51
|
Zhang K, Zhong W, Li WP, Chen ZJ, Zhang C. miR-15a-5p levels correlate with poor ovarian response in human follicular fluid. Reproduction 2017; 154:483-496. [PMID: 28729464 DOI: 10.1530/rep-17-0157] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 07/15/2017] [Accepted: 07/20/2017] [Indexed: 12/19/2022]
Abstract
Poor ovarian response is a significant problem encountered during in vitro fertilization and embryo transfer procedures. Many infertile women may suffer from poor ovarian response and its incidence tends to be increasing in young patients nowadays. It is a major cause of maternal infertility because it is associated with low pregnancy and live birth rates. However, the cause of poor ovarian response is not clear. In this study, we extracted microRNAs from human follicular fluid and performed miRNA sequencing to investigate a potential posttranscriptional mechanism underlying poor ovarian response. The results showed that many miRNAs were obviously different between the poor ovarian response and non-poor ovarian response groups. We then performed quantitative polymerase chain reaction, Western blot analysis and used an in vitro culture system to verify the sequencing results and to study the mechanism. Notably, we found that miRNA-15a-5p was significantly elevated in the young poor ovarian response group. Furthermore, we demonstrated that high levels of miR-15a-5p in the young poor ovarian response group repressed granulosa cell proliferation by regulating the PI3K-AKT-mTOR signaling pathway and promoted apoptosis through BCL2 and BAD. This could explain the reduced oocyte retrieval number seen in poor ovarian response patients.
Collapse
Affiliation(s)
- Kaiyue Zhang
- Center for Reproductive MedicineRen Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai, China
| | - Wanxia Zhong
- Center for Reproductive MedicineRen Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai, China
| | - Wei-Ping Li
- Center for Reproductive MedicineRen Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China .,Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai, China
| | - Zi-Jiang Chen
- Center for Reproductive MedicineRen Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China .,Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai, China
| | - Cong Zhang
- Center for Reproductive MedicineRen Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China .,Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai, China.,Key Laboratory of Animal Resistance Biology of Shandong ProvinceCollege of Life Science, Shandong Normal University, Ji'nan, Shandong, China
| |
Collapse
|
52
|
Nayeem SB, Arfuso F, Dharmarajan A, Keelan JA. Role of Wnt signalling in early pregnancy. Reprod Fertil Dev 2017; 28:525-44. [PMID: 25190280 DOI: 10.1071/rd14079] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 08/05/2014] [Indexed: 12/15/2022] Open
Abstract
The integration of a complex network of signalling molecules promotes implantation of the blastocyst and development of the placenta. These processes are crucial for a successful pregnancy and fetal growth and development. The signalling network involves both cell-cell and cell-extracellular matrix communication. The family of secreted glycoprotein ligands, the Wnts, plays a major role in regulating a wide range of biological processes, including embryonic development, cell fate, proliferation, migration, stem cell maintenance, tumour suppression, oncogenesis and tissue homeostasis. Recent studies have provided evidence that Wnt signalling pathways play an important role in reproductive tissues and in early pregnancy events. The focus of this review is to summarise our present knowledge of expression, regulation and function of the Wnt signalling pathways in early pregnancy events of human and other model systems, and its association with pathological conditions. Despite our recent progress, much remains to be learned about Wnt signalling in human reproduction. The advancement of knowledge in this area has applications in the reduction of infertility and the incidence and morbidity of gestational diseases.
Collapse
Affiliation(s)
- Sarmah B Nayeem
- School of Women's and Infant's Health, University of Western Australia, King Edward Memorial Hospital, 374 Bagot Road, Subiaco, WA 6008, Australia
| | - Frank Arfuso
- School of Anatomy, Physiology and Human Biology, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Arun Dharmarajan
- School of Anatomy, Physiology and Human Biology, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Jeffrey A Keelan
- School of Women's and Infant's Health, University of Western Australia, King Edward Memorial Hospital, 374 Bagot Road, Subiaco, WA 6008, Australia
| |
Collapse
|
53
|
Yu SJ, Kim HJ, Lee ES, Park CG, Cho SJ, Jeon SH. β-Catenin Accumulation Is Associated With Increased Expression of Nanog Protein and Predicts Maintenance of MSC Self-Renewal. Cell Transplant 2017; 26:365-377. [PMID: 27684957 PMCID: PMC5657765 DOI: 10.3727/096368916x693040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 12/07/2016] [Indexed: 01/01/2023] Open
Abstract
Human mesenchymal stem cells (hMSCs) are self-renewing cells with the ability to differentiate into organized, functional network of cells. Recent studies have revealed that activation of the Wnt/β-catenin pathway by a glycogen synthase kinase (GSK)-3-specific pharmacological inhibitor, Bio, results in the maintenance of self-renewal in both mouse and human ES cells. The molecular mechanism behind the maintenance of hMSCs by these factors, however, is not fully understood. We found that rEGF enhances the level of β-catenin, a component of the Wnt/β-catenin signaling pathway. Furthermore, it was found that β-catenin upregulates Nanog. EGF activates the β-catenin pathway via the Ras protein and also increased the Nanog protein and gene expression levels 2 h after rEGF treatment. These results suggest that adding EGF can enhance β-catenin and Nanog expression in MSCs and facilitate EGF-mediated maintenance of MSC self-renewal. EGF was shown to augment MSC proliferation while preserving early progenitors within MSC population and thus did not induce differentiation. Thus, EGF not only can be used to expand MSC in vitro but also be utilized to autologous transplantation of MSCs in vivo.
Collapse
Affiliation(s)
- Sang-Jin Yu
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
- FOS Clinic, SM Tower (3rd Floor), 334 Gangnam-Daero, Gangnam-Gu, Seoul 135-936, Republic of Korea
| | - Hyun-Je Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
| | - Eui Seok Lee
- Department of Oral and Maxillofacial Surgery, College of Medicine, Korea University, Guro Hospital, Seoul, Republic of Korea
| | - Chung-Gyu Park
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute for Endemic Disease, Medical Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea
- Translational Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Su Jin Cho
- Department of Pediatrics, Ewha Womans University School of Medicine, Seoul, Republic of Korea
| | - Soung-Hoo Jeon
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute for Endemic Disease, Medical Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea
- Translational Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
54
|
β-Asarone Rescues Pb-Induced Impairments of Spatial Memory and Synaptogenesis in Rats. PLoS One 2016; 11:e0167401. [PMID: 27936013 PMCID: PMC5147873 DOI: 10.1371/journal.pone.0167401] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 11/14/2016] [Indexed: 11/19/2022] Open
Abstract
Chronic lead (Pb) exposure causes cognitive deficits. This study aimed to explore the neuroprotective effect and mechanism of β-asarone, an active component from Chinese Herbs Acorus tatarinowii Schott, to alleviate impairments of spatial memory and synaptogenesis in Pb-exposed rats. Both Sprague-Dawley developmental rat pups and adult rats were used in the study. Developmental rat pups were exposed to Pb throughout the lactation period and β-asarone (10, 40mg kg-1, respectively) was given intraperitoneally from postnatal day 14 to 21. Also, the adult rats were exposed to Pb from embryo stage to 11 weeks old and β-asarone (2.5, 10, 40mg kg-1, respectively) was given from 9 to 11 weeks old. The level of β-asarone in brain tissue was measured by High Performance Liquid Chromatography. The Morris water maze test and Golgi-Cox staining method were used to assess spatial memory ability and synaptogenesis. The protein expression of NR2B subunit of NMDA receptor, Activity-regulated cytoskeleton-associated protein (Arc/Arg3.1) and Wnt family member 7A (Wnt7a) in hippocampus, as well as mRNA expression of Arc/Arg3.1 and Wnt7a, was also explored. We found that β-asarone could pass through the blood brain barrier quickly. And β-asarone effectively attenuated Pb-induced reduction of spine density in hippocampal CA1 and dentate gyrus areas in a dose-dependent manner both in developmental and adult rats, meanwhile the Pb-induced impairments of learning and memory were partially rescued. In addition, β-asarone effectively up-regulated the protein expression of NR2B, Arc and Wnt7a, as well as the mRNA levels of Arc/Arg3.1 and Wnt7a, which had been suppressed by Pb exposure. The results suggest the neuroprotective properties of β-asarone against Pb-induced memory impairments, and the effect is possibly through the regulation of synaptogenesis, which is mediated via Arc/Arg3.1 and Wnt pathway.
Collapse
|
55
|
Kafri P, Hasenson SE, Kanter I, Sheinberger J, Kinor N, Yunger S, Shav-Tal Y. Quantifying β-catenin subcellular dynamics and cyclin D1 mRNA transcription during Wnt signaling in single living cells. eLife 2016; 5. [PMID: 27879202 PMCID: PMC5161448 DOI: 10.7554/elife.16748] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 11/21/2016] [Indexed: 11/13/2022] Open
Abstract
Signal propagation from the cell membrane to a promoter can induce gene expression. To examine signal transmission through sub-cellular compartments and its effect on transcription levels in individual cells within a population, we used the Wnt/β-catenin signaling pathway as a model system. Wnt signaling orchestrates a response through nuclear accumulation of β-catenin in the cell population. However, quantitative live-cell measurements in individual cells showed variability in nuclear β-catenin accumulation, which could occur in two waves, followed by slow clearance. Nuclear accumulation dynamics were initially rapid, cell cycle independent and differed substantially from LiCl stimulation, presumed to mimic Wnt signaling. β-catenin levels increased simultaneously at adherens junctions and the centrosome, and a membrane-centrosome transport system was revealed. Correlating β-catenin nuclear dynamics to cyclin D1 transcriptional activation showed that the nuclear accumulation rate of change of the signaling factor, and not actual protein levels, correlated with the transcriptional output of the pathway. DOI:http://dx.doi.org/10.7554/eLife.16748.001 Cells in an animal’s body must communicate with one another to coordinate many processes that are essential to life. One way that cells do this is by releasing molecules that bind to receptors located on the surface of others cells; this binding then triggers a signaling pathway in the receiving cell that passes information from the surface of the cell to its interior. The last stage of these pathways typically involves specific genes being activated, which changes the cell’s overall activity. Wnt is one protein that animal cells release to control how nearby cells grow and divide. One arm of the Wnt signaling pathway involves a protein called β-catenin. In the absence of a Wnt signal, there is little β-catenin in the cell. When Wnt binds to its receptor, β-catenin accumulates and enters the cell’s nucleus to activate its target genes. One of these genes, called cyclin D1, controls cell division. However it was not understood how β-catenin builds up in response to a Wnt signal and influences the activity of genes. Using microscopy, Kafri et al. have now examined how the activities of β-catenin and the cyclin D1 gene change in living human cells. These analyses were initially performed in a population of cells, and confirmed that β-catenin rapidly accumulates after a Wnt signal and that the cyclin D1 gene becomes activated. Individual cells in a population can respond differently to signaling events. To assess whether human cells differ in their responses to Wnt, Kafri et al. examined the dynamics of β-catenin in single cells in real time. In most cells, β-catenin accumulated after Wnt activation. However, the time taken to accumulate β-catenin, and this protein’s levels, varied between individual cells. Most cells showed the “average” response, with one major wave of accumulation that peaked about two hours after the Wnt signal. Notably, in some cells, β-catenin accumulated in the cell’s nucleus in two waves; in other words, the levels in this compartment of the cell increased, dropped slightly and then increased again. So how does β-catenin in the nucleus activate target genes? Kafri et al. saw that the absolute number of β-catenin molecules in the nucleus did not affect the activity of cyclin D1. Instead, cells appeared to sense how quickly the amount of β-catenin in the nucleus changes over time, and this rate influences the activation of cyclin D1. Importantly, problems with Wnt signaling have been linked to diseases in humans; and different components of the Wnt signaling pathway are mutated in many cancers. An important next challenge will be to uncover how the dynamics of this pathway change during disease. Furthermore, a better understanding of Wnt signaling may in future help efforts to develop new drugs that can target the altered pathway in cancer cells. DOI:http://dx.doi.org/10.7554/eLife.16748.002
Collapse
Affiliation(s)
- Pinhas Kafri
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel
| | - Sarah E Hasenson
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel
| | - Itamar Kanter
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel
| | - Jonathan Sheinberger
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel
| | - Noa Kinor
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel
| | - Sharon Yunger
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel
| | - Yaron Shav-Tal
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
56
|
Sun H, Luo G, Chen D, Xiang Z. A Comprehensive and System Review for the Pharmacological Mechanism of Action of Rhein, an Active Anthraquinone Ingredient. Front Pharmacol 2016; 7:247. [PMID: 27582705 PMCID: PMC4987408 DOI: 10.3389/fphar.2016.00247] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/27/2016] [Indexed: 11/30/2022] Open
Abstract
Rhein is a major medicinal ingredient isolated from several traditional Chinese medicines, including Rheum palmatum L., Aloe barbadensis Miller, Cassia angustifolia Vahl., and Polygonum multiflorum Thunb. Rhein has various pharmacological activities, such as anti-inflammatory, antitumor, antioxidant, antifibrosis, hepatoprotective, and nephroprotective activities. Although more than 100 articles in PubMed are involved in the pharmacological mechanism of action of rhein, only a few focus on the relationship of crosstalk among multiple pharmacological mechanisms. The mechanism of rhein involves multiple pathways which contain close interactions. From the overall perspective, the pathways which are related to the targets of rhein, are initiated by the membrane receptor. Then, MAPK and PI3K-AKT parallel signaling pathways are activated, and several downstream pathways are affected, thereby eventually regulating cell cycle and apoptosis. The therapeutic effect of rhein, as a multitarget molecule, is the synergistic and comprehensive result of the involvement of multiple pathways rather than the blocking or activation of a single signaling pathway. We review the pharmacological mechanisms of action of rhein by consulting literature published in the last 100 years in PubMed. We then summarize these pharmacological mechanisms from a comprehensive, interactive, and crosstalk perspective. In general, the molecular mechanism of action of drug must be understood from a systematic and holistic perspective, which can provide a theoretical basis for precise treatment and rational drug use.
Collapse
Affiliation(s)
- Hao Sun
- School of Pharmaceutical Sciences, Wenzhou Medical University Wenzhou, China
| | - Guangwen Luo
- School of Pharmaceutical Sciences, Wenzhou Medical University Wenzhou, China
| | - Dahui Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University Wenzhou, China
| | - Zheng Xiang
- School of Pharmaceutical Sciences, Wenzhou Medical University Wenzhou, China
| |
Collapse
|
57
|
Yang J, Wu C, Stefanescu I, Jakobsson L, Chervoneva I, Horowitz A. RhoA inhibits neural differentiation in murine stem cells through multiple mechanisms. Sci Signal 2016; 9:ra76. [PMID: 27460990 DOI: 10.1126/scisignal.aaf0791] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Spontaneous neural differentiation of embryonic stem cells is induced by Noggin-mediated inhibition of bone morphogenetic protein 4 (BMP4) signaling. RhoA is a guanosine triphosphatase (GTPase) that regulates cytoskeletal dynamics and gene expression, both of which control stem cell fate. We found that disruption of Syx, a gene encoding a RhoA-specific guanine nucleotide exchange factor, accelerated retinoic acid-induced neural differentiation in murine embryonic stem cells aggregated into embryoid bodies. Cells from Syx(+/+) and Syx(-/-) embryoid bodies had different abundances of proteins implicated in stem cell pluripotency. The differentiation-promoting proteins Noggin and RARγ (a retinoic acid receptor) were more abundant in cells of Syx(-/-) embryoid bodies, whereas the differentiation-suppressing proteins SIRT1 (a protein deacetylase) and the phosphorylated form of SMAD1 (the active form of this transcription factor) were more abundant in cells of Syx(+/+) embryoid bodies. These differences were blocked by the overexpression of constitutively active RhoA, indicating that the abundance of these proteins was maintained, at least in part, by RhoA activity. The peripheral stress fibers in cells from Syx(-/-) embryoid bodies were thinner than those in Syx(+/+) cells. Furthermore, less Noggin and fewer vesicles containing Rab3d, a GTPase that mediates Noggin trafficking, were detected in cells from Syx(-/-) embryoid bodies, which could result from increased Noggin exocytosis. These results suggested that, in addition to inhibiting Noggin transcription, RhoA activity in wild-type murine embryonic stem cells also prevented neural differentiation by limiting Noggin secretion.
Collapse
Affiliation(s)
- Junning Yang
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Chuanshen Wu
- Department of Molecular Cardiology, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Ioana Stefanescu
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Lars Jakobsson
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm 17177, Sweden
| | - Inna Chervoneva
- Division of Biostatistics, Department of Pharmacology and Experimental Therapeutics, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Arie Horowitz
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
58
|
Lee S, Yang M, Kim J, Kang S, Kim J, Kim JC, Jung C, Shin T, Kim SH, Moon C. Trimethyltin-induced hippocampal neurodegeneration: A mechanism-based review. Brain Res Bull 2016; 125:187-99. [PMID: 27450702 DOI: 10.1016/j.brainresbull.2016.07.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 07/19/2016] [Indexed: 12/22/2022]
Abstract
Trimethyltin (TMT), a toxic organotin compound, induces neurodegeneration selectively involving the limbic system and especially prominent in the hippocampus. Neurodegeneration-associated behavioral abnormalities, such as hyperactivity, aggression, cognitive deficits, and epileptic seizures, occur in both exposed humans and experimental animal models. Previously, TMT had been used generally in industry and agriculture, but the use of TMT has been limited because of its dangers to people. TMT has also been used to make a promising in vivo rodent model of neurodegeneration because of its region-specific characteristics. Several studies have demonstrated that TMT-treated animal models of epileptic seizures can be used as tools for researching hippocampus-specific neurotoxicity as well as the molecular mechanisms leading to hippocampal neurodegeneration. This review summarizes the in vivo and in vitro underlying mechanisms of TMT-induced hippocampal neurodegeneration (oxidative stress, inflammatory responses, and neuronal death/survival). Thus, the present review may be helpful to provide general insights into TMT-induced neurodegeneration and approaches to therapeutic interventions for neurodegenerative diseases, including temporal lobe epilepsy.
Collapse
Affiliation(s)
- Sueun Lee
- Departments of Veterinary Anatomy and Veterinary Toxicology, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju 61186, South Korea
| | - Miyoung Yang
- Department of Anatomy, School of Medicine and Institute for Environmental Science, Wonkwang University, Jeonbuk 54538, South Korea
| | - Jinwook Kim
- Departments of Veterinary Anatomy and Veterinary Toxicology, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju 61186, South Korea
| | - Sohi Kang
- Departments of Veterinary Anatomy and Veterinary Toxicology, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju 61186, South Korea
| | - Juhwan Kim
- Departments of Veterinary Anatomy and Veterinary Toxicology, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju 61186, South Korea
| | - Jong-Choon Kim
- Departments of Veterinary Anatomy and Veterinary Toxicology, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju 61186, South Korea
| | - Chaeyong Jung
- Department of Anatomy, Chonnam National University Medical School, Gwangju 61469, South Korea
| | - Taekyun Shin
- Department of Veterinary Anatomy, College of Veterinary Medicine, Jeju National University, Jeju 63243, South Korea
| | - Sung-Ho Kim
- Departments of Veterinary Anatomy and Veterinary Toxicology, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju 61186, South Korea
| | - Changjong Moon
- Departments of Veterinary Anatomy and Veterinary Toxicology, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju 61186, South Korea.
| |
Collapse
|
59
|
Sakisaka Y, Kanaya S, Nakamura T, Tamura M, Shimauchi H, Nemoto E. p38 MAP kinase is required for Wnt3a-mediated osterix expression independently of Wnt-LRP5/6-GSK3β signaling axis in dental follicle cells. Biochem Biophys Res Commun 2016; 478:527-32. [PMID: 27450807 DOI: 10.1016/j.bbrc.2016.07.076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 07/18/2016] [Indexed: 11/24/2022]
Abstract
Wnt3a is a secreted glycoprotein that activates the glycogen synthase kinase-3β (GSK3β)/β-catenin signaling pathway through low-density-lipoprotein receptor-related protein (LRP)5/6 co-receptors. Wnt3a has been implicated in periodontal development and homeostasis, as well as in cementum formation. Recently, we have reported that Wnt3a increases alkaline phosphatase expression through the induction of osterix (Osx) expression in dental follicle cells, a precursor of cementoblasts. However, the molecular mechanism by which Wnt3a induces Osx expression is still unknown. In this study, we show that Wnt3a-induced Osx expression was inhibited in the presence of p38 mitogen-activated protein kinase (MAPK) inhibitors (SB203580 and SB202190) at gene and protein levels, as assessed by real-time PCR and immunocytohistochemistry, respectively. Pretreatment of cells with Dickkopf-1, a potent canonical Wnt antagonist binding to LRP5/6 co-receptors, did not influence Wnt3a-mediated p38 MAPK phosphorylation, suggesting that Wnt3a activates p38 MAPK through LRP5/6-independent signaling. On the other hand, pretreatment with p38 MAPK inhibitors had no effects on the phosphorylated status of GSK3β and β-catenin as well as β-catenin nuclear translocation, but inhibited Wnt3a-mediated β-catenin transcriptional activity. These findings suggest that p38 MAPK modulates canonical Wnt signaling at the β-catenin transcriptional level without any crosstalk with the Wnt3a-mediated LRP5/6-GSK3β signaling axis and subsequent β-catenin nuclear translocation. These findings expand our knowledge of the mechanisms controlling periodontal development and regeneration.
Collapse
Affiliation(s)
- Yukihiko Sakisaka
- Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Sousuke Kanaya
- Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; Liason Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Takashi Nakamura
- Department of Dental Pharmacology, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Masato Tamura
- Department of Biochemistry and Molecular Biology, Hokkaido University Graduate School of Dentistry, Sapporo 060-8586, Japan
| | - Hidetoshi Shimauchi
- Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Eiji Nemoto
- Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan.
| |
Collapse
|
60
|
Small-molecule binding of the axin RGS domain promotes β-catenin and Ras degradation. Nat Chem Biol 2016; 12:593-600. [PMID: 27294323 DOI: 10.1038/nchembio.2103] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 03/25/2016] [Indexed: 01/06/2023]
Abstract
Both the Wnt/β-catenin and Ras pathways are aberrantly activated in most human colorectal cancers (CRCs) and interact cooperatively in tumor promotion. Inhibition of these signaling may therefore be an ideal strategy for treating CRC. We identified KY1220, a compound that destabilizes both β-catenin and Ras, via targeting the Wnt/β-catenin pathway, and synthesized its derivative KYA1797K. KYA1797K bound directly to the regulators of G-protein signaling domain of axin, initiating β-catenin and Ras degradation through enhancement of the β-catenin destruction complex activating GSK3β. KYA1797K effectively suppressed the growth of CRCs harboring APC and KRAS mutations, as shown by various in vitro studies and by in vivo studies using xenograft and transgenic mouse models of tumors induced by APC and KRAS mutations. Destabilization of both β-catenin and Ras via targeting axin is a potential therapeutic strategy for treatment of CRC and other type cancers activated Wnt/β-catenin and Ras pathways.
Collapse
|
61
|
K-Ras stabilization by estrogen via PKCδ is involved in endometrial tumorigenesis. Oncotarget 2016; 6:21328-40. [PMID: 26015399 PMCID: PMC4673268 DOI: 10.18632/oncotarget.4049] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/30/2015] [Indexed: 11/25/2022] Open
Abstract
Estrogens are considered as a major risk factor of endometrial cancer. In this study, we identified a mechanism of tumorigenesis in which K-Ras protein is stabilized via estrogen signaling through the ER-α36 receptor. PKCδ was shown to stabilize K-Ras specifically via estrogen signaling. Estrogens stabilize K-Ras via inhibition of polyubiquitylation-dependent proteasomal degradation. Estrogen-induced cellular transformation was abolished by either K-Ras or PKCδ knockdown. The role of PKCδ in estrogen-induced tumorigenesis was confirmed in a mouse xenograft model by reduction of tumors after treatment with rottlerin, a PKCδ inhibitor. Finally, levels of PKCδ correlated with that of Ras in human endometrial tumor tissues. Stabilization of K-Ras by estrogen signaling involving PKCδ up-regulation provides a potential therapeutic approach for treatment of endometrial cancer.
Collapse
|
62
|
Zhou J, Jiang J, Wang S, Xia X. DKK1 inhibits proliferation and migration in human retinal pigment epithelial cells via the Wnt/β-catenin signaling pathway. Exp Ther Med 2016; 12:859-863. [PMID: 27446288 DOI: 10.3892/etm.2016.3422] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 04/29/2016] [Indexed: 02/01/2023] Open
Abstract
Retinal pigment epithelial (RPE) cells play important roles in diabetic retinopathy (DR). Dickkopf 1 (DKK1) has been reported to be important in the regulation of cell proliferation and migration. However, there are few previous studies regarding DKK1 in RPE cells. Therefore, in the present study, we investigated the effect of DKK1 on the proliferation and migration of human RPE cells, and the signaling mechanisms underlying these effects. The results showed that the overexpression of DKK1 significantly inhibited the proliferation and migration of ARPE-19 cells. In addition, overexpression of DKK1 markedly inhibited the expression of β-catenin and cyclin D1 in ARPE-19 cells. Collectively, the present findings suggest that the overexpression of DKK1 inhibited the proliferation and migration of RPE cells by suppressing the Wnt/β-catenin signaling pathway. Therefore, DKK1 are able to augment the growth of human RPE, and further studies are warranted to investigate the effects of DKK1 effects on DR.
Collapse
Affiliation(s)
- Jinzi Zhou
- Department of Ophthalmology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Jian Jiang
- Department of Ophthalmology, Xiangya Hospital Central South University, Changsha, Hunan 410008, P.R. China
| | - Shuhong Wang
- Department of Ophthalmology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Xiaobo Xia
- Department of Ophthalmology, Xiangya Hospital Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
63
|
Xu M, Alwahsh SM, Ramadori G, Kollmar O, Slotta JE. Upregulation of hepatic melanocortin 4 receptor during rat liver regeneration. J Surg Res 2016; 203:222-30. [DOI: 10.1016/j.jss.2013.12.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 11/10/2013] [Accepted: 12/20/2013] [Indexed: 12/19/2022]
|
64
|
Receptor for hyaluronic acid- mediated motility (RHAMM) regulates HT1080 fibrosarcoma cell proliferation via a β-catenin/c-myc signaling axis. Biochim Biophys Acta Gen Subj 2016; 1860:814-24. [DOI: 10.1016/j.bbagen.2016.01.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 12/24/2015] [Accepted: 01/20/2016] [Indexed: 02/07/2023]
|
65
|
Shin HR, Islam R, Yoon WJ, Lee T, Cho YD, Bae HS, Kim BS, Woo KM, Baek JH, Ryoo HM. Pin1-mediated Modification Prolongs the Nuclear Retention of β-Catenin in Wnt3a-induced Osteoblast Differentiation. J Biol Chem 2016; 291:5555-5565. [PMID: 26740630 DOI: 10.1074/jbc.m115.698563] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Indexed: 11/06/2022] Open
Abstract
The canonical Wnt signaling pathway, in which β-catenin nuclear localization is a crucial step, plays an important role in osteoblast differentiation. Pin1, a prolyl isomerase, is also known as a key enzyme in osteogenesis. However, the role of Pin1 in canonical Wnt signal-induced osteoblast differentiation is poorly understood. We found that Pin1 deficiency caused osteopenia and reduction of β-catenin in bone lining cells. Similarly, Pin1 knockdown or treatment with Pin1 inhibitors strongly decreased the nuclear β-catenin level, TOP flash activity, and expression of bone marker genes induced by canonical Wnt activation and vice versa in Pin1 overexpression. Pin1 interacts directly with and isomerizes β-catenin in the nucleus. The isomerized β-catenin could not bind to nuclear adenomatous polyposis coli, which drives β-catenin out of the nucleus for proteasomal degradation, which consequently increases the retention of β-catenin in the nucleus and might explain the decrease of β-catenin ubiquitination. These results indicate that Pin1 could be a critical target to modulate β-catenin-mediated osteogenesis.
Collapse
Affiliation(s)
- Hye-Rim Shin
- From the Departments of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, and
| | - Rabia Islam
- From the Departments of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, and
| | - Won-Joon Yoon
- From the Departments of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, and
| | - Taegyung Lee
- From the Departments of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, and
| | - Young-Dan Cho
- From the Departments of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, and; Periodontology, School of Dentistry, Seoul National University, Seoul, 110-749, Korea
| | - Han-Sol Bae
- From the Departments of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, and
| | - Bong-Su Kim
- From the Departments of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, and
| | - Kyung-Mi Woo
- From the Departments of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, and
| | - Jeong-Hwa Baek
- From the Departments of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, and
| | - Hyun-Mo Ryoo
- From the Departments of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, and.
| |
Collapse
|
66
|
Lee S, Yang M, Kim J, Son Y, Kim J, Kang S, Ahn W, Kim SH, Kim JC, Shin T, Wang H, Moon C. Involvement of BDNF/ERK signaling in spontaneous recovery from trimethyltin-induced hippocampal neurotoxicity in mice. Brain Res Bull 2016; 121:48-58. [PMID: 26772626 DOI: 10.1016/j.brainresbull.2016.01.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/28/2015] [Accepted: 01/04/2016] [Indexed: 11/17/2022]
Abstract
Trimethyltin (TMT) toxicity causes histopathological damage in the hippocampus and induces seizure behaviors in mice. The lesions and symptoms recover spontaneously over time; however, little is known about the precise mechanisms underlying this recovery from TMT toxicity. We investigated changes in the brain-derived neurotrophic factor/extracellular signal-regulated kinases (BDNF/ERK) signaling pathways in the mouse hippocampus following TMT toxicity. Mice (7 weeks old, C57BL/6) administered TMT (2.6 mg/kg intraperitoneally) showed acute and severe neurodegeneration with increased TUNEL-positive cells in the dentate gyrus (DG) of the hippocampus. The mRNA and protein levels of BDNF in the hippocampus were elevated by TMT treatment. Immunohistochemical analysis showed that TMT treatment markedly increased phosphorylated ERK1/2 expression in the mouse hippocampus 1-4 days after TMT treatment, although the intensity of ERK immunoreactivity in mossy fiber decreased at 1-8 days post-treatment. In addition, ERK-immunopositive cells were localized predominantly in doublecortin-positive immature progenitor neurons in the DG. In primary cultured immature hippocampal neurons (4 days in vitro), BDNF treatment alleviated TMT-induced neurotoxicity, via activation of the ERK signaling pathway. Thus, we suggest that BDNF/ERK signaling pathways may be associated with cell differentiation and survival of immature progenitor neurons, and will eventually lead to spontaneous recovery in TMT-induced hippocampal neurodegeneration.
Collapse
Affiliation(s)
- Sueun Lee
- College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju 500-757, South Korea
| | - Miyoung Yang
- Department of Anatomy, School of Medicine, Wonkwang University, Iksan, Jeonbuk 570-740, South Korea
- Department of Physiology and Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| | - Juhwan Kim
- College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju 500-757, South Korea
| | - Yeonghoon Son
- College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju 500-757, South Korea
| | - Jinwook Kim
- College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju 500-757, South Korea
| | - Sohi Kang
- College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju 500-757, South Korea
| | - Wooseok Ahn
- College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju 500-757, South Korea
| | - Sung-Ho Kim
- College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju 500-757, South Korea
| | - Jong-Choon Kim
- College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju 500-757, South Korea
| | - Taekyun Shin
- College of Veterinary Medicine, Jeju National University, Jeju 690-756, South Korea
| | - Hongbing Wang
- Department of Physiology and Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| | - Changjong Moon
- College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju 500-757, South Korea
| |
Collapse
|
67
|
Enhancement of hepatocyte differentiation from human embryonic stem cells by Chinese medicine Fuzhenghuayu. Sci Rep 2016; 6:18841. [PMID: 26733102 PMCID: PMC4702137 DOI: 10.1038/srep18841] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/27/2015] [Indexed: 01/10/2023] Open
Abstract
Chinese medicine, Fuzhenghuayu (FZHY), appears to prevent fibrosis progression and improve liver function in humans. Here we found that FZHY enhanced hepatocyte differentiation from human embryonic stem cells (hESC). After treatment with FZHY, albumin expression was consistently increased during differentiation and maturation process, and expression of metabolizing enzymes and transporter were also increased. Importantly, expression of mesenchymal cell and cholangiocyte marker was significantly reduced by treatment with FZHY, indicating that one possible mechanism of FZHY’s role is to inhibit the formation of mesenchymal cells and cholangiocytes. Edu-labelled flow cytometric analysis showed that the percentage of the Edu positive cells was increased in the treated cells. These results indicate that the enhanced proliferation involved hepatocytes rather than another cell type. Our investigations further revealed that these enhancements by FZHY are mediated through activation of canonical Wnt and ERK pathways and inhibition of Notch pathway. Thus, FZHY not only promoted hepatocyte differentiation and maturation, but also enhanced hepatocyte proliferation. These results demonstrate that FZHY appears to represent an excellent therapeutic agent for the treatment of liver fibrosis, and that FZHY treatment can enhance our efforts to generate mature hepatocytes with proliferative capacity for cell-based therapeutics and for pharmacological and toxicological studies.
Collapse
|
68
|
Measured Effects of Wnt3a on Proliferation of HEK293T Cells Depend on the Applied Assay. Int J Cell Biol 2015; 2015:928502. [PMID: 26798342 PMCID: PMC4700183 DOI: 10.1155/2015/928502] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/24/2015] [Accepted: 12/06/2015] [Indexed: 01/11/2023] Open
Abstract
The Wnt signaling pathway has been associated with many essential cell processes. This study aims to examine the effects of Wnt signaling on proliferation of cultured HEK293T cells. Cells were incubated with Wnt3a, and the activation of the Wnt pathway was followed by analysis of the level of the β-catenin protein and of the expression levels of the target genes MYC and CCND1. The level of β-catenin protein increased up to fourfold. While the mRNA levels of c-Myc and cyclin D1 increased slightly, the protein levels increased up to a factor of 1.5. Remarkably, MTT and BrdU assays showed different results when measuring the proliferation rate of Wnt3a stimulated HEK293T cells. In the BrdU assays an increase of the proliferation rate could be detected, which correlated to the applied Wnt3a concentration. Oppositely, this correlation could not be shown in the MTT assays. The MTT results, which are based on the mitochondrial activity, were confirmed by analysis of the succinate dehydrogenase complex by immunofluorescence and by western blotting. Taken together, our study shows that Wnt3a activates proliferation of HEK293 cells. These effects can be detected by measuring DNA synthesis rather than by measuring changes of mitochondrial activity.
Collapse
|
69
|
Lee EY, Choi EJ, Kim JA, Hwang YL, Kim CD, Lee MH, Roh SS, Kim YH, Han I, Kang S. Malva verticillata seed extracts upregulate the Wnt pathway in human dermal papilla cells. Int J Cosmet Sci 2015; 38:148-54. [PMID: 26249736 DOI: 10.1111/ics.12268] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 07/28/2015] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Mesenchymal-epithelial interactions are important in controlling hair growth and the hair cycle. The β-catenin pathway of dermal papilla cells (DPCs) plays a pivotal role in morphogenesis and normal regeneration of hair follicles. Deletion of β-catenin in the dermal papilla reduces proliferation of the hair follicle progenitor cells that generate the hair shaft and induces an early onset of the catagen phase. In this study, a modulator of the Wnt/β-catenin activity was studied in oriental herb extracts on cultured human DPCs. METHODS The effect of Malva verticillata (M. verticillata) seeds on human DPCs was investigated by a Wnt/β-catenin reporter activity assay system (β-catenin-TCF/LEF reporter gene) and cell proliferation analysis. The synthesis of the factors related to hair growth and cycling was measured at both the mRNA and the protein level by semi-quantitative PCR and Western blot analysis, respectively. RESULTS An extract from M. verticillata seeds increased Wnt reporter activity in a concentration-dependent manner and also led to increased β-catenin levels in cultured human DPCs. Myristoleic acid, identified as an effective compound of M. verticillata seeds, stimulated the proliferation of DPCs in a dose-dependent manner and increased transcription levels of the downstream targets: IGF-1, KGF, VEGF and HGF. Myristoleic acid also enhanced the phosphorylation of MAPKs (Akt and p38). CONCLUSION Overall, the data suggest that this extract of M. verticillata seeds could be a good candidate for treating hair loss by modulating the Wnt/β-catenin pathway in DPCs.
Collapse
Affiliation(s)
- E Y Lee
- Department of Biotechnology, CHA University, Seongnam, Korea
| | - E-J Choi
- Department of Biotechnology, CHA University, Seongnam, Korea
| | - J A Kim
- College of Pharmacy, Kyungpook National University, Daegu, Korea
| | | | - C-D Kim
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - M H Lee
- OBM Laboratory, Daejeon, Korea
| | - S S Roh
- OBM Laboratory, Daejeon, Korea
| | - Y H Kim
- College of Pharmacy, Chungnam National University, Daejeon, Korea
| | - I Han
- Department of Neurosurgery, CHA University, CHA Bundang Medical Center, Seongnam, Korea
| | - S Kang
- Department of Biotechnology, CHA University, Seongnam, Korea
| |
Collapse
|
70
|
Botting GM, Rastogi I, Chhabra G, Nlend M, Puri N. Mechanism of Resistance and Novel Targets Mediating Resistance to EGFR and c-Met Tyrosine Kinase Inhibitors in Non-Small Cell Lung Cancer. PLoS One 2015; 10:e0136155. [PMID: 26301867 PMCID: PMC4547756 DOI: 10.1371/journal.pone.0136155] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 07/31/2015] [Indexed: 12/26/2022] Open
Abstract
Tyrosine kinase inhibitors (TKIs) against EGFR and c-Met are initially effective when administered individually or in combination to non-small cell lung cancer (NSCLC) patients. However, the overall efficacies of TKIs are limited due to the development of drug resistance. Therefore, it is important to elucidate mechanisms of EGFR and c-Met TKI resistance in order to develop more effective therapies. Model NSCLC cell lines H1975 and H2170 were used to study the similarities and differences in mechanisms of EGFR/c-Met TKI resistance. H1975 cells are positive for the T790M EGFR mutation, which confers resistance to current EGFR TKI therapies, while H2170 cells are EGFR wild-type. Previously, H2170 cells were made resistant to the EGFR TKI erlotinib and the c-Met TKI SU11274 by exposure to progressively increasing concentrations of TKIs. In H2170 and H1975 TKI-resistant cells, key Wnt and mTOR proteins were found to be differentially modulated. Wnt signaling transducer, active β-catenin was upregulated in TKI-resistant H2170 cells when compared to parental cells. GATA-6, a transcriptional activator of Wnt, was also found to be upregulated in resistant H2170 cells. In H2170 erlotinib resistant cells, upregulation of inactive GSK3β (p-GSK3β) was observed, indicating activation of Wnt and mTOR pathways which are otherwise inhibited by its active form. However, in H1975 cells, Wnt modulators such as active β-catenin, GATA-6 and p-GSK3β were downregulated. Additional results from MTT cell viability assays demonstrated that H1975 cell proliferation was not significantly decreased after Wnt inhibition by XAV939, but combination treatment with everolimus (mTOR inhibitor) and erlotinib resulted in synergistic cell growth inhibition. Thus, in H2170 cells and H1975 cells, simultaneous inhibition of key Wnt or mTOR pathway proteins in addition to EGFR and c-Met may be a promising strategy for overcoming EGFR and c-Met TKI resistance in NSCLC patients.
Collapse
Affiliation(s)
- Gregory M. Botting
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, Illinois, United States of America
| | - Ichwaku Rastogi
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, Illinois, United States of America
| | - Gagan Chhabra
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, Illinois, United States of America
| | - Marie Nlend
- Thermo Fisher Scientific, Rockford, Illinois, United States of America
| | - Neelu Puri
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, Illinois, United States of America
- * E-mail:
| |
Collapse
|
71
|
Zhang Y, Li J, Davis ME, Pei M. Delineation of in vitro chondrogenesis of human synovial stem cells following preconditioning using decellularized matrix. Acta Biomater 2015; 20:39-50. [PMID: 25861949 DOI: 10.1016/j.actbio.2015.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 02/17/2015] [Accepted: 04/02/2015] [Indexed: 11/27/2022]
Abstract
As a tissue-specific stem cell for chondrogenesis, synovium-derived stem cells (SDSCs) are a promising cell source for cartilage repair. However, a small biopsy can only provide a limited number of cells. Cell senescence from both in vitro expansion and donor age presents a big challenge for stem cell based cartilage regeneration. Here we found that expansion on decellularized extracellular matrix (dECM) full of three-dimensional nanostructured fibers provided SDSCs with unique surface profiles, low elasticity but large volume as well as a fibroblast-like shape. dECM expanded SDSCs yielded larger pellets with intensive staining of type II collagen and sulfated glycosaminoglycans compared to those grown on plastic flasks while SDSCs grown in ECM yielded 28-day pellets with minimal matrix as evidenced by pellet size and chondrogenic marker staining, which was confirmed by both biochemical data and real-time PCR data. Our results also found lower levels of inflammatory genes in dECM expanded SDSCs that might be responsible for enhanced chondrogenic differentiation. Despite an increase in type X collagen in chondrogenically induced cells, dECM expanded cells had significantly lower potential for endochondral bone formation. Wnt and MAPK signals were actively involved in both expansion and chondrogenic induction of dECM expanded cells. Since young and healthy people can be potential donors for this matrix expansion system and decellularization can minimize immune concerns, human SDSCs expanded on this future commercially available dECM could be a potential cell source for autologous cartilage repair.
Collapse
Affiliation(s)
- Ying Zhang
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV 26506, USA; Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Jingting Li
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV 26506, USA; Exercise Physiology, West Virginia University, Morgantown, WV 26506, USA
| | - Mary E Davis
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV 26506, USA
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV 26506, USA; Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV 26506, USA; Exercise Physiology, West Virginia University, Morgantown, WV 26506, USA.
| |
Collapse
|
72
|
Jeong KH, Joo HJ, Kim JE, Park YM, Kang H. Effect of mycophenolic acid on proliferation of dermal papilla cells and induction of anagen hair follicles. Clin Exp Dermatol 2015; 40:894-902. [DOI: 10.1111/ced.12650] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2014] [Indexed: 12/19/2022]
Affiliation(s)
- K. H. Jeong
- Department of Dermatology; St. Paul's Hospital; College of Medicine; Catholic University of Korea; Seoul Korea
| | - H. J. Joo
- Department of Dermatology; St. Paul's Hospital; College of Medicine; Catholic University of Korea; Seoul Korea
| | - J. E. Kim
- Department of Dermatology; St. Paul's Hospital; College of Medicine; Catholic University of Korea; Seoul Korea
| | - Y. M. Park
- Department of Dermatology; Seoul St. Mary's Hospital; College of Medicine; Catholic University of Korea; Seoul Korea
| | - H. Kang
- Department of Dermatology; St. Paul's Hospital; College of Medicine; Catholic University of Korea; Seoul Korea
| |
Collapse
|
73
|
Hwang JH, Cha PH, Han G, Bach TT, Min DS, Choi KY. Euodia sutchuenensis Dode extract stimulates osteoblast differentiation via Wnt/β-catenin pathway activation. Exp Mol Med 2015; 47:e152. [PMID: 25792220 PMCID: PMC4351407 DOI: 10.1038/emm.2014.115] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 11/25/2014] [Accepted: 11/28/2014] [Indexed: 11/09/2022] Open
Abstract
The Wnt/β-catenin pathway has a role in osteoblast differentiation and bone formation. We screened 100 plant extracts and identified an extract from Euodia sutchuenensis Dode (ESD) leaf and young branch as an effective activator of the Wnt/β-catenin pathway. ESD extract increased β-catenin levels and β-catenin nuclear accumulation in murine primary osteoblasts. The ESD extract also increased mRNA levels of osteoblast markers, including RUNX2, BMP2 and COL1A1, and enhanced alkaline phosphatase (ALP) activity in murine primary osteoblasts. Both ESD extract-induced β-catenin increment and ALP activation were abolished by β-catenin knockdown, confirming that the Wnt/β-catenin pathway functions in osteoblast differentiation. ESD extract enhanced terminal osteoblast differentiation as shown by staining with Alizarin Red S and significantly increased murine calvarial bone thickness. This study shows that ESD extract stimulates osteoblast differentiation via the Wnt/β-catenin pathway and enhances murine calvarial bone formation ex vivo.
Collapse
Affiliation(s)
- Jeong-Ha Hwang
- 1] Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea [2] Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Pu-Hyeon Cha
- 1] Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea [2] Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Gyoonhee Han
- 1] Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea [2] Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Tran The Bach
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Do Sik Min
- 1] Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea [2] Department of Molecular Biology, College of Natural Science, Pusan National University, Pusan, Korea
| | - Kang-Yell Choi
- 1] Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea [2] Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| |
Collapse
|
74
|
(Pro)renin receptor is crucial for Wnt/β-catenin-dependent genesis of pancreatic ductal adenocarcinoma. Sci Rep 2015; 5:8854. [PMID: 25747895 PMCID: PMC4352858 DOI: 10.1038/srep08854] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 01/13/2015] [Indexed: 01/05/2023] Open
Abstract
Although Wnt/β-catenin signaling is known to be aberrantly activated in PDAC, mutations of CTNNB1, APC or other pathway components are rare in this tumor type, suggesting alternative mechanisms for Wnt/β-catenin activation. Recent studies have implicated the (pro)renin receptor ((P)RR) is related to the Wnt/β-catenin signaling pathway. We therefore investigated the possible role of (P)RR in pancreatic carcinogenesis. Plasma s(P)RR levels were significantly (P < 0.0001) higher in patients with PDAC than in healthy matched controls. We also identified aberrant expression of (P)RR in premalignant PanIN and PDAC lesions and all the PDAC cell lines examined. Inhibiting (P)RR with an siRNA attenuated activation of Wnt/β-catenin signaling pathway and reduced the proliferative ability of PDAC cells in vitro and the growth of engrafted tumors in vivo. Loss of (P)RR induced apoptosis of human PDAC cells. This is the first demonstration that (P)RR may be profoundly involved in ductal tumorigenesis in the pancreas.
Collapse
|
75
|
Choi SW, Song JK, Yim YS, Yun HG, Chun KH. Glucose deprivation triggers protein kinase C-dependent β-catenin proteasomal degradation. J Biol Chem 2015; 290:9863-73. [PMID: 25691573 PMCID: PMC4392283 DOI: 10.1074/jbc.m114.606756] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Indexed: 11/07/2022] Open
Abstract
Autophagy is a conserved process that contributes to cell homeostasis. It is well known that induction mainly occurs in response to nutrient starvation, such as starvation of amino acids and insulin, and its mechanisms have been extensively characterized. However, the mechanisms behind cellular glucose deprivation-induced autophagy are as of now poorly understood. In the present study, we determined a mechanism by which glucose deprivation induced the PKC-dependent proteasomal degradation of β-catenin, leading to autophagy. Glucose deprivation was shown to cause a sub-G1 transition and enhancement of the LC3-II protein levels, whereas β-catenin protein underwent degradation in a proteasome-dependent manner. Moreover, the inhibition of GSK3β was unable to abolish the glucose deprivation-mediated β-catenin degradation or up-regulation of LC3-II protein levels, which suggested GSK3β-independent protein degradation. Intriguingly, the inhibition of PKCα using a pharmacological inhibitor and transfection of siRNA for PKCα was observed to effectively block glucose deprivation-induced β-catenin degradation as well as the increase in LC3-II levels and the accumulation of a sub-G1 population. Together, our results demonstrated a molecular mechanism by which glucose deprivation can induce the GSK3β-independent protein degradation of β-catenin, leading to autophagy.
Collapse
Affiliation(s)
- Seung-Won Choi
- From the Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Korea and
| | - Jun-Kyu Song
- From the Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Korea and the Brain Korea 21 Plus Project for Medical Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Korea
| | - Ye-Seal Yim
- From the Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Korea and the Brain Korea 21 Plus Project for Medical Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Korea
| | - Ho-Geun Yun
- From the Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Korea and the Brain Korea 21 Plus Project for Medical Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Korea
| | - Kyung-Hee Chun
- From the Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Korea and the Brain Korea 21 Plus Project for Medical Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Korea
| |
Collapse
|
76
|
Gao W, Zhou P, Ma X, Tschudy-Seney B, Chen J, Magner NL, Revzin A, Nolta JA, Zern MA, Duan Y. Ethanol negatively regulates hepatic differentiation of hESC by inhibition of the MAPK/ERK signaling pathway in vitro. PLoS One 2014; 9:e112698. [PMID: 25393427 PMCID: PMC4231066 DOI: 10.1371/journal.pone.0112698] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 10/10/2014] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Alcohol insult triggers complex events in the liver, promoting fibrogenic/inflammatory signals and in more advanced cases, aberrant matrix deposition. It is well accepted that the regenerative capacity of the adult liver is impaired during alcohol injury. The liver progenitor/stem cells have been shown to play an important role in liver regeneration -in response to various chronic injuries; however, the effects of alcohol on stem cell differentiation in the liver are not well understood. METHODS We employed hepatic progenitor cells derived from hESCs to study the impact of ethanol on hepatocyte differentiation by exposure of these progenitor cells to ethanol during hepatocyte differentiation. RESULTS We found that ethanol negatively regulated hepatic differentiation of hESC-derived hepatic progenitor cells in a dose-dependent manner. There was also a moderate cell cycle arrest at G1/S checkpoint in the ethanol treated cells, which is associated with a reduced level of cyclin D1 in these cells. Ethanol treatment specifically inhibited the activation of the ERK but not JNK nor the p38 MAP signaling pathway. At the same time, the WNT signaling pathway was also reduced in the cells exposed to ethanol. Upon evaluating the effects of the inhibitors of these two signaling pathways, we determined that the Erk inhibitor replicated the effects of ethanol on the hepatocyte differentiation and attenuated the WNT/β-catenin signaling, however, inhibitors of WNT only partially replicated the effects of ethanol on the hepatocyte differentiation. CONCLUSION Our results demonstrated that ethanol negatively regulated hepatic differentiation of hESC-derived hepatic progenitors through inhibiting the MAPK/ERK signaling pathway, and subsequently attenuating the WNT signaling pathway. Thus, our finding provides a novel insight into the mechanism by which alcohol regulates cell fate selection of hESC-derived hepatic progenitor cells, and the identified pathways may provide therapeutic targets aimed at promoting liver repair and regeneration during alcoholic injury.
Collapse
Affiliation(s)
- Wei Gao
- Department of Biomedical Engineering, College of Biology, Hunan University, Changsha, Hunan, China
- Department of Internal Medicine, University of California Davis Medical Center, Sacramento, California, United States of America
- Institute for Regenerative Cures, University of California Davis Medical Center, Sacramento, California, United States of America
| | - Ping Zhou
- Department of Internal Medicine, University of California Davis Medical Center, Sacramento, California, United States of America
- Institute for Regenerative Cures, University of California Davis Medical Center, Sacramento, California, United States of America
- * E-mail: (YD); (PZ)
| | - Xiaocui Ma
- Department of Internal Medicine, University of California Davis Medical Center, Sacramento, California, United States of America
- Institute for Regenerative Cures, University of California Davis Medical Center, Sacramento, California, United States of America
| | - Benjamin Tschudy-Seney
- Department of Internal Medicine, University of California Davis Medical Center, Sacramento, California, United States of America
- Institute for Regenerative Cures, University of California Davis Medical Center, Sacramento, California, United States of America
| | - Jiamei Chen
- Department of Internal Medicine, University of California Davis Medical Center, Sacramento, California, United States of America
- Institute for Regenerative Cures, University of California Davis Medical Center, Sacramento, California, United States of America
- Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Nataly L. Magner
- Department of Internal Medicine, University of California Davis Medical Center, Sacramento, California, United States of America
- Institute for Regenerative Cures, University of California Davis Medical Center, Sacramento, California, United States of America
| | - Alexander Revzin
- Department of Biomedical Engineering, University of California Davis, Davis, California, United States of America
| | - Jan A. Nolta
- Department of Internal Medicine, University of California Davis Medical Center, Sacramento, California, United States of America
- Institute for Regenerative Cures, University of California Davis Medical Center, Sacramento, California, United States of America
| | - Mark A. Zern
- Department of Internal Medicine, University of California Davis Medical Center, Sacramento, California, United States of America
- Institute for Regenerative Cures, University of California Davis Medical Center, Sacramento, California, United States of America
| | - Yuyou Duan
- Department of Internal Medicine, University of California Davis Medical Center, Sacramento, California, United States of America
- Institute for Regenerative Cures, University of California Davis Medical Center, Sacramento, California, United States of America
- * E-mail: (YD); (PZ)
| |
Collapse
|
77
|
A review of crosstalk between MAPK and Wnt signals and its impact on cartilage regeneration. Cell Tissue Res 2014; 358:633-49. [PMID: 25312291 DOI: 10.1007/s00441-014-2010-x] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 09/11/2014] [Indexed: 12/25/2022]
Abstract
Chondrogenesis is a developmental process that is controlled and coordinated by many growth and differentiation factors, in addition to environmental factors that initiate or suppress cellular signaling pathways and the transcription of specific genes in a temporal-spatial manner. As key signaling molecules in regulating cell proliferation, homeostasis and development, both mitogen-activated protein kinases (MAPK) and the Wnt family participate in morphogenesis and tissue patterning, playing important roles in skeletal development, especially chondrogenesis. Recent findings suggest that both signals are also actively involved in arthritis and related diseases. Despite the implication that crosstalk between MAPK and Wnt signaling has a significant function in cancer, few studies have summarized this interaction and its regulation of chondrogenesis. In this review, we focus on MAPK and Wnt signaling, referencing their relationships in various types of cells and particularly to their influence on chondrogenesis and cartilage development. We also discuss the interactions between MAPK and Wnt signaling with respect to cartilage-related diseases such as osteoarthritis and explore potential therapeutic targets for disease treatments.
Collapse
|
78
|
Etnyre D, Stone AL, Fong JT, Jacobs RJ, Uppada SB, Botting GM, Rajanna S, Moravec DN, Shambannagari MR, Crees Z, Girard J, Bertram C, Puri N. Targeting c-Met in melanoma: mechanism of resistance and efficacy of novel combinatorial inhibitor therapy. Cancer Biol Ther 2014; 15:1129-41. [PMID: 24914950 PMCID: PMC4128856 DOI: 10.4161/cbt.29451] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Numerous tyrosine kinase inhibitors (TKIs) targeting c-Met are currently in clinical trials for several cancers. Their efficacy is limited due to the development of resistance. The present study aims to elucidate this mechanism of c-Met TKI resistance by investigating key mTOR and Wnt signaling proteins in melanoma cell lines resistant to SU11274, a c-Met TKI. Xenografts from RU melanoma cells treated with c-Met TKIs SU11274 and JNJ38877605 showed a 7- and 6-fold reduction in tumor size, respectively. Resistant cells displayed upregulation of phosphorylated c-Met, mTOR, p70S6Kinase, 4E-BP1, ERK, LRP6, and active β-catenin. In addition, GATA-6, a Wnt signaling regulator, was upregulated, and Axin, a negative regulator of the Wnt pathway, was downregulated in resistant cells. Modulation of these mTOR and Wnt pathway proteins was also prevented by combination treatment with SU11274, everolimus, an mTOR inhibitor, and XAV939, a Wnt inhibitor. Treatment with everolimus, resulted in 56% growth inhibition, and a triple combination of SU11274, everolimus and XAV939, resulted in 95% growth inhibition in RU cells. The V600E BRAF mutation was found to be positive only in MU cells. Combination treatment with a c-Met TKI and a BRAF inhibitor displayed a synergistic effect in reducing MU cell viability. These studies indicate activation of mTOR and Wnt signaling pathways in c-Met TKI resistant melanoma cells and suggest that concurrent targeting of c-Met, mTOR, and Wnt pathways and BRAF may improve efficacy over traditional TKI monotherapy in melanoma patients.
Collapse
Affiliation(s)
- Deven Etnyre
- Department of Biomedical Sciences; University of Illinois College of Medicine; Rockford, IL USA
| | - Amanda L Stone
- Department of Biomedical Sciences; University of Illinois College of Medicine; Rockford, IL USA
| | - Jason T Fong
- Department of Biomedical Sciences; University of Illinois College of Medicine; Rockford, IL USA
| | - Ryan J Jacobs
- Department of Biomedical Sciences; University of Illinois College of Medicine; Rockford, IL USA
| | - Srijayaprakash B Uppada
- Department of Biomedical Sciences; University of Illinois College of Medicine; Rockford, IL USA
| | - Gregory M Botting
- Department of Biomedical Sciences; University of Illinois College of Medicine; Rockford, IL USA
| | - Supriya Rajanna
- Department of Biomedical Sciences; University of Illinois College of Medicine; Rockford, IL USA
| | - David N Moravec
- Department of Biomedical Sciences; University of Illinois College of Medicine; Rockford, IL USA
| | - Manohar R Shambannagari
- Department of Biomedical Sciences; University of Illinois College of Medicine; Rockford, IL USA
| | - Zachary Crees
- Department of Biomedical Sciences; University of Illinois College of Medicine; Rockford, IL USA
| | - Jennifer Girard
- Department of Biomedical Sciences; University of Illinois College of Medicine; Rockford, IL USA
| | - Ceyda Bertram
- Department of Biomedical Sciences; University of Illinois College of Medicine; Rockford, IL USA
| | - Neelu Puri
- Department of Biomedical Sciences; University of Illinois College of Medicine; Rockford, IL USA
| |
Collapse
|
79
|
Georgopoulos NT, Kirkwood LA, Southgate J. A novel bidirectional positive-feedback loop between Wnt-β-catenin and EGFR-ERK plays a role in context-specific modulation of epithelial tissue regeneration. J Cell Sci 2014; 127:2967-82. [PMID: 24816560 PMCID: PMC4077591 DOI: 10.1242/jcs.150888] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
By operating as both a subunit of the cadherin complex and a key component of Wnt signalling, β-catenin acts as the lynchpin between cell–cell contact and transcriptional regulation of proliferation, coordinating epithelial tissue homeostasis and regeneration. The integration of multiple growth-regulatory inputs with β-catenin signalling has been observed in cancer-derived cells, yet the existence of pathway crosstalk in normal cells is unknown. Using a highly regenerative normal human epithelial culture system that displays contact inhibition, we demonstrate that the receptor tyrosine kinase (RTK)-driven MAPK and Wnt–β-catenin signalling axes form a bidirectional positive-feedback loop to drive cellular proliferation. We show that β-catenin both drives and is regulated by proliferative signalling cues, and its downregulation coincides with the switch from proliferation to contact-inhibited quiescence. We reveal a novel contextual interrelationship whereby positive and negative feedback between three major signalling pathways – EGFR–ERK, PI3K–AKT and Wnt–β-catenin – enable autocrine-regulated tissue homeostasis as an emergent property of physical interactions between cells. Our work has direct implications for normal epithelial tissue homeostasis and provides insight as to how dysregulation of these pathways could drive excessive and sustained cellular growth in disease.
Collapse
Affiliation(s)
- Nikolaos T Georgopoulos
- Jack Birch Unit for Molecular Carcinogenesis, Department of Biology, University of York, York YO10 5DD, UK Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK
| | - Lisa A Kirkwood
- Jack Birch Unit for Molecular Carcinogenesis, Department of Biology, University of York, York YO10 5DD, UK
| | - Jennifer Southgate
- Jack Birch Unit for Molecular Carcinogenesis, Department of Biology, University of York, York YO10 5DD, UK
| |
Collapse
|
80
|
Meinhardt G, Haider S, Haslinger P, Proestling K, Fiala C, Pollheimer J, Knöfler M. Wnt-dependent T-cell factor-4 controls human etravillous trophoblast motility. Endocrinology 2014; 155:1908-20. [PMID: 24605829 DOI: 10.1210/en.2013-2042] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Formation of migratory extravillous trophoblasts (EVTs) is critical for human placentation and hence embryonic development. However, key regulatory growth factors, hormones, and nuclear proteins controlling the particular differentiation process remain poorly understood. Here, the role of the Wingless (Wnt)-dependent transcription factor T-cell factor-4 (TCF-4) in proliferation and motility was investigated using different trophoblast cell models. Immunofluorescence of first-trimester placental tissues revealed induction of TCF-4 and nuclear recruitment of its coactivator β-catenin in nonproliferating EVTs, whereas membrane-associated β-catenin decreased upon differentiation. In addition, EVTs expressed the TCF-4/β-catenin coactivator Pygopus 2 as well as repressors of the Groucho/transducin-like enhancer of split family. Western blotting revealed Pygopus 2 expression and up-regulation of integrin α1 and nuclear TCF-4 in purified first-trimester cytotrophoblasts (CTBs) differentiating on fibronectin. Concomitantly, elevated TCF-4 mRNA, quantitated by real-time PCR, and increased TCF-dependent luciferase reporter activity were noticed in EVTs of villous explant cultures and differentiated primary CTBs. Gene silencing using specific small interfering RNA decreased TCF-4 transcript and protein levels, TCF-dependent reporter activity as well as basal and Wnt3a-stimulated migration of trophoblastic SGHPL-5 cells and primary CTBs through fibronectin-coated transwells. In contrast, proliferation of SGHPL-5 cells and primary cells, measured by cumulative cell numbers and 5-bromo-2'-deoxy-uridine labeling, respectively, was not affected. Moreover, siRNA-mediated down-regulation of TCF-4 in primary CTBs diminished markers of the differentiated EVT, such as integrin α1 and α5, Snail1, and Notch2. In summary, the data suggest that Wnt/TCF-4-dependent signaling could play a role in EVT differentiation promoting motility and expression of promigratory genes.
Collapse
Affiliation(s)
- Gudrun Meinhardt
- Department of Obstetrics and Fetal-Maternal Medicine (G.M., S.H., P.H., J.P., M.K.), Reproductive Biology Unit, and Department of Gynecology (K.P.), Medical University of Vienna, A-1090 Vienna, Austria; and Gynmed Clinic (C.F.), A-1150 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
81
|
Cha PH, Shin W, Zahoor M, Kim HY, Min DS, Choi KY. Hovenia dulcis Thunb extract and its ingredient methyl vanillate activate Wnt/β-catenin pathway and increase bone mass in growing or ovariectomized mice. PLoS One 2014; 9:e85546. [PMID: 24465596 PMCID: PMC3899039 DOI: 10.1371/journal.pone.0085546] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 12/04/2013] [Indexed: 11/19/2022] Open
Abstract
The Wnt/β-catenin pathway is a potential target for development of anabolic agents to treat osteoporosis because of its role in osteoblast differentiation and bone formation. However, there is no clinically available anti-osteoporosis drug that targets this Wnt/β-catenin pathway. In this study, we screened a library of aqueous extracts of 350 plants and identified Hovenia dulcis Thunb (HDT) extract as a Wnt/β-catenin pathway activator. HDT extract induced osteogenic differentiation of calvarial osteoblasts without cytotoxicity. In addition, HDT extract increased femoral bone mass without inducing significant weight changes in normal mice. In addition, thickness and area of femoral cortical bone were also significantly increased by the HDT extract. Methyl vanillate (MV), one of the ingredients in HDT, also activated the Wnt/β-catenin pathway and induced osteoblast differentiation in vitro. MV rescued trabecular or cortical femoral bone loss in the ovariectomized mice without inducing any significant weight changes or abnormality in liver tissue when administrated orally. Thus, natural HDT extract and its ingredient MV are potential anabolic agents for treating osteoporosis.
Collapse
Affiliation(s)
- Pu-Hyeon Cha
- Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Wookjin Shin
- Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Muhammad Zahoor
- Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Hyun-Yi Kim
- Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Do Sik Min
- Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
- Department of Molecular Biology, College of Natural Science, Pusan National University, Pusan, Korea
| | - Kang-Yell Choi
- Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
- * E-mail:
| |
Collapse
|
82
|
Huynh TT, Rao YK, Lee WH, Chen HA, Le TDQ, Tzeng DTW, Wang LS, Wu ATH, Lin YF, Tzeng YM, Yeh CT. Destruxin B inhibits hepatocellular carcinoma cell growth through modulation of the Wnt/β-catenin signaling pathway and epithelial-mesenchymal transition. Toxicol In Vitro 2014; 28:552-61. [PMID: 24434019 DOI: 10.1016/j.tiv.2014.01.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 12/29/2013] [Accepted: 01/02/2014] [Indexed: 02/06/2023]
Abstract
The aberrant activation of Wnt/β-catenin signaling plays an important role in the carcinogenesis and progression of hepatocellular carcinoma (HCC). Therefore, the Wnt/β-catenin signaling molecules are attractive candidates for the development of targeted therapies for this disease. The present study showed that destruxin B (DB) inhibits the proliferation and induces the apoptosis of HCC cells by decreasing the protein expression of anti-apoptotic Bcl-2 and Bcl-xL and increasing the expression of the proapoptotic protein Bax. More importantly, DB also attenuates Wnt-signaling in HCC cells by downregulating β-catenin, Tcf4, and β-catenin/Tcf4 transcriptional activity, which results in the decreased expression of β-catenin target genes, such as cyclin D1, c-myc, and survivin. Furthermore, DB affects the migratory and invasive abilities of Sk-Hep1 cells through the suppression of markers of the epithelial-mesenchymal transition (EMT). A synergistic anti-proliferative and migratory effect was achieved using the combination of DB and sorafenib in Sk-Hep1 cells. In conclusion, DB acts as a novel Wnt/β-catenin inhibitor and reduces the aggressiveness and invasive potential of HCC by altering the cells' EMT status and mobility. DB in combination with sorafenib may be considered for future clinical use for the management of metastatic HCC.
Collapse
Affiliation(s)
- Thanh-Tuan Huynh
- Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan; Department of Neurosurgery, University of Medicine and Pharmacy, Ho Chi Minh City, Viet Nam
| | - Yerra Koteswara Rao
- Institute of Biochemical Sciences and Technology, Chaoyang University of Technology, Taichung, Taiwan
| | - Wei-Hwa Lee
- Department of Pathology, Taipei Medical University-Shuang Ho Hospital, Taipei, Taiwan
| | - Hsin-An Chen
- Departments of Surgery, Taipei Medical University-Shuang Ho Hospital, Taipei, Taiwan
| | - T Do-Quyen Le
- Department of Hepatitis, Cho Ray Hospital, Ho Chi Minh City, Viet Nam
| | - David T W Tzeng
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan
| | - Liang-Shun Wang
- Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan; Division of Thoracic Surgery, Department of Surgery, Taipei Medical University-Shuang Ho Hospital, Taipei, Taiwan
| | - Alexander T H Wu
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yuh-Feng Lin
- Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yew-Min Tzeng
- Institute of Biochemical Sciences and Technology, Chaoyang University of Technology, Taichung, Taiwan.
| | - Chi-Tai Yeh
- Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan; Departments of Surgery, Taipei Medical University-Shuang Ho Hospital, Taipei, Taiwan; Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
83
|
Fong JT, Jacobs RJ, Moravec DN, Uppada SB, Botting GM, Nlend M, Puri N. Alternative signaling pathways as potential therapeutic targets for overcoming EGFR and c-Met inhibitor resistance in non-small cell lung cancer. PLoS One 2013; 8:e78398. [PMID: 24223799 PMCID: PMC3817236 DOI: 10.1371/journal.pone.0078398] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 09/11/2013] [Indexed: 01/21/2023] Open
Abstract
The use of tyrosine kinase inhibitors (TKIs) against EGFR/c-Met in non-small cell lung cancer (NSCLC) has been shown to be effective in increasing patient progression free survival (PFS), but their efficacy is limited due to the development of resistance and tumor recurrence. Therefore, understanding the molecular mechanisms underlying development of drug resistance in NSCLC is necessary for developing novel and effective therapeutic approaches to improve patient outcome. This study aims to understand the mechanism of EGFR/c-Met tyrosine kinase inhibitor (TKI) resistance in NSCLC. H2170 and H358 cell lines were made resistant to SU11274, a c-Met inhibitor, and erlotinib, an EGFR inhibitor, through step-wise increases in TKI exposure. The IC50 concentrations of resistant lines exhibited a 4–5 and 11–22-fold increase for SU11274 and erlotinib, respectively, when compared to parental lines. Furthermore, mTOR and Wnt signaling was studied in both cell lines to determine their roles in mediating TKI resistance. We observed a 2–4-fold upregulation of mTOR signaling proteins and a 2- to 8-fold upregulation of Wnt signaling proteins in H2170 erlotinib and SU11274 resistant cells. H2170 and H358 cells were further treated with the mTOR inhibitor everolimus and the Wnt inhibitor XAV939. H358 resistant cells were inhibited by 95% by a triple combination of everolimus, erlotinib and SU11274 in comparison to 34% by a double combination of these drugs. Parental H2170 cells displayed no sensitivity to XAV939, while resistant cells were significantly inhibited (39%) by XAV939 as a single agent, as well as in combination with SU11274 and erlotinib. Similar results were obtained with H358 resistant cells. This study suggests a novel molecular mechanism of drug resistance in lung cancer.
Collapse
Affiliation(s)
- Jason T. Fong
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, Illinois, United States
| | - Ryan J. Jacobs
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, Illinois, United States
| | - David N. Moravec
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, Illinois, United States
| | - Srijayaprakash B. Uppada
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, Illinois, United States
| | - Gregory M. Botting
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, Illinois, United States
| | - Marie Nlend
- Thermo Fisher Scientific, Rockford, Illinois, United States of America
| | - Neelu Puri
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, Illinois, United States
- * E-mail:
| |
Collapse
|
84
|
Nakai K, Yoneda K, Haba R, Kushida Y, Katsuki N, Moriue T, Kosaka H, Kubota Y, Inoue S. Deranged epidermal differentiation inkl/klmouse and the effects of βKlotho siRNA on the differentiation of HaCaT cells. Exp Dermatol 2013; 22:772-4. [DOI: 10.1111/exd.12258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Kozo Nakai
- Department of Dermatology; Kagawa University; Kita-Gun Japan
| | - Kozo Yoneda
- Department of Dermatology; Kagawa University; Kita-Gun Japan
| | - Reiji Haba
- Department of Diagnostic Pathology; Kagawa University; Kita-Gun Japan
| | - Yoshio Kushida
- Department of Diagnostic Pathology; Kagawa University; Kita-Gun Japan
| | - Naomi Katsuki
- Department of Diagnostic Pathology; Kagawa University; Kita-Gun Japan
| | - Tetsuya Moriue
- Department of Dermatology; Kagawa University; Kita-Gun Japan
| | - Hiroaki Kosaka
- Department of Cardiovascular Physiology; Kagawa University; Kita-Gun Japan
| | - Yasuo Kubota
- Department of Dermatology; Kagawa University; Kita-Gun Japan
| | - Shigeaki Inoue
- Institute of Innovative Science and technology; Tokai University; Isehara Japan
| |
Collapse
|
85
|
Placental trophoblast cell differentiation: Physiological regulation and pathological relevance to preeclampsia. Mol Aspects Med 2013; 34:981-1023. [DOI: 10.1016/j.mam.2012.12.008] [Citation(s) in RCA: 238] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 12/01/2012] [Accepted: 12/19/2012] [Indexed: 12/11/2022]
|
86
|
Knöfler M, Pollheimer J. Human placental trophoblast invasion and differentiation: a particular focus on Wnt signaling. Front Genet 2013; 4:190. [PMID: 24133501 PMCID: PMC3783976 DOI: 10.3389/fgene.2013.00190] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 09/06/2013] [Indexed: 12/12/2022] Open
Abstract
Wingless ligands, a family of secreted proteins, are critically involved in organ development and tissue homeostasis by ensuring balanced rates of stem cell proliferation, cell death and differentiation. Wnt signaling components also play crucial roles in murine placental development controlling trophoblast lineage determination, chorioallantoic fusion and placental branching morphogenesis. However, the role of the pathway in human placentation, trophoblast development and differentiation is only partly understood. Here, we summarize our present knowledge about Wnt signaling in the human placenta and discuss its potential role in physiological and aberrant trophoblast invasion, gestational diseases and choriocarcinoma formation. Differentiation of proliferative first trimester cytotrophoblasts into invasive extravillous trophoblasts is associated with nuclear recruitment of β -catenin and induction of Wnt-dependent T-cell factor 4 suggesting that canonical Wnt signaling could be important for the formation and function of extravillous trophoblasts. Indeed, activation of the pathway was shown to promote trophoblast invasion in different in vitro trophoblast model systems as well as trophoblast cell fusion. Methylation-mediated silencing of inhibitors of Wnt signaling provided evidence for epigenetic activation of the pathway in placental tissues and choriocarcinoma cells. Similarly, abundant nuclear expression of β -catenin in invasive trophoblasts of complete hydatidiform moles suggested a role for hyper-activated Wnt signaling. In contrast, upregulation of Wnt inhibitors was noticed in placentae of women with preeclampsia, a disease characterized by shallow trophoblast invasion and incomplete spiral artery remodeling. Moreover, changes in Wnt signaling have been observed upon cytomegalovirus infection and in recurrent abortions. In summary, the current literature suggests a critical role of Wnt signaling in physiological and abnormal trophoblast function.
Collapse
Affiliation(s)
- Martin Knöfler
- Department of Obstetrics and Fetal-Maternal Medicine, Reproductive Biology Unit, Medical University of Vienna Austria
| | | |
Collapse
|
87
|
Lloyd-Lewis B, Fletcher AG, Dale TC, Byrne HM. Toward a quantitative understanding of the Wnt/β-catenin pathway through simulation and experiment. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2013; 5:391-407. [PMID: 23554326 DOI: 10.1002/wsbm.1221] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Wnt signaling regulates cell survival, proliferation, and differentiation throughout development and is aberrantly regulated in cancer. The pathway is activated when Wnt ligands bind to specific receptors on the cell surface, resulting in the stabilization and nuclear accumulation of the transcriptional co-activator β-catenin. Mathematical and computational models have been used to study the spatial and temporal regulation of the Wnt/β-catenin pathway and to investigate the functional impact of mutations in key components. Such models range in complexity, from time-dependent, ordinary differential equations that describe the biochemical interactions between key pathway components within a single cell, to complex, multiscale models that incorporate the role of the Wnt/β-catenin pathway target genes in tissue homeostasis and carcinogenesis. This review aims to summarize recent progress in mathematical modeling of the Wnt pathway and to highlight new biological results that could form the basis for future theoretical investigations designed to increase the utility of theoretical models of Wnt signaling in the biomedical arena.
Collapse
|
88
|
Gui S, Yuan G, Wang L, Zhou L, Xue Y, Yu Y, Zhang J, Zhang M, Yang Y, Wang DW. Wnt3a regulates proliferation, apoptosis and function of pancreatic NIT-1 beta cells via activation of IRS2/PI3K signaling. J Cell Biochem 2013; 114:1488-97. [DOI: 10.1002/jcb.24490] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 12/21/2012] [Indexed: 01/07/2023]
|
89
|
Price FD, Yin H, Jones A, van Ijcken W, Grosveld F, Rudnicki MA. Canonical Wnt Signaling Induces a Primitive Endoderm Metastable State in Mouse Embryonic Stem Cells. Stem Cells 2013; 31:752-64. [DOI: 10.1002/stem.1321] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 12/09/2012] [Indexed: 11/08/2022]
|
90
|
Zeller E, Hammer K, Kirschnick M, Braeuning A. Mechanisms of RAS/β-catenin interactions. Arch Toxicol 2013; 87:611-32. [PMID: 23483189 DOI: 10.1007/s00204-013-1035-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 02/28/2013] [Indexed: 12/20/2022]
Abstract
Signaling through the WNT/β-catenin and the RAS (rat sarcoma)/MAPK (mitogen-activated protein kinase) pathways plays a key role in the regulation of various physiological cellular processes including proliferation, differentiation, and cell death. Aberrant mutational activation of these signaling pathways is closely linked to the development of cancer in many organs, in humans as well as in laboratory animals. Over the past years, more and more evidence for a close linkage of the two oncogenic signaling cascades has accumulated. Using different experimental approaches, model systems, and experimental conditions, a variety of molecular mechanisms have been identified by which signal transduction through WNT/β-catenin and RAS interact, either in a synergistic or an antagonistic manner. Mechanisms of interaction comprise an upstream crosstalk at the level of pathway-activating ligands and their receptors, interrelations of cytosolic kinases involved in either pathways, as well as interaction in the nucleus related to the joint regulation of target gene transcription. Here, we present a comprehensive review of the current knowledge on the interaction of RAS/MAPK- and WNT/β-catenin-driven signal transduction in mammalian cells.
Collapse
Affiliation(s)
- Eva Zeller
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, University of Tübingen, Germany
| | | | | | | |
Collapse
|
91
|
Dual functions for WNT5A during cartilage development and in disease. Matrix Biol 2013; 32:252-64. [PMID: 23474397 DOI: 10.1016/j.matbio.2013.02.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 02/16/2013] [Accepted: 02/23/2013] [Indexed: 11/21/2022]
Abstract
Mouse and human genetic data suggests that Wnt5a is required for jaw development but the specific role in facial skeletogenesis is unknown. We mapped expression of WNT5A in the developing chicken skull and found that the highest expression was in early Meckel's cartilage but by stage 35 expression was decreased to background. We focused on chondrogenesis by targeting a retrovirus expressing WNT5A to the mandibular prominence prior to cell differentiation. Unexpectedly, there were no phenotypes in the first 6days following injection; however later the mandibular bones and Meckel's cartilage were reduced or missing on the treated side. To examine the effects on cartilage differentiation we treated micromass cultures from mandibular mesenchyme with Wnt5a-conditioned media (CM). Similar to in vivo viral data, cartilage differentiates normally, but, after 6days of culture, nearly all Alcian blue staining is lost. Collagen II and aggrecan were also decreased in treated cultures. The matrix loss was correlated with upregulation of metalloproteinases, MMP1, MMP13, and ADAMTS5 (codes for Aggrecanase). Moreover, Marimastat, an MMP and Aggrecanase inhibitor rescued cartilage matrix in Wnt5a-CM treated cultures. The pathways mediating these cartilage and RNA changes were investigated using luciferase assays. Wnt5a-CM was a potent inhibitor of the canonical pathway and strongly activated JNK/PCP signaling. To determine whether the matrix loss is mediated by repression of canonical signaling or activation of the JNK pathway we treated mandibular cultures with either DKK1, an antagonist of the canonical pathway, or a small molecule that antagonizes JNK signaling (TCS JNK 6o). DKK1 slightly increased cartilage formation and therefore suggested that the endogenous canonical signaling represses chondrogenesis. To test this further we added an excess of Wnt3a-CM and found that far fewer cartilage nodules differentiated. Since DKK1 did not mimic the effects of Wnt5a we excluded the canonical pathway from mediating the matrix loss phenotype. The JNK antagonist partially rescued the Wnt5a phenotype supporting this non-canonical pathway as the main mediator of the cartilage matrix degradation. Our study reveals two new roles for WNT5A in development and disease: 1) to repress canonical Wnt signaling in cartilage blastema in order to promote normal differentiation and 2) in conditions of excess to stimulate degradation of mature cartilage matrix via non-canonical pathways.
Collapse
|
92
|
Usongo M, Li X, Farookhi R. Activation of the canonical WNT signaling pathway promotes ovarian surface epithelial proliferation without inducing β-catenin/Tcf-mediated reporter expression. Dev Dyn 2013; 242:291-300. [PMID: 23239518 DOI: 10.1002/dvdy.23919] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 11/28/2012] [Accepted: 12/04/2012] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND In response to activation of the canonical WNT signaling pathway, β-catenin cooperates with Lef/Tcf (lymphoid enhancer factor/T-cell factor) transcription factors to drive expression of Wnt target genes. The canonical WNT signaling pathway is involved in development, wound repair, and tumorigenesis. Studies examining the involvement of the canonical WNT signaling pathway in the development of ovarian surface epithelium (OSE) and ovarian carcinogenesis, however, have recently begun to emerge. In this study, we investigated the modulation of β-catenin and β-catenin/Tcf-signaling activity within the OSE using responsive transgenic mice and examined the response of primary OSE cells and ovarian cancer cell lines to activation of the canonical WNT signaling pathway. RESULTS β-catenin was localized to the lateral membrane of the ovarian epithelium. Stimulation of primary OSE cells in vitro with LiCl or Wnt3a led to GSK-3β inhibition and stabilization of β-catenin but failed to induce β-catenin/Tcf-mediated lacZ expression. Furthermore, E-cadherin expression was downregulated and the proliferative potency of OSE cells increased. Of four ovarian cancers cell lines screened, only the HEY cell line demonstrated induction of luciferase reporter upon canonical WNT stimulation. CONCLUSIONS These observations suggest that in ovarian adenocarcinoma, dysregulated WNT signaling may not always be indicative of β-catenin/Tcf-mediated transcriptional activity.
Collapse
Affiliation(s)
- Macalister Usongo
- Department of Experimental Medicine, McGill University, Montreal, Canada.
| | | | | |
Collapse
|
93
|
Li G, Xu J, Li Z. Receptor for advanced glycation end products inhibits proliferation in osteoblast through suppression of Wnt, PI3K and ERK signaling. Biochem Biophys Res Commun 2012; 423:684-9. [DOI: 10.1016/j.bbrc.2012.06.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 06/05/2012] [Indexed: 11/16/2022]
|
94
|
Lee JS, Hur MW, Lee SK, Choi WI, Kwon YG, Yun CO. A novel sLRP6E1E2 inhibits canonical Wnt signaling, epithelial-to-mesenchymal transition, and induces mitochondria-dependent apoptosis in lung cancer. PLoS One 2012; 7:e36520. [PMID: 22606268 PMCID: PMC3351461 DOI: 10.1371/journal.pone.0036520] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Accepted: 04/03/2012] [Indexed: 01/05/2023] Open
Abstract
Aberrant activation of the Wnt pathway contributes to human cancer progression. Antagonists that interfere with Wnt ligand/receptor interactions can be useful in cancer treatments. In this study, we evaluated the therapeutic potential of a soluble Wnt receptor decoy in cancer gene therapy. We designed a Wnt antagonist sLRP6E1E2, and generated a replication-incompetent adenovirus (Ad), dE1-k35/sLRP6E1E2, and a replication-competent oncolytic Ad, RdB-k35/sLRP6E1E2, both expressing sLRP6E1E2. sLRP6E1E2 prevented Wnt-mediated stabilization of cytoplasmic β-catenin, decreased Wnt/β-catenin signaling and cell proliferation via the mitogen-activated protein kinase, and phosphatidylinositol 3-kinase pathways. sLRP6E1E2 induced apoptosis, cytochrome c release, and increased cleavage of PARP and caspase-3. sLRP6E1E2 suppressed growth of the human lung tumor xenograft, and reduced motility and invasion of cancer cells. In addition, sLRP6E1E2 upregulated expression of epithelial marker genes, while sLRP6E1E2 downregulated mesenchymal marker genes. Taken together, sLRP6E1E2, by inhibiting interaction between Wnt and its receptor, suppressed Wnt-induced cell proliferation and epithelial-to-mesenchymal transition.
Collapse
Affiliation(s)
- Jung-Sun Lee
- Brain Korea 21 Project for Medical Sciences, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
- Institute for Cancer Research, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Man-Wook Hur
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Korea
| | - Seong Kyung Lee
- Brain Korea 21 Project for Medical Sciences, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
- Institute for Cancer Research, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Won-Il Choi
- Brain Korea 21 Project for Medical Sciences, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Korea
| | - Young-Guen Kwon
- Department of Biochemistry and Molecular Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Korea
- * E-mail:
| |
Collapse
|
95
|
Activation of NMDA receptors upregulates a disintegrin and metalloproteinase 10 via a Wnt/MAPK signaling pathway. J Neurosci 2012; 32:3910-6. [PMID: 22423111 DOI: 10.1523/jneurosci.3916-11.2012] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A disintegrin and metalloproteinase 10 (ADAM10) is the constitutive α-secretase that governs the nonamyloidogenic pathway of β-amyloid precursor protein processing and is an attractive drug target for treating Alzheimer's disease. To date, little is known about the mechanism by which ADAM10 is regulated in neurons. Using mouse primary cortical neurons, we show here that NMDA receptor (NMDAR) activation led to upregulation of the genes encoding ADAM10 and β-catenin proteins. Interestingly, the ADAM10 upregulation was abolished by inhibitors of Wnt/β-catenin signaling. Conversely, activation of the Wnt/β-catenin signaling pathway by recombinant Wnt3a stimulated ADAM10 expression. We further showed that both the NMDAR- and Wnt3a-induced ADAM10 upregulation was blocked by ERK inhibitors. We suggest that the NMDARs control ADAM10 expression via a Wnt/MAPK signaling pathway.
Collapse
|
96
|
Xu L, Song C, Ni M, Meng F, Xie H, Li G. Cellular retinol-binding protein 1 (CRBP-1) regulates osteogenenesis and adipogenesis of mesenchymal stem cells through inhibiting RXRα-induced β-catenin degradation. Int J Biochem Cell Biol 2012; 44:612-9. [DOI: 10.1016/j.biocel.2011.12.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 12/12/2011] [Accepted: 12/22/2011] [Indexed: 10/14/2022]
|
97
|
Suppression of glypican 3 inhibits growth of hepatocellular carcinoma cells through up-regulation of TGF-β2. Neoplasia 2011; 13:735-47. [PMID: 21847365 DOI: 10.1593/neo.11664] [Citation(s) in RCA: 207] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 06/06/2011] [Accepted: 06/07/2011] [Indexed: 12/27/2022] Open
Abstract
Glypican 3 (GPC3) is a valuable diagnostic marker and a potential therapeutic target in hepatocellular carcinoma (HCC). To evaluate the efficacy of targeting GPC3 at the translational level, we used RNA interference to examine the biologic and molecular effects of GPC3 suppression in HCC cells in vitro and in vivo. Transfection of Huh7 and HepG2 cells with GPC3-specific small interfering RNA (siRNA) inhibited cell proliferation (P < .001) together with cell cycle arrest at the G(1) phase, down-regulation of antiapoptotic protein (Bcl-2, Bcl-xL, and Mcl-1), and replicative senescence. Gene expression analysis revealed that GPC3 suppression significantly correlated with transforming growth factor beta receptor (TGFBR) pathway (P = 4.57e-5) and upregulated TGF-β2 at both RNA and protein levels. The effects of GPC3 suppression by siRNA can be recapitulated by addition of human recombinant TGF-β2 to HCC cells in culture, suggesting the possible involvement of TGF-β2 in growth inhibition of HCC cells. Cotransfection of siRNA-GPC3 with siRNA-TGF-β2 partially attenuated the effects of GPC3 suppression on cell proliferation, cell cycle progression, apoptosis, and replicative senescence, confirming the involvement of TGF-β2 in siRNA-GPC3-mediated growth suppression. In vivo, GPC3 suppression significantly inhibited the growth of orthotopic xenografts of Huh7 and HepG2 cells (P < .05), accompanied by increased TGF-β2 expression, reduced cell proliferation (observed by proliferating cell nuclear antigen staining), and enhanced apoptosis (by TUNEL staining). In conclusion, molecular targeting of GPC3 at the translational level offers an effective option for the clinical management of GPC3-positive HCC patients.
Collapse
|
98
|
Chua AWC, Gan SU, Ting Y, Fu Z, Lim CK, Song C, Sabapathy K, Phan TT. Keloid fibroblasts are more sensitive to Wnt3a treatment in terms of elevated cellular growth and fibronectin expression. J Dermatol Sci 2011; 64:199-209. [PMID: 22005028 DOI: 10.1016/j.jdermsci.2011.09.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 08/25/2011] [Accepted: 09/14/2011] [Indexed: 12/24/2022]
Abstract
BACKGROUND Current evidence suggests the potential role of Wnt signalling in keloids pathogenesis but such literature remains scanty. We hypothesize that Wnt signalling is upregulated in keloid fibroblasts (KFs) and this promotes cellular growth, migration and extracellular matrix (ECM) production in such fibroblasts. OBJECTIVES To verify the downregulation of secreted frizzled-related protein 1 (SFRP1), a Wnt inhibitor and test KFs sensitivity to Wnt3a treatment compared to NFs in terms of activation of Wnt/β-catenin, cellular growth, migration and ECM expressions. Next, to investigate if ectopic expression of SFRP1 and treatment of quercetin in KFs can reverse their phenotypes. METHODS Quantitative Real-time PCR and western blotting were used to verify SFRP1 expression in NFs and KFs. The fibroblasts were tested with Wnt3a conditioned media and its effects were tested for (1) the cells' sensitivity to direct Wnt signalling via the activation of TCF reporter assay and protein expression of β-catenin, (2) cellular growth, (3) cell migration and (4) expressions of ECM components. Finally KFs were stably transduced with SFRP1 and treated with 2 doses of quercetin. RESULTS Lower levels of SFRP1 were confirmed at mRNA and protein levels in KFs which partly explained their sensitivity to Wnt3a treatment in terms of higher Wnt activation, cellular growth and fibronectin expression. Interestingly, Wnt3a did not promote higher cell migration rate and increase in collagen I expression. Ectopic expression of SFRP1 and quercetin treatment was able to mitigate Wnt3a-mediated phenotype of KFs. CONCLUSIONS Using SFRP1 or inhibitors of Wnt signalling might be one of the therapeutic solutions to treat keloid scarring.
Collapse
|
99
|
Bikkavilli RK, Malbon CC. Mitogen-activated protein kinases and Wnt/beta-catenin signaling: Molecular conversations among signaling pathways. Commun Integr Biol 2011; 2:46-9. [PMID: 19513264 DOI: 10.4161/cib.2.1.7503] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Accepted: 12/01/2008] [Indexed: 12/31/2022] Open
Abstract
Wnt/beta-catenin canonical pathway is critical for normal embryonic development; mutations and aberrant expression of specific components of this pathway can be oncogenic. Mitogen-activated protein kinase (MAPK) pathways, prominent in intracellular signaling, have been shown to have unique and provocative roles that impact the Wnt/beta-catenin signaling. We discuss recent insights that implicate the three major pathways of the MAPK network, i.e., mediated by p38, c-Jun N-terminal (JNK) kinase and Extra-cellular-Regulated Kinases (ERK) and their downstream signaling elements in Wnt/beta-catenin signaling. Novel "crosstalk" among MAPK and Wnt/beta-catenin canonical signaling pathways is essential. A fuller understanding of how such signaling is integrated during development is a high-value target for future research.
Collapse
Affiliation(s)
- Rama Kamesh Bikkavilli
- Department of Pharmacology; Health Sciences Center; State University of New York at Stony Brook; Stony Brook, New York USA
| | | |
Collapse
|
100
|
Kim TH, Kim SH, Seo JY, Chung H, Kwak HJ, Lee SK, Yoon HJ, Shin DH, Park SS, Sohn JW. Blockade of the Wnt/β-catenin pathway attenuates bleomycin-induced pulmonary fibrosis. TOHOKU J EXP MED 2011; 223:45-54. [PMID: 21212602 DOI: 10.1620/tjem.223.45] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease and characterized by abnormal growth of fibroblasts and lung scarring. While the pathogenesis of IPF is not clearly understood, activation of transforming growth factor-β (TGF-β) and disruption of alveolar basement membrane seem to play important roles in leading to excess disruption of the matrix, which is associated with activated matrix metalloproteinase (MMP) and aberrant proliferation of myofibroblasts. The Wnt/β-catenin pathway is an important regulator of cellular proliferation and differentiation and abnormal activation of Wnt/β-catenin signal was observed in IPF. We examined whether inhibition of the Wnt/β-catenin pathway could attenuate pulmonary fibrosis in a bleomycin-induced murine model of pulmonary fibrosis. Pulmonary fibrosis was induced in C57BL/6N mice by intratracheal instillation of bleomycin. To inhibit the Wnt/β-catenin pathway, small interfering RNA (siRNA) for β-catenin was administered into trachea 2 h before bleomycin instillation and every 48 h afterward until sacrifice on day 14. The level of β-catenin expression was increased in the epithelial cells of bleomycin-administered mice. Intratracheal treatment with β-catenin siRNA significantly reduced β-catenin expression, pulmonary fibrosis and collagen synthesis in bleomycin-administered mice compared with controls, with no significant effect on the inflammatory response. The β-catenin-targeted siRNA also significantly decreased the levels of MMP-2 (P<0.01) and TGF-β (P<0.01) expression in the lung tissue. Blockade of the Wnt/β-catenin pathway by β-catenin siRNA decreased bleomycin-induced pulmonary fibrosis in the murine model. These findings suggest that targeting Wnt/β-catenin signaling may be an effective therapeutic approach in the treatment of IPF.
Collapse
Affiliation(s)
- Tae Hyung Kim
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|