51
|
The Efficiency of Spa Rehabilitation in Chronic Ischemic Stroke Patients-Preliminary Reports. Brain Sci 2021; 11:brainsci11040501. [PMID: 33921075 PMCID: PMC8071377 DOI: 10.3390/brainsci11040501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/02/2021] [Accepted: 04/13/2021] [Indexed: 12/21/2022] Open
Abstract
Background: Rehabilitation-oriented therapy after a stroke must continue in various forms as a life-long effort. Aim: The study investigated the impact of spa rehabilitation on the quality of life and functional efficiency in patients after an ischemic stroke at a chronic stage of recovery. Methods: The assessment was carried out in a spa resort in southeastern Poland. It involved 32 patients with strokes who participated in a three-week rehabilitation program. Three examinations were performed: upon admission, on the day of discharge and at a two-month follow-up. The quality of life and functional efficiency were assessed with the WHOQOL-BREF and Barthel Index. Results: The quality of life was significantly higher in Exam II compared with Exam I (p < 0.001), and improvement was retained at the follow-up. The Barthel scores were higher in Exam II compared with Exam I (79.84 vs. 68.59), while the differences between the scores in Exams II and III were small (p = 0.039). Conclusions: Three-week spa rehabilitation seems to favorably affect the functional efficiency and quality of life after a stroke. The effects appear to be long-term. The gender, age and time from stroke onset do not seem to impact short-term effects. However, long-term effects are related to the time from stroke onset.
Collapse
|
52
|
Wang F, Zhang S, Zhou F, Zhao M, Zhao H. Early physical rehabilitation therapy between 24 and 48 h following acute ischemic stroke onset: a randomized controlled trial. Disabil Rehabil 2021; 44:3967-3972. [PMID: 33736542 DOI: 10.1080/09638288.2021.1897168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE Early mobilization is believed to be helpful for patients with acute ischemic stroke. This study aimed to compare the difference between starting rehabilitation between 24 and 48 h and 72 and 96 h following the onset of ischemic stroke. MATERIALS AND METHODS This was a single-center, single-blind, randomized controlled trial. The early rehabilitation (ER) group started exercising between 24 and 48 h after stroke onset, which the standard rehabilitation (SR) group started exercising between 72 and 96 h. The two groups received sitting, standing, and repetitive body strength training respectively. RESULTS In this study, 110 patients were analyzed. Patients in the early rehabilitation group had more favorable outcomes (The modified Rankin scale score 0-2, ER group = 32 versus SR group = 20, adjusted odds ratio 2.27, 95% CI 1.05-4.87; p = 0.036) at 3-month follow-up. The simplified Fugl-Meyer assessment (FMA) scores for the lower extremity were influenced by the interaction effect (F = 7.24, p = 0.01). The post-hoc analysis revealed a difference in the lower extremity FMA score at one week after stroke (difference 2.30 (95% CI 0.65-3.96); p = 0.007). CONCLUSIONS Early physical rehabilitation training between 24 and 48 h may be beneficial and improve patients' lower extremity function within the first week. CLINICAL TRIAL REGISTRATION UNIQUE IDENTIFIER NCT02718534Implications for rehabilitationAcute ischemic stroke has a variety of symptoms, and acroparalysis is a major concern.Starting physical rehabilitation early can improve the prognosis of patients with ischemic stroke.Early rehabilitation is more conducive to the recovery of lower extremity motor function, but in the subsequent rehabilitation process, the upper extremity function should be paid more attention.
Collapse
Affiliation(s)
- Fudong Wang
- Department of Emergency, Sheng Jing Hospital of China Medical University, Shenyang, China
| | - Shun Zhang
- Department of Neurology, Sheng Jing Hospital of China Medical University, Shenyang, China
| | - Fenghua Zhou
- Department of Rehabilitation, Sheng Jing Hospital of China Medical University, Shenyang, China
| | - Min Zhao
- Department of Emergency, Sheng Jing Hospital of China Medical University, Shenyang, China
| | - Hongyu Zhao
- Department of Emergency, Sheng Jing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
53
|
Lin DJ, Cramer SC. Principles of Neural Repair and Their Application to Stroke Recovery Trials. Semin Neurol 2021; 41:157-166. [PMID: 33663003 DOI: 10.1055/s-0041-1725140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Neural repair is the underlying therapeutic strategy for many treatments currently under investigation to improve recovery after stroke. Repair-based therapies are distinct from acute stroke strategies: instead of salvaging threatened brain tissue, the goal is to improve behavioral outcomes on the basis of experience-dependent brain plasticity. Furthermore, timing, concomitant behavioral experiences, modality specific outcome measures, and careful patient selection are fundamental concepts for stroke recovery trials that can be deduced from principles of neural repair. Here we discuss core principles of neural repair and their implications for stroke recovery trials, highlighting related issues from key studies in humans. Research suggests a future in which neural repair therapies are personalized based on measures of brain structure and function, genetics, and lifestyle factors.
Collapse
Affiliation(s)
- David J Lin
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts.,VA RR&D Center for Neurorestoration and Neurotechnology, Rehabilitation R&D Service, Department of VA Medical Center, Providence, Rhode Island
| | - Steven C Cramer
- Department of Neurology, University of California, Los Angeles, California.,California Rehabilitation Institute, Los Angeles, California
| |
Collapse
|
54
|
Effect of constraint-induced movement therapy on persons-reported outcomes of health status after stroke: a systematic review and meta-analysis. Int J Rehabil Res 2021; 44:15-23. [PMID: 33234842 DOI: 10.1097/mrr.0000000000000446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Constraint-induced movement therapy (CIMT) is used for the rehabilitation of motor function after stroke. The aim of this review was to investigate its effect on persons-reported outcomes of health status (PROsHS) compared with conventional therapy. The study was a systematic review and meta-analysis registered in PROSPERO (CRD42019142279). Five databases PubMED, PEDro, OTSeeker, CENTRAL and Web of Science were searched. Randomized controlled trials were included if they assessed PROsHS. Mean scores of PROsHS, sample size and dose of CIMT and control groups interventions were extracted. The result was analyzed using qualitative and quantitative syntheses. Nine studies (n = 558) were included in the review. From the result, CIMT significantly improved PROsHS postintervention. However, postintervention, there was no statistically significant difference between groups for the upper limb [Mean difference (MD) = 6.67, 95% confidence interval (CI) = -2.09 to 15.44, P = 0.14] and the lower limb (MD = -1.86, 95% CI = -16.29 to 12.57, P = 0.80). Similarly, there was no statistically significant percentage of variation across studies, upper limb (I2 = 0%, P = 0.92) and lower limb (I2 = 0%, P = 0.86). For the lower limb at follow-up, there was no statistically significant difference between groups (MD = 0.97, 95% CI = -13.59 to 15.53, P = 0.90). When upper and lower limbs studies were pooled, there was no statistically significant difference between groups postintervention (MD = 0.22, 95% CI = -0.15 to 0.58, P = 0.24) and at follow-up (MD = 0.03, 95% CI = -0.43 to 0.49, P = 0.90). CIMT improves PROsHS after stroke. However, it is not superior to conventional therapy based on the current literature.
Collapse
|
55
|
Sommer CJ, Schäbitz WR. Principles and requirements for stroke recovery science. J Cereb Blood Flow Metab 2021; 41:471-485. [PMID: 33175596 PMCID: PMC7907998 DOI: 10.1177/0271678x20970048] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 10/03/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022]
Abstract
The disappointing results in bench-to-bedside translation of neuroprotective strategies caused a certain shift in stroke research towards enhancing the endogenous recovery potential of the brain. One reason for this focus on recovery is the much wider time window for therapeutic interventions which is open for at least several months. Since recently two large clinical studies using d-amphetamine or fluoxetine, respectively, to enhance post-stroke neurological outcome failed again it is a good time for a critical reflection on principles and requirements for stroke recovery science. In principal, stroke recovery science deals with all events from the molecular up to the functional and behavioral level occurring after brain ischemia eventually ending up with any measurable improvement of various clinical parameters. A detailed knowledge of the spontaneously occurring post-ischemic regeneration processes is the indispensable prerequisite for any therapeutic approaches aiming to modify these responses to enhance post-stroke recovery. This review will briefly illuminate the molecular mechanisms of post-ischemic regeneration and the principle possibilities to foster post-stroke recovery. In this context, recent translational approaches are analyzed. Finally, the principal and specific requirements and pitfalls in stroke recovery research as well as potential explanations for translational failures will be discussed.
Collapse
Affiliation(s)
- Clemens J Sommer
- Institute of Neuropathology, University Medical Center of the
Johannes Gutenberg-University Mainz, Mainz, Germany
| | | |
Collapse
|
56
|
Fluet G, Qiu Q, Patel J, Mont A, Cronce A, Yarossi M, Merians A, Adamovich S. Virtual Rehabilitation of the Paretic Hand and Arm in Persons With Stroke: Translation From Laboratory to Rehabilitation Centers and the Patient's Home. Front Neurol 2021; 12:623261. [PMID: 33584529 PMCID: PMC7876436 DOI: 10.3389/fneur.2021.623261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/04/2021] [Indexed: 12/18/2022] Open
Abstract
The anatomical and physiological heterogeneity of strokes and persons with stroke, along with the complexity of normal upper extremity movement make the possibility that any single treatment approach will become the definitive solution for all persons with upper extremity hemiparesis due to stroke unlikely. This situation and the non-inferiority level outcomes identified by many studies of virtual rehabilitation are considered by some to indicate that it is time to consider other treatment modalities. Our group, among others, has endeavored to build on the initial positive outcomes in studies of virtual rehabilitation by identifying patient populations, treatment settings and training schedules that will best leverage virtual rehabilitation's strengths. We feel that data generated by our lab and others suggest that (1) persons with stroke may adapt to virtual rehabilitation of hand function differently based on their level of impairment and stage of recovery and (2) that less expensive, more accessible home based equipment seems to be an effective alternative to clinic based treatment that justifies continued optimism and study.
Collapse
Affiliation(s)
- Gerard Fluet
- Rutgers Biomedical and Health Sciences, Newark, NJ, United States
| | - Qinyin Qiu
- Rutgers Biomedical and Health Sciences, Newark, NJ, United States
| | - Jigna Patel
- Rutgers Biomedical and Health Sciences, Newark, NJ, United States
- New Jersey Institute of Technology, Newark, NJ, United States
| | - Ashley Mont
- New Jersey Institute of Technology, Newark, NJ, United States
| | - Amanda Cronce
- New Jersey Institute of Technology, Newark, NJ, United States
| | - Mathew Yarossi
- Department of Physical Therapy, Movement and Rehabilitation Science, Northeastern University, Boston, MA, United States
| | - Alma Merians
- Rutgers Biomedical and Health Sciences, Newark, NJ, United States
| | - Sergei Adamovich
- Rutgers Biomedical and Health Sciences, Newark, NJ, United States
- New Jersey Institute of Technology, Newark, NJ, United States
| |
Collapse
|
57
|
Keeling AB, Piitz M, Semrau JA, Hill MD, Scott SH, Dukelow SP. Robot enhanced stroke therapy optimizes rehabilitation (RESTORE): a pilot study. J Neuroeng Rehabil 2021; 18:10. [PMID: 33478563 PMCID: PMC7819212 DOI: 10.1186/s12984-021-00804-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 01/08/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Robotic rehabilitation after stroke provides the potential to increase and carefully control dosage of therapy. Only a small number of studies, however, have examined robotic therapy in the first few weeks post-stroke. In this study we designed robotic upper extremity therapy tasks for the bilateral Kinarm Exoskeleton Lab and piloted them in individuals with subacute stroke. Pilot testing was focused mainly on the feasibility of implementing these new tasks, although we recorded a number of standardized outcome measures before and after training. METHODS Our team developed 9 robotic therapy tasks to incorporate feedback, intensity, challenge, and subject engagement as well as addressing both unimanual and bimanual arm activities. Subacute stroke participants were assigned to a robotic therapy (N = 9) or control group (N = 10) in a matched-group manner. The robotic therapy group completed 1-h of robotic therapy per day for 10 days in addition to standard therapy. The control group participated only in standard of care therapy. Clinical and robotic assessments were completed prior to and following the intervention. Clinical assessments included the Fugl-Meyer Assessment of Upper Extremity (FMA UE), Action Research Arm Test (ARAT) and Functional Independence Measure (FIM). Robotic assessments of upper limb sensorimotor function included a Visually Guided Reaching task and an Arm Position Matching task, among others. Paired sample t-tests were used to compare initial and final robotic therapy scores as well as pre- and post-clinical and robotic assessments. RESULTS Participants with subacute stroke (39.8 days post-stroke) completed the pilot study. Minimal adverse events occurred during the intervention and adding 1 h of robotic therapy was feasible. Clinical and robotic scores did not significantly differ between groups at baseline. Scores on the FMA UE, ARAT, FIM, and Visually Guided Reaching improved significantly in the robotic therapy group following completion of the robotic intervention. However, only FIM and Arm Position Match improved over the same time in the control group. CONCLUSIONS The Kinarm therapy tasks have the potential to improve outcomes in subacute stroke. Future studies are necessary to quantify the benefits of this robot-based therapy in a larger cohort. TRIAL REGISTRATION ClinicalTrials.gov, NCT04201613, Registered 17 December 2019-Retrospectively Registered, https://clinicaltrials.gov/ct2/show/NCT04201613 .
Collapse
Affiliation(s)
- Alexa B. Keeling
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB Canada
| | - Mark Piitz
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB Canada
| | - Jennifer A. Semrau
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB Canada
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE USA
| | - Michael D. Hill
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB Canada
| | - Stephen H. Scott
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON Canada
| | - Sean P. Dukelow
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB Canada
| |
Collapse
|
58
|
Edwards JD, Black SE, Boe S, Boyd L, Chaves A, Chen R, Dukelow S, Fung J, Kirton A, Meltzer J, Moussavi Z, Neva J, Paquette C, Ploughman M, Pooyania S, Rajji TK, Roig M, Tremblay F, Thiel A. Canadian Platform for Trials in Noninvasive Brain Stimulation (CanStim) Consensus Recommendations for Repetitive Transcranial Magnetic Stimulation in Upper Extremity Motor Stroke Rehabilitation Trials. Neurorehabil Neural Repair 2021; 35:103-116. [PMID: 33410386 DOI: 10.1177/1545968320981960] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Objective. To develop consensus recommendations for the use of repetitive transcranial magnetic stimulation (rTMS) as an adjunct intervention for upper extremity motor recovery in stroke rehabilitation clinical trials. Participants. The Canadian Platform for Trials in Non-Invasive Brain Stimulation (CanStim) convened a multidisciplinary team of clinicians and researchers from institutions across Canada to form the CanStim Consensus Expert Working Group. Consensus Process. Four consensus themes were identified: (1) patient population, (2) rehabilitation interventions, (3) outcome measures, and (4) stimulation parameters. Theme leaders conducted comprehensive evidence reviews for each theme, and during a 2-day Consensus Meeting, the Expert Working Group used a weighted dot-voting consensus procedure to achieve consensus on recommendations for the use of rTMS as an adjunct intervention in motor stroke recovery rehabilitation clinical trials. Results. Based on best available evidence, consensus was achieved for recommendations identifying the target poststroke population, rehabilitation intervention, objective and subjective outcomes, and specific rTMS parameters for rehabilitation trials evaluating the efficacy of rTMS as an adjunct therapy for upper extremity motor stroke recovery. Conclusions. The establishment of the CanStim platform and development of these consensus recommendations is a first step toward the translation of noninvasive brain stimulation technologies from the laboratory to clinic to enhance stroke recovery.
Collapse
Affiliation(s)
- Jodi D Edwards
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada.,University of Ottawa, Ottawa, Ontario, Canada
| | - Sandra E Black
- Sunnybrook Research Institute, Toronto, Ontario, Canada.,University of Toronto, Toronto, Ontario, Canada
| | - Shaun Boe
- Dalhousie University, Halifax, Nova Scotia, Canada
| | - Lara Boyd
- University of British Columbia, Vancouver, British Columbia, Canada
| | - Arthur Chaves
- Memorial University, St John's, Newfoundland, Canada
| | - Robert Chen
- Toronto Western Hospital, Toronto, Ontario, Canada.,University of Toronto, Toronto, Ontario, Canada
| | | | - Joyce Fung
- McGill University, Montreal, Quebec, Canada
| | - Adam Kirton
- University of Calgary, Calgary, Alberta, Canada
| | | | | | - Jason Neva
- University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | - Tarek K Rajji
- University of Toronto, Toronto, Ontario, Canada.,Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Marc Roig
- McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
59
|
Wang CY, Chen YC, Wang CH. Early Rehabilitation in Acute Care Inpatient Wards May Be Crucial to Functional Recovery 3 Months After Ischemic Stroke. Phys Ther 2021; 101:5943766. [PMID: 33125475 DOI: 10.1093/ptj/pzaa197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/10/2020] [Accepted: 09/15/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Early rehabilitation in acute care inpatient wards may maximize functional outcome at 3 months after stroke in survivors of stroke. It is unknown whether functional change during acute care hospitalization is significantly associated with functional recovery at 3 months in survivors of acute stroke. The purposes of this study were to examine the association of the Barthel Index (BI) at 3 months with functional change as measured with the Barthel Index (ΔBI) in an acute care inpatient ward and to identify the factors associated with ΔBI and who could benefit from an early rehabilitation program. METHODS In this prospective longitudinal study, 76 patients with ischemic stroke in an acute care inpatient ward received early rehabilitation of up to 2 sessions per day for 5 d/wk during their stay. Therapy density was calculated as the proportion of total therapy sessions completed. At admission and discharge, they were assessed with the BI and the Postural Assessment Scale for Stroke Patients (PASS). Demographic and health-related information was also collected. The Barthel Index (BI) was reassessed at 3 months. RESULTS ΔBI in the acute care inpatient ward significantly predicted the BI at 3 months, over and above the other significant variables; in addition, therapy density and change in PASS were significantly associated with ΔBI. Patients with moderate initial functional dependence had the largest ΔBI, followed by the group with a more severe condition. CONCLUSIONS ΔBI in acute care inpatient wards may be an important predictor of the BI at 3 months. Therapy density and change in PASS were significantly associated with ΔBI. IMPACT Survivors of acute stroke who receive up to 2 rehabilitation sessions per day for 5 d/wk early in their hospitalization have better functional recovery at 3 months after stroke.
Collapse
Affiliation(s)
- Ching-Yi Wang
- Department of Physical Therapy, Chung Shan Medical University, Taichung, Taiwan; Physical Therapy Room, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yueh-Chi Chen
- Department of Physical Therapy, Chung Shan Medical University, Taichung, Taiwan; Physical Therapy Room, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chun-Hou Wang
- Department of Physical Therapy, Chung Shan Medical University, Taichung, Taiwan; Physical Therapy Room, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
60
|
Tsay JS, Winstein CJ. Five Features to Look for in Early-Phase Clinical Intervention Studies. Neurorehabil Neural Repair 2021; 35:3-9. [PMID: 33243083 PMCID: PMC9873309 DOI: 10.1177/1545968320975439] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Neurorehabilitation relies on core principles of neuroplasticity to activate and engage latent neural connections, promote detour circuits, and reverse impairments. Clinical interventions incorporating these principles have been shown to promote recovery and demote compensation. However, many clinicians struggle to find interventions centered on these principles in our nascent, rapidly growing body of literature. Not to mention the immense pressure from regulatory bodies and organizational balance sheets that further discourage time-intensive recovery-promoting interventions, incentivizing clinicians to prioritize practical constraints over sound clinical decision making. Modern neurorehabilitation practices that result from these pressures favor strategies that encourage compensation over those that promote recovery. To narrow the gap between the busy clinician and the cutting-edge motor recovery literature, we distilled 5 features found in early-phase clinical intervention studies-ones that value the more enduring biological recovery processes over the more immediate compensatory remedies. Filtering emerging literature through this lens and routinely integrating promising research into daily practice can break down practical barriers for effective clinical translation and ultimately promote durable long-term outcomes. This perspective is meant to serve a new generation of mechanistically minded and caring clinicians, students, activists, and research trainees, who are poised to not only advance rehabilitation science, but also erect evidence-based policy changes to accelerate recovery-based stroke care.
Collapse
|
61
|
Joy MT, Carmichael ST. Encouraging an excitable brain state: mechanisms of brain repair in stroke. Nat Rev Neurosci 2021; 22:38-53. [PMID: 33184469 PMCID: PMC10625167 DOI: 10.1038/s41583-020-00396-7] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2020] [Indexed: 02/02/2023]
Abstract
Stroke induces a plastic state in the brain. This period of enhanced plasticity leads to the sprouting of new axons, the formation of new synapses and the remapping of sensory-motor functions, and is associated with motor recovery. This is a remarkable process in the adult brain, which is normally constrained in its levels of neuronal plasticity and connectional change. Recent evidence indicates that these changes are driven by molecular systems that underlie learning and memory, such as changes in cellular excitability during memory formation. This Review examines circuit changes after stroke, the shared mechanisms between memory formation and brain repair, the changes in neuronal excitability that underlie stroke recovery, and the molecular and pharmacological interventions that follow from these findings to promote motor recovery in animal models. From these findings, a framework emerges for understanding recovery after stroke, central to which is the concept of neuronal allocation to damaged circuits. The translation of the concepts discussed here to recovery in humans is underway in clinical trials for stroke recovery drugs.
Collapse
Affiliation(s)
- Mary T Joy
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - S Thomas Carmichael
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
62
|
Abstract
PURPOSE OF REVIEW This article describes restorative therapies to improve patient outcomes after stroke. These therapies contrast with acute stroke treatments such as recombinant tissue plasminogen activator (rtPA) and thrombectomy that target clots, aim to salvage threatened brain tissue to limit injury, and have a time window measured in hours. Restorative therapies target the brain, aim to promote plasticity within surviving brain tissue, and have a time window measured in days to weeks or longer. RECENT FINDINGS A number of drugs are under study. Preclinical studies are providing attractive therapeutic candidates for translation, such as the C-C chemokine receptor 5 inhibitor maraviroc. Some drug studies have used a pragmatic approach, which is premature for the nascent field of neural repair. Substantial data support the utility of activity-dependent therapies, including constraint-induced movement therapy, with recent studies supporting the need for very high doses to generate the best functional gains. While stem cell therapies are at an early stage, mounting preclinical evidence supports the efficacy of mesenchymal stem cells; some initial human studies are supportive. Several types of brain stimulation have been examined, and in some cases initial studies are promising. SUMMARY Improved insights into stroke recovery and its treatment have the potential to reduce disability in a large segment of stroke survivors.
Collapse
|
63
|
Xu Y, Yao Y, Lyu H, Ng S, Xu Y, Poon WS, Zheng Y, Zhang S, Hu X. Rehabilitation Effects of Fatigue-Controlled Treadmill Training After Stroke: A Rat Model Study. Front Bioeng Biotechnol 2020; 8:590013. [PMID: 33330421 PMCID: PMC7734251 DOI: 10.3389/fbioe.2020.590013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/28/2020] [Indexed: 11/13/2022] Open
Abstract
Background: Traditional rehabilitation with uniformed intensity would ignore individual tolerance and introduce the second injury to stroke survivors due to overloaded training. However, effective control of the training intensity of different stroke survivors is still lacking. The purpose of the study was to investigate the rehabilitative effects of electromyography (EMG)-based fatigue-controlled treadmill training on rat stroke model. Methods: Sprague-Dawley rats after intracerebral hemorrhage and EMG electrode implantation surgeries were randomly distributed into three groups: the control group (CTRL, n = 11), forced training group (FOR-T, n = 11), and fatigue-controlled training group (FAT-C, n = 11). The rehabilitation interventions were delivered every day from day 2 to day 14 post-stroke. No training was delivered to the CTRL group. The rats in the FOR-T group were forced to run on the treadmill without rest. The fatigue level was monitored in the FAT-C group through the drop rate of EMG mean power frequency, and rest was applied to the rats when the fatigue level exceeded the moderate fatigue threshold. The speed and accumulated running duration were comparable in the FAT-C and the FOR-T groups. Daily evaluation of the motor functions was performed using the modified Neurological Severity Score. Running symmetry was investigated by the symmetry index of EMG bursts collected from both hind limbs during training. The expression level of neurofilament-light in the striatum was measured to evaluate the neuroplasticity. Results: The FAT-C group showed significantly lower modified Neurological Severity Score compared with the FOR-T (P ≤ 0.003) and CTRL (P ≤ 0.003) groups. The FAT-C group showed a significant increase in the symmetry of hind limbs since day 7 (P = 0.000), whereas the FOR-T group did not (P = 0.349). The FAT-C group showed a higher concentration of neurofilament-light compared to the CTRL group (P = 0.005) in the unaffected striatum and the FOR-T group (P = 0.021) in the affected striatum. Conclusion: The treadmill training with moderate fatigue level controlled was more effective in motor restoration than forced training. The fatigue-controlled physical training also demonstrated positive effects in the striatum neuroplasticity. This study indicated that protocol with individual fatigue-controlled training should be considered in both animal and clinical studies for better stroke rehabilitation.
Collapse
Affiliation(s)
- Yuchen Xu
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China.,Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Yuanfa Yao
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China.,Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Lyu
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, ShaTin, Hong Kong
| | - Stephanie Ng
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, ShaTin, Hong Kong
| | - Yingke Xu
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China.,Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wai Sang Poon
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, ShaTin, Hong Kong
| | - Yongping Zheng
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Shaomin Zhang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China.,Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Xiaoling Hu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| |
Collapse
|
64
|
Merians AS, Fluet GG, Qiu Q, Yarossi M, Patel J, Mont AJ, Saleh S, Nolan KJ, Barrett AM, Tunik E, Adamovich SV. Hand Focused Upper Extremity Rehabilitation in the Subacute Phase Post-stroke Using Interactive Virtual Environments. Front Neurol 2020; 11:573642. [PMID: 33324323 PMCID: PMC7726202 DOI: 10.3389/fneur.2020.573642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/14/2020] [Indexed: 01/14/2023] Open
Abstract
Introduction: Innovative motor therapies have attempted to reduce upper extremity impairment after stroke but have not made substantial improvement as over 50% of people post-stroke continue to have sensorimotor deficits affecting their self-care and participation in daily activities. Intervention studies have focused on the role of increased dosing, however recent studies have indicated that timing of rehabilitation interventions may be as important as dosing and importantly, that dosing and timing interact in mediating effectiveness. This study is designed to empirically test dosing and timing. Methods and Analysis: In this single-blinded, interventional study, subjects will be stratified on two dimensions, impairment level (Fugl-Meyer Upper Extremity Assessment (FM) and presence or absence of Motor Evoked Potentials (MEPs) as follows; (1) Severe, FM score 10-19, MEP+, (2) Severe, FM score 10-19, MEP-, (3) Moderate, FM score 20-49, MEP+, (4) Moderate, FM score 20-49, MEP-. Subjects not eligible for TMS will be assigned to either group 2 (if severe) or group 3 (if moderate). Stratified block randomization will then be used to achieve a balanced assignment. Early Robotic/VR Therapy (EVR) experimental group will receive in-patient usual care therapy plus an extra 10 h of intensive upper extremity therapy focusing on the hand using robotically facilitated rehabilitation interventions presented in virtual environments and initiated 5-30 days post-stroke. Delayed Robotic/VR Therapy (DVR) experimental group will receive the same intervention but initiated 30-60 days post-stroke. Dose-matched usual care group (DMUC) will receive an extra 10 h of usual care initiated 5-30 days post-stroke. Usual Care Group (UC) will receive the usual amount of physical/occupational therapy. Outcomes: There are clinical, neurophysiological, and kinematic/kinetic measures, plus measures of daily arm use and quality of life. Primary outcome is the Action Research Arm Test (ARAT) measured at 4 months post-stroke. Discussion: Outcome measures will be assessed to determine whether there is an early time period in which rehabilitation will be most effective, and whether there is a difference in the recapture of premorbid patterns of movement vs. the development of an efficient, but compensatory movement strategy. Ethical Considerations: The IRBs of New Jersey Institute of Technology, Rutgers University, Northeastern University, and Kessler Foundation reviewed and approved all study protocols. Study was registered in https://ClinicalTrials.gov (NCT03569059) prior to recruitment. Dissemination will include submission to peer-reviewed journals and professional presentations.
Collapse
Affiliation(s)
- Alma S. Merians
- Department of Rehabilitation and Movement Sciences, School of Health Professions, Rutgers Biomedical and Health Sciences, Newark, NJ, United States
| | - Gerard G. Fluet
- Department of Rehabilitation and Movement Sciences, School of Health Professions, Rutgers Biomedical and Health Sciences, Newark, NJ, United States
| | - Qinyin Qiu
- Department of Rehabilitation and Movement Sciences, School of Health Professions, Rutgers Biomedical and Health Sciences, Newark, NJ, United States
| | - Mathew Yarossi
- Movement Neuroscience Laboratory, Department of Physical Therapy, Movement and Rehabilitation Science, Bouve College of Health Sciences, Northeastern University, Boston, MA, United States
- SPIRAL Group, Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, United States
| | - Jigna Patel
- Department of Rehabilitation and Movement Sciences, School of Health Professions, Rutgers Biomedical and Health Sciences, Newark, NJ, United States
| | - Ashley J. Mont
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| | - Soha Saleh
- Center for Mobility and Rehabilitation Engineering Research, Kessler Foundation, West Orange, NJ, United States
- Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Karen J. Nolan
- Center for Mobility and Rehabilitation Engineering Research, Kessler Foundation, West Orange, NJ, United States
- Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - AM Barrett
- Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, NJ, United States
- Center for Stroke Rehabilitation Research, Kessler Foundation, West Orange, NJ, United States
| | - Eugene Tunik
- Movement Neuroscience Laboratory, Department of Physical Therapy, Movement and Rehabilitation Science, Bouve College of Health Sciences, Northeastern University, Boston, MA, United States
- Department of Bioengineering, College of Engineering, Northeastern University, Boston, MA, United States
- Department of Electrical and Computer Engineering, College of Engineering, Northeastern University, Boston, MA, United States
| | - Sergei V. Adamovich
- Department of Rehabilitation and Movement Sciences, School of Health Professions, Rutgers Biomedical and Health Sciences, Newark, NJ, United States
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| |
Collapse
|
65
|
Lum PS, Shu L, Bochniewicz EM, Tran T, Chang LC, Barth J, Dromerick AW. Improving Accelerometry-Based Measurement of Functional Use of the Upper Extremity After Stroke: Machine Learning Versus Counts Threshold Method. Neurorehabil Neural Repair 2020; 34:1078-1087. [PMID: 33150830 PMCID: PMC7704838 DOI: 10.1177/1545968320962483] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Wrist-worn accelerometry provides objective monitoring of upper-extremity functional use, such as reaching tasks, but also detects nonfunctional movements, leading to ambiguity in monitoring results. OBJECTIVE Compare machine learning algorithms with standard methods (counts ratio) to improve accuracy in detecting functional activity. METHODS Healthy controls and individuals with stroke performed unstructured tasks in a simulated community environment (Test duration = 26 ± 8 minutes) while accelerometry and video were synchronously recorded. Human annotators scored each frame of the video as being functional or nonfunctional activity, providing ground truth. Several machine learning algorithms were developed to separate functional from nonfunctional activity in the accelerometer data. We also calculated the counts ratio, which uses a thresholding scheme to calculate the duration of activity in the paretic limb normalized by the less-affected limb. RESULTS The counts ratio was not significantly correlated with ground truth and had large errors (r = 0.48; P = .16; average error = 52.7%) because of high levels of nonfunctional movement in the paretic limb. Counts did not increase with increased functional movement. The best-performing intrasubject machine learning algorithm had an accuracy of 92.6% in the paretic limb of stroke patients, and the correlation with ground truth was r = 0.99 (P < .001; average error = 3.9%). The best intersubject model had an accuracy of 74.2% and a correlation of r =0.81 (P = .005; average error = 5.2%) with ground truth. CONCLUSIONS In our sample, the counts ratio did not accurately reflect functional activity. Machine learning algorithms were more accurate, and future work should focus on the development of a clinical tool.
Collapse
Affiliation(s)
- Peter S Lum
- The Catholic University of America, Washington, DC, USA.,MedStar National Rehabilitation Network, Washington, DC, USA
| | - Liqi Shu
- Warren Alpert Medical School of Brown University, Providence, RI, USA
| | | | - Tan Tran
- The Catholic University of America, Washington, DC, USA
| | | | - Jessica Barth
- MedStar National Rehabilitation Network, Washington, DC, USA
| | - Alexander W Dromerick
- MedStar National Rehabilitation Network, Washington, DC, USA.,Georgetown University School of Medicine, Washington, DC, USA
| |
Collapse
|
66
|
Facchin L, Schöne C, Mensen A, Bandarabadi M, Pilotto F, Saxena S, Libourel PA, Bassetti CLA, Adamantidis AR. Slow Waves Promote Sleep-Dependent Plasticity and Functional Recovery after Stroke. J Neurosci 2020; 40:8637-8651. [PMID: 33087472 PMCID: PMC7643301 DOI: 10.1523/jneurosci.0373-20.2020] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 09/15/2020] [Accepted: 09/24/2020] [Indexed: 01/13/2023] Open
Abstract
Functional recovery after stroke is associated with a remapping of neural circuits. This reorganization is often associated with low-frequency, high-amplitude oscillations in the peri-infarct zone in both rodents and humans. These oscillations are reminiscent of sleep slow waves (SW) and suggestive of a role for sleep in brain plasticity that occur during stroke recovery; however, direct evidence is missing. Using a stroke model in male mice, we showed that stroke was followed by a transient increase in NREM sleep accompanied by reduced amplitude and slope of ipsilateral NREM sleep SW. We next used 5 ms optical activation of Channelrhodopsin 2-expressing pyramidal neurons, or 200 ms silencing of Archeorhodopsin T-expressing pyramidal neurons, to generate local cortical UP, or DOWN, states, respectively, both sharing similarities with spontaneous NREM SW in freely moving mice. Importantly, we found that single optogenetically evoked SW (SWopto) in the peri-infarct zone, randomly distributed during sleep, significantly improved fine motor movements of the limb corresponding to the sensorimotor stroke lesion site compared with spontaneous recovery and control conditions, while motor strength remained unchanged. In contrast, SWopto during wakefulness had no effect. Furthermore, chronic SWopto during sleep were associated with local axonal sprouting as revealed by the increase of anatomic presynaptic and postsynaptic markers in the peri-infarct zone and corresponding contralesional areas to cortical circuit reorganization during stroke recovery. These results support a role for sleep SW in cortical circuit plasticity and sensorimotor recovery after stroke and provide a clinically relevant framework for rehabilitation strategies using neuromodulation during sleep.SIGNIFICANCE STATEMENT Brain stroke is one of the leading causes of death and major disabilities in the elderly worldwide. A better understanding of the pathophysiological mechanisms underlying spontaneous brain plasticity after stroke, together with an optimization of rehabilitative strategies, are essential to improve stroke treatments. Here, we investigate the role of optogenetically induced sleep slow waves in an animal model of ischemic stroke and identify sleep as a window for poststroke intervention that promotes neuroplasticity and facilitates sensorimotor recovery.
Collapse
Affiliation(s)
- Laura Facchin
- Centre for Experimental Neurology, Department of Neurology, Inselspital University Hospital, University of Bern, 3010, Bern, Switzerland
| | - Cornelia Schöne
- Centre for Experimental Neurology, Department of Neurology, Inselspital University Hospital, University of Bern, 3010, Bern, Switzerland
| | - Armand Mensen
- Department of Neurology, Inselspital University Hospital, University of Bern, Bern, 3010, Switzerland
| | - Mojtaba Bandarabadi
- Centre for Experimental Neurology, Department of Neurology, Inselspital University Hospital, University of Bern, 3010, Bern, Switzerland
| | - Federica Pilotto
- Centre for Experimental Neurology, Department of Neurology, Inselspital University Hospital, University of Bern, 3010, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, 3010, Switzerland
| | - Smita Saxena
- Centre for Experimental Neurology, Department of Neurology, Inselspital University Hospital, University of Bern, 3010, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, 3010, Switzerland
| | - Paul Antoine Libourel
- Centre de Recherche en Neurosciences de Lyon, University of Lyon, Bron, 69500, France
| | - Claudio L A Bassetti
- Centre for Experimental Neurology, Department of Neurology, Inselspital University Hospital, University of Bern, 3010, Bern, Switzerland
- Department of Neurology, Inselspital University Hospital, University of Bern, Bern, 3010, Switzerland
| | - Antoine R Adamantidis
- Centre for Experimental Neurology, Department of Neurology, Inselspital University Hospital, University of Bern, 3010, Bern, Switzerland
- Department of Neurology, Inselspital University Hospital, University of Bern, Bern, 3010, Switzerland
- Department for BioMedical Research, University of Bern, Bern, 3010, Switzerland
| |
Collapse
|
67
|
Hayward KS, Jolliffe L, Churilov L, Herrmann A, Cloud GC, Lannin NA. In search of Kipling’s six honest serving men in upper limb rehabilitation: within participant case-crossover experiment nested within a web-based questionnaire. Disabil Rehabil 2020; 44:1959-1967. [DOI: 10.1080/09638288.2020.1815873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- K. S. Hayward
- Melbourne School of Health Sciences, Florey Institute of Neuroscience and Mental Health and NHMRC CRE in Stroke Rehabilitation and Brain Recovery, University of Melbourne, Melbourne, Australia
| | - L. Jolliffe
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
- Occupational Therapy Department, Alfred Health, Prahran, Australia
| | - L. Churilov
- Melbourne Medical School and NHMRC CRE in Stroke Rehabilitation and Brain Recovery, University of Melbourne, Heidelberg, Australia
| | - A. Herrmann
- Occupational Therapy Department, Alfred Health, Prahran, Australia
| | - G. C. Cloud
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
- Department of Neurology, Alfred Health, Prahran, Australia
| | - N. A. Lannin
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
- Occupational Therapy Department, Alfred Health, Prahran, Australia
| |
Collapse
|
68
|
A Garrido M, A Άlvarez E, L Acevedo F, I Moyano Á, P Castillo N, A Cavada G. Early non-invasive brain stimulation with modified constraint-induced movement therapy for motor and functional upper limb recovery in stroke patients: Study protocol. Br J Occup Ther 2020. [DOI: 10.1177/0308022620904339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Introduction Upper limb motor impairment after a stroke is an important sequela. Constraint-induced movement therapy is a rehabilitation approach that has strong evidence. The incorporation of transcranial direct-current stimulation has been proposed; however, there is a lack of studies that confirm its benefits. The principal aim is to compare the effectiveness of 7 days of active versus sham bi-hemispheric transcranial direct-current stimulation, combined with modified constraint-induced movement therapy, for motor and functional recovery of the hemiparetic upper limb in subacute stroke patients. Method/design Randomized, double blind, sham-controlled, parallel group clinical trial in two stroke units. Participants: adults over 18 years, at least 2 days post unihemispheric stroke event, with hemiparesis, and without severe pain, aphasia or cognitive impairment. Intervention: Patients will receive 7 days of continuous therapy and be assigned to one of the treatment groups: active bi-hemispheric transcranial direct-current stimulation or sham bi-hemispheric transcranial direct-current stimulation. Measurement: Evaluations will take place at days 0, 5, 7 and 10, and at 3rd months. The Fugl-Meyer Assessment – Upper Extremity, Wolf Motor Function Test, Functional Independence Measure and Stroke Impact Scale are considered. Discussion Modified constraint-induced movement therapy plus transcranial direct-current stimulation in subacute stroke patients with hemiparesis could maximize motor and functional recovery. Trial registration: ClinicalTrials.gov identifier NCT03452254.
Collapse
Affiliation(s)
- Maricel A Garrido
- Physical Medicine and Rehabilitation Medicine Service, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Evelyn A Άlvarez
- Faculty of Health Sciences, Universidad Central de Chile, Santiago, Chile and Occupational Therapy and Occupational Science Department, Universidad de Chile, Santiago, Chile
| | - Fabrizio L Acevedo
- Physical Medicine and Rehabilitation Medicine Service, Hospital Clínico San José, Santiago, Chile
| | - Álvaro I Moyano
- Physical Medicine and Rehabilitation Medicine Service, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Natalia P Castillo
- Physical Medicine and Rehabilitation Medicine Service, Hospital Clínico Universidad de Chile, Santiago, Chile
| | | |
Collapse
|
69
|
Ekechukwu END, Olowoyo P, Nwankwo KO, Olaleye OA, Ogbodo VE, Hamzat TK, Owolabi MO. Pragmatic Solutions for Stroke Recovery and Improved Quality of Life in Low- and Middle-Income Countries-A Systematic Review. Front Neurol 2020; 11:337. [PMID: 32695058 PMCID: PMC7336355 DOI: 10.3389/fneur.2020.00337] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/07/2020] [Indexed: 12/22/2022] Open
Abstract
Background: Given the limited healthcare resources in low and middle income countries (LMICs), effective rehabilitation strategies that can be realistically adopted in such settings are required. Objective: A systematic review of literature was conducted to identify pragmatic solutions and outcomes capable of enhancing stroke recovery and quality of life of stroke survivors for low- and middle- income countries. Methods: PubMed, HINARI, and Directory of Open Access Journals databases were searched for published Randomized Controlled Trials (RCTs) till November 2018. Only completed trials published in English with non-pharmacological interventions on adult stroke survivors were included in the review while published protocols, pilot studies and feasibility analysis of trials were excluded. Obtained data were synthesized thematically and descriptively analyzed. Results: One thousand nine hundred and ninety six studies were identified while 347 (65.22% high quality) RCTs were found to be eligible for the review. The most commonly assessed variables (and outcome measure utility) were activities of daily living [75.79% of the studies, with Barthel Index (37.02%)], motor function [66.57%; with Fugl Meyer scale (71.88%)], and gait [31.12%; with 6 min walk test (38.67%)]. Majority of the innovatively high technology interventions such as robot therapy (95.24%), virtual reality (94.44%), transcranial direct current stimulation (78.95%), transcranial magnetic stimulation (88.0%) and functional electrical stimulation (85.00%) were conducted in high income countries. Several traditional and low-cost interventions such as constraint-induced movement therapy (CIMT), resistant and aerobic exercises (R&AE), task oriented therapy (TOT), body weight supported treadmill training (BWSTT) were reported to significantly contribute to the recovery of motor function, activity, participation, and improvement of quality of life after stroke. Conclusion: Several pragmatic, in terms of affordability, accessibility and utility, stroke rehabilitation solutions, and outcome measures that can be used in resource-limited settings were found to be effective in facilitating and enhancing post-stroke recovery and quality of life.
Collapse
Affiliation(s)
- Echezona Nelson Dominic Ekechukwu
- Department of Medical Rehabilitation, Faculty of Health Sciences and Technology, College of Medicine, University of Nigeria, Enugu, Nigeria
- LANCET Physiotherapy and Wellness and Research Centre, Enugu, Nigeria
| | - Paul Olowoyo
- Department of Medicine, Federal Teaching Hospital, Ido Ekiti, Nigeria
- College of Medicine and Health Sciences, Afe Babalola University, Ado Ekiti, Nigeria
| | - Kingsley Obumneme Nwankwo
- Stroke Control Innovations Initiative of Nigeria, Abuja, Nigeria
- Fitness Global Consult Physiotherapy Clinic, Abuja, Nigeria
| | - Olubukola A Olaleye
- Department of Physiotherapy, Faculty of Clinical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | | | - Talhatu Kolapo Hamzat
- Department of Physiotherapy, Faculty of Clinical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Mayowa Ojo Owolabi
- Department of Medicine, Faculty of Clinical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
- University College Hospital, Ibadan, Nigeria
- Blossom Specialist Medical Centre, Ibadan, Nigeria
| |
Collapse
|
70
|
Neurobiology of Recovery of Motor Function after Stroke: The Central Nervous System Biomarker Effects of Constraint-Induced Movement Therapy. Neural Plast 2020; 2020:9484298. [PMID: 32617098 PMCID: PMC7312560 DOI: 10.1155/2020/9484298] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 02/25/2019] [Accepted: 10/31/2019] [Indexed: 12/31/2022] Open
Abstract
Recovery of motor function after stroke involves many biomarkers. This review attempts to identify the biomarker effects responsible for recovery of motor function following the use of Constraint-Induced Movement Therapy (CIMT) and discuss their implications for research and practice. From the studies reviewed, the biomarker effects identified include improved perfusion of motor areas and brain glucose metabolism; increased expression of proteins, namely, Brain-Derived Neurotrophic Factor (BDNF), Vascular Endothelial Growth Factor (VEGF), and Growth-Associated Protein 43 (GAP-43); and decreased level of Gamma-Aminobutyric Acid (GABA). Others include increased cortical activation, increased motor map size, and decreased interhemispheric inhibition of the ipsilesional hemisphere by the contralesional hemisphere. Interestingly, the biomarker effects correlated well with improved motor function. However, some of the biomarker effects have not yet been investigated in humans, and they require that CIMT starts early on poststroke. In addition, one study seems to suggest the combined use of CIMT with other rehabilitation techniques such as Transcortical Direct Stimulation (tDCs) in patients with chronic stroke to achieve the biomarker effects. Unfortunately, there are few studies in humans that implemented CIMT during early poststroke. Thus, it is important that more studies in humans are carried out to determine the biomarker effects of CIMT especially early on poststroke, when there is a greater opportunity for recovery. Furthermore, it should be noted that these effects are mainly in ischaemic stroke.
Collapse
|
71
|
Effect of Early and Intensive Rehabilitation after Ischemic Stroke on Functional Recovery of the Lower Limbs: A Pilot, Randomized Trial. J Stroke Cerebrovasc Dis 2020; 29:104649. [DOI: 10.1016/j.jstrokecerebrovasdis.2020.104649] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/25/2019] [Accepted: 01/06/2020] [Indexed: 01/16/2023] Open
|
72
|
Dos Anjos S, Morris D, Taub E. Constraint-Induced Movement Therapy for Lower Extremity Function: Describing the LE-CIMT Protocol. Phys Ther 2020; 100:698-707. [PMID: 31899495 DOI: 10.1093/ptj/pzz191] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/20/2019] [Accepted: 10/08/2019] [Indexed: 01/26/2023]
Abstract
Constraint-induced movement therapy (CIMT) is comprised of a set of techniques shown to produce significant changes in upper extremity (UE) function following stroke and other disorders. The significant positive results obtained with the UE protocol have led to the development of LE-CIMT, an intervention to improve lower extremity (LE) function. However, some modifications of the UE protocol were needed, including omitting use of a restraint device, development of supervised motor training tasks to emphasize movement of the lower limb, and adaptation of the UE Motor Activity Log for the lower extremity. The LE-CIMT protocol includes: (1) intensive supervised training delivered for 3.5 h/d for 10 consecutive weekdays, (2) use of shaping as a strategy for motor training, (3) application of a transfer package, and (4) strongly encouraging use of the more-affected LE with improved coordination. The transfer package consists of several strategies to facilitate transfer of the improved motor skills developed during supervised treatment to everyday situations. Research to date has yielded positive results. However, the intervention protocol continues to evolve. The purpose of this article is to describe the components of the complete LE-CIMT protocol to promote further development and investigation of this approach.
Collapse
Affiliation(s)
- Sarah Dos Anjos
- Departments of Physical Therapy and Occupational Therapy, University of Alabama at Birmingham, 1720 2nd Avenue South, SHPB360, Birmingham, AL 35294 USA
| | - David Morris
- FAPTA, Department of Physical Therapy, University of Alabama at Birmingham
| | - Edward Taub
- Department of Psychology, University of Alabama at Birmingham
| |
Collapse
|
73
|
Maier M, Ballester BR, Verschure PFMJ. Principles of Neurorehabilitation After Stroke Based on Motor Learning and Brain Plasticity Mechanisms. Front Syst Neurosci 2019; 13:74. [PMID: 31920570 PMCID: PMC6928101 DOI: 10.3389/fnsys.2019.00074] [Citation(s) in RCA: 222] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 11/19/2019] [Indexed: 01/19/2023] Open
Abstract
What are the principles underlying effective neurorehabilitation? The aim of neurorehabilitation is to exploit interventions based on human and animal studies about learning and adaptation, as well as to show that the activation of experience-dependent neuronal plasticity augments functional recovery after stroke. Instead of teaching compensatory strategies that do not reduce impairment but allow the patient to return home as soon as possible, functional recovery might be more sustainable as it ensures a long-term reduction in impairment and an improvement in quality of life. At the same time, neurorehabilitation permits the scientific community to collect valuable data, which allows inferring about the principles of brain organization. Hence neuroscience sheds light on the mechanisms of learning new functions or relearning lost ones. However, current rehabilitation methods lack the exact operationalization of evidence gained from skill learning literature, leading to an urgent need to bridge motor learning theory and present clinical work in order to identify a set of ingredients and practical applications that could guide future interventions. This work aims to unify the neuroscientific literature relevant to the recovery process and rehabilitation practice in order to provide a synthesis of the principles that constitute an effective neurorehabilitation approach. Previous attempts to achieve this goal either focused on a subset of principles or did not link clinical application to the principles of motor learning and recovery. We identified 15 principles of motor learning based on existing literature: massed practice, spaced practice, dosage, task-specific practice, goal-oriented practice, variable practice, increasing difficulty, multisensory stimulation, rhythmic cueing, explicit feedback/knowledge of results, implicit feedback/knowledge of performance, modulate effector selection, action observation/embodied practice, motor imagery, and social interaction. We comment on trials that successfully implemented these principles and report evidence from experiments with healthy individuals as well as clinical work.
Collapse
Affiliation(s)
- Martina Maier
- Laboratory of Synthetic, Perceptive, Emotive and Cognitive Systems, Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Belén Rubio Ballester
- Laboratory of Synthetic, Perceptive, Emotive and Cognitive Systems, Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Paul F. M. J. Verschure
- Laboratory of Synthetic, Perceptive, Emotive and Cognitive Systems, Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Institucio Catalana de Recerca I Estudis Avançats, Barcelona, Spain
| |
Collapse
|
74
|
Abstract
Novel therapeutic intervention that aims to enhance the endogenous recovery potential of the brain during the subacute phase of stroke has produced promising results. The paradigm shift in treatment approaches presents new challenges to preclinical and clinical researchers alike, especially in the functional endpoints domain. Shortcomings of the "neuroprotection" era of stroke research are yet to be fully addressed. Proportional recovery observed in clinics, and potentially in animal models, requires a thorough reevaluation of the methods used to assess recovery. To this end, this review aims to give a detailed evaluation of functional outcome measures used in clinics and preclinical studies. Impairments observed in clinics and animal models will be discussed from a functional testing perspective. Approaches needed to bridge the gap between clinical and preclinical research, along with potential means to measure the moving target recovery, will be discussed. Concepts such as true recovery of function and compensation and methods that are suitable for distinguishing the two are examined. Often-neglected outcomes of stroke, such as emotional disturbances, are discussed to draw attention to the need for further research in this area.
Collapse
Affiliation(s)
- Mustafa Balkaya
- Burke Neurological Research Institute, White Plains, NY, USA
| | - Sunghee Cho
- Burke Neurological Research Institute, White Plains, NY, USA.,Feil Family Brain and Mind Research Institute, Weill Cornell Medicine at Burke Neurological Research Institute, White Plains, NY, USA
| |
Collapse
|
75
|
Quentin R, Awosika O, Cohen LG. Plasticity and recovery of function. HANDBOOK OF CLINICAL NEUROLOGY 2019; 163:473-483. [PMID: 31590747 DOI: 10.1016/b978-0-12-804281-6.00025-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
The frontal lobe plays a crucial role in human motor behavior. It is one of the last areas of the brain to mature, especially the prefrontal regions. After a brief historical perspective on the perceived dichotomy between the view of the brain as a static organ and that of a plastic, constantly changing structure, we discuss the stability/plasticity dilemma including examples of documented cortical reorganization taking place at multiple spatial and temporal scales. We pose that while plasticity is needed for motor learning, stability of the system is necessary for storage and maintenance of memorized skills. We discuss how this plasticity/stability dilemma is resolved along the life span and after a brain injury. We then examine the main challenges that clinicians have to overcome to promote recovery of function in patients with brain lesions, including attempts to use neurostimulation techniques as adjuvant to training-based customary neurorehabilitation.
Collapse
Affiliation(s)
- Romain Quentin
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, Bethesda, MD, United States
| | - Oluwole Awosika
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, Bethesda, MD, United States; University of Cincinnati, College of Medicine, Department of Neurology and Rehabilitation Medicine, Cincinnati, OH, United States
| | - Leonardo G Cohen
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, Bethesda, MD, United States.
| |
Collapse
|
76
|
Wahl AS, Erlebach E, Brattoli B, Büchler U, Kaiser J, Ineichen BV, Mosberger AC, Schneeberger S, Imobersteg S, Wieckhorst M, Stirn M, Schroeter A, Ommer B, Schwab ME. Early reduced behavioral activity induced by large strokes affects the efficiency of enriched environment in rats. J Cereb Blood Flow Metab 2019; 39:2022-2034. [PMID: 29768943 PMCID: PMC6775586 DOI: 10.1177/0271678x18777661] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The majority of stroke patients develop post-stroke fatigue, a symptom which impairs motivation and diminishes the success of rehabilitative interventions. We show that large cortical strokes acutely reduce activity levels in rats for 1-2 weeks as a physiological response paralleled by signs of systemic inflammation. Rats were exposed early (1-2 weeks) or late (3-4 weeks after stroke) to an individually monitored enriched environment to stimulate self-controlled high-intensity sensorimotor training. A group of animals received Anti-Nogo antibodies for the first two weeks after stroke, a neuronal growth promoting immunotherapy already in clinical trials. Early exposure to the enriched environment resulted in poor outcome: Training intensity was correlated to enhanced systemic inflammation and functional impairment. In contrast, animals starting intense sensorimotor training two weeks after stroke preceded by the immunotherapy revealed better recovery with functional outcome positively correlated to the training intensity and the extent of re-innervation of the stroke denervated cervical hemi-cord. Our results suggest stroke-induced fatigue as a biological purposeful reaction of the organism during neuronal remodeling, enabling new circuit formation which will then be stabilized or pruned in the subsequent rehabilitative training phase. However, intense training too early may lead to wrong connections and is thus less effective.
Collapse
Affiliation(s)
- Anna-Sophia Wahl
- Brain Research Institute, University of Zurich, Zurich, Switzerland.,Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.,Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - Eva Erlebach
- Brain Research Institute, University of Zurich, Zurich, Switzerland.,Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Biagio Brattoli
- Computer Vision Group, Interdisciplinary Center for Scientific Computing (IWR), University of Heidelberg, Heidelberg, Germany
| | - Uta Büchler
- Computer Vision Group, Interdisciplinary Center for Scientific Computing (IWR), University of Heidelberg, Heidelberg, Germany
| | - Julia Kaiser
- Brain Research Institute, University of Zurich, Zurich, Switzerland.,Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Benjamin V Ineichen
- Brain Research Institute, University of Zurich, Zurich, Switzerland.,Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Alice C Mosberger
- Brain Research Institute, University of Zurich, Zurich, Switzerland.,Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Shirin Schneeberger
- Brain Research Institute, University of Zurich, Zurich, Switzerland.,Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Stefan Imobersteg
- Brain Research Institute, University of Zurich, Zurich, Switzerland.,Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Martin Wieckhorst
- Brain Research Institute, University of Zurich, Zurich, Switzerland.,Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Martina Stirn
- Clinical Laboratory, University of Zurich, Zurich, Switzerland
| | - Aileen Schroeter
- Institute for Biomedical Imaging, ETH Zurich, Zurich, Switzerland
| | - Bjoern Ommer
- Computer Vision Group, Interdisciplinary Center for Scientific Computing (IWR), University of Heidelberg, Heidelberg, Germany
| | - Martin E Schwab
- Brain Research Institute, University of Zurich, Zurich, Switzerland.,Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
77
|
Waddell KJ, Strube MJ, Tabak RG, Haire-Joshu D, Lang CE. Upper Limb Performance in Daily Life Improves Over the First 12 Weeks Poststroke. Neurorehabil Neural Repair 2019; 33:836-847. [PMID: 31431125 PMCID: PMC7031017 DOI: 10.1177/1545968319868716] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Background. Upper limb (UL) performance, or use, in daily life is complex and likely influenced by many factors. While the recovery trajectory of UL impairment poststroke is well documented, little is known about the recovery trajectory of sensor-measured UL performance in daily life early after stroke and the potential moderating role of psychosocial factors. Objective. To examine the recovery trajectory of UL performance within the first 12 weeks poststroke and characterize the potential moderating role of belief, confidence, and motivation on UL performance. Methods. This was a longitudinal, prospective cohort study quantifying UL performance and related psychosocial factors early after stroke. UL performance was quantified via bilateral, wrist-worn accelerometers over 5 assessment sessions for 24 hours. Belief, confidence, and motivation to use the paretic UL, and self-perceived barriers to UL recovery were quantified via survey. Change in 4 accelerometer variables and the moderating role of psychosocial factors was tested using hierarchical linear modeling. The relationship between self-perceived barriers and UL performance was tested via Spearman rank-order correlation analysis. Results. UL performance improved over the first 12 weeks after stroke. Belief, confidence, and motivation did not moderate UL performance over time. There was a negative relationship between UL performance and self-perceived barriers to UL recovery at week 2, which declined over time. Conclusions. Sensor-measured UL performance can improve early after stroke. Early after stroke, rehabilitation interventions may not need to directly target belief, confidence, and motivation but may instead focus on reducing self-perceived barriers to UL recovery.
Collapse
Affiliation(s)
| | - Michael J Strube
- Psychological and Brain Sciences, Washington University, St. Louis, MO
| | | | | | - Catherine E. Lang
- Program in Physical Therapy, Washington University, St. Louis, MO
- Program in Occupational Therapy, Washington University, St. Louis, MO
- Department of Neurology, Washington University, St. Louis, MO
| |
Collapse
|
78
|
Lee HJ, Moon HI, Kim JS, Yi TI. Is there a dose-dependent effect of modified constraint-induced movement therapy in patients with hemiplegia? NeuroRehabilitation 2019; 45:57-66. [PMID: 31403953 DOI: 10.3233/nre-192721] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Impairment of upper extremity function is a common sequelae of stroke. It has been reported that modified constraint-induced movement therapy (mCIMT) could prove to be effective. OBJECTIVE To investigate the relationship between the intensity of rehabilitation such as treatment and constraining time, and the functional outcome for the paretic upper extremity in stroke patients through mCIMT. METHODS We conducted an observational prospective study of 31 patients with hemiplegia and subacute or chronic stroke. The mCIMT was performed for two weeks. Rehabilitation time and constraining time were variable among patients. The rehabilitation time included an individualized task-oriented program and conventional occupation treatment with an individualized therapist. The constraining time, with mit or splint, was also asked to self-record individually. The outcome was evaluated on the more affected side by the Wolf Motor Function Test, Fugl-Meyer Assessment, Motor Activity Log 14, and Functional Independence Measure for self-care tasks after the therapy. RESULTS All participants after the modified constraint-induced movement therapy program for two weeks improved on the evaluated outcome measures (P < 0.05). No significant correlation was found between the dose-dependent treatment or constraining time and outcomes. Comparisons improvement with subgroups based on the duration from onset, constraining component, dominant hand consistent with lesion side of stroke, and initial medical research council score for muscle strength, also showed no significant differences. CONCLUSIONS This is the first study on the effects of intensity of mCIMT with respect to time-dosage. Although all patients in this study showed improved functional status, no significant correlation between dose-dependent rehabilitation or constraining time and outcomes was seen.
Collapse
Affiliation(s)
- Hyo Jeong Lee
- Department of Rehabilitation Medicine, Gangnam Severance Hospital, Rehabilitation Institute of Neuromuscular Disease, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Im Moon
- Department of Rehabilitation Medicine, Bundang Jesaeng General Hospital, Korea
| | - Joo Sup Kim
- Department of Rehabilitation Medicine, Bundang Jesaeng General Hospital, Korea
| | - Tae Im Yi
- Department of Rehabilitation Medicine, Bundang Jesaeng General Hospital, Korea
| |
Collapse
|
79
|
Dynamic Interaction between Cortico-Brainstem Pathways during Training-Induced Recovery in Stroke Model Rats. J Neurosci 2019; 39:7306-7320. [PMID: 31395620 DOI: 10.1523/jneurosci.0649-19.2019] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/22/2019] [Accepted: 07/31/2019] [Indexed: 11/21/2022] Open
Abstract
Reorganization of residual descending motor circuits underlies poststroke recovery. We previously clarified a causal relationship between the cortico-rubral tract and intensive limb use-induced functional recovery after internal capsule hemorrhage (ICH). However, other descending tracts, such as the cortico-reticular tract, might also be involved in rehabilitation-induced compensation. To investigate whether rehabilitation-induced recovery after ICH involves a shift in the compensatory circuit from the cortico-rubral tract to the cortico-reticular tract, we established loss of function of the cortico-rubral tract or/and cortico-reticular tract using two sets of viral vectors comprising the Tet-on system and designer receptors exclusively activated by the designer drug system. We used an ICH model that destroyed almost 60% of the corticofugal fibers. Anterograde tracing in rehabilitated rats revealed abundant sprouting of axons from the motor cortex in the red nucleus but not in the medullary reticular formation during the early phase of recovery. This primary contribution of the cortico-rubral tract was demonstrated by its selective blockade, whereas selective cortico-reticular tract silencing had little effect. Interestingly, cortico-rubral tract blockade from the start of rehabilitation induced an obvious increase of axon sprouting in the reticular formation with substantial functional recovery. Additional cortico-reticular tract silencing under the cortico-rubral tract blockade significantly worsened the recovered forelimb function. Furthermore, the alternative recruitment of the cortico-reticular tract was gradually induced by intensive limb use under cortico-rubral tract blockade, in which cortico-reticular tract silencing caused an apparent motor deficit. These findings indicate that individual cortico-brainstem pathways have dynamic compensatory potency to support rehabilitative functional recovery after ICH.SIGNIFICANCE STATEMENT This study aimed to clarify the interaction between the cortico-rubral and the cortico-reticular tract during intensive rehabilitation and functional recovery after capsular stroke. Pathway-selective disturbance by two sets of viral vectors revealed that the cortico-rubral tract was involved in rehabilitation-induced recovery of forelimb function from an early phase after internal capsule hemorrhage, but that the cortico-reticular tract was not. The sequential disturbance of both tracts revealed that the cortico-reticular tract was recruited and involved in rehabilitation-induced recovery when the cortico-rubral tract failed to function. Our data demonstrate a dynamic compensatory action of individual cortico-brainstem pathways for recovery through poststroke rehabilitation.
Collapse
|
80
|
Hayward KS, Kramer SF, Thijs V, Ratcliffe J, Ward NS, Churilov L, Jolliffe L, Corbett D, Cloud G, Kaffenberger T, Brodtmann A, Bernhardt J, Lannin NA. A systematic review protocol of timing, efficacy and cost effectiveness of upper limb therapy for motor recovery post-stroke. Syst Rev 2019; 8:187. [PMID: 31345263 PMCID: PMC6657039 DOI: 10.1186/s13643-019-1093-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 07/02/2019] [Indexed: 02/21/2023] Open
Abstract
BACKGROUND Improving upper limb (UL) motor recovery after stroke represents a major clinical and scientific goal. We aim to complete three systematic reviews to estimate the (1) association between time to start of UL therapy and motor recovery, (2) relative efficacy of different UL therapy approaches post-stroke and (3) cost-effectiveness of UL therapy interventions. METHODS We have designed a systematic review protocol to address three systematic review questions that were each registered with PROSPERO. The search will be conducted in MEDLINE, EMBASE, and Cochrane Controlled Register of Trials. We will include randomised controlled trials, non-randomised clinical trials, before-after studies and observational studies of adult stroke survivors with an average stroke onset < 6 months, undergoing hospital-based therapy to improve UL function. Eligible interventions will aim to promote UL functional recovery. Two reviewers will independently screen, select and extract data. Study risk of bias will be appraised using appropriate tools. Clinical measures of motor recovery will be investigated (primary measure Fugl Meyer UL assessment), as well as measures of health-related quality of life (primary measure EQ-5D) and all cost-effectiveness analyses completed. Secondary outcomes include therapy dose (minutes, weeks, repetitions as available) and safety (i.e. adverse events, serious adverse events). A narrative synthesis will describe quality and content of the evidence. If feasible, we will conduct random effects meta-analyses where appropriate. DISCUSSION We anticipate the findings of this review will increase our understanding of UL therapy and inform the generation of novel, data-driven hypotheses for future UL therapy research post-stroke. SYSTEMATIC REVIEW REGISTRATION PROSPERO, http://www.crd.york.ac.uk/PROSPERO/display_record.php?ID=CRD42018019367, http://www.crd.york.ac.uk/PROSPERO/display_record.php?ID=CRD42018111629, http://www.crd.york.ac.uk/PROSPERO/display_record.php?ID=CRD42018111628.
Collapse
Affiliation(s)
- Kathryn S. Hayward
- Melbourne School of Health Sciences, University of Melbourne, Parkville, Melbourne, Australia
- AVERT Early Rehabilitation Research Group, Stroke Theme, Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, Australia
- NHMRC CRE in Stroke Rehabilitation and Brain Recovery, University of Melbourne, Heidelberg, Melbourne, VIC 3084 Australia
| | - Sharon F. Kramer
- AVERT Early Rehabilitation Research Group, Stroke Theme, Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, Australia
| | - Vincent Thijs
- Stroke Theme, Florey Institute of Neuroscience and Mental Health and Neurology Department, Austin Health, Heidelberg, Melbourne, VIC Australia
| | - Julie Ratcliffe
- College of Nursing and Health Sciences, Flinders University, Adelaide, Australia
| | - Nick S. Ward
- UCL Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Leonid Churilov
- NHMRC CRE in Stroke Rehabilitation and Brain Recovery, University of Melbourne, Heidelberg, Melbourne, VIC 3084 Australia
- Melbourne Medical School, University of Melbourne, Parkville, Melbourne, Australia
| | - Laura Jolliffe
- College of Science, Health and Engineering, La Trobe University, Bundoora, Melbourne, VIC Australia
- Occupational Therapy Department, Alfred Health, Prahran, Melbourne, VIC Australia
| | - Dale Corbett
- Department of Cellular and Molecular Medicine, University of Ottawa and Canadian Partnership for Stroke Recovery, Ottawa, Canada
| | - Geoffrey Cloud
- Department of Neurology, Alfred Health, Prahran, Melbourne, VIC Australia
- The Department of Clinical Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Tina Kaffenberger
- AVERT Early Rehabilitation Research Group, Stroke Theme, Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, Australia
- NHMRC CRE in Stroke Rehabilitation and Brain Recovery, University of Melbourne, Heidelberg, Melbourne, VIC 3084 Australia
| | - Amy Brodtmann
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, Heidelberg, Melbourne, VIC Australia
- Neurology Department, Austin Health, Heidelberg, Melbourne, VIC Australia
- Eastern Clinical Research Unit and Neurology Department, Eastern Health, Melbourne, VIC Australia
| | - Julie Bernhardt
- AVERT Early Rehabilitation Research Group, Stroke Theme, Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, Australia
- NHMRC CRE in Stroke Rehabilitation and Brain Recovery, University of Melbourne, Heidelberg, Melbourne, VIC 3084 Australia
| | - Natasha A. Lannin
- Occupational Therapy Department, Alfred Health, Prahran, Melbourne, VIC Australia
- The Department of Clinical Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
- School of Allied Health (Occupational Therapy), La Trobe University, Bundoora, Melbourne, VIC Australia
| |
Collapse
|
81
|
Conroy SS, Wittenberg GF, Krebs HI, Zhan M, Bever CT, Whitall J. Robot-Assisted Arm Training in Chronic Stroke: Addition of Transition-to-Task Practice. Neurorehabil Neural Repair 2019; 33:751-761. [PMID: 31328671 DOI: 10.1177/1545968319862558] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background. Robot-assisted therapy provides high-intensity arm rehabilitation that can significantly reduce stroke-related upper extremity (UE) deficits. Motor improvement has been shown at the joints trained, but generalization to real-world function has not been profound. Objective. To investigate the efficacy of robot-assisted therapy combined with therapist-assisted task training versus robot-assisted therapy alone on motor outcomes and use in participants with moderate to severe chronic stroke-related arm disability. Methods. This was a single-blind randomized controlled trial of two 12-week robot-assisted interventions; 45 participants were stratified by Fugl-Meyer (FMA) impairment (mean 21 ± 1.36) to 60 minutes of robot therapy (RT; n = 22) or 45 minutes of RT combined with 15 minutes therapist-assisted transition-to-task training (TTT; n = 23). The primary outcome was the mean FMA change at week 12 using a linear mixed-model analysis. A subanalysis included the Wolf Motor Function Test (WMFT) and Stroke Impact Scale (SIS), with significance P <.05. Results. There was no significant 12-week difference in FMA change between groups, and mean FMA gains were 2.87 ± 0.70 and 4.81 ± 0.68 for RT and TTT, respectively. TTT had greater 12-week secondary outcome improvements in the log WMFT (-0.52 ± 0.06 vs -0.18 ± 0.06; P = .01) and SIS hand (20.52 ± 2.94 vs 8.27 ± 3.03; P = .03). Conclusion. Chronic UE motor deficits are responsive to intensive robot-assisted therapy of 45 or 60 minutes per session duration. The replacement of part of the robotic training with nonrobotic tasks did not reduce treatment effect and may benefit stroke-affected hand use and motor task performance.
Collapse
Affiliation(s)
| | - George F Wittenberg
- 2 University of Maryland School of Medicine, Baltimore, MD, USA.,3 VA Pittsburgh Healthcare System, Pittsburgh, PA, USA.,4 University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Min Zhan
- 2 University of Maryland School of Medicine, Baltimore, MD, USA
| | - Christopher T Bever
- 1 Baltimore VA Medical Center, Baltimore, MD, USA.,2 University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jill Whitall
- 2 University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
82
|
Patel J, Fluet G, Qiu Q, Yarossi M, Merians A, Tunik E, Adamovich S. Intensive virtual reality and robotic based upper limb training compared to usual care, and associated cortical reorganization, in the acute and early sub-acute periods post-stroke: a feasibility study. J Neuroeng Rehabil 2019; 16:92. [PMID: 31315612 PMCID: PMC6637633 DOI: 10.1186/s12984-019-0563-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 07/03/2019] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND There is conflict regarding the benefits of greater amounts of intensive upper limb rehabilitation in the early period post-stroke. This study was conducted to test the feasibility of providing intensive therapy during the early period post-stroke and to develop a randomized control trial that is currently in process. Specifically, the study investigated whether an additional 8 h of specialized, intensive (200-300 separate hand or arm movements per hour) virtual reality (VR)/robotic based upper limb training introduced within 1-month post-stroke resulted in greater improvement in impairment and behavior, and distinct changes in cortical reorganization measured via Transcranial Magnetic Stimulation (TMS), compared to that of a control group. METHODS Seven subjects received 8-1 h sessions of upper limb VR/robotic training in addition to their inpatient therapy (PT, OT, ST). Six subjects only received their inpatient therapy. All were tested on measures of impairment [Upper Extremity Fugl-Meyer Assessment (UEFMA), Wrist AROM, Maximum Pinch Force], behavior [Wolf Motor Function Test (WMFT)], and also received TMS mapping until 6 months post training. ANOVAs were conducted to measure differences between groups across time for all outcome measures. Associations between changes in ipsilesional cortical maps during the early period of enhanced neuroplasticity and long-term changes in upper limb impairment and behavior measures were evaluated. RESULTS The VR/robotic group made significantly greater improvements on UEFMA and Wrist AROM scores compared to the usual care group. There was also less variability in the association between changes in the First Dorsal Interosseus (FDI) muscle map area and WMFT and Maximum Force change scores for the VR/robotic group. CONCLUSIONS An additional 8 h of intensive VR/robotic based upper limb training initiated within the first month post-stroke may promote greater gains in impairment compared to usual care alone. Importantly, the data presented demonstrated the feasibility of conducting this intervention and multiple outcome measures (impairment, behavioral, neurophysiological) in the early period post-stroke.
Collapse
Affiliation(s)
- Jigna Patel
- Department of Rehabilitation and Movement Sciences, School of Health Professions, Rutgers University, The State University of New Jersey, 65 Bergen Street, Newark, NJ 07107 USA
| | - Gerard Fluet
- Department of Rehabilitation and Movement Sciences, School of Health Professions, Rutgers University, The State University of New Jersey, 65 Bergen Street, Newark, NJ 07107 USA
| | - Qinyin Qiu
- Department of Rehabilitation and Movement Sciences, School of Health Professions, Rutgers University, The State University of New Jersey, 65 Bergen Street, Newark, NJ 07107 USA
| | - Mathew Yarossi
- Movement Neuroscience Laboratory, Department of Physical Therapy, Bouve College of Health Sciences, Movement and Rehabilitation Science, Northeastern University, 308C Robinson Hall – 360 Huntington Avenue, Boston, MA 02115 USA
| | - Alma Merians
- Department of Rehabilitation and Movement Sciences, School of Health Professions, Rutgers University, The State University of New Jersey, 65 Bergen Street, Newark, NJ 07107 USA
| | - Eugene Tunik
- Movement Neuroscience Laboratory, Department of Physical Therapy, Bouve College of Health Sciences, Movement and Rehabilitation Science, Northeastern University, 308C Robinson Hall – 360 Huntington Avenue, Boston, MA 02115 USA
| | - Sergei Adamovich
- Department of Biomedical Engineering, New Jersey Institute of Technology, 616 Fenster Hall – 323 Dr. MLK Jr. BLVD, Newark, NJ 07102 USA
| |
Collapse
|
83
|
Abstract
Background and Purpose- For stroke rehabilitation, task-specific training in animal models and human rehabilitation trials is considered important to modulate neuroplasticity, promote motor learning, and functional recovery. Little is known about what constitutes an effective dosage of therapy. Methods- This is a parallel group, 4 arms, single-blind, phase IIb, randomized controlled trial of 4 dosages of arm therapy delivered in an outpatient setting chronically after stroke. Participants were randomized into groups that varied in duration of scheduled therapy (ie, 0, 15, 30, or 60 hours). Forty-one participants completed the study. Planned primary analyses used linear mixed effects regression to model changes from baseline to postintervention in the Motor Activity Log-Quality of Movement rating and the Wolf Motor Function Test time score over 3 weeks of training as a function of therapy dosage. Results- We observed a dose response for the Motor Activity Log-Quality of Movement: the model that included dose and dose by week interaction significantly better fit the data than the model that included week only (log-likelihood test, P=0.0026). In addition, the greater the dosage of training, the greater the change in Motor Activity Log-Quality of Movement, with the dose by week interaction parameter equal to 0.0045 ( P=0.0016; 95% CI, 0.0018-0.0071). Over the 3 weeks of therapy, there was a gain of 0.92 in Motor Activity Log-Quality of Movement for the 60-hour group compared to the 0-hour group. There was no dose response for the Wolf Motor Function Test. Conclusions- For mild-to-moderately impaired stroke survivors, the dosage of patient-centered, task-specific practice systematically influences the gain in quality of arm use but not functional capacity. We caution that we may have been underpowered for the functional capacity outcome. These findings highlight the importance of recovery outcomes that capture arm use in the natural environment. Clinical Trial Registration- URL: https://www.clinicaltrials.gov . Unique identifier: NCT01749358.
Collapse
Affiliation(s)
- Carolee Winstein
- Department of Neurology, Keck School of Medicine (C.W.), University of Southern California, Los Angeles
| | - Bokkyu Kim
- Department of Physical Therapy Education and Department of Neurology, SUNY Upstate Medical University, Syracuse, NY (B.K.)
| | - Sujin Kim
- Department of Physical Therapy, Jeonju University, South Korea (S.K.)
| | - Clarisa Martinez
- From the Division of Biokinesiology and Physical Therapy, Herman Ostrow School of Dentistry (N.S., C.M.), University of Southern California, Los Angeles
| | - Nicolas Schweighofer
- From the Division of Biokinesiology and Physical Therapy, Herman Ostrow School of Dentistry (N.S., C.M.), University of Southern California, Los Angeles
| |
Collapse
|
84
|
Okabe N, Himi N, Nakamura-Maruyama E, Hayashi N, Sakamoto I, Hasegawa T, Miyamoto O. Very Early Initiation Reduces Benefits of Poststroke Rehabilitation Despite Increased Corticospinal Projections. Neurorehabil Neural Repair 2019; 33:538-552. [PMID: 31140375 DOI: 10.1177/1545968319850132] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background. Although the effect of rehabilitation is influenced by aspects of the training protocol, such as initiation time and intensity of training, it is unclear whether training protocol modifications affect the corticospinal projections. Objective. The present study was designed to investigate how modification of initiation time (time-dependency) and affected forelimb use (use-dependency) influence the effects of rehabilitation on functional recovery and corticospinal projections. Methods. The time-dependency of rehabilitation was investigated in rats forced to use their impaired forelimb immediately, at 1 day, and 4 days after photothrombotic stroke. The use-dependency of rehabilitation was investigated by comparing rats with affected forelimb immobilization (forced nonuse), unaffected forelimb immobilization (forced use), and a combination of forced use and skilled forelimb training beginning at 4 days after stroke. Results. Although forced use beginning 1 day or 4 days after stroke caused significant functional improvement, immediate forced limb use caused no functional improvement. On the other hand, a combination of forced use and skilled forelimb training boosted functional recovery in multiple tasks compared to simple forced use treatment. Histological examination showed that no treatment caused brain damage. However, a retrograde tracer study revealed that immediate forced use and combination training, including forced use and skilled forelimb training, increased corticospinal projections from the contralesional and ipsilesional motor cortex, respectively. Conclusions. These results indicate that although both very early initiation time and enhanced skilled forelimb use increased corticospinal projections, premature initiation time hampers the functional improvement induced by poststroke rehabilitation.
Collapse
Affiliation(s)
- Naohiko Okabe
- 1 Kawasaki Medical School, Kurashiki City, Okayama, Japan.,2 David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Naoyuki Himi
- 1 Kawasaki Medical School, Kurashiki City, Okayama, Japan
| | | | - Norito Hayashi
- 1 Kawasaki Medical School, Kurashiki City, Okayama, Japan
| | - Issei Sakamoto
- 1 Kawasaki Medical School, Kurashiki City, Okayama, Japan
| | - Toru Hasegawa
- 1 Kawasaki Medical School, Kurashiki City, Okayama, Japan
| | - Osamu Miyamoto
- 1 Kawasaki Medical School, Kurashiki City, Okayama, Japan
| |
Collapse
|
85
|
Disorders of fine motor skills after a stroke: the processes of neuroplasticity and sensorimotor integration. КЛИНИЧЕСКАЯ ПРАКТИКА 2019. [DOI: 10.17816/clinpract10116-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Background. Impairment of fine motor skills in the hand is one of the most frequent causes of the persistent loss of professional skills, social maladjustment, and the impossibility of self-care in patients after a stroke, which ultimately leads to a significant reduction in the quality of their life. The article discusses the features of the fine motor skills’ impairment in the hand in patients after a stroke, in the context of a lateralized hemispheric lesion.
Methods. We have studied 26 patients after a primary ischemic stroke in the pool of middle cerebral artery of the right (n=12) or left (n=14) brain hemisphere. The average age of patients was 55.7±7.3 years. Patients with a right-sided ischemic stroke were comparable to those with a left-sided stroke in their age, disease duration, size of the lesion and the gender ratio.
Results. All the patients after an ischemic stroke had motor impairment in the form of a hemiparesis of a mild or moderate degree.
Discussion. We suggest the existence of differentiated mechanisms for the development of fine and highly coordinated voluntary movements in the hand of patients after an ischemic stroke, depending on the lateralization of the supratentorial lesion: diffuse deficit of the afferent support in a right-sided ischemic stroke vs. bilateral efferent deficit for a left hemisphere lesion.
Conclusion. The obtained data on the differentiated mechanisms for the development of fine and highly coordinated voluntary movements in the hand of patients after an ischemic stroke warrant the necessity of a further, more targeted research on those disorders in the post-stroke period, on order to optimize the existing rehabilitation approaches and improve the functional potential and quality of life of such patients.
Collapse
|
86
|
Remsik AB, Williams L, Gjini K, Dodd K, Thoma J, Jacobson T, Walczak M, McMillan M, Rajan S, Young BM, Nigogosyan Z, Advani H, Mohanty R, Tellapragada N, Allen J, Mazrooyisebdani M, Walton LM, van Kan PLE, Kang TJ, Sattin JA, Nair VA, Edwards DF, Williams JC, Prabhakaran V. Ipsilesional Mu Rhythm Desynchronization and Changes in Motor Behavior Following Post Stroke BCI Intervention for Motor Rehabilitation. Front Neurosci 2019; 13:53. [PMID: 30899211 PMCID: PMC6417367 DOI: 10.3389/fnins.2019.00053] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 01/21/2019] [Indexed: 01/26/2023] Open
Abstract
Loss of motor function is a common deficit following stroke insult and often manifests as persistent upper extremity (UE) disability which can affect a survivor's ability to participate in activities of daily living. Recent research suggests the use of brain-computer interface (BCI) devices might improve UE function in stroke survivors at various times since stroke. This randomized crossover-controlled trial examines whether intervention with this BCI device design attenuates the effects of hemiparesis, encourages reorganization of motor related brain signals (EEG measured sensorimotor rhythm desynchronization), and improves movement, as measured by the Action Research Arm Test (ARAT). A sample of 21 stroke survivors, presenting with varied times since stroke and levels of UE impairment, received a maximum of 18-30 h of intervention with a novel electroencephalogram-based BCI-driven functional electrical stimulator (EEG-BCI-FES) device. Driven by spectral power recordings from contralateral EEG electrodes during cued attempted grasping of the hand, the user's input to the EEG-BCI-FES device modulates horizontal movement of a virtual cursor and also facilitates concurrent stimulation of the impaired UE. Outcome measures of function and capacity were assessed at baseline, mid-therapy, and at completion of therapy while EEG was recorded only during intervention sessions. A significant increase in r-squared values [reflecting Mu rhythm (8-12 Hz) desynchronization as the result of attempted movements of the impaired hand] presented post-therapy compared to baseline. These findings suggest that intervention corresponds with greater desynchronization of Mu rhythm in the ipsilesional hemisphere during attempted movements of the impaired hand and this change is related to changes in behavior as a result of the intervention. BCI intervention may be an effective way of addressing the recovery of a stroke impaired UE and studying neuromechanical coupling with motor outputs. Clinical Trial Registration: ClinicalTrials.gov, identifier NCT02098265.
Collapse
Affiliation(s)
- Alexander B. Remsik
- Department of Radiology, University of Wisconsin–Madison, Madison, WI, United States
- Department of Kinesiology, University of Wisconsin–Madison, Madison, WI, United States
- Institute for Clinical and Translational Research, University of Wisconsin–Madison, Madison, WI, United States
| | - Leroy Williams
- Department of Radiology, University of Wisconsin–Madison, Madison, WI, United States
- Department of Educational Psychology, University of Wisconsin–Madison, Madison, WI, United States
- Center for Women’s Health Research, University of Wisconsin–Madison, Madison, WI, United States
| | - Klevest Gjini
- Department of Radiology, University of Wisconsin–Madison, Madison, WI, United States
- Department of Neurology, University of Wisconsin–Madison, Madison, WI, United States
| | - Keith Dodd
- Department of Radiology, University of Wisconsin–Madison, Madison, WI, United States
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, WI, United States
| | - Jaclyn Thoma
- Department of Radiology, University of Wisconsin–Madison, Madison, WI, United States
- Neuroscience Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Tyler Jacobson
- Department of Radiology, University of Wisconsin–Madison, Madison, WI, United States
- Neuroscience Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Matt Walczak
- Department of Radiology, University of Wisconsin–Madison, Madison, WI, United States
| | - Matthew McMillan
- Department of Radiology, University of Wisconsin–Madison, Madison, WI, United States
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, WI, United States
| | - Shruti Rajan
- Department of Radiology, University of Wisconsin–Madison, Madison, WI, United States
- Department of Psychology, University of Wisconsin–Madison, Madison, WI, United States
| | - Brittany M. Young
- Department of Radiology, University of Wisconsin–Madison, Madison, WI, United States
- Institute for Clinical and Translational Research, University of Wisconsin–Madison, Madison, WI, United States
- Neuroscience Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Clinical Neuroengineering Training Program, University of Wisconsin–Madison, Madison, WI, United States
- Medical Scientist Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Zack Nigogosyan
- Department of Radiology, University of Wisconsin–Madison, Madison, WI, United States
| | - Hemali Advani
- Department of Radiology, University of Wisconsin–Madison, Madison, WI, United States
| | - Rosaleena Mohanty
- Department of Radiology, University of Wisconsin–Madison, Madison, WI, United States
- Department of Electrical and Computer Engineering, University of Wisconsin–Madison, Madison, WI, United States
| | - Neelima Tellapragada
- Department of Radiology, University of Wisconsin–Madison, Madison, WI, United States
| | - Janerra Allen
- Department of Materials Science and Engineering, University of Wisconsin–Madison, Madison, WI, United States
| | | | - Leo M. Walton
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, WI, United States
- Neuroscience Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Peter L. E. van Kan
- Department of Kinesiology, University of Wisconsin–Madison, Madison, WI, United States
| | - Theresa J. Kang
- Department of Radiology, University of Wisconsin–Madison, Madison, WI, United States
- Department of Neurology, University of Wisconsin–Madison, Madison, WI, United States
| | - Justin A. Sattin
- Neuroscience Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Veena A. Nair
- Department of Radiology, University of Wisconsin–Madison, Madison, WI, United States
| | | | - Justin C. Williams
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, WI, United States
- Department of Neurological Surgery, University of Wisconsin–Madison, Madison, WI, United States
| | - Vivek Prabhakaran
- Department of Radiology, University of Wisconsin–Madison, Madison, WI, United States
- Department of Neurology, University of Wisconsin–Madison, Madison, WI, United States
- Neuroscience Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Department of Psychology, University of Wisconsin–Madison, Madison, WI, United States
- Medical Scientist Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Department of Psychiatry, University of Wisconsin–Madison, Madison, WI, United States
| |
Collapse
|
87
|
Hosseini ZS, Peyrovi H, Gohari M. The Effect of Early Passive Range of Motion Exercise on Motor Function of People with Stroke: a Randomized Controlled Trial. J Caring Sci 2019; 8:39-44. [PMID: 30915312 PMCID: PMC6428159 DOI: 10.15171/jcs.2019.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/06/2018] [Indexed: 11/12/2022] Open
Abstract
Introduction: Frequent and regular exercises in the first six months of stroke may cause return of a significant portion of sensory and motor function of patients. This study aimed to examine the effects of passive range of motion exercise in the acute phase after stroke on motor function of the patients. Methods: A randomized controlled trial study was conducted. The patients with first ischemic stroke were randomly allocated to either experimental (n=33) or control (n=19) group. Passive range of motion exercises was performed in the experimental group during the first 48 hours of admission as 6 to 8 times of 30 minute exercise. Before intervention, and one and three months after intervention, motor function were measured by muscle strength grading scale (Oxford scale) and compared. SPSS version 13.0 for Windows was used for statistical analysis. Frequency distribution was used to describe the data. For comparisons, paired t-test, independent t-test was used, and repeated measures test was used. Results: In acute phase, the intervention in the experimental group led to significant improvement of motor function between the first and third month in both the upper and lower extremities. In control group, improvement was observed only in the muscle strength of upper extremity in the first and third month compared to pre-intervention measurement. The greatest improvement was observed in the interval from base to one month in the upper extremity, and base to the first month and the first to the third month in the lower extremity. Conclusion: It is recommended to use early passive range of motion exercise as part of care for people with stroke during the acute phase of the disease.
Collapse
Affiliation(s)
- Zahra-Sadat Hosseini
- Emergency Intensive care of neurosurgery, Poursina Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Hamid Peyrovi
- Nursing Care Research Centre, School of Nursing and Midwifery, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmoodreza Gohari
- Department of Statistics, School of Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
88
|
Zeiler SR. Should We Care About Early Post-Stroke Rehabilitation? Not Yet, but Soon. Curr Neurol Neurosci Rep 2019; 19:13. [DOI: 10.1007/s11910-019-0927-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
89
|
Lewthwaite R, Winstein CJ, Lane CJ, Blanton S, Wagenheim BR, Nelsen MA, Dromerick AW, Wolf SL. Accelerating Stroke Recovery: Body Structures and Functions, Activities, Participation, and Quality of Life Outcomes From a Large Rehabilitation Trial. Neurorehabil Neural Repair 2019; 32:150-165. [PMID: 29554849 DOI: 10.1177/1545968318760726] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Task-oriented therapies have been developed to address significant upper extremity disability that persists after stroke. Yet, the extent of and approach to rehabilitation and recovery remains unsatisfactory to many. OBJECTIVE To compare a skill-directed investigational intervention with usual care treatment for body functions and structures, activities, participation, and quality of life outcomes. METHODS On average, 46 days poststroke, 361 patients were randomized to 1 of 3 outpatient therapy groups: a patient-centered Accelerated Skill Acquisition Program (ASAP), dose-equivalent usual occupational therapy (DEUCC), or usual therapy (UCC). Outcomes were taken at baseline, posttreatment, 6 months, and 1 year after randomization. Longitudinal mixed effect models compared group differences in poststroke improvement during treatment and follow-up phases. RESULTS Across all groups, most improvement occurred during the treatment phase, followed by change more slowly during follow-up. Compared with DEUCC and UCC, ASAP group gains were greater during treatment for Stroke Impact Scale Hand, Strength, Mobility, Physical Function, and Participation scores, self-efficacy, perceived health, reintegration, patient-centeredness, and quality of life outcomes. ASAP participants reported higher Motor Activity Log-28 Quality of Movement than UCC posttreatment and perceived greater study-related improvements in quality of life. By end of study, all groups reached similar levels with only limited group differences. CONCLUSIONS Customized task-oriented training can be implemented to accelerate gains across a full spectrum of patient-reported outcomes. While group differences for most outcomes disappeared at 1 year, ASAP participants achieved these outcomes on average 8 months earlier (ClinicalTrials.gov: Interdisciplinary Comprehensive Arm Rehabilitation Evaluation [ICARE] Stroke Initiative, at www.ClinicalTrials.gov/ClinicalTrials.gov . Identifier: NCT00871715).
Collapse
Affiliation(s)
- Rebecca Lewthwaite
- 1 University of Southern California, Los Angeles, CA, USA.,2 Rancho Los Amigos National Rehabilitation Center, Downey, CA, USA
| | | | | | | | - Burl R Wagenheim
- 2 Rancho Los Amigos National Rehabilitation Center, Downey, CA, USA
| | | | - Alexander W Dromerick
- 4 Georgetown University, Washington, DC, USA.,5 MedStar National Rehabilitation Hospital, Washington, DC, USA.,6 VA Medical Center, Washington, DC, USA
| | - Steven L Wolf
- 3 Emory University, Atlanta, GA, USA.,7 VA Center on Visual and Neurocognitive Rehabilitation, Decatur, GA, USA
| |
Collapse
|
90
|
Robbins GT, Yih E, Chou R, Gundersen AI, Schnieder JC, Bean JF, Zafonte RD. Geriatric rehabilitation. HANDBOOK OF CLINICAL NEUROLOGY 2019; 167:531-543. [PMID: 31753153 DOI: 10.1016/b978-0-12-804766-8.00029-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Rehabilitation of elderly persons is accompanied by unique challenges, as the physiologic changes with aging may be compounded by a multitude of psychologic, social, and genetic factors. In this chapter we present an overview of the impairments that develop with aging. We discuss factors to consider when evaluating a patient with functional complaints and opportunities for treatment. We provide an overview of common injuries encountered in the elderly, prognostication, and general strategies employed for rehabilitation. New treatment options and areas of ongoing research are also discussed.
Collapse
Affiliation(s)
- Gregory T Robbins
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Charlestown, MA, United States; Massachusetts General Hospital, Boston, MA, United States; Brigham and Women's Hospital, Boston, MA, United States; Boston Veterans Administration, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Erika Yih
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Charlestown, MA, United States; Massachusetts General Hospital, Boston, MA, United States; Brigham and Women's Hospital, Boston, MA, United States; Boston Veterans Administration, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Raymond Chou
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Charlestown, MA, United States; Massachusetts General Hospital, Boston, MA, United States; Brigham and Women's Hospital, Boston, MA, United States; Boston Veterans Administration, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Alex I Gundersen
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Charlestown, MA, United States; Massachusetts General Hospital, Boston, MA, United States; Brigham and Women's Hospital, Boston, MA, United States; Boston Veterans Administration, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Jeffrey C Schnieder
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Charlestown, MA, United States; Massachusetts General Hospital, Boston, MA, United States; Brigham and Women's Hospital, Boston, MA, United States; Boston Veterans Administration, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Jonathan F Bean
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Charlestown, MA, United States; Massachusetts General Hospital, Boston, MA, United States; Brigham and Women's Hospital, Boston, MA, United States; Boston Veterans Administration, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Ross D Zafonte
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Charlestown, MA, United States; Massachusetts General Hospital, Boston, MA, United States; Brigham and Women's Hospital, Boston, MA, United States; Boston Veterans Administration, Boston, MA, United States; Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
91
|
Liu XH, Bi HY, Cao J, Ren S, Yue SW. Early constraint-induced movement therapy affects behavior and neuronal plasticity in ischemia-injured rat brains. Neural Regen Res 2019; 14:775-782. [PMID: 30688263 PMCID: PMC6375040 DOI: 10.4103/1673-5374.249225] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Constraint-induced movement therapy is an effective rehabilitative training technique used to improve the restoration of impaired upper extremity movement after stroke. However, whether constraint-induced movement therapy is more effective than conventional rehabilitation in acute or sub-acute stroke remains controversial. The aim of the present study was to identify the optimal time to start constraint-induced movement therapy after ischemic stroke and to explore the mechanisms by which constraint-induced movement therapy leads to post-stroke recovery. Sixty-four adult male Sprague-Dawley rats were randomly divided into four groups: sham-surgery group, cerebral ischemia/reperfusion group, early constraint-induced movement therapy group, and late constraint-induced movement therapy group. Rat models of left middle cerebral artery occlusion were established according to the Zea Longa line embolism method. Constraint-induced movement therapy was conducted starting on day 1 or day 14 in the early constraint-induced movement therapy and late constraint-induced movement therapy groups, respectively. To explore the effect of each intervention time on neuromotor function, behavioral function was assessed using a balance beam walking test before surgery and at 8 and 21 days after surgery. The expression levels of brain-derived neurotrophic factor, nerve growth factor and Nogo receptor were evaluated using real time-polymerase chain reaction and western blot assay to assess the effect of each intervention time. The results showed that the behavioral score was significantly lower in the early constraint-induced movement therapy group than in the cerebral ischemia/reperfusion and late constraint-induced movement therapy groups at 8 days. At 21 days, the scores had significantly decreased in the early constraint-induced movement therapy and late constraint-induced movement therapy groups. At 8 days, only mild pyknosis appeared in neurons of the ischemic penumbra in the early constraint-induced movement therapy group, which was distinctly better than in the cerebral ischemia/reperfusion group. At 21 days, only a few vacuolated cells were observed and no obvious inflammatory cells were visible in late constraint-induced movement therapy group, which was much better than at 8 days. The mRNA and protein expression levels of brain-derived neurotrophic factor and nerve growth factor were significantly higher, but expression levels of Nogo receptor were significantly lower in the early constraint-induced movement therapy group compared with the cerebral ischemia/reperfusion and late constraint-induced movement therapy groups at 8 days. The changes in expression levels at 21 days were larger but similar in both the early constraint-induced movement therapy and late constraint-induced movement therapy groups. Besides, the protein nerve growth factor level was higher in the late constraint-induced movement therapy group than in the early constraint-induced movement therapy group at 21 days. These results suggest that both early (1 day) and late (14 days) constraint-induced movement therapy induces molecular plasticity and facilitates functional recovery after ischemic stroke, as illustrated by the histology. The mechanism may be associated with downregulation of Nogo receptor expression and upregulation of brain-derived neurotrophic factor and nerve growth factor expression.
Collapse
Affiliation(s)
- Xi-Hua Liu
- Department of Physical Medicine & Rehabilitation, Affiliated Hospital of Shandong Traditional Chinese Medicine University, Jinan, Shandong Province, China
| | - Hong-Yan Bi
- Department of Physical Medicine & Rehabilitation, Affiliated Hospital of Shandong Traditional Chinese Medicine University, Jinan, Shandong Province, China
| | - Jie Cao
- Maternal and Child Health Development Research Center, Shandong Maternal and Child Health Hospital, Jinan, Shandong Province, China
| | - Shuo Ren
- Department of Physical Medicine & Rehabilitation, Affiliated Hospital of Shandong Traditional Chinese Medicine University, Jinan, Shandong Province, China
| | - Shou-Wei Yue
- Department of Physical Medicine & Rehabilitation, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
92
|
Affiliation(s)
- David J. Lin
- Center for Neurotechnology and Neurorecovery, Division of Neurocritical Care and Emergency Neurology, Department of Neurology, Massachusetts General Hospital, Boston, MA
| | - Seth P. Finklestein
- Stroke Service, Department of Neurology, Massachusetts General Hospital, Boston, MA
| | | |
Collapse
|
93
|
Mazrooyisebdani M, Nair VA, Loh PL, Remsik AB, Young BM, Moreno BS, Dodd KC, Kang TJ, William JC, Prabhakaran V. Evaluation of Changes in the Motor Network Following BCI Therapy Based on Graph Theory Analysis. Front Neurosci 2018; 12:861. [PMID: 30542258 PMCID: PMC6277805 DOI: 10.3389/fnins.2018.00861] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 11/05/2018] [Indexed: 11/13/2022] Open
Abstract
Despite the established effectiveness of the brain-computer interface (BCI) therapy during stroke rehabilitation (Song et al., 2014a, 2015; Young et al., 2014a,b,c, 2015; Remsik et al., 2016), little is understood about the connections between motor network reorganization and functional motor improvements. The aim of this study was to investigate changes in the network reorganization of the motor cortex during BCI therapy. Graph theoretical approaches are used on resting-state functional magnetic resonance imaging (fMRI) data acquired from stroke patients to evaluate these changes. Correlations between changes in graph measurements and behavioral measurements were also examined. Right hemisphere chronic stroke patients (average time from stroke onset = 38.23 months, standard deviation (SD) = 46.27 months, n = 13, 6 males, 10 right-handed) with upper-extremity motor deficits received interventional rehabilitation therapy using a closed-loop neurofeedback BCI device. Eyes-closed resting-state fMRI (rs-fMRI) scans, along with T-1 weighted anatomical scans on 3.0T MRI scanners were collected from these patients at four test points. Immediate therapeutic effects were investigated by comparing pre and post-therapy results. Results displayed that th average clustering coefficient of the motor network increased significantly from pre to post-therapy. Furthermore, increased regional centrality of ipsilesional primary motor area (p = 0.02) and decreases in regional centrality of contralesional thalamus (p = 0.05), basal ganglia (p = 0.05 in betweenness centrality analysis and p = 0.03 for degree centrality), and dentate nucleus (p = 0.03) were observed (uncorrected). These findings suggest an overall trend toward significance in terms of involvement of these regions. Increased centrality of primary motor area may indicate increased efficiency within its interactive network as an effect of BCI therapy. Notably, changes in centrality of the bilateral cerebellum regions have strong correlations with both clinical variables [the Action Research Arm Test (ARAT), and the Nine-Hole Peg Test (9-HPT)]
Collapse
Affiliation(s)
- Mohsen Mazrooyisebdani
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI, United States.,Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States
| | - Veena A Nair
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States
| | - Po-Ling Loh
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI, United States.,Department of Statistics, University of Wisconsin-Madison, Madison, WI, United States
| | - Alexander B Remsik
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States.,Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, United States
| | - Brittany M Young
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States.,Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, United States.,Medical Scientist Training Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Brittany S Moreno
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, United States
| | - Keith C Dodd
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Theresa J Kang
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States
| | - Justin C William
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States.,Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, United States
| | - Vivek Prabhakaran
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States.,Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, United States.,Medical Scientist Training Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
94
|
Remsik AB, Dodd K, Williams L, Thoma J, Jacobson T, Allen JD, Advani H, Mohanty R, McMillan M, Rajan S, Walczak M, Young BM, Nigogosyan Z, Rivera CA, Mazrooyisebdani M, Tellapragada N, Walton LM, Gjini K, van Kan PL, Kang TJ, Sattin JA, Nair VA, Edwards DF, Williams JC, Prabhakaran V. Behavioral Outcomes Following Brain-Computer Interface Intervention for Upper Extremity Rehabilitation in Stroke: A Randomized Controlled Trial. Front Neurosci 2018; 12:752. [PMID: 30467461 PMCID: PMC6235950 DOI: 10.3389/fnins.2018.00752] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 09/28/2018] [Indexed: 01/07/2023] Open
Abstract
Stroke is a leading cause of persistent upper extremity (UE) motor disability in adults. Brain-computer interface (BCI) intervention has demonstrated potential as a motor rehabilitation strategy for stroke survivors. This sub-analysis of ongoing clinical trial (NCT02098265) examines rehabilitative efficacy of this BCI design and seeks to identify stroke participant characteristics associated with behavioral improvement. Stroke participants (n = 21) with UE impairment were assessed using Action Research Arm Test (ARAT) and measures of function. Nine participants completed three assessments during the experimental BCI intervention period and at 1-month follow-up. Twelve other participants first completed three assessments over a parallel time-matched control period and then crossed over into the BCI intervention condition 1-month later. Participants who realized positive change (≥1 point) in total ARAT performance of the stroke affected UE between the first and third assessments of the intervention period were dichotomized as "responders" (<1 = "non-responders") and similarly analyzed. Of the 14 participants with room for ARAT improvement, 64% (9/14) showed some positive change at completion and approximately 43% (6/14) of the participants had changes of minimal detectable change (MDC = 3 pts) or minimally clinical important difference (MCID = 5.7 points). Participants with room for improvement in the primary outcome measure made significant mean gains in ARATtotal score at completion (ΔARATtotal = 2, p = 0.028) and 1-month follow-up (ΔARATtotal = 3.4, p = 0.0010), controlling for severity, gender, chronicity, and concordance. Secondary outcome measures, SISmobility, SISadl, SISstrength, and 9HPTaffected, also showed significant improvement over time during intervention. Participants in intervention through follow-up showed a significantly increased improvement rate in SISstrength compared to controls (p = 0.0117), controlling for severity, chronicity, gender, as well as the individual effects of time and intervention type. Participants who best responded to BCI intervention, as evaluated by ARAT score improvement, showed significantly increased outcome values through completion and follow-up for SISmobility (p = 0.0002, p = 0.002) and SISstrength (p = 0.04995, p = 0.0483). These findings may suggest possible secondary outcome measure patterns indicative of increased improvement resulting from this BCI intervention regimen as well as demonstrating primary efficacy of this BCI design for treatment of UE impairment in stroke survivors. Clinical Trial Registration: ClinicalTrials.gov, NCT02098265.
Collapse
Affiliation(s)
- Alexander B. Remsik
- Department of Radiology, University of Wisconsin – Madison, Madison, WI, United States
- Department of Kinesiology, University of Wisconsin – Madison, Madison, WI, United States
- Institute for Clinical and Translational Research, University of Wisconsin – Madison, Madison, WI, United States
| | - Keith Dodd
- Department of Radiology, University of Wisconsin – Madison, Madison, WI, United States
- Department of Biomedical Engineering, University of Wisconsin – Madison, Madison, WI, United States
| | - Leroy Williams
- Department of Radiology, University of Wisconsin – Madison, Madison, WI, United States
- Department of Educational Psychology, University of Wisconsin – Madison, Madison, WI, United States
- Center for Women’s Health Research, University of Wisconsin – Madison, Madison, WI, United States
| | - Jaclyn Thoma
- Department of Radiology, University of Wisconsin – Madison, Madison, WI, United States
- Neuroscience Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Tyler Jacobson
- Department of Radiology, University of Wisconsin – Madison, Madison, WI, United States
- Neuroscience Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Janerra D. Allen
- Department of Radiology, University of Wisconsin – Madison, Madison, WI, United States
- Department of Materials Science and Engineering, University of Wisconsin – Madison, Madison, WI, United States
| | - Hemali Advani
- Department of Radiology, University of Wisconsin – Madison, Madison, WI, United States
| | - Rosaleena Mohanty
- Department of Radiology, University of Wisconsin – Madison, Madison, WI, United States
- Department of Electrical and Computer Engineering, University of Wisconsin – Madison, Madison, WI, United States
| | - Matt McMillan
- Department of Radiology, University of Wisconsin – Madison, Madison, WI, United States
- Department of Biomedical Engineering, University of Wisconsin – Madison, Madison, WI, United States
| | - Shruti Rajan
- Department of Radiology, University of Wisconsin – Madison, Madison, WI, United States
- Department of Psychology, University of Wisconsin – Madison, Madison, WI, United States
| | - Matt Walczak
- Department of Radiology, University of Wisconsin – Madison, Madison, WI, United States
| | - Brittany M. Young
- Department of Radiology, University of Wisconsin – Madison, Madison, WI, United States
- Institute for Clinical and Translational Research, University of Wisconsin – Madison, Madison, WI, United States
- Neuroscience Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Clinical Neuroengineering Training Program, University of Wisconsin – Madison, Madison, WI, United States
- Medical Scientist Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Zack Nigogosyan
- Department of Radiology, University of Wisconsin – Madison, Madison, WI, United States
| | - Cameron A. Rivera
- Department of Radiology, University of Wisconsin – Madison, Madison, WI, United States
| | | | - Neelima Tellapragada
- Department of Radiology, University of Wisconsin – Madison, Madison, WI, United States
| | - Leo M. Walton
- Department of Biomedical Engineering, University of Wisconsin – Madison, Madison, WI, United States
- Neuroscience Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Klevest Gjini
- Department of Radiology, University of Wisconsin – Madison, Madison, WI, United States
- Department of Neurology, University of Wisconsin – Madison, Madison, WI, United States
| | - Peter L.E. van Kan
- Department of Kinesiology, University of Wisconsin – Madison, Madison, WI, United States
| | - Theresa J. Kang
- Department of Radiology, University of Wisconsin – Madison, Madison, WI, United States
- Department of Neurology, University of Wisconsin – Madison, Madison, WI, United States
| | - Justin A. Sattin
- Neuroscience Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Veena A. Nair
- Department of Radiology, University of Wisconsin – Madison, Madison, WI, United States
| | - Dorothy Farrar Edwards
- Department of Kinesiology, University of Wisconsin – Madison, Madison, WI, United States
| | - Justin C. Williams
- Department of Kinesiology, University of Wisconsin – Madison, Madison, WI, United States
- Department of Neurological Surgery, University of Wisconsin – Madison, Madison, WI, United States
| | - Vivek Prabhakaran
- Department of Radiology, University of Wisconsin – Madison, Madison, WI, United States
- Neuroscience Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Department of Psychology, University of Wisconsin – Madison, Madison, WI, United States
- Medical Scientist Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Department of Neurology, University of Wisconsin – Madison, Madison, WI, United States
- Department of Psychiatry, University of Wisconsin – Madison, Madison, WI, United States
| |
Collapse
|
95
|
Lin IH, Tsai HT, Wang CY, Hsu CY, Liou TH, Lin YN. Effectiveness and Superiority of Rehabilitative Treatments in Enhancing Motor Recovery Within 6 Months Poststroke: A Systemic Review. Arch Phys Med Rehabil 2018; 100:366-378. [PMID: 30686327 DOI: 10.1016/j.apmr.2018.09.123] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/19/2018] [Accepted: 09/21/2018] [Indexed: 01/28/2023]
Abstract
OBJECTIVE To investigate the effects of various rehabilitative interventions aimed at enhancing poststroke motor recovery by assessing their effectiveness when compared with no treatment or placebo and their superiority when compared with conventional training program (CTP). DATA SOURCE A literature search was based on 19 Cochrane reviews and 26 other reviews. We also updated the searches in PubMed up to September 30, 2017. STUDY SELECTION Randomized controlled trials associated with 18 experimented training programs (ETP) were included if they evaluated the effects of the programs on either upper extremity (UE) or lower extremity (LE) motor recovery among adults within 6 months poststroke; included ≥10 participants in each arm; and had an intervention duration of ≥10 consecutive weekdays. DATA EXTRACTION Four reviewers evaluated the eligibility and quality of literature. Methodological quality was assessed using the PEDro scale. DATA SYNTHESIS Among the 178 included studies, 129 including 7450 participants were analyzed in this meta-analysis. Six ETPs were significantly effective in enhancing UE motor recovery, with the standard mean differences (SMDs) and 95% confidence intervals outlined as follow: constraint-induced movement therapy (0.82, 0.45-1.19), electrostimulation (ES)-motor (0.42, 0.22-0.63), mirror therapy (0.71, 0.22-1.20), mixed approach (0.21, 0.01-0.41), robot-assisted training (0.51, 0.22-0.80), and task-oriented training (0.57, 0.16-0.99). Six ETPs were significantly effective in enhancing LE motor recovery: body-weight-supported treadmill training (0.27, 0.01-0.52), caregiver-mediated training (0.64, 0.20-1.08), ES-motor (0.55, 0.27-0.83), mixed approach (0.35, 0.15-0.54), mirror therapy (0.56, 0.13-1.00), and virtual reality (0.60, 0.15-1.05). However, compared with CTPs, almost none of the ETPs exhibited significant SMDs for superiority. CONCLUSIONS Certain experimented interventions were effective in enhancing poststroke motor recovery, but little evidence supported the superiority of experimented interventions over conventional rehabilitation.
Collapse
Affiliation(s)
- I-Hsien Lin
- Department of Physical Medicine and Rehabilitation, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Han-Ting Tsai
- Department of Physical Medicine and Rehabilitation, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chien-Yung Wang
- Department of Physical Medicine and Rehabilitation, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chih-Yang Hsu
- Department of Physical Medicine and Rehabilitation, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Tsan-Hon Liou
- Department of Physical Medicine and Rehabilitation, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Yen-Nung Lin
- Department of Physical Medicine and Rehabilitation, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan; Institute of Injury Prevention and Control, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
96
|
Abdollahi F, Corrigan M, Lazzaro EDC, Kenyon RV, Patton JL. Error-augmented bimanual therapy for stroke survivors. NeuroRehabilitation 2018; 43:51-61. [PMID: 30040762 DOI: 10.3233/nre-182413] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Stroke recovery studies have shown the efficacy of bimanual training on upper limb functional recovery and others have shown the efficacy of feedback technology that augments error. OBJECTIVE In a double-blinded randomized controlled study (N = 26), we evaluated the short-term effects of bilateral arm training to foster functional recovery of a hemiparetic arm, with half of our subjects unknowingly also receiving error augmentation (where errors were visually and haptically enhanced by a robot). METHODS Twenty-six individuals with chronic stroke were randomly assigned to practice an equivalent amount of bimanual reaching either with or without error augmentation. Participants were instructed to coordinate both arms while reaching to two targets (one for each arm) in three 45-minute treatments per week for two weeks, with a follow-up visit after one week without treatment. RESULTS Subjects' 2-week gains in Fugl-Meyer score averaged 2.92, and we also observed improvements Wolf Motor Functional Ability Scale average 0.21, and Motor Activity Log of 0.58 for quantity and 0.63 for quality of life scores. The extra benefit of error augmentation over the three weeks became apparent in Fugl-Meyer score only after removing an outlier from consideration. CONCLUSIONS This modest advantage of error augmentation was detectable over a short interval encouraging further research in interactive self-rehabilitation systems that can enhance error motor recovery.
Collapse
Affiliation(s)
- Farnaz Abdollahi
- University of Illinois at Chicago, Chicago, IL, USA.,Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, IL, USA
| | - Molly Corrigan
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, IL, USA
| | - Emily D C Lazzaro
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, IL, USA
| | - Robert V Kenyon
- University of Illinois at Chicago, Chicago, IL, USA.,Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, IL, USA
| | - James L Patton
- University of Illinois at Chicago, Chicago, IL, USA.,Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, IL, USA
| |
Collapse
|
97
|
Schweighofer N, Wang C, Mottet D, Laffont I, Bakhti K, Reinkensmeyer DJ, Rémy-Néris O. Dissociating motor learning from recovery in exoskeleton training post-stroke. J Neuroeng Rehabil 2018; 15:89. [PMID: 30290806 PMCID: PMC6173922 DOI: 10.1186/s12984-018-0428-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 09/11/2018] [Indexed: 11/10/2022] Open
Abstract
Background A large number of robotic or gravity-supporting devices have been developed for rehabilitation of upper extremity post-stroke. Because these devices continuously monitor performance data during training, they could potentially help to develop predictive models of the effects of motor training on recovery. However, during training with such devices, patients must become adept at using the new “tool” of the exoskeleton, including learning the new forces and visuomotor transformations associated with the device. We thus hypothesized that the changes in performance during extensive training with a passive, gravity-supporting, exoskeleton device (the Armeo Spring) will follow an initial fast phase, due to learning to use the device, and a slower phase that corresponds to reduction in overall arm impairment. Of interest was whether these fast and slow processes were related. Methods To test the two-process hypothesis, we used mixed-effect exponential models to identify putative fast and slow changes in smoothness of arm movements during 80 arm reaching tests performed during 20 days of exoskeleton training in 53 individuals with post-acute stroke. Results In line with our hypothesis, we found that double exponential models better fit the changes in smoothness of arm movements than single exponential models. In contrast, single exponential models better fit the data for a group of young healthy control subjects. In addition, in the stroke group, we showed that smoothness correlated with a measure of impairment (the upper extremity Fugl Meyer score - UEFM) at the end, but not at the beginning, of training. Furthermore, the improvement in movement smoothness due to the slow component, but not to the fast component, strongly correlated with the improvement in the UEFM between the beginning and end of training. There was no correlation between the change of peaks due to the fast process and the changes due to the slow process. Finally, the improvement in smoothness due to the slow, but not the fast, component correlated with the number of days since stroke at the onset of training – i.e. participants who started exoskeleton training sooner after stroke improved their smoothness more. Conclusions Our results therefore demonstrate that at least two processes are involved in in performance improvements measured during mechanized training post-stroke. The fast process is consistent with learning to use the exoskeleton, while the slow process independently reflects the reduction in upper extremity impairment.
Collapse
Affiliation(s)
- Nicolas Schweighofer
- Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, USA.
| | - Chunji Wang
- Neuroscience graduate Program, University of Southern California, Los Angeles, USA
| | - Denis Mottet
- STAPS, Université de Montpellier, Euromov, Montpellier, France
| | - Isabelle Laffont
- Montpellier University Hospital, Euromov, IFRH, Montpellier University, Montpellier, France
| | - Karima Bakhti
- Montpellier University Hospital, Euromov, IFRH, Montpellier University, Montpellier, France
| | - David J Reinkensmeyer
- Departments of Mechanical and Aerospace Engineering, Anatomy and Neurobiology, University of California, Irvine, USA
| | - Olivier Rémy-Néris
- Université de Bretagne Occidentale, Centre hospitalier universitaire, LaTIM-INSERM UMR1101, Brest, France
| |
Collapse
|
98
|
Conforto AB, Dos Anjos SM, Bernardo WM, Silva AAD, Conti J, Machado AG, Cohen LG. Repetitive Peripheral Sensory Stimulation and Upper Limb Performance in Stroke: A Systematic Review and Meta-analysis. Neurorehabil Neural Repair 2018; 32:863-871. [PMID: 30198383 DOI: 10.1177/1545968318798943] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Enhancement of sensory input in the form of repetitive peripheral sensory stimulation (RPSS) can enhance excitability of the motor cortex and upper limb performance. OBJECTIVE To perform a systematic review and meta-analysis of effects of RPSS compared with control stimulation on improvement of motor outcomes in the upper limb of subjects with stroke. METHODS We searched studies published between 1948 and December 2017 and selected 5 studies that provided individual data and applied a specific paradigm of stimulation (trains of 1-ms pulses at 10 Hz, delivered at 1 Hz). Continuous data were analyzed with means and standard deviations of differences in performance before and after active or control interventions. Adverse events were also assessed. RESULTS There was a statistically significant beneficial effect of RPSS on motor performance (standard mean difference between active and control RPSS, 0.67; 95% CI, 0.09-1.24; I2 = 65%). Only 1 study included subjects in the subacute phase after stroke. Subgroup analysis of studies that only included subjects in the chronic phase showed a significant effect (1.04; 95% CI, 0.66-1.42) with no heterogeneity. Significant results were obtained for outcomes of body structure and function as well as for outcomes of activity limitation according to the International Classification of Function, Disability and Health, when only studies that included subjects in the chronic phase were analyzed. No serious adverse events were reported. CONCLUSIONS RPSS is a safe intervention with potential to become an adjuvant tool for upper extremity paresis rehabilitation in subjects with stroke in the chronic phase.
Collapse
Affiliation(s)
- Adriana Bastos Conforto
- 1 Hospital das Clínicas São Paulo University, São Paulo, Brazil.,2 Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | | | | | | - Juliana Conti
- 1 Hospital das Clínicas São Paulo University, São Paulo, Brazil
| | - André G Machado
- 5 Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Leonardo G Cohen
- 6 National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
99
|
Winstein C, Varghese R. Been there, done that, so what’s next for arm and hand rehabilitation in stroke? NeuroRehabilitation 2018; 43:3-18. [DOI: 10.3233/nre-172412] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Carolee Winstein
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, USA
| | - Rini Varghese
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
100
|
Krakauer JW, Cortés JC. A non-task-oriented approach based on high-dose playful movement exploration for rehabilitation of the upper limb early after stroke: A proposal. NeuroRehabilitation 2018; 43:31-40. [DOI: 10.3233/nre-172411] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- John W. Krakauer
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
- Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, MD, USA
- Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | | |
Collapse
|