51
|
Abstract
Inebilizumab (Uplizna™; inebilizumab-cdon in the USA) is a humanised anti-CD19 monoclonal antibody being developed by Viela Bio for the treatment of a range of autoimmune diseases associated with CD19-expressing B cells. Inebilizumab targets and depletes CD19-expressing B cells through antibody-dependent cell-mediated cytotoxicity. In June 2020, inebilizumab received its first global approval in the USA for the treatment of neuromyelitis optica spectrum disorder (NMOSD) in adult patients who are seropositive for immunoglobulin G autoantibodies against aquaporin-4 (AQP4-IgG). The drug is also undergoing clinical evaluation for kidney transplant desensitization, myasthenia gravis, and IgG4-related disease. This article summarizes the milestones in the development of inebilizumab leading to this first approval for the treatment of AQP4-IgG seropositive NMOSD.
Collapse
Affiliation(s)
- James E Frampton
- Springer Nature, Mairangi Bay, Private Bag 65901, Auckland, 0754, New Zealand.
| |
Collapse
|
52
|
EBI2-expressing B cells in neuromyelitis optica spectrum disorder with AQP4-IgG: Association with acute attacks and serum cytokines. J Neuroimmunol 2021; 358:577637. [PMID: 34229205 DOI: 10.1016/j.jneuroim.2021.577637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/15/2021] [Accepted: 06/20/2021] [Indexed: 11/24/2022]
Abstract
Epstein-Barr virus-induced G-protein coupled receptor 2 (EBI2) is important in regulating B cell activation. We investigated whether EBI2 expression on B cells is associated with acute attacks in neuromyelitis optica spectrum disorder with aquaporin-4 IgG (AQP4-IgG(+) NMOSD). Blood samples were collected from patients with AQP4-IgG(+) NMOSD, multiple sclerosis (MS), and patients without inflammatory demyelinating diseases (non-IDD controls). CD19+ B cells and CD4+ T cells were analyzed for surface expression of EBI2. Serum cytokine levels were also analyzed. The EBI2+CD19+ to EBI2-CD19+ cell ratio was significantly higher in patients with AQP4-IgG(+) NMOSD enrolled within 2 months of an attack than in those with non-IDDs (p = 0.007) and MS (p = 0.003). Patients with AQP4-IgG(+) NMOSD enrolled within 2 months of an attack had a higher EBI2+CD19+ cell frequency than patients with AQP4-IgG(+) NMOSD enrolled 2 months after a recent attack (p = 0.001). The EBI2+CD19+ cell frequency was positively correlated with interleukin (IL)-6 and IL-10. EBI2 expression on B cells could be associated with acute attacks of AQP4-IgG(+) NMOSD, possibly through IL-6- or IL-10-related pathways.
Collapse
|
53
|
Hacohen Y, Kerr W, Waters P. Intrathecal Production of MOG-IgG: Highlighting the Need for CSF Testing in Clinical Practice. Neurology 2021; 97:12-13. [PMID: 33980706 DOI: 10.1212/wnl.0000000000012177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Yael Hacohen
- From the Queen Square MS Centre (Y.H.), UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; Department of Neurology (Y.H.), Great Ormond Street Hospital for Children, London, UK; Department of Neurology (W.K.), David Geffen School of Medicine at UCLA, Los Angeles, CA; and Nuffield Department of Clinical Neurosciences (P.W.), John Radcliffe Hospital, Oxford, UK.
| | - Wesley Kerr
- From the Queen Square MS Centre (Y.H.), UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; Department of Neurology (Y.H.), Great Ormond Street Hospital for Children, London, UK; Department of Neurology (W.K.), David Geffen School of Medicine at UCLA, Los Angeles, CA; and Nuffield Department of Clinical Neurosciences (P.W.), John Radcliffe Hospital, Oxford, UK
| | - Patrick Waters
- From the Queen Square MS Centre (Y.H.), UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; Department of Neurology (Y.H.), Great Ormond Street Hospital for Children, London, UK; Department of Neurology (W.K.), David Geffen School of Medicine at UCLA, Los Angeles, CA; and Nuffield Department of Clinical Neurosciences (P.W.), John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
54
|
Tugizova M, Vlahovic L, Tomczak A, Wetzel NS, Han MH. New Therapeutic Landscape in Neuromyelitis Optica. Curr Treat Options Neurol 2021; 23:13. [PMID: 33814893 PMCID: PMC8008025 DOI: 10.1007/s11940-021-00667-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2021] [Indexed: 12/11/2022]
Abstract
Purpose of review This review discusses the current treatment trends and emerging therapeutic landscape for patients with neuromyelitis optica spectrum disorder (NMOSD). Recent findings Conventional immune suppressive therapies, such as B cell depletion, have been used for long-term treatment. However, the availability of recent FDA-approved and investigational drugs has made therapeutic choices for NMOSD more complex. Summary Recent randomized clinical trials have shown that eculizumab, inebilizumab, and satralizumab are efficacious therapies for AQP4 seropositive NMOSD. These therapies may not have the same benefit in patients with seronegative NMOSD, including MOG-associated disease, and further investigation is required in this population. Reliable biomarkers to guide therapy decisions are urgently needed. There is a plethora of promising investigational therapies currently in the pipeline with exciting and novel mechanisms of action.
Collapse
Affiliation(s)
- Madina Tugizova
- Department of Neurology, Division of Neuroimmunology, Stanford University, 1201 Welch Road, MSLS p212, Stanford, CA 94305 USA.,Multiple Sclerosis Center, Stanford Hospital and Clinics, Palo Alto, CA USA
| | - Luka Vlahovic
- Department of Neurology, Creighton University School of Medicine, Omaha, NE USA
| | - Anna Tomczak
- Department of Neurology, Division of Neuroimmunology, Stanford University, 1201 Welch Road, MSLS p212, Stanford, CA 94305 USA.,Multiple Sclerosis Center, Stanford Hospital and Clinics, Palo Alto, CA USA
| | - Nora Sandrine Wetzel
- Department of Neurology, Division of Neuroimmunology, Stanford University, 1201 Welch Road, MSLS p212, Stanford, CA 94305 USA.,Faculty of Medicine, University of Zurich, Zürich, Switzerland
| | - May Htwe Han
- Department of Neurology, Division of Neuroimmunology, Stanford University, 1201 Welch Road, MSLS p212, Stanford, CA 94305 USA.,Multiple Sclerosis Center, Stanford Hospital and Clinics, Palo Alto, CA USA
| |
Collapse
|
55
|
Held F, Klein AK, Berthele A. Drug Treatment of Neuromyelitis Optica Spectrum Disorders: Out with the Old, in with the New? Immunotargets Ther 2021; 10:87-101. [PMID: 33777853 PMCID: PMC7989551 DOI: 10.2147/itt.s287652] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/16/2021] [Indexed: 12/11/2022] Open
Abstract
Introduction Neuromyelitis optica spectrum disorders (NMOSD) are rare neuroinflammatory demyelinating diseases of the CNS, mainly affecting optic nerves, spinal cord and brainstem regions. The diagnosis depends on clinical symptoms, MRI findings and the detection of autoantibodies against the water channel aquaporin 4 (AQP4-Ab). This autoantibody is particularly important for diagnostic sensitivity and specificity and further sets the course for major therapeutic decisions. Due to a relapsing course with the accumulation of disability, relapse prevention by immunotherapy is crucial in NMOSD. Until recently, disease-modifying agents specific to NMOSD were not available, and patients were treated with various immunosuppressive drugs and regimens - with variable success. Fortunately, since 2019, three new therapeutic antibodies have entered the market. Areas Covered We aim to shortly summarise the pathogenesis and biological targets for acute and preventive therapy of adult NMOSD. We will focus on conventional immunotherapies and the recently approved novel biological drugs satralizumab, eculizumab and inebilizumab, and conclude with a brief outlook on future therapeutic approaches. Expert Opinion Although satralizumab, eculizumab and inebilizumab are a breakthrough concerning short-term efficacy, important questions on their future use remain open. There is no data from head-to-head comparisons, and data on long-term safety and efficacy of the new medicines are pending. Whether any of the biologics are efficacious in AQP4-Ab negative NMOSD patients is not yet known – as is how they will succeed in non-responders to conventional immunotherapies. Further, (autoimmune) comorbidities, affordability, and market availability of drugs may be decisive factors for choosing treatments in the near future. We are fortunate to have these new drugs available now, but they will not immediately supersede established off-label drugs in this indication. It is still too early to definitively revise the treatment algorithms for NMOSD - although we are probably on the way.
Collapse
Affiliation(s)
- Friederike Held
- Department of Neurology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Ana-Katharina Klein
- Department of Neurology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Achim Berthele
- Department of Neurology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
56
|
Du Y, Li K, Liu W, Song R, Luo M, He J, Xu X, Qu X. Recent Advances in Neuromyelitis Optica Spectrum Disorder: Pathogenesis, Mechanisms and Potential Treatments. Curr Pharm Des 2021; 28:272-279. [PMID: 33781189 DOI: 10.2174/1381612827666210329101335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/08/2021] [Indexed: 11/22/2022]
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is an acute or subacute demyelinating disease that affects mainly the optic nerve and spinal cord. A major proportion of NMOSD cases have a relationship with autoimmunity to aquaporin 4 (AQP4) found on the central nervous system. NMOSD can occur repeatedly, causing symptoms such as decreased vision and weakness of limbs. The main goal of current therapy is to relieve acute symptoms and prevent recurrence of the disease. Without timely and appropriate treatment, the recurrence and disability rates are high. In the present work, we review recent advances in the diagnosis and treatment of patients with NMOSD, as well as the pathogenesis and mechanisms of AQP4-IgG-seropositive NMOSD.
Collapse
Affiliation(s)
- Yi Du
- Department of Ophthalmology, the First Affiliated Hospital of Guangxi Medical University, 530021, Nanning. China
| | - Kaijun Li
- Department of Ophthalmology, the First Affiliated Hospital of Guangxi Medical University, 530021, Nanning. China
| | - Wei Liu
- Department of Ophthalmology, the First Affiliated Hospital of Guangxi Medical University, 530021, Nanning. China
| | - Ruitong Song
- Department of Ophthalmology, the First Affiliated Hospital of Guangxi Medical University, 530021, Nanning. China
| | - Meifeng Luo
- Department of Ophthalmology, the First Affiliated Hospital of Guangxi Medical University, 530021, Nanning. China
| | - Jianfeng He
- Department of Ophthalmology, the First Affiliated Hospital of Guangxi Medical University, 530021, Nanning. China
| | - Xiaoyu Xu
- Doheny Eye Institute, Department of Ophthalmology, University of California, Los Angeles, CA 90033. United States
| | - Xiaosheng Qu
- National Engineering Laboratory of Southwest Endangered Medicinal Resources Development, Guangxi Botanical Garden of Medicinal Plants, 530023, Nanning. China
| |
Collapse
|
57
|
Marignier R, Bennett JL, Kim HJ, Weinshenker BG, Pittock SJ, Wingerchuk D, Fujihara K, Paul F, Cutter GR, Green AJ, Aktas O, Hartung HP, Lublin FD, Williams IM, Drappa J, She D, Cimbora D, Rees W, Smith M, Ratchford JN, Katz E, Cree BAC. Disability Outcomes in the N-MOmentum Trial of Inebilizumab in Neuromyelitis Optica Spectrum Disorder. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2021; 8:8/3/e978. [PMID: 33771837 PMCID: PMC8054974 DOI: 10.1212/nxi.0000000000000978] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/08/2021] [Indexed: 11/18/2022]
Abstract
Objective To assess treatment effects on Expanded Disability Status Scale (EDSS) score worsening and modified Rankin Scale (mRS) scores in the N-MOmentum trial of inebilizumab, a humanized anti-CD19 monoclonal antibody, in participants with neuromyelitis optica spectrum disorder (NMOSD). Methods Adults (N = 230) with aquaporin-4 immunoglobulin G-seropositive NMOSD or -seronegative neuromyelitis optica and an EDSS score ≤8 were randomized (3:1) to receive inebilizumab 300 mg or placebo on days 1 and 15. The randomized controlled period (RCP) was 28 weeks or until adjudicated attack, with an option to enter the inebilizumab open-label period. Three-month EDSS-confirmed disability progression (CDP) was assessed using a Cox proportional hazard model. The effect of baseline subgroups on disability was assessed by interaction tests. mRS scores from the RCP were analyzed by the Wilcoxon-Mann-Whitney odds approach. Results Compared with placebo, inebilizumab reduced the risk of 3-month CDP (hazard ratio [HR]: 0.375; 95% CI: 0.148–0.952; p = 0.0390). Baseline disability, prestudy attack frequency, and disease duration did not affect the treatment effect observed with inebilizumab (HRs: 0.213–0.503; interaction tests: all p > 0.05, indicating no effect of baseline covariates on outcome). Mean EDSS scores improved with longer-term treatment. Inebilizumab-treated participants were more likely to have a favorable mRS outcome at the end of the RCP (OR: 1.663; 95% CI: 1.195–2.385; p = 0.0023). Conclusions Disability outcomes were more favorable with inebilizumab vs placebo in participants with NMOSD. Classification of Evidence This study provides Class II evidence that for patients with NMOSD, inebilizumab reduces the risk of worsening disability. N-MOmentum is registered at ClinicalTrials.gov: NCT02200770.
Collapse
Affiliation(s)
- Romain Marignier
- From the Service de Neurologie Sclérose en Plaques (R.M.), Pathologies de La Myéline et Neuro-inflammation, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, France; University of Colorado School of Medicine (J.L.B.), Anschutz Medical Campus, Aurora; Research Institute and Hospital of National Cancer Center (H.J.K.), Goyang, South Korea; Mayo Clinic (B.G.W., S.J.P.), Rochester, MN; Mayo Clinic (D.W.), Scottsdale, AZ; Department of Multiple Sclerosis Therapeutics (K.F.), Fukushima Medical University and Multiple Sclerosis and Neuromyelitis Optica Center, Southern Tohoku Research Institute for Neuroscience, Koriyama, Japan; Experimental and Clinical Research Center (F.P.), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Germany; University of Alabama at Birmingham (G.R.C.); UCSF Weill Institute for Neurosciences (A.J.G.), Department of Neurology and Department of Ophthalmology, University of California San Francisco; Medical Faculty (O.A., H.-P.H.), Heinrich Heine University, Düsseldorf, Germany; Icahn School of Medicine at Mount Sinai (F.D.L.), New York; Oxford PharmaGenesis Ltd (I.M.W.), UK; Viela Bio (J.D., D.S., D.C., W.R., M.S., J.N.R., E.K.), Gaithersburg, MD; and UCSF Weill Institute for Neurosciences (B.A.C.C.), University of California San Francisco.
| | - Jeffrey L Bennett
- From the Service de Neurologie Sclérose en Plaques (R.M.), Pathologies de La Myéline et Neuro-inflammation, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, France; University of Colorado School of Medicine (J.L.B.), Anschutz Medical Campus, Aurora; Research Institute and Hospital of National Cancer Center (H.J.K.), Goyang, South Korea; Mayo Clinic (B.G.W., S.J.P.), Rochester, MN; Mayo Clinic (D.W.), Scottsdale, AZ; Department of Multiple Sclerosis Therapeutics (K.F.), Fukushima Medical University and Multiple Sclerosis and Neuromyelitis Optica Center, Southern Tohoku Research Institute for Neuroscience, Koriyama, Japan; Experimental and Clinical Research Center (F.P.), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Germany; University of Alabama at Birmingham (G.R.C.); UCSF Weill Institute for Neurosciences (A.J.G.), Department of Neurology and Department of Ophthalmology, University of California San Francisco; Medical Faculty (O.A., H.-P.H.), Heinrich Heine University, Düsseldorf, Germany; Icahn School of Medicine at Mount Sinai (F.D.L.), New York; Oxford PharmaGenesis Ltd (I.M.W.), UK; Viela Bio (J.D., D.S., D.C., W.R., M.S., J.N.R., E.K.), Gaithersburg, MD; and UCSF Weill Institute for Neurosciences (B.A.C.C.), University of California San Francisco
| | - Ho Jin Kim
- From the Service de Neurologie Sclérose en Plaques (R.M.), Pathologies de La Myéline et Neuro-inflammation, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, France; University of Colorado School of Medicine (J.L.B.), Anschutz Medical Campus, Aurora; Research Institute and Hospital of National Cancer Center (H.J.K.), Goyang, South Korea; Mayo Clinic (B.G.W., S.J.P.), Rochester, MN; Mayo Clinic (D.W.), Scottsdale, AZ; Department of Multiple Sclerosis Therapeutics (K.F.), Fukushima Medical University and Multiple Sclerosis and Neuromyelitis Optica Center, Southern Tohoku Research Institute for Neuroscience, Koriyama, Japan; Experimental and Clinical Research Center (F.P.), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Germany; University of Alabama at Birmingham (G.R.C.); UCSF Weill Institute for Neurosciences (A.J.G.), Department of Neurology and Department of Ophthalmology, University of California San Francisco; Medical Faculty (O.A., H.-P.H.), Heinrich Heine University, Düsseldorf, Germany; Icahn School of Medicine at Mount Sinai (F.D.L.), New York; Oxford PharmaGenesis Ltd (I.M.W.), UK; Viela Bio (J.D., D.S., D.C., W.R., M.S., J.N.R., E.K.), Gaithersburg, MD; and UCSF Weill Institute for Neurosciences (B.A.C.C.), University of California San Francisco
| | - Brian G Weinshenker
- From the Service de Neurologie Sclérose en Plaques (R.M.), Pathologies de La Myéline et Neuro-inflammation, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, France; University of Colorado School of Medicine (J.L.B.), Anschutz Medical Campus, Aurora; Research Institute and Hospital of National Cancer Center (H.J.K.), Goyang, South Korea; Mayo Clinic (B.G.W., S.J.P.), Rochester, MN; Mayo Clinic (D.W.), Scottsdale, AZ; Department of Multiple Sclerosis Therapeutics (K.F.), Fukushima Medical University and Multiple Sclerosis and Neuromyelitis Optica Center, Southern Tohoku Research Institute for Neuroscience, Koriyama, Japan; Experimental and Clinical Research Center (F.P.), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Germany; University of Alabama at Birmingham (G.R.C.); UCSF Weill Institute for Neurosciences (A.J.G.), Department of Neurology and Department of Ophthalmology, University of California San Francisco; Medical Faculty (O.A., H.-P.H.), Heinrich Heine University, Düsseldorf, Germany; Icahn School of Medicine at Mount Sinai (F.D.L.), New York; Oxford PharmaGenesis Ltd (I.M.W.), UK; Viela Bio (J.D., D.S., D.C., W.R., M.S., J.N.R., E.K.), Gaithersburg, MD; and UCSF Weill Institute for Neurosciences (B.A.C.C.), University of California San Francisco
| | - Sean J Pittock
- From the Service de Neurologie Sclérose en Plaques (R.M.), Pathologies de La Myéline et Neuro-inflammation, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, France; University of Colorado School of Medicine (J.L.B.), Anschutz Medical Campus, Aurora; Research Institute and Hospital of National Cancer Center (H.J.K.), Goyang, South Korea; Mayo Clinic (B.G.W., S.J.P.), Rochester, MN; Mayo Clinic (D.W.), Scottsdale, AZ; Department of Multiple Sclerosis Therapeutics (K.F.), Fukushima Medical University and Multiple Sclerosis and Neuromyelitis Optica Center, Southern Tohoku Research Institute for Neuroscience, Koriyama, Japan; Experimental and Clinical Research Center (F.P.), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Germany; University of Alabama at Birmingham (G.R.C.); UCSF Weill Institute for Neurosciences (A.J.G.), Department of Neurology and Department of Ophthalmology, University of California San Francisco; Medical Faculty (O.A., H.-P.H.), Heinrich Heine University, Düsseldorf, Germany; Icahn School of Medicine at Mount Sinai (F.D.L.), New York; Oxford PharmaGenesis Ltd (I.M.W.), UK; Viela Bio (J.D., D.S., D.C., W.R., M.S., J.N.R., E.K.), Gaithersburg, MD; and UCSF Weill Institute for Neurosciences (B.A.C.C.), University of California San Francisco
| | - Dean Wingerchuk
- From the Service de Neurologie Sclérose en Plaques (R.M.), Pathologies de La Myéline et Neuro-inflammation, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, France; University of Colorado School of Medicine (J.L.B.), Anschutz Medical Campus, Aurora; Research Institute and Hospital of National Cancer Center (H.J.K.), Goyang, South Korea; Mayo Clinic (B.G.W., S.J.P.), Rochester, MN; Mayo Clinic (D.W.), Scottsdale, AZ; Department of Multiple Sclerosis Therapeutics (K.F.), Fukushima Medical University and Multiple Sclerosis and Neuromyelitis Optica Center, Southern Tohoku Research Institute for Neuroscience, Koriyama, Japan; Experimental and Clinical Research Center (F.P.), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Germany; University of Alabama at Birmingham (G.R.C.); UCSF Weill Institute for Neurosciences (A.J.G.), Department of Neurology and Department of Ophthalmology, University of California San Francisco; Medical Faculty (O.A., H.-P.H.), Heinrich Heine University, Düsseldorf, Germany; Icahn School of Medicine at Mount Sinai (F.D.L.), New York; Oxford PharmaGenesis Ltd (I.M.W.), UK; Viela Bio (J.D., D.S., D.C., W.R., M.S., J.N.R., E.K.), Gaithersburg, MD; and UCSF Weill Institute for Neurosciences (B.A.C.C.), University of California San Francisco
| | - Kazuko Fujihara
- From the Service de Neurologie Sclérose en Plaques (R.M.), Pathologies de La Myéline et Neuro-inflammation, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, France; University of Colorado School of Medicine (J.L.B.), Anschutz Medical Campus, Aurora; Research Institute and Hospital of National Cancer Center (H.J.K.), Goyang, South Korea; Mayo Clinic (B.G.W., S.J.P.), Rochester, MN; Mayo Clinic (D.W.), Scottsdale, AZ; Department of Multiple Sclerosis Therapeutics (K.F.), Fukushima Medical University and Multiple Sclerosis and Neuromyelitis Optica Center, Southern Tohoku Research Institute for Neuroscience, Koriyama, Japan; Experimental and Clinical Research Center (F.P.), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Germany; University of Alabama at Birmingham (G.R.C.); UCSF Weill Institute for Neurosciences (A.J.G.), Department of Neurology and Department of Ophthalmology, University of California San Francisco; Medical Faculty (O.A., H.-P.H.), Heinrich Heine University, Düsseldorf, Germany; Icahn School of Medicine at Mount Sinai (F.D.L.), New York; Oxford PharmaGenesis Ltd (I.M.W.), UK; Viela Bio (J.D., D.S., D.C., W.R., M.S., J.N.R., E.K.), Gaithersburg, MD; and UCSF Weill Institute for Neurosciences (B.A.C.C.), University of California San Francisco
| | - Friedemann Paul
- From the Service de Neurologie Sclérose en Plaques (R.M.), Pathologies de La Myéline et Neuro-inflammation, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, France; University of Colorado School of Medicine (J.L.B.), Anschutz Medical Campus, Aurora; Research Institute and Hospital of National Cancer Center (H.J.K.), Goyang, South Korea; Mayo Clinic (B.G.W., S.J.P.), Rochester, MN; Mayo Clinic (D.W.), Scottsdale, AZ; Department of Multiple Sclerosis Therapeutics (K.F.), Fukushima Medical University and Multiple Sclerosis and Neuromyelitis Optica Center, Southern Tohoku Research Institute for Neuroscience, Koriyama, Japan; Experimental and Clinical Research Center (F.P.), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Germany; University of Alabama at Birmingham (G.R.C.); UCSF Weill Institute for Neurosciences (A.J.G.), Department of Neurology and Department of Ophthalmology, University of California San Francisco; Medical Faculty (O.A., H.-P.H.), Heinrich Heine University, Düsseldorf, Germany; Icahn School of Medicine at Mount Sinai (F.D.L.), New York; Oxford PharmaGenesis Ltd (I.M.W.), UK; Viela Bio (J.D., D.S., D.C., W.R., M.S., J.N.R., E.K.), Gaithersburg, MD; and UCSF Weill Institute for Neurosciences (B.A.C.C.), University of California San Francisco
| | - Gary R Cutter
- From the Service de Neurologie Sclérose en Plaques (R.M.), Pathologies de La Myéline et Neuro-inflammation, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, France; University of Colorado School of Medicine (J.L.B.), Anschutz Medical Campus, Aurora; Research Institute and Hospital of National Cancer Center (H.J.K.), Goyang, South Korea; Mayo Clinic (B.G.W., S.J.P.), Rochester, MN; Mayo Clinic (D.W.), Scottsdale, AZ; Department of Multiple Sclerosis Therapeutics (K.F.), Fukushima Medical University and Multiple Sclerosis and Neuromyelitis Optica Center, Southern Tohoku Research Institute for Neuroscience, Koriyama, Japan; Experimental and Clinical Research Center (F.P.), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Germany; University of Alabama at Birmingham (G.R.C.); UCSF Weill Institute for Neurosciences (A.J.G.), Department of Neurology and Department of Ophthalmology, University of California San Francisco; Medical Faculty (O.A., H.-P.H.), Heinrich Heine University, Düsseldorf, Germany; Icahn School of Medicine at Mount Sinai (F.D.L.), New York; Oxford PharmaGenesis Ltd (I.M.W.), UK; Viela Bio (J.D., D.S., D.C., W.R., M.S., J.N.R., E.K.), Gaithersburg, MD; and UCSF Weill Institute for Neurosciences (B.A.C.C.), University of California San Francisco
| | - Ari J Green
- From the Service de Neurologie Sclérose en Plaques (R.M.), Pathologies de La Myéline et Neuro-inflammation, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, France; University of Colorado School of Medicine (J.L.B.), Anschutz Medical Campus, Aurora; Research Institute and Hospital of National Cancer Center (H.J.K.), Goyang, South Korea; Mayo Clinic (B.G.W., S.J.P.), Rochester, MN; Mayo Clinic (D.W.), Scottsdale, AZ; Department of Multiple Sclerosis Therapeutics (K.F.), Fukushima Medical University and Multiple Sclerosis and Neuromyelitis Optica Center, Southern Tohoku Research Institute for Neuroscience, Koriyama, Japan; Experimental and Clinical Research Center (F.P.), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Germany; University of Alabama at Birmingham (G.R.C.); UCSF Weill Institute for Neurosciences (A.J.G.), Department of Neurology and Department of Ophthalmology, University of California San Francisco; Medical Faculty (O.A., H.-P.H.), Heinrich Heine University, Düsseldorf, Germany; Icahn School of Medicine at Mount Sinai (F.D.L.), New York; Oxford PharmaGenesis Ltd (I.M.W.), UK; Viela Bio (J.D., D.S., D.C., W.R., M.S., J.N.R., E.K.), Gaithersburg, MD; and UCSF Weill Institute for Neurosciences (B.A.C.C.), University of California San Francisco
| | - Orhan Aktas
- From the Service de Neurologie Sclérose en Plaques (R.M.), Pathologies de La Myéline et Neuro-inflammation, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, France; University of Colorado School of Medicine (J.L.B.), Anschutz Medical Campus, Aurora; Research Institute and Hospital of National Cancer Center (H.J.K.), Goyang, South Korea; Mayo Clinic (B.G.W., S.J.P.), Rochester, MN; Mayo Clinic (D.W.), Scottsdale, AZ; Department of Multiple Sclerosis Therapeutics (K.F.), Fukushima Medical University and Multiple Sclerosis and Neuromyelitis Optica Center, Southern Tohoku Research Institute for Neuroscience, Koriyama, Japan; Experimental and Clinical Research Center (F.P.), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Germany; University of Alabama at Birmingham (G.R.C.); UCSF Weill Institute for Neurosciences (A.J.G.), Department of Neurology and Department of Ophthalmology, University of California San Francisco; Medical Faculty (O.A., H.-P.H.), Heinrich Heine University, Düsseldorf, Germany; Icahn School of Medicine at Mount Sinai (F.D.L.), New York; Oxford PharmaGenesis Ltd (I.M.W.), UK; Viela Bio (J.D., D.S., D.C., W.R., M.S., J.N.R., E.K.), Gaithersburg, MD; and UCSF Weill Institute for Neurosciences (B.A.C.C.), University of California San Francisco
| | - Hans-Peter Hartung
- From the Service de Neurologie Sclérose en Plaques (R.M.), Pathologies de La Myéline et Neuro-inflammation, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, France; University of Colorado School of Medicine (J.L.B.), Anschutz Medical Campus, Aurora; Research Institute and Hospital of National Cancer Center (H.J.K.), Goyang, South Korea; Mayo Clinic (B.G.W., S.J.P.), Rochester, MN; Mayo Clinic (D.W.), Scottsdale, AZ; Department of Multiple Sclerosis Therapeutics (K.F.), Fukushima Medical University and Multiple Sclerosis and Neuromyelitis Optica Center, Southern Tohoku Research Institute for Neuroscience, Koriyama, Japan; Experimental and Clinical Research Center (F.P.), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Germany; University of Alabama at Birmingham (G.R.C.); UCSF Weill Institute for Neurosciences (A.J.G.), Department of Neurology and Department of Ophthalmology, University of California San Francisco; Medical Faculty (O.A., H.-P.H.), Heinrich Heine University, Düsseldorf, Germany; Icahn School of Medicine at Mount Sinai (F.D.L.), New York; Oxford PharmaGenesis Ltd (I.M.W.), UK; Viela Bio (J.D., D.S., D.C., W.R., M.S., J.N.R., E.K.), Gaithersburg, MD; and UCSF Weill Institute for Neurosciences (B.A.C.C.), University of California San Francisco
| | - Fred D Lublin
- From the Service de Neurologie Sclérose en Plaques (R.M.), Pathologies de La Myéline et Neuro-inflammation, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, France; University of Colorado School of Medicine (J.L.B.), Anschutz Medical Campus, Aurora; Research Institute and Hospital of National Cancer Center (H.J.K.), Goyang, South Korea; Mayo Clinic (B.G.W., S.J.P.), Rochester, MN; Mayo Clinic (D.W.), Scottsdale, AZ; Department of Multiple Sclerosis Therapeutics (K.F.), Fukushima Medical University and Multiple Sclerosis and Neuromyelitis Optica Center, Southern Tohoku Research Institute for Neuroscience, Koriyama, Japan; Experimental and Clinical Research Center (F.P.), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Germany; University of Alabama at Birmingham (G.R.C.); UCSF Weill Institute for Neurosciences (A.J.G.), Department of Neurology and Department of Ophthalmology, University of California San Francisco; Medical Faculty (O.A., H.-P.H.), Heinrich Heine University, Düsseldorf, Germany; Icahn School of Medicine at Mount Sinai (F.D.L.), New York; Oxford PharmaGenesis Ltd (I.M.W.), UK; Viela Bio (J.D., D.S., D.C., W.R., M.S., J.N.R., E.K.), Gaithersburg, MD; and UCSF Weill Institute for Neurosciences (B.A.C.C.), University of California San Francisco
| | - Ian M Williams
- From the Service de Neurologie Sclérose en Plaques (R.M.), Pathologies de La Myéline et Neuro-inflammation, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, France; University of Colorado School of Medicine (J.L.B.), Anschutz Medical Campus, Aurora; Research Institute and Hospital of National Cancer Center (H.J.K.), Goyang, South Korea; Mayo Clinic (B.G.W., S.J.P.), Rochester, MN; Mayo Clinic (D.W.), Scottsdale, AZ; Department of Multiple Sclerosis Therapeutics (K.F.), Fukushima Medical University and Multiple Sclerosis and Neuromyelitis Optica Center, Southern Tohoku Research Institute for Neuroscience, Koriyama, Japan; Experimental and Clinical Research Center (F.P.), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Germany; University of Alabama at Birmingham (G.R.C.); UCSF Weill Institute for Neurosciences (A.J.G.), Department of Neurology and Department of Ophthalmology, University of California San Francisco; Medical Faculty (O.A., H.-P.H.), Heinrich Heine University, Düsseldorf, Germany; Icahn School of Medicine at Mount Sinai (F.D.L.), New York; Oxford PharmaGenesis Ltd (I.M.W.), UK; Viela Bio (J.D., D.S., D.C., W.R., M.S., J.N.R., E.K.), Gaithersburg, MD; and UCSF Weill Institute for Neurosciences (B.A.C.C.), University of California San Francisco
| | - Jorn Drappa
- From the Service de Neurologie Sclérose en Plaques (R.M.), Pathologies de La Myéline et Neuro-inflammation, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, France; University of Colorado School of Medicine (J.L.B.), Anschutz Medical Campus, Aurora; Research Institute and Hospital of National Cancer Center (H.J.K.), Goyang, South Korea; Mayo Clinic (B.G.W., S.J.P.), Rochester, MN; Mayo Clinic (D.W.), Scottsdale, AZ; Department of Multiple Sclerosis Therapeutics (K.F.), Fukushima Medical University and Multiple Sclerosis and Neuromyelitis Optica Center, Southern Tohoku Research Institute for Neuroscience, Koriyama, Japan; Experimental and Clinical Research Center (F.P.), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Germany; University of Alabama at Birmingham (G.R.C.); UCSF Weill Institute for Neurosciences (A.J.G.), Department of Neurology and Department of Ophthalmology, University of California San Francisco; Medical Faculty (O.A., H.-P.H.), Heinrich Heine University, Düsseldorf, Germany; Icahn School of Medicine at Mount Sinai (F.D.L.), New York; Oxford PharmaGenesis Ltd (I.M.W.), UK; Viela Bio (J.D., D.S., D.C., W.R., M.S., J.N.R., E.K.), Gaithersburg, MD; and UCSF Weill Institute for Neurosciences (B.A.C.C.), University of California San Francisco
| | - Dewei She
- From the Service de Neurologie Sclérose en Plaques (R.M.), Pathologies de La Myéline et Neuro-inflammation, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, France; University of Colorado School of Medicine (J.L.B.), Anschutz Medical Campus, Aurora; Research Institute and Hospital of National Cancer Center (H.J.K.), Goyang, South Korea; Mayo Clinic (B.G.W., S.J.P.), Rochester, MN; Mayo Clinic (D.W.), Scottsdale, AZ; Department of Multiple Sclerosis Therapeutics (K.F.), Fukushima Medical University and Multiple Sclerosis and Neuromyelitis Optica Center, Southern Tohoku Research Institute for Neuroscience, Koriyama, Japan; Experimental and Clinical Research Center (F.P.), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Germany; University of Alabama at Birmingham (G.R.C.); UCSF Weill Institute for Neurosciences (A.J.G.), Department of Neurology and Department of Ophthalmology, University of California San Francisco; Medical Faculty (O.A., H.-P.H.), Heinrich Heine University, Düsseldorf, Germany; Icahn School of Medicine at Mount Sinai (F.D.L.), New York; Oxford PharmaGenesis Ltd (I.M.W.), UK; Viela Bio (J.D., D.S., D.C., W.R., M.S., J.N.R., E.K.), Gaithersburg, MD; and UCSF Weill Institute for Neurosciences (B.A.C.C.), University of California San Francisco
| | - Daniel Cimbora
- From the Service de Neurologie Sclérose en Plaques (R.M.), Pathologies de La Myéline et Neuro-inflammation, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, France; University of Colorado School of Medicine (J.L.B.), Anschutz Medical Campus, Aurora; Research Institute and Hospital of National Cancer Center (H.J.K.), Goyang, South Korea; Mayo Clinic (B.G.W., S.J.P.), Rochester, MN; Mayo Clinic (D.W.), Scottsdale, AZ; Department of Multiple Sclerosis Therapeutics (K.F.), Fukushima Medical University and Multiple Sclerosis and Neuromyelitis Optica Center, Southern Tohoku Research Institute for Neuroscience, Koriyama, Japan; Experimental and Clinical Research Center (F.P.), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Germany; University of Alabama at Birmingham (G.R.C.); UCSF Weill Institute for Neurosciences (A.J.G.), Department of Neurology and Department of Ophthalmology, University of California San Francisco; Medical Faculty (O.A., H.-P.H.), Heinrich Heine University, Düsseldorf, Germany; Icahn School of Medicine at Mount Sinai (F.D.L.), New York; Oxford PharmaGenesis Ltd (I.M.W.), UK; Viela Bio (J.D., D.S., D.C., W.R., M.S., J.N.R., E.K.), Gaithersburg, MD; and UCSF Weill Institute for Neurosciences (B.A.C.C.), University of California San Francisco
| | - William Rees
- From the Service de Neurologie Sclérose en Plaques (R.M.), Pathologies de La Myéline et Neuro-inflammation, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, France; University of Colorado School of Medicine (J.L.B.), Anschutz Medical Campus, Aurora; Research Institute and Hospital of National Cancer Center (H.J.K.), Goyang, South Korea; Mayo Clinic (B.G.W., S.J.P.), Rochester, MN; Mayo Clinic (D.W.), Scottsdale, AZ; Department of Multiple Sclerosis Therapeutics (K.F.), Fukushima Medical University and Multiple Sclerosis and Neuromyelitis Optica Center, Southern Tohoku Research Institute for Neuroscience, Koriyama, Japan; Experimental and Clinical Research Center (F.P.), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Germany; University of Alabama at Birmingham (G.R.C.); UCSF Weill Institute for Neurosciences (A.J.G.), Department of Neurology and Department of Ophthalmology, University of California San Francisco; Medical Faculty (O.A., H.-P.H.), Heinrich Heine University, Düsseldorf, Germany; Icahn School of Medicine at Mount Sinai (F.D.L.), New York; Oxford PharmaGenesis Ltd (I.M.W.), UK; Viela Bio (J.D., D.S., D.C., W.R., M.S., J.N.R., E.K.), Gaithersburg, MD; and UCSF Weill Institute for Neurosciences (B.A.C.C.), University of California San Francisco
| | - Michael Smith
- From the Service de Neurologie Sclérose en Plaques (R.M.), Pathologies de La Myéline et Neuro-inflammation, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, France; University of Colorado School of Medicine (J.L.B.), Anschutz Medical Campus, Aurora; Research Institute and Hospital of National Cancer Center (H.J.K.), Goyang, South Korea; Mayo Clinic (B.G.W., S.J.P.), Rochester, MN; Mayo Clinic (D.W.), Scottsdale, AZ; Department of Multiple Sclerosis Therapeutics (K.F.), Fukushima Medical University and Multiple Sclerosis and Neuromyelitis Optica Center, Southern Tohoku Research Institute for Neuroscience, Koriyama, Japan; Experimental and Clinical Research Center (F.P.), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Germany; University of Alabama at Birmingham (G.R.C.); UCSF Weill Institute for Neurosciences (A.J.G.), Department of Neurology and Department of Ophthalmology, University of California San Francisco; Medical Faculty (O.A., H.-P.H.), Heinrich Heine University, Düsseldorf, Germany; Icahn School of Medicine at Mount Sinai (F.D.L.), New York; Oxford PharmaGenesis Ltd (I.M.W.), UK; Viela Bio (J.D., D.S., D.C., W.R., M.S., J.N.R., E.K.), Gaithersburg, MD; and UCSF Weill Institute for Neurosciences (B.A.C.C.), University of California San Francisco
| | - John N Ratchford
- From the Service de Neurologie Sclérose en Plaques (R.M.), Pathologies de La Myéline et Neuro-inflammation, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, France; University of Colorado School of Medicine (J.L.B.), Anschutz Medical Campus, Aurora; Research Institute and Hospital of National Cancer Center (H.J.K.), Goyang, South Korea; Mayo Clinic (B.G.W., S.J.P.), Rochester, MN; Mayo Clinic (D.W.), Scottsdale, AZ; Department of Multiple Sclerosis Therapeutics (K.F.), Fukushima Medical University and Multiple Sclerosis and Neuromyelitis Optica Center, Southern Tohoku Research Institute for Neuroscience, Koriyama, Japan; Experimental and Clinical Research Center (F.P.), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Germany; University of Alabama at Birmingham (G.R.C.); UCSF Weill Institute for Neurosciences (A.J.G.), Department of Neurology and Department of Ophthalmology, University of California San Francisco; Medical Faculty (O.A., H.-P.H.), Heinrich Heine University, Düsseldorf, Germany; Icahn School of Medicine at Mount Sinai (F.D.L.), New York; Oxford PharmaGenesis Ltd (I.M.W.), UK; Viela Bio (J.D., D.S., D.C., W.R., M.S., J.N.R., E.K.), Gaithersburg, MD; and UCSF Weill Institute for Neurosciences (B.A.C.C.), University of California San Francisco
| | - Eliezer Katz
- From the Service de Neurologie Sclérose en Plaques (R.M.), Pathologies de La Myéline et Neuro-inflammation, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, France; University of Colorado School of Medicine (J.L.B.), Anschutz Medical Campus, Aurora; Research Institute and Hospital of National Cancer Center (H.J.K.), Goyang, South Korea; Mayo Clinic (B.G.W., S.J.P.), Rochester, MN; Mayo Clinic (D.W.), Scottsdale, AZ; Department of Multiple Sclerosis Therapeutics (K.F.), Fukushima Medical University and Multiple Sclerosis and Neuromyelitis Optica Center, Southern Tohoku Research Institute for Neuroscience, Koriyama, Japan; Experimental and Clinical Research Center (F.P.), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Germany; University of Alabama at Birmingham (G.R.C.); UCSF Weill Institute for Neurosciences (A.J.G.), Department of Neurology and Department of Ophthalmology, University of California San Francisco; Medical Faculty (O.A., H.-P.H.), Heinrich Heine University, Düsseldorf, Germany; Icahn School of Medicine at Mount Sinai (F.D.L.), New York; Oxford PharmaGenesis Ltd (I.M.W.), UK; Viela Bio (J.D., D.S., D.C., W.R., M.S., J.N.R., E.K.), Gaithersburg, MD; and UCSF Weill Institute for Neurosciences (B.A.C.C.), University of California San Francisco
| | - Bruce A C Cree
- From the Service de Neurologie Sclérose en Plaques (R.M.), Pathologies de La Myéline et Neuro-inflammation, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, France; University of Colorado School of Medicine (J.L.B.), Anschutz Medical Campus, Aurora; Research Institute and Hospital of National Cancer Center (H.J.K.), Goyang, South Korea; Mayo Clinic (B.G.W., S.J.P.), Rochester, MN; Mayo Clinic (D.W.), Scottsdale, AZ; Department of Multiple Sclerosis Therapeutics (K.F.), Fukushima Medical University and Multiple Sclerosis and Neuromyelitis Optica Center, Southern Tohoku Research Institute for Neuroscience, Koriyama, Japan; Experimental and Clinical Research Center (F.P.), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Germany; University of Alabama at Birmingham (G.R.C.); UCSF Weill Institute for Neurosciences (A.J.G.), Department of Neurology and Department of Ophthalmology, University of California San Francisco; Medical Faculty (O.A., H.-P.H.), Heinrich Heine University, Düsseldorf, Germany; Icahn School of Medicine at Mount Sinai (F.D.L.), New York; Oxford PharmaGenesis Ltd (I.M.W.), UK; Viela Bio (J.D., D.S., D.C., W.R., M.S., J.N.R., E.K.), Gaithersburg, MD; and UCSF Weill Institute for Neurosciences (B.A.C.C.), University of California San Francisco
| | | |
Collapse
|
58
|
Schmetzer O, Lakin E, Roediger B, Duchow A, Asseyer S, Paul F, Siebert N. Anti-aquaporin 4 IgG Is Not Associated With Any Clinical Disease Characteristics in Neuromyelitis Optica Spectrum Disorder. Front Neurol 2021; 12:635419. [PMID: 33776892 PMCID: PMC7994757 DOI: 10.3389/fneur.2021.635419] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/22/2021] [Indexed: 12/23/2022] Open
Abstract
Background: Neuromyelitis optica spectrum disorder (NMOSD) is a clinically defined, inflammatory central nervous system (CNS) disease of unknown cause, associated with humoral autoimmune findings such as anti-aquaporin 4 (AQP4)-IgG. Recent clinical trials showed a benefit of anti-B cell and anti-complement-antibodies in NMOSD, suggesting relevance of anti-AQP4-IgG in disease pathogenesis. Objective: AQP4-IgG in NMOSD is clearly defined, yet up to 40% of the patients are negative for AQP4-IgG. This may indicate that AQP4-IgG is not disease-driving in NMOSD or defines a distinct patient endotype. Methods: We established a biobank of 63 clinically well-characterized NMOSD patients with an extensive annotation of 351 symptoms, patient characteristics, laboratory results and clinical scores. We used phylogenetic clustering, heatmaps, principal component and longitudinal causal interference analyses to test for the relevance of anti-AQP4-IgG. Results: Anti-AQP4-IgG was undetectable in 29 (46%) of the 63 NMOSD patients. Within anti-AQP4-IgG-positive patients, anti-AQP4-IgG titers did not correlate with clinical disease activity. Comparing anti-AQP4-IgG-positive vs. -negative patients did not delineate any clinically defined subgroup. However, anti-AQP4-IgG positive patients had a significantly (p = 0.022) higher rate of additional autoimmune diagnoses. Conclusion: Our results challenge the assumption that anti-AQP4-IgG alone plays a disease-driving role in NMOSD. Anti-AQP4-IgG might represent an epiphenomenon associated with NMOSD, may represent one of several immune mechanisms that collectively contribute to the pathogenesis of this disease or indeed, anti-AQP4-IgG might be the relevant factor in only a subgroup of patients.
Collapse
Affiliation(s)
- Oliver Schmetzer
- Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, NeuroCure Clinical Research Center (NCRC) and Experimental and Clinical Research Center (ECRC), Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Elisa Lakin
- Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, NeuroCure Clinical Research Center (NCRC) and Experimental and Clinical Research Center (ECRC), Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Ben Roediger
- Novartis Institutes for Biomedical Research - Autoimmunity, Transplantation and Inflammation, Basel, Switzerland
| | - Ankelien Duchow
- Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, NeuroCure Clinical Research Center (NCRC) and Experimental and Clinical Research Center (ECRC), Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Susanna Asseyer
- Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, NeuroCure Clinical Research Center (NCRC) and Experimental and Clinical Research Center (ECRC), Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Friedemann Paul
- Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, NeuroCure Clinical Research Center (NCRC) and Experimental and Clinical Research Center (ECRC), Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Nadja Siebert
- Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, NeuroCure Clinical Research Center (NCRC) and Experimental and Clinical Research Center (ECRC), Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
59
|
Romeo AR. Recent advances in the treatment of neuromyelitis optica spectrum disorders. Curr Opin Rheumatol 2021; 33:233-239. [PMID: 33741809 DOI: 10.1097/bor.0000000000000791] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW This review examines recently published randomized placebo-controlled trials for the treatment of neuromyelitis optica spectrum disorders (NMOSD). RECENT FINDINGS Until recently, treatments for NMOSD were used-off label and had not been subjected to randomized placebo-controlled trials. Increased understanding of the pathophysiology of NMOSD, particularly aquaporin-4-IgG seropositive NMOSD, lead to the investigation of eculizumab, inebilizumab, and satralizumab for maintenance therapy. Eculizumab inhibits the cleavage of the terminal complement protein C5, inebilizumab depletes immune cells of B-lymphocyte lineage, and satralizumab inhibits interleukin-6 receptors. International, phase 3, randomized, placebo-controlled trials have demonstrated that each of these therapies reduces the risk of NMOSD relapse. In some cases, the studied therapies were administered in conjunction with other immunosuppressants. Each therapy has important safety considerations, notably risk of meningococcal infection with eculizumab and risks of infection and hypogammaglobulinemia with inebilizumab. Reviewing trial design highlights future areas of inquiry for the treatment of NMOSD. SUMMARY Eculizumab, inebilizumab, and satralizumab are effective maintenance therapies approved for the treatment of AQP-4 seropositive NMOSD.
Collapse
Affiliation(s)
- Andrew R Romeo
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
60
|
Graf J, Mares J, Barnett M, Aktas O, Albrecht P, Zamvil SS, Hartung HP. Targeting B cells to modify MS, NMOSD, and MOGAD: Part 2. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2020; 8:8/1/e919. [PMID: 33411674 PMCID: PMC8063618 DOI: 10.1212/nxi.0000000000000919] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/11/2020] [Indexed: 12/15/2022]
Abstract
Ocrelizumab, rituximab, ofatumumab, ublituximab, inebilizumab, and evobrutinib
are immunotherapies that target various B cell–related proteins. Most of
these treatments have proven efficacy in relapsing and progressive forms of MS
and neuromyelitis optica spectrum disease (NMOSD) or are in advanced stages of
clinical development. Currently, ocrelizumab and inebilizumab are licensed for
treatment of MS and NMOSD, respectively. This part of the review focuses on
monoclonal antibody B cell–depleting strategies in NMOSD and the emerging
related myelin oligodendrocyte glycoprotein (MOG) immunoglobulin
G–associated disease (MOGAD). Case series and phase 2/3 studies in these
inflammatory disorders are assessed. The safety profile of long-term B-cell
depletion in MS, NMOSD, and MOGAD will be highlighted. Finally implications of
the current coronavirus disease 2019 pandemic on the management of patients with
these disorders and the use of B cell–depleting agents will be
discussed.
Collapse
Affiliation(s)
- Jonas Graf
- From the Department of Neurology (J.G., O.A., P.A., H.-P.H.), University Hospital, Medical Faculty Heinrich Heine University, Düsseldorf, Germany; Department of Neurology (J.M.), Palacky University, Olomouc, Czech Republic; Department of Neurology, Brain and Mind Centre (M.B., H.-P.H.), Department of Neurology, University of Sydney, New South Wales, Australia; and Department of Neurology (S.S.Z.), UCSF Weill Institute of Neurosciences, University of California at San Francisco
| | - Jan Mares
- From the Department of Neurology (J.G., O.A., P.A., H.-P.H.), University Hospital, Medical Faculty Heinrich Heine University, Düsseldorf, Germany; Department of Neurology (J.M.), Palacky University, Olomouc, Czech Republic; Department of Neurology, Brain and Mind Centre (M.B., H.-P.H.), Department of Neurology, University of Sydney, New South Wales, Australia; and Department of Neurology (S.S.Z.), UCSF Weill Institute of Neurosciences, University of California at San Francisco
| | - Michael Barnett
- From the Department of Neurology (J.G., O.A., P.A., H.-P.H.), University Hospital, Medical Faculty Heinrich Heine University, Düsseldorf, Germany; Department of Neurology (J.M.), Palacky University, Olomouc, Czech Republic; Department of Neurology, Brain and Mind Centre (M.B., H.-P.H.), Department of Neurology, University of Sydney, New South Wales, Australia; and Department of Neurology (S.S.Z.), UCSF Weill Institute of Neurosciences, University of California at San Francisco
| | - Orhan Aktas
- From the Department of Neurology (J.G., O.A., P.A., H.-P.H.), University Hospital, Medical Faculty Heinrich Heine University, Düsseldorf, Germany; Department of Neurology (J.M.), Palacky University, Olomouc, Czech Republic; Department of Neurology, Brain and Mind Centre (M.B., H.-P.H.), Department of Neurology, University of Sydney, New South Wales, Australia; and Department of Neurology (S.S.Z.), UCSF Weill Institute of Neurosciences, University of California at San Francisco
| | - Philipp Albrecht
- From the Department of Neurology (J.G., O.A., P.A., H.-P.H.), University Hospital, Medical Faculty Heinrich Heine University, Düsseldorf, Germany; Department of Neurology (J.M.), Palacky University, Olomouc, Czech Republic; Department of Neurology, Brain and Mind Centre (M.B., H.-P.H.), Department of Neurology, University of Sydney, New South Wales, Australia; and Department of Neurology (S.S.Z.), UCSF Weill Institute of Neurosciences, University of California at San Francisco
| | - Scott S Zamvil
- From the Department of Neurology (J.G., O.A., P.A., H.-P.H.), University Hospital, Medical Faculty Heinrich Heine University, Düsseldorf, Germany; Department of Neurology (J.M.), Palacky University, Olomouc, Czech Republic; Department of Neurology, Brain and Mind Centre (M.B., H.-P.H.), Department of Neurology, University of Sydney, New South Wales, Australia; and Department of Neurology (S.S.Z.), UCSF Weill Institute of Neurosciences, University of California at San Francisco
| | - Hans-Peter Hartung
- From the Department of Neurology (J.G., O.A., P.A., H.-P.H.), University Hospital, Medical Faculty Heinrich Heine University, Düsseldorf, Germany; Department of Neurology (J.M.), Palacky University, Olomouc, Czech Republic; Department of Neurology, Brain and Mind Centre (M.B., H.-P.H.), Department of Neurology, University of Sydney, New South Wales, Australia; and Department of Neurology (S.S.Z.), UCSF Weill Institute of Neurosciences, University of California at San Francisco.
| |
Collapse
|
61
|
Valencia-Sanchez C, Wingerchuk DM. Emerging Targeted Therapies for Neuromyelitis Optica Spectrum Disorders. BioDrugs 2020; 35:7-17. [PMID: 33301078 DOI: 10.1007/s40259-020-00460-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2020] [Indexed: 12/26/2022]
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune, inflammatory disorder of the central nervous system that typically presents with recurrent episodes of optic neuritis, longitudinally extensive myelitis, brainstem, diencephalic, and cerebral syndromes. Up to 80% of NMOSD patients have a circulating pathogenic autoantibody that targets the water channel aquaporin-4 (AQP4-IgG). The discovery of AQP4-IgG transformed our understanding of the pathogenesis of the disease and its possible treatment targets. Monoclonal antibodies targeting terminal complement (eculizumab), CD19 (inebilizumab), and the interleukin-6 receptor (satralizumab) have demonstrated efficacy in NMOSD attack prevention in recent phase 3 trials and have gained subsequent regulatory approval in the USA and other countries. We aim to review the evidence supporting the efficacy of these new drugs.
Collapse
Affiliation(s)
| | - Dean M Wingerchuk
- Department of Neurology, Mayo Clinic, 13400 East Shea Boulevard, Scottsdale, AZ, 85259, USA.
| |
Collapse
|
62
|
Correa-Díaz EP, Torres-Herrán GE, Miño Zambrano JE, Paredes-Gonzalez V, Caiza-Zambrano FJ. Impact of Rituximab on relapse rate and disability in an Ecuadorian cohort of patients with neuromyelitis optica spectrum disorders. Mult Scler Relat Disord 2020; 48:102683. [PMID: 33338945 DOI: 10.1016/j.msard.2020.102683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/29/2020] [Accepted: 12/06/2020] [Indexed: 01/17/2023]
Abstract
BACKGROUND Neuromyelitis Optica Spectrum Disorder (NMOSD) is a severe inflammatory demyelinating disease of the central nervous system that often causes disability. Based on evidence from prospective and retrospective studies, Rituximab (RTX) has been used as the first-line of therapy in NMOSD. Nevertheless, evidence of the impact of RTX on relapse rate and disability in Ecuadorian patients with NMOSD is lacking. OBJECTIVE To evaluate the impact of RTX in an Ecuadorian cohort of patients with NMOSD. MATERIALS AND METHODS A retrospective study was conducted in a cohort of patients with NMOSD who received treatment with RTX in a third-level hospital in Quito, Ecuador. Digital medical records of NMOSD patients were reviewed to attain sociodemographic data, disease characteristics, and treatment with RTX. The annualized relapse rate ARR, as well as the degree of disability measured through the expanded disability scale (EDSS), was established before and after treatment. RESULTS Twenty-three patients with NMOSD treated with RTX were included, the mean age of onset of the disease was 37.2 years (range, 13-64.5). The average duration of disease was 8.5 years (range, 1.3-34.4). Positivity for antibodies against aquaporin-4 (AQP4-IgG) was identified in 78% of the patients. The mean duration of the treatment with RTX was 40 months (range, 12-61). After the RTX therapy, the number of relapses was reduced in 91% (21/23) of cases. The annualized relapsed rate (ARR) was reduced with RTX from 1.89 to 0.12 (p <0.001). The mean EDSS was also reduced from 4.8 to 3.9 (p = 0.014). In all patients, the mean EDSS was reduced or stabilized with RTX. Overall, the drug was well tolerated, the most frequent adverse events were infections which were present in 65.2% of cases. CONCLUSIONS Though with the limitations of and observational study, our data support RTX effectiveness and safety in an Ecuadorian cohort of patients with NMOSD.
Collapse
|
63
|
Negron A, Stüve O, Forsthuber TG. Ectopic Lymphoid Follicles in Multiple Sclerosis: Centers for Disease Control? Front Neurol 2020; 11:607766. [PMID: 33363512 PMCID: PMC7753025 DOI: 10.3389/fneur.2020.607766] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022] Open
Abstract
While the contribution of autoreactive CD4+ T cells to the pathogenesis of Multiple Sclerosis (MS) is widely accepted, the advent of B cell-depleting monoclonal antibody (mAb) therapies has shed new light on the complex cellular mechanisms underlying MS pathogenesis. Evidence supports the involvement of B cells in both antibody-dependent and -independent capacities. T cell-dependent B cell responses originate and take shape in germinal centers (GCs), specialized microenvironments that regulate B cell activation and subsequent differentiation into antibody-secreting cells (ASCs) or memory B cells, a process for which CD4+ T cells, namely follicular T helper (TFH) cells, are indispensable. ASCs carry out their effector function primarily via secreted Ig but also through the secretion of both pro- and anti-inflammatory cytokines. Memory B cells, in addition to being capable of rapidly differentiating into ASCs, can function as potent antigen-presenting cells (APCs) to cognate memory CD4+ T cells. Aberrant B cell responses are prevented, at least in part, by follicular regulatory T (TFR) cells, which are key suppressors of GC-derived autoreactive B cell responses through the expression of inhibitory receptors and cytokines, such as CTLA4 and IL-10, respectively. Therefore, GCs represent a critical site of peripheral B cell tolerance, and their dysregulation has been implicated in the pathogenesis of several autoimmune diseases. In MS patients, the presence of GC-like leptomeningeal ectopic lymphoid follicles (eLFs) has prompted their investigation as potential sources of pathogenic B and T cell responses. This hypothesis is supported by elevated levels of CXCL13 and circulating TFH cells in the cerebrospinal fluid (CSF) of MS patients, both of which are required to initiate and maintain GC reactions. Additionally, eLFs in post-mortem MS patient samples are notably devoid of TFR cells. The ability of GCs to generate and perpetuate, but also regulate autoreactive B and T cell responses driving MS pathology makes them an attractive target for therapeutic intervention. In this review, we will summarize the evidence from both humans and animal models supporting B cells as drivers of MS, the role of GC-like eLFs in the pathogenesis of MS, and mechanisms controlling GC-derived autoreactive B cell responses in MS.
Collapse
Affiliation(s)
- Austin Negron
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, United States
| | - Olaf Stüve
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States.,Neurology Section, Veterans Affairs North Texas Health Care System, Medical Service, Dallas, TX, United States
| | - Thomas G Forsthuber
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
64
|
Janssen M, Bruijstens AL, van Langelaar J, Wong Y, Wierenga-Wolf AF, Melief MJ, Rijvers L, van Pelt ED, Smolders J, Wokke BH, van Luijn MM. Naive B cells in neuromyelitis optica spectrum disorders: impact of steroid use and relapses. Brain Commun 2020; 2:fcaa197. [PMID: 33305266 PMCID: PMC7714275 DOI: 10.1093/braincomms/fcaa197] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 12/19/2022] Open
Abstract
Neuromyelitis optica spectrum disorders are a group of rare, but severe autoimmune diseases characterized by inflammation of the optic nerve(s) and/or spinal cord. Although naive B cells are considered key players by escaping central tolerance checkpoints, it remains unclear how their composition and outgrowth differ in patients with neuromyelitis optica spectrum disorders. Under complete treatment-naive circumstances, we found that naive mature/transitional B-cell ratios were reduced in the blood of 10 patients with aquaporin-4 immunoglobulin G-positive disease (neuromyelitis optica spectrum disorders) as compared to 11 both age- and gender-matched healthy controls, eight patients with myelin oligodendrocyte glycoprotein-immunoglobulin G-associated disorders and 10 patients with multiple sclerosis. This was the result of increased proportions of transitional B cells, which were the highest in patients with neuromyelitis optica spectrum disorders with relapses and strongly diminished in a separate group of nine patients with neuromyelitis optica spectrum disorders and myelin oligodendrocyte glycoprotein-immunoglobulin G-associated disorders who received corticosteroid treatment. These findings need to be confirmed in longitudinal studies. For purified naive mature B cells of seven patients with neuromyelitis optica spectrum disorders and myelin oligodendrocyte glycoprotein-immunoglobulin G-associated disorders with relapses, Toll-like receptor 9 ligand synergized with interferon-γ to enhance plasmablast formation during germinal centre-like cultures. This was not seen for 11 patients without relapses and nine healthy controls. In the neuromyelitis optica spectrum disorders group, in vitro plasmablast formation corresponded to total and anti-aquaporin-4 immunoglobulin G secretion, of which the latter was found only for relapsing cases. These data indicate that naive B-cell homoeostasis is different and selectively targeted by corticosteroids in patients with neuromyelitis optica spectrum disorders. This also supports further exploration of naive B cells for their use in Toll-like receptor 9-dependent in vitro platforms in order to predict the activity of neuromyelitis optica spectrum disorders.
Collapse
Affiliation(s)
- Malou Janssen
- Department of Immunology, MS Center ErasMS, Erasmus MC, Rotterdam, 3015 GE, The Netherlands.,Department of Neurology, MS Center ErasMS, Erasmus MC, Rotterdam, 3015 GD, The Netherlands
| | - Arlette L Bruijstens
- Department of Neurology, MS Center ErasMS, Erasmus MC, Rotterdam, 3015 GD, The Netherlands
| | - Jamie van Langelaar
- Department of Immunology, MS Center ErasMS, Erasmus MC, Rotterdam, 3015 GE, The Netherlands
| | - YuYi Wong
- Department of Neurology, MS Center ErasMS, Erasmus MC, Rotterdam, 3015 GD, The Netherlands
| | - Annet F Wierenga-Wolf
- Department of Immunology, MS Center ErasMS, Erasmus MC, Rotterdam, 3015 GE, The Netherlands
| | - Marie-José Melief
- Department of Immunology, MS Center ErasMS, Erasmus MC, Rotterdam, 3015 GE, The Netherlands
| | - Liza Rijvers
- Department of Immunology, MS Center ErasMS, Erasmus MC, Rotterdam, 3015 GE, The Netherlands
| | - E Daniëlle van Pelt
- Department of Neurology, MS Center ErasMS, Erasmus MC, Rotterdam, 3015 GD, The Netherlands
| | - Joost Smolders
- Department of Immunology, MS Center ErasMS, Erasmus MC, Rotterdam, 3015 GE, The Netherlands.,Department of Neurology, MS Center ErasMS, Erasmus MC, Rotterdam, 3015 GD, The Netherlands
| | - Beatrijs H Wokke
- Department of Neurology, MS Center ErasMS, Erasmus MC, Rotterdam, 3015 GD, The Netherlands
| | - Marvin M van Luijn
- Department of Immunology, MS Center ErasMS, Erasmus MC, Rotterdam, 3015 GE, The Netherlands
| |
Collapse
|
65
|
Wallach AI, Tremblay M, Kister I. Advances in the Treatment of Neuromyelitis Optica Spectrum Disorder. Neurol Clin 2020; 39:35-49. [PMID: 33223088 DOI: 10.1016/j.ncl.2020.09.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is a rare, relapsing-remitting neuroinflammatory disorder of the central nervous system. Advances in the understanding of NMOSD pathogenesis and identification of the NMO-specific pathogenic anti-AQP4 autoantibody have led to the development of highly effective disease-modifying strategies. Five placebo-controlled, randomized trials for NMOSD have been successfully completed as of 2020. These trials support the efficacy of rituximab and tocilizumab and led to the FDA approval of eculizumab, satralizumab and inebilizumab for NMOSD. Our review provides an update on these evidence-based disease-modifying therapies and discussed the treatment of acute relapses in NMOSD.
Collapse
Affiliation(s)
- Asya Izraelit Wallach
- Alfiero and Lucia Palestroni MS Comprehensive Care Center, Holy Name Medical Center, 718 Teaneck Road, Teaneck, NJ 07666, USA.
| | - Matthew Tremblay
- MS Comprehensive Care Center, RWJ Barnabas Health, 200 South Orange Avenue, Suite 124-A, Livingston, NJ 07039, USA
| | - Ilya Kister
- Department of Neurology, Comprehensive MS Center, NYU Grossman School of Medicine, 240 East 38th Street, New York, NY 10016, USA
| |
Collapse
|
66
|
Jarius S, Paul F, Weinshenker BG, Levy M, Kim HJ, Wildemann B. Neuromyelitis optica. Nat Rev Dis Primers 2020; 6:85. [PMID: 33093467 DOI: 10.1038/s41572-020-0214-9] [Citation(s) in RCA: 253] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/25/2020] [Indexed: 12/11/2022]
Abstract
Neuromyelitis optica (NMO; also known as Devic syndrome) is a clinical syndrome characterized by attacks of acute optic neuritis and transverse myelitis. In most patients, NMO is caused by pathogenetic serum IgG autoantibodies to aquaporin 4 (AQP4), the most abundant water-channel protein in the central nervous system. In a subset of patients negative for AQP4-IgG, pathogenetic serum IgG antibodies to myelin oligodendrocyte glycoprotein, an antigen in the outer myelin sheath of central nervous system neurons, are present. Other causes of NMO (such as paraneoplastic disorders and neurosarcoidosis) are rare. NMO was previously associated with a poor prognosis; however, treatment with steroids and plasma exchange for acute attacks and with immunosuppressants (in particular, B cell-depleting agents) for attack prevention has greatly improved the long-term outcomes. Recently, a number of randomized controlled trials have been completed and the first drugs, all therapeutic monoclonal antibodies, have been approved for the treatment of AQP4-IgG-positive NMO and its formes frustes.
Collapse
Affiliation(s)
- Sven Jarius
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany.
| | - Friedemann Paul
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Michael Levy
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Ho Jin Kim
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang, Korea
| | - Brigitte Wildemann
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
67
|
Review of approved NMO therapies based on mechanism of action, efficacy and long-term effects. Mult Scler Relat Disord 2020; 46:102538. [PMID: 33059216 PMCID: PMC7539063 DOI: 10.1016/j.msard.2020.102538] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 01/10/2023]
Abstract
Neuromyelitis optica (NMO - including NMO spectrum disorders [NMOSD]) is a devastating disease. Up until recently, there was no proven agent to treat to prevent relapses. We now have three agents indicated for the treatment of NMO. We might suggest the following sequence – 1st line using eculizumab for rapid efficacy and stabilization without effect on the acquired immune system followed by satrilizumab (long term immunomodulation). Reserve inebilizumab (immunosuppressant) for breakthrough disease and salvage the severe with AHSCBMT. In NMO, control the complement, transition to modulation, and reserve suppression – and salvage the severe with AHSCBMT.
Importance Neuromyelitis optica (NMO - including NMO spectrum disorders [NMOSD]) is a devastating disease. Eighty-three percent of patients with transverse myelitic (TM) attacks and 67% of patients with optic neuritis (ON) attacks have no or a partial recovery. Observations Up until recently, there was no proven agent to treat to prevent relapses. The neuro-immunological community had a dearth of indicated agents for NMOSD. We now have three agents indicated for the treatment of NMO including (eculizumab [Soliris®]), an anti-C5 complement inhibitor, satralizumab (ENSRYNG®), a monoclonal antibody against the IL-6 receptor (IL-6R) that blocks B cell antibody production and inebilizumab (Uplinza®), a monoclonal antibody that binds to the B-cell surface antigen CD19 with subsequent B and plasmablast cell lymphocytolysis with decreasing antibody production. Autologous hematopoietic stem cell bone marrow transplantation (AHSCBMT) has also been used. How do we sequence NMO therapies with the understanding of the acuteness and severity of the disease, the individual mechanism of action (MOA) and rapidity of onset of action, onset of efficacy and long-term safety of each agent? Conclusions and Relevance We might suggest the following sequence – 1st line using eculizumab for rapid efficacy and stabilization without effect on the acquired immune system followed by satrilizumab (long term immunomodulation). Reserve inebilizumab (immunosuppressant) for breakthrough disease and salvage the severe with AHSCBMT. In NMO, control the complement, transition to modulation, and reserve suppression – and salvage the severe with AHSCBMT.
Collapse
|
68
|
Klein da Costa B, Brant de Souza Melo R, Passos GRD, Gomes Meneses Sevilha Castro D, Becker J, Bar-Or A, Sato DK. Unraveling B lymphocytes in CNS inflammatory diseases: Distinct mechanisms and treatment targets. Neurology 2020; 95:733-744. [PMID: 32907966 DOI: 10.1212/wnl.0000000000010789] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 08/03/2020] [Indexed: 12/15/2022] Open
Abstract
Specific therapies targeting B lymphocytes in multiple sclerosis (MS) have demonstrated reductions in disease activity and disability progression. Several observational studies have also shown the effects of targeting B lymphocytes in other rare CNS inflammatory diseases, such as neuromyelitis optica spectrum disorder (NMOSD) and autoimmune encephalitis (AE). However, some drugs targeting cytokine receptors involved in B-lymphocyte maturation and proliferation resulted in negative outcomes in MS. These apparently conflicting findings have stimulated research on the pathophysiologic mechanisms of B lymphocytes in CNS inflammatory diseases. It has been demonstrated that B lymphocytes participate in the pathogenesis of these conditions as antigen-presenting cells, producing proinflammatory cytokines that induce Th1 and Th17 responses and producing antibodies. However, they are also able to produce anti-inflammatory cytokines, such as interleukin-10, functioning as regulators of autoimmunity. Understanding these diverse effects is essential for the development of focused treatments. In this review, we discuss the possible mechanisms that underlie B-lymphocyte involvement in MS, NMOSD, and AE and the outcomes obtained by treatments targeting B lymphocytes.
Collapse
Affiliation(s)
- Bruna Klein da Costa
- From the Brain Institute of Rio Grande do Sul (BraIns) and School of Medicine (B.K.d.C., R.B.d.S.M., G.R.d.P., J.B., D.K.S.), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre; Santa Casa de Belo Horizonte (R.B.d.S.M.), Belo Horizonte; Produtos Roche Químicos e Farmacêuticos S.A. (D.G.M.S.C.), São Paulo, Brazil; and Perelman Center for Advanced Medicine (PCAM) (A.B.-O), University of Pennsylvania, Philadelphia.
| | - Renata Brant de Souza Melo
- From the Brain Institute of Rio Grande do Sul (BraIns) and School of Medicine (B.K.d.C., R.B.d.S.M., G.R.d.P., J.B., D.K.S.), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre; Santa Casa de Belo Horizonte (R.B.d.S.M.), Belo Horizonte; Produtos Roche Químicos e Farmacêuticos S.A. (D.G.M.S.C.), São Paulo, Brazil; and Perelman Center for Advanced Medicine (PCAM) (A.B.-O), University of Pennsylvania, Philadelphia
| | - Giordani Rodrigues Dos Passos
- From the Brain Institute of Rio Grande do Sul (BraIns) and School of Medicine (B.K.d.C., R.B.d.S.M., G.R.d.P., J.B., D.K.S.), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre; Santa Casa de Belo Horizonte (R.B.d.S.M.), Belo Horizonte; Produtos Roche Químicos e Farmacêuticos S.A. (D.G.M.S.C.), São Paulo, Brazil; and Perelman Center for Advanced Medicine (PCAM) (A.B.-O), University of Pennsylvania, Philadelphia
| | - Douglas Gomes Meneses Sevilha Castro
- From the Brain Institute of Rio Grande do Sul (BraIns) and School of Medicine (B.K.d.C., R.B.d.S.M., G.R.d.P., J.B., D.K.S.), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre; Santa Casa de Belo Horizonte (R.B.d.S.M.), Belo Horizonte; Produtos Roche Químicos e Farmacêuticos S.A. (D.G.M.S.C.), São Paulo, Brazil; and Perelman Center for Advanced Medicine (PCAM) (A.B.-O), University of Pennsylvania, Philadelphia
| | - Jefferson Becker
- From the Brain Institute of Rio Grande do Sul (BraIns) and School of Medicine (B.K.d.C., R.B.d.S.M., G.R.d.P., J.B., D.K.S.), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre; Santa Casa de Belo Horizonte (R.B.d.S.M.), Belo Horizonte; Produtos Roche Químicos e Farmacêuticos S.A. (D.G.M.S.C.), São Paulo, Brazil; and Perelman Center for Advanced Medicine (PCAM) (A.B.-O), University of Pennsylvania, Philadelphia
| | - Amit Bar-Or
- From the Brain Institute of Rio Grande do Sul (BraIns) and School of Medicine (B.K.d.C., R.B.d.S.M., G.R.d.P., J.B., D.K.S.), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre; Santa Casa de Belo Horizonte (R.B.d.S.M.), Belo Horizonte; Produtos Roche Químicos e Farmacêuticos S.A. (D.G.M.S.C.), São Paulo, Brazil; and Perelman Center for Advanced Medicine (PCAM) (A.B.-O), University of Pennsylvania, Philadelphia
| | - Douglas Kazutoshi Sato
- From the Brain Institute of Rio Grande do Sul (BraIns) and School of Medicine (B.K.d.C., R.B.d.S.M., G.R.d.P., J.B., D.K.S.), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre; Santa Casa de Belo Horizonte (R.B.d.S.M.), Belo Horizonte; Produtos Roche Químicos e Farmacêuticos S.A. (D.G.M.S.C.), São Paulo, Brazil; and Perelman Center for Advanced Medicine (PCAM) (A.B.-O), University of Pennsylvania, Philadelphia
| |
Collapse
|
69
|
Tsigalou C, Vallianou N, Dalamaga M. Autoantibody Production in Obesity: Is There Evidence for a Link Between Obesity and Autoimmunity? Curr Obes Rep 2020; 9:245-254. [PMID: 32632847 DOI: 10.1007/s13679-020-00397-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE OF REVIEW During the last decades, obesity and autoimmune disorders have shown a parallel significant rise in industrialized countries. This review aims at providing a comprehensive update of the relationship between the adipose tissue in obesity and autoimmune disorders, highlighting the underlying mechanisms with a particular emphasis on adipokines and pro-inflammatory cytokines, the impaired B cell activity, and the production of natural and pathogenic autoantibody repertoire in the context of obesity. RECENT FINDINGS Obesity is related to a higher risk of rheumatoid arthritis, psoriasis and psoriatic arthritis, multiple sclerosis, and Hashimoto's thyroiditis, while it may promote inflammatory bowel disorders and type 1 diabetes mellitus. Interestingly, subjects with obesity present more severe forms of these autoimmune disorders as well as decreased therapeutic response. Both obesity and autoimmune disorders present elevated levels of leptin, resistin, and visfatin. Autoantibody production, a hallmark of autoimmune disorders, has been demonstrated in obese animal models and human subjects. Obesity results in deficiencies of the human self-tolerance mechanisms by promoting pro-inflammatory processes, reducing Bregs as well as Tregs, and the latter resulting in increased Th17 and Th1 cells, creating the perfect milieu for the development of autoimmune disorders. More mechanistic, animal, and clinical studies are required to delineate the exact mechanisms underlying auto-reactivity in obesity as well as the adipose-immune crosstalk for potential successful therapeutic strategies.
Collapse
Affiliation(s)
- Christina Tsigalou
- Laboratory of Microbiology, Medical School, Democritus University of Thrace, 6th Km Alexandroupolis-Makri, Alexandroupolis, Greece.
| | - Natalia Vallianou
- Department of Endocrinology, 'Evangelismos' General Hospital of Athens, 45-47 Ypsilantou street, 10676, Athens, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11527, Athens, Greece
| |
Collapse
|
70
|
Abboud H, Zheng C, Kar I, Chen CK, Sau C, Serra A. Current and emerging therapeutics for neuromyelitis optica spectrum disorder: Relevance to the COVID-19 pandemic. Mult Scler Relat Disord 2020; 44:102249. [PMID: 32526698 PMCID: PMC7265855 DOI: 10.1016/j.msard.2020.102249] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 02/07/2023]
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) can lead to immobility and bulbar weakness. This, in addition to the older age of onset and the higher rate of hospitalization compared to multiple sclerosis, makes this patient group a potential target for complicated COVID-19 infection. Moreover, many of the commonly used preventive therapies for NMOSD are cell-depleting immunouppsressants with increased risk of viral and bacterial infections. The emergence of several new NMOSD therapeutics, including immune-modulating agents, concurrently with the worldwide spread of the COVID-19 global pandemic call for careful therapeutic planning and add to the complexity of NMOSD management. Altering the common therapeutic approach to NMOSD during the pandemic may be necessary to balance both efficacy and safety of treatment. Selection of preventive therapy should take in consideration the viral exposure risk related to the route and frequency of administration and, most importantly, the immunological properties of each therapeutic agent and its potential impact on the risk of SARS-CoV-2 susceptibility and severity of infection. The impact of the therapeutic agent on the immune response against the future SARS-CoV-2 vaccine should also be considered in the clinical decision-making. In this review, we will discuss the immune response against SARS-CoV-2 and evaluate the potential impact of the current and emerging NMOSD therapeutics on infection risk, infection severity, and future SARS-CoV-2 vaccination. We propose a therapeutic approach to NMOSD during the COVID-19 pandemic based on analysis of the mechanism of action, route of administration, and side effect profile of each therapeutic agent.
Collapse
Affiliation(s)
- Hesham Abboud
- Multiple Sclerosis and Neuroimmunology Program, University Hospitals of Cleveland, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| | - Crystal Zheng
- Ohio Northern University School of Pharmacy, Ada, OH, USA
| | - Indrani Kar
- System Pharmacy Services, University Hospitals of Cleveland, Cleveland, OH, USA
| | - Claire Kaori Chen
- System Pharmacy Services, University Hospitals of Cleveland, Cleveland, OH, USA
| | - Crystal Sau
- Multiple Sclerosis and Neuroimmunology Program, University Hospitals of Cleveland, Case Western Reserve University School of Medicine, Cleveland, OH, USA; System Pharmacy Services, University Hospitals of Cleveland, Cleveland, OH, USA
| | - Alessandro Serra
- Multiple Sclerosis and Neuroimmunology Program, University Hospitals of Cleveland, Case Western Reserve University School of Medicine, Cleveland, OH, USA; VA Multiple Sclerosis Center of Excellence, Cleveland VA Medical Center, Cleveland, OH, USA
| |
Collapse
|
71
|
Duchow A, Chien C, Paul F, Bellmann-Strobl J. Emerging drugs for the treatment of neuromyelitis optica. Expert Opin Emerg Drugs 2020; 25:285-297. [PMID: 32731771 DOI: 10.1080/14728214.2020.1803828] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Evidence-based treatment options for neuromyelitis optica spectrum disorders (NMOSD) patients are beginning to enter the market. Where previously, there was only the exclusive use of empiric and off-label immunosuppressants in this rare and devastating central nervous system autoimmune disease. AREAS COVERED In accordance to expanding pathogenetic insights, drugs in phase II and III clinical trials are presented in the context of the current treatment situation for acute attacks and immunopreventative strategies in NMOSD. Some such drugs are the 2019-approved complement inhibitor eculizumab, other compounds in late development include its modified successor ravulizumab, IL-6 receptor antibody satralizumab, CD19 targeting antibody inebilizumab and the TACI-Fc fusion protein telitacicept. EXPERT OPINION Moving from broad immunosuppression to tailored treatment strategies, the prospects for efficient NMOSD therapy are positive. For the first time in this disease, class I treatment evidence is available, but long-term data will be necessary to confirm the overall promising study results of the compounds close to approval. While drug development still centers around AQP4 antibody seropositive patients, current and future research requires consideration of possible diverging treatment demands for the smaller group of seronegative patients and patients with presence of MOG antibodies.
Collapse
Affiliation(s)
- Ankelien Duchow
- Neurocure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health , Berlin, Germany.,Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health and Max Delbrück Center for Molecular Medicine , Berlin, Germany
| | - Claudia Chien
- Neurocure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health , Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health , Berlin, Germany.,Department for Psychiatry and Psychotherapy - Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health , Berlin, Germany
| | - Friedemann Paul
- Neurocure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health , Berlin, Germany.,Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health and Max Delbrück Center for Molecular Medicine , Berlin, Germany
| | - Judith Bellmann-Strobl
- Neurocure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health , Berlin, Germany.,Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health and Max Delbrück Center for Molecular Medicine , Berlin, Germany
| |
Collapse
|
72
|
Ceglie G, Papetti L, Valeriani M, Merli P. Hematopoietic Stem Cell Transplantation in Neuromyelitis Optica-Spectrum Disorders (NMO-SD): State-of-the-Art and Future Perspectives. Int J Mol Sci 2020; 21:ijms21155304. [PMID: 32722601 PMCID: PMC7432050 DOI: 10.3390/ijms21155304] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/15/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022] Open
Abstract
Neuromyelitis optica (NMO) and neuromyelitis optica spectrum disorders (NMOSD) are a group of autoimmune inflammatory disorders of the central nervous system (CNS). Understanding of the molecular basis of these diseases in the last decades has led to an important improvement in the treatment of this disease, in particular, to the use of immunotherapeutic approaches, such as monoclonal antibodies and Hematopoietic Stem Cell Transplantation (HSCT). The aim of this review is to summarize the pathogenesis, biological basis and new treatment options of these disorders, with a particular focus on HSCT applications. Different HSCT strategies are being explored in NMOSD, both autologous and allogeneic HSCT, with the new emergence of therapeutic effects such as an induction of tolerance to auto-antigens and graft versus autoimmunity effects that can be exploited to hopefully treat a disease that still has prognosis.
Collapse
Affiliation(s)
- Giulia Ceglie
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, 00165 Rome, Italy;
| | - Laura Papetti
- Department of Neurology, Bambino Gesù Children’s Hospital, 00165 Rome, Italy; (L.P.); (M.V.)
| | - Massimiliano Valeriani
- Department of Neurology, Bambino Gesù Children’s Hospital, 00165 Rome, Italy; (L.P.); (M.V.)
| | - Pietro Merli
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, 00165 Rome, Italy;
- Correspondence: ; Tel.: +39-06-6859-2623
| |
Collapse
|
73
|
Braun T, Juenemann M, Dornes K, El-Shazly J, Schramm P, Bick-Ackerschott S, Kaps M, Gerriets T, Blaes F, Tschernatsch M. BAFF serum and CSF levels in patients with multiple sclerosis and infectious nervous system diseases. Int J Neurosci 2020; 131:1231-1236. [PMID: 32602764 DOI: 10.1080/00207454.2020.1784167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Purpose: Multiple sclerosis (MS) is the most common immune-mediated CNS disease, characterised by demyelination and progressive neurological disability. The B-cell activating factor BAFF has been described as one important factor in the pathophysiology of different autoimmune diseases.Methods: We measured BAFF levels in the serum and cerebrospinal fluid (CSF) in 50 consecutive patients with MS and 35 patients with infectious CNS disease (ID). 52 patients with other, non-inflammatory disorders (OND), served as controls.Results: BAFF-serum levels in ID patients were higher than in patients diagnosed with MS (ID 0.55 ± 0.24 ng/ml, MS 0.43 ± 0.14 ng/ml, OND 0.45 ± 0.24 ng/ml; p = 0.09). Interestingly, MS patients had lower BAFF CSF levels compared to the controls and ID patients, and the CSF levels in the latter were elevated compared to those of the controls (MS 0.17 ± 0.11 ng/ml, OND 0.25 ± 0.14 ng/ml, ID 0.97 ± 0.78 ng/ml; p < 0.001).Conclusions: The ID patients' having higher absolute BAFF levels in the CSF than in the serum indicates that the increased BAFF CSF levels were caused by intrathecal synthesis rather than passive transfer via a disturbed blood-brain-barrier. The significantly decreased BAFF CSF levels in MS patients were a surprising result of our study. Although it has been reported that astrocytes in active MS lesions can express BAFF, the soluble form was not increased in the CSF of MS patients. It remains unclear whether the inflammatory features of active MS plaques are truly represented by the CSF compartment.
Collapse
Affiliation(s)
- Tobias Braun
- Department of Neurology, Faculty of Medicine, Justus-Liebig-University, Giessen, Germany.,Heart & Brain Research Group, Justus-Liebig-University Giessen and Kerckhoff Clinic, Bad Nauheim, Germany
| | - Martin Juenemann
- Department of Neurology, Faculty of Medicine, Justus-Liebig-University, Giessen, Germany.,Heart & Brain Research Group, Justus-Liebig-University Giessen and Kerckhoff Clinic, Bad Nauheim, Germany
| | - Kathrin Dornes
- Department of Neurology, Faculty of Medicine, Justus-Liebig-University, Giessen, Germany
| | - Jasmin El-Shazly
- Heart & Brain Research Group, Justus-Liebig-University Giessen and Kerckhoff Clinic, Bad Nauheim, Germany
| | - Patrick Schramm
- Heart & Brain Research Group, Justus-Liebig-University Giessen and Kerckhoff Clinic, Bad Nauheim, Germany.,Department of Anaesthesiology, University Medical Centre Mainz, Mainz, Germany
| | | | - Manfred Kaps
- Department of Neurology, Faculty of Medicine, Justus-Liebig-University, Giessen, Germany
| | - Tibo Gerriets
- Department of Neurology, Faculty of Medicine, Justus-Liebig-University, Giessen, Germany.,Heart & Brain Research Group, Justus-Liebig-University Giessen and Kerckhoff Clinic, Bad Nauheim, Germany.,Department of Neurology, Gesundheitszentrum Wetterau, Bad Nauheim, Germany
| | - Franz Blaes
- Department of Neurology, Faculty of Medicine, Justus-Liebig-University, Giessen, Germany.,Department of Neurology, Klinikum Oberberg, Gummersbach, Germany
| | - Marlene Tschernatsch
- Department of Neurology, Faculty of Medicine, Justus-Liebig-University, Giessen, Germany.,Heart & Brain Research Group, Justus-Liebig-University Giessen and Kerckhoff Clinic, Bad Nauheim, Germany.,Department of Neurology, Gesundheitszentrum Wetterau, Bad Nauheim, Germany
| |
Collapse
|
74
|
Fichtner ML, Jiang R, Bourke A, Nowak RJ, O'Connor KC. Autoimmune Pathology in Myasthenia Gravis Disease Subtypes Is Governed by Divergent Mechanisms of Immunopathology. Front Immunol 2020; 11:776. [PMID: 32547535 PMCID: PMC7274207 DOI: 10.3389/fimmu.2020.00776] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
Myasthenia gravis (MG) is a prototypical autoantibody mediated disease. The autoantibodies in MG target structures within the neuromuscular junction (NMJ), thus affecting neuromuscular transmission. The major disease subtypes of autoimmune MG are defined by their antigenic target. The most common target of pathogenic autoantibodies in MG is the nicotinic acetylcholine receptor (AChR), followed by muscle-specific kinase (MuSK) and lipoprotein receptor-related protein 4 (LRP4). MG patients present with similar symptoms independent of the underlying subtype of disease, while the immunopathology is remarkably distinct. Here we highlight these distinct immune mechanisms that describe both the B cell- and autoantibody-mediated pathogenesis by comparing AChR and MuSK MG subtypes. In our discussion of the AChR subtype, we focus on the role of long-lived plasma cells in the production of pathogenic autoantibodies, the IgG1 subclass mediated pathology, and contributions of complement. The similarities underlying the immunopathology of AChR MG and neuromyelitis optica (NMO) are highlighted. In contrast, MuSK MG is caused by autoantibody production by short-lived plasmablasts. MuSK MG autoantibodies are mainly of the IgG4 subclass which can undergo Fab-arm exchange (FAE), a process unique to this subclass. In FAE IgG4, molecules can dissociate into two halves and recombine with other half IgG4 molecules resulting in bispecific antibodies. Similarities between MuSK MG and other IgG4-mediated autoimmune diseases, including pemphigus vulgaris (PV) and chronic inflammatory demyelinating polyneuropathy (CIDP), are highlighted. Finally, the immunological distinctions are emphasized through presentation of biological therapeutics that provide clinical benefit depending on the MG disease subtype.
Collapse
Affiliation(s)
- Miriam L Fichtner
- Department of Neurology, School of Medicine, Yale University, New Haven, CT, United States.,Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, United States
| | - Ruoyi Jiang
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, United States
| | - Aoibh Bourke
- Trinity Hall, University of Cambridge, Cambridge, United Kingdom
| | - Richard J Nowak
- Department of Neurology, School of Medicine, Yale University, New Haven, CT, United States
| | - Kevin C O'Connor
- Department of Neurology, School of Medicine, Yale University, New Haven, CT, United States.,Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
75
|
Lu Q, Luo J, Hao H, Liu R, Jin H, Jin Y, Gao F. A long-term follow-up of rituximab treatment in 20 Chinese patients with neuromyelitis optica spectrum disorders. Mult Scler Relat Disord 2020; 40:101933. [DOI: 10.1016/j.msard.2020.101933] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/25/2019] [Accepted: 01/02/2020] [Indexed: 10/25/2022]
|
76
|
Duchow A, Paul F, Bellmann-Strobl J. Current and emerging biologics for the treatment of neuromyelitis optica spectrum disorders. Expert Opin Biol Ther 2020; 20:1061-1072. [DOI: 10.1080/14712598.2020.1749259] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ankelien Duchow
- Neurocure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health and Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Friedemann Paul
- Neurocure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health and Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Judith Bellmann-Strobl
- Neurocure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health and Max Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
77
|
Cotzomi E, Stathopoulos P, Lee CS, Ritchie AM, Soltys JN, Delmotte FR, Oe T, Sng J, Jiang R, Ma AK, Vander Heiden JA, Kleinstein SH, Levy M, Bennett JL, Meffre E, O'Connor KC. Early B cell tolerance defects in neuromyelitis optica favour anti-AQP4 autoantibody production. Brain 2020; 142:1598-1615. [PMID: 31056665 DOI: 10.1093/brain/awz106] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/13/2019] [Accepted: 02/24/2019] [Indexed: 11/12/2022] Open
Abstract
Neuromyelitis optica spectrum disorders (NMOSD) constitute rare autoimmune disorders of the CNS that are primarily characterized by severe inflammation of the spinal cord and optic nerve. Approximately 75% of NMOSD patients harbour circulating pathogenic autoantibodies targeting the aquaporin-4 water channel (AQP4). The source of these autoantibodies remains unclear, but parallels between NMOSD and other autoantibody-mediated diseases posit compromised B cell tolerance checkpoints as common underlying and contributing factors. Using a well established assay, we assessed tolerance fidelity by creating recombinant antibodies from B cell populations directly downstream of each checkpoint and testing them for polyreactivity and autoreactivity. We examined a total of 863 recombinant antibodies. Those derived from three anti-AQP4-IgG seropositive NMOSD patients (n = 130) were compared to 733 antibodies from 15 healthy donors. We found significantly higher frequencies of poly- and autoreactive new emigrant/transitional and mature naïve B cells in NMOSD patients compared to healthy donors (P-values < 0.003), thereby identifying defects in both central and peripheral B cell tolerance checkpoints in these patients. We next explored whether pathogenic NMOSD anti-AQP4 autoantibodies can originate from the pool of poly- and autoreactive clones that populate the naïve B cell compartment of NMOSD patients. Six human anti-AQP4 autoantibodies that acquired somatic mutations were reverted back to their unmutated germline precursors, which were tested for both binding to AQP4 and poly- or autoreactivity. While the affinity of mature autoantibodies against AQP4 ranged from modest to strong (Kd 15.2-559 nM), none of the germline revertants displayed any detectable binding to AQP4, revealing that somatic hypermutation is required for the generation of anti-AQP4 autoantibodies. However, two (33.3%) germline autoantibody revertants were polyreactive and four (66.7%) were autoreactive, suggesting that pathogenic anti-AQP4 autoantibodies can originate from the pool of autoreactive naïve B cells, which develops as a consequence of impaired early B cell tolerance checkpoints in NMOSD patients.
Collapse
Affiliation(s)
- Elizabeth Cotzomi
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Panos Stathopoulos
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Casey S Lee
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Alanna M Ritchie
- Departments of Neurology and Ophthalmology and Neuroscience Program, University of Colorado, Denver, CO, USA
| | - John N Soltys
- Departments of Neurology and Ophthalmology and Neuroscience Program, University of Colorado, Denver, CO, USA
| | - Fabien R Delmotte
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Tyler Oe
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Joel Sng
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Ruoyi Jiang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Anthony K Ma
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Steven H Kleinstein
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.,Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.,Interdepartmental Program in Computational Biology and Bioinformatics, Yale University School of Medicine, New Haven, CT, USA
| | - Michael Levy
- Department of Neurology, Johns Hopkins, School of Medicine, Baltimore, MD, USA
| | - Jeffrey L Bennett
- Departments of Neurology and Ophthalmology and Neuroscience Program, University of Colorado, Denver, CO, USA
| | - Eric Meffre
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Kevin C O'Connor
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
78
|
Tradtrantip L, Asavapanumas N, Verkman AS. Emerging therapeutic targets for neuromyelitis optica spectrum disorder. Expert Opin Ther Targets 2020; 24:219-229. [PMID: 32070155 DOI: 10.1080/14728222.2020.1732927] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Neuromyelitis optica spectrum disorder (NMOSD) is an inflammatory demyelinating disease of the central nervous system affecting primarily the spinal cord and optic nerves. Most NMOSD patients are seropositive for immunoglobulin G autoantibodies against astrocyte water channel aquaporin-4, called AQP4-IgG, which cause astrocyte injury leading to demyelination and neurological impairment. Current therapy for AQP4-IgG seropositive NMOSD includes immunosuppression, B cell depletion, and plasma exchange. Newer therapies target complement, CD19 and IL-6 receptors.Areas covered: This review covers early-stage pre-clinical therapeutic approaches for seropositive NMOSD. Targets include pathogenic AQP4-IgG autoantibodies and their binding to AQP4, complement-dependent and cell-mediated cytotoxicity, blood-brain barrier, remyelination and immune effector and regulatory cells, with treatment modalities including small molecules, biologics, and cells.Expert opinion: Though newer NMOSD therapies appear to have increased efficacy in reducing relapse rate and neurological deficit, increasingly targeted therapies could benefit NMOSD patients with ongoing relapses and could potentially be superior in efficacy and safety. Of the various early-stage therapeutic approaches, IgG inactivating enzymes, aquaporumab blocking antibodies, drugs targeting early components of the classical complement system, complement regulator-targeted drugs, and Fc-based multimers are of interest. Curative strategies, perhaps involving AQP4 tolerization, remain intriguing future possibilities.
Collapse
Affiliation(s)
- Lukmanee Tradtrantip
- Departments of Medicine and Physiology, University of California, San Francisco, CA, USA
| | - Nithi Asavapanumas
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Alan S Verkman
- Departments of Medicine and Physiology, University of California, San Francisco, CA, USA
| |
Collapse
|
79
|
Tanaka S, Hashimoto B, Izaki S, Oji S, Fukaura H, Nomura K. Clinical and immunological differences between MOG associated disease and anti AQP4 antibody-positive neuromyelitis optica spectrum disorders: Blood-brain barrier breakdown and peripheral plasmablasts. Mult Scler Relat Disord 2020; 41:102005. [PMID: 32114369 DOI: 10.1016/j.msard.2020.102005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 02/07/2020] [Accepted: 02/08/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Patients with anti-aquaporin-4 (AQP4) water channel antibody-positive neuromyelitis optica spectrum disorders (AQP4-NMOSD) and myelin oligodendrocyte glycoprotein (MOG) associated disease (MOGAD) often present with similar clinical symptoms, and some cases are hard to differentiate at the time of onset. In this study, we compared the clinical characteristics, cerebrospinal fluid (CSF) analysis parameters, and peripheral T/B lymphocyte subsets during the active and chronic phases in AQP4-NMOSD and MOGAD. METHODS A total of 17 MOGAD cases and 24 AQP4-NMOSD cases were studied. The clinical characteristics in both groups were summarized, including disease duration, total number of attacks, lesions, prevention of relapse during remission, and CSF analysis results during the active phase. T/B lymphocyte subsets were further investigated in the active and chronic phases. RESULTS In the comparative study on clinical symptoms, a large proportion of optic neuritis was unilateral in MOGAD. In the comparative study on CSF analysis, protein level was significantly lower in MOGAD compared with AQP4-NMOSD (p = 0.006); myelin basic protein was significantly lower in MOGAD compared with AQP4-NMOSD (p = 0.04); albumin quotient was significantly lower in MOGAD compared with AQP4-NMOSD (p = 0.02); and IgG Quotient was significantly lower in MOGAD compared with AQP4-NMOSD (p = 0.05). In the analysis of T/B lymphocyte subsets, plasmablasts of the B cell subset in the active phase were significantly lower in MOGAD (2.1 ± 2.4) compared to AQP4-NMOSD (7.8 ± 7.2) (p < 0.05). In the chronic phase, transitional B cells were significantly higher in MOGAD (2.1 ± 1.8) compared to AQP4-NMOSD (0.6 ± 0.4) (p < 0.01). CONCLUSION Clinical characteristics of MOGAD were similar to those of AQP4-NMOSD, but increased blood brain barrier permeability was suggested to be less severe in MOGAD compared to AQP4-NMOSD from CSF analysis. Furthermore, the pathogenesis of the two diseases was clearly distinct as plasmablasts in the active phase were not elevated in MOGAD, but were increased in AQP4-NMOSD.
Collapse
Affiliation(s)
- Satoru Tanaka
- Department of Neurology, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan.
| | - Baku Hashimoto
- Department of Neurology, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan
| | - Shoko Izaki
- Department of Neurology, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan
| | - Satoru Oji
- Department of Neurology, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan
| | - Hikoaki Fukaura
- Department of Neurology, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan
| | - Kyoichi Nomura
- Department of Neurology, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan
| |
Collapse
|
80
|
Shi Z, Feng L, Lian Z, Liu J, Chen H, Du Q, Zhang Y, Zhang Q, Yang M, Zhou H. Decreased mRNA Expressions of CD40L in Patients with Neuromyelitis Optica Spectrum Disorder. J Mol Neurosci 2020; 70:610-617. [PMID: 31925706 DOI: 10.1007/s12031-019-01467-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 12/10/2019] [Indexed: 02/08/2023]
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune disease that preferentially affects central nerve system. Herein, we evaluated changes of CD40L and CD40 mRNA expressions in NMOSD and controls to explore their potential roles in development of NMOSD. The expressions of CD40L and CD40 mRNA in peripheral blood mononuclear cells (PBMCs) from patients with NMOSD and healthy controls were detected by quantitative real-time PCR (qPCR). Kruskal-Wallis tests were used to compare expression levels of CD40L and CD40 mRNA between groups, and Spearman correlation analysis was performed to evaluate correlation between mRNA expression levels and annual relapse rate (ARR) of NMOSD. A total of 71 patients with NMOSD and 42 gender- and age-matched healthy volunteers were recruited in our study. Compared with healthy controls, expression of CD40L mRNA was significantly decreased in untreated patients with NMOSD, and similar trends were observed also in CD40 mRNA expression although the difference was not significant. Other than that, immunosuppressants not only successfully increased CD40L and CD40 mRNA levels during remission of NMOSD, but also corrected the negative correlation between CD40L mRNA expression and annual relapse rate (ARR) of patients NMOSD. These results favored the long-term prognosis of NMOSD patients. Our results suggest that decreased expressions of CD40L mRNA may be involved in developing of NMOSD and the proper CD40L mRNA levels benefit to prevent attacks of NMOSD. Nevertheless, the relationship between protein and mRNA expressions of CD40L and their underlying roles in the pathogenesis of NMOSD remains to be further studied.
Collapse
Affiliation(s)
- Ziyan Shi
- Department of Neurology, West China Hospital, Sichuan University, No.28 Dianxin Nan Street, Chengdu, 610041, Sichuan, China
| | - Ling Feng
- Department of Neurology, West China Hospital, Sichuan University, No.28 Dianxin Nan Street, Chengdu, 610041, Sichuan, China
| | - Zhiyun Lian
- Department of Neurology, West China Hospital, Sichuan University, No.28 Dianxin Nan Street, Chengdu, 610041, Sichuan, China
| | - Ju Liu
- Department of Neurology, West China Hospital, Sichuan University, No.28 Dianxin Nan Street, Chengdu, 610041, Sichuan, China
| | - Hongxi Chen
- Department of Neurology, West China Hospital, Sichuan University, No.28 Dianxin Nan Street, Chengdu, 610041, Sichuan, China
| | - Qin Du
- Department of Neurology, West China Hospital, Sichuan University, No.28 Dianxin Nan Street, Chengdu, 610041, Sichuan, China
| | - Ying Zhang
- Department of Neurology, West China Hospital, Sichuan University, No.28 Dianxin Nan Street, Chengdu, 610041, Sichuan, China
| | - Qin Zhang
- Department of Neurology, West China Hospital, Sichuan University, No.28 Dianxin Nan Street, Chengdu, 610041, Sichuan, China
| | - Mu Yang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China. .,Translational Centre for Oncoimmunology, Sichuan Cancer Hospital and research Institute, Sichuan Cancer Center, No.55 South Renmin Road, Chengdu, 610000, China.
| | - Hongyu Zhou
- Department of Neurology, West China Hospital, Sichuan University, No.28 Dianxin Nan Street, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
81
|
Massive activity of cytotoxic cells during refractory Neuromyelitis Optica spectrum disorder. J Neuroimmunol 2020; 340:577148. [PMID: 31986375 DOI: 10.1016/j.jneuroim.2020.577148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/02/2020] [Accepted: 01/09/2020] [Indexed: 01/15/2023]
Abstract
Our group is interested in the cytotoxic mechanism during autoimmune neuroinflammation. Unexpectedly, we come across a case that presents a massive enhancement of cytotoxic behavior in lymphocytes, either in peripheral blood and cerebrospinal fluid. Interestingly, this specific patient was refractory to Methylprednisolone treatment. Hypothetically, the cytotoxic activity could represent a novel and complementary effector mechanism to NMOSD pathogenesis. Nevertheless, further investigation is needed to evaluate the extension and the clinical relevance of our finds.
Collapse
|
82
|
Ramakrishnan P, Nagarajan D. Neuromyelitis optica spectrum disorder: an overview. Acta Neurobiol Exp (Wars) 2020. [DOI: 10.21307/ane-2020-023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
83
|
Wu K, Wen L, Duan R, Li Y, Yao Y, Jing L, Jia Y, Teng J, He Q. Triglyceride Level Is an Independent Risk Factor in First-Attacked Neuromyelitis Optica Spectrum Disorders Patients. Front Neurol 2019; 10:1230. [PMID: 31824407 PMCID: PMC6881454 DOI: 10.3389/fneur.2019.01230] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 11/05/2019] [Indexed: 12/17/2022] Open
Abstract
Objective: To investigate prospective associations between triglyceride (TG) level and prognosis of first-attacked patients with neuromyelitis optica spectrum disorders (NMOSD). Methods: This retrospective study included 196 patients newly diagnosed with NMOSD from June 2014 to December 2018. Data of clinical parameters, including age of onset, sex, BMI, blood lipid levels, anti-aquaporin-4 status, serum glucose level, therapy regimens, comorbidities, initial Expanded Disability Status Scale (EDSS), relapses, and outcomes were collected. We used logistic regression models to examine the associations among relevant clinical factors and outcomes, and statistical analyses were performed using the SPSS 23.0 software. Results: Compared with the high TG group, residual EDSS was relatively lower in the normal TG group (median 1.0 vs. 2.0, P = 0.002). In the univariate analysis, TG level was positively correlated with outcomes (OR 1.75, 95% CI 1.18-2.60, P = 0.005) and relapses (OR 1.57, 95% CI 1.07-2.31, P = 0.02). Our stratified analysis suggested that patients with normal BMI (OR 4.90, 95% CI 2.10-11.44, P = 0.001) were closely correlated with poor recovery owing to increased TG level. In the multivariate analysis, a statistically significant association still existed between TG level and outcomes (OR 3.44, 95% CI 1.02-11.64; P = 0.040) after adjusting for various variables. Conclusions: In first-attacked NMOSD patients, TG level was positively associated with poor recovery. Early monitoring and treatment of elevated TG level in NMOSD patients are important.
Collapse
Affiliation(s)
- Kaimin Wu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - LuLu Wen
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ranran Duan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanfei Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yaobing Yao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lijun Jing
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanjie Jia
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junfang Teng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qianyi He
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
84
|
Meffre E, O'Connor KC. Impaired B‐cell tolerance checkpoints promote the development of autoimmune diseases and pathogenic autoantibodies. Immunol Rev 2019; 292:90-101. [DOI: 10.1111/imr.12821] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 10/25/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Eric Meffre
- Department of Immunobiology Yale University School of Medicine New Haven CT USA
- Section of Rheumatology, Allergy, and Clinical Immunology Yale University School of Medicine New Haven CT USA
| | - Kevin C. O'Connor
- Department of Immunobiology Yale University School of Medicine New Haven CT USA
- Department of Neurology Yale University School of Medicine New Haven CT USA
| |
Collapse
|
85
|
Cree BAC, Bennett JL, Kim HJ, Weinshenker BG, Pittock SJ, Wingerchuk DM, Fujihara K, Paul F, Cutter GR, Marignier R, Green AJ, Aktas O, Hartung HP, Lublin FD, Drappa J, Barron G, Madani S, Ratchford JN, She D, Cimbora D, Katz E. Inebilizumab for the treatment of neuromyelitis optica spectrum disorder (N-MOmentum): a double-blind, randomised placebo-controlled phase 2/3 trial. Lancet 2019; 394:1352-1363. [PMID: 31495497 DOI: 10.1016/s0140-6736(19)31817-3] [Citation(s) in RCA: 422] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/01/2019] [Accepted: 07/05/2019] [Indexed: 11/27/2022]
Abstract
BACKGROUND No approved therapies exist for neuromyelitis optica spectrum disorder (NMOSD), a rare, relapsing, autoimmune, inflammatory disease of the CNS that causes blindness and paralysis. We aimed to assess the efficacy and safety of inebilizumab, an anti-CD19, B cell-depleting antibody, in reducing the risk of attacks and disability in NMOSD. METHODS We did a multicentre, double-blind, randomised placebo-controlled phase 2/3 study at 99 outpatient specialty clinics or hospitals in 25 countries. Eligible participants were adults (≥18 years old) with a diagnosis of NMOSD, an Expanded Disability Status Scale score of 8·0 or less, and a history of at least one attack requiring rescue therapy in the year before screening or at least two attacks requiring rescue therapy in the 2 years before screening. Participants were randomly allocated (3:1) to 300 mg intravenous inebilizumab or placebo with a central interactive voice response system or interactive web response system and permuted block randomisation. Inebilizumab or placebo was administered on days 1 and 15. Participants, investigators, and all clinical staff were masked to the treatments, and inebilizumab and placebo were indistinguishable in appearance. The primary endpoint was time to onset of an NMOSD attack, as determined by the adjudication committee. Efficacy endpoints were assessed in all randomly allocated patients who received at least one dose of study intervention, and safety endpoints were assessed in the as-treated population. The study is registered with ClinicalTrials.gov, number NCT02200770. FINDINGS Between Jan 6, 2015, and Sept 24, 2018, 230 participants were randomly assigned to treatment and dosed, with 174 participants receiving inebilizumab and 56 receiving placebo. The randomised controlled period was stopped before complete enrolment, as recommended by the independent data-monitoring committee, because of a clear demonstration of efficacy. 21 (12%) of 174 participants receiving inebilizumab had an attack versus 22 (39%) of 56 participants receiving placebo (hazard ratio 0·272 [95% CI 0·150-0·496]; p<0·0001). Adverse events occurred in 125 (72%) of 174 participants receiving inebilizumab and 41 (73%) of 56 participants receiving placebo. Serious adverse events occurred in eight (5%) of 174 participants receiving inebilizumab and five (9%) of 56 participants receiving placebo. INTERPRETATION Compared with placebo, inebilizumab reduced the risk of an NMOSD attack. Inebilizumab has potential application as an evidence-based treatment for patients with NMOSD. FUNDING MedImmune and Viela Bio.
Collapse
Affiliation(s)
- Bruce A C Cree
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, USA.
| | - Jeffrey L Bennett
- School of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
| | - Ho Jin Kim
- Research Institute and Hospital of National Cancer Center, Seoul, South Korea
| | | | | | | | - Kazuo Fujihara
- Department of Multiple Sclerosis Therapeutics, Fukushima Medical University, Fukushima, Japan; Multiple Sclerosis and Neuromyelitis Optica Center, Southern Tohoku Research Institute for Neuroscience, Koriyama, Japan
| | - Friedemann Paul
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine, Berlin, Germany; Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Gary R Cutter
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Romain Marignier
- Service de Neurologie, Sclérose en Plaques, Pathologies de la Myéline et Neuro-inflammation, Lyon University Hospital, Lyon, France
| | - Ari J Green
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, USA; Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA
| | - Orhan Aktas
- Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | | | - Fred D Lublin
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Li X, Wang L, Zhou L, ZhangBao J, Miao MZ, Lu C, Lu J, Quan C. The imbalance between regulatory and memory B cells accompanied by an increased number of circulating T-follicular helper cells in MOG-antibody-associated demyelination. Mult Scler Relat Disord 2019; 36:101397. [PMID: 31546225 DOI: 10.1016/j.msard.2019.101397] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/25/2019] [Accepted: 09/15/2019] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To explore the alteration of T and B lymphocyte subsets proportions in myelin oligodendrocyte glycoprotein (MOG)-antibody-associated demyelination. METHODS 19 MOG-antibody-positive, 25 AQP4-antibody-positive and 25 double-negative NMOSD patients in the acute phase of the diseases were included in the study, as well as 29 healthy controls. The frequencies of different lymphocyte subsets, including CD19+CD27+ memory B cells, CD19+CD24hiCD38hi, and CD19+CD5+CD1dhi regulatory B cells, IFN-γexpressing B cells, IL-10 expressing B cells and CD4+CXCR5+ICOS+T-follicular helper cells (TFH) were measured via flow cytometry and compared among the four groups. RESULTS The frequencies of CD19+CD24hiCD38hi, CD19+CD5+CD1dhi regulatory B cells as well as the IL-10 expressing B cells were significantly lower in the MOG-antibody-associated demyelination compared to the healthy controls, whereas the frequencies of CD19+CD27+ memory B cells were significantly higher in the MOG-antibody-positive group. The frequencies of TFH were significantly higher in the MOG-antibody-positive group as compared to the healthy controls. No significant difference was detected in the above mentioned lymphocytic profile between the MOG-antibody-positive and the AQP4-antibody-positive groups. CONCLUSIONS The immuno-regulatory functions of B cells were significantly impaired whereas TFH cells were markedly increased in the acute phase of MOG-antibody-associated demyelination. Despite having distinct clinical features, MOG-antibody-associated demyelination shared a similar lymphocytic profile with AQP4-antibody-positive NMOSD in the acute relapse phase.
Collapse
Affiliation(s)
- Xiaoyang Li
- Department of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, 12 Wulumuqi Zhong Road, Shanghai 200040, China; Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Liang Wang
- Department of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, 12 Wulumuqi Zhong Road, Shanghai 200040, China
| | - Lei Zhou
- Department of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, 12 Wulumuqi Zhong Road, Shanghai 200040, China
| | - Jingzi ZhangBao
- Department of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, 12 Wulumuqi Zhong Road, Shanghai 200040, China
| | - Michael Z Miao
- Department of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, United States; Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Chuanzhen Lu
- Department of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, 12 Wulumuqi Zhong Road, Shanghai 200040, China
| | - Jiahong Lu
- Department of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, 12 Wulumuqi Zhong Road, Shanghai 200040, China
| | - Chao Quan
- Department of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, 12 Wulumuqi Zhong Road, Shanghai 200040, China.
| |
Collapse
|
87
|
Tea F, Lopez JA, Ramanathan S, Merheb V, Lee FXZ, Zou A, Pilli D, Patrick E, van der Walt A, Monif M, Tantsis EM, Yiu EM, Vucic S, Henderson APD, Fok A, Fraser CL, Lechner-Scott J, Reddel SW, Broadley S, Barnett MH, Brown DA, Lunemann JD, Dale RC, Brilot F. Characterization of the human myelin oligodendrocyte glycoprotein antibody response in demyelination. Acta Neuropathol Commun 2019; 7:145. [PMID: 31481127 PMCID: PMC6724269 DOI: 10.1186/s40478-019-0786-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/09/2019] [Indexed: 12/14/2022] Open
Abstract
Over recent years, human autoantibodies targeting myelin oligodendrocyte glycoprotein (MOG Ab) have been associated with monophasic and relapsing central nervous system demyelination involving the optic nerves, spinal cord, and brain. While the clinical relevance of MOG Ab detection is becoming increasingly clear as therapeutic and prognostic differences from multiple sclerosis are acknowledged, an in-depth characterization of human MOG Ab is required to answer key challenges in patient diagnosis, treatment, and prognosis. Herein, we investigated the epitope, binding sensitivity, and affinity of MOG Ab in a cohort of 139 and 148 MOG antibody-seropositive children and adults (n = 287 patients at baseline, 130 longitudinal samples, and 22 cerebrospinal fluid samples). MOG extracellular domain was also immobilized to determine the affinity of MOG Ab. MOG Ab response was of immunoglobulin G1 isotype, and was of peripheral rather than intrathecal origin. High affinity MOG Ab were detected in 15% paediatric and 18% adult sera. More than 75% of paediatric and adult MOG Ab targeted a dominant extracellular antigenic region around Proline42. MOG Ab titers fluctuated over the progression of disease, but affinity and reactivity to Proline42 remained stable. Adults with a relapsing course intrinsically presented with a reduced immunoreactivity to Proline42 and had a more diverse MOG Ab response, a feature that may be harnessed for predicting relapse. Higher titers of MOG Ab were observed in more severe phenotypes and during active disease, supporting the pathogenic role of MOG Ab. Loss of MOG Ab seropositivity was observed upon conformational changes to MOG, and this greatly impacted the sensitivity of the detection of relapsing disorders, largely considered as more severe. Careful consideration of the binding characteristics of autoantigens should be taken into account when detecting disease-relevant autoantibodies.
Collapse
|
88
|
Liang H, Gao W, Liu X, Liu J, Mao X, Yang M, Long X, Zhou Y, Zhang Q, Zhu J, Wang S, Jin T. The GTF2I rs117026326 polymorphism is associated with neuromyelitis optica spectrum disorder but not with multiple sclerosis in a Northern Han Chinese population. J Neuroimmunol 2019; 337:577045. [PMID: 31520790 DOI: 10.1016/j.jneuroim.2019.577045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 01/18/2023]
Abstract
Multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD) are common demyelinating disorders of the central nervous system. The etiology and pathogenesis of MS and NMOSD remain unclear. The pathogenesis of these two diseases involves a genetic predisposition as well as environmental factors. NMOSD sometimes co-exists with Sjögren's syndrome, systemic lupus erythematosus (SLE), and rheumatoid arthritis (RA), and these diseases are frequently associated with central nervous system disorder involvement, as manifest in MS- and NMOSD-like clinical features. Genetic variant rs117026326 upstream of the general transcription factor II-I (GTF2I) has been associated with primary Sjögren's syndrome, SLE and RA in East Asian populations. In this study, we genotyped single nucleotide rs117026326 polymorphisms of the GTF2I gene in 168 patients with MS, 144 patients with NMOSD, and 1403 healthy controls. We observed a significant genetic association between the variant rs117026326 and NMOSD (P = 1.09 × 10-11, OR = 2.535), however, the association with MS was not significant (P = .4289, OR = 1.129). Gene expression analyses showed that there was no significant association between the messenger RNA expression of GTF2I and genotypes at the variant. We conclude that the risk T allele of rs117026326 increases the risk of NMOSD, suggesting that NMOSD and MS may have different genetic risk factors.
Collapse
Affiliation(s)
- Hudong Liang
- Department of Neurology, The First Hospital of Jilin University, China
| | - Wenjing Gao
- The Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, China
| | - Xianjun Liu
- The Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, China
| | - Jingyao Liu
- Department of Neurology, The First Hospital of Jilin University, China
| | - Xijing Mao
- Department of Neurology, The Second Hospital of Jilin University, China
| | - Mengge Yang
- Department of Neurology, The First Hospital of Jilin University, China
| | - Xixi Long
- Department of Neurology, The First Hospital of Jilin University, China
| | - Yang Zhou
- Department of Neurology, The First Hospital of Jilin University, China
| | - Qingxiang Zhang
- Department of Neurology, The First Hospital of Jilin University, China
| | - Jie Zhu
- Department of Neurology, The First Hospital of Jilin University, China; Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
| | - Shaofeng Wang
- The Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, China.
| | - Tao Jin
- Department of Neurology, The First Hospital of Jilin University, China.
| |
Collapse
|
89
|
Effectiveness and tolerability of immunosuppressants and monoclonal antibodies in preventive treatment of neuromyelitis optica spectrum disorders: A systematic review and network meta-analysis. Mult Scler Relat Disord 2019; 35:246-252. [PMID: 31425902 DOI: 10.1016/j.msard.2019.08.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/04/2019] [Accepted: 08/08/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Several immunosuppressants or monoclonal antibodies have been used as preventive treatment for neuromyelitis optica spectrum disorders (NMOSD); however, the optimal therapies have not been clarified. In this study, we aimed to compare and rank the effectiveness and tolerability of all preventive therapies for NMOSD. METHODS Qualified studies were identified in a search of MEDLINE, Embase, Cochrane Central Register of Controlled Trials (CENTRAL), and ClinicalTrials.gov databases. We combined direct and indirect evidence via meta-analyses. The annualized relapse rate (ARR) was defined as the primary outcome. Secondary outcomes included the Expanded Disability Status Scale (EDSS) score and hazard ratios (HR) for the counts of adverse events (AEs). RESULTS We identified one randomized controlled trial (RCT) and five observational studies including a total 631 patients with NMOSD. Among these, the follow-up time ranged from 12 to 40 months. For the primary outcome, rituximab (RTX) was hierarchically superior, with the significant standardized mean difference versus azathioprine (-0.86; 95% confidence interval: -1.60, -0.11). Mycophenolate mofetil (MMF) was ranked the most tolerable therapy, whereas cyclophosphamide was the least tolerable. CONCLUSION RTX and MMF may be recommended as optimal treatments to prevent relapse in NMOSD. Low-dose cyclosporine A could be a promising alternative therapy.
Collapse
|
90
|
Wilson R, Makuch M, Kienzler AK, Varley J, Taylor J, Woodhall M, Palace J, Leite MI, Waters P, Irani SR. Condition-dependent generation of aquaporin-4 antibodies from circulating B cells in neuromyelitis optica. Brain 2019; 141:1063-1074. [PMID: 29447335 PMCID: PMC5889028 DOI: 10.1093/brain/awy010] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 12/01/2017] [Indexed: 01/04/2023] Open
Abstract
Autoantibodies to aquaporin-4 (AQP4) are pathogenic in neuromyelitis optica spectrum disorder (NMOSD). However, it is not known which B cells are the major contributors to circulating AQP4 antibodies nor which conditions promote their generation. Our experiments showed CD19+CD27++CD38++ circulating ex vivo antibody-secreting cells did not produce AQP4 antibodies under several culture conditions. To question whether other cells in circulation were capable of AQP4 antibody production, B cells were differentiated into antibody-secreting cells in vitro. Unfractionated peripheral blood mononuclear cells, isolated from 12 patients with NMOSD and a wide range of serum AQP4 antibody levels (91-26 610 units), were cultured with factors that mimicked established associations of NMOSD including T cell help, concurrent infections and cytokines reported to be elevated in NMOSD. Overall, the in vitro generation of CD19+CD27++CD38++ cells across several culture conditions correlated closely with the total IgG secreted (P < 0.0001, r = 0.71), but not the amount of AQP4 antibody. AQP4 antibody production was enhanced by CD40-ligand (P = 0.005), and by interleukin-2 plus toll-like receptor stimulation versus interleukin-21-predominant conditions (P < 0.0001), and did not require antigen. Across NMOSD patients, this in vitro generation of AQP4 antibodies correlated well with serum AQP4 antibody levels (P = 0.0023, r = 0.81). To understand how early within B cell lineages this AQP4 specificity was generated, purified B cell subsets were activated under these optimized conditions. Naïve pre-germinal centre B cells (CD19+CD27-IgD+) differentiated to secrete AQP4 antibodies as frequently as post-germinal centre cells (CD19+CD27+). Taken together, these human cell-culture experiments demonstrate that preformed B cells, rather than ex vivo circulating antibody-secreting cells, possess AQP4 reactivity. Their differentiation and AQP4 antibody secretion is preferentially driven by select cytokines and these cells may make the dominant contribution to serum AQP4 antibodies. Furthermore, as AQP4-specific B cells can derive from likely autoreactive naïve populations an early, pre-germinal centre loss of immunological tolerance appears present in some patients with NMOSD. This study has implications for understanding mechanisms of disease perpetuation and for rational choice of immunotherapies in NMOSD. Furthermore, the in vitro model presents an opportunity to apply condition-specific approaches to patients with NMOSD and may be a paradigm to study other antibody-mediated diseases.awy010media15732448284001.
Collapse
Affiliation(s)
- Robert Wilson
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Mateusz Makuch
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Anne-Kathrin Kienzler
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - James Varley
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Jennifer Taylor
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Mark Woodhall
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Jacqueline Palace
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Oxford University Hospitals, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - M Isabel Leite
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Oxford University Hospitals, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Patrick Waters
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Oxford University Hospitals, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Sarosh R Irani
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Oxford University Hospitals, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| |
Collapse
|
91
|
Oertel FC, Schließeit J, Brandt AU, Paul F. Cognitive Impairment in Neuromyelitis Optica Spectrum Disorders: A Review of Clinical and Neuroradiological Features. Front Neurol 2019; 10:608. [PMID: 31258505 PMCID: PMC6587817 DOI: 10.3389/fneur.2019.00608] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/22/2019] [Indexed: 12/21/2022] Open
Abstract
Neuromyelitis optica spectrum disorders (NMOSD) are mostly relapsing autoimmune inflammatory disorders of the central nervous system (CNS) with optic neuritis, myelitis, and brainstem syndromes as clinical hallmarks. With a reported prevalence of up to 70%, cognitive impairment is frequent, but often unrecognized and an insufficiently treated burden of the disease. The most common cognitive dysfunctions are decline in attention and memory performance. Magnetic resonance imaging can be used to access structural correlates of neuropsychological disorders. Cognitive impairment is not only a highly underestimated symptom in patients with NMOSD, but potentially also a clinical correlate of attack-independent changes in NMOSD, which are currently under debate. This article reviews cognitive impairment in NMOSD and discusses associations between structural changes of the CNS and cognitive deficits.
Collapse
Affiliation(s)
- Frederike Cosima Oertel
- NeuroCure Clinical Research Center, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Experimental and Clinical Research Center, Max-Delbrück-Centrum für Molekulare Medizin and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jana Schließeit
- NeuroCure Clinical Research Center, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Experimental and Clinical Research Center, Max-Delbrück-Centrum für Molekulare Medizin and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Alexander U Brandt
- NeuroCure Clinical Research Center, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Experimental and Clinical Research Center, Max-Delbrück-Centrum für Molekulare Medizin and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurology, University of California, Irvine, Irvine, CA, United States
| | - Friedemann Paul
- NeuroCure Clinical Research Center, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Experimental and Clinical Research Center, Max-Delbrück-Centrum für Molekulare Medizin and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurology, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
92
|
Mealy MA, Levy M. A pilot safety study of ublituximab, a monoclonal antibody against CD20, in acute relapses of neuromyelitis optica spectrum disorder. Medicine (Baltimore) 2019; 98:e15944. [PMID: 31232925 PMCID: PMC6636936 DOI: 10.1097/md.0000000000015944] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE To test the safety of ublituximab, a B cell depleting agent, as add-on therapy in the acute treatment of relapses of neuromyelitis optica spectrum disorder. METHODS We conducted an open-label phase 1b safety and proof-of-concept trial in 5 subjects with aquaporin-4 (AQP4)-immunoglobulin G (IgG) seropositive neuromyelitis optica spectrum disorder (NMOSD) who presented with acute transverse myelitis and/or optic neuritis. In addition to treating with 1 g of daily intravenous methylprednisolone, we infused a single dose of 450 mg of ublituximab within 5 days of relapse onset. The primary outcome measure was safety, and the secondary efficacy measures included change in Expanded Disability Status Scale (EDSS), durability of remission and B cell counts. RESULTS Five NMOSD subjects were enrolled, 4 of whom presented with acute transverse myelitis and 1 with acute optic neuritis. Ublituximab proved to be safe in all 5 NMOSD subjects, with no serious adverse events recorded. There were no opportunistic infections in any of the subjects; however, 1 subject experienced a transient leukopenia. EDSS scores dropped from a median of 6.5 on admission to 4.0 on 90-day follow up. Two subjects did not achieve total B cell depletion and relapsed within 3 months. CONCLUSIONS Ublituximab is a safe add-on therapy for NMOSD patients presenting with acute transverse myelitis and optic neuritis. Preliminary evidence suggests a promising benefit on durability of remission when B cell depletion is achieved. A placebo-controlled trial is necessary to confirm these findings. CLASSIFICATION OF EVIDENCE This study provides Class IV evidence that for patients with NMOSD with acute transverse myelitis or optic neuritis, ublituximab is safe and may improve neurological outcome.
Collapse
Affiliation(s)
- Maureen A Mealy
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland
| | - Michael Levy
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
93
|
Oertel FC, Zimmermann H, Brandt AU, Paul F. [Optical coherence tomography in neuromyelitis optica spectrum disorders]. DER NERVENARZT 2019; 88:1411-1420. [PMID: 29119196 DOI: 10.1007/s00115-017-0444-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neuromyelitis optica spectrum disorders (NMOSD) are mostly relapsing inflammatory conditions of the central nervous system (CNS). In 55% of the cases of NMOSD optic neuritis (ON) is the most frequent first manifestation and can cause severe damage to the afferent visual system and the retina with resultant severe visual impairment. In recent years, investigations of the retina as part of the CNS by optical coherence tomography (OCT) has been shown to be a valid and efficient method for diagnostics and evaluation of the disease course in NMOSD. In addition, OCT not only shows severe damage of the afferent visual system due to multiple bouts of ON but also reveals NMOSD-specific intraretinal pathologies. The latter could be just as important for future differential diagnostics as for the evaluation of potential therapeutic targets. This article briefly reviews the principles of the OCT technique and describes its relevance for the diagnostics and assessment of disease course in NMOSD.
Collapse
Affiliation(s)
- F C Oertel
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member der Freien Universität Berlin, Humboldt-Universität zu Berlin und Berlin Institute of Health, Berlin, Deutschland
| | - H Zimmermann
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member der Freien Universität Berlin, Humboldt-Universität zu Berlin und Berlin Institute of Health, Berlin, Deutschland
| | - A U Brandt
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member der Freien Universität Berlin, Humboldt-Universität zu Berlin und Berlin Institute of Health, Berlin, Deutschland
| | - F Paul
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member der Freien Universität Berlin, Humboldt-Universität zu Berlin und Berlin Institute of Health, Berlin, Deutschland. .,Klinik für Neurologie, Charité - Universitätsmedizin Berlin, Berlin, Deutschland. .,Experimental and Clinical Research Center, Max-Delbrück-Centrum für Molekulare Medizin, Charité - Universitätsmedizin Berlin, Berlin, Deutschland.
| |
Collapse
|
94
|
Leon MA, Wemlinger SM, Larson NR, Ruffalo JK, Sestak JO, Middaugh CR, Cambier JC, Berkland C. Soluble Antigen Arrays for Selective Desensitization of Insulin-Reactive B Cells. Mol Pharm 2019; 16:1563-1572. [PMID: 30681867 DOI: 10.1021/acs.molpharmaceut.8b01250] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Autoimmune diseases are believed to be highly dependent on loss of immune tolerance to self-antigens. Currently, no treatments have been successful clinically in inducing autoantigen-specific tolerance, including efforts to utilize antigen-specific immunotherapy (ASIT) to selectively correct the aberrant autoimmunity. Soluble antigen arrays (SAgAs) represent a novel autoantigen delivery system composed of a linear polymer, hyaluronic acid (HA), displaying multiple copies of conjugated autoantigen. We have previously reported that soluble antigen arrays displaying proteolipid peptide (SAgAPLP) induced tolerance to this specific multiple sclerosis (MS) autoantigen. Utilizing SAgA technology, we have developed a new ASIT as a possible type 1 diabetes (T1D) therapeutic by conjugating human insulin to HA, known as soluble antigen array insulin (SAgAIns). Three types were synthesized, low valency lvSAgAIns (2 insulins per HA), medium valency mvSAgAIns (4 insulins per HA), and, high valency hvSAgAIns (9 insulins per HA), to determine if valency differentially modulates the ex vivo activity of insulin-binding B cells (IBCs). Extensive biophysical characterization was performed for the SAgA molecules. SAgAIns molecules were successfully used to affect the biologic activity of IBCs by inducing desensitization of the B cell antigen receptors (BCR). SAgAIns bound specifically to insulin-reactive B cells without blocking epitopes recognized by antibodies against the Fc regions of membrane immunoglobulin or CD79 transducer components of the BCR. Preincubation of IBCs (125Tg) with SAgAIns, but not HA alone, rendered the IBCs refractory to restimulation. SAgAIns induced a decrease in BCR expression and IP3R-mediated intracellular calcium release. Surprisingly, SAgAIns binding to BCR on the surface of IBCs induced the observed effects at both high and low SAgAIns valency. Future studies aim to test the effects of SAgAIns on disease progression in the VH125.NOD mouse model of T1D.
Collapse
Affiliation(s)
- Martin A Leon
- Department of Chemistry , University of Kansas , 1251 Wescoe Hall Drive , Lawrence , Kansas 66045 , United States
| | - Scott M Wemlinger
- Department Immunology & Microbiology , University of Colorado Denver AMC , 12800 E. 19th Ave. , Aurora , Colorado 80045 , United States
| | - Nicholas R Larson
- Department of Pharmaceutical Chemistry , University of Kansas , 2095 Constant Avenue , Lawrence , Kansas 66047 , United States
| | - Justin K Ruffalo
- Department of Chemical and Petroleum Engineering , University of Kansas , 1530 West 15th Street , Lawrence , Kansas 66045 , United States
| | - Joshua O Sestak
- Orion BioScience , 986099 Nebraska Medical Center , Omaha , Nebraska 68198 , United States
| | - C Russell Middaugh
- Department of Pharmaceutical Chemistry , University of Kansas , 2095 Constant Avenue , Lawrence , Kansas 66047 , United States
| | - John C Cambier
- Department Immunology & Microbiology , University of Colorado Denver AMC , 12800 E. 19th Ave. , Aurora , Colorado 80045 , United States
| | - Cory Berkland
- Department of Chemistry , University of Kansas , 1251 Wescoe Hall Drive , Lawrence , Kansas 66045 , United States.,Department of Pharmaceutical Chemistry , University of Kansas , 2095 Constant Avenue , Lawrence , Kansas 66047 , United States.,Department of Chemical and Petroleum Engineering , University of Kansas , 1530 West 15th Street , Lawrence , Kansas 66045 , United States
| |
Collapse
|
95
|
Kim SH, Hyun JW, Kim HJ. Individualized B cell-targeting therapy for neuromyelitis optica spectrum disorder. Neurochem Int 2018; 130:104347. [PMID: 30513364 DOI: 10.1016/j.neuint.2018.11.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/12/2018] [Accepted: 11/30/2018] [Indexed: 12/23/2022]
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune inflammatory disease of the central nervous system characterized by severe attacks of optic neuritis (ON), longitudinally extensive transverse myelitis (LETM), and area postrema syndrome. The majority of patients with NMOSD are seropositive for autoantibodies against the astrocyte water channel aquaporin-4 (AQP4). As convergent clinical and laboratory-based investigations have indicated that B cells play a fundamental role in NMO immunopathology, B cells have become an attractive therapeutic target. Rituximab is a therapeutic monoclonal antibody against CD20 expressed on B cells and increasingly used for the treatment of NMOSD. Although there is robust evidence for the efficacy and safety of rituximab in NMOSD, considerable variability has been noted in biological and clinical responses in patients. Therefore, the focus now is on understanding the mechanisms underlying the variability in response to rituximab and optimizing the use of rituximab for NMOSD. Identification of biomarkers for prediction of clinical response, and effective dosing and timing of treatment may provide useful tools for patient-tailored treatment in NMOSD. Herein, we review current evidence on factors that affect biological and clinical responses to rituximab and highlight the importance of individualized therapies for NMOSD.
Collapse
Affiliation(s)
- Su-Hyun Kim
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Republic of Korea
| | - Jae-Won Hyun
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Republic of Korea
| | - Ho Jin Kim
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Republic of Korea.
| |
Collapse
|
96
|
Knier B, Hiltensperger M, Sie C, Aly L, Lepennetier G, Engleitner T, Garg G, Muschaweckh A, Mitsdörffer M, Koedel U, Höchst B, Knolle P, Gunzer M, Hemmer B, Rad R, Merkler D, Korn T. Myeloid-derived suppressor cells control B cell accumulation in the central nervous system during autoimmunity. Nat Immunol 2018; 19:1341-1351. [PMID: 30374128 PMCID: PMC6241855 DOI: 10.1038/s41590-018-0237-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 09/13/2018] [Indexed: 01/25/2023]
Abstract
Polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) have been characterized in the context of malignancies. Here we show that PMN-MDSCs can restrain B cell accumulation during central nervous system (CNS) autoimmunity. Ly6G+ cells were recruited to the CNS during experimental autoimmune encephalomyelitis (EAE), interacted with B cells that produced the cytokines GM-CSF and interleukin-6 (IL-6), and acquired properties of PMN-MDSCs in the CNS in a manner dependent on the signal transducer STAT3. Depletion of Ly6G+ cells or dysfunction of Ly6G+ cells through conditional ablation of STAT3 led to the selective accumulation of GM-CSF-producing B cells in the CNS compartment, which in turn promoted an activated microglial phenotype and lack of recovery from EAE. The frequency of CD138+ B cells in the cerebrospinal fluid (CSF) of human subjects with multiple sclerosis was negatively correlated with the frequency of PMN-MDSCs in the CSF. Thus PMN-MDSCs might selectively control the accumulation and cytokine secretion of B cells in the inflamed CNS.
Collapse
Affiliation(s)
- Benjamin Knier
- Department of Experimental Neuroimmunology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Michael Hiltensperger
- Department of Experimental Neuroimmunology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Christopher Sie
- Department of Experimental Neuroimmunology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Lilian Aly
- Department of Experimental Neuroimmunology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Gildas Lepennetier
- Department of Experimental Neuroimmunology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Thomas Engleitner
- Institute of Molecular Oncology and Functional Genomics, TranslaTUM Cancer Center, Technical University of Munich, Munich, Germany.,Department of Medicine II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Garima Garg
- Department of Experimental Neuroimmunology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Andreas Muschaweckh
- Department of Experimental Neuroimmunology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Meike Mitsdörffer
- Department of Experimental Neuroimmunology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Uwe Koedel
- Department of Neurology, Klinikum Grosshadern, Ludwig Maximilians University Munich, Munich, Germany
| | - Bastian Höchst
- Institute of Molecular Immunology and Experimental Oncology, Technical University of Munich, Munich, Germany
| | - Percy Knolle
- Institute of Molecular Immunology and Experimental Oncology, Technical University of Munich, Munich, Germany
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Bernhard Hemmer
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, TranslaTUM Cancer Center, Technical University of Munich, Munich, Germany.,Department of Medicine II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Doron Merkler
- Department of Pathology and Immunology, Division of Clinical Pathology, University of Geneva, Geneva, Switzerland
| | - Thomas Korn
- Department of Experimental Neuroimmunology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany. .,Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany. .,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
97
|
Borisow N, Mori M, Kuwabara S, Scheel M, Paul F. Diagnosis and Treatment of NMO Spectrum Disorder and MOG-Encephalomyelitis. Front Neurol 2018; 9:888. [PMID: 30405519 PMCID: PMC6206299 DOI: 10.3389/fneur.2018.00888] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/01/2018] [Indexed: 12/21/2022] Open
Abstract
Neuromyelitis optica spectrum disorders (NMOSD) are autoantibody mediated chronic inflammatory diseases. Serum antibodies (Abs) against the aquaporin-4 water channel lead to recurrent attacks of optic neuritis, myelitis and/or brainstem syndromes. In some patients with symptoms of NMOSD, no AQP4-Abs but Abs against myelin-oligodendrocyte-glycoprotein (MOG) are detectable. These clinical syndromes are now frequently referred to as "MOG-encephalomyelitis" (MOG-EM). Here we give an overview on current recommendations concerning diagnosis of NMOSD and MOG-EM. These include antibody and further laboratory testing, MR imaging and optical coherence tomography. We discuss therapeutic options of acute attacks as well as longterm immunosuppressive treatment, including azathioprine, rituximab, and immunoglobulins.
Collapse
Affiliation(s)
- Nadja Borisow
- NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Masahiro Mori
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Michael Scheel
- NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Neuroradiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Friedemann Paul
- NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité – Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
98
|
Negron A, Robinson RR, Stüve O, Forsthuber TG. The role of B cells in multiple sclerosis: Current and future therapies. Cell Immunol 2018; 339:10-23. [PMID: 31130183 DOI: 10.1016/j.cellimm.2018.10.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 02/07/2023]
Abstract
While it was long held that T cells were the primary mediators of multiple sclerosis (MS) pathogenesis, the beneficial effects observed in response to treatment with Rituximab (RTX), a monoclonal antibody (mAb) targeting CD20, shed light on a key contributor to MS that had been previously underappreciated: B cells. This has been reaffirmed by results from clinical trials testing the efficacy of subsequently developed B cell-depleting mAbs targeting CD20 as well as studies revisiting the effects of previous disease-modifying therapies (DMTs) on B cell subsets thought to modulate disease severity. In this review, we summarize current knowledge regarding the complex roles of B cells in MS pathogenesis and current and potential future B cell-directed therapies.
Collapse
Affiliation(s)
- Austin Negron
- Department of Biology, University of Texas at San Antonio, TX 78249, USA
| | - Rachel R Robinson
- Department of Biology, University of Texas at San Antonio, TX 78249, USA
| | - Olaf Stüve
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA; Neurology Section, VA North Texas Health Care System, Medical Service, Dallas, TX, USA
| | | |
Collapse
|
99
|
Borisow N, Hellwig K, Paul F. Neuromyelitis optica spectrum disorders and pregnancy: relapse-preventive measures and personalized treatment strategies. EPMA J 2018; 9:249-256. [PMID: 30174761 PMCID: PMC6107451 DOI: 10.1007/s13167-018-0143-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/11/2018] [Indexed: 12/19/2022]
Abstract
Neuromyelitis optica spectrum disorders (NMOSD) are autoimmune inflammatory diseases of the central nervous system that predominately affect women. Some of these patients are of childbearing age at NMOSD onset. This study reviews, on the one hand, the role NMOSD play in fertility, pregnancy complications and pregnancy outcome, and on the other, the effect of pregnancy on NMOSD disease course and treatment options available during pregnancy. Animal studies show lower fertility rates in NMOSD; however, investigations into fertility in NMOSD patients are lacking. Pregnancies in NMOSD patients are associated with increased disease activity and more severe disability postpartum. Some studies found higher risks of pregnancy complications, e.g., miscarriages and preeclampsia. Acute relapses during pregnancy can be treated with methylprednisolone and/or plasma exchange/immunoadsorption. A decision to either stop or continue immunosuppressive therapy with azathioprine or rituximab during pregnancy should be evaluated carefully and factor in the patient's history of disease activity. To this end, involving neuroimmunological specialist centers in the treatment and care of pregnant NMOSD patients is recommended, particularly in specific situations like pregnancy.
Collapse
Affiliation(s)
- Nadja Borisow
- NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Kerstin Hellwig
- Clinic for Neurology, St. Josef Hospital, Ruhr Universität Bochum, Bochum, Germany
| | - Friedemann Paul
- NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité – Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
100
|
Objective assessment of a relative afferent pupillary defect by B-mode ultrasound. PLoS One 2018; 13:e0202774. [PMID: 30148895 PMCID: PMC6110480 DOI: 10.1371/journal.pone.0202774] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/08/2018] [Indexed: 11/19/2022] Open
Abstract
PURPOSE To evaluate B-mode ultrasound as a novel method for objective and quantitative assessment of a relative afferent pupillary defect (RAPD) in a prospective case-control study. METHODS Seventeen patients with unilateral optic neuropathy and a clinically detectable RAPD and 17 age and sex matched healthy controls were examined with B-mode ultrasound using an Esaote-Mylab25 system according to current guidelines for orbital insonation. The swinging flashlight test was performed during ultrasound assessment with a standardized light stimulus using a penlight. RESULTS B-mode ultrasound RAPD examination was doable in approximately 5 minutes only and was well tolerated by all participants. Compared to the unaffected contralateral eyes, eyes with RAPD showed lower absolute constriction amplitude of the pupillary diameter (mean [SD] 0.8 [0.4] vs. 2.1 [0.4] mm; p = 0.009) and a longer pupillary constriction time after ipsilateral light stimulus (mean [SD] 1240 [180] vs. 710 [200] ms; p = 0.008). In eyes affected by RAPD, visual acuity correlated with the absolute constriction amplitude (r = 0.75, p = 0.001). CONCLUSIONS B-mode ultrasound enables fast, easy and objective quantification of a RAPD and can thus be applied in clinical practice to document a RAPD.
Collapse
|