51
|
Guo A, Lun P, Chen J, Li Q, Chang K, Li T, Pan D, Zhang J, Zhou J, Wang K, Zhang Q, Yang Q, Gao C, Wu C, Jian X, Wen Y, Wang Z, Shi Y, Zhao X, Sun P, Li Z. Association analysis of risk genes identified by SCHEMA with schizophrenia in the Chinese Han population. Psychiatr Genet 2022; 32:188-193. [PMID: 36125369 DOI: 10.1097/ypg.0000000000000321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Schizophrenia is a chronic brain disorder. Previously, the Schizophrenia Exome Sequencing Meta-analysis consortium identified 10 highest risk genes related to schizophrenia. This study aimed to analyze the relationship between the 10 highest risk genes identified by the SCHEMA and schizophrenia in a Chinese population. METHODS A total of 225 variants in 10 genes were screened in a Chinese population of 6836 using a customized array. All variants were annotated through the Variant Effect Predictor tool, and the functional impacts of missense variants were assessed based on sorting intolerant from tolerant and PolyPhen-2 scores. The SHEsisPlus tool was used to analyze the association between risk genes and schizophrenia at the locus and gene levels. RESULTS At the locus level, no missense variants significantly related to schizophrenia were found, but we detected three missense variants that appeared only in cases, including TRIO p. Arg1185Gln, RB1CC1 p. Arg1514Cys, and HERC1 p. Val4517Leu. At the gene level, five genes (TRIO, RB1CC1, HERC1, GRIN2A, and CACAN1G) with more than one variant analyzed were kept for the gene-level association analysis. Only the association between RB1CC1 and schizophrenia reached a significant level (OR = 1.634; 95% CI, 1.062-2.516; P = 0.025). CONCLUSION In this study, we determined that RB1CC1 might be a risk gene for schizophrenia in the Chinese population. Our results provide new evidence for recognizing the correlation of these risk genes with the Chinese schizophrenia population.
Collapse
Affiliation(s)
- Aiguo Guo
- School of Basic Medicine, Qingdao University
- The Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University
| | - Peng Lun
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao
| | - Jianhua Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai
| | - Qinghua Li
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao
| | - Kaihui Chang
- School of Basic Medicine, Qingdao University
- The Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University
| | - Teng Li
- The Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University
- School of Public Health, Qingdao University, Qingdao
| | - Dun Pan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai
| | - Jinmai Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai
| | - Juan Zhou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai
| | - Ke Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai
| | - Qian Zhang
- The Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University
| | - Qiangzhen Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai
| | - Chengwen Gao
- The Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University
| | - Chuanhong Wu
- The Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University
| | - Xuemin Jian
- The Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University
| | - Yanqin Wen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai
| | - Zhuo Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai
| | - Yongyong Shi
- School of Basic Medicine, Qingdao University
- The Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai
- Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University
- Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangzhong Zhao
- The Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University
| | - Peng Sun
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao
| | - Zhiqiang Li
- School of Basic Medicine, Qingdao University
- The Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai
- School of Public Health, Qingdao University, Qingdao
- Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University
- Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
52
|
The Systematic Analyses of RING Finger Gene Signature for Predicting the Prognosis of Patients with Hepatocellular Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:2466006. [PMID: 36199791 PMCID: PMC9529411 DOI: 10.1155/2022/2466006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 09/08/2022] [Indexed: 12/24/2022]
Abstract
RING finger (RNF) proteins are frequently dysregulated in human malignancies and are tightly associated with tumorigenesis. However, the expression profiles of RNF genes in hepatocellular carcinoma (HCC) and their relations with prognosis remain undetermined. Here, we aimed at constructing a prognostic model according to RNF genes for forecasting the outcomes of HCC patients using the data from The Cancer Genome Atlas (TCGA) program. We collected HCC datasets to validate the values of our model in predicting prognosis of HCC patients from International Cancer Genome Consortium (ICGC) platform. Then, functional experiments were carried out to explore the roles of the representative RNF in HCC progression. A total of 107 differentially expressed RNFs were obtained between TCGA-HCC tumor and normal tissues. After comprehensive evaluation, a prognostic signature composed of 11 RNFs (RNF220, RNF25, TRIM25, BMI1, RNF216P1, RNF115, RNF2, TRAIP, RNF157, RNF145, and RNF19B) was constructed based on TCGA cohort. Then, the Kaplan-Meier (KM) curves and the receiver operating characteristic curve (ROC) were employed to evaluate predictive power of the prognostic model in testing cohort (TCGA) and validation cohort (ICGC). The KM and ROC curves illustrated the good predictive power in testing and validation cohort. The areas under the ROC curve are 0.77 and 0.76 in these two cohorts, respectively. Among the prognostic signature genes, BMI1 was selected as a representative for functional study. We found that BMI1 protein level was significantly upregulated in HCC tissues. Moreover, the inhibitor of BMI1, PTC-209, displayed an excellent anti-HCC effect in vitro. Enrichment analysis of BMI1 downstream targets showed that BMI1 might be involved in tumor immunotherapy. Together, our overall analyses revealed that the 11-RNFs prognostic signature might provide us latent chances for evaluating HCC prognosis and developing novel HCC therapy.
Collapse
|
53
|
Yang E, Huang S, Jami-Alahmadi Y, McInerney GM, Wohlschlegel JA, Li MMH. Elucidation of TRIM25 ubiquitination targets involved in diverse cellular and antiviral processes. PLoS Pathog 2022; 18:e1010743. [PMID: 36067236 PMCID: PMC9481182 DOI: 10.1371/journal.ppat.1010743] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/16/2022] [Accepted: 07/15/2022] [Indexed: 11/19/2022] Open
Abstract
The tripartite motif (TRIM) family of E3 ubiquitin ligases is well known for its roles in antiviral restriction and innate immunity regulation, in addition to many other cellular pathways. In particular, TRIM25-mediated ubiquitination affects both carcinogenesis and antiviral response. While individual substrates have been identified for TRIM25, it remains unclear how it regulates diverse processes. Here we characterized a mutation, R54P, critical for TRIM25 catalytic activity, which we successfully utilized to "trap" substrates. We demonstrated that TRIM25 targets proteins implicated in stress granule formation (G3BP1/2), nonsense-mediated mRNA decay (UPF1), nucleoside synthesis (NME1), and mRNA translation and stability (PABPC4). The R54P mutation abolishes TRIM25 inhibition of alphaviruses independently of the host interferon response, suggesting that this antiviral effect is a direct consequence of ubiquitination. Consistent with that, we observed diminished antiviral activity upon knockdown of several TRIM25-R54P specific interactors including NME1 and PABPC4. Our findings highlight that multiple substrates mediate the cellular and antiviral activities of TRIM25, illustrating the multi-faceted role of this ubiquitination network in modulating diverse biological processes.
Collapse
Affiliation(s)
- Emily Yang
- Molecular Biology Institute, University of California, Los Angeles, California, United States of America
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, United States of America
| | - Serina Huang
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Gerald M. McInerney
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - James A. Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Melody M. H. Li
- Molecular Biology Institute, University of California, Los Angeles, California, United States of America
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, United States of America
- AIDS Institute, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
54
|
Zhang H, Yang Z, Zhang R, Wang K, Yu H, Huang X. A TRIM-like protein restricts WSSV replication in the oriental river prawn, Macrobrachium nipponense. FISH & SHELLFISH IMMUNOLOGY 2022; 128:565-573. [PMID: 35964877 DOI: 10.1016/j.fsi.2022.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/25/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Tripartite motif (TRIM) proteins are a multifunctional family of ubiquitin E3 ligases involved in multiple biological processes. Studies have shown that many TRIM proteins in mammals play vital roles in the host defense against viral pathogens. In the present study, we identified a novel TRIM gene (MnTrim-like) from the oriental river prawn, Macrobrachium nipponense. Predicted MnTrim-like protein contains the characteristic RING finger domain. MnTrim-like was abundantly distributed in hepatopancreas, intestine, stomach, and gills. Upon white spot syndrome virus (WSSV) challenge, transcripts of MnTrim-like in the stomach were significantly up-regulated. Knockdown of MnTrim-like increased the expression of VP28 and decreased the synthesis of several antimicrobial peptides, including two crustins and one anti-lipopolysaccharide factor. Besides, silencing of these three antimicrobial peptides (AMPs) led to an increase in the expression of VP28 and WSSV copies. Moreover, it was found that injection of recombinant MnTrim-like protein with WSSV could decrease the transcription of VP28 and the number of virus particles. These results suggest that this MnTrim-like may restrict WSSV infection by positively regulating the expression of AMPs with antiviral activities and directly interacting with viral components. This study will broaden our understanding about the function of TRIM in crustacean during viral infection.
Collapse
Affiliation(s)
- Hongwei Zhang
- Department of Nature Resources, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Zhifang Yang
- Department of Nature Resources, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Ruidong Zhang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, Nanjing, 210046, China
| | - Kui Wang
- Department of Nature Resources, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Hao Yu
- Department of Nature Resources, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China.
| | - Xin Huang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, Nanjing, 210046, China.
| |
Collapse
|
55
|
Wolska-Washer A, Smolewski P. Targeting Protein Degradation Pathways in Tumors: Focusing on their Role in Hematological Malignancies. Cancers (Basel) 2022; 14:3778. [PMID: 35954440 PMCID: PMC9367439 DOI: 10.3390/cancers14153778] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/12/2022] [Accepted: 07/26/2022] [Indexed: 02/01/2023] Open
Abstract
Cells must maintain their proteome homeostasis by balancing protein synthesis and degradation. This is facilitated by evolutionarily-conserved processes, including the unfolded protein response and the proteasome-based system of protein clearance, autophagy, and chaperone-mediated autophagy. In some hematological malignancies, including acute myeloid leukemia, misfolding or aggregation of the wild-type p53 tumor-suppressor renders cells unable to undergo apoptosis, even with an intact p53 DNA sequence. Moreover, blocking the proteasome pathway triggers lymphoma cell apoptosis. Extensive studies have led to the development of proteasome inhibitors, which have advanced into drugs (such as bortezomib) used in the treatment of certain hematological tumors, including multiple myeloma. New therapeutic options have been studied making use of the so-called proteolysis-targeting chimeras (PROTACs), that bind desired proteins with a linker that connects them to an E3 ubiquitin ligase, resulting in proteasomal-targeted degradation. This review examines the mechanisms of protein degradation in the cells of the hematopoietic system, explains the role of dysfunctional protein degradation in the pathogenesis of hematological malignancies, and discusses the current and future advances of therapies targeting these pathways, based on an extensive search of the articles and conference proceedings from 2005 to April 2022.
Collapse
Affiliation(s)
| | - Piotr Smolewski
- Department of Experimental Hematology, Medical University of Lodz, 93-510 Lodz, Poland;
| |
Collapse
|
56
|
Zhou LN, Xiong C, Cheng YJ, Song SS, Bao XB, Huan XJ, Wang TY, Zhang A, Miao ZH, He JX. SOMCL-19-133, a novel, selective, and orally available inhibitor of NEDD8-activating enzyme (NAE) for cancer therapy. Neoplasia 2022; 32:100823. [PMID: 35907292 PMCID: PMC9352467 DOI: 10.1016/j.neo.2022.100823] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 11/29/2022]
Abstract
Inhibition of the NEDD8-activating enzyme (NAE), the key E1 enzyme in the neddylation cascade, has been considered an attractive anticancer strategy with the discovery of the first-in-class NAE inhibitor, MLN4924. In this study, we identified SOMCL-19-133 as a highly potent, selective, and orally available NAE inhibitor, which is an analog to AMP. It effectively inhibited NAE with an IC50 value of 0.36 nM and exhibited more than 2855-fold selectivity over the closely related Ubiquitin-activating enzyme (UAE). It is worth noting that treatment with SOMCL-19-133 prominently inhibited Cullin neddylation and delayed the turnover of a panel of Cullin-RING ligases (CRLs) substrates (e.g., Cdt1, p21, p27, and Wee1) at lower effective concentrations than that of MLN4924, subsequently caused DNA damage and Chk1/Chk2 activation, and thus triggered cell cycle arrest and apoptosis. Moreover, SOMCL-19-133 exhibited potent antiproliferative activity against a broad range of human tumor cell lines (mean IC50 201.11 nM), which was about 5.31-fold more potent than that of MLN4924. In vivo, oral delivery treatments with SOMCL-19-133, as well as the subcutaneous injection, led to significant tumor regression in mouse xenograft models. All of the treatments were well tolerated on a continuous daily dosing schedule. Compared with MLN4924, SOMCL-19-133 had a 5-fold higher peak plasma concentration, lower plasma clearance, and a 4-fold larger area under the curve (AUClast). In conclusion, SOMCL-19-133 is a promising preclinical candidate for treating cancers owing to its profound in vitro and in vivo efficacy and favorable pharmacokinetic properties.
Collapse
Affiliation(s)
- Li-Na Zhou
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, China
| | - Chaodong Xiong
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, China; Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, China
| | - Yong-Jun Cheng
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Shan-Shan Song
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, China
| | - Xu-Bin Bao
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, China
| | - Xia-Juan Huan
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, China
| | - Tong-Yan Wang
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, China
| | - Ao Zhang
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, China; Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, China.
| | - Ze-Hong Miao
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, China.
| | - Jin-Xue He
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
57
|
Ghilarducci K, Cabana VC, Harake A, Cappadocia L, Lussier MP. Membrane Targeting and GTPase Activity of Rab7 Are Required for Its Ubiquitination by RNF167. Int J Mol Sci 2022; 23:ijms23147847. [PMID: 35887194 PMCID: PMC9319455 DOI: 10.3390/ijms23147847] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 11/30/2022] Open
Abstract
Rab7 is a GTPase that controls late endosome and lysosome trafficking. Recent studies have demonstrated that Rab7 is ubiquitinated, a post-translational modification mediated by an enzymatic cascade. To date, only one ubiquitin E3 ligase and one deubiquitinase have been identified in regulating Rab7 ubiquitination. Here, we report that RNF167, a transmembrane endolysosomal ubiquitin ligase, can ubiquitinate Rab7. Using immunoprecipitation and in vitro ubiquitination assays, we demonstrate that Rab7 is a direct substrate of RNF167. Subcellular fractionation indicates that RNF167 activity maintains Rab7′s membrane localization. Epifluorescence microscopy in HeLa cells shows that Rab7-positive vesicles are larger under conditions enabling Rab7 ubiquitination by RNF167. Characterization of its ubiquitination reveals that Rab7 must be in its GTP-bound active form for membrane anchoring and, thus, accessible for RNF167-mediated ubiquitin attachment. Cellular distribution analyses of lysosome marker Lamp1 show that vesicle positioning is independent of Rab7 and RNF167 expression and that Rab7 endosomal localization is not affected by RNF167 knockdown. However, both Rab7 and RNF167 depletion affect each other’s lysosomal localization. Finally, this study demonstrates that the RNF167-mediated ubiquitination of Rab7 GTPase is impaired by variants of Charcot–Marie–Tooth Type 2B disease. This study identified RNF167 as a new ubiquitin ligase for Rab7 while expanding our knowledge of the mechanisms underlying the ubiquitination of Rab7.
Collapse
Affiliation(s)
- Kim Ghilarducci
- Département de Chimie, Université du Québec à Montréal, Montréal, QC H2X 2J6, Canada; (K.G.); (V.C.C.); (A.H.); (L.C.)
- Centre d’Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC H2X 3Y7, Canada
| | - Valérie C. Cabana
- Département de Chimie, Université du Québec à Montréal, Montréal, QC H2X 2J6, Canada; (K.G.); (V.C.C.); (A.H.); (L.C.)
- Centre d’Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC H2X 3Y7, Canada
| | - Ali Harake
- Département de Chimie, Université du Québec à Montréal, Montréal, QC H2X 2J6, Canada; (K.G.); (V.C.C.); (A.H.); (L.C.)
- Centre d’Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC H2X 3Y7, Canada
| | - Laurent Cappadocia
- Département de Chimie, Université du Québec à Montréal, Montréal, QC H2X 2J6, Canada; (K.G.); (V.C.C.); (A.H.); (L.C.)
- Centre d’Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC H2X 3Y7, Canada
| | - Marc P. Lussier
- Département de Chimie, Université du Québec à Montréal, Montréal, QC H2X 2J6, Canada; (K.G.); (V.C.C.); (A.H.); (L.C.)
- Centre d’Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC H2X 3Y7, Canada
- Correspondence: ; Tel.: +1-514-987-3000 (ext. 5591); Fax: +1-514-987-4054
| |
Collapse
|
58
|
Nozawa K, Fujihara Y, Devlin DJ, Deras RE, Kent K, Larina IV, Umezu K, Yu Z, Sutton CM, Ye Q, Dean LK, Emori C, Ikawa M, Garcia TX, Matzuk MM. The testis-specific E3 ubiquitin ligase RNF133 is required for fecundity in mice. BMC Biol 2022; 20:161. [PMID: 35831855 PMCID: PMC9277888 DOI: 10.1186/s12915-022-01368-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 07/05/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Ubiquitination is a post-translational modification required for a number of physiological functions regulating protein homeostasis, such as protein degradation. The endoplasmic reticulum (ER) quality control system recognizes and degrades proteins no longer needed in the ER through the ubiquitin-proteasome pathway. E2 and E3 enzymes containing a transmembrane domain have been shown to function in ER quality control. The ER transmembrane protein UBE2J1 is a E2 ubiquitin-conjugating enzyme reported to be essential for spermiogenesis at the elongating spermatid stage. Spermatids from Ube2j1 KO male mice are believed to have defects in the dislocation step of ER quality control. However, associated E3 ubiquitin-protein ligases that function during spermatogenesis remain unknown. RESULTS We identified four evolutionarily conserved testis-specific E3 ubiquitin-protein ligases [RING finger protein 133 (Rnf133); RING finger protein 148 (Rnf148); RING finger protein 151 (Rnf151); and Zinc finger SWIM-type containing 2 (Zswim2)]. Using the CRISPR/Cas9 system, we generated and analyzed the fertility of mutant mice with null alleles for each of these E3-encoding genes, as well as double and triple knockout (KO) mice. Male fertility, male reproductive organ, and sperm-associated parameters were analyzed in detail. Fecundity remained largely unaffected in Rnf148, Rnf151, and Zswim2 KO males; however, Rnf133 KO males displayed severe subfertility. Additionally, Rnf133 KO sperm exhibited abnormal morphology and reduced motility. Ultrastructural analysis demonstrated that cytoplasmic droplets were retained in Rnf133 KO spermatozoa. Although Rnf133 and Rnf148 encode paralogous genes that are chromosomally linked and encode putative ER transmembrane E3 ubiquitin-protein ligases based on their protein structures, there was limited functional redundancy of these proteins. In addition, we identified UBE2J1 as an E2 ubiquitin-conjugating protein that interacts with RNF133. CONCLUSIONS Our studies reveal that RNF133 is a testis-expressed E3 ubiquitin-protein ligase that plays a critical role for sperm function during spermiogenesis. Based on the presence of a transmembrane domain in RNF133 and its interaction with the ER containing E2 protein UBE2J1, we hypothesize that these ubiquitin-regulatory proteins function together in ER quality control during spermatogenesis.
Collapse
Affiliation(s)
- Kaori Nozawa
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yoshitaka Fujihara
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center, Suita, Osaka, 564-8565, Japan
| | - Darius J Devlin
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ricardo E Deras
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Katarzyna Kent
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Irina V Larina
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kohei Umezu
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Zhifeng Yu
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Courtney M Sutton
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Qiuji Ye
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Laura K Dean
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Chihiro Emori
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Masahito Ikawa
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Thomas X Garcia
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Martin M Matzuk
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
59
|
Hughes DC, Baehr LM, Waddell DS, Sharples AP, Bodine SC. Ubiquitin Ligases in Longevity and Aging Skeletal Muscle. Int J Mol Sci 2022; 23:7602. [PMID: 35886949 PMCID: PMC9315556 DOI: 10.3390/ijms23147602] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 12/07/2022] Open
Abstract
The development and prevalence of diseases associated with aging presents a global health burden on society. One hallmark of aging is the loss of proteostasis which is caused in part by alterations to the ubiquitin-proteasome system (UPS) and lysosome-autophagy system leading to impaired function and maintenance of mass in tissues such as skeletal muscle. In the instance of skeletal muscle, the impairment of function occurs early in the aging process and is dependent on proteostatic mechanisms. The UPS plays a pivotal role in degradation of misfolded and aggregated proteins. For the purpose of this review, we will discuss the role of the UPS system in the context of age-related loss of muscle mass and function. We highlight the significant role that E3 ubiquitin ligases play in the turnover of key components (e.g., mitochondria and neuromuscular junction) essential to skeletal muscle function and the influence of aging. In addition, we will briefly discuss the contribution of the UPS system to lifespan. By understanding the UPS system as part of the proteostasis network in age-related diseases and disorders such as sarcopenia, new discoveries can be made and new interventions can be developed which will preserve muscle function and maintain quality of life with advancing age.
Collapse
Affiliation(s)
- David C. Hughes
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (L.M.B.); (S.C.B.)
| | - Leslie M. Baehr
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (L.M.B.); (S.C.B.)
| | - David S. Waddell
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA;
| | - Adam P. Sharples
- Institute for Physical Performance, Norwegian School of Sport Sciences (NiH), 0863 Oslo, Norway;
| | - Sue C. Bodine
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (L.M.B.); (S.C.B.)
| |
Collapse
|
60
|
Meng X, Wang N, He H, Tan Q, Wen B, Zhang R, Fu X, Xiao W, Chen X, Li D, Li L. Prunus persica transcription factor PpNAC56 enhances heat resistance in transgenic tomatoes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 182:194-201. [PMID: 35525200 DOI: 10.1016/j.plaphy.2022.04.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
Members of the NAC (NAM, ATAF1,2 and CUC2) transcription factor family are involved in numerous processes of plant growth and development and play an important role in the response to abiotic stresses such as salinity, drought and heat, but little research on this topic has been done in peach. In this study, we analyzed the expression patterns of PpNAC56 under abiotic stress and found that PpNAC56 responded to high-temperature stress. To verify the function of PpNAC56, we overexpressed this gene in tomato plants and found that, compared with WT plants, the transgenic tomato plants could accumulate more osmoregulatory substances after high-temperature treatment and thus were more heat resistance. Then, using Y2H, BIFC, and pull-down assays, we found that PpNAC56 could interact with PpMIEL1. In addition, Y1H and dual-luciferase assays verified that PpNAC56 could activate the expression of PpHSP17.4 and PpSnRK2D. The above experimental results demonstrate that PpNAC56 plays an important role in the plant response to heat stress.
Collapse
Affiliation(s)
- Xiangguang Meng
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, PR China; State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, PR China; Shandong Province Collaborative Innovation Center for High-quality and High-efficiency Vegetable Production, Tai'an, 271018, PR China
| | - Ning Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, PR China; State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, PR China; Shandong Province Collaborative Innovation Center for High-quality and High-efficiency Vegetable Production, Tai'an, 271018, PR China
| | - Huajie He
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, PR China; State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, PR China; Shandong Province Collaborative Innovation Center for High-quality and High-efficiency Vegetable Production, Tai'an, 271018, PR China
| | - Qiuping Tan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, PR China; State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, PR China; Shandong Province Collaborative Innovation Center for High-quality and High-efficiency Vegetable Production, Tai'an, 271018, PR China
| | - Binbin Wen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, PR China; State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, PR China; Shandong Province Collaborative Innovation Center for High-quality and High-efficiency Vegetable Production, Tai'an, 271018, PR China
| | - Rui Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, PR China; State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, PR China; Shandong Province Collaborative Innovation Center for High-quality and High-efficiency Vegetable Production, Tai'an, 271018, PR China
| | - Xiling Fu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, PR China; State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, PR China; Shandong Province Collaborative Innovation Center for High-quality and High-efficiency Vegetable Production, Tai'an, 271018, PR China
| | - Wei Xiao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, PR China; State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, PR China; Shandong Province Collaborative Innovation Center for High-quality and High-efficiency Vegetable Production, Tai'an, 271018, PR China
| | - Xiude Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, PR China; State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, PR China; Shandong Province Collaborative Innovation Center for High-quality and High-efficiency Vegetable Production, Tai'an, 271018, PR China
| | - Dongmei Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, PR China; State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, PR China; Shandong Province Collaborative Innovation Center for High-quality and High-efficiency Vegetable Production, Tai'an, 271018, PR China.
| | - Ling Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, PR China; State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, PR China; Shandong Province Collaborative Innovation Center for High-quality and High-efficiency Vegetable Production, Tai'an, 271018, PR China.
| |
Collapse
|
61
|
Wang L, Piao Y, Zhang D, Feng W, Wang C, Cui X, Ren Q, Zhu X, Zheng G. Fbxw11 impairs the repopulation capacity of hematopoietic stem/progenitor cells. Stem Cell Res Ther 2022; 13:245. [PMID: 35690796 PMCID: PMC9188144 DOI: 10.1186/s13287-022-02926-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The ubiquitin-proteasome system plays important roles in maintaining the self-renewal and differentiation of stem and progenitor cells through highly ordered degradation of cellular proteins. Fbxw11, an E3 ligase, participates in many important biological processes by targeting a broad range of proteins. However, its roles in hematopoietic stem/progenitor cells (HSPCs) have not been established. METHODS In this study, the effects of Fbxw11 on HSPCs were studied in vitro and in vivo by an overexpression strategy. Real-time PCR was performed to detect the expression of Fbxw11 in hematopoietic subpopulations. Colony-forming assays were performed to evaluate the in vitro function of Fbxw11 on HSPCs. Hoechst 33342 and Ki67 staining was performed to determine the cell-cycle distribution of HSPCs. Competitive transplantation experiments were used to evaluate the effect of Fbxw11 on the reconstitution potential of HSPCs. Single-cell RNA sequencing (scRNA-seq) was employed to reveal the transcriptomic alterations in HSPCs. RESULTS The expression of Fbxw11 was higher in Lin-c-Kit+Sca-1+ (LSK) cells and myeloid progenitors than in lymphoid progenitors. Fbxw11 played negative roles in colony-forming and quiescence maintenance of HSPCs in vitro. Furthermore, serial competitive transplantation experiments revealed that Fbxw11 impaired the repopulation capacity of HSPCs. The proportion of granulocytes (Gr-1+CD11b+) in the differentiated mature cells was significantly higher than that in the control group, T cells and B cells were lower. Moreover, scRNA-seq revealed seven cell clusters in HSPCs. In addition, Fbxw11 downregulated the expression of Cebpa, Myc and Arid5b, which are significant regulators of HSPC activity, in most cell clusters. CONCLUSION Our data demonstrate that Fbxw11 plays a negative role in the maintenance of HSPCs in vitro and repopulation capacity in vivo. Our data also provide valuable transcriptome references for HSPCs in homeostasis.
Collapse
Affiliation(s)
- Lina Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Disease Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China.
| | - Yongjun Piao
- School of Medicine, Nankai University, Tianjin, China
| | - Dongyue Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Disease Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Wenli Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Disease Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Chenchen Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Disease Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Xiaoxi Cui
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Disease Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Qian Ren
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Disease Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Xiaofan Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Disease Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Guoguang Zheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Disease Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China.
| |
Collapse
|
62
|
Yoon GH, Kim K, Park DS, Choi SC. RNF152 negatively regulates Wnt/β-catenin signaling in Xenopus embryos. BMB Rep 2022. [PMID: 35410636 PMCID: PMC9152578 DOI: 10.5483/bmbrep.2022.55.5.187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The Wnt/β-catenin signaling plays crucial roles in early development, tissue homeostasis, stem cells, and cancers. Here, we show that RNF152, an E3 ligase localized to lysosomes, acts as a negative regulator of the Wnt/β-catenin pathway during Xenopus early embryogenesis. Overexpression of wild-type (WT) RNF152 inhibited XWnt8-induced stabilization of β-catenin, ectopic expression of target genes, and activity of a Wnt-responsive promoter. Likewise, an E3 ligase-defective RNF152 had repressive effects on the Wnt-dependent gene responses but not its truncation mutant lacking the transmembrane domain. Conversely, knockdown of RNF152 further enhanced the transcriptional responses induced by XWnt8. RNF152 morphants exhibited defects in craniofacial structures and pigmentation. In line with this, the gain-of-RNF152 function interfered with the expression of neural crest (NC) markers, whereas its depletion up-regulated NC formation in the early embryo. Mechanistically, RNF152 inhibits the polymerization of Dishevelled, which is key to Wnt signaling, in an E3 ligase-independent manner. Together, these results suggest that RNF152 controls negatively Wnt/β-catenin signaling to fine-tune its activity for NC formation in Xenopus embryo.
Collapse
Affiliation(s)
- Gang-Ho Yoon
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Kyuhee Kim
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Dong-Seok Park
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Sun-Cheol Choi
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea
| |
Collapse
|
63
|
AIMP2-DX2 provides therapeutic interface to control KRAS-driven tumorigenesis. Nat Commun 2022; 13:2572. [PMID: 35546148 PMCID: PMC9095880 DOI: 10.1038/s41467-022-30149-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 04/14/2022] [Indexed: 12/11/2022] Open
Abstract
Recent development of the chemical inhibitors specific to oncogenic KRAS (Kirsten Rat Sarcoma 2 Viral Oncogene Homolog) mutants revives much interest to control KRAS-driven cancers. Here, we report that AIMP2-DX2, a variant of the tumor suppressor AIMP2 (aminoacyl-tRNA synthetase-interacting multi-functional protein 2), acts as a cancer-specific regulator of KRAS stability, augmenting KRAS-driven tumorigenesis. AIMP2-DX2 specifically binds to the hypervariable region and G-domain of KRAS in the cytosol prior to farnesylation. Then, AIMP2-DX2 competitively blocks the access of Smurf2 (SMAD Ubiquitination Regulatory Factor 2) to KRAS, thus preventing ubiquitin-mediated degradation. Moreover, AIMP2-DX2 levels are positively correlated with KRAS levels in colon and lung cancer cell lines and tissues. We also identified a small molecule that specifically bound to the KRAS-binding region of AIMP2-DX2 and inhibited the interaction between these two factors. Treatment with this compound reduces the cellular levels of KRAS, leading to the suppression of KRAS-dependent cancer cell growth in vitro and in vivo. These results suggest the interface of AIMP2-DX2 and KRAS as a route to control KRAS-driven cancers. Direct targeting of oncogenic KRAS activity is a challenge. Here the authors report that a splice variant of AIMP2, AIMP2-DX2, enhances KRAS stability by blocking ubiquitin-mediated degradation of KRAS via the E3 ligase, Smurf2, and identify a chemical that can hinder AIMP2-DX2 from interacting with KRAS.
Collapse
|
64
|
Lu T, Smit RB, Soueid H, Mains PE. STRIPAK regulation of katanin microtubule severing in the Caenorhabditis elegans embryo. Genetics 2022; 221:iyac043. [PMID: 35298637 PMCID: PMC9071564 DOI: 10.1093/genetics/iyac043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/15/2022] [Indexed: 11/14/2022] Open
Abstract
Microtubule severing plays important role in cell structure and cell division. The microtubule severing protein katanin, composed of the MEI-1/MEI-2 subunits in Caenorhabditis elegans, is required for oocyte meiotic spindle formation; however, it must be inactivated for mitosis to proceed as continued katanin expression is lethal. Katanin activity is regulated by 2 ubiquitin-based protein degradation pathways. Another ubiquitin ligase, HECD-1, the homolog of human HECTD1/HECT domain E3 ubiquitin protein ligase 1, regulates katanin activity without affecting katanin levels. In other organisms, HECD-1 is a component of the striatin-interacting kinase phosphatase complex, which affects cell proliferation and a variety of signaling pathways. Here we conducted a systematic screen of how mutations in striatin-interacting kinase phosphatase components affect katanin function in C. elegans. Striatin-interacting kinase phosphatase core components (FARL-11, CASH-1, LET-92, and GCK-1) were katanin inhibitors in mitosis and activators in meiosis, much like HECD-1. By contrast, variable components (SLMP-1, OTUB-2) functioned as activators of katanin activity in mitosis, indicating they may function to alter striatin-interacting kinase phosphatase core function. The core component CCM-3 acted as an inhibitor at both divisions, while other components (MOB-4, C49H3.6) showed weak interactions with katanin mutants. Additional experiments indicate that katanin may be involved with the centralspindlin complex and a tubulin chaperone. HECD-1 shows ubiquitous expression in the cytoplasm throughout meiosis and early development. The differing functions of the different subunits could contribute to the diverse functions of the striatin-interacting kinase phosphatase complex in C. elegans and other organisms.
Collapse
Affiliation(s)
- Tammy Lu
- Department of Biochemistry and Molecular Biology, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AL T2N 4N1, Canada
| | - Ryan B Smit
- Department of Biochemistry and Molecular Biology, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AL T2N 4N1, Canada
| | - Hanifa Soueid
- Department of Biochemistry and Molecular Biology, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AL T2N 4N1, Canada
| | - Paul E Mains
- Department of Biochemistry and Molecular Biology, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AL T2N 4N1, Canada
| |
Collapse
|
65
|
Harding EK, Zamponi GW. Central and peripheral contributions of T-type calcium channels in pain. Mol Brain 2022; 15:39. [PMID: 35501819 PMCID: PMC9063214 DOI: 10.1186/s13041-022-00923-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/13/2022] [Indexed: 02/06/2023] Open
Abstract
AbstractChronic pain is a severely debilitating condition that reflects a long-term sensitization of signal transduction in the afferent pain pathway. Among the key players in this pathway are T-type calcium channels, in particular the Cav3.2 isoform. Because of their biophysical characteristics, these channels are ideally suited towards regulating neuronal excitability. Recent evidence suggests that T-type channels contribute to excitability of neurons all along the ascending and descending pain pathways, within primary afferent neurons, spinal dorsal horn neurons, and within pain-processing neurons in the midbrain and cortex. Here we review the contribution of T-type channels to neuronal excitability and function in each of these neuronal populations and how they are dysregulated in chronic pain conditions. Finally, we discuss their molecular pharmacology and the potential role of these channels as therapeutic targets for chronic pain.
Collapse
|
66
|
Daks A, Fedorova O, Parfenyev S, Nevzorov I, Shuvalov O, Barlev NA. The Role of E3 Ligase Pirh2 in Disease. Cells 2022; 11:1515. [PMID: 35563824 PMCID: PMC9101203 DOI: 10.3390/cells11091515] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
The p53-dependent ubiquitin ligase Pirh2 regulates a number of proteins involved in different cancer-associated processes. Targeting the p53 family proteins, Chk2, p27Kip1, Twist1 and others, Pirh2 participates in such cellular processes as proliferation, cell cycle regulation, apoptosis and cellular migration. Thus, it is not surprising that Pirh2 takes part in the initiation and progression of different diseases and pathologies including but not limited to cancer. In this review, we aimed to summarize the available data on Pirh2 regulation, its protein targets and its role in various diseases and pathological processes, thus making the Pirh2 protein a promising therapeutic target.
Collapse
Affiliation(s)
- Alexandra Daks
- Institute of Cytology RAS, 194064 St. Petersburg, Russia; (O.F.); (S.P.); (I.N.); (O.S.)
| | | | | | | | | | - Nickolai A. Barlev
- Institute of Cytology RAS, 194064 St. Petersburg, Russia; (O.F.); (S.P.); (I.N.); (O.S.)
| |
Collapse
|
67
|
Lohraseb I, McCarthy P, Secker G, Marchant C, Wu J, Ali N, Kumar S, Daly RJ, Harvey NL, Kawabe H, Kleifeld O, Wiszniak S, Schwarz Q. Global ubiquitinome profiling identifies NEDD4 as a regulator of Profilin 1 and actin remodelling in neural crest cells. Nat Commun 2022; 13:2018. [PMID: 35440627 PMCID: PMC9018756 DOI: 10.1038/s41467-022-29660-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 03/24/2022] [Indexed: 01/02/2023] Open
Abstract
The ubiquitin ligase NEDD4 promotes neural crest cell (NCC) survival and stem-cell like properties to regulate craniofacial and peripheral nervous system development. However, how ubiquitination and NEDD4 control NCC development remains unknown. Here we combine quantitative analysis of the proteome, transcriptome and ubiquitinome to identify key developmental signalling pathways that are regulated by NEDD4. We report 276 NEDD4 targets in NCCs and show that loss of NEDD4 leads to a pronounced global reduction in specific ubiquitin lysine linkages. We further show that NEDD4 contributes to the regulation of the NCC actin cytoskeleton by controlling ubiquitination and turnover of Profilin 1 to modulate filamentous actin polymerization. Taken together, our data provide insights into how NEDD4-mediated ubiquitination coordinates key regulatory processes during NCC development. Here the authors combine multi-omics approaches to uncover a role for ubiquitination and the ubiquitin ligase NEDD4 in targeting the actin binding protein Profilin 1 to regulate actin polymerisation in neural crest cells.
Collapse
Affiliation(s)
- Iman Lohraseb
- Centre for Cancer Biology, University of South Australia and SA Pathology, GPO Box 2471, Adelaide, 5000, Australia
| | - Peter McCarthy
- Centre for Cancer Biology, University of South Australia and SA Pathology, GPO Box 2471, Adelaide, 5000, Australia
| | - Genevieve Secker
- Centre for Cancer Biology, University of South Australia and SA Pathology, GPO Box 2471, Adelaide, 5000, Australia
| | - Ceilidh Marchant
- Centre for Cancer Biology, University of South Australia and SA Pathology, GPO Box 2471, Adelaide, 5000, Australia
| | - Jianmin Wu
- Kinghorn Cancer Centre & Cancer Division, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia.,St Vincent's Clinical School, University of New South Wales, Sydney, NSW, 2010, Australia
| | - Naveid Ali
- Bone Therapeutics Group, Bone Biology Division, Garvan Institute of Medical Research, Sydney, 2010, Australia
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia and SA Pathology, GPO Box 2471, Adelaide, 5000, Australia
| | - Roger J Daly
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Victoria, 3800, Australia
| | - Natasha L Harvey
- Centre for Cancer Biology, University of South Australia and SA Pathology, GPO Box 2471, Adelaide, 5000, Australia
| | - Hiroshi Kawabe
- Department of Molecular Neurobiology, Max Planck Institute for Experimental Medicine, Goettingen, 37075, Germany.,Department of Pharmacology, Gunma University Graduate School of Medicine, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Oded Kleifeld
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa, 3200003, Israel
| | - Sophie Wiszniak
- Centre for Cancer Biology, University of South Australia and SA Pathology, GPO Box 2471, Adelaide, 5000, Australia
| | - Quenten Schwarz
- Centre for Cancer Biology, University of South Australia and SA Pathology, GPO Box 2471, Adelaide, 5000, Australia.
| |
Collapse
|
68
|
Uemoto Y, Katsuta E, Kondo N, Wanifuchi-Endo Y, Fujita T, Asano T, Hisada T, Terada M, Kato A, Okuda K, Sugiura H, Komura M, Kato H, Osaga S, Takahashi S, Toyama T. Low HECTD1 mRNA expression is associated with poor prognosis and may be correlated with increased mitochondrial respiratory function in breast cancer. Am J Cancer Res 2022; 12:1593-1605. [PMID: 35530276 PMCID: PMC9077061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 03/04/2022] [Indexed: 06/14/2023] Open
Abstract
HECT domain E3 ubiquitin ligase 1 (HECTD1) has been reported to be a negative regulator of epithelial-mesenchymal transition and to decrease breast cancer invasion and metastasis. However, the clinical significance and detailed role of HECTD1 in breast cancer remain elusive. We investigated the role of HECTD1 in two large breast cancer cohorts at our institution and The Cancer Genome Atlas using mRNA expression and bioinformatics analysis. We also examined the prognostic significance of HECTD1 mRNA expression by multivariate analysis and HECTD1 protein expression by immunohistochemistry using our cohort. HECTD1 mRNA expression was significantly lower in breast cancer tissues compared with those in adjacent normal tissues (P<0.001). HECTD1 mRNA expression levels also differed among breast cancer subtypes. Decreased HECTD1 mRNA expression was significantly associated with aggressive tumor characteristics, including large tumor size and high histological grade. HECTD1 mRNA expression was inversely associated with mitochondrial cellular respiratory function (oxidative phosphorylation (P<0.001, FDR q-value <0.001) the respiratory chain complex (P<0.001, FDR q-value <0.001) and reactive oxygen species (P<0.001, FDR q-value <0.001), but not with epithelial-mesenchymal transition, in breast cancer tissues. Low expression of HECTD1 mRNA was associated with shorter disease-free survival (log-rank: P=0.013) and overall survival (log-rank: P=0.038) in breast cancer patients. Multivariate analysis also identified low HECTD1 mRNA expression level as an independent risk factor for disease-free (hazard ratio: 1.54, 95% confidence interval: 1.11-2.13, P=0.009) and overall (hazard ratio: 1.50, 95% confidence interval: 1.01-2.24, P=0.046) survival among breast cancer patients. There was no association of HECTD1 protein expression with HECTD1 mRNA expression and prognosis. In conclusion, we identified low expression of HECTD1 mRNA as an independent poor prognostic factor in breast cancer and showed that HECTD1 mRNA expression was inversely correlated with genes involved in mitochondrial cellular respiratory function in breast cancer.
Collapse
Affiliation(s)
- Yasuaki Uemoto
- Department of Breast Surgery, Nagoya City University Graduate School of Medical SciencesNagoya, Aichi, Japan
| | - Eriko Katsuta
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, NY, USA
| | - Naoto Kondo
- Department of Breast Surgery, Nagoya City University Graduate School of Medical SciencesNagoya, Aichi, Japan
| | - Yumi Wanifuchi-Endo
- Department of Breast Surgery, Nagoya City University Graduate School of Medical SciencesNagoya, Aichi, Japan
| | - Takashi Fujita
- Department of Breast Surgery, Nagoya City University Graduate School of Medical SciencesNagoya, Aichi, Japan
| | - Tomoko Asano
- Department of Breast Surgery, Nagoya City University Graduate School of Medical SciencesNagoya, Aichi, Japan
| | - Tomoka Hisada
- Department of Breast Surgery, Nagoya City University Graduate School of Medical SciencesNagoya, Aichi, Japan
| | - Mitsuo Terada
- Department of Breast Surgery, Nagoya City University Graduate School of Medical SciencesNagoya, Aichi, Japan
| | - Akiko Kato
- Department of Breast Surgery, Nagoya City University Graduate School of Medical SciencesNagoya, Aichi, Japan
| | - Katsuhiro Okuda
- Department of Oncology, Immunology and Surgery, Nagoya City University Graduate School of Medical SciencesNagoya, Aichi, Japan
| | - Hiroshi Sugiura
- Department of Education and Research Center for Advanced Medicine, Nagoya City University Graduate School of Medical SciencesNagoya, Aichi, Japan
| | - Masayuki Komura
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical SciencesNagoya, Aichi, Japan
| | - Hiroyuki Kato
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical SciencesNagoya, Aichi, Japan
| | - Satoshi Osaga
- Clinical Research Management Center, Nagoya City University HospitalNagoya, Aichi, Japan
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical SciencesNagoya, Aichi, Japan
| | - Tatsuya Toyama
- Department of Breast Surgery, Nagoya City University Graduate School of Medical SciencesNagoya, Aichi, Japan
| |
Collapse
|
69
|
Wang T, Liu W, Wang C, Ma X, Akhtar MF, Li Y, Li L. MRKNs: Gene, Functions, and Role in Disease and Infection. Front Oncol 2022; 12:862206. [PMID: 35463379 PMCID: PMC9024132 DOI: 10.3389/fonc.2022.862206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/17/2022] [Indexed: 11/26/2022] Open
Abstract
The makorin RING finger protein (MKRN) gene family encodes proteins (makorins) with a characteristic array of zinc-finger motifs present in a wide array from invertebrates to vertebrates. MKRNs (MKRN1, MKRN2, MKRN3, MKRN4) as RING finger E3 ligases that mediate substrate degradation are related with conserved RING finger domains that control multiple cellular components via the ubiquitin-proteasome system (UPS), including p53, p21, FADD, PTEN, p65, Nptx1, GLK, and some viral or bacterial proteins. MKRNs also served as diverse roles in disease, like MKRN1 in transcription regulation, metabolic disorders, and tumors; MKRN2 in testis physiology, neurogenesis, apoptosis, and mutation of MKRN2 regulation signals transduction, inflammatory responses, melanoma, and neuroblastoma; MKRN3 in central precocious puberty (CPP) therapy; and MKRN4 firstly reported as a novel E3 ligase instead of a pseudogene to contribute to systemic lupus erythematosus (SLE). Here, we systematically review advances in the gene’s expression, function, and role of MKRNs orthologs in disease and pathogens infection. Further, MKRNs can be considered targets for the host’s innate intracellular antiviral defenses and disease therapy.
Collapse
Affiliation(s)
- Tongtong Wang
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Wenqiang Liu
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Changfa Wang
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Xuelian Ma
- Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | | | - Yubao Li
- College of Agronomy, Liaocheng University, Liaocheng, China
- *Correspondence: Yubao Li, ; Liangliang Li,
| | - Liangliang Li
- College of Agronomy, Liaocheng University, Liaocheng, China
- *Correspondence: Yubao Li, ; Liangliang Li,
| |
Collapse
|
70
|
Zhuang T, Wang B, Tan X, Wu L, Li X, Li Z, Cai Y, Fan R, Yang X, Zhang C, Xia Y, Niu Z, Liu B, Cao Q, Ding Y, Zhou Z, Huang Q, Yang H. TRIM3 facilitates estrogen signaling and modulates breast cancer cell progression. Cell Commun Signal 2022; 20:45. [PMID: 35392925 PMCID: PMC8991925 DOI: 10.1186/s12964-022-00861-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/06/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Breast cancer is the most common cancer in women worldwide. More than 70% of breast cancers are estrogen receptor (ER) alpha positive. Compared with ER alpha-negative breast cancer, which is more aggressive and has a shorter survival time, ER alpha-positive breast cancer could benefit from endocrine therapy. Selective estrogen receptor modulators, such as tamoxifen, are widely used in endocrine therapy. Approximately half of ER alpha-positive breast cancer patients will eventually develop endocrine resistance, making it a major clinical challenge in therapy. Thus, decoding the throughput of estrogen signaling, including the control of ER alpha expression and stability, is critical for the improvement of breast cancer therapeutics. METHODS TRIM3 and ER alpha protein expression levels were measured by western blotting, while the mRNA levels of ER alpha target genes were measured by RT-PCR. A CCK-8 assay was used to measure cell viability. RNA sequencing data were analyzed by Ingenuity Pathway Analysis. Identification of ER alpha signaling activity was accomplished with luciferase assays, RT-PCR and western blotting. Protein stability assays and ubiquitin assays were used to detect ER alpha protein degradation. Ubiquitin-based immunoprecipitation assays were used to detect the specific ubiquitination modification on the ER alpha protein. RESULTS In our current study, we found that TRIM3, an E3 ligase, can promote ER alpha signaling activity and breast cancer progression. TRIM3 depletion inhibits breast cancer cell proliferation and migration, while unbiased RNA sequencing data indicated that TRIM3 is required for the activity of estrogen signaling on the -genome-wide scale. The immunoprecipitation assays indicated that TRIM3 associates with ER alpha and promotes its stability, possibly by inducing K63-linked polyubiquitination of ER alpha. In conclusion, our data implicate a nongenomic mechanism by which TRIM3 stabilizes the ER alpha protein to control ER alpha target gene expression linked to breast cancer progression. CONCLUSION Our study provides a novel posttranslational mechanism in estrogen signaling. Modulation of TRIM3 expression or function could be an interesting approach for breast cancer treatment. Video abstract.
Collapse
Affiliation(s)
- Ting Zhuang
- Xinxiang Key Laboratory of Tumor Migration, Invasion and Precision Medicine, Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan Province, People's Republic of China
| | - Beibei Wang
- Xinxiang Key Laboratory of Tumor Migration, Invasion and Precision Medicine, Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan Province, People's Republic of China
| | - Xiaojing Tan
- Department of Oncology, Dong Ying People' S Hospital, Dongying, Shandong Province, People's Republic of China
| | - Le Wu
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Xin Li
- Xinxiang Key Laboratory of Tumor Migration, Invasion and Precision Medicine, Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan Province, People's Republic of China
| | - Zhongbo Li
- Xinxiang Key Laboratory of Tumor Migration, Invasion and Precision Medicine, Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan Province, People's Republic of China
| | - Yuqing Cai
- Xinxiang Key Laboratory of Tumor Migration, Invasion and Precision Medicine, Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan Province, People's Republic of China
| | - Rongrong Fan
- Department of Bioscience and Nutrition, Karolinska Institute, 14157, Huddinge, Sweden
| | - Xiao Yang
- Xinxiang Key Laboratory of Tumor Migration, Invasion and Precision Medicine, Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan Province, People's Republic of China
| | - Chenmiao Zhang
- Xinxiang Key Laboratory of Tumor Migration, Invasion and Precision Medicine, Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan Province, People's Republic of China
| | - Yan Xia
- Xinxiang Key Laboratory of Tumor Migration, Invasion and Precision Medicine, Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan Province, People's Republic of China
| | - Zhiguo Niu
- Xinxiang Key Laboratory of Tumor Migration, Invasion and Precision Medicine, Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan Province, People's Republic of China
| | - Bingtian Liu
- Department of General Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong Province, People's Republic of China
| | - Qi Cao
- Xinxiang Key Laboratory of Tumor Migration, Invasion and Precision Medicine, Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan Province, People's Republic of China
| | - Yinlu Ding
- Department of General Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong Province, People's Republic of China.
| | - Zhipeng Zhou
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China.
| | - Qingsong Huang
- Xinxiang Key Laboratory of Tumor Migration, Invasion and Precision Medicine, Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan Province, People's Republic of China.
| | - Huijie Yang
- Xinxiang Key Laboratory of Tumor Migration, Invasion and Precision Medicine, Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan Province, People's Republic of China.
| |
Collapse
|
71
|
Ng CS, Banik SM. Recent advances in induced proximity modalities. Curr Opin Chem Biol 2022; 67:102107. [DOI: 10.1016/j.cbpa.2021.102107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/24/2021] [Accepted: 12/07/2021] [Indexed: 12/18/2022]
|
72
|
Frey Y, Franz-Wachtel M, Macek B, Olayioye MA. Proteasomal turnover of the RhoGAP tumor suppressor DLC1 is regulated by HECTD1 and USP7. Sci Rep 2022; 12:5036. [PMID: 35322810 PMCID: PMC8943137 DOI: 10.1038/s41598-022-08844-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 03/09/2022] [Indexed: 11/16/2022] Open
Abstract
The Rho GTPase activating protein Deleted in Liver Cancer 1 (DLC1) is frequently downregulated through genetic and epigenetic mechanisms in various malignancies, leading to aberrant Rho GTPase signaling and thus facilitating cancer progression. Here we show that in breast cancer cells, dysregulation of DLC1 expression occurs at the protein level through rapid degradation via the ubiquitin–proteasome system. Using mass spectrometry, we identify two novel DLC1 interaction partners, the ubiquitin-ligase HECTD1 and the deubiquitinating enzyme ubiquitin-specific-processing protease 7 (USP7). While DLC1 protein expression was rapidly downregulated upon pharmacological inhibition of USP7, siRNA-mediated knockdown of HECTD1 increased DLC1 protein levels and impaired its degradation. Immunofluorescence microscopy analyses revealed that the modulation of HECTD1 levels and USP7 activity altered DLC1 abundance at focal adhesions, its primary site of action. Thus, we propose opposing regulatory mechanisms of DLC1 protein homeostasis by USP7 and HECTD1, which could open up strategies to counteract downregulation and restore DLC1 expression in cancer.
Collapse
Affiliation(s)
- Yannick Frey
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Mirita Franz-Wachtel
- Proteome Center Tübingen, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Boris Macek
- Proteome Center Tübingen, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Monilola A Olayioye
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany. .,Stuttgart Research Center Systems Biology (SRCSB), University of Stuttgart, 70569, Stuttgart, Germany.
| |
Collapse
|
73
|
Cammann C, Israel N, Slevogt H, Seifert U. Recycling and Reshaping-E3 Ligases and DUBs in the Initiation of T Cell Receptor-Mediated Signaling and Response. Int J Mol Sci 2022; 23:ijms23073424. [PMID: 35408787 PMCID: PMC8998186 DOI: 10.3390/ijms23073424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/11/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023] Open
Abstract
T cell activation plays a central role in supporting and shaping the immune response. The induction of a functional adaptive immune response requires the control of signaling processes downstream of the T cell receptor (TCR). In this regard, protein phosphorylation and dephosphorylation have been extensively studied. In the past decades, further checkpoints of activation have been identified. These are E3 ligases catalyzing the transfer of ubiquitin or ubiquitin-like proteins to protein substrates, as well as specific peptidases to counteract this reaction, such as deubiquitinating enzymes (DUBs). These posttranslational modifications can critically influence protein interactions by targeting proteins for degradation by proteasomes or mediating the complex formation required for active TCR signaling. Thus, the basic aspects of T cell development and differentiation are controlled by defining, e.g., the threshold of activation in positive and negative selection in the thymus. Furthermore, an emerging role of ubiquitination in peripheral T cell tolerance has been described. Changes in the function and abundance of certain E3 ligases or DUBs involved in T cell homeostasis are associated with the development of autoimmune diseases. This review summarizes the current knowledge of E3 enzymes and their target proteins regulating T cell signaling processes and discusses new approaches for therapeutic intervention.
Collapse
Affiliation(s)
- Clemens Cammann
- Friedrich Loeffler-Institute of Medical Microbiology-Virology, University Medicine Greifswald, 17475 Greifswald, Germany;
- Correspondence: (C.C.); (U.S.); Tel.: +49-3834-86-5568 (C.C.); +49-3834-86-5587 (U.S.)
| | - Nicole Israel
- Friedrich Loeffler-Institute of Medical Microbiology-Virology, University Medicine Greifswald, 17475 Greifswald, Germany;
| | - Hortense Slevogt
- Host Septomics Group, Centre for Innovation Competence (ZIK) Septomics, University Hospital Jena, 07745 Jena, Germany;
- Department of Pulmonary Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Ulrike Seifert
- Friedrich Loeffler-Institute of Medical Microbiology-Virology, University Medicine Greifswald, 17475 Greifswald, Germany;
- Correspondence: (C.C.); (U.S.); Tel.: +49-3834-86-5568 (C.C.); +49-3834-86-5587 (U.S.)
| |
Collapse
|
74
|
Nakagawa T, Morohoshi A, Nagasawa Y, Nakagawa M, Hosogane M, Noda Y, Hosoi T, Nakayama K. SPT16 ubiquitylation by DCAF14-CRL4 regulates FACT binding to histones. Cell Rep 2022; 38:110541. [PMID: 35320725 DOI: 10.1016/j.celrep.2022.110541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/23/2021] [Accepted: 02/28/2022] [Indexed: 12/27/2022] Open
Abstract
The histone chaperone complex FACT comprises SPT16 and SSRP1 and contributes to DNA replication, transcription, and repair, but how it plays such various roles is unclear. Here, we show that human SPT16 is ubiquitylated at lysine-674 (K674) by the DCAF14-CRL4 ubiquitin ligase. K674 is located in the middle domain of SPT16, and the corresponding residue of the yeast ortholog is critical for binding to histone H3.1-H4. We show that the middle domain of human SPT16 binds to histone H3.1-H4 and that this binding is inhibited by K674 ubiquitylation. Cells with heterozygous knockin of a K674R mutant of SPT16 manifest reduction of both SPT16 ubiquitylation and H3.1 in chromatin, a reduced population in mid S phase, impaired proliferation, and increased susceptibility to S phase stress. Our data thus indicate that SPT16 ubiquitylation by DCAF14-CRL4 regulates FACT binding to histones and may thereby control DNA replication-coupled histone incorporation into chromatin.
Collapse
Affiliation(s)
- Tadashi Nakagawa
- Division of Cell Proliferation, ART, Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8575, Japan; Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda, Yamaguchi 756-0884, Japan
| | - Akane Morohoshi
- Division of Cell Proliferation, ART, Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8575, Japan
| | - Yuko Nagasawa
- Division of Cell Proliferation, ART, Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8575, Japan
| | - Makiko Nakagawa
- Division of Cell Proliferation, ART, Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8575, Japan
| | - Masaki Hosogane
- Division of Cell Proliferation, ART, Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8575, Japan
| | - Yasuhiro Noda
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda, Yamaguchi 756-0884, Japan
| | - Toru Hosoi
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda, Yamaguchi 756-0884, Japan
| | - Keiko Nakayama
- Division of Cell Proliferation, ART, Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8575, Japan.
| |
Collapse
|
75
|
Insights in Post-Translational Modifications: Ubiquitin and SUMO. Int J Mol Sci 2022; 23:ijms23063281. [PMID: 35328702 PMCID: PMC8952880 DOI: 10.3390/ijms23063281] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 12/23/2022] Open
Abstract
Both ubiquitination and SUMOylation are dynamic post-translational modifications that regulate thousands of target proteins to control virtually every cellular process. Unfortunately, the detailed mechanisms of how all these cellular processes are regulated by both modifications remain unclear. Target proteins can be modified by one or several moieties, giving rise to polymers of different morphology. The conjugation cascades of both modifications comprise a few activating and conjugating enzymes but close to thousands of ligating enzymes (E3s) in the case of ubiquitination. As a result, these E3s give substrate specificity and can form polymers on a target protein. Polymers can be quickly modified forming branches or cleaving chains leading the target protein to its cellular fate. The recent development of mass spectrometry(MS) -based approaches has increased the understanding of ubiquitination and SUMOylation by finding essential modified targets in particular signaling pathways. Here, we perform a concise overview comprising from the basic mechanisms of both ubiquitination and SUMOylation to recent MS-based approaches aimed to find specific targets for particular E3 enzymes.
Collapse
|
76
|
The Role of NEDD4 E3 Ubiquitin–Protein Ligases in Parkinson’s Disease. Genes (Basel) 2022; 13:genes13030513. [PMID: 35328067 PMCID: PMC8950476 DOI: 10.3390/genes13030513] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/03/2022] [Indexed: 01/25/2023] Open
Abstract
Parkinson’s disease (PD) is a debilitating neurodegenerative disease that causes a great clinical burden. However, its exact molecular pathologies are not fully understood. Whilst there are a number of avenues for research into slowing, halting, or reversing PD, one central idea is to enhance the clearance of the proposed aetiological protein, oligomeric α-synuclein. Oligomeric α-synuclein is the main constituent protein in Lewy bodies and neurites and is considered neurotoxic. Multiple E3 ubiquitin-protein ligases, including the NEDD4 (neural precursor cell expressed developmentally downregulated protein 4) family, parkin, SIAH (mammalian homologues of Drosophila seven in absentia), CHIP (carboxy-terminus of Hsc70 interacting protein), and SCFFXBL5 SCF ubiquitin ligase assembled by the S-phase kinase-associated protein (SKP1), cullin-1 (Cul1), a zinc-binding RING finger protein, and the F-box domain/Leucine-rich repeat protein 5-containing protein FBXL5), have been shown to be able to ubiquitinate α-synuclein, influencing its subsequent degradation via the proteasome or lysosome. Here, we explore the link between NEDD4 ligases and PD, which is not only via α-synuclein but further strengthened by several additional substrates and interaction partners. Some members of the NEDD4 family of ligases are thought to crosstalk even with PD-related genes and proteins found to be mutated in familial forms of PD. Mutations in NEDD4 family genes have not been observed in PD patients, most likely because of their essential survival function during development. Following further in vivo studies, it has been thought that NEDD4 ligases may be viable therapeutic targets in PD. NEDD4 family members could clear toxic proteins, enhancing cell survival and slowing disease progression, or might diminish beneficial proteins, reducing cell survival and accelerating disease progression. Here, we review studies to date on the expression and function of NEDD4 ubiquitin ligases in the brain and their possible impact on PD pathology.
Collapse
|
77
|
Rothweiler EM, Brennan PE, Huber KVM. Covalent fragment-based ligand screening approaches for identification of novel ubiquitin proteasome system modulators. Biol Chem 2022; 403:391-402. [PMID: 35191283 DOI: 10.1515/hsz-2021-0396] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/07/2022] [Indexed: 12/19/2022]
Abstract
Ubiquitination is a key regulatory mechanism vital for maintenance of cellular homeostasis. Protein degradation is induced by E3 ligases via attachment of ubiquitin chains to substrates. Pharmacological exploitation of this phenomenon via targeted protein degradation (TPD) can be achieved with molecular glues or bifunctional molecules facilitating the formation of ternary complexes between an E3 ligase and a given protein of interest (POI), resulting in ubiquitination of the substrate and subsequent proteolysis by the proteasome. Recently, the development of novel covalent fragment screening approaches has enabled the identification of first-in-class ligands for E3 ligases and deubiquitinases revealing so far unexplored binding sites which highlights the potential of these methods to uncover and expand druggable space for new target classes.
Collapse
Affiliation(s)
- Elisabeth M Rothweiler
- Nuffield Department of Medicine, Centre for Medicines Discovery, Oxford OX3 7FZ, UK.,Nuffield Department of Medicine, Target Discovery Institute, Oxford OX3 7FZ, UK
| | - Paul E Brennan
- Nuffield Department of Medicine, Centre for Medicines Discovery, Oxford OX3 7FZ, UK.,Nuffield Department of Medicine, Target Discovery Institute, Oxford OX3 7FZ, UK.,Nuffield Department of Medicine, Alzheimer's Research UK Oxford Drug Discovery Institute, Oxford OX3 7FZ, UK
| | - Kilian V M Huber
- Nuffield Department of Medicine, Centre for Medicines Discovery, Oxford OX3 7FZ, UK.,Nuffield Department of Medicine, Target Discovery Institute, Oxford OX3 7FZ, UK
| |
Collapse
|
78
|
Inhibition of USP7 suppresses advanced glycation end-induced cell cycle arrest and senescence of human umbilical vein endothelial cells through ubiquitination of p53. Acta Biochim Biophys Sin (Shanghai) 2022; 54:311-320. [PMID: 35538032 PMCID: PMC9828104 DOI: 10.3724/abbs.2022003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Diabetes mellitus is a n arising public health concern, and diabetic foot is one of the most common complications of diabetes. Current management for diabetic foot cannot reach optimal remission. In this study, we aim to explore the mechanism underlying the pathogenesis of diabetic foot and provide novel strategies for the treatment of diabetic foot. A total of 10 normal skin tissues and 20 diabetic foot ulcer specimens are collected. Cell proliferation is determined by CCK-8 assay. Cell cycle is determined by flow cytometry, and cell senescence is evaluated by β-galactosidase staining. Co-immunoprecipitation assay is used to explore the interaction between USP7 and p53. Advanced glycation end products (AGEs) are used to establish diabetic cell model, and streptozotocin (STZ) is used to establish diabetic rat model. Our results showed that USP7 expression is increased in diabetic foot ulcer and in human umbilical vein endothelial cells (HUVECs) after treatment with AGEs. Inhibition of USP7 can reduce cell cycle arrest and cell senescence in HUVECs. Moreover, USP7 can interact with p53 and promote its expression through mediating its deubiquitination. Knockdown of p53 can reverse USP7-mediated cell cycle arrest and cell senescence in HUVECs. In diabetic rats, HBX 41108, the specific inhibitor of USP7, can significantly accelerate wound healing. Our study reveals that the inhibition of USP7 can suppress AGEs-induced cell cycle arrest and cell senescence of HUVECs through promoting p53 ubiquitination. USP7 is a potential target for the treatment of diabetic foot ulcers.
Collapse
|
79
|
Lassak J, Sieber A, Hellwig M. Exceptionally versatile take II: post-translational modifications of lysine and their impact on bacterial physiology. Biol Chem 2022; 403:819-858. [PMID: 35172419 DOI: 10.1515/hsz-2021-0382] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/05/2022] [Indexed: 01/16/2023]
Abstract
Among the 22 proteinogenic amino acids, lysine sticks out due to its unparalleled chemical diversity of post-translational modifications. This results in a wide range of possibilities to influence protein function and hence modulate cellular physiology. Concomitantly, lysine derivatives form a metabolic reservoir that can confer selective advantages to those organisms that can utilize it. In this review, we provide examples of selected lysine modifications and describe their role in bacterial physiology.
Collapse
Affiliation(s)
- Jürgen Lassak
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Großhaderner Straße 2-4, D-82152 Planegg, Germany
| | - Alina Sieber
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Großhaderner Straße 2-4, D-82152 Planegg, Germany
| | - Michael Hellwig
- Technische Universität Braunschweig - Institute of Food Chemistry, Schleinitzstraße 20, D-38106 Braunschweig, Germany
| |
Collapse
|
80
|
Mirzalieva O, Juncker M, Schwartzenburg J, Desai S. ISG15 and ISGylation in Human Diseases. Cells 2022; 11:cells11030538. [PMID: 35159348 PMCID: PMC8834048 DOI: 10.3390/cells11030538] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 12/04/2022] Open
Abstract
Type I Interferons (IFNs) induce the expression of >500 genes, which are collectively called ISGs (IFN-stimulated genes). One of the earliest ISGs induced by IFNs is ISG15 (Interferon-Stimulated Gene 15). Free ISG15 protein synthesized from the ISG15 gene is post-translationally conjugated to cellular proteins and is also secreted by cells into the extracellular milieu. ISG15 comprises two ubiquitin-like domains (UBL1 and UBL2), each of which bears a striking similarity to ubiquitin, accounting for its earlier name ubiquitin cross-reactive protein (UCRP). Like ubiquitin, ISG15 harbors a characteristic β-grasp fold in both UBL domains. UBL2 domain has a conserved C-terminal Gly-Gly motif through which cellular proteins are appended via an enzymatic cascade similar to ubiquitylation called ISGylation. ISG15 protein is minimally expressed under physiological conditions. However, its IFN-dependent expression is aberrantly elevated or compromised in various human diseases, including multiple types of cancer, neurodegenerative disorders (Ataxia Telangiectasia and Amyotrophic Lateral Sclerosis), inflammatory diseases (Mendelian Susceptibility to Mycobacterial Disease (MSMD), bacteriopathy and viropathy), and in the lumbar spinal cords of veterans exposed to Traumatic Brain Injury (TBI). ISG15 and ISGylation have both inhibitory and/or stimulatory roles in the etiology and pathogenesis of human diseases. Thus, ISG15 is considered a “double-edged sword” for human diseases in which its expression is elevated. Because of the roles of ISG15 and ISGylation in cancer cell proliferation, migration, and metastasis, conferring anti-cancer drug sensitivity to tumor cells, and its elevated expression in cancer, neurodegenerative disorders, and veterans exposed to TBI, both ISG15 and ISGylation are now considered diagnostic/prognostic biomarkers and therapeutic targets for these ailments. In the current review, we shall cover the exciting journey of ISG15, spanning three decades from the bench to the bedside.
Collapse
Affiliation(s)
| | | | | | - Shyamal Desai
- Correspondence: ; Tel.: +1-504-568-4388; Fax: +1-504-568-2093
| |
Collapse
|
81
|
From Drosophila to Human: Biological Function of E3 Ligase Godzilla and Its Role in Disease. Cells 2022; 11:cells11030380. [PMID: 35159190 PMCID: PMC8834447 DOI: 10.3390/cells11030380] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/29/2022] Open
Abstract
The ubiquitin–proteasome system is of fundamental importance in all fields of biology due to its impact on proteostasis and in regulating cellular processes. Ubiquitination, a type of protein post-translational modification, involves complex enzymatic machinery, such as E3 ubiquitin ligases. The E3 ligases regulate the covalent attachment of ubiquitin to a target protein and are involved in various cellular mechanisms, including the cell cycle, cell division, endoplasmic reticulum stress, and neurotransmission. Because the E3 ligases regulate so many physiological events, they are also associated with pathologic conditions, such as cancer, neurological disorders, and immune-related diseases. This review focuses specifically on the protease-associated transmembrane-containing the Really Interesting New Gene (RING) subset of E3 ligases. We describe the structure, partners, and physiological functions of the Drosophila Godzilla E3 ligase and its human homologues, RNF13, RNF167, and ZNRF4. Also, we summarize the information that has emerged during the last decade regarding the association of these E3 ligases with pathophysiological conditions, such as cancer, asthma, and rare genetic disorders. We conclude by highlighting the limitations of the current knowledge and pinpointing the unresolved questions relevant to RNF13, RNF167, and ZNRF4 ubiquitin ligases.
Collapse
|
82
|
Zhang B, Zhang M, Yang Y, Li Q, Yu J, Zhu S, Niu Y, Shang Z. Targeting KDM4A-AS1 represses AR/AR-Vs deubiquitination and enhances enzalutamide response in CRPC. Oncogene 2022; 41:387-399. [PMID: 34759344 PMCID: PMC8755543 DOI: 10.1038/s41388-021-02103-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 12/14/2022]
Abstract
Castration-resistant prostate cancer (CRPC) is a highly malignant type of advanced cancer resistant to androgen deprivation therapy. One of the important mechanisms for the development of CRPC is the persistent imbalanced regulation of AR and AR splice variants (AR/AR-Vs). In this study, we reported KDM4A-AS1, a recently discovered lncRNA, as a tumor promoter that was significantly increased in CRPC cell lines and cancer tissues. Depletion of KDM4A-AS1 significantly reduced cell viability, proliferation, migration in vitro, and tumor growth in vivo. We found that by binding to the NTD domain, KDM4A-AS1 enhances the stability of USP14-AR/AR-Vs complex, and promoted AR/AR-Vs deubiquitination to protect it from MDM2-mediated ubiquitin-proteasome degradation. Moreover, KDM4A-AS1 was found to enhance CRPC drug resistance to enzalutamide by repressing AR/AR-Vs degradation; antisense oligonucleotide drugs targeting KDM4A-AS1 significantly reduced the growth of tumors with enzalutamide resistance. Taken together, our results indicated that KDM4A-AS1 played an important role in the progression of CRPC and enzalutamide resistance by regulating AR/AR-Vs deubiquitination; targeting KDM4A-AS1 has broad clinical application potential.
Collapse
Affiliation(s)
- Boya Zhang
- grid.412648.d0000 0004 1798 6160Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin, 300211 China
| | - Mingpeng Zhang
- grid.412648.d0000 0004 1798 6160Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin, 300211 China
| | - Yanjie Yang
- grid.412648.d0000 0004 1798 6160Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin, 300211 China
| | - Qi Li
- grid.412648.d0000 0004 1798 6160Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin, 300211 China
| | - Jianpeng Yu
- grid.412648.d0000 0004 1798 6160Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin, 300211 China
| | - Shimiao Zhu
- grid.412648.d0000 0004 1798 6160Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin, 300211 China
| | - Yuanjie Niu
- grid.412648.d0000 0004 1798 6160Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin, 300211 China
| | - Zhiqun Shang
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin, 300211, China.
| |
Collapse
|
83
|
Chang SC, Zhang BX, Ding JL. E2-E3 ubiquitin enzyme pairing - partnership in provoking or mitigating cancers. Biochim Biophys Acta Rev Cancer 2022; 1877:188679. [DOI: 10.1016/j.bbcan.2022.188679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/31/2021] [Accepted: 01/11/2022] [Indexed: 02/08/2023]
|
84
|
Zhou J, Hu Y, Li J, Yu Z, Guo Q. Genome-Wide Identification and Expression Analysis of the Plant U-Box Protein Gene Family in Phyllostachys edulis. Front Genet 2021; 12:710113. [PMID: 34917124 PMCID: PMC8669748 DOI: 10.3389/fgene.2021.710113] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 11/15/2021] [Indexed: 01/26/2023] Open
Abstract
The U-box gene encodes a ubiquitin ligase that contains a U-box domain. The plant U-box (PUB) protein plays an important role in the plant stress response; however, very few studies have investigated the role of these proteins in Moso bamboo (Phyllostachys edulis). Thus, more research on PUB proteins is necessary to understand the mechanisms of stress tolerance in P. edulis. In this study, we identified 121 members of the PUB family in P. edulis (PePUB), using bioinformatics based on the P. edulis V2 genome build. The U-box genes of P. edulis showed an uneven distribution among the chromosomes. Phylogenetic analysis of the U-box genes between P. edulis and Arabidopsis thaliana suggested that these genes can be classified into eight subgroups (Groups I–VIII) based on their structural and phylogenetic features. All U-box genes and the structure of their encoded proteins were identified in P. edulis. We further investigated the expression pattern of PePUB genes in different tissues, including the leaves, panicles, rhizomes, roots, and shoots. The qRT-PCR results showed that expression of three genes, PePUB15, PePUB92, and PePUB120, was upregulated at low temperatures compared to that at 25°C. The expression levels of two PePUBs, PePUB60 and PePUB120, were upregulated under drought stress. These results suggest that the PePUB genes play an important role in resistance to low temperatures and drought in P. edulis. This research provides new insight into the function, diversity, and characterization of PUB genes in P. edulis and provides a basis for understanding their biological roles and molecular mechanisms.
Collapse
Affiliation(s)
- Jie Zhou
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yaping Hu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Jiajia Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Zhaoyan Yu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Qirong Guo
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China.,International Center of Bamboo and Rattan, Beijing, China
| |
Collapse
|
85
|
Sahay O, Barik GK, Sharma T, Pillai AD, Rapole S, Santra MK. Damsel in distress calling on her knights: Illuminating the pioneering role of E3 ubiquitin ligases in guarding the genome integrity. DNA Repair (Amst) 2021; 109:103261. [PMID: 34920250 DOI: 10.1016/j.dnarep.2021.103261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 11/03/2022]
Abstract
The maintenance of genomic integrity is of utmost importance for the organisms to survive and to accurately inherit traits to their progenies. Any kind of DNA damage either due to defect in DNA duplication and/ or uncontrolled cell division or intracellular insults or environment radiation can result in gene mutation, chromosomal aberration and ultimately genomic instability, which may cause several diseases including cancers. Therefore, cells have evolved machineries for the surveillance of genomic integrity. Enormous exciting studies in the past indicate that ubiquitination (a posttranslational modification of proteins) plays a crucial role in maintaining the genomic integrity by diverse ways. In fact, various E3 ubiquitin ligases catalyse ubiquitination of key proteins to control their central role during cell cycle, DNA damage response (DDR) and DNA repair. Some E3 ligases promote genomic instability while others prevent it, deregulation of both of which leads to several malignancies. In this review, we consolidate the recent findings wherein the role of ubiquitination in conferring genome integrity is highlighted. We also discuss the latest discoveries on the mechanisms utilized by various E3 ligases to preserve genomic stability, with a focus on their actions during cell cycle progression and different types of DNA damage response as well as repair pathways.
Collapse
Affiliation(s)
- Osheen Sahay
- National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India; Department of Biotechnology, S.P. Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Ganesh Kumar Barik
- National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India; Department of Biotechnology, S.P. Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Tanisha Sharma
- National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India; Department of Biotechnology, S.P. Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Ajay D Pillai
- National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Srikanth Rapole
- National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Manas Kumar Santra
- National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India.
| |
Collapse
|
86
|
Huntingtin Ubiquitination Mechanisms and Novel Possible Therapies to Decrease the Toxic Effects of Mutated Huntingtin. J Pers Med 2021; 11:jpm11121309. [PMID: 34945781 PMCID: PMC8709430 DOI: 10.3390/jpm11121309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/19/2021] [Accepted: 11/21/2021] [Indexed: 12/24/2022] Open
Abstract
Huntington Disease (HD) is a dominant, lethal neurodegenerative disorder caused by the abnormal expansion (>35 copies) of a CAG triplet located in exon 1 of the HTT gene encoding the huntingtin protein (Htt). Mutated Htt (mHtt) easily aggregates, thereby inducing ER stress that in turn leads to neuronal injury and apoptosis. Therefore, both the inhibition of mHtt aggregate formation and the acceleration of mHtt degradation represent attractive strategies to delay HD progression, and even for HD treatment. Here, we describe the mechanism underlying mHtt degradation by the ubiquitin–proteasome system (UPS), which has been shown to play a more important role than the autophagy–lysosomal pathway. In particular, we focus on E3 ligase proteins involved in the UPS and detail their structure–function relationships. In this framework, we discuss the possible exploitation of PROteolysis TArgeting Chimeras (PROTACs) for HD therapy. PROTACs are heterobifunctional small molecules that comprise two different ligands joined by an appropriate linker; one of the ligands is specific for a selected E3 ubiquitin ligase, the other ligand is able to recruit a target protein of interest, in this case mHtt. As a consequence of PROTAC binding, mHtt and the E3 ubiquitin ligase can be brought to a relative position that allows mHtt to be ubiquitinated and, ultimately, allows a reduction in the amount of mHtt in the cell.
Collapse
|
87
|
Ye P, Chi X, Cha JH, Luo S, Yang G, Yan X, Yang WH. Potential of E3 Ubiquitin Ligases in Cancer Immunity: Opportunities and Challenges. Cells 2021; 10:cells10123309. [PMID: 34943817 PMCID: PMC8699390 DOI: 10.3390/cells10123309] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer immunotherapies, including immune checkpoint inhibitors and immune pathway–targeted therapies, are promising clinical strategies for treating cancer. However, drug resistance and adverse reactions remain the main challenges for immunotherapy management. The future direction of immunotherapy is mainly to reduce side effects and improve the treatment response rate by finding new targets and new methods of combination therapy. Ubiquitination plays a crucial role in regulating the degradation of immune checkpoints and the activation of immune-related pathways. Some drugs that target E3 ubiquitin ligases have exhibited beneficial effects in preclinical and clinical antitumor treatments. In this review, we discuss mechanisms through which E3 ligases regulate tumor immune checkpoints and immune-related pathways as well as the opportunities and challenges for integrating E3 ligases targeting drugs into cancer immunotherapy.
Collapse
Affiliation(s)
- Peng Ye
- Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes and Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou 910095, China; (P.Y.); (X.C.); (S.L.); (G.Y.)
| | - Xiaoxia Chi
- Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes and Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou 910095, China; (P.Y.); (X.C.); (S.L.); (G.Y.)
| | - Jong-Ho Cha
- Department of Biomedical Science and Engineering, Graduate School, Inha University, Incheon 22212, Korea;
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon 22212, Korea
| | - Shahang Luo
- Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes and Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou 910095, China; (P.Y.); (X.C.); (S.L.); (G.Y.)
| | - Guanghui Yang
- Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes and Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou 910095, China; (P.Y.); (X.C.); (S.L.); (G.Y.)
| | - Xiuwen Yan
- Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes and Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou 910095, China; (P.Y.); (X.C.); (S.L.); (G.Y.)
- Correspondence: (X.Y.); (W.-H.Y.)
| | - Wen-Hao Yang
- Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes and Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou 910095, China; (P.Y.); (X.C.); (S.L.); (G.Y.)
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
- Correspondence: (X.Y.); (W.-H.Y.)
| |
Collapse
|
88
|
How Influenza A Virus NS1 Deals with the Ubiquitin System to Evade Innate Immunity. Viruses 2021; 13:v13112309. [PMID: 34835115 PMCID: PMC8619935 DOI: 10.3390/v13112309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/14/2021] [Accepted: 11/18/2021] [Indexed: 12/11/2022] Open
Abstract
Ubiquitination is a post-translational modification regulating critical cellular processes such as protein degradation, trafficking and signaling pathways, including activation of the innate immune response. Therefore, viruses, and particularly influenza A virus (IAV), have evolved different mechanisms to counteract this system to perform proper infection. Among IAV proteins, the non-structural protein NS1 is shown to be one of the main virulence factors involved in these viral hijackings. NS1 is notably able to inhibit the host's antiviral response through the perturbation of ubiquitination in different ways, as discussed in this review.
Collapse
|
89
|
Sharma A, Khan H, Singh TG, Grewal AK, Najda A, Kawecka-Radomska M, Kamel M, Altyar AE, Abdel-Daim MM. Pharmacological Modulation of Ubiquitin-Proteasome Pathways in Oncogenic Signaling. Int J Mol Sci 2021; 22:ijms222111971. [PMID: 34769401 PMCID: PMC8584958 DOI: 10.3390/ijms222111971] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/20/2022] Open
Abstract
The ubiquitin-proteasome pathway (UPP) is involved in regulating several biological functions, including cell cycle control, apoptosis, DNA damage response, and apoptosis. It is widely known for its role in degrading abnormal protein substrates and maintaining physiological body functions via ubiquitinating enzymes (E1, E2, E3) and the proteasome. Therefore, aberrant expression in these enzymes results in an altered biological process, including transduction signaling for cell death and survival, resulting in cancer. In this review, an overview of profuse enzymes involved as a pro-oncogenic or progressive growth factor in tumors with their downstream signaling pathways has been discussed. A systematic literature review of PubMed, Medline, Bentham, Scopus, and EMBASE (Elsevier) databases was carried out to understand the nature of the extensive work done on modulation of ubiquitin-proteasome pathways in oncogenic signaling. Various in vitro, in vivo studies demonstrating the involvement of ubiquitin-proteasome systems in varied types of cancers and the downstream signaling pathways involved are also discussed in the current review. Several inhibitors of E1, E2, E3, deubiquitinase enzymes and proteasome have been applied for treating cancer. Some of these drugs have exhibited successful outcomes in in vivo studies on different cancer types, so clinical trials are going on for these inhibitors. This review mainly focuses on certain ubiquitin-proteasome enzymes involved in developing cancers and certain enzymes that can be targeted to treat cancer.
Collapse
Affiliation(s)
- Anmol Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (A.S.); (H.K.); (A.K.G.)
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (A.S.); (H.K.); (A.K.G.)
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (A.S.); (H.K.); (A.K.G.)
- Correspondence: or (T.G.S.); (M.M.A.-D.); Tel.: +91-9815951171 (T.G.S.); +966-580192142 (M.M.A.-D.)
| | - Amarjot Kaur Grewal
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (A.S.); (H.K.); (A.K.G.)
| | - Agnieszka Najda
- Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, 50A Doświadczalna Street, 20-280 Lublin, Poland; (A.N.); (M.K.-R.)
| | - Małgorzata Kawecka-Radomska
- Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, 50A Doświadczalna Street, 20-280 Lublin, Poland; (A.N.); (M.K.-R.)
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
| | - Ahmed E. Altyar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia;
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
- Correspondence: or (T.G.S.); (M.M.A.-D.); Tel.: +91-9815951171 (T.G.S.); +966-580192142 (M.M.A.-D.)
| |
Collapse
|
90
|
Ebstein F, Küry S, Papendorf JJ, Krüger E. Neurodevelopmental Disorders (NDD) Caused by Genomic Alterations of the Ubiquitin-Proteasome System (UPS): the Possible Contribution of Immune Dysregulation to Disease Pathogenesis. Front Mol Neurosci 2021; 14:733012. [PMID: 34566579 PMCID: PMC8455891 DOI: 10.3389/fnmol.2021.733012] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022] Open
Abstract
Over thirty years have passed since the first description of ubiquitin-positive structures in the brain of patients suffering from Alzheimer’s disease. Meanwhile, the intracellular accumulation of ubiquitin-modified insoluble protein aggregates has become an indisputable hallmark of neurodegeneration. However, the role of ubiquitin and a fortiori the ubiquitin-proteasome system (UPS) in the pathogenesis of neurodevelopmental disorders (NDD) is much less described. In this article, we review all reported monogenic forms of NDD caused by lesions in genes coding for any component of the UPS including ubiquitin-activating (E1), -conjugating (E2) enzymes, ubiquitin ligases (E3), ubiquitin hydrolases, and ubiquitin-like modifiers as well as proteasome subunits. Strikingly, our analysis revealed that a vast majority of these proteins have a described function in the negative regulation of the innate immune response. In this work, we hypothesize a possible involvement of autoinflammation in NDD pathogenesis. Herein, we discuss the parallels between immune dysregulation and neurodevelopment with the aim at improving our understanding the biology of NDD and providing knowledge required for the design of novel therapeutic strategies.
Collapse
Affiliation(s)
- Frédéric Ebstein
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Sébastien Küry
- CHU Nantes, Service de Génétique Médicale, Nantes, France.,l'Institut du Thorax, CNRS, INSERM, CHU Nantes, Université de Nantes, Nantes, France
| | - Jonas Johannes Papendorf
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Elke Krüger
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
91
|
Spies LML, Verhoog NJD, Louw A. Acquired Glucocorticoid Resistance Due to Homologous Glucocorticoid Receptor Downregulation: A Modern Look at an Age-Old Problem. Cells 2021; 10:2529. [PMID: 34685511 PMCID: PMC8533966 DOI: 10.3390/cells10102529] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 12/11/2022] Open
Abstract
For over 70 years, the unique anti-inflammatory properties of glucocorticoids (GCs), which mediate their effects via the ligand-activated transcription factor, the glucocorticoid receptor alpha (GRα), have allowed for the use of these steroid hormones in the treatment of various autoimmune and inflammatory-linked diseases. However, aside from the onset of severe side-effects, chronic GC therapy often leads to the ligand-mediated downregulation of the GRα which, in turn, leads to a decrease in GC sensitivity, and effectively, the development of acquired GC resistance. Although the ligand-mediated downregulation of GRα is well documented, the precise factors which influence this process are not well understood and, thus, the development of an acquired GC resistance presents an ever-increasing challenge to the pharmaceutical industry. Recently, however, studies have correlated the dimerization status of the GRα with its ligand-mediated downregulation. Therefore, the current review will be discussing the major role-players in the homologous downregulation of the GRα pool, with a specific focus on previously reported GC-mediated reductions in GRα mRNA and protein levels, the molecular mechanisms through which the GRα functional pool is maintained and the possible impact of receptor conformation on GC-mediated GRα downregulation.
Collapse
Affiliation(s)
| | | | - Ann Louw
- Department of Biochemistry, Stellenbosch University, Van de Byl Street, Stellenbosch 7200, South Africa; (L.-M.L.S.); (N.J.D.V.)
| |
Collapse
|
92
|
Infant T, Deb R, Ghose S, Nagotu S. Post-translational modifications of proteins associated with yeast peroxisome membrane: An essential mode of regulatory mechanism. Genes Cells 2021; 26:843-860. [PMID: 34472666 PMCID: PMC9291962 DOI: 10.1111/gtc.12892] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022]
Abstract
Peroxisomes are single membrane‐bound organelles important for the optimum functioning of eukaryotic cells. Seminal discoveries in the field of peroxisomes are made using yeast as a model. Several proteins required for the biogenesis and function of peroxisomes are identified to date. As with proteins involved in other major cellular pathways, peroxisomal proteins are also subjected to regulatory post‐translational modifications. Identification, characterization and mapping of these modifications to specific amino acid residues on proteins are critical toward understanding their functional significance. Several studies have tried to identify post‐translational modifications of peroxisomal proteins and determine their impact on peroxisome structure and function. In this manuscript, we provide an overview of the various post‐translational modifications that govern the peroxisome dynamics in yeast.
Collapse
Affiliation(s)
- Terence Infant
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Rachayeeta Deb
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Suchetana Ghose
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Shirisha Nagotu
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| |
Collapse
|
93
|
Lian JP, Yang YW, He RR, Yang L, Zhou YF, Lei MQ, Zhang Z, Huang JH, Cheng Y, Liu YW, Zhang YC, Chen YQ. Ubiquitin-dependent Argonauteprotein MEL1 degradation is essential for rice sporogenesis and phasiRNA target regulation. THE PLANT CELL 2021; 33:2685-2700. [PMID: 34003932 PMCID: PMC8408455 DOI: 10.1093/plcell/koab138] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 05/06/2021] [Indexed: 05/25/2023]
Abstract
MEIOSIS ARRESTED AT LEPTOTENE1 (MEL1), a rice (Oryza sativa) Argonaute (AGO) protein, has been reported to function specifically at premeiotic and meiotic stages of germ cell development and is associated with a novel class of germ cell-specific small noncoding RNAs called phased small RNAs (phasiRNAs). MEL1 accumulation is temporally and spatially regulated and is eliminated after meiosis. However, the metabolism and turnover (i.e. the homeostasis) of MEL1 during germ cell development remains unknown. Here, we show that MEL1 is ubiquitinated and subsequently degraded via the proteasome pathway in vivo during late sporogenesis. Abnormal accumulation of MEL1 after meiosis leads to a semi-sterile phenotype. We identified a monocot-specific E3 ligase, XBOS36, a CULLIN RING-box protein, that is responsible for the degradation of MEL1. Ubiquitination at four K residues at the N terminus of MEL1 by XBOS36 induces its degradation. Importantly, inhibition of MEL1 degradation either by XBOS36 knockdown or by MEL1 overexpression prevents the formation of pollen at the microspore stage. Further mechanistic analysis showed that disrupting MEL1 homeostasis in germ cells leads to off-target cleavage of phasiRNA target genes. Our findings thus provide insight into the communication between a monocot-specific E3 ligase and an AGO protein during plant reproductive development.
Collapse
Affiliation(s)
| | | | - Rui-Rui He
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Lu Yang
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Yan-Fei Zhou
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Meng-Qi Lei
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Zhi Zhang
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Jia-Hui Huang
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Yu Cheng
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou 510275, PR China
| | | | | | | |
Collapse
|
94
|
Yang GF, Zhang X, Su YG, Zhao R, Wang YY. The role of the deubiquitinating enzyme DUB3/USP17 in cancer: a narrative review. Cancer Cell Int 2021; 21:455. [PMID: 34454495 PMCID: PMC8400843 DOI: 10.1186/s12935-021-02160-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/18/2021] [Indexed: 11/10/2022] Open
Abstract
The balance between ubiquitination and deubiquitination is critical for the degradation, transport, localization, and activity of proteins. Deubiquitinating enzymes (DUBs) greatly contribute to the balance of ubiquitination and deubiquitination, and they have been widely studied due to their fundamental role in cancer. DUB3/ubiquitin-specific protease 17 (USP17) is a type of DUB that has attracted much attention in cancer research. In this review, we summarize the biological functions and regulatory mechanisms of USP17 in central nervous system, head and neck, thoracic, breast, gastrointestinal, genitourinary, and gynecologic cancers as well as bone and soft tissue sarcomas, and we provide new insights into how USP17 can be used in the management of cancer.
Collapse
Affiliation(s)
- Guang-Fei Yang
- Dept. of Ultrasound, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Xin Zhang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yi-Ge Su
- Graduate School, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Ren Zhao
- Dept. of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China.,Cancer Institute, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yan-Yang Wang
- Dept. of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China. .,Cancer Institute, Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
| |
Collapse
|
95
|
Wilson BAP, Voeller D, Smith EA, Wamiru A, Goncharova EI, Liu G, Lipkowitz S, O’Keefe BR. In Vitro Ubiquitination Platform Identifies Methyl Ellipticiniums as Ubiquitin Ligase Inhibitors. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2021; 26:870-884. [PMID: 33882749 PMCID: PMC9907454 DOI: 10.1177/24725552211000675] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The transfer of the small protein ubiquitin to a target protein is an intricately orchestrated process called ubiquitination that results in modulation of protein function or stability. Proper regulation of ubiquitination is essential, and dysregulation of this process is implicated in several human diseases. An example of a ubiquitination cascade that is a central signaling node in important disease-associated pathways is that of CBLB [a human homolog of a viral oncogene Casitas B-lineage lymphoma (CBL) from the Cas NS-1 murine retrovirus], a RING finger ubiquitin ligase (E3) whose substrates include a number of important cell-signaling kinases. These include kinases important in immune function that act in the T cell receptor and costimulatory pathways, the Tyro/Axl/MerTK (TAM) receptor family in natural killer (NK) cells, as well as growth factor receptor kinases like epidermal growth factor receptor (EGFR). Loss of CBLB has been shown to increase innate and adaptive antitumor immunity. This suggests that small-molecule modulation of CBLB E3 activity could enhance antitumor immunity in patients. To explore the hypothesis that enzymatic inhibition of E3s may result in modulation of disease-related signaling pathways, we established a high-throughput screen of >70,000 chemical entities for inhibition of CBLB activity. Although CBLB was chosen as a proof-of-principle target for inhibitor discovery, we demonstrate that our assay is generalizable to monitoring the activity of other ubiquitin ligases. We further extended our observed in vitro inhibition with additional cell-based models of CBLB activity. From these studies, we demonstrate that a class of natural product-based alkaloids, known as methyl ellipticiniums (MEs), is capable of inhibiting ubiquitin ligases intracellularly.
Collapse
Affiliation(s)
- Brice A. P. Wilson
- Molecular Targets Program, Center for Cancer Research,
National Cancer Institute, Frederick, MD, USA
| | - Donna Voeller
- Women’s Malignancies Branch, Center for Cancer
Research, National Cancer Institute, National Institutes of Health, Bethesda, MD,
USA
| | - Emily A. Smith
- Molecular Targets Program, Center for Cancer Research,
National Cancer Institute, Frederick, MD, USA
- Basic Science Program, Leidos Biomedical Research,
Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Antony Wamiru
- Molecular Targets Program, Center for Cancer Research,
National Cancer Institute, Frederick, MD, USA
- Basic Science Program, Leidos Biomedical Research,
Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Ekaterina I. Goncharova
- Molecular Targets Program, Center for Cancer Research,
National Cancer Institute, Frederick, MD, USA
- Advanced Biomedical Computational Science, Frederick
National Laboratory for Cancer Research, Frederick, MD, USA
| | - Gang Liu
- Department of Pharmacology and Pharmaceutical Sciences,
School of Medicine, Institute of Materia Medica, Chinese Academy of Medical
Sciences, Peking Union Medical College, Tsinghua-Peking Center for Life Sciences,
Tsinghua University, Beijing, China
| | - Stanley Lipkowitz
- Women’s Malignancies Branch, Center for Cancer
Research, National Cancer Institute, National Institutes of Health, Bethesda, MD,
USA
| | - Barry R. O’Keefe
- Molecular Targets Program, Center for Cancer Research,
National Cancer Institute, Frederick, MD, USA
- Natural Products Branch, Developmental Therapeutics
Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute,
Frederick, MD, USA
| |
Collapse
|
96
|
Duan S, Pagano M. Ubiquitin ligases in cancer: Functions and clinical potentials. Cell Chem Biol 2021; 28:918-933. [PMID: 33974914 PMCID: PMC8286310 DOI: 10.1016/j.chembiol.2021.04.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/23/2021] [Accepted: 04/08/2021] [Indexed: 02/07/2023]
Abstract
Ubiquitylation, a highly regulated post-translational modification, controls many cellular pathways that are critical to cell homeostasis. Ubiquitin ligases recruit substrates and promote ubiquitin transfer onto targets, inducing proteasomal degradation or non-degradative signaling. Accumulating evidence highlights the critical role of dysregulated ubiquitin ligases in processes associated with the initiation and progression of cancer. Depending on the substrate specificity and biological context, a ubiquitin ligase can act either as a tumor promoter or as a tumor suppressor. In this review, we focus on the regulatory roles of ubiquitin ligases and how perturbations of their functions contribute to cancer pathogenesis. We also briefly discuss current strategies for targeting or exploiting ubiquitin ligases for cancer therapy.
Collapse
Affiliation(s)
- Shanshan Duan
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA; Howard Hughes Medical Institute, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
97
|
Li K, Zhang TT, Zhao CX, Wang F, Cui B, Yang ZN, Lv XX, Yeerjiang Z, Yuan YF, Yu JM, Wang ZH, Zhang XW, Yu JJ, Liu SS, Shang S, Huang B, Hua F, Hu ZW. Faciogenital Dysplasia 5 supports cancer stem cell traits in basal-like breast cancer by enhancing EGFR stability. Sci Transl Med 2021; 13:13/586/eabb2914. [PMID: 33762435 DOI: 10.1126/scitranslmed.abb2914] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 10/27/2020] [Accepted: 03/05/2021] [Indexed: 12/13/2022]
Abstract
Most basal-like breast cancers (BLBCs) are triple-negative breast cancers (TNBCs), which have the worst prognosis and distant metastasis-free survival among breast cancer subtypes. Now, no targeted therapies are available for patients with BLBC due to the lack of reliable and effective molecular targets. Here, we performed the BLBC tissue microarray-based immunohistochemical analysis and showed that Faciogenital Dysplasia 5 (FGD5) abundance is associated with poor prognosis in BLBCs. FGD5 deletion decreased the proliferation, invasion, and tumorsphere formation capacity of BLBC cells. Furthermore, genetic inhibition of Fgd5 in mouse mammary epithelial cells attenuated BLBC initiation and progression by reducing the self-renewal ability of tumor-initiating cells. In addition, FGD5 abundance was positively correlated with the abundance of epidermal growth factor receptor (EGFR) in BLBCs. FGD5 ablation decreased EGFR abundance by reducing EGFR stability in TNBC cells in 2D and 3D culture conditions. Mechanistically, FGD5 binds to EGFR and interferes with basal EGFR ubiquitination and degradation induced by the E3 ligase ITCH. Impaired EGFR degradation caused BLBC cell proliferation and promoted invasive properties and self-renewal. To verify the role of the FGD5-EGFR interaction in the regulation of EGFR stability, we screened a cell-penetrating α-helical peptide PER3 binding with FGD5 to disrupt the interaction. Treatment of BLBC patient-derived xenograft-bearing mice with the peptide PER3 disrupting the FGD5-EGFR interaction either with or without chemotherapy reduced BLBC progression. Our study identified FGD5 as a positive modulator of tumor-initiating cells and suggests a potential therapeutic option for the BLBC subtype of breast cancer.
Collapse
Affiliation(s)
- Ke Li
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Ting-Ting Zhang
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Chen-Xi Zhao
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Feng Wang
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Bing Cui
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhao-Na Yang
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiao-Xi Lv
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zaiwuli Yeerjiang
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yu-Fen Yuan
- Anyang Tumor Hospital, Henan University of Science and Technology, Anyang 300020, China
| | - Jin-Mei Yu
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhen-He Wang
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiao-Wei Zhang
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jiao-Jiao Yu
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shan-Shan Liu
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shuang Shang
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Bo Huang
- Institute of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Fang Hua
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Zhuo-Wei Hu
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
98
|
Gabrielli NM, Mazzocchi LC, Kryvenko V, Tello K, Herold S, Morty RE, Grimminger F, Dada LA, Seeger W, Sznajder JI, Vadász I. TRAF2 Is a Novel Ubiquitin E3 Ligase for the Na,K-ATPase β-Subunit That Drives Alveolar Epithelial Dysfunction in Hypercapnia. Front Cell Dev Biol 2021; 9:689983. [PMID: 34277634 PMCID: PMC8283768 DOI: 10.3389/fcell.2021.689983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/09/2021] [Indexed: 11/20/2022] Open
Abstract
Several acute and chronic lung diseases are associated with alveolar hypoventilation leading to accumulation of CO2 (hypercapnia). The β-subunit of the Na,K-ATPase plays a pivotal role in maintaining epithelial integrity by functioning as a cell adhesion molecule and regulating cell surface stability of the catalytic α-subunit of the transporter, thereby, maintaining optimal alveolar fluid balance. Here, we identified the E3 ubiquitin ligase for the Na,K-ATPase β-subunit, which promoted polyubiquitination, subsequent endocytosis and proteasomal degradation of the protein upon exposure of alveolar epithelial cells to elevated CO2 levels, thus impairing alveolar integrity. Ubiquitination of the Na,K-ATPase β-subunit required lysine 5 and 7 and mutating these residues (but not other lysines) prevented trafficking of Na,K-ATPase from the plasma membrane and stabilized the protein upon hypercapnia. Furthermore, ubiquitination of the Na,K-ATPase β-subunit was dependent on prior phosphorylation at serine 11 by protein kinase C (PKC)-ζ. Using a protein microarray, we identified the tumor necrosis factor receptor-associated factor 2 (TRAF2) as the E3 ligase driving ubiquitination of the Na,K-ATPase β-subunit upon hypercapnia. Of note, prevention of Na,K-ATPase β-subunit ubiquitination was necessary and sufficient to restore the formation of cell-cell junctions under hypercapnic conditions. These results suggest that a hypercapnic environment in the lung may lead to persistent epithelial dysfunction in affected patients. As such, the identification of the E3 ligase for the Na,K-ATPase may provide a novel therapeutic target, to be employed in patients with acute or chronic hypercapnic respiratory failure, aiming to restore alveolar epithelial integrity.
Collapse
Affiliation(s)
- Nieves M. Gabrielli
- Member of the German Center for Lung Research (DZL), Department of Internal Medicine, Justus Liebig University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
| | - Luciana C. Mazzocchi
- Member of the German Center for Lung Research (DZL), Department of Internal Medicine, Justus Liebig University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
| | - Vitalii Kryvenko
- Member of the German Center for Lung Research (DZL), Department of Internal Medicine, Justus Liebig University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- The Cardio-Pulmonary Institute (CPI), Giessen, Germany
| | - Khodr Tello
- Member of the German Center for Lung Research (DZL), Department of Internal Medicine, Justus Liebig University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- The Cardio-Pulmonary Institute (CPI), Giessen, Germany
| | - Susanne Herold
- Member of the German Center for Lung Research (DZL), Department of Internal Medicine, Justus Liebig University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- The Cardio-Pulmonary Institute (CPI), Giessen, Germany
| | - Rory E. Morty
- Member of the German Center for Lung Research (DZL), Department of Internal Medicine, Justus Liebig University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- The Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Friedrich Grimminger
- Member of the German Center for Lung Research (DZL), Department of Internal Medicine, Justus Liebig University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- The Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Laura A. Dada
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Werner Seeger
- Member of the German Center for Lung Research (DZL), Department of Internal Medicine, Justus Liebig University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- The Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Jacob I. Sznajder
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - István Vadász
- Member of the German Center for Lung Research (DZL), Department of Internal Medicine, Justus Liebig University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- The Cardio-Pulmonary Institute (CPI), Giessen, Germany
| |
Collapse
|
99
|
Zhu L, Wu J, Liu H. Downregulation of HERC5 E3 ligase attenuates the ubiquitination of CtBP1 to inhibit apoptosis in colorectal cancer cells. Carcinogenesis 2021; 42:1119-1130. [PMID: 34147029 DOI: 10.1093/carcin/bgab053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/29/2021] [Accepted: 06/17/2021] [Indexed: 02/05/2023] Open
Abstract
The Homologous to E6AP C-terminus (HECT) domain and RCC1-like domain-containing (HERC) proteins can function as tumour suppressors and as oncogenes, depending on the cancer type. However, the expression patterns of HERCs in colorectal cancer (CRC) cells are unclear. Here, we show that only HERC1 and HERC5 are downregulated in CRC tumours, and we focus our study on revealing HERC5-mediating signalling because the change in downregulation is much more obvious for HERC5 than for HERC1. We demonstrate that HERC5 recruits an adaptor protein, CREB binding protein (CRB), to ubiquitinate C-terminal binding protein 1 (CtBP1) in noncancerous colon cells. The downregulation of HERC5 in CRC cells attenuates the ubiquitination of CtBP1, which then accumulates and assembles into a transcriptional complex with histone deacetylase 1 (HDAC1) and a transcription factor c-MYC. This transcriptional complex binds to the promoters of three proapoptotic genes, Bcl2 associated X (BAX), Bcl2 interacting killer (BIK) and p53upregulated modulator of apoptosis (PUMA), and inhibits their expression, thereby suppressing apoptotic signalling and promoting tumourigenesis. Overexpression of HERC5, downregulation of CtBP1 or blocking of the CtBP1 function with its inhibitors (NSC95397 and 4-methylthio-2-oxobutyric acid [MTOB]) significantly prevents CRC cell proliferation in vitro and tumour growth in vivo. Combining NSC95397 (or MTOB) with chemotherapeutic drugs (oxaliplatin or capecitabine) gives a much stronger inhibition of cell proliferation and tumour growth compared to their single treatments. Collectively, our results reveal that downregulation of HERC5 E3 ligase attenuates the ubiquitination of CtBP1 to inhibit apoptosis. Therefore, CtBP1 may be a promising target in CRC chemotherapy.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Integrated Traditional and Western Medicine, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Jing Wu
- Department of Integrated Traditional and Western Medicine, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Hong Liu
- Department of Integrated Traditional and Western Medicine, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
100
|
Fan C, Su H, Liao Z, Su J, Yang C, Zhang Y, Su J. Teleost-Specific MxG, a Traitor in the Mx Family, Negatively Regulates Antiviral Responses by Targeting IPS-1 for Proteasomal Degradation and STING for Lysosomal Degradation. THE JOURNAL OF IMMUNOLOGY 2021; 207:281-295. [PMID: 34135063 DOI: 10.4049/jimmunol.2000555] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 04/29/2021] [Indexed: 11/19/2022]
Abstract
IFN-β promoter stimulator-1 (IPS-1)- and stimulator of IFN genes (STING)-mediated type I IFNs play a critical role in antiviral responses. Myxovirus resistance (Mx) proteins are pivotal components of the antiviral effectors induced by IFNs in many species. An unprecedented expansion of Mx genes has occurred in fish. However, the functions and mechanisms of Mx family members remain largely unknown in fish. In this study, we found that grass carp (Ctenopharyngodon idella) MxG, a teleost-specific Mx protein, is induced by IFNs and viruses, and it negatively regulates both IPS-1- and STING-mediated antiviral responses to facilitate grass carp reovirus, spring viremia of carp virus, and cyprinid herpesvirus-2 replication. MxG binds and degrades IPS-1 via the proteasomal pathway and STING through the lysosomal pathway, thereby negatively regulating IFN1 antiviral responses and NF-κB proinflammatory cytokines. MxG also suppresses the phosphorylation of STING IFN regulatory factor 3/7, and it subsequently downregulates IFN1 and NF-κB1 at the promoter, transcription, and protein levels. GTPase and GTPase effector domains of MxG contribute to the negative regulatory function. On the contrary, MxG knockdown weakens virus replication and cytopathic effect. Therefore, MxG can be an ISG molecule induced by IFNs and viruses, and degrade IPS-1 and STING proteins in a negative feedback manner to maintain homeostasis and avoid excessive immune responses after virus infection. To our knowledge, this is the first identification of a negative regulator in the Mx family, and our findings clarify a novel mechanism by which the IFN response is regulated.
Collapse
Affiliation(s)
- Chengjian Fan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Hang Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Zhiwei Liao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Juanjuan Su
- Key Laboratory of Marine Drugs (Ministry of Education), Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; and
| | - Chunrong Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yongan Zhang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China; .,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|