51
|
Ding S, Khan AI, Cai X, Song Y, Lyu Z, Du D, Dutta P, Lin Y. Overcoming blood-brain barrier transport: Advances in nanoparticle-based drug delivery strategies. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2020; 37:112-125. [PMID: 33093794 PMCID: PMC7575138 DOI: 10.1016/j.mattod.2020.02.001] [Citation(s) in RCA: 222] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The Blood-Brain Barrier (BBB), a unique structure in the central nervous system (CNS), protects the brain from bloodborne pathogens by its excellent barrier properties. Nevertheless, this barrier limits therapeutic efficacy and becomes one of the biggest challenges in new drug development for neurodegenerative disease and brain cancer. Recent breakthroughs in nanotechnology have resulted in various nanoparticles (NPs) as drug carriers to cross the BBB by different methods. This review presents the current understanding of advanced NP-mediated non-invasive drug delivery for the treatment of neurological disorders. Herein, the complex compositions and special characteristics of BBB are elucidated exhaustively. Moreover, versatile drug nanocarriers with their recent applications and their pathways on different drug delivery strategies to overcome the formidable BBB obstacle are briefly discussed. In terms of significance, this paper provides a general understanding of how various properties of nanoparticles aid in drug delivery through BBB and usher the development of novel nanotechnology-based nanomaterials for cerebral disease therapies.
Collapse
Affiliation(s)
| | | | - Xiaoli Cai
- School of Mechanical and Materials Engineering, Washington State University, PO Box 642920 Pullman, Washington 99164, United States
| | - Yang Song
- School of Mechanical and Materials Engineering, Washington State University, PO Box 642920 Pullman, Washington 99164, United States
| | - Zhaoyuan Lyu
- School of Mechanical and Materials Engineering, Washington State University, PO Box 642920 Pullman, Washington 99164, United States
| | - Dan Du
- School of Mechanical and Materials Engineering, Washington State University, PO Box 642920 Pullman, Washington 99164, United States
| | - Prashanta Dutta
- School of Mechanical and Materials Engineering, Washington State University, PO Box 642920 Pullman, Washington 99164, United States
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, PO Box 642920 Pullman, Washington 99164, United States
| |
Collapse
|
52
|
Rani V, Venkatesan J, Prabhu A. Nanotherapeutics in glioma management: Advances and future perspectives. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101626] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
53
|
Hartmann C, Schwietzer YA, Kummer D, Kirschnick N, Hoppe E, Thüring EM, Glaesner-Ebnet M, Brinkmann F, Gerke V, Reuter S, Nakayama M, Ebnet K. The mitochondrial outer membrane protein SYNJ2BP interacts with the cell adhesion molecule TMIGD1 and can recruit it to mitochondria. BMC Mol Cell Biol 2020; 21:30. [PMID: 32303178 PMCID: PMC7164261 DOI: 10.1186/s12860-020-00274-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/06/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Transmembrane and immunoglobulin domain-containing protein 1 (TMIGD1) is a recently identified cell adhesion molecule which is predominantly expressed by epithelial cells of the intestine and the kidney. Its expression is downregulated in both colon and renal cancer suggesting a tumor suppressive activity. The function of TMIGD1 at the cellular level is largely unclear. Published work suggests a protective role of TMIGD1 during oxidative stress in kidney epithelial cells, but the underlying molecular mechanisms are unknown. RESULTS In this study, we address the subcellular localization of TMIGD1 in renal epithelial cells and identify a cytoplasmic scaffold protein as interaction partner of TMIGD1. We find that TMIGD1 localizes to different compartments in renal epithelial cells and that this localization is regulated by cell confluency. Whereas it localizes to mitochondria in subconfluent cells it is localized at cell-cell contacts in confluent cells. We find that cell-cell contact localization is regulated by N-glycosylation and that both the extracellular and the cytoplasmic domain contribute to this localization. We identify Synaptojanin 2-binding protein (SYNJ2BP), a PDZ domain-containing cytoplasmic protein, which localizes to both mitochondria and the plasma membrane, as interaction partner of TMIGD1. The interaction of TMIGD1 and SYNJ2BP is mediated by the PDZ domain of SYNJ2BP and the C-terminal PDZ domain-binding motif of TMIGD1. We also find that SYNJ2BP can actively recruit TMIGD1 to mitochondria providing a potential mechanism for the localization of TMIGD1 at mitochondria. CONCLUSIONS This study describes TMIGD1 as an adhesion receptor that can localize to both mitochondria and cell-cell junctions in renal epithelial cells. It identifies SYNJ2BP as an interaction partner of TMIGD1 providing a potential mechanism underlying the localization of TMIGD1 at mitochondria. The study thus lays the basis for a better understanding of the molecular function of TMIGD1 during oxidative stress regulation.
Collapse
Affiliation(s)
- Christian Hartmann
- Institute-Associated Research Group "Cell adhesion and cell polarity", University of Münster, Von-Esmarch-Str. 56, 48149, Münster, Germany.,Institute of Medical Biochemistry, ZMBE, University of Münster, Von-Esmarch-Str. 56, 48149, Münster, Germany
| | - Ysabel Alessa Schwietzer
- Institute-Associated Research Group "Cell adhesion and cell polarity", University of Münster, Von-Esmarch-Str. 56, 48149, Münster, Germany.,Institute of Medical Biochemistry, ZMBE, University of Münster, Von-Esmarch-Str. 56, 48149, Münster, Germany
| | - Daniel Kummer
- Institute-Associated Research Group "Cell adhesion and cell polarity", University of Münster, Von-Esmarch-Str. 56, 48149, Münster, Germany.,Institute of Medical Biochemistry, ZMBE, University of Münster, Von-Esmarch-Str. 56, 48149, Münster, Germany.,Interdisciplinary Clinical Research Center (IZKF), University of Münster, Von-Esmarch-Str. 56, 48149, Münster, Germany
| | - Nils Kirschnick
- Institute-Associated Research Group "Cell adhesion and cell polarity", University of Münster, Von-Esmarch-Str. 56, 48149, Münster, Germany.,Institute of Medical Biochemistry, ZMBE, University of Münster, Von-Esmarch-Str. 56, 48149, Münster, Germany
| | - Esther Hoppe
- Institute-Associated Research Group "Cell adhesion and cell polarity", University of Münster, Von-Esmarch-Str. 56, 48149, Münster, Germany.,Institute of Medical Biochemistry, ZMBE, University of Münster, Von-Esmarch-Str. 56, 48149, Münster, Germany
| | - Eva-Maria Thüring
- Institute-Associated Research Group "Cell adhesion and cell polarity", University of Münster, Von-Esmarch-Str. 56, 48149, Münster, Germany.,Institute of Medical Biochemistry, ZMBE, University of Münster, Von-Esmarch-Str. 56, 48149, Münster, Germany
| | - Mark Glaesner-Ebnet
- Institute-Associated Research Group "Cell adhesion and cell polarity", University of Münster, Von-Esmarch-Str. 56, 48149, Münster, Germany.,Institute of Medical Biochemistry, ZMBE, University of Münster, Von-Esmarch-Str. 56, 48149, Münster, Germany
| | - Frauke Brinkmann
- Institute-Associated Research Group "Cell adhesion and cell polarity", University of Münster, Von-Esmarch-Str. 56, 48149, Münster, Germany.,Institute of Medical Biochemistry, ZMBE, University of Münster, Von-Esmarch-Str. 56, 48149, Münster, Germany
| | - Volker Gerke
- Institute of Medical Biochemistry, ZMBE, University of Münster, Von-Esmarch-Str. 56, 48149, Münster, Germany
| | - Stefan Reuter
- Department of Medicine D, Division of General Internal Medicine, Nephrology and Rheumatology, University Hospital of Münster, 48149, Münster, Germany
| | - Masanori Nakayama
- Laboratory for Cell Polarity and Organogenesis, Max-Planck-Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany
| | - Klaus Ebnet
- Institute-Associated Research Group "Cell adhesion and cell polarity", University of Münster, Von-Esmarch-Str. 56, 48149, Münster, Germany. .,Institute of Medical Biochemistry, ZMBE, University of Münster, Von-Esmarch-Str. 56, 48149, Münster, Germany. .,Interdisciplinary Clinical Research Center (IZKF), University of Münster, Von-Esmarch-Str. 56, 48149, Münster, Germany. .,Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Münster, 48419, Münster, Germany.
| |
Collapse
|
54
|
Louer EM, Günzel D, Rosenthal R, Carmone C, Yi G, Stunnenberg HG, den Hollander AI, Deen PM. Differential day-night expression of tight junction components in murine retinal pigment epithelium. Exp Eye Res 2020; 193:107985. [DOI: 10.1016/j.exer.2020.107985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/30/2020] [Accepted: 02/20/2020] [Indexed: 02/06/2023]
|
55
|
Eftekhari A, Vahed SZ, Kavetskyy T, Rameshrad M, Jafari S, Chodari L, Hosseiniyan SM, Derakhshankhah H, Ahmadian E, Ardalan M. Cell junction proteins: Crossing the glomerular filtration barrier in diabetic nephropathy. Int J Biol Macromol 2020; 148:475-482. [PMID: 31962072 DOI: 10.1016/j.ijbiomac.2020.01.168] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/17/2020] [Accepted: 01/17/2020] [Indexed: 12/20/2022]
Abstract
Diabetic nephropathy as a deleterious complication of diabetes mellitus and an important cause of end-stage renal failure is characterized by changes in the molecular and cellular levels. Cell-cell communication via the gap and tight junctions are involved in the pathogenesis of diseases such as diabetes and kidney failure. Studying cell junctions including gap junctions, tight junctions, and anchoring junctions within the nephron can be used as an early sign of diabetic nephropathy. Furthermore, cell junctions may be an upcoming target by pharmacological methods to improve treatments of diabetic nephropathy and pave the way to introduce promising therapeutic strategies based on cell-cell communications effects and its translation into clinical studies for the treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Aziz Eftekhari
- Pharmacology and Toxicology Department, Maragheh University of Medical Sciences, Maragheh, Iran
| | | | - Taras Kavetskyy
- Drohobych Ivan Franko State Pedagogical University, Drohobych, Ukraine; The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Maryam Rameshrad
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Samira Jafari
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Leila Chodari
- Physiology Department, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Hossein Derakhshankhah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Ahmadian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Students Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | |
Collapse
|
56
|
Aguilar-Aragon M, Fletcher G, Thompson BJ. The cytoskeletal motor proteins Dynein and MyoV direct apical transport of Crumbs. Dev Biol 2020; 459:126-137. [PMID: 31881198 PMCID: PMC7090908 DOI: 10.1016/j.ydbio.2019.12.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022]
Abstract
Crumbs (Crb in Drosophila; CRB1-3 in mammals) is a transmembrane determinant of epithelial cell polarity and a regulator of Hippo signalling. Crb is normally localized to apical cell-cell contacts, just above adherens junctions, but how apical trafficking of Crb is regulated in epithelial cells remains unclear. We use the Drosophila follicular epithelium to demonstrate that polarized trafficking of Crb is mediated by transport along microtubules by the motor protein Dynein and along actin filaments by the motor protein Myosin-V (MyoV). Blocking transport of Crb-containing vesicles by Dynein or MyoV leads to accumulation of Crb within Rab11 endosomes, rather than apical delivery. The final steps of Crb delivery and stabilisation at the plasma membrane requires the exocyst complex and three apical FERM domain proteins - Merlin, Moesin and Expanded - whose simultaneous loss disrupts apical localization of Crb. Accordingly, a knock-in deletion of the Crb FERM-binding motif (FBM) also impairs apical localization. Finally, overexpression of Crb challenges this system, creating a sensitized background to identify components involved in cytoskeletal polarization, apical membrane trafficking and stabilisation of Crb at the apical domain.
Collapse
Affiliation(s)
- M Aguilar-Aragon
- The Francis Crick Institute, 1 Midland Rd, NW1 1AT, London, United Kingdom
| | - G Fletcher
- The Francis Crick Institute, 1 Midland Rd, NW1 1AT, London, United Kingdom
| | - B J Thompson
- The Francis Crick Institute, 1 Midland Rd, NW1 1AT, London, United Kingdom; The John Curtin School of Medical Research, The Australian National University, 131 Garran Rd, Acton, ACT 2601, Canberra, Australia.
| |
Collapse
|
57
|
Duong CN, Nottebaum AF, Butz S, Volkery S, Zeuschner D, Stehling M, Vestweber D. Interference With ESAM (Endothelial Cell-Selective Adhesion Molecule) Plus Vascular Endothelial-Cadherin Causes Immediate Lethality and Lung-Specific Blood Coagulation. Arterioscler Thromb Vasc Biol 2020; 40:378-393. [DOI: 10.1161/atvbaha.119.313545] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Objective:
Vascular endothelial (VE)-cadherin is of dominant importance for the formation and stability of endothelial junctions, yet induced gene inactivation enhances vascular permeability in the lung but does not cause junction rupture. This study aims at identifying the junctional adhesion molecule, which is responsible for preventing endothelial junction rupture in the pulmonary vasculature in the absence of VE-cadherin.
Approach and Results:
We have compared the relevance of ESAM (endothelial cell-selective adhesion molecule), JAM (junctional adhesion molecule)-A, PECAM (platelet endothelial cell adhesion molecule)-1, and VE-cadherin for vascular barrier integrity in various mouse tissues. Gene inactivation of ESAM enhanced vascular permeability in the lung but not in the heart, skin, and brain. In contrast, deletion of JAM-A or PECAM-1 did not affect barrier integrity in any of these organs. Blocking VE-cadherin with antibodies caused lethality in ESAM
−/−
mice within 30 minutes but had no such effect in JAM-A
−/−
, PECAM-1
−/−
or wild-type mice. Likewise, induced gene inactivation of VE-cadherin caused rapid lethality only in the absence of ESAM. Ultrastructural analysis revealed that only combined interference with VE-cadherin and ESAM disrupted endothelial junctions and caused massive blood coagulation in the lung. Mechanistically, we could exclude a role of platelet ESAM in coagulation, changes in the expression of other junctional proteins or a contribution of cytoplasmic signaling domains of ESAM.
Conclusions:
Despite well-documented roles of JAM-A and PECAM-1 for the regulation of endothelial junctions, only for ESAM, we detected an essential role for endothelial barrier integrity in a tissue-specific way. In addition, we found that it is ESAM which prevents endothelial junction rupture in the lung when VE-cadherin is absent.
Collapse
Affiliation(s)
- Cao Nguyen Duong
- From the Department of Vascular Cell Biology (C.N.D., A.F.N., S.B., S.V., D.V.), Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Astrid F. Nottebaum
- From the Department of Vascular Cell Biology (C.N.D., A.F.N., S.B., S.V., D.V.), Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Stefan Butz
- From the Department of Vascular Cell Biology (C.N.D., A.F.N., S.B., S.V., D.V.), Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Stefan Volkery
- From the Department of Vascular Cell Biology (C.N.D., A.F.N., S.B., S.V., D.V.), Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Dagmar Zeuschner
- Electron Microscopy and Flow Cytometry Unit (D.Z., M.S.), Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Martin Stehling
- Electron Microscopy and Flow Cytometry Unit (D.Z., M.S.), Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Dietmar Vestweber
- From the Department of Vascular Cell Biology (C.N.D., A.F.N., S.B., S.V., D.V.), Max Planck Institute for Molecular Biomedicine, Münster, Germany
| |
Collapse
|
58
|
Roehlen N, Roca Suarez AA, El Saghire H, Saviano A, Schuster C, Lupberger J, Baumert TF. Tight Junction Proteins and the Biology of Hepatobiliary Disease. Int J Mol Sci 2020; 21:ijms21030825. [PMID: 32012812 PMCID: PMC7038100 DOI: 10.3390/ijms21030825] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/10/2020] [Accepted: 01/21/2020] [Indexed: 12/24/2022] Open
Abstract
Tight junctions (TJ) are intercellular adhesion complexes on epithelial cells and composed of integral membrane proteins as well as cytosolic adaptor proteins. Tight junction proteins have been recognized to play a key role in health and disease. In the liver, TJ proteins have several functions: they contribute as gatekeepers for paracellular diffusion between adherent hepatocytes or cholangiocytes to shape the blood-biliary barrier (BBIB) and maintain tissue homeostasis. At non-junctional localizations, TJ proteins are involved in key regulatory cell functions such as differentiation, proliferation, and migration by recruiting signaling proteins in response to extracellular stimuli. Moreover, TJ proteins are hepatocyte entry factors for the hepatitis C virus (HCV)—a major cause of liver disease and cancer worldwide. Perturbation of TJ protein expression has been reported in chronic HCV infection, cholestatic liver diseases as well as hepatobiliary carcinoma. Here we review the physiological function of TJ proteins in the liver and their implications in hepatobiliary diseases.
Collapse
Affiliation(s)
- Natascha Roehlen
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
| | - Armando Andres Roca Suarez
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
| | - Houssein El Saghire
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
| | - Antonio Saviano
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
- Pôle Hepato-digestif, Institut Hopitalo-universitaire, Hôpitaux Universitaires de Strasbourg, F-67000 Strasbourg, France
| | - Catherine Schuster
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
| | - Joachim Lupberger
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
| | - Thomas F. Baumert
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
- Pôle Hepato-digestif, Institut Hopitalo-universitaire, Hôpitaux Universitaires de Strasbourg, F-67000 Strasbourg, France
- Correspondence: ; Tel.: +33-3688-53703
| |
Collapse
|
59
|
Xie Y, Ding F, Di W, Lv Y, Xia F, Sheng Y, Yu J, Ding G. Impact of a high‑fat diet on intestinal stem cells and epithelial barrier function in middle‑aged female mice. Mol Med Rep 2020; 21:1133-1144. [PMID: 32016468 PMCID: PMC7003032 DOI: 10.3892/mmr.2020.10932] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 12/06/2019] [Indexed: 12/25/2022] Open
Abstract
A high-fat diet (HFD) or obesity-promoting diet is closely associated with metabolic diseases and intestinal tumors, particularly in middle-aged individuals (typically 45–64 years old). The intestinal epithelium constitutes a barrier that separates the host from the food and microbiota in the gut, and thus, a dysfunctional epithelium is associated with a number of diseases. However, the changes caused to the function of intestinal epithelium in response to an HFD have not been well-studied to date. In the present study, middle-aged female mice (12 months old) fed an HFD for a period of 14 weeks were used to determine the effects of HFD on the intestine. Characteristics including the body weight, fat deposition, glucose metabolism, inflammatory state and intestinal morphology were assessed, while the intestinal stem cell (ISC) counts and the ability of isolated intestinal crypts to form organoid bodies in 3D culture were examined. Intestinal epithelial barrier function, including secretory defense, tight junctions and cell apoptosis, were also studied. Morphologically, the HFD resulted in a mild reduction in the length of villi of the small intestine, the colon length and the depth of colon crypts. In addition, the ISC counts were increased in the small intestine and colon in HFD-fed mice. The ability of crypts to grow into organoids (mini-guts) was also increased in crypts obtained from mice fed an HFD, while HFD compromised the epithelial barrier function of the colon. These results demonstrated how an HFD affects the intestinal epithelium and highlighted the need to carefully consider dietary patterns.
Collapse
Affiliation(s)
- Yu Xie
- Department of Geriatrics, Division of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Fei Ding
- Department of Geriatrics, Division of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Wenjuan Di
- Department of Geriatrics, Division of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yifan Lv
- Department of Geriatrics, Division of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Fan Xia
- Department of Geriatrics, Division of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yunlu Sheng
- Department of Geriatrics, Division of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jing Yu
- Department of Geriatrics, Division of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Guoxian Ding
- Department of Geriatrics, Division of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
60
|
Exosomal miR-146a-5p from Treponema pallidum-stimulated macrophages reduces endothelial cells permeability and monocyte transendothelial migration by targeting JAM-C. Exp Cell Res 2020; 388:111823. [PMID: 31926946 DOI: 10.1016/j.yexcr.2020.111823] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/05/2020] [Accepted: 01/08/2020] [Indexed: 12/13/2022]
Abstract
Exosomal microRNAs (miRNAs) transferred between cells have been implicated in modulating the host immune response in microbial infections. In this study, we isolated exosomes from Treponema pallidum (T. pallidum)-stimulated macrophages and detected differential exosomal miRNA expression using both microarrays, and RT-qPCR. A total of 65 differentially expressed miRNAs (35 upregulated and 30 downregulated) were identified. Of all identified miRNAs, miR-146a-5p was one of the most significantly changed miRNAs with high expression in exosomes from T. pallidum-stimulated macrophages. Furthermore, we isolated plasma exosomes from early syphilis patients and healthy controls, and confirmed miR-146a-5p upregulation in the former group. We also show that exosomal miR-146a-5p is efficiently transported into endothelial cells, reducing monocyte transendothelial migration and endothelial permeability by targeting junctional adhesion molecule C (JAM-C). Luciferase reporter assays confirmed binding of exosomal miR-146a-5p to the 3'untranslated region (3'UTR) of JAM-C. We then demonstrated that also exosomes derived from macrophages stimulated by T. pallidum expressed high levels of miR-146a-5p which could be delivered to endothelial cells, and decreased monocyte transendothelial migration by targeting JAM-C. Overall, this work provides novel insights into the mechanism by which T. pallidum hampers inflammatory reactions of the host via a blockade of leukocytes transendothelial migration and endothelial permeability.
Collapse
|
61
|
M T, T A, B S, Ak G, Sks S. Curcumin prophylaxis refurbishes alveolar epithelial barrier integrity and alveolar fluid clearance under hypoxia. Respir Physiol Neurobiol 2019; 274:103336. [PMID: 31778793 DOI: 10.1016/j.resp.2019.103336] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/30/2019] [Accepted: 11/07/2019] [Indexed: 12/19/2022]
Abstract
We have studied the prophylactic efficacy of curcumin to ameliorate the impairment of tight junction protein integrity and fluid clearance in lungs of rats under hypoxia. A549 cells wereexposed to 3 % O2 for 1 h, 3 h, 6 h, 12 h, 24 h and 48 h and rats were exposed to 7620 m for 6 h. NF-κB, Hif-1α and their related genes, tight junction protein (TJ) (ZO-1, JAM-C, claudin-4 and claudin-5, claudin-18) expressions were determined in A549 cells and lungs of rats by western blotting, ELISA and their activity by reporter gene assay, siRNAp65 knock out. Tissue specific localization of tight junction protein was determined by immunohistochemistry and immunoflorescence. Further transmission electron microscopy (TEM) was used to visualize the TJ structures between pulmonary epithelial cells. Blood gas and hematological parameters were also assessed. Later we checked, whether prior treatment with curcumin can restore the altered alveolar epithelial barrier integrity that is compromised through inflammatory mediators under hypoxia, A549 cells were pre-treated (1 h) with 10 μM curcumin and rats with 50 mg curcumin/kg BW and exposed to hypoxia. Curcumin pre-treatment both in vitro and in vivo showed significant changes in TJ protein integrity, attenuated NF-κB activity with reduced expression of its regulatory genes in lung tissues, serum and bronchoalveolar lavage fluid (BALF) along with stabilized HIF-1α levels under hypoxia. NF-κB inhibitors MG132, SN50 or siRNA mediated p65 knock down significantly reduced the dextran FITC influx into the lungs. The present study indicates that, curcumin prophylaxis augments alveolar epithelial barrier integrity and alveolar fluid clearance under hypoxia.
Collapse
Affiliation(s)
- Titto M
- Haematology Division, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi 110054, India.
| | - Ankit T
- Haematology Division, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi 110054, India.
| | - Saumya B
- Haematology Division, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi 110054, India.
| | - Gausal Ak
- Haematology Division, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi 110054, India.
| | - Sarada Sks
- Haematology Division, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi 110054, India.
| |
Collapse
|
62
|
The Many Roles of Cell Adhesion Molecules in Hepatic Fibrosis. Cells 2019; 8:cells8121503. [PMID: 31771248 PMCID: PMC6952767 DOI: 10.3390/cells8121503] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/17/2019] [Accepted: 11/18/2019] [Indexed: 01/09/2023] Open
Abstract
Fibrogenesis is a progressive scarring event resulting from disrupted regular wound healing due to repeated tissue injury and can end in organ failure, like in liver cirrhosis. The protagonists in this process, either liver-resident cells or patrolling leukocytes attracted to the site of tissue damage, interact with each other by soluble factors but also by direct cell–cell contact mediated by cell adhesion molecules. Since cell adhesion molecules also support binding to the extracellular matrix, they represent excellent biosensors, which allow cells to modulate their behavior based on changes in the surrounding microenvironment. In this review, we focus on selectins, cadherins, integrins and members of the immunoglobulin superfamily of adhesion molecules as well as some non-classical cell adhesion molecules in the context of hepatic fibrosis. We describe their liver-specific contributions to leukocyte recruitment, cell differentiation and survival, matrix remodeling or angiogenesis and touch on their suitability as targets in antifibrotic therapies.
Collapse
|
63
|
Gut microbiota as an "invisible organ" that modulates the function of drugs. Biomed Pharmacother 2019; 121:109653. [PMID: 31810138 DOI: 10.1016/j.biopha.2019.109653] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/30/2019] [Accepted: 11/06/2019] [Indexed: 02/08/2023] Open
Abstract
Gut microbiota plays an important role in the gut and have become a hotspot of recent research interests. Commensal microbiota in gut exert a variety of effects on the host, from shaping the structure and function of the gut and the immune system to the modulation of nutrient status of the host and the treatment outcomes of some drugs. Gut microbiota and its enzyme product and subsequent products, such as short-chain fatty acid and bile acid, play important roles in the biotransformation of drugs via directly or indirectly affecting drug absorption, toxicity, metabolism and bioavailability. Drugs, especially antibiotics, also affect the homeostasis of probiotics and the integrity and function of the intestinal mucosa. These interplaying processes produce a variety of important metabolites of the host and drugs and affect the balance of microbiota and the mucosal barrier then modulate the function of drugs. Gut microbiota imbalance is associated with a broad range of disease mechanisms, and this association denotes a new drug-therapeutic avenue. The present review summarizes how gut microbiota acts as an "invisible organ" to directly or indirectly modulate the function of drugs, on the aspects of probiotic homeostasis, drugs and host nutritional metabolism, AJC, mucus layer and microfold cells.
Collapse
|
64
|
MicroRNAs Contribute to Breast Cancer Invasiveness. Cells 2019; 8:cells8111361. [PMID: 31683635 PMCID: PMC6912645 DOI: 10.3390/cells8111361] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 12/24/2022] Open
Abstract
Cancer statistics in 2018 highlight an 8.6 million incidence in female cancers, and 4.2 million cancer deaths globally. Moreover, breast cancer is the most frequent malignancy in females and twenty percent of these develop metastasis. This provides only a small chance for successful therapy, and identification of new molecular markers for the diagnosis and prognostic prediction of metastatic disease and development of innovative therapeutic molecules are therefore urgently required. Differentially expressed microRNAs (miRNAs) in cancers cause multiple changes in the expression of the tumorigenesis-promoting genes which have mostly been investigated in breast cancers. Herein, we summarize recent data on breast cancer-specific miRNA expression profiles and their participation in regulating invasive processes, in association with changes in cytoskeletal structure, cell-cell adhesion junctions, cancer cell-extracellular matrix interactions, tumor microenvironments, epithelial-to-mesenchymal transitions and cancer cell stem abilities. We then focused on the epigenetic regulation of individual miRNAs and their modified interactions with other regulatory genes, and reviewed the function of miRNA isoforms and exosome-mediated miRNA transfer in cancer invasiveness. Although research into miRNA’s function in cancer is still ongoing, results herein contribute to improved metastatic cancer management.
Collapse
|
65
|
Abstract
Tight junctions (TJ) play a central role in the homeostasis of epithelial and endothelial tissues, by providing a semipermeable barrier to ions and solutes, by contributing to the maintenance of cell polarity, and by functioning as signaling platforms. TJ are associated with the actomyosin and microtubule cytoskeletons, and the crosstalk with the cytoskeleton is fundamental for junction biogenesis and physiology. TJ are spatially and functionally connected to adherens junctions (AJ), which are essential for the maintenance of tissue integrity. Mechano-sensing and mechano-transduction properties of several AJ proteins have been characterized during the last decade. However, little is known about how mechanical forces act on TJ and their proteins, how TJ control the mechanical properties of cells and tissues, and what are the underlying molecular mechanisms. Here I review recent studies that have advanced our understanding of the relationships between mechanical force and TJ biology.
Collapse
|
66
|
Zhang JS, Corredig M, Morales-Rayas R, Hassan A, Griffiths MW, LaPointe G. Effect of fermented milk from Lactococcus lactis ssp. cremoris strain JFR1 on Salmonella invasion of intestinal epithelial cells. J Dairy Sci 2019; 102:6802-6819. [PMID: 31202650 DOI: 10.3168/jds.2018-15669] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 04/05/2019] [Indexed: 12/18/2022]
Abstract
The process of fermentation contributes to the organoleptic properties, preservation, and nutritional benefits of food. Fermented food may interfere with pathogen infections through a variety of mechanisms, including competitive exclusion or improving intestinal barrier integrity. In this study, the effect of milk fermented with Lactococcus lactis ssp. cremoris JFR1 on Salmonella invasion of intestinal epithelial cell cultures was investigated. Epithelial cells (HT29-MTX, Caco-2, and cocultures of the 2) were treated for 1 h with Lactococcus lactis ssp. cremoris JFR1 fermented milk before infection with Salmonella enterica ssp. enterica Typhimurium. Treatment with fermented milk resulted in increased transepithelial electrical resistance, which remained constant for the duration of infection (up to 3 h), illustrating a protective effect. After gentamicin treatment to remove adhered bacterial cells, enumeration revealed a reduction in numbers of intracellular Salmonella. Quantitative reverse-transcription PCR data indicated a downregulation of Salmonella virulence genes hilA, invA, and sopD after treatment with fermented milk. Fermented milk treatment of epithelial cells also exhibited an immunomodulatory effect reducing the production of proinflammatory IL-8. In contrast, chemically acidified milk (glucono delta-lactone) failed to show the same effect on monolayer integrity, Salmonella Typhimurium invasion, and gene expression as well as immune modulation. Furthermore, an oppA knockout mutant of Salmonella Typhimurium infecting treated epithelial cells did not show suppressed virulence gene expression. Collectively, these results suggest that milk fermented with Lactococcus lactis ssp. cremoris JFR1 is effective in vitro in the reduction of Salmonella invasion into intestinal epithelial cells. A functional OppA permease in Salmonella is required to obtain the antivirulence effect of fermented milk.
Collapse
Affiliation(s)
- J S Zhang
- Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - M Corredig
- Department of Food Science, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - R Morales-Rayas
- Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | | | - M W Griffiths
- Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - G LaPointe
- Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
67
|
Pichaud F, Walther RF, Nunes de Almeida F. Regulation of Cdc42 and its effectors in epithelial morphogenesis. J Cell Sci 2019; 132:132/10/jcs217869. [PMID: 31113848 DOI: 10.1242/jcs.217869] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cdc42 - a member of the small Rho GTPase family - regulates cell polarity across organisms from yeast to humans. It is an essential regulator of polarized morphogenesis in epithelial cells, through coordination of apical membrane morphogenesis, lumen formation and junction maturation. In parallel, work in yeast and Caenorhabditis elegans has provided important clues as to how this molecular switch can generate and regulate polarity through localized activation or inhibition, and cytoskeleton regulation. Recent studies have revealed how important and complex these regulations can be during epithelial morphogenesis. This complexity is mirrored by the fact that Cdc42 can exert its function through many effector proteins. In epithelial cells, these include atypical PKC (aPKC, also known as PKC-3), the P21-activated kinase (PAK) family, myotonic dystrophy-related Cdc42 binding kinase beta (MRCKβ, also known as CDC42BPB) and neural Wiskott-Aldrich syndrome protein (N-WASp, also known as WASL). Here, we review how the spatial regulation of Cdc42 promotes polarity and polarized morphogenesis of the plasma membrane, with a focus on the epithelial cell type.
Collapse
Affiliation(s)
- Franck Pichaud
- MRC - Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK .,Institute for the Physics of Living Systems, University College London, London WC1E 6BT, UK
| | - Rhian F Walther
- MRC - Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | | |
Collapse
|
68
|
Li Y, Yang Y, Gan T, Zhou J, Hu F, Hao N, Yuan B, Chen Y, Zhang M. Extracellular RNAs from lung cancer cells activate epithelial cells and induce neutrophil extracellular traps. Int J Oncol 2019; 55:69-80. [PMID: 31115506 PMCID: PMC6561626 DOI: 10.3892/ijo.2019.4808] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 05/13/2019] [Indexed: 02/07/2023] Open
Abstract
Neutrophil infiltration is frequently observed in lung cancer tissues. Extracellular RNAs (exRNAs) may facilitate tumor progression. The present study investigated the cross-talk of tumor exRNAs and neutrophil extracellular traps (NETs) in lung cancer. Lewis lung carcinoma (LLC) cells were cultured with the deprived sera. And the cell culture supernatants (CCS) were analyzed in vitro and in vivo. The results revealed that exRNAs from lung cancer CCS promoted the inflammatory cytokine interleukin-1β and reduced the vascular cell adhesion molecule-1 expression in lung epithelial cells. Lung cancer CCS-treated epithelial cells induced the production of NETs. By contrast, NETs reduced the tight junction protein claudin-5 in epithelial cells. Furthermore, NETs caused the necrosis of epithelial cells, which resulted in the release of exRNAs. In mice, lung cancer cells instilled in the lung recruited neutrophils and initiated NETs. In patients with lung cancer, NETs were also observed. These results suggested that exRNAs in the cell culture supernatant may indirectly induce NETs and contribute to lung cancer oncogenesis.
Collapse
Affiliation(s)
- Yan Li
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yonglin Yang
- Department of Infectious Disease, Nanjing Medical University Nanjing First Hospital, Nanjing, Jiangsu 210006, P.R. China
| | - Tingting Gan
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jiawei Zhou
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Fan Hu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210016, P.R. China
| | - Nannan Hao
- Key Laboratory of Antibody Technique of Health Ministry, Nanjing Medical University, Nanjing, Jiangsu 210016, P.R. China
| | - Baorui Yuan
- Key Laboratory of Antibody Technique of Health Ministry, Nanjing Medical University, Nanjing, Jiangsu 210016, P.R. China
| | - Yu Chen
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Mingshun Zhang
- Key Laboratory of Antibody Technique of Health Ministry, Nanjing Medical University, Nanjing, Jiangsu 210016, P.R. China
| |
Collapse
|
69
|
Nawaz IM, Rezzola S, Cancarini A, Russo A, Costagliola C, Semeraro F, Presta M. Human vitreous in proliferative diabetic retinopathy: Characterization and translational implications. Prog Retin Eye Res 2019; 72:100756. [PMID: 30951889 DOI: 10.1016/j.preteyeres.2019.03.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 02/07/2023]
Abstract
Diabetic retinopathy (DR) is one of the leading causes of visual impairment in the working-age population. DR is a progressive eye disease caused by long-term accumulation of hyperglycaemia-mediated pathological alterations in the retina of diabetic patients. DR begins with asymptomatic retinal abnormalities and may progress to advanced-stage proliferative diabetic retinopathy (PDR), characterized by neovascularization or preretinal/vitreous haemorrhages. The vitreous, a transparent gel that fills the posterior cavity of the eye, plays a vital role in maintaining ocular function. Structural and molecular alterations of the vitreous, observed during DR progression, are consequences of metabolic and functional modifications of the retinal tissue. Thus, vitreal alterations reflect the pathological events occurring at the vitreoretinal interface. These events are caused by hypoxic, oxidative, inflammatory, neurodegenerative, and leukostatic conditions that occur during diabetes. Conversely, PDR vitreous can exert pathological effects on the diabetic retina, resulting in activation of a vicious cycle that contributes to disease progression. In this review, we recapitulate the major pathological features of DR/PDR, and focus on the structural and molecular changes that characterize the vitreal structure and composition during DR and progression to PDR. In PDR, vitreous represents a reservoir of pathological signalling molecules. Therefore, in this review we discuss how studying the biological activity of the vitreous in different in vitro, ex vivo, and in vivo experimental models can provide insights into the pathogenesis of PDR. In addition, the vitreous from PDR patients can represent a novel tool to obtain preclinical experimental evidences for the development and characterization of new therapeutic drug candidates for PDR therapy.
Collapse
Affiliation(s)
- Imtiaz M Nawaz
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - Sara Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - Anna Cancarini
- Department of Ophthalmology, University of Brescia, Italy
| | - Andrea Russo
- Department of Ophthalmology, University of Brescia, Italy
| | - Ciro Costagliola
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | | | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, Italy.
| |
Collapse
|
70
|
Zhou D, Tang W, Zhang Y, An HX. JAM3 functions as a novel tumor suppressor and is inactivated by DNA methylation in colorectal cancer. Cancer Manag Res 2019; 11:2457-2470. [PMID: 30988641 PMCID: PMC6441464 DOI: 10.2147/cmar.s189937] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Purpose JAM3, an adhesion and transmigration regulatory element, is abundantly expressed in intestinal epithelial cells. However, its expression and function in colorectal cancer (CRC) remain unknown. In this study, we explored its epigenetic mechanism and biological role in CRC. Patients and methods Bioinformatics analysis was used to analyze the expression and methylation level of JAM3 in CRC. Methylation and expression status of JAM3 were then validated by quantitative methylation-specific PCR (qMSP) and quantitative PCR in tissues, plasma samples, and cell lines. Flow cytometry, Western blot, transwell, siRNA, colony formation, and transfection were used to evaluate the biological function of JAM3. Results We initially found that JAM3 was frequently methylated and downregulated in CRC based on bioinformatics tools. qMSP validation showed that the methylation levels of JAM3 were increased in 75% (18/24) of CRC tissues, 61% (11/18) plasma samples, and all four CRC cell lines and were significantly associated with tumor stage in CRC tissues. Moreover, JAM3 was downregulated in primary CRC tissues, plasma samples, and CRC cell lines as compared with that in nonmalignant controls, although its expression could be recovered after demethylation treatment. Restoration of JAM3 repressed CRC cell viability, colony formation, and migration. In addition, siRNA-mediated depletion of JAM3 in NCM460 cells improved the clonogenicity and migration capability, whereas it suppressed cell apoptosis and cell-cycle arrest. These functional effects were accompanied with alterations of several epithelial cell markers, including E-cadherin, vimentin, phosphor-β-catenin (ser552), and TJP1, which were responsible for epithelial–mesenchymal transition. Conclusion The findings indicated that JAM3 may be a novel tumor suppressor gene with epigenetic reduction in CRC and can be used as a potential noninvasive biomarker for CRC diagnosis.
Collapse
Affiliation(s)
- Dan Zhou
- Department of Medical Oncology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China, ; .,Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China, .,Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen, Fujian, China,
| | - Weiwei Tang
- Department of Medical Oncology, Cancer Hospital, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Teaching Hospital of Fujian Medical University, Xiamen, Fujian, China
| | - Yun Zhang
- Department of Medical Oncology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China, ; .,Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China, .,Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen, Fujian, China,
| | - Han-Xiang An
- Department of Medical Oncology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China, ;
| |
Collapse
|
71
|
Pancreatic adenocarcinomas with mature blood vessels have better overall survival. Sci Rep 2019; 9:1310. [PMID: 30718678 PMCID: PMC6362082 DOI: 10.1038/s41598-018-37909-5] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 12/17/2018] [Indexed: 12/21/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is known for its hypovascularity. Bevacizumab, an anti-angiogenic drug, added to standard chemotherapy demonstrated no improvement in outcome for PDAC. Therefore, we hypothesized that increased vascularity may be associated with improved outcomes in PDAC possibly due to better delivery of tumor specific immune cells. To test this hypothesis, PDAC patients were classified into either high or low CD31 expression groups utilizing mRNA expression from RNA-sequence data in The Cancer Genome Atlas (TCGA) pancreatic cancer cohort. High expression of CD31, which indicates presence of more vascular endothelial cells, was associated with significantly better OS (p = 0.002). Multivariate analysis demonstrated that residual tumor (R1, 2; p = 0.026) and CD31 low expression (p = 0.007) were the only independent predictors that negatively impacted OS. Vascular stability as well as immune response related pathways were significantly upregulated in the CD31 high expressing tumors. Furthermore, there were higher proportions of anti-cancer immune cells infiltration, including activated memory CD4+ T cells (p = 0.038), CD8+ T cells (p = 0.027), gamma-delta T cells (p < 0.001) as well as naïve B cells (p = 0.006), whereas lower proportions of regulatory T cell fractions (p = 0.009), which induce an immune tolerant microenvironment, in the CD31 high expressing tumors. These findings imply that stable vessels supply anti-cancer immune cells, which are at least partially responsible for better OS in the CD31 high expressing tumors. In conclusion, CD31 high expressing PDACs have better OS, which may be due to stable vessels that supply anti-cancer immune cells.
Collapse
|
72
|
Si Y, Wen H, Du S. Genetic Mutations in jamb, jamc, and myomaker Revealed Different Roles on Myoblast Fusion and Muscle Growth. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:111-123. [PMID: 30467785 PMCID: PMC6467518 DOI: 10.1007/s10126-018-9865-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 11/15/2018] [Indexed: 05/08/2023]
Abstract
Myoblast fusion is a vital step for skeletal muscle development, growth, and regeneration. Loss of Jamb, Jamc, or Myomaker (Mymk) function impaired myoblast fusion in zebrafish embryos. In addition, mymk mutation hampered fish muscle growth. However, the effect of Jamb and Jamc deficiency on fish muscle growth is not clear. Moreover, whether jamb;jamc and jamb;mymk double mutations have stronger effects on myoblast fusion and muscle growth remains to be investigated. Here, we characterized the muscle development and growth in jamb, jamc, and mymk single and double mutants in zebrafish. We found that although myoblast fusion was compromised in jamb and jamc single or jamb;jamc double mutants, these mutant fish showed no defect in muscle cell fusion during muscle growth. The mutant fish were able to grow into adults that were indistinguishable from the wild-type sibling. In contrast, the jamb;mymk double mutants exhibited a stronger muscle phenotype compared to the jamb and jamc single and double mutants. The jamb;mymk double mutant showed reduced growth and partial lethality, similar to a mymk single mutant. Single fiber analysis of adult skeletal myofibers revealed that jamb, jamc, or jamb;jamc mutants contained mainly multinucleated myofibers, whereas jamb;mymk double mutants contained mostly mononucleated fibers. Significant intramuscular adipocyte infiltration was found in skeletal muscles of the jamb;mymk mutant. Collectively, these studies demonstrate that although Jamb, Jamc, and Mymk are all involved in myoblast fusion during early myogenesis, they have distinct roles in myoblast fusion during muscle growth. While Mymk is essential for myoblast fusion during both muscle development and growth, Jamb and Jamc are dispensable for myoblast fusion during muscle growth.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Cell Communication
- Cell Differentiation
- Cell Fusion
- Embryo, Nonmammalian
- Gene Expression Regulation, Developmental
- Junctional Adhesion Molecule B/deficiency
- Junctional Adhesion Molecule B/genetics
- Membrane Proteins/deficiency
- Membrane Proteins/genetics
- Muscle Development/genetics
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/metabolism
- Muscle Proteins/deficiency
- Muscle Proteins/genetics
- Muscle, Skeletal/cytology
- Muscle, Skeletal/growth & development
- Muscle, Skeletal/metabolism
- Mutation
- Myoblasts/cytology
- Myoblasts/metabolism
- Receptors, Cell Surface/deficiency
- Receptors, Cell Surface/genetics
- Zebrafish/genetics
- Zebrafish/growth & development
- Zebrafish/metabolism
- Zebrafish Proteins/deficiency
- Zebrafish Proteins/genetics
Collapse
Affiliation(s)
- Yufeng Si
- Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, 701 East Pratt Street, Baltimore, MD, 21202, USA
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Haishen Wen
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Shaojun Du
- Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, 701 East Pratt Street, Baltimore, MD, 21202, USA.
| |
Collapse
|
73
|
Reinhold AK, Yang S, Chen JTC, Hu L, Sauer RS, Krug SM, Mambretti EM, Fromm M, Brack A, Rittner HL. Tissue plasminogen activator and neuropathy open the blood-nerve barrier with upregulation of microRNA-155-5p in male rats. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1160-1169. [PMID: 30625382 DOI: 10.1016/j.bbadis.2019.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 11/30/2018] [Accepted: 01/04/2019] [Indexed: 12/14/2022]
Abstract
The blood-nerve barrier (BNB) consisting of the perineurium and endoneurial vessels is sealed by tight junction proteins. BNB alterations are a crucial factor in the pathogenesis of peripheral neuropathies. However, barrier opening, e.g. by tissue plasminogen activator (tPA), can also facilitate topical application of analgesics. Here, we examined tPA both in the pathophysiology of neuropathy-induced BNB opening or via exogenous application and its effect on the cytoplasmatic tight junction protein anchoring protein, zona occludens-1 (ZO-1), the adherens molecule JAM-C and microRNA(miR)-155-5p. Specifically, we investigated whether tPA alone and barrier opening lead to pain behavioral changes, i.e. hyperalgesia, or whether these effects require further factors. Male Wistar rats underwent chronic constriction injury (CCI) or were treated by a single perisciatic application of recombinant (r)tPA. CCI elicited mechanical allodynia, tPA mRNA upregulation, macrophage invasion, BNB leakage for large molecule tracers, downregulation of ZO-1 and JAM-C mRNA/protein, and a loss of immunoreactivity of both in perineurium and endoneurial cells. Similarly, after perisciatic rtPA injection, ZO-1 and JAM-C mRNA as well as cytosolic/membrane protein and ZO-1 immunoreactivity were downregulated, and the BNB was opened. Neither mechanical hypersensitivity nor macrophage infiltration was observed after rtPA in contrast to CCI. Mechanistically, miR-155-5p, which is known to destabilize barriers and tight junction proteins like claudin-1 and ZO-1, was increased in CCI and to lesser extent after rtPA application. In summary, tPA transiently opens the BNB possibly via miR-155-5p. However, tPA does not provoke allodynia in the absence of a neuropathic stimulus like a ligation or inflammation.
Collapse
Affiliation(s)
- Ann-Kristin Reinhold
- Dept. of Anesthesiology, University Hospital of Würzburg, 97080 Würzburg, Germany
| | - Shaobing Yang
- Dept. of Anesthesiology, University Hospital of Würzburg, 97080 Würzburg, Germany; Dept. of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | | | - Liu Hu
- Dept. of Anesthesiology, University Hospital of Würzburg, 97080 Würzburg, Germany; Dept. of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Reine-Solange Sauer
- Dept. of Anesthesiology, University Hospital of Würzburg, 97080 Würzburg, Germany
| | - Susanne M Krug
- Institute of Clinical Physiology, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, 12200 Berlin, Germany
| | - Egle M Mambretti
- Dept. of Anesthesiology, University Hospital of Würzburg, 97080 Würzburg, Germany
| | - Michael Fromm
- Institute of Clinical Physiology, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, 12200 Berlin, Germany
| | - Alexander Brack
- Dept. of Anesthesiology, University Hospital of Würzburg, 97080 Würzburg, Germany
| | - Heike L Rittner
- Dept. of Anesthesiology, University Hospital of Würzburg, 97080 Würzburg, Germany.
| |
Collapse
|
74
|
Shi J, Barakat M, Chen D, Chen L. Bicellular Tight Junctions and Wound Healing. Int J Mol Sci 2018; 19:ijms19123862. [PMID: 30518037 PMCID: PMC6321209 DOI: 10.3390/ijms19123862] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 12/15/2022] Open
Abstract
Bicellular tight junctions (TJs) are intercellular junctions comprised of a variety of transmembrane proteins including occludin, claudins, and junctional adhesion molecules (JAMs) as well as intracellular scaffold proteins such as zonula occludens (ZOs). TJs are functional, intercellular structures that form a barrier between adjacent cells, which constantly seals and unseals to control the paracellular passage of molecules. They are primarily present in the epithelial and endothelial cells of all tissues and organs. In addition to their well-recognized roles in maintaining cell polarity and barrier functions, TJs are important regulators of signal transduction, which modulates cell proliferation, migration, and differentiation, as well as some components of the immune response and homeostasis. A vast breadth of research data is available on TJs, but little has been done to decipher their specific roles in wound healing, despite their primary distribution in epithelial and endothelial cells, which are essential contributors to the wound healing process. Some data exists to indicate that a better understanding of the functions and significance of TJs in healing wounds may prove crucial for future improvements in wound healing research and therapy. Specifically, recent studies demonstrate that occludin and claudin-1, which are two TJ component proteins, are present in migrating epithelial cells at the wound edge but are absent in chronic wounds. This indicates that functional TJs may be critical for effective wound healing. A tremendous amount of work is needed to investigate their roles in barrier function, re-epithelialization, angiogenesis, scar formation, and in the interactions between epithelial cells, endothelial cells, and immune cells both in the acute wound healing process and in non-healing wounds. A more thorough understanding of TJs in wound healing may shed new light on potential research targets and reveal novel strategies to enhance tissue regeneration and improve wound repair.
Collapse
Affiliation(s)
- Junhe Shi
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, 801 S. Paulina Street, Chicago, IL 60612, USA.
| | - May Barakat
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, 801 S. Paulina Street, Chicago, IL 60612, USA.
| | - Dandan Chen
- Colgate-Palmolive Company, Piscataway, NJ 08855, USA.
| | - Lin Chen
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, 801 S. Paulina Street, Chicago, IL 60612, USA.
| |
Collapse
|
75
|
Flemming S, Luissint AC, Nusrat A, Parkos CA. Analysis of leukocyte transepithelial migration using an in vivo murine colonic loop model. JCI Insight 2018; 3:99722. [PMID: 30333307 DOI: 10.1172/jci.insight.99722] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 09/11/2018] [Indexed: 12/30/2022] Open
Abstract
Molecular mechanisms that control leukocyte migration across the vascular endothelium (transendothelial migration; TEndoM) have been extensively characterized in vivo, but details of leukocyte transepithelial migration (TEpM) and its dysregulation (a pathologic feature of many mucosal diseases) are missing due to the lack of suitable animal models. Here, we describe a murine model that utilizes a vascularized proximal colonic segment (pcLoop) and enables quantitative studies of leukocyte trafficking across colonic epithelium. Consistent with previous in vitro studies, intraluminal injection of antibodies against integrin CD11b/CD18 reduced recruitment of polymorphonuclear neutrophils (PMN) into the lumen of pcLoops, and it increased subepithelial accumulation of PMN. We extended studies using the pcLoop to determine contributions of Junctional Adhesion Molecule-A (JAM-A, or F11R) in PMN TEpM and confirmed that mice with total loss of JAM-A or mice with intestinal epithelial selective loss of JAM-A had increased colonic permeability. Furthermore, there was reduced PMN migration into the colonic lumen that paralleled subepithelial accumulation of PMN in global-KO mice, as well as in intestinal epithelial-targeted JAM-A-deficient mice. These findings highlight a potentially novel role for JAM-A in regulating PMN TEpM in vivo and demonstrate utility of this model for identifying receptors that may be targeted in vivo to reduce pathologic intestinal inflammation.
Collapse
|
76
|
Vermette D, Hu P, Canarie MF, Funaro M, Glover J, Pierce RW. Tight junction structure, function, and assessment in the critically ill: a systematic review. Intensive Care Med Exp 2018; 6:37. [PMID: 30259344 PMCID: PMC6158145 DOI: 10.1186/s40635-018-0203-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/20/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Epithelial and endothelial barrier integrity, essential for homeostasis, is maintained by cellular boarder structures known as tight junctions (TJs). In critical illness, TJs may become disrupted, resulting in barrier dysfunction manifesting as capillary leak, pulmonary edema, gut bacterial translocation, and multiple organ failure. We aim to provide a clinically focused overview of TJ structure and function and systematically review and analyze all studies assessing markers of endothelial and epithelial TJ breakdown correlated with clinical outcomes in critically ill humans. METHODS We systematically searched MEDLINE, EMBASE, and PubMed. Additional articles were identified by targeted searches. We included studies that looked at the relationship between biomarkers of endothelial or epithelial TJ structure or function and critical illness. Results were qualitatively analyzed due to sample size and heterogeneity. RESULTS A total of 5297 abstracts met search criteria, of which 150 articles met requirements for full text review. Of these, 30 studies met inclusion criteria. Fifteen of the 30 reports investigated proteins of endothelial tight junctions and 15 investigated epithelial TJ markers, exclusively in the gastrointestinal epithelium. No studies investigated TJ-derived proteins in primary cardiac or pulmonary pathology. CONCLUSIONS TJ integrity is essential for homeostasis. We identified multiple studies that indicate TJs are disrupted by critical illness. These studies highlight the significance of barrier disruption across many critical disease states and correlate TJ-associated markers to clinically relevant outcomes. Further study on the role of multiple tissue-specific claudins, particularly in the setting of respiratory or cardiac failure, may lead to diagnostic and therapeutic advances. SYSTEMATIC REVIEW REGISTRATION This systematic review is registered in the PROSPERO database: CRD42017074546 .
Collapse
Affiliation(s)
- David Vermette
- Department of Pediatrics, Yale University, 333 Cedar Street, PO Box 208064, New Haven, CT 06520 USA
| | - Pamela Hu
- Department of Pediatrics, Yale University, 333 Cedar Street, PO Box 208064, New Haven, CT 06520 USA
| | - Michael F Canarie
- Department of Pediatrics, Yale University, 333 Cedar Street, PO Box 208064, New Haven, CT 06520 USA
| | - Melissa Funaro
- Cushing/Whitney Medical Library, Yale University, 333 Cedar Street, PO Box 208064, New Haven, CT 06520 USA
| | - Janis Glover
- Cushing/Whitney Medical Library, Yale University, 333 Cedar Street, PO Box 208064, New Haven, CT 06520 USA
| | - Richard W Pierce
- Department of Pediatrics, Yale University, 333 Cedar Street, PO Box 208064, New Haven, CT 06520 USA
| |
Collapse
|
77
|
Cellular sheddases are induced by Merkel cell polyomavirus small tumour antigen to mediate cell dissociation and invasiveness. PLoS Pathog 2018; 14:e1007276. [PMID: 30188954 PMCID: PMC6143273 DOI: 10.1371/journal.ppat.1007276] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 09/18/2018] [Accepted: 08/10/2018] [Indexed: 02/07/2023] Open
Abstract
Merkel cell carcinoma (MCC) is an aggressive skin cancer with a high propensity for recurrence and metastasis. Merkel cell polyomavirus (MCPyV) is recognised as the causative factor in the majority of MCC cases. The MCPyV small tumour antigen (ST) is considered to be the main viral transforming factor, however potential mechanisms linking ST expression to the highly metastatic nature of MCC are yet to be fully elucidated. Metastasis is a complex process, with several discrete steps required for the formation of secondary tumour sites. One essential trait that underpins the ability of cancer cells to metastasise is how they interact with adjoining tumour cells and the surrounding extracellular matrix. Here we demonstrate that MCPyV ST expression disrupts the integrity of cell-cell junctions, thereby enhancing cell dissociation and implicate the cellular sheddases, A disintegrin and metalloproteinase (ADAM) 10 and 17 proteins in this process. Inhibition of ADAM 10 and 17 activity reduced MCPyV ST-induced cell dissociation and motility, attributing their function as critical to the MCPyV-induced metastatic processes. Consistent with these data, we confirm that ADAM 10 and 17 are upregulated in MCPyV-positive primary MCC tumours. These novel findings implicate cellular sheddases as key host cell factors contributing to virus-mediated cellular transformation and metastasis. Notably, ADAM protein expression may be a novel biomarker of MCC prognosis and given the current interest in cellular sheddase inhibitors for cancer therapeutics, it highlights ADAM 10 and 17 activity as a novel opportunity for targeted interventions for disseminated MCC.
Collapse
|
78
|
Li X, Yin A, Zhang W, Zhao F, Lv J, Lv J, Sun J. Jam3 promotes migration and suppresses apoptosis of renal carcinoma cell lines. Int J Mol Med 2018; 42:2923-2929. [PMID: 30226554 DOI: 10.3892/ijmm.2018.3854] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 08/06/2018] [Indexed: 11/06/2022] Open
Abstract
As a common type of renal cancer, renal cell carcinoma (RCC) has a high annual mortality rate. The incidence of RCC has been increasing in China and worldwide. A large number cases of RCC are diagnosed at late stages, often with local and/or systematic metastasis. Surgical resection of RCC is only suitable for a small number of patients with early stage tumors, and thus, novel therapeutic methods are required. Junctional adhesion molecule 3 (Jam3) is a member of the junctional adhesion molecule family, which has been linked to epithelial and cancer cell proliferation. The present study investigated whether the Jam3 gene affected RCC growth via proliferation and apoptosis. The expression and biological function of Jam3 in renal carcinoma cells was investigated. The mRNA and protein levels of Jam3 were examined by reverse transcription‑polymerase chain reaction and western blot analyses. The role of Jam3 in the migration and apoptosis of renal carcinoma cells was determined using small interfering RNA, wound‑healing assays, flow cytometry, and cell migration assays. In the cell migration assays, E‑cadherin, N‑cadherin, integrin β1, and matrix metalloproteinase (MMP)‑2 proteins were detected by western blot analysis. It was shown that the expression of Jam3 was significantly elevated in human renal carcinoma cells compared with that in renal tubular epithelial cells. The knockdown of Jam3 inhibited renal carcinoma cell migration and promoted renal carcinoma cell apoptosis. It also increased the protein levels of E‑cadherin and reduced the protein levels of N‑cadherin, integrin β1 and MMP‑2. The inhibition of Jam3 promoted migration and suppressed apoptosis of renal carcinoma cells via regulation of the expression of E‑cadherin, N‑cadherin, integrin β1 and MMP‑2. Therefore, Jam3 was suggested as a novel target gene for the diagnosis and treatment of RCC.
Collapse
Affiliation(s)
- Xudong Li
- Department of Nephrology and Urinary Surgery, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Aiping Yin
- Department of Nephrology and Urinary Surgery, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Wenjing Zhang
- Department of Nephrology and Urinary Surgery, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Fei Zhao
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jia Lv
- Department of Nephrology and Urinary Surgery, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jing Lv
- Department of Nephrology and Urinary Surgery, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jiping Sun
- Department of Nephrology and Urinary Surgery, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
79
|
Hirano Y, Ode Y, Ochani M, Wang P, Aziz M. Targeting junctional adhesion molecule-C ameliorates sepsis-induced acute lung injury by decreasing CXCR4 + aged neutrophils. J Leukoc Biol 2018; 104:1159-1171. [PMID: 30088666 DOI: 10.1002/jlb.3a0218-050r] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/31/2018] [Accepted: 07/09/2018] [Indexed: 01/13/2023] Open
Abstract
Sepsis is a severe inflammatory condition associated with high mortality. Transmigration of neutrophils into tissues increases their lifespan to promote deleterious function. Junctional adhesion molecule-C (JAM-C) plays a pivotal role in neutrophil transmigration into tissues. We aim to study the role of JAM-C on the aging of neutrophils to cause sepsis-induced acute lung injury (ALI). Sepsis was induced in C57BL/6J mice by cecal ligation and puncture (CLP) and JAM-C expression in serum was assessed. Bone marrow-derived neutrophils (BMDN) were treated with recombinant mouse JAM-C (rmJAM-C) ex vivo and their viability was assessed. CLP-operated animals were administrated with either isotype IgG or anti-JAM-C Ab at a concentration of 3 mg/kg and after 20 h, aged neutrophils (CXCR4+ ) were assessed in blood and lungs and correlated with systemic injury and inflammatory markers. Soluble JAM-C level in serum was up-regulated during sepsis. Treatment with rmJAM-C inhibited BMDN apoptosis, thereby increasing their lifespan. CLP increased the frequencies of CXCR4+ neutrophils in blood and lungs, while treatment with anti-JAM-C Ab significantly reduced the frequencies of CXCR4+ aged neutrophils. Treatment with anti-JAM-C Ab significantly reduced systemic injury markers (alanine aminotransferase, aspartate aminotransferase, and lactate dehydrogenase) as well as systemic and lung inflammatory cytokines (IL-6 and IL-1β) and chemokine (macrophage inflammatory protein-2). The blockade of JAM-C improved lung histology and reduced neutrophil contents in lungs of septic mice. Thus, reduction of the pro-inflammatory aged neutrophils by blockade of JAM-C has a novel therapeutic potential in sepsis-induced ALI.
Collapse
Affiliation(s)
- Yohei Hirano
- Center for Immunology and Inflammation, Feinstein Institute for Medical Research, Manhasset, New York, USA.,Department of Emergency and Critical Care Medicine, Juntendo University and Urayasu Hospital, Chiba, Japan
| | - Yasumasa Ode
- Center for Immunology and Inflammation, Feinstein Institute for Medical Research, Manhasset, New York, USA
| | - Mahendar Ochani
- Center for Immunology and Inflammation, Feinstein Institute for Medical Research, Manhasset, New York, USA
| | - Ping Wang
- Center for Immunology and Inflammation, Feinstein Institute for Medical Research, Manhasset, New York, USA.,Department of Surgery and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York, USA
| | - Monowar Aziz
- Center for Immunology and Inflammation, Feinstein Institute for Medical Research, Manhasset, New York, USA
| |
Collapse
|
80
|
The regulation of junctional actin dynamics by cell adhesion receptors. Histochem Cell Biol 2018; 150:341-350. [DOI: 10.1007/s00418-018-1691-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2018] [Indexed: 11/26/2022]
|
81
|
Shergalis A, Bankhead A, Luesakul U, Muangsin N, Neamati N. Current Challenges and Opportunities in Treating Glioblastoma. Pharmacol Rev 2018; 70:412-445. [PMID: 29669750 PMCID: PMC5907910 DOI: 10.1124/pr.117.014944] [Citation(s) in RCA: 558] [Impact Index Per Article: 79.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma multiforme (GBM), the most common and aggressive primary brain tumor, has a high mortality rate despite extensive efforts to develop new treatments. GBM exhibits both intra- and intertumor heterogeneity, lending to resistance and eventual tumor recurrence. Large-scale genomic and proteomic analysis of GBM tumors has uncovered potential drug targets. Effective and "druggable" targets must be validated to embark on a robust medicinal chemistry campaign culminating in the discovery of clinical candidates. Here, we review recent developments in GBM drug discovery and delivery. To identify GBM drug targets, we performed extensive bioinformatics analysis using data from The Cancer Genome Atlas project. We discovered 20 genes, BOC, CLEC4GP1, ELOVL6, EREG, ESR2, FDCSP, FURIN, FUT8-AS1, GZMB, IRX3, LITAF, NDEL1, NKX3-1, PODNL1, PTPRN, QSOX1, SEMA4F, TH, VEGFC, and C20orf166AS1 that are overexpressed in a subpopulation of GBM patients and correlate with poor survival outcomes. Importantly, nine of these genes exhibit higher expression in GBM versus low-grade glioma and may be involved in disease progression. In this review, we discuss these proteins in the context of GBM disease progression. We also conducted computational multi-parameter optimization to assess the blood-brain barrier (BBB) permeability of small molecules in clinical trials for GBM treatment. Drug delivery in the context of GBM is particularly challenging because the BBB hinders small molecule transport. Therefore, we discuss novel drug delivery methods, including nanoparticles and prodrugs. Given the aggressive nature of GBM and the complexity of targeting the central nervous system, effective treatment options are a major unmet medical need. Identification and validation of biomarkers and drug targets associated with GBM disease progression present an exciting opportunity to improve treatment of this devastating disease.
Collapse
Affiliation(s)
- Andrea Shergalis
- Department of Medicinal Chemistry, College of Pharmacy, North Campus Research Complex, Ann Arbor, Michigan (A.S., U.L., N.N.); Biostatistics Department and School of Public Health, University of Michigan, Ann Arbor, Michigan (A.B.); and Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand (U.L., N.M.)
| | - Armand Bankhead
- Department of Medicinal Chemistry, College of Pharmacy, North Campus Research Complex, Ann Arbor, Michigan (A.S., U.L., N.N.); Biostatistics Department and School of Public Health, University of Michigan, Ann Arbor, Michigan (A.B.); and Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand (U.L., N.M.)
| | - Urarika Luesakul
- Department of Medicinal Chemistry, College of Pharmacy, North Campus Research Complex, Ann Arbor, Michigan (A.S., U.L., N.N.); Biostatistics Department and School of Public Health, University of Michigan, Ann Arbor, Michigan (A.B.); and Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand (U.L., N.M.)
| | - Nongnuj Muangsin
- Department of Medicinal Chemistry, College of Pharmacy, North Campus Research Complex, Ann Arbor, Michigan (A.S., U.L., N.N.); Biostatistics Department and School of Public Health, University of Michigan, Ann Arbor, Michigan (A.B.); and Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand (U.L., N.M.)
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy, North Campus Research Complex, Ann Arbor, Michigan (A.S., U.L., N.N.); Biostatistics Department and School of Public Health, University of Michigan, Ann Arbor, Michigan (A.B.); and Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand (U.L., N.M.)
| |
Collapse
|
82
|
Hintermann E, Bayer M, Conti CB, Fuchs S, Fausther M, Leung PS, Aurrand-Lions M, Taubert R, Pfeilschifter JM, Friedrich-Rust M, Schuppan D, Dranoff JA, Gershwin ME, Manns MP, Imhof BA, Christen U. Junctional adhesion molecules JAM-B and JAM-C promote autoimmune-mediated liver fibrosis in mice. J Autoimmun 2018; 91:83-96. [PMID: 29753567 DOI: 10.1016/j.jaut.2018.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/26/2018] [Accepted: 05/02/2018] [Indexed: 12/17/2022]
Abstract
Fibrosis remains a serious health concern in patients with chronic liver disease. We recently reported that chemically induced chronic murine liver injury triggers increased expression of junctional adhesion molecules (JAMs) JAM-B and JAM-C by endothelial cells and de novo synthesis of JAM-C by hepatic stellate cells (HSCs). Here, we demonstrate that biopsies of patients suffering from primary biliary cholangitis (PBC), primary sclerosing cholangitis (PSC) or autoimmune hepatitis (AIH) display elevated levels of JAM-C on portal fibroblasts (PFs), HSCs, endothelial cells and cholangiocytes, whereas smooth muscle cells expressed JAM-C constitutively. Therefore, localization and function of JAM-B and JAM-C were investigated in three mouse models of autoimmune-driven liver inflammation. A PBC-like disease was induced by immunization with 2-octynoic acid-BSA conjugate, which resulted in the upregulation of both JAMs in fibrotic portal triads. Analysis of a murine model of PSC revealed a role of JAM-C in PF cell-cell adhesion and contractility. In mice suffering from AIH, endothelial cells increased JAM-B level and HSCs and capsular fibroblasts became JAM-C-positive. Most importantly, AIH-mediated liver fibrosis was reduced in JAM-B-/- mice or when JAM-C was blocked by soluble recombinant JAM-C. Interestingly, loss of JAM-B/JAM-C function had no effect on leukocyte infiltration, suggesting that the well-documented function of JAMs in leukocyte recruitment to inflamed tissue was not effective in the tested chronic models. This might be different in patients and may even be complicated by the fact that human leukocytes express JAM-C. Our findings delineate JAM-C as a mediator of myofibroblast-operated contraction of the liver capsule, intrahepatic vasoconstriction and bile duct stricture. Due to its potential to interact heterophilically with endothelial JAM-B, JAM-C supports also HSC/PF mural cell function. Together, these properties allow JAM-B and JAM-C to actively participate in vascular remodeling associated with liver/biliary fibrosis and suggest them as valuable targets for anti-fibrosis therapies.
Collapse
Affiliation(s)
- Edith Hintermann
- Pharmazentrum Frankfurt, ZAFES, Goethe University Hospital Frankfurt, Frankfurt am Main, Germany.
| | - Monika Bayer
- Pharmazentrum Frankfurt, ZAFES, Goethe University Hospital Frankfurt, Frankfurt am Main, Germany.
| | - Clara Benedetta Conti
- Department of Internal Medicine 1, Goethe University Hospital Frankfurt, Frankfurt am Main, Germany; Fondazione IRCCS Cà, Granda Ospedale Maggiore Policlinico, Department of Pathophysiology and Organ Transplantation, Milan, Italy.
| | - Sina Fuchs
- Pharmazentrum Frankfurt, ZAFES, Goethe University Hospital Frankfurt, Frankfurt am Main, Germany.
| | - Michel Fausther
- Division of Gastroenterology and Hepatology, University of Arkansas, Little Rock, AR, USA.
| | - Patrick S Leung
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA.
| | - Michel Aurrand-Lions
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France.
| | - Richard Taubert
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.
| | - Josef M Pfeilschifter
- Pharmazentrum Frankfurt, ZAFES, Goethe University Hospital Frankfurt, Frankfurt am Main, Germany.
| | - Mireen Friedrich-Rust
- Department of Internal Medicine 1, Goethe University Hospital Frankfurt, Frankfurt am Main, Germany.
| | - Detlef Schuppan
- Institute of Translational Immunology and Research Center for Immune Therapy, University Medical Center, Johannes Gutenberg University, Mainz, Germany.
| | - Jonathan A Dranoff
- Division of Gastroenterology and Hepatology, University of Arkansas, Little Rock, AR, USA.
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA.
| | - Michael P Manns
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.
| | - Beat A Imhof
- Department of Pathology and Immunology, Centre Médical Universitaire, University of Geneva, Geneva, Switzerland.
| | - Urs Christen
- Pharmazentrum Frankfurt, ZAFES, Goethe University Hospital Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
83
|
Ma J, Fan Y, Zhou Y, Liu W, Jiang N, Zhang J, Zeng L. Efficient resistance to grass carp reovirus infection in JAM-A knockout cells using CRISPR/Cas9. FISH & SHELLFISH IMMUNOLOGY 2018; 76:206-215. [PMID: 29477498 DOI: 10.1016/j.fsi.2018.02.039] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/13/2018] [Accepted: 02/19/2018] [Indexed: 06/08/2023]
Abstract
The hemorrhagic disease of grass carp (Ctenopharyngodon idellus) induced by grass carp reovirus (GCRV) leads to huge economic losses in China and currently, there are no effective methods available for prevention and treatment. The various GCRV genotypes may be one of the major obstacles in the pursuit of an effective antiviral treatment. In this study, we exploited CRISPR/Cas9 gene editing to specifically knockout the DNA sequence of the grass carp Junctional Adhesion Molecule-A (gcJAM-A) and evaluated in vitro resistance against various GCRV genotypes. Our results show that CRISPR/Cas9 effectively knocked out gcJAM-A and reduced GCRV infection for two different genotypes in permissive grass carp kidney cells (CIK), as evidenced by suppressed cytopathic effect (CPE) and GCRV progeny production in infected cells. In addition, with ectopic expression of gcJAM-A in cells, non-permissive cells derived from Chinese giant salamander (Andrias davidianus) muscle (GSM) could be highly infected by both GCRV-JX0901 and Hubei grass carp disease reovirus (HGDRV) strains that have different genotypes. Taken together, the results demonstrate that gcJAM-A is necessary for GCRV infection, implying a potential approach for viral control in aquaculture.
Collapse
Affiliation(s)
- Jie Ma
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, PR China.
| | - Yuding Fan
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, PR China.
| | - Yong Zhou
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, PR China.
| | - Wenzhi Liu
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, PR China.
| | - Nan Jiang
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, PR China.
| | - Jieming Zhang
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, PR China.
| | - Lingbing Zeng
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, PR China.
| |
Collapse
|
84
|
Garcia MA, Nelson WJ, Chavez N. Cell-Cell Junctions Organize Structural and Signaling Networks. Cold Spring Harb Perspect Biol 2018; 10:a029181. [PMID: 28600395 PMCID: PMC5773398 DOI: 10.1101/cshperspect.a029181] [Citation(s) in RCA: 318] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cell-cell junctions link cells to each other in tissues, and regulate tissue homeostasis in critical cell processes that include tissue barrier function, cell proliferation, and migration. Defects in cell-cell junctions give rise to a wide range of tissue abnormalities that disrupt homeostasis and are common in genetic abnormalities and cancers. Here, we discuss the organization and function of cell-cell junctions primarily involved in adhesion (tight junction, adherens junction, and desmosomes) in two different epithelial tissues: a simple epithelium (intestine) and a stratified epithelium (epidermis). Studies in these tissues reveal similarities and differences in the organization and functions of different cell-cell junctions that meet the requirements for the specialized functions of each tissue. We discuss cell-cell junction responses to genetic and environmental perturbations that provide further insights into their roles in maintaining tissue homeostasis.
Collapse
Affiliation(s)
- Miguel A Garcia
- Department of Biology, Stanford University, Stanford, California 94305
| | - W James Nelson
- Department of Biology, Stanford University, Stanford, California 94305
- Departments of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305
| | - Natalie Chavez
- Department of Biology, Stanford University, Stanford, California 94305
| |
Collapse
|
85
|
Kim SG, Yooun JH, Kim DE, Lee E, Kwon TK, Kim S, Park JW. A novel anti‐cancer agent, FPDHP, induces anoikis in various human cancer cells through activation of calpain, and downregulation of anoikis‐related molecules. J Cell Biochem 2018; 119:5620-5631. [DOI: 10.1002/jcb.26734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 01/29/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Seon Goo Kim
- Department of ImmunologySchool of MedicineKeimyung UniversityDalseo‐guDaeguRepublic of Korea
| | - Ji Hea Yooun
- Department of ImmunologySchool of MedicineKeimyung UniversityDalseo‐guDaeguRepublic of Korea
| | - Dong Eun Kim
- Department of ImmunologySchool of MedicineKeimyung UniversityDalseo‐guDaeguRepublic of Korea
| | - Eung‐Seok Lee
- College of PharmacyYeungnam UniversityKyongsanRepublic of Korea
| | - Taeg Kyu Kwon
- Department of ImmunologySchool of MedicineKeimyung UniversityDalseo‐guDaeguRepublic of Korea
- Institute of Medical ScienceKeimyung UniversityDalseo‐guDaeguRepublic of Korea
| | - Shin Kim
- Department of ImmunologySchool of MedicineKeimyung UniversityDalseo‐guDaeguRepublic of Korea
- Institute of Medical ScienceKeimyung UniversityDalseo‐guDaeguRepublic of Korea
| | - Jong Wook Park
- Department of ImmunologySchool of MedicineKeimyung UniversityDalseo‐guDaeguRepublic of Korea
- Institute of Medical ScienceKeimyung UniversityDalseo‐guDaeguRepublic of Korea
| |
Collapse
|
86
|
Liu Y, Sun X, Feng J, Deng LL, Liu Y, Li B, Zhu M, Lu C, Zhou L. MT2-MMP induces proteolysis and leads to EMT in carcinomas. Oncotarget 2018; 7:48193-48205. [PMID: 27374080 PMCID: PMC5217011 DOI: 10.18632/oncotarget.10194] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 06/09/2016] [Indexed: 11/25/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is critical for carcinoma invasiveness and metastasis. To investigate the role of membrane-type-2 matrix metalloproteinase (MT2-MMP) in EMT, we generated lentiviral constructs of wild-type (WT) and an inactive Glu260Ala (E260A) mutant MT2-MMP and derived stably transfected HCT116 and A549 cell lines. WT-transfected cells appeared mesenchymal-like, whereas cells transfected with the E260A mutant were epithelial-like, as were cells treated with an MMP inhibitor (GM6001). Expression of E-cadherin, β-catenin, and zonula occludens-1 was lower in cells transfected with WT MT2-MMP compared to vector controls, cells treated with GM6001, or cells transfected with the E260A mutant. An 80-kD N-terminal fragment of E-cadherin was immunoprecipitated in conditioned medium from WT MT2-MMP cells, but not in the medium from vector controls, cells treated with GM6001, or E260A mutant cells. When endogenous expression of MT2-MMP in A2780 human ovarian cancer cells was inhibited using GM6001 or MT2-MMP-specific siRNA, levels of the 80-kD E-cadherin fragment in conditioned medium were decreased. Chick embryo chorioallantoic membrane invasion assays demonstrated that cells transfected with WT MT2-MMP were more invasive than cells transfected with control vector, treated with GM6001, or transfected with the E260A mutant. These results suggest that MT2-MMP degrades adherens and tight junction proteins and results in EMT, making it a potential mediator of EMT in carcinomas.
Collapse
Affiliation(s)
- Yusi Liu
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xiaojiao Sun
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Jinfa Feng
- Department of General Surgery, Heilongjiang Province Hospital, Harbin, China
| | - Li-Li Deng
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yihao Liu
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Bokang Li
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Mingyue Zhu
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Changlian Lu
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Lingyun Zhou
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| |
Collapse
|
87
|
Tricellulin is regulated via interleukin-13-receptor α2, affects macromolecule uptake, and is decreased in ulcerative colitis. Mucosal Immunol 2018; 11:345-356. [PMID: 28612843 PMCID: PMC5730503 DOI: 10.1038/mi.2017.52] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 05/01/2017] [Indexed: 02/04/2023]
Abstract
In the two inflammatory bowel diseases, ulcerative colitis (UC) and Crohn's disease (CD), altered expression of tight junction (TJ) proteins leads to an impaired epithelial barrier including increased uptake of luminal antigens supporting the inflammation. Here, we focused on regulation of tricellulin (Tric), a protein of the tricellular TJ essential for the barrier against macromolecules, and hypothesized a role in paracellular antigen uptake. We report that Tric is downregulated in UC, but not in CD, and that its reduction increases the passage of macromolecules. Using a novel visualization method, passage sites were identified at TJ regions usually sealed by Tric. We show that interleukin-13 (IL-13), beyond its known effect on claudin-2, downregulates Tric expression. These two effects of IL-13 are regulated by different signaling pathways: The IL-13 receptor α1 upregulates claudin-2, whereas IL-13 receptor α2 downregulates Tric. We suggest to target the α2 receptor in future developments of therapeutical IL-13-based biologicals.
Collapse
|
88
|
Aghapour M, Raee P, Moghaddam SJ, Hiemstra PS, Heijink IH. Airway Epithelial Barrier Dysfunction in Chronic Obstructive Pulmonary Disease: Role of Cigarette Smoke Exposure. Am J Respir Cell Mol Biol 2018; 58:157-169. [DOI: 10.1165/rcmb.2017-0200tr] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
| | - Pourya Raee
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Seyed Javad Moghaddam
- Department of Pulmonary Medicine, Division of Internal Medicine, the University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Pieter S. Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands; and
| | - Irene H. Heijink
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
89
|
Abstract
PURPOSE OF REVIEW The paracellular pathway through the tight junction provides an important route for chloride reabsorption in the collecting duct of the kidney. This review describes recent findings of how defects in paracellular chloride permeation pathway may cause kidney diseases and how such a pathway may be regulated to maintain normal chloride homeostasis. RECENT FINDINGS The tight junction in the collecting duct expresses two important claudin genes - claudin-4 and claudin-8. Transgenic knockout of either claudin gene causes hypotension, hypochloremia, and metabolic alkalosis in experimental animals. The claudin-4 mediated chloride permeability can be regulated by a protease endogenously expressed by the collecting duct cell - channel-activating protease 1. Channel-activating protease 1 regulates the intercellular interaction of claudin-4 and its membrane stability. Kelch-like 3, previously identified as a causal gene for Gordon's syndrome, also known as pseudohypoaldosteronism II, directly interacts with claudin-8 and regulates its ubiquitination and degradation. The dominant pseudohypoaldosteronism-II mutation (R528H) in Kelch-like 3 abolishes claudin-8 binding, ubiquitination, and degradation. SUMMARY The paracellular chloride permeation pathway in the kidney is an important but understudied area in nephrology. It plays vital roles in renal salt handling and regulation of extracellular fluid volume and blood pressure. Two claudin proteins, claudin-4 and claudin-8, contribute to the function of this paracellular pathway. Deletion of either claudin protein from the collecting duct causes renal chloride reabsorption defects and low blood pressure. Claudins can be regulated on posttranslational levels by several mechanisms involving protease and ubiquitin ligase. Deregulation of claudins may cause human hypertension as exemplified in the Gordon's syndrome.
Collapse
|
90
|
Abstract
PURPOSE OF REVIEW The tight junction conductance made of the claudin-based paracellular channel is important in the regulation of calcium and magnesium reabsorption in the kidney. This review describes recent findings of the structure, the function, and the physiologic regulation of claudin-14, claudin-16, and claudin-19 channels that through protein interactions confer calcium and magnesium permeability to the tight junction. RECENT FINDINGS Mutations in two tight junction genes - claudin-16 and claudin-19 - cause the inherited renal disorder familial hypomagnesemia with hypercalciuria and nephrocalcinosis. A recent genome-wide association study has identified claudin-14 as a major risk gene of hypercalciuric nephrolithiasis. The crystal structure of claudin-19 has recently been resolved allowing the reconstruction of a claudin assembly model from cis-dimers made of claudin-16 and claudin-19 interaction. MicroRNAs have been identified as novel regulators of the claudin-14 gene. The microRNA-claudin-14 operon is directly regulated by the Ca sensing receptor gene in response to hypercalcemia. SUMMARY The paracellular pathway in the kidney is particularly important for mineral metabolism. Three claudin proteins - claudin-14, claudin-16, and claudin-19 - contribute to the structure and function of this paracellular pathway. Genetic mutations and gene expression changes in these claudins may lead to alteration of the paracellular permeability to calcium and magnesium, ultimately affecting renal mineral metabolism.
Collapse
|
91
|
Zhang Z, Fan X, Xi H, Ji R, Shen H, Shi A, He J. Effect of local scrotal heating on the expression of tight junction-associated molecule Occludin in boar testes. Reprod Domest Anim 2018; 53:458-462. [PMID: 29330895 DOI: 10.1111/rda.13131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 11/23/2017] [Indexed: 11/30/2022]
Abstract
The aim of this study was to determine whether local scrotal heating (42°C, for 1 hr) had an effect on the expression of tight junction (TJ)-associated molecule Occludin in boar testes. Adult boars (Landrace, n = 6) were used and randomly divided into two groups (n = 3 each). Three boars were given local scrotal exposure to 42°C for approximately 1 h with a home-made electric blanket of controlled temperature as local scrotal heating group, the other three boars received no heat treatment and were left at standard room temperature as control group. After 6 hr, all boars were castrated and the testes were harvested. qRT-PCR, Western blotting and immunohistochemistry were used to explore the expression and localization of Occludin. qRT-PCR and Western blotting showed that the protein and mRNA levels of Occludin significantly decreased in local scrotal heating group as compared to the control. Furthermore, immunoreactivity staining of Occludin was localized at the sites of the blood-testis barrier (BTB) and formed an almost consecutive and strong immunoreactivity strand in the control, while Occludin was limited to Sertoli cells (SCs) and no obvious immunoreactivity strand was present in local scrotal heating group. These data indicated that local scrotal heating decreased the expression of TJ-associated molecule Occludin, which may be involved in heat-induced spermatogenesis damage.
Collapse
Affiliation(s)
- Z Zhang
- Institute of Animal Biotechnology, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - X Fan
- Institute of Animal Biotechnology, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - H Xi
- Institute of Animal Biotechnology, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - R Ji
- Institute of Animal Biotechnology, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - H Shen
- Institute of Animal Biotechnology, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - A Shi
- Landscape Administration, Yangquan, China
| | - J He
- Institute of Animal Biotechnology, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
92
|
Pham PH, Tong WWL, Misk E, Jones G, Lumsden JS, Bols NC. Atlantic salmon endothelial cells from the heart were more susceptible than fibroblasts from the bulbus arteriosus to four RNA viruses but protected from two viruses by dsRNA pretreatment. FISH & SHELLFISH IMMUNOLOGY 2017; 70:214-227. [PMID: 28882807 DOI: 10.1016/j.fsi.2017.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/23/2017] [Accepted: 09/01/2017] [Indexed: 06/07/2023]
Abstract
Heart diseases caused by viruses are major causes of Atlantic salmon aquaculture loss. Two Atlantic salmon cardiovascular cell lines, an endothelial cell line (ASHe) from the heart and a fibroblast cell line (BAASf) from the bulbus arteriosus, were evaluated for their response to four fish viruses, CSV, IPNV, VHSV IVa and VHSV IVb, and the innate immune agonist, double-stranded RNA mimic poly IC. All four viruses caused cytopathic effects in ASHe and BAASf. However, ASHe was more susceptible to all four viruses than BAASf. When comparing between the viruses, ASHe cells were found to be moderately susceptible to CSV and VHSV IVb, but highly susceptible to IPNV and VHSV IVa induced cell death. All four viruses were capable of propagating in the ASHe cell line, leading to increases in virus titre over time. In BAASf, CSV and IPNV produced more than one log increase in titre from initial infection, but VHSV IVb and IVa did not. When looking at the antiviral response of both cell lines, Mx proteins were induced in ASHe and BAASf by poly IC. All four viruses induced Mx proteins in BAASf, while only CSV and VHSV IVb induced Mx proteins in ASHe. IPNV and VHSV IVa suppressed Mx proteins expression in ASHe. Pretreatment of ASHe with poly IC to allow for Mx proteins accumulation protected the culture from subsequent infections with IPNV and VHSV IVa, resulting in delayed cell death, reduced virus titres and reduced viral proteins expression. These data suggest that endothelial cells potentially can serve as points of infections for viruses in the heart and that two of the four viruses, IPNV and VHSV IVa, have mechanisms to avoid or downregulate antiviral responses in ASHe cells. Furthermore, the high susceptibility of the ASHe cell line to IPNV and VHSV IVa can make it a useful tool for studying antiviral compounds against these viruses and for general detection of fish viruses.
Collapse
Affiliation(s)
- Phuc H Pham
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Winnie W L Tong
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Ehab Misk
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Ginny Jones
- Elanco Canada Limited, Aqua Business R&D, Victoria, PEI, Canada
| | - John S Lumsden
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada; St. George's University, True Blue, Grenada
| | - Niels C Bols
- Department of Biology, University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|
93
|
Van Itallie CM, Anderson JM. Phosphorylation of tight junction transmembrane proteins: Many sites, much to do. Tissue Barriers 2017; 6:e1382671. [PMID: 29083946 DOI: 10.1080/21688370.2017.1382671] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Phosphorylation is a dynamic post-translational modification that can alter protein structure, localization, protein-protein interactions and stability. All of the identified tight junction transmembrane proteins can be multiply phosphorylated, but only in a few cases are the consequences of phosphorylation at specific sites well characterized. The goal of this review is to highlight some of the best understood examples of phosphorylation changes in the integral membrane tight junction proteins in the context of more general overview of the effects of phosphorylation throughout the proteome. We expect as that structural information for the tight junction proteins becomes more widely available and the molecular modeling algorithms improve, so will our understanding of the relevance of phosphorylation changes at single and multiple sites in tight junction proteins.
Collapse
Affiliation(s)
- Christina M Van Itallie
- a National Heart, Lung and Blood Institute , National Institutes of Health , Bethesda , MD , USA
| | - James M Anderson
- a National Heart, Lung and Blood Institute , National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
94
|
Ebnet K. Junctional Adhesion Molecules (JAMs): Cell Adhesion Receptors With Pleiotropic Functions in Cell Physiology and Development. Physiol Rev 2017; 97:1529-1554. [PMID: 28931565 DOI: 10.1152/physrev.00004.2017] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/04/2017] [Accepted: 05/11/2017] [Indexed: 02/06/2023] Open
Abstract
Junctional adhesion molecules (JAM)-A, -B and -C are cell-cell adhesion molecules of the immunoglobulin superfamily which are expressed by a variety of tissues, both during development and in the adult organism. Through their extracellular domains, they interact with other adhesion receptors on opposing cells. Through their cytoplasmic domains, they interact with PDZ domain-containing scaffolding and signaling proteins. In combination, these two properties regulate the assembly of signaling complexes at specific sites of cell-cell adhesion. The multitude of molecular interactions has enabled JAMs to adopt distinct cellular functions such as the regulation of cell-cell contact formation, cell migration, or mitotic spindle orientation. Not surprisingly, JAMs regulate diverse processes such as epithelial and endothelial barrier formation, hemostasis, angiogenesis, hematopoiesis, germ cell development, and the development of the central and peripheral nervous system. This review summarizes the recent progress in the understanding of JAMs, including their characteristic structural features, their molecular interactions, their cellular functions, and their contribution to a multitude of processes during vertebrate development and homeostasis.
Collapse
Affiliation(s)
- Klaus Ebnet
- Institute-Associated Research Group "Cell Adhesion and Cell Polarity", Institute of Medical Biochemistry, ZMBE, Cells-In-Motion Cluster of Excellence (EXC1003-CiM), and Interdisciplinary Clinical Research Center (IZKF), University of Münster, Münster, Germany
| |
Collapse
|
95
|
Copy number variations and expression of MPDZ are prognostic biomarkers for clear cell renal cell carcinoma. Oncotarget 2017; 8:78713-78725. [PMID: 29108259 PMCID: PMC5667992 DOI: 10.18632/oncotarget.20220] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 07/12/2017] [Indexed: 11/25/2022] Open
Abstract
The vital copy number variation (CNV) plays a crucial role in clear cell renal cell carcinoma (ccRCC). MPDZ inhibit cell polarity associate with osmotic pressure response and cancer-related biological processes. In order to clarify the role of the CNV of MPDZ in the progression of ccRCC, we analyzed the CNV and expression of MPDZ and prognosis in ccRCC patients from The Cancer Genome Atlas data portal. Notably, we found that the deletion of MPDZ was the common CNV, which was present in 28.65% of ccRCC patients. With the development of tumors, the percentage of MPDZ deletion increased significantly (19.38% in stage I; 20.00% in stage II; 40.94% in stage III; and 45.00% in stage IV). The deletion of MPDZ significantly increased ccRCC risk (P=0.0025). Low MPDZ expression associated with its deletion was significantly associated with adverse outcomes in ccRCC patients (P=0.0342). Furthermore, immunohistochemical analysis by tissue microarray showed that MPDZ was expressed at lower levels in tumor tissues compared with adjacent tissues (P<0.01). Kaplan–Meier survival curves showed that ccRCC patients with low MPDZ expression had significantly shorter survival than those with high MPDZ expression (P=0.002). These results indicated that low MPDZ expression associated with CNV is a potential biomarker for the prognosis of ccRCC patients.
Collapse
|
96
|
Roch A, Giger S, Girotra M, Campos V, Vannini N, Naveiras O, Gobaa S, Lutolf MP. Single-cell analyses identify bioengineered niches for enhanced maintenance of hematopoietic stem cells. Nat Commun 2017; 8:221. [PMID: 28790449 PMCID: PMC5548907 DOI: 10.1038/s41467-017-00291-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 06/18/2017] [Indexed: 11/13/2022] Open
Abstract
The in vitro expansion of long-term hematopoietic stem cells (HSCs) remains a substantial challenge, largely because of our limited understanding of the mechanisms that control HSC fate choices. Using single-cell multigene expression analysis and time-lapse microscopy, here we define gene expression signatures and cell cycle hallmarks of murine HSCs and the earliest multipotent progenitors (MPPs), and analyze systematically single HSC fate choices in culture. Our analysis revealed twelve differentially expressed genes marking the quiescent HSC state, including four genes encoding cell–cell interaction signals in the niche. Under basal culture conditions, most HSCs rapidly commit to become early MPPs. In contrast, when we present ligands of the identified niche components such as JamC or Esam within artificial niches, HSC cycling is reduced and long-term multipotency in vivo is maintained. Our approach to bioengineer artificial niches should be useful in other stem cell systems. Haematopoietic stem cell (HSC) self-renewal is not sufficiently understood to recapitulate in vitro. Here, the authors generate gene signature and cell cycle hallmarks of single murine HSCs, and use identified endothelial receptors Esam and JamC as substrates to enhance HSC growth in engineered niches.
Collapse
Affiliation(s)
- Aline Roch
- Institute of Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Sonja Giger
- Institute of Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Mukul Girotra
- Institute of Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Vasco Campos
- Institute of Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Nicola Vannini
- Institute of Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Olaia Naveiras
- Institute of Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland.,Department of Medicine, Centre Hospitaler Universitaire Vaudois (CHUV), CH-1015, Lausanne, Switzerland
| | - Samy Gobaa
- Institute of Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Matthias P Lutolf
- Institute of Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland. .,Institute of Chemical Sciences and Engineering, School of Basic Sciences, EPFL, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
97
|
Ebnet K, Kummer D, Steinbacher T, Singh A, Nakayama M, Matis M. Regulation of cell polarity by cell adhesion receptors. Semin Cell Dev Biol 2017; 81:2-12. [PMID: 28739340 DOI: 10.1016/j.semcdb.2017.07.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/12/2017] [Accepted: 07/20/2017] [Indexed: 01/01/2023]
Abstract
The ability of cells to polarize is an intrinsic property of almost all cells and is required for the devlopment of most multicellular organisms. To develop cell polarity, cells integrate various signals derived from intrinsic as well as extrinsic sources. In the recent years, cell-cell adhesion receptors have turned out as important regulators of cellular polarization. By interacting with conserved cell polarity proteins, they regulate the recruitment of polarity complexes to specific sites of cell-cell adhesion. By initiating intracellular signaling cascades at those sites, they trigger their specific subcellular activation. Not surprisingly, cell-cell adhesion receptors regulate diverse aspects of cell polarity, including apico-basal polarity in epithelial and endothelial cells, front-to-rear polarity in collectively migrating cells, and planar cell polarity during organ development. Here, we review the recent developments highlighting the central roles of cell-cell adhesion molecules in the development of cell polarity.
Collapse
Affiliation(s)
- Klaus Ebnet
- Institute-associated Research Group: Cell adhesion and cell polarity, Institute of Medical Biochemistry, ZMBE, University of Münster, Germany; Interdisciplinary Clinical Research Center (IZKF), University of Münster, Germany; Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Germany.
| | - Daniel Kummer
- Institute-associated Research Group: Cell adhesion and cell polarity, Institute of Medical Biochemistry, ZMBE, University of Münster, Germany; Interdisciplinary Clinical Research Center (IZKF), University of Münster, Germany
| | - Tim Steinbacher
- Institute-associated Research Group: Cell adhesion and cell polarity, Institute of Medical Biochemistry, ZMBE, University of Münster, Germany; Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Germany
| | - Amrita Singh
- Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Germany; Institute of Cell Biology, ZMBE, University of Münster, Germany
| | - Masanori Nakayama
- Laboratory for Cell Polarity and Organogenesis, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Maja Matis
- Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Germany; Institute of Cell Biology, ZMBE, University of Münster, Germany.
| |
Collapse
|
98
|
Friedl P, Mayor R. Tuning Collective Cell Migration by Cell-Cell Junction Regulation. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a029199. [PMID: 28096261 DOI: 10.1101/cshperspect.a029199] [Citation(s) in RCA: 241] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Collective cell migration critically depends on cell-cell interactions coupled to a dynamic actin cytoskeleton. Important cell-cell adhesion receptor systems implicated in controlling collective movements include cadherins, immunoglobulin superfamily members (L1CAM, NCAM, ALCAM), Ephrin/Eph receptors, Slit/Robo, connexins and integrins, and an adaptive array of intracellular adapter and signaling proteins. Depending on molecular composition and signaling context, cell-cell junctions adapt their shape and stability, and this gradual junction plasticity enables different types of collective cell movements such as epithelial sheet and cluster migration, branching morphogenesis and sprouting, collective network migration, as well as coordinated individual-cell migration and streaming. Thereby, plasticity of cell-cell junction composition and turnover defines the type of collective movements in epithelial, mesenchymal, neuronal, and immune cells, and defines migration coordination, anchorage, and cell dissociation. We here review cell-cell adhesion systems and their functions in different types of collective cell migration as key regulators of collective plasticity.
Collapse
Affiliation(s)
- Peter Friedl
- Department of Cell Biology, Radboud University Medical Centre, Nijmegen 6525GA, The Netherlands.,David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030.,Cancer Genomics Center, 3584 CG Utrecht, The Netherlands
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
99
|
Mend Your Fences: The Epithelial Barrier and its Relationship With Mucosal Immunity in Inflammatory Bowel Disease. Cell Mol Gastroenterol Hepatol 2017; 4:33-46. [PMID: 28560287 PMCID: PMC5439240 DOI: 10.1016/j.jcmgh.2017.03.007] [Citation(s) in RCA: 446] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/20/2017] [Indexed: 12/12/2022]
Abstract
The intestinal epithelium can be easily disrupted during gut inflammation as seen in inflammatory bowel disease (IBD), such as ulcerative colitis or Crohn's disease. For a long time, research into the pathophysiology of IBD has been focused on immune cell-mediated mechanisms. Recent evidence, however, suggests that the intestinal epithelium might play a major role in the development and perpetuation of IBD. It is now clear that IBD can be triggered by disturbances in epithelial barrier integrity via dysfunctions in intestinal epithelial cell-intrinsic molecular circuits that control the homeostasis, renewal, and repair of intestinal epithelial cells. The intestinal epithelium in the healthy individual represents a semi-permeable physical barrier shielding the interior of the body from invasions of pathogens on the one hand and allowing selective passage of nutrients on the other hand. However, the intestinal epithelium must be considered much more than a simple physical barrier. Instead, the epithelium is a highly dynamic tissue that responds to a plenitude of signals including the intestinal microbiota and signals from the immune system. This epithelial response to these signals regulates barrier function, the composition of the microbiota, and mucosal immune homeostasis within the lamina propria. The epithelium can thus be regarded as a translator between the microbiota and the immune system and aberrant signal transduction between the epithelium and adjacent immune cells might promote immune dysregulation in IBD. This review summarizes the important cellular and molecular barrier components of the intestinal epithelium and emphasizes the mechanisms leading to barrier dysfunction during intestinal inflammation.
Collapse
Key Words
- BMP, bone morphogenic protein
- CD, Crohn's disease
- Fz, frizzled
- HD, humans α-defensin
- IBD, inflammatory bowel disease
- IECs, intestinal epithelial cells
- IL, interleukin
- Immune-Epithelial Crosstalk
- Intestinal Epithelial Barrier
- Intestinal Inflammation
- JAMs, junctional adhesion molecules
- Lgr5, leucine rich repeat containing G-protein coupled receptor 5
- MARVEL, myelin and lymphocyte and related proteins for vesicle trafficking and membrane link
- MLCK, myosin light chain kinase
- NFκB, nuclear factor kappa-light-chain-enhancer of activated B cells
- NOD-2, nucleotide-binding oligomerization domain-containing protein 2
- STAT, signal transducer and activator of transcription
- TAMP, tight junction–associated MARVEL protein
- TJ, tight junction
- TNF, tumor necrosis factor
- TSLP, thymic stromal lymphopoietin
- UC, ulcerative colitis
Collapse
|
100
|
Aramsangtienchai P, Spiegelman NA, Cao J, Lin H. S-Palmitoylation of Junctional Adhesion Molecule C Regulates Its Tight Junction Localization and Cell Migration. J Biol Chem 2017; 292:5325-5334. [PMID: 28196865 DOI: 10.1074/jbc.m116.730523] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 02/10/2017] [Indexed: 12/14/2022] Open
Abstract
Junctional adhesion molecule C (JAM-C) is an immunoglobulin superfamily protein expressed in epithelial cells, endothelial cells, and leukocytes. JAM-C has been implicated in leukocyte transendothelial migration, angiogenesis, cell adhesion, cell polarity, spermatogenesis, and metastasis. Here, we show that JAM-C undergoes S-palmitoylation on two juxtamembrane cysteine residues, Cys-264 and Cys-265. We have identified DHHC7 as a JAM-C palmitoylating enzyme by screening all known palmitoyltransferases (DHHCs). Ectopic expression of DHHC7, but not a DHHC7 catalytic mutant, enhances JAM-C S-palmitoylation. Moreover, DHHC7 knockdown decreases the S-palmitoylation level of JAM-C. Palmitoylation of JAM-C promotes its localization to tight junctions and inhibits transwell migration of A549 lung cancer cells. These results suggest that S-palmitoylation of JAM-C can be potentially targeted to control cancer metastasis.
Collapse
Affiliation(s)
- Pornpun Aramsangtienchai
- From the Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| | - Nicole A Spiegelman
- From the Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| | - Ji Cao
- From the Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| | - Hening Lin
- From the Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| |
Collapse
|