Mölndal, Sweden
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Mark Wall
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Emily Hill
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
84
|
Bidzan L, Grabowski J, Przybylak M, Ali S. Aggressive behavior and prognosis in patients with mild cognitive impairment. Dement Neuropsychol 2023; 17:e20200096. [PMID: 37223838 PMCID: PMC10202333 DOI: 10.1590/1980-5764-dn-2020-0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/08/2021] [Accepted: 05/07/2021] [Indexed: 05/25/2023] Open
Abstract
The diagnosis of mild cognitive impairment (MCI) is associated with an increased risk of developing dementia. When evaluating the further prognosis of MCI, the occurrence of neuropsychiatric symptoms, particularly aggressive and impulsive behavior, may play an important role. Objective The aim of this study was to evaluate the relationship between aggressive behavior and cognitive dysfunction in patients diagnosed with MCI. Methods The results are based on a 7-year prospective study. At the time of inclusion in the study, participants, recruited from an outpatient clinic, were assessed with Mini-Mental State Examination (MMSE) and the Cohen-Mansfield Agitation Inventory (CMAI). A reassessment was performed after 1 year using the MMSE scale in all patients. The time of next MMSE administration was depended on the clinical condition of patients took place at the end of follow-up, that is, at the time of diagnosis of the dementia or after 7 years from inclusion when the criteria for dementia were not met. Results Of the 193 patients enrolled in the study, 75 were included in the final analysis. Patients who converted to dementia during the observation period exhibited a greater severity of symptoms in each of the assessed CMAI categories. Moreover, there was a significant correlation between the global result of CMAI and the results of the physical nonaggressive and verbal aggressive subscales with cognitive decline during the first year of observation. Conclusions Despite several limitations to the study, aggressive and impulsive behaviors seem to be an unfavorable prognostic factor in the course of MCI.
Collapse
Affiliation(s)
- Leszek Bidzan
- Medical University of Gdańsk, Faculty of Medicine, Department of Developmental, Psychotic and Geriatric Psychiatry, Gdańsk, Poland
| | - Jakub Grabowski
- Medical University of Gdańsk, Faculty of Medicine, Department of Developmental, Psychotic and Geriatric Psychiatry, Gdańsk, Poland
| | - Mateusz Przybylak
- Medical University of Gdańsk, Faculty of Medicine, Department of Developmental, Psychotic and Geriatric Psychiatry, Gdańsk, Poland
| | - Shan Ali
- Medical University of Gdańsk, Faculty of Medicine, Department of Developmental, Psychotic and Geriatric Psychiatry, Adult Psychiatry Student’s Scientific Circle, Gdańsk, Poland
| |
Collapse
|
85
|
Ganbat D, Jeon JK, Lee Y, Kim SS. Exploring the Pathological Effect of Aβ42 Oligomers on Neural Networks in Primary Cortical Neuron Culture. Int J Mol Sci 2023; 24:ijms24076641. [PMID: 37047612 PMCID: PMC10094920 DOI: 10.3390/ijms24076641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Alzheimer’s disease (AD) is a multifactorial disorder that affects cognitive functioning, behavior, and neuronal properties. The neuronal dysfunction is primarily responsible for cognitive decline in AD patients, with many causal factors including plaque accumulation of Aβ42. Neural hyperactivity induced by Aβ42 deposition causes abnormalities in neural networks, leading to alterations in synaptic activity and interneuron dysfunction. Even though neuroimaging techniques elucidated the underlying mechanism of neural connectivity, precise understanding at the cellular level is still elusive. Previous multielectrode array studies have examined the neuronal network modulation in in vitro cultures revealing the relevance of ion channels and the chemical modulators in the presence of Aβ42. In this study, we investigated neuronal connectivity and dynamic changes using a high-density multielectrode array, particularly looking at network-wide parameter changes over time. By comparing the neuronal network between normal and Aβ42treated neuronal cultures, it was possible to discover the direct pathological effect of the Aβ42 oligomer altering the network characteristics. The detrimental effects of the Aβ42 oligomer included not only a decline in spike activation but also a qualitative impairment in neural connectivity as well as a disorientation of dispersibility. As a result, this will improve our understanding of how neural networks are modified during AD progression.
Collapse
Affiliation(s)
- Dulguun Ganbat
- Department of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
| | - Jae Kyong Jeon
- Department of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
| | - Yunjong Lee
- Department of Pharmacology, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sang Seong Kim
- Department of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
| |
Collapse
|
86
|
Zott B, Konnerth A. Impairments of glutamatergic synaptic transmission in Alzheimer's disease. Semin Cell Dev Biol 2023; 139:24-34. [PMID: 35337739 DOI: 10.1016/j.semcdb.2022.03.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 12/31/2022]
Abstract
One of the hallmarks of Alzheimer's disease (AD) is structural cell damage and neuronal death in the brains of affected individuals. As these changes are irreversible, it is important to understand their origins and precursors in order to develop treatment strategies against AD. Here, we review evidence for AD-specific impairments of glutamatergic synaptic transmission by relating evidence from human AD subjects to functional studies in animal models of AD. The emerging picture is that early in the disease, the accumulation of toxic β-amyloid aggregates, particularly dimers and low molecular weight oligomers, disrupts glutamate reuptake, which leads to its extracellular accumulation causing neuronal depolarization. This drives the hyperactivation of neurons and might facilitate neuronal damage and degeneration through glutamate neurotoxicity.
Collapse
Affiliation(s)
- Benedikt Zott
- Institute of Neuroscience, Technical University of Munich, 80802 Munich, Germany; Munich Cluster for Systems Neurology, Technical University of Munich, 80802 Munich, Germany; Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany.
| | - Arthur Konnerth
- Institute of Neuroscience, Technical University of Munich, 80802 Munich, Germany; Munich Cluster for Systems Neurology, Technical University of Munich, 80802 Munich, Germany
| |
Collapse
|
87
|
Novakova L, Gajdos M, Markova J, Martinkovicova A, Kosutzka Z, Svantnerova J, Valkovic P, Csefalvay Z, Rektorova I. Language impairment in Parkinson’s disease: fMRI study of sentence reading comprehension. Front Aging Neurosci 2023; 15:1117473. [PMID: 36967818 PMCID: PMC10033839 DOI: 10.3389/fnagi.2023.1117473] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
Parkinson’s disease (PD) affects the language processes, with a significant impact on the patients’ daily communication. We aimed to describe specific alterations in the comprehension of syntactically complex sentences in patients with PD (PwPD) as compared to healthy controls (HC) and to identify the neural underpinnings of these deficits using a functional connectivity analysis of the striatum. A total of 20 patients PwPD and 15 HC participated in the fMRI study. We analyzed their performance of a Test of sentence comprehension (ToSC) adjusted for fMRI. A task-dependent functional connectivity analysis of the striatum was conducted using the psychophysiological interaction method (PPI). On the behavioral level, the PwPD scored significantly lower (mean ± sd: 77.3 ± 12.6) in the total ToSC score than the HC did (mean ± sd: 86.6 ± 8.0), p = 0.02, and the difference was also significant specifically for sentences with a non-canonical word order (PD-mean ± sd: 69.9 ± 14.1, HC-mean ± sd: 80.2 ± 11.5, p = 0.04). Using PPI, we found a statistically significant difference between the PwPD and the HC in connectivity from the right striatum to the supplementary motor area [SMA, (4 8 53)] for non-canonical sentences. This PPI connectivity was negatively correlated with the ToSC accuracy of non-canonical sentences in the PwPD. Our results showed disturbed sentence reading comprehension in the PwPD with altered task-dependent functional connectivity from the right striatum to the SMA, which supports the synchronization of the temporal and sequential aspects of language processing. The study revealed that subcortical-cortical networks (striatal-frontal loop) in PwPD are compromised, leading to impaired comprehension of syntactically complex sentences.
Collapse
Affiliation(s)
- Lubomira Novakova
- Brain and Mind Research, Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Martin Gajdos
- Brain and Mind Research, Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Jana Markova
- Department of Communication Disorders, Faculty of Education, Comenius University, Bratislava, Slovakia
| | - Alice Martinkovicova
- Second Department of Neurology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Zuzana Kosutzka
- Second Department of Neurology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Jana Svantnerova
- Second Department of Neurology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Peter Valkovic
- Second Department of Neurology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Zsolt Csefalvay
- Department of Communication Disorders, Faculty of Education, Comenius University, Bratislava, Slovakia
| | - Irena Rektorova
- Brain and Mind Research, Central European Institute of Technology, Masaryk University, Brno, Czechia
- *Correspondence: Irena Rektorova,
| |
Collapse
|
88
|
Meftah S, Gan J. Alzheimer's disease as a synaptopathy: Evidence for dysfunction of synapses during disease progression. Front Synaptic Neurosci 2023; 15:1129036. [PMID: 36970154 PMCID: PMC10033629 DOI: 10.3389/fnsyn.2023.1129036] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/23/2023] [Indexed: 03/11/2023] Open
Abstract
The synapse has consistently been considered a vulnerable and critical target within Alzheimer's disease, and synapse loss is, to date, one of the main biological correlates of cognitive decline within Alzheimer's disease. This occurs prior to neuronal loss with ample evidence that synaptic dysfunction precedes this, in support of the idea that synaptic failure is a crucial stage within disease pathogenesis. The two main pathological hallmarks of Alzheimer's disease, abnormal aggregates of amyloid or tau proteins, have had demonstrable effects on synaptic physiology in animal and cellular models of Alzheimer's disease. There is also growing evidence that these two proteins may have a synergistic effect on neurophysiological dysfunction. Here, we review some of the main findings of synaptic alterations in Alzheimer's disease, and what we know from Alzheimer's disease animal and cellular models. First, we briefly summarize some of the human evidence to suggest that synapses are altered, including how this relates to network activity. Subsequently, animal and cellular models of Alzheimer's disease are considered, highlighting mouse models of amyloid and tau pathology and the role these proteins may play in synaptic dysfunction, either in isolation or examining how the two pathologies may interact in dysfunction. This specifically focuses on neurophysiological function and dysfunction observed within these animal models, typically measured using electrophysiology or calcium imaging. Following synaptic dysfunction and loss, it would be impossible to imagine that this would not alter oscillatory activity within the brain. Therefore, this review also discusses how this may underpin some of the aberrant oscillatory patterns seen in animal models of Alzheimer's disease and human patients. Finally, an overview of some key directions and considerations in the field of synaptic dysfunction in Alzheimer's disease is covered. This includes current therapeutics that are targeted specifically at synaptic dysfunction, but also methods that modulate activity to rescue aberrant oscillatory patterns. Other important future avenues of note in this field include the role of non-neuronal cell types such as astrocytes and microglia, and mechanisms of dysfunction independent of amyloid and tau in Alzheimer's disease. The synapse will certainly continue to be an important target within Alzheimer's disease for the foreseeable future.
Collapse
Affiliation(s)
- Soraya Meftah
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Jian Gan
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
89
|
Kurkinen M, Fułek M, Fułek K, Beszłej JA, Kurpas D, Leszek J. The Amyloid Cascade Hypothesis in Alzheimer’s Disease: Should We Change Our Thinking? Biomolecules 2023; 13:biom13030453. [PMID: 36979388 PMCID: PMC10046826 DOI: 10.3390/biom13030453] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/15/2023] [Accepted: 02/18/2023] [Indexed: 03/05/2023] Open
Abstract
Old age increases the risk of Alzheimer’s disease (AD), the most common neurodegenerative disease, a devastating disorder of the human mind and the leading cause of dementia. Worldwide, 50 million people have the disease, and it is estimated that there will be 150 million by 2050. Today, healthcare for AD patients consumes 1% of the global economy. According to the amyloid cascade hypothesis, AD begins in the brain by accumulating and aggregating Aβ peptides and forming β-amyloid fibrils (Aβ42). However, in clinical trials, reducing Aβ peptide production and amyloid formation in the brain did not slow cognitive decline or improve daily life in AD patients. Prevention studies in cognitively unimpaired people at high risk or genetically destined to develop AD also have not slowed cognitive decline. These observations argue against the amyloid hypothesis of AD etiology, its development, and disease mechanisms. Here, we look at other avenues in the research of AD, such as the presenilin hypothesis, synaptic glutamate signaling, and the role of astrocytes and the glutamate transporter EAAT2 in the development of AD.
Collapse
Affiliation(s)
| | - Michał Fułek
- Department and Clinic of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Katarzyna Fułek
- Department and Clinic of Otolaryngology, Head and Neck Surgery, Wroclaw Medical University, 50-556 Wroclaw, Poland
- Correspondence: (K.F.); (J.L.)
| | | | - Donata Kurpas
- Department of Family Medicine, Wroclaw Medical University, 51-141 Wroclaw, Poland
| | - Jerzy Leszek
- Department and Clinic of Psychiatry, Wroclaw Medical University, 50-367 Wroclaw, Poland
- Correspondence: (K.F.); (J.L.)
| |
Collapse
|
90
|
Tan S, Tong WH, Vyas A. Impaired episodic-like memory in a mouse model of Alzheimer's disease is associated with hyperactivity in prefrontal-hippocampal regions. Dis Model Mech 2023; 16:297102. [PMID: 36897115 PMCID: PMC10040242 DOI: 10.1242/dmm.049945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/27/2023] [Indexed: 03/11/2023] Open
Abstract
Alzheimer's disease (AD) is a degenerative brain disorder with a long prodromal period. An APPNL-G-F knock-in mouse model is a preclinical model to study incipient pathologies during the early stages of AD. Despite behavioral tests revealing broad cognitive deficits in APPNL-G-F mice, detecting these impairments at the early disease phase has been challenging. In a cognitively demanding task that assessed episodic-like memory, 3-month-old wild-type mice could incidentally form and retrieve 'what-where-when' episodic associations of their past encounters. However, 3-month-old APPNL-G-F mice, corresponding to an early disease stage without prominent amyloid plaque pathology, displayed impairment in recalling 'what-where' information of past episodes. Episodic-like memory is also sensitive to the effect of age. Eight-month-old wild-type mice failed to retrieve conjunctive 'what-where-when' memories. This deficit was also observed in 8-month-old APPNL-G-F mice. c-Fos expression revealed that impaired memory retrieval in APPNL-G-F mice was accompanied by abnormal neuronal hyperactivity in the medial prefrontal cortex and CA1 dorsal hippocampus. These observations can be used for risk stratification during preclinical AD to detect and delay the progression into dementia.
Collapse
Affiliation(s)
- Sijie Tan
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232
| | - Wen Han Tong
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232
| | - Ajai Vyas
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| |
Collapse
|
91
|
Li H, Guan Q, Huang R, Lei M, Luo YJ, Zhang Z, Tao W. Altered functional coupling between the cerebellum and cerebrum in patients with amnestic mild cognitive impairment. Cereb Cortex 2023; 33:2061-2074. [PMID: 36857720 DOI: 10.1093/cercor/bhac193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 11/14/2022] Open
Abstract
Cognitive processing relies on the functional coupling between the cerebrum and cerebellum. However, it remains unclear how the 2 collaborate in amnestic mild cognitive impairment (aMCI) patients. With functional magnetic resonance imaging techniques, we compared cerebrocerebellar functional connectivity during the resting state (rsFC) between the aMCI and healthy control (HC) groups. Additionally, we distinguished coupling between functionally corresponding and noncorresponding areas across the cerebrum and cerebellum. The results demonstrated decreased rsFC between both functionally corresponding and noncorresponding areas, suggesting distributed deficits of cerebrocerebellar connections in aMCI patients. Increased rsFC was also observed, which were between functionally noncorresponding areas. Moreover, the increased rsFC was positively correlated with attentional scores in the aMCI group, and this effect was absent in the HC group, supporting that there exists a compensatory mechanism in patients. The current study contributes to illustrating how the cerebellum adjusts its coupling with the cerebrum in individuals with cognitive impairment.
Collapse
Affiliation(s)
- Hehui Li
- Center for Brain Disorders and Cognitive Sciences, Shenzhen University, 3688 Nanhai Avenue, Nanshan District, Shenzhen 518060, P.R. China
| | - Qing Guan
- Center for Brain Disorders and Cognitive Sciences, Shenzhen University, 3688 Nanhai Avenue, Nanshan District, Shenzhen 518060, P.R. China
| | - Rong Huang
- Center for Brain Disorders and Cognitive Sciences, Shenzhen University, 3688 Nanhai Avenue, Nanshan District, Shenzhen 518060, P.R. China
| | - Mengmeng Lei
- Center for Brain Disorders and Cognitive Sciences, Shenzhen University, 3688 Nanhai Avenue, Nanshan District, Shenzhen 518060, P.R. China
| | - Yue-Jia Luo
- Center for Brain Disorders and Cognitive Sciences, Shenzhen University, 3688 Nanhai Avenue, Nanshan District, Shenzhen 518060, P.R. China.,State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, No. 19, Xinjiekouwai St, Haidian District, Beijing 100875, P.R. China
| | - Zhanjun Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, No. 19, Xinjiekouwai St, Haidian District, Beijing 100875, P.R. China
| | - Wuhai Tao
- Center for Brain Disorders and Cognitive Sciences, Shenzhen University, 3688 Nanhai Avenue, Nanshan District, Shenzhen 518060, P.R. China
| |
Collapse
|
92
|
Ghatak S, Nakamura T, Lipton SA. Aberrant protein S-nitrosylation contributes to hyperexcitability-induced synaptic damage in Alzheimer's disease: Mechanistic insights and potential therapies. Front Neural Circuits 2023; 17:1099467. [PMID: 36817649 PMCID: PMC9932935 DOI: 10.3389/fncir.2023.1099467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Alzheimer's disease (AD) is arguably the most common cause of dementia in the elderly and is marked by progressive synaptic degeneration, which in turn leads to cognitive decline. Studies in patients and in various AD models have shown that one of the early signatures of AD is neuronal hyperactivity. This excessive electrical activity contributes to dysregulated neural network function and synaptic damage. Mechanistically, evidence suggests that hyperexcitability accelerates production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) that contribute to neural network impairment and synapse loss. This review focuses on the pathways and molecular changes that cause hyperexcitability and how RNS-dependent posttranslational modifications, represented predominantly by protein S-nitrosylation, mediate, at least in part, the deleterious effects of hyperexcitability on single neurons and the neural network, resulting in synaptic loss in AD.
Collapse
Affiliation(s)
- Swagata Ghatak
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India
| | - Tomohiro Nakamura
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States,*Correspondence: Tomohiro Nakamura,
| | - Stuart A. Lipton
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States,Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA, United States,Stuart A. Lipton,
| |
Collapse
|
93
|
Stark CEL, Noche JA, Ebersberger JR, Mayer L, Stark SM. Optimizing the mnemonic similarity task for efficient, widespread use. Front Behav Neurosci 2023; 17:1080366. [PMID: 36778130 PMCID: PMC9909607 DOI: 10.3389/fnbeh.2023.1080366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/04/2023] [Indexed: 01/27/2023] Open
Abstract
Introduction: The Mnemonic Similarity Task (MST) has become a popular test of memory and, in particular, of hippocampal function. It has been heavily used in research settings and is currently included as an alternate outcome measure on a number of clinical trials. However, as it typically requires ~15 min to administer and benefits substantially from an experienced test administrator to ensure the instructions are well-understood, its use in trials and in other settings is somewhat restricted. Several different variants of the MST are in common use that alter the task format (study-test vs. continuous) and the response prompt given to participants (old/similar/new vs. old/new). Methods: In eight online experiments, we sought to address three main goals: (1) To determine whether a robust version of the task could be created that could be conducted in half the traditional time; (2) To determine whether the test format or response prompt choice significantly impacted the MST's results; and (3) To determine how robust the MST is to repeat testing. In Experiments 1-7, participants received both the traditional and alternate forms of the MST to determine how well the alternate version captured the traditional task's performance. In Experiment 8, participants were given the MST four times over approximately 4 weeks. Results: In Experiments 1-7, we found that test format had no effect on the reliability of the MST, but that shifting to the two-choice response format significantly reduced its ability to reflect the traditional MST's score. We also found that the full running time could be cut it half or less without appreciable reduction in reliability. We confirmed the efficacy of this reduced task in older adults as well. Here, and in Experiment 8, we found that while there often are no effects of repeat-testing, small effects are possible, but appear limited to the initial testing session. Discussion: The optimized version of the task developed here (oMST) is freely available for web-based experiment delivery and provides an accurate estimate of the same memory ability as the classic MST in less than half the time.
Collapse
Affiliation(s)
- Craig E. L. Stark
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, United States
- Department of Cognitive Sciences, University of California Irvine, Irvine, CA, United States
| | - Jessica A. Noche
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, United States
| | - Jarrett R. Ebersberger
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, United States
- Department of Cognitive Sciences, University of California Irvine, Irvine, CA, United States
| | - Lizabeth Mayer
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, United States
| | - Shauna M. Stark
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, United States
| |
Collapse
|
94
|
Licata AE, Zhao Y, Herrmann O, Hillis AE, Desmond J, Onyike C, Tsapkini K. Sex differences in effects of tDCS and language treatments on brain functional connectivity in primary progressive aphasia. Neuroimage Clin 2023; 37:103329. [PMID: 36701874 PMCID: PMC9883295 DOI: 10.1016/j.nicl.2023.103329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
Primary Progressive Aphasia (PPA) is a neurodegenerative disorder primarily affecting language functions. Neuromodulatory techniques (e.g., transcranial direct current stimulation, active-tDCS) and behavioral (speech-language) therapy have shown promising results in treating speech and language deficits in PPA patients. One mechanism of active-tDCS efficacy is through modulation of network functional connectivity (FC). It remains unknown how biological sex influences FC and active-tDCS or language treatment(s). In the current study, we compared sex differences, induced by active-tDCS and language therapy alone, in the default mode and language networks, acquired during resting-state fMRI in 36 PPA patients. Using a novel statistical method, the covariate-assisted-principal-regression (CAPs) technique, we found sex and age differences in FC changes following active-tDCS. In the default mode network (DMN): (1) men (in both conditions) showed greater FC in DMN than women. (2) men who received active-tDCS showed greater FC in the DMN than men who received language-treatment only. In the language network: (1) women who received active-tDCS showed significantly greater FC across the language network than women who received sham-tDCS. As age increases, regardless of sex and treatment condition, FC in language regions decreases. The current findings suggest active-tDCS treatment in PPA alters network-specific FC in a sex-dependent manner.
Collapse
Affiliation(s)
- Abigail E Licata
- Department of Neurology, University of California, San Francisco, CA 94158, USA; Faculty of Psychology and Educational Sciences, University of Geneva, Geneva 1205, Switzerland
| | - Yi Zhao
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Olivia Herrmann
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Argye E Hillis
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; Department of Cognitive Science, Johns Hopkins University, Baltimore MD 21287, USA; Department of Physical Medicine and Rehabilitation, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - John Desmond
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Chiadi Onyike
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Kyrana Tsapkini
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; Department of Cognitive Science, Johns Hopkins University, Baltimore MD 21287, USA.
| |
Collapse
|
95
|
Li M, Li Y, Zhao K, Tan X, Chen Y, Qin C, Qiu S, Liang Y. Changes in the structure, perfusion, and function of the hippocampus in type 2 diabetes mellitus. Front Neurosci 2023; 16:1070911. [PMID: 36699515 PMCID: PMC9868830 DOI: 10.3389/fnins.2022.1070911] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/06/2022] [Indexed: 01/12/2023] Open
Abstract
Objective This study aims to explore the changes in the structure, perfusion, and function of the bilateral hippocampus in type 2 diabetes mellitus (T2DM) applying multimodal MRI methods, hoping to provide reliable neuroimaging evidence for the diagnosis of hippocampus-related brain injury in T2DM. Methods We recruited 30 T2DM patients and 45 healthy controls (HCs), on which we performed 3D T1-weighted images, resting-state functional MRI (rs-fMRI), arterial spin labeling (ASL) sequences, and a series of cognitive tests. Then, we compared the differences of two groups in the cerebral blood flow (CBF) value, amplitude of low-frequency fluctuation (ALFF) value, fractional ALFF (fALFF) value, coherence-based regional homogeneity (Cohe-ReHo) value, and degree centrality (DC) values of the bilateral hippocampus. Results In the T2DM group, the bilateral hippocampal volumes and the CBF value of the right hippocampus were lower than those in the HCs, while the ALFF value, fALFF value, and Cohe-ReHo value of the bilateral hippocampus were higher than those in the HCs. Correlation analysis showed that fasting blood glucose (FBG) was negatively correlated with the residuals of left hippocampal volume (r = -0.407, P = 0.025) and right hippocampal volume (r = -0.420, P = 0.021). The residual of the auditory-verbal learning test (AVLT) (immediate) score was positively correlated with the residual of right hippocampal volume (r = 0.369, P = 0.045). Conclusion This study indicated that the volume and perfusion of the hippocampus are decreased in T2DM patients that related to chronic hyperglycemia. Local spontaneous neural activity and coordination are increased in the hippocampus of T2DM patients, possibly as an adaptive compensation for cognitive decline.
Collapse
Affiliation(s)
- Mingrui Li
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China,Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China,Department of Magnetic Resonance Imaging, Zhanjiang First Hospital of Traditional Chinese Medicine, Zhanjiang, China
| | - Yifan Li
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China,Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kui Zhao
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China,Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xin Tan
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuna Chen
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China,Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chunhong Qin
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China,Chunhong Qin,
| | - Shijun Qiu
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China,Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China,Shijun Qiu,
| | - Yi Liang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China,Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China,*Correspondence: Yi Liang,
| |
Collapse
|
96
|
Konstantinidis E, Portal B, Mothes T, Beretta C, Lindskog M, Erlandsson A. Intracellular deposits of amyloid-beta influence the ability of human iPSC-derived astrocytes to support neuronal function. J Neuroinflammation 2023; 20:3. [PMID: 36593462 PMCID: PMC9809017 DOI: 10.1186/s12974-022-02687-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/23/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Astrocytes are crucial for maintaining brain homeostasis and synaptic function, but are also tightly connected to the pathogenesis of Alzheimer's disease (AD). Our previous data demonstrate that astrocytes ingest large amounts of aggregated amyloid-beta (Aβ), but then store, rather than degrade the ingested material, which leads to severe cellular stress. However, the involvement of pathological astrocytes in AD-related synaptic dysfunction remains to be elucidated. METHODS In this study, we aimed to investigate how intracellular deposits of Aβ in astrocytes affect their interplay with neurons, focusing on neuronal function and viability. For this purpose, human induced pluripotent stem cell (hiPSC)-derived astrocytes were exposed to sonicated Αβ42 fibrils. The direct and indirect effects of the Αβ-exposed astrocytes on hiPSC-derived neurons were analyzed by performing astrocyte-neuron co-cultures as well as additions of conditioned media or extracellular vesicles to pure neuronal cultures. RESULTS Electrophysiological recordings revealed significantly decreased frequency of excitatory post-synaptic currents in neurons co-cultured with Aβ-exposed astrocytes, while conditioned media from Aβ-exposed astrocytes had the opposite effect and resulted in hyperactivation of the synapses. Clearly, factors secreted from control, but not from Aβ-exposed astrocytes, benefited the wellbeing of neuronal cultures. Moreover, reactive astrocytes with Aβ deposits led to an elevated clearance of dead cells in the co-cultures. CONCLUSIONS Taken together, our results demonstrate that inclusions of aggregated Aβ affect the reactive state of the astrocytes, as well as their ability to support neuronal function.
Collapse
Affiliation(s)
- Evangelos Konstantinidis
- grid.8993.b0000 0004 1936 9457Department of Public Health and Caring Sciences, Molecular Geriatrics, Uppsala University, 751 85 Uppsala, Sweden
| | - Benjamin Portal
- grid.8993.b0000 0004 1936 9457Department of Medical Cell Biology, Uppsala University, 751 23 Uppsala, Sweden
| | - Tobias Mothes
- grid.8993.b0000 0004 1936 9457Department of Public Health and Caring Sciences, Molecular Geriatrics, Uppsala University, 751 85 Uppsala, Sweden
| | - Chiara Beretta
- grid.8993.b0000 0004 1936 9457Department of Public Health and Caring Sciences, Molecular Geriatrics, Uppsala University, 751 85 Uppsala, Sweden
| | - Maria Lindskog
- grid.8993.b0000 0004 1936 9457Department of Medical Cell Biology, Uppsala University, 751 23 Uppsala, Sweden
| | - Anna Erlandsson
- grid.8993.b0000 0004 1936 9457Department of Public Health and Caring Sciences, Molecular Geriatrics, Uppsala University, 751 85 Uppsala, Sweden
| |
Collapse
|
97
|
Kanishka, Jha SK. Compensatory cognition in neurological diseases and aging: A review of animal and human studies. AGING BRAIN 2023; 3:100061. [PMID: 36911258 PMCID: PMC9997140 DOI: 10.1016/j.nbas.2022.100061] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 12/27/2022] Open
Abstract
Specialized individual circuits in the brain are recruited for specific functions. Interestingly, multiple neural circuitries continuously compete with each other to acquire the specialized function. However, the dominant among them compete and become the central neural network for that particular function. For example, the hippocampal principal neural circuitries are the dominant networks among many which are involved in learning processes. But, in the event of damage to the principal circuitry, many times, less dominant networks compensate for the primary network. This review highlights the psychopathologies of functional loss and the aspects of functional recuperation in the absence of the hippocampus.
Collapse
Affiliation(s)
- Kanishka
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sushil K Jha
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
98
|
Shang H, Xu C, Lu H, Zhang J. The Early Stage of Abnormal Aging: Cognitive Impairment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1419:149-155. [PMID: 37418212 DOI: 10.1007/978-981-99-1627-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Cognitive impairment has become an important aspect affecting the health and quality of life of middle-aged and elderly people, which is defined as the difficulty of thought processing and leads to memory loss, difficulties making decisions, the inability to concentrate, and difficulties learning. The process of cognitive ability decline with age goes through subjective cognitive impairment (SCI) to mild cognitive impairment (MCI). There is abundant evidence supporting the link between cognitive impairment and several modifiable risk factors, such as physical activity, social activity, mental activity, higher education, and management of cardiovascular risk factors (diabetes, obesity, smoking, hypertension, and obesity). Meanwhile, these factors also provide a new perspective for the prevention of cognitive impairment and dementia.
Collapse
Affiliation(s)
- Huajie Shang
- State Key Laboratory of Cognitive Neuroscience and Learning, Faculty of Psychology, Beijing Normal University, Beijing, China
- Beijing Aging Brain Rejuvenation Initiative (BABRI) Centre, Beijing Normal University, Beijing, China
| | - Chang Xu
- State Key Laboratory of Cognitive Neuroscience and Learning, Faculty of Psychology, Beijing Normal University, Beijing, China
- Beijing Aging Brain Rejuvenation Initiative (BABRI) Centre, Beijing Normal University, Beijing, China
| | - Hui Lu
- Beijing Aging Brain Rejuvenation Initiative (BABRI) Centre, Beijing Normal University, Beijing, China
| | - Junying Zhang
- Beijing Aging Brain Rejuvenation Initiative (BABRI) Centre, Beijing Normal University, Beijing, China
- Institute Of Basic Research In Clinical Medicine, China Academy Of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
99
|
Srinivasan SR. Targeting Circuit Abnormalities in Neurodegenerative Disease. Mol Pharmacol 2023; 103:38-44. [PMID: 36310030 DOI: 10.1124/molpharm.122.000563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 02/03/2023] Open
Abstract
Despite significant improvement in our ability to diagnose both common and rare neurodegenerative diseases and understand their underlying biologic mechanisms, there remains a disproportionate lack of effective treatments, reflecting the complexity of these disorders. Successfully advancing novel treatments for neurodegenerative disorders will require reconsideration of traditional approaches, which to date have focused largely on specific disease proteins or cells of origin. This article proposes reframing these diseases as conditions of dysfunctional circuitry as a complement to ongoing efforts. Specifically reviewed is how aberrant spiking is a common downstream mechanism in numerous neurodegenerative diseases, often driven by dysfunction in specific ion channels. Surgical modification of this electrical activity via deep brain stimulation is already an approved modality for many of these disorders. Therefore, restoring proper electrical activity by targeting these channels pharmacologically represents a viable strategy for intervention, not only for symptomatic management but also as a potential disease-modifying therapy. Such an approach is likely to be a promising route to treating these devastating disorders, either as monotherapy or in conjunction with current drugs. SIGNIFICANCE STATEMENT: Despite extensive research and improved understanding of the biology driving neurodegenerative disease, there has not been a concomitant increase in approved therapies. Accordingly, it is time to shift our perspective and recognize these diseases also as disorders of circuitry to further yield novel drug targets and new interventions. An approach focused on treating dysfunctional circuitry has the potential to reduce or reverse patient symptoms and potentially modify disease course.
Collapse
|
100
|
Yuan P, Zhang M, Tong L, Morse TM, McDougal RA, Ding H, Chan D, Cai Y, Grutzendler J. PLD3 affects axonal spheroids and network defects in Alzheimer's disease. Nature 2022; 612:328-337. [PMID: 36450991 PMCID: PMC9729106 DOI: 10.1038/s41586-022-05491-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 10/27/2022] [Indexed: 12/03/2022]
Abstract
The precise mechanisms that lead to cognitive decline in Alzheimer's disease are unknown. Here we identify amyloid-plaque-associated axonal spheroids as prominent contributors to neural network dysfunction. Using intravital calcium and voltage imaging, we show that a mouse model of Alzheimer's disease demonstrates severe disruption in long-range axonal connectivity. This disruption is caused by action-potential conduction blockades due to enlarging spheroids acting as electric current sinks in a size-dependent manner. Spheroid growth was associated with an age-dependent accumulation of large endolysosomal vesicles and was mechanistically linked with Pld3-a potential Alzheimer's-disease-associated risk gene1 that encodes a lysosomal protein2,3 that is highly enriched in axonal spheroids. Neuronal overexpression of Pld3 led to endolysosomal vesicle accumulation and spheroid enlargement, which worsened axonal conduction blockades. By contrast, Pld3 deletion reduced endolysosomal vesicle and spheroid size, leading to improved electrical conduction and neural network function. Thus, targeted modulation of endolysosomal biogenesis in neurons could potentially reverse axonal spheroid-induced neural circuit abnormalities in Alzheimer's disease, independent of amyloid removal.
Collapse
Affiliation(s)
- Peng Yuan
- Department of Neurology, Yale University, New Haven, CT, USA.,Department of Rehabilitation Medicine, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Mengyang Zhang
- Department of Neurology, Yale University, New Haven, CT, USA.,Department of Neuroscience, Yale University, New Haven, CT, USA.,Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA.,Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
| | - Lei Tong
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Thomas M Morse
- Department of Neuroscience, Yale University, New Haven, CT, USA
| | - Robert A McDougal
- Department of Neuroscience, Yale University, New Haven, CT, USA.,Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Hui Ding
- Department of Neurology, Yale University, New Haven, CT, USA.,Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Diane Chan
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Yifei Cai
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Jaime Grutzendler
- Department of Neurology, Yale University, New Haven, CT, USA. .,Department of Neuroscience, Yale University, New Haven, CT, USA. .,Wu Tsai Institute, Yale University, New Haven, CT, USA.
| |
Collapse
|