51
|
|
52
|
Cardinali G, Kovacs D, Mastrofrancesco A, Cota C, Donati P, Cordiali-Fei P, Francesconi F, Bonifati C. hMena: altered expression in psoriatic skin. Arch Dermatol Res 2013; 305:933-8. [PMID: 23604962 DOI: 10.1007/s00403-013-1358-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 04/03/2013] [Accepted: 04/09/2013] [Indexed: 10/26/2022]
Abstract
Psoriasis is a chronic inflammatory skin disease, characterized by an enhanced proliferation and a deregulated differentiation of keratinocytes. hMena is an actin regulatory protein involved in the control of cell motility and adhesion. hMena results up-modulated in several human tumors with respect to normal tissues and its expression has been positively correlated to proliferation rate, tumor size and aggressiveness in response to mitogenic stimuli, such as epidermal growth factor. The hyperproliferation of keratinocytes observed in psoriasis prompted us to evaluate hMena expression on biopsies collected from involved and uninvolved skin of 12 patients with active plaque-type psoriasis with respect to healthy skin. We analyzed the expression of hMena at transcript and protein levels by quantitative RT-PCR and immunohistochemistry. We correlated the expression of hMena to Ki67 proliferation index and to keratin 10 (K10) and keratin 16 (K16) used as markers of keratinocyte differentiation and activation. We demonstrated the expression of hMena in a hyperproliferative skin condition not related to neoplastic transformation. Interestingly, we observed that hMena is not expressed in healthy skin, but it becomes detectable in non-lesional areas and it is even more expressed in lesional psoriatic skin. In addition, we found that hMena expression is correlated to the rate of keratinocyte proliferation and activation. Hence, our observations indicate hMena as a new possible player, involved in the development and/or maintenance of the hyperproliferative state of psoriatic keratinocytes.
Collapse
Affiliation(s)
- G Cardinali
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatologic Institute (IRCCS), Via Elio Chianesi 53, 00144, Rome, Italy,
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Global H3K4me3 genome mapping reveals alterations of innate immunity signaling and overexpression of JMJD3 in human myelodysplastic syndrome CD34+ cells. Leukemia 2013; 27:2177-86. [PMID: 23538751 DOI: 10.1038/leu.2013.91] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 03/22/2013] [Indexed: 02/03/2023]
Abstract
The molecular bases of myelodysplastic syndromes (MDS) are not fully understood. Trimethylated histone 3 lysine 4 (H3K4me3) is present in promoters of actively transcribed genes and has been shown to be involved in hematopoietic differentiation. We performed a genome-wide H3K4me3 CHIP-Seq (chromatin immunoprecipitation coupled with whole genome sequencing) analysis of primary MDS bone marrow (BM) CD34+ cells. This resulted in the identification of 36 genes marked by distinct higher levels of promoter H3K4me3 in MDS. A majority of these genes are involved in nuclear factor (NF)-κB activation and innate immunity signaling. We then analyzed expression of histone demethylases and observed significant overexpression of the JmjC-domain histone demethylase JMJD3 (KDM6b) in MDS CD34+ cells. Furthermore, we demonstrate that JMJD3 has a positive effect on transcription of multiple CHIP-Seq identified genes involved in NF-κB activation. Inhibition of JMJD3 using shRNA in primary BM MDS CD34+ cells resulted in an increased number of erythroid colonies in samples isolated from patients with lower-risk MDS. Taken together, these data indicate the deregulation of H3K4me3 and associated abnormal activation of innate immunity signals have a role in the pathogenesis of MDS and that targeting these signals may have potential therapeutic value in MDS.
Collapse
|
54
|
Multimolecular signaling complexes enable Syk-mediated signaling of CD36 internalization. Dev Cell 2013; 24:372-83. [PMID: 23395392 DOI: 10.1016/j.devcel.2013.01.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 12/20/2012] [Accepted: 01/10/2013] [Indexed: 12/16/2022]
Abstract
CD36 is a versatile receptor known to play a central role in the development of atherosclerosis, the pathogenesis of malaria, and the removal of apoptotic cells. Remarkably, the short cytosolically exposed regions of CD36 lack identifiable motifs, which has hampered elucidation of its mode of signaling. Using a combination of phosphoprotein isolation, mass spectrometry, superresolution imaging, and gene silencing, we have determined that the receptor induces ligand internalization through a heteromeric complex consisting of CD36, β1 and/or β2 integrins, and the tetraspanins CD9 and/or CD81. This receptor complex serves to link CD36 to the adaptor FcRγ, which bears an immunoreceptor tyrosine activation motif. By coupling to FcRγ, CD36 is able to engage Src-family kinases and Syk, which in turn drives the internalization of CD36 and its bound ligands.
Collapse
|
55
|
Shimamura S, Sasaki K, Tanaka M. The Src substrate SKAP2 regulates actin assembly by interacting with WAVE2 and cortactin proteins. J Biol Chem 2012; 288:1171-83. [PMID: 23161539 DOI: 10.1074/jbc.m112.386722] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In our attempt to screen for substrates of Src family kinases in glioblastoma, Src kinase-associated phosphoprotein 2 (SKAP2) was identified. Although SKAP2 has been suggested to be associated with integrin-mediated adhesion of hematopoietic cells, little is known about its molecular function and the effects in other types of cells and tumors. Here, we demonstrate that SKAP2 physically associates with actin assembly factors WAVE2 and cortactin and inhibits their interaction. Cortactin is required for the membrane localization of WAVE2, and SKAP2 suppresses actin polymerization mediated by WAVE2 and cortactin in vitro. Knockdown of SKAP2 in NIH3T3 accelerated cell migration and enhanced translocation of WAVE2 to the cell membrane, and those effects of SKAP2 depend on the binding activity of SKAP2 to WAVE2. Furthermore, reduction of SKAP2 in the glioblastoma promoted tumor invasion both in ex vivo organotypic rat brain slices and immune-deficient mouse brains. These results suggest that SKAP2 negatively regulates cell migration and tumor invasion in fibroblasts and glioblastoma cells by suppressing actin assembly induced by the WAVE2-cortactin complex, indicating that SKAP2 may be a novel candidate for the suppressor of tumor progression.
Collapse
Affiliation(s)
- Shintaro Shimamura
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, Japan
| | | | | |
Collapse
|
56
|
Alenghat FJ, Baca QJ, Rubin NT, Pao LI, Matozaki T, Lowell CA, Golan DE, Neel BG, Swanson KD. Macrophages require Skap2 and Sirpα for integrin-stimulated cytoskeletal rearrangement. J Cell Sci 2012; 125:5535-45. [PMID: 22976304 DOI: 10.1242/jcs.111260] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Macrophages migrate to sites of insult during normal inflammatory responses. Integrins guide such migration, but the transmission of signals from integrins into the requisite cytoskeletal changes is poorly understood. We have discovered that the hematopoietic adaptor protein Skap2 is necessary for macrophage migration, chemotaxis, global actin reorganization and local actin reorganization upon integrin engagement. Binding of phosphatidylinositol [3,4,5]-triphosphate to the Skap2 pleckstrin-homology (PH) domain, which relieves its conformational auto-inhibition, is critical for this integrin-driven cytoskeletal response. Skap2 enables integrin-induced tyrosyl phosphorylation of Src-family kinases (SFKs), Adap, and Sirpα, establishing their roles as signaling partners in this process. Furthermore, macrophages lacking functional Sirpα unexpectedly have impaired local integrin-induced responses identical to those of Skap2(-/-) macrophages, and Skap2 requires Sirpα for its recruitment to engaged integrins and for coordinating downstream actin rearrangement. By revealing the positive-regulatory role of Sirpα in a Skap2-mediated mechanism connecting integrin engagement with cytoskeletal rearrangement, these data demonstrate that Sirpα is not exclusively immunoinhibitory, and illuminate previously unexplained observations implicating Skap2 and Sirpα in mouse models of inflammatory disease.
Collapse
Affiliation(s)
- Francis J Alenghat
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Dart AE, Donnelly SK, Holden DW, Way M, Caron E. Nck and Cdc42 co-operate to recruit N-WASP to promote FcγR-mediated phagocytosis. J Cell Sci 2012; 125:2825-30. [PMID: 22454526 DOI: 10.1242/jcs.106583] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The adaptor protein Nck has been shown to link receptor ligation to actin-based signalling in a diverse range of cellular events, such as changes in cell morphology and motility. It has also been implicated in phagocytosis. However, its molecular role in controlling actin remodelling associated with phagocytic uptake remains to be clarified. Here, we show that Nck, which is recruited to phagocytic cups, is required for Fcγ receptor (FcγR)- but not complement receptor 3 (CR3)-induced phagocytosis. Nck recruitment in response to FcγR ligation is mediated by the phosphorylation of tyrosine 282 and 298 in the ITAM motif in the cytoplasmic tail of the receptor. In the absence of FcγR phosphorylation, there is also no recruitment of N-WASP or Cdc42 to phagocytic cups. Nck promotes FcγR-mediated phagocytosis by recruiting N-WASP to phagocytic cups. Efficient phagocytosis, however, only occurs, if the CRIB domain of N-WASP can also interact with Cdc42. Our observations demonstrate that Nck and Cdc42 collaborate to stimulate N-WASP-dependent FcγR-mediated phagocytosis.
Collapse
Affiliation(s)
- Anna E Dart
- Centre for Molecular Microbiology and Infection, Imperial College London, London SW7 2AZ, UK
| | | | | | | | | |
Collapse
|
58
|
Nagaraja T, Anand AR, Zhao H, Ganju RK. The adaptor protein SLP-76 regulates HIV-1 release and cell-to-cell transmission in T cells. THE JOURNAL OF IMMUNOLOGY 2012; 188:2769-77. [PMID: 22323535 DOI: 10.4049/jimmunol.1102106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
HIV-1 infection in T cells is regulated by TCR activation. However, the cellular proteins of the TCR pathway that regulate HIV-1 infection are poorly characterized. In this study, in HIV-1 infection, we observed a significant reduction of HIV-1 virus production in Src homology 2 domain-containing leukocyte protein of 76 kDa (SLP-76)-deficient Jurkat T cells compared with wild-type and SLP-76-reconstituted Jurkat T cells. We further confirmed the role of SLP-76 in HIV-1 infection by small interfering RNA-mediated knockdown in MT4 cells and PBMCs. Structural-functional analysis revealed that the N-terminal domain of SLP-76 was important for regulating HIV-1 infection. Further mechanistic studies revealed that lack of SLP-76 impaired virus release, but did not affect viral entry, integration, and transcription. We also showed that SLP-76 plays a critical role in cell-to-cell transmission of HIV-1. Signaling studies revealed that SLP-76 associated with viral negative regulatory factor protein and multiple signaling molecules during HIV-1 infection. Furthermore, SLP-76 facilitated the association of negative regulatory factor and F-actin, suggesting that SLP-76 mediates the formation of a signaling complex that may regulate viral release via cytoskeletal changes. Taken together, our studies demonstrate a novel role for the adaptor molecule SLP-76 in regulating HIV-1 infection in T cells with the potential to develop innovative strategies against HIV-1.
Collapse
Affiliation(s)
- Tirumuru Nagaraja
- Department of Pathology, Ohio State University Medical Center, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
59
|
Egami Y, Fukuda M, Araki N. Rab35 regulates phagosome formation through recruitment of ACAP2 in macrophages during FcγR-mediated phagocytosis. J Cell Sci 2011; 124:3557-67. [PMID: 22045739 DOI: 10.1242/jcs.083881] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Phagosome formation and subsequent maturation are complex sequences of events that involve actin cytoskeleton remodeling and membrane trafficking. Here, we demonstrate that the Ras-related protein Rab35 is involved in the early stage of FcγR-mediated phagocytosis in macrophages. Live-cell image analysis revealed that Rab35 was markedly concentrated at the membrane where IgG-opsonized erythrocytes (IgG-Es) are bound. Rab35 silencing by RNA interference (RNAi) or the expression of GDP- or GTP-locked Rab35 mutant drastically reduced the rate of phagocytosis of IgG-Es. Actin-mediated pseudopod extension to form phagocytic cups was disturbed by the Rab35 silencing or the expression of GDP-Rab35, although initial actin assembly at the IgG-E binding sites was not inhibited. Furthermore, GTP-Rab35-dependent recruitment of ACAP2, an ARF6 GTPase-activating protein, was shown in the phagocytic cup formation. Concomitantly, overexpression of ACAP2 along with GTP-locked Rab35 showed a synergistic inhibitory effect on phagocytosis. It is likely that Rab35 regulates actin-dependent phagosome formation by recruiting ACAP2, which might control actin remodeling and membrane traffic through ARF6.
Collapse
Affiliation(s)
- Youhei Egami
- Department of Histology and Cell Biology, School of Medicine, Kagawa University, Miki, Kagawa 761-0793, Japan
| | | | | |
Collapse
|
60
|
Fauvarque MO, Williams MJ. Drosophila cellular immunity: a story of migration and adhesion. J Cell Sci 2011; 124:1373-82. [PMID: 21502134 DOI: 10.1242/jcs.064592] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Research during the past 15 years has led to significant breakthroughs, providing evidence of a high degree of similarity between insect and mammalian innate immune responses, both humoural and cellular, and highlighting Drosophila melanogaster as a model system for studying the evolution of innate immunity. In a manner similar to cells of the mammalian monocyte and macrophage lineage, Drosophila immunosurveillance cells (haemocytes) have a number of roles. For example, they respond to wound signals, are involved in wound healing and contribute to the coagulation response. Moreover, they participate in the phagocytosis and encapsulation of invading pathogens, are involved in the removal of apoptotic bodies and produce components of the extracellular matrix. There are several reasons for using the Drosophila cellular immune response as a model to understand cell signalling during adhesion and migration in vivo: many genes involved in the regulation of Drosophila haematopoiesis and cellular immunity have been maintained across taxonomic groups ranging from flies to humans, many aspects of Drosophila and mammalian innate immunity seem to be conserved, and Drosophila is a simplified and well-studied genetic model system. In the present Commentary, we will discuss what is known about cellular adhesion and migration in the Drosophila cellular immune response, during both embryonic and larval development, and where possible compare it with related mechanisms in vertebrates.
Collapse
Affiliation(s)
- Marie-Odile Fauvarque
- Institut de Recherches en Technologies et Sciences pour le Vivant, Grenoble, France.
| | | |
Collapse
|
61
|
Azhibekov TA, Wu Z, Padiyar A, Bruggeman LA, Simske JS. TM4SF10 and ADAP interaction in podocytes: role in Fyn activity and nephrin phosphorylation. Am J Physiol Cell Physiol 2011; 301:C1351-9. [PMID: 21881001 DOI: 10.1152/ajpcell.00166.2011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
TM4SF10 [transmembrane tetra(4)-span family 10] is a claudin-like cell junction protein that is transiently expressed during podocyte development where its expression is downregulated in differentiating podocytes coincident with the appearance of nephrin at the slit diaphragm. In a yeast two-hybrid screen, we identified adhesion and degranulation-promoting adaptor protein (ADAP), a well-known Fyn substrate and Fyn binding partner, as a TM4SF10 interacting protein in mouse kidney. Using coimmunoprecipitation and immunohistochemistry experiments in cultured human podocytes, we show that TM4SF10 colocalizes with Fyn and ADAP but does not form a stable complex with Fyn. Cytoskeletal changes and phosphorylation events mediated by Fyn activity were reversed by TM4SF10 overexpression, including a decrease in the activating tyrosine phosphorylation of Fyn (Y(421)), suggesting TM4SF10 may have a regulatory role in suppressing Fyn activity. In addition, TM4SF10 was reexpressed following podocyte injury by puromycin aminonucleoside treatment, and its expression enhanced the abundance of high-molecular-weight forms of nephrin indicating it may participate in a mechanism controlling nephrin's appearance at the plasma membrane. Therefore, these studies have identified ADAP as another Fyn adapter protein expressed in podocytes, and that TM4SF10, possibly through ADAP, may regulate Fyn activity. Since TM4SF10 expression is temporally regulated during kidney development, these studies may help define a mechanism by which the slit diaphragm matures as a highly specialized cell junction during podocyte differentiation.
Collapse
Affiliation(s)
- Timur A Azhibekov
- Rammelkamp Center for Education and Research, Division of Neonatology, Department of Pediatrics, MetroHealth Medical Center, 2500 MetroHealth Dr., Cleveland, OH 44109, USA
| | | | | | | | | |
Collapse
|
62
|
Park H, Ishihara D, Cox D. Regulation of tyrosine phosphorylation in macrophage phagocytosis and chemotaxis. Arch Biochem Biophys 2011; 510:101-11. [PMID: 21356194 PMCID: PMC3114168 DOI: 10.1016/j.abb.2011.02.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 02/15/2011] [Accepted: 02/18/2011] [Indexed: 12/22/2022]
Abstract
Macrophages display a large variety of surface receptors that are critical for their normal cellular functions in host defense, including finding sites of infection (chemotaxis) and removing foreign particles (phagocytosis). However, inappropriate regulation of these processes can lead to human diseases. Many of these receptors utilize tyrosine phosphorylation cascades to initiate and terminate signals leading to cell migration and clearance of infection. Actin remodeling dominates these processes and many regulators have been identified. This review focuses on how tyrosine kinases and phosphatases regulate actin dynamics leading to macrophage chemotaxis and phagocytosis.
Collapse
Affiliation(s)
- Haein Park
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Dan Ishihara
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Dianne Cox
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| |
Collapse
|
63
|
Structural and biochemical characterization of two binding sites for nucleation-promoting factor WASp-VCA on Arp2/3 complex. Proc Natl Acad Sci U S A 2011; 108:E463-71. [PMID: 21676862 DOI: 10.1073/pnas.1100125108] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Actin-related protein (Arp) 2/3 complex mediates the formation of actin filament branches during endocytosis and at the leading edge of motile cells. The pathway of branch formation is ambiguous owing to uncertainty regarding the stoichiometry and location of VCA binding sites on Arp2/3 complex. Isothermal titration calorimetry showed that the CA motif from the C terminus of fission yeast WASP (Wsp1p) bound to fission yeast and bovine Arp2/3 complex with a stoichiometry of 2 to 1 and very different affinities for the two sites (K(d)s of 0.13 and 1.6 μM for fission yeast Arp2/3 complex). Equilibrium binding, kinetic, and cross-linking experiments showed that (i) CA at high-affinity site 1 inhibited Arp2/3 complex binding to actin filaments, (ii) low-affinity site 2 had a higher affinity for CA when Arp2/3 complex was bound to actin filaments, and (iii) Arp2/3 complex had a much higher affinity for free CA than VCA cross-linked to an actin monomer. Crystal structures showed the C terminus of CA bound to the low-affinity site 2 on Arp3 of bovine Arp2/3 complex. The C helix is likely to bind to the barbed end groove of Arp3 in a position for VCA to deliver the first actin subunit to the daughter filament.
Collapse
|
64
|
Involvement of vasodilator-stimulated phosphoprotein in UDP-induced microglial actin aggregation via PKC- and Rho-dependent pathways. Purinergic Signal 2011; 7:403-11. [PMID: 21567128 DOI: 10.1007/s11302-011-9237-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 05/02/2011] [Indexed: 12/22/2022] Open
Abstract
Microglia are major immunocompetent cells in the central nervous system and retain highly dynamic motility. The processes which allow these cells to move, such as chemotaxis and phagocytosis, are considered part of their functions and are closely related to purinergic signaling. Previously, we reported that the activation of the P2Y(6) receptor by UDP stimulation in microglia evoked dynamic cell motility which enhanced their phagocytic capacity, as reported by Koizumi et al. (Nature 446(7139):1091-1095, 2007). These responses require actin cytoskeletal rearrangement, which is seen after UDP stimulation. However, the intracellular signaling pathway has not been defined. In this study, we found that UDP in rat primary microglia rapidly induced the transient phosphorylation at Ser157 of vasodilator-stimulated phosphoprotein (VASP). VASP, one of actin binding protein, accumulated at the plasma membrane where filamentous (F)-actin aggregated in a time-dependent manner. The phosphorylation of VASP was suppressed by inhibition of PKC. UDP-induced local actin aggregations were also abrogated by PKC inhibitors. The Rho inhibitor CT04 and the expression of p115-RGS, which suppresses G(12/13) signaling, attenuated UDP-induced phosphorylation of VASP and actin aggregation. These results indicate that PKC- and Rho-dependent phosphorylation of VASP is involved in UDP-induced actin aggregation of microglia.
Collapse
|
65
|
Wong ARC, Pearson JS, Bright MD, Munera D, Robinson KS, Lee SF, Frankel G, Hartland EL. Enteropathogenic and enterohaemorrhagic Escherichia coli: even more subversive elements. Mol Microbiol 2011; 80:1420-38. [PMID: 21488979 DOI: 10.1111/j.1365-2958.2011.07661.x] [Citation(s) in RCA: 256] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Alexander R C Wong
- Centre for Molecular Microbiology and Infection, Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, UK
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Burbach BJ, Srivastava R, Ingram MA, Mitchell JS, Shimizu Y. The pleckstrin homology domain in the SKAP55 adapter protein defines the ability of the adapter protein ADAP to regulate integrin function and NF-kappaB activation. THE JOURNAL OF IMMUNOLOGY 2011; 186:6227-37. [PMID: 21525391 DOI: 10.4049/jimmunol.1002950] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Adhesion and degranulation promoting adapter protein (ADAP) is a multifunctional hematopoietic adapter protein that regulates TCR-dependent increases in both integrin function and activation of the NF-κB transcription factor. Activation of integrin function requires both ADAP and the ADAP-associated adapter Src kinase-associated phosphoprotein of 55 kDa (SKAP55). In contrast, ADAP-mediated regulation of NF-κB involves distinct binding sites in ADAP that promote the inducible association of ADAP, but not SKAP55, with the CARMA1 adapter and the TAK1 kinase. This suggests that the presence or absence of associated SKAP55 defines functionally distinct pools of ADAP. To test this hypothesis, we developed a novel SKAP-ADAP chimeric fusion protein and demonstrated that physical association of ADAP with SKAP55 is both sufficient and necessary for the rescue of integrin function in ADAP-deficient T cells. Similar to wild-type ADAP, the SKAP-ADAP chimera associated with the LFA-1 integrin after TCR stimulation. Although the SKAP-ADAP chimera contains the CARMA1 and TAK1 binding sequences from ADAP, expression of the chimera does not restore NF-κB signaling in ADAP(-/-) T cells. A single point mutation in the pleckstrin homology domain of SKAP55 (R131M) blocks the ability of the SKAP-ADAP chimera to restore integrin function and to associate with LFA-1. However, the R131M mutant was now able to restore NF-κB signaling in ADAP-deficient T cells. We conclude that integrin regulation by ADAP involves the recruitment of ADAP to LFA-1 integrin complexes by the pleckstrin homology domain of SKAP55, and this recruitment restricts the ability of ADAP to interact with the NF-κB signalosome and regulate NF-κB activation.
Collapse
Affiliation(s)
- Brandon J Burbach
- Department of Laboratory Medicine and Pathology, Center for Immunology, Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, MN 55414, USA.
| | | | | | | | | |
Collapse
|
67
|
Characterization of the macrophage transcriptome in glomerulonephritis-susceptible and -resistant rat strains. Genes Immun 2010; 12:78-89. [PMID: 21179115 PMCID: PMC3048856 DOI: 10.1038/gene.2010.61] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Crescentic glomerulonephritis (CRGN) is a major cause of rapidly progressive renal failure for which the underlying genetic basis is unknown. WKY rats show marked susceptibility to CRGN, while Lewis rats are resistant. Glomerular injury and crescent formation are macrophage-dependent and mainly explained by seven quantitative trait loci (Crgn1-7). Here, we used microarray analysis in basal and lipopolysaccharide (LPS)-stimulated macrophages to identify genes that reside on pathways predisposing WKY rats to CRGN. We detected 97 novel positional candidates for the uncharacterised Crgn3-7. We identified 10 additional secondary effector genes with profound differences in expression between the two strains (>5-fold change, <1% False Discovery Rate) for basal and LPS-stimulated macrophages. Moreover, we identified 8 genes with differentially expressed alternatively spliced isoforms, by using an in depth analysis at probe-level that allowed us to discard false positives due to polymorphisms between the two rat strains. Pathway analysis identified several common linked pathways, enriched for differentially expressed genes, which affect macrophage activation. In summary, our results identify distinct macrophage transcriptome profiles between two rat strains that differ in susceptibility to glomerulonephritis, provide novel positional candidates for Crgn3-7, and define groups of genes that play a significant role in differential regulation of macrophage activity.
Collapse
|
68
|
Sylvester M, Kliche S, Lange S, Geithner S, Klemm C, Schlosser A, Großmann A, Stelzl U, Schraven B, Krause E, Freund C. Adhesion and degranulation promoting adapter protein (ADAP) is a central hub for phosphotyrosine-mediated interactions in T cells. PLoS One 2010; 5:e11708. [PMID: 20661443 PMCID: PMC2908683 DOI: 10.1371/journal.pone.0011708] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 06/08/2010] [Indexed: 01/13/2023] Open
Abstract
TCR stimulation leads to an increase in cellular adhesion among other outcomes. The adhesion and degranulation promoting adapter protein (ADAP) is known to be rapidly phosphorylated after T cell stimulation and relays the TCR signal to adhesion molecules of the integrin family. While three tyrosine phosphorylation sites have been characterized biochemically, the binding capabilities and associated functions of several other potential phosphotyrosine motifs remain unclear. Here, we utilize in vitro phosphorylation and mass spectrometry to map novel phosphotyrosine sites in the C-terminal part of human ADAP (486–783). Individual tyrosines were then mutated to phenylalanine and their relevance for cellular adhesion and migration was tested experimentally. Functionally important tyrosine residues include two sites within the folded hSH3 domains of ADAP and two at the C-terminus. Furthermore, using a peptide pulldown approach in combination with stable isotope labeling in cell culture (SILAC) we identified SLP-76, PLCγ, PIK3R1, Nck, CRK, Gads, and RasGAP as phospho-dependent binding partners of a central YDDV motif of ADAP. The phosphorylation-dependent interaction between ADAP and Nck was confirmed by yeast two-hybrid analysis, immunoprecipitation and binary pulldown experiments, indicating that ADAP directly links integrins to modulators of the cytoskeleton independent of SLP-76.
Collapse
Affiliation(s)
- Marc Sylvester
- Protein Engineering Group, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin, Berlin, Germany
| | - Stefanie Kliche
- Institut für Molekulare und Klinische Immunologie, Otto-von-Guericke-Universität, Magdeburg, Germany
| | - Sabine Lange
- Mass Spectrometry Group, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Sabine Geithner
- Protein Engineering Group, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin, Berlin, Germany
| | - Clementine Klemm
- Mass Spectrometry Group, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Andreas Schlosser
- Institut für Medizinische Immunologie CCM, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Arndt Großmann
- Otto-Warburg-Laboratorium, Max-Planck-Institut für Molekulare Genetik, Berlin, Germany
| | - Ulrich Stelzl
- Otto-Warburg-Laboratorium, Max-Planck-Institut für Molekulare Genetik, Berlin, Germany
| | - Burkhart Schraven
- Institut für Molekulare und Klinische Immunologie, Otto-von-Guericke-Universität, Magdeburg, Germany
| | - Eberhard Krause
- Mass Spectrometry Group, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Christian Freund
- Protein Engineering Group, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
69
|
Shokouhi B, Coban C, Hasirci V, Aydin E, Dhanasingh A, Shi N, Koyama S, Akira S, Zenke M, Sechi AS. The role of multiple toll-like receptor signalling cascades on interactions between biomedical polymers and dendritic cells. Biomaterials 2010; 31:5759-71. [PMID: 20452017 DOI: 10.1016/j.biomaterials.2010.04.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 04/11/2010] [Indexed: 01/07/2023]
Abstract
Biomaterials are used in several health-related applications ranging from tissue regeneration to antigen-delivery systems. Yet, biomaterials often cause inflammatory reactions suggesting that they profoundly alter the homeostasis of host immune cells such as dendritic cells (DCs). Thus, there is a major need to understand how biomaterials affect the function of these cells. In this study, we have analysed the influence of chemically and physically diverse biomaterials on DCs using several murine knockouts. DCs can sense biomedical polymers through a mechanism, which involves multiple TLR/MyD88-dependent signalling pathways, in particular TLR2, TLR4 and TLR6. TLR-biomaterial interactions induce the expression of activation markers and pro-inflammatory cytokines and are sufficient to confer on DCs the ability to activate antigen-specific T cells. This happens through a direct biomaterial-DC interaction although, for degradable biomaterials, soluble polymer molecules can also alter DC function. Finally, the engagement of TLRs by biomaterials profoundly alters DC adhesive properties. Our findings could be useful for designing structure-function studies aimed at developing more bioinert materials. Moreover, they could also be exploited to generate biomaterials for studying the molecular mechanisms of TLR signalling and DC activation aiming at fine-tuning desired and pre-determined immune responses.
Collapse
Affiliation(s)
- Behnaz Shokouhi
- Institute of Biomedical Engineering, Department of Cell Biology, Universitätsklinikum Aachen, Rheinisch-Westfälische Technische Hochschule (RWTH), Pauwelsstrasse, 30, D-52074 Aachen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Kevany BM, Palczewski K. Phagocytosis of retinal rod and cone photoreceptors. Physiology (Bethesda) 2010; 25:8-15. [PMID: 20134024 DOI: 10.1152/physiol.00038.2009] [Citation(s) in RCA: 308] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Photoreceptor cells maintain a roughly constant length by continuously generating new outer segments from their base while simultaneously releasing mature outer segments engulfed by the retinal pigment epithelium (RPE). Thus postmitotic RPE cells phagocytose an immense amount of material over a lifetime, disposing of photoreceptor cell waste while retaining useful content. This review focuses on current knowledge of outer segment phagocytosis, discussing the steps involved along with their critical participants as well as how various perturbations in outer segment (OS) disposal can lead to retinopathies.
Collapse
Affiliation(s)
- Brian M Kevany
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.
| | | |
Collapse
|
71
|
Shah VB, Ozment-Skelton TR, Williams DL, Keshvara L. Vav1 and PI3K are required for phagocytosis of β-glucan and subsequent superoxide generation by microglia. Mol Immunol 2009; 46:1845-53. [DOI: 10.1016/j.molimm.2009.01.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2008] [Accepted: 01/07/2009] [Indexed: 12/28/2022]
|
72
|
Mehta H, Glogauer M, Bécart S, Altman A, Coggeshall KM. Adaptor protein SLAT modulates Fcgamma receptor-mediated phagocytosis in murine macrophages. J Biol Chem 2009; 284:11882-91. [PMID: 19251698 PMCID: PMC2673257 DOI: 10.1074/jbc.m809712200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2008] [Revised: 02/18/2009] [Indexed: 12/19/2022] Open
Abstract
SLAT (SWAP-70-like adaptor protein of T cells) is an adaptor protein expressed in cells of the hematopoietic system. SLAT interacts with and alters the function of small GTPase Rac1 in fibroblasts. In these nonhematopoietic models, the SLAT-Rac interaction leads to changes in F-actin and causes cytoskeletal reorganization. In T cells, SLAT expression regulates the development of T helper cells through Cdc42- and Rac1-mediated activation of the NF-AT transcription factor. Here we show that SLAT is expressed in macrophages. Overexpression of SLAT in a macrophage cell line inhibits the IgG Fcgamma receptor-mediated phagocytic ability of THP1 cells. In bone marrow-derived macrophages, SLAT protein is recruited to the early phagosomes formed via Fcgamma receptor engagement. SLAT recruitment to the phagosome was most efficient when the macrophages express at least one isoform of Rac (Rac1 or Rac2), because SLAT recruitment was reduced in macrophages of Rac-deficient mice. Macrophages derived from animals lacking SLAT show an elevation in the rate of Fcgamma receptor-mediated phagocytosis. The absence of SLAT is associated with an increase in the amount of F-actin formed around these phagosomes as well as an increase in the amount of Rac1 protein recruited to the phagosome. Our results suggest that SLAT acts as a gatekeeper for the amount of Rac recruited to the phagosomes formed by Fcgamma receptor engagement and thus is able to regulate F-actin re-organization and consequently phagocytosis.
Collapse
Affiliation(s)
- Harshini Mehta
- Program in Immunobiology and Cancer, Oklahoma Medical Research Foundation, and Department of Cell Biology, University of Oklahoma, Oklahoma City, Oklahoma 73104, USA
| | | | | | | | | |
Collapse
|
73
|
Abstract
Professional phagocytes have a vast and sophisticated arsenal of microbicidal features. They are capable of ingesting and destroying invading organisms, and can present microbial antigens on their surface, eliciting acquired immune responses. To survive this hostile response, certain bacterial species have developed evasive strategies that often involve the secretion of effectors to co-opt the cellular machinery of the host. In this Review, we present an overview of the antimicrobial defences of the host cell, with emphasis on macrophages, for which phagocytosis has been studied most extensively. In addition, using Mycobacterium tuberculosis, Listeria monocytogenes, Legionella pneumophila and Coxiella burnetii as examples, we describe some of the evasive strategies used by bacteria.
Collapse
|
74
|
Swanson KD, Tang Y, Ceccarelli DF, Poy F, Sliwa JP, Neel BG, Eck MJ. The Skap-hom dimerization and PH domains comprise a 3'-phosphoinositide-gated molecular switch. Mol Cell 2009; 32:564-75. [PMID: 19026786 DOI: 10.1016/j.molcel.2008.09.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2008] [Revised: 08/12/2008] [Accepted: 09/29/2008] [Indexed: 12/20/2022]
Abstract
PH domains, by binding to phosphoinositides, often serve as membrane-targeting modules. Using crystallographic, biochemical, and cell biological approaches, we have uncovered a mechanism that the integrin-signaling adaptor Skap-hom uses to mediate cytoskeletal interactions. Skap-hom is a homodimer containing an N-terminal four-helix bundle dimerization domain, against which its two PH domains pack in a conformation incompatible with phosphoinositide binding. The isolated PH domains bind PI[3,4,5]P(3), and mutations targeting the dimerization domain or the PH domain's PI[3,4,5]P(3)-binding pocket prevent Skap-hom localization to ruffles. Targeting is retained when the PH domain is deleted or by combined mutation of the PI[3,4,5]P(3)-binding pocket and the PH/dimerization domain interface. Thus, the dimerization and PH domain form a PI[3,4,5]P(3)-responsive molecular switch that controls Skap-hom function.
Collapse
Affiliation(s)
- Kenneth D Swanson
- Cancer Biology Program, Division of Hematology-Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
75
|
Burbach BJ, Srivastava R, Medeiros RB, O'Gorman WE, Peterson EJ, Shimizu Y. Distinct regulation of integrin-dependent T cell conjugate formation and NF-kappa B activation by the adapter protein ADAP. THE JOURNAL OF IMMUNOLOGY 2008; 181:4840-51. [PMID: 18802088 DOI: 10.4049/jimmunol.181.7.4840] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Following TCR stimulation, T cells utilize the hematopoietic specific adhesion and degranulation-promoting adapter protein (ADAP) to control both integrin adhesive function and NF-kappaB transcription factor activation. We have investigated the molecular basis by which ADAP controls these events in primary murine ADAP(-/-) T cells. Naive DO11.10/ADAP(-/-) T cells show impaired adhesion to OVAp (OVA aa 323-339)-bearing APCs that is restored following reconstitution with wild-type ADAP. Mutational analysis demonstrates that the central proline-rich domain and the C-terminal domain of ADAP are required for rescue of T:APC conjugate formation. The ADAP proline-rich domain is sufficient to bind and stabilize the expression of SKAP55 (Src kinase-associated phosphoprotein of 55 kDa), which is otherwise absent from ADAP(-/-) T cells. Interestingly, forced expression of SKAP55 in the absence of ADAP is insufficient to drive T:APC conjugate formation, demonstrating that both ADAP and SKAP55 are required for optimal LFA-1 function. Additionally, the ADAP proline-rich domain is required for optimal Ag-induced activation of CD69, CD25, and Bcl-x(L), but is not required for assembly of the CARMA1/Bcl10/Malt1 (caspase-recruitment domain (CARD) membrane-associated guanylate kinase (MAGUK) protein 1/B-cell CLL-lymphoma 10/mucosa-associated lymphoid tissue lymphoma translocation protein 1) signaling complex and subsequent TCR-dependent NF-kappaB activity. Our results indicate that ADAP is used downstream of TCR engagement to delineate two distinct molecular programs in which the ADAP/SKAP55 module is required for control of T:APC conjugate formation and functions independently of ADAP/CARMA1-mediated NF-kappaB activation.
Collapse
Affiliation(s)
- Brandon J Burbach
- Department of Laboratory Medicine and Pathology, Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | | | | | | | |
Collapse
|
76
|
Abstract
Whereas bacterial pathogens take over the control of their host cell actin cytoskeleton by delivering an array of protein effectors through specialized secretion systems, promastigotes of the protozoan parasite Leishmania donovani rely entirely upon a cell surface glycolipid to achieve this feat. Here, we review recent evidence that L. donovani promastigotes subvert host macrophage actin dynamics during the establishment of infection and we discuss the potential mechanisms involved.
Collapse
|
77
|
Wang H, Rudd CE. SKAP-55, SKAP-55-related and ADAP adaptors modulate integrin-mediated immune-cell adhesion. Trends Cell Biol 2008; 18:486-93. [PMID: 18760924 DOI: 10.1016/j.tcb.2008.07.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 07/15/2008] [Accepted: 07/16/2008] [Indexed: 11/25/2022]
Abstract
Integrin adhesion is essential for aspects of immune function, including antigen presentation and migration in lymph nodes, germinal centers and sites of inflammation. Antigen receptors on B and T cells generate 'inside-out' signals for increased integrin clustering and adhesion. Although upstream components of B-cell-receptor or T-cell-receptor signaling are needed, the identity of key downstream effectors that mediate integrin adhesion is only just emerging. New candidates include immune-cell-specific adaptor proteins ADAP, SKAP-55 and SKAP-55-related (SKAP-55R). SKAP-55 has recently been identified as an effector in T cells in SKAP-55-deficient mice, whereas SKAP-55R is needed for B-cell adhesion. ADAP is required for SKAP-55 and SKAP-55R protein stability. SKAP-55 and SKAP-55R have unexpectedly specialized roles in T- and B-cell adhesion of the immune system.
Collapse
Affiliation(s)
- Hongyan Wang
- Cambridge Institute for Medical Research, Cambridge, UK
| | | |
Collapse
|
78
|
Jongstra-Bilen J, Puig Cano A, Hasija M, Xiao H, Smith CIE, Cybulsky MI. Dual Functions of Bruton’s Tyrosine Kinase and Tec Kinase during Fcγ Receptor-Induced Signaling and Phagocytosis. THE JOURNAL OF IMMUNOLOGY 2008; 181:288-98. [DOI: 10.4049/jimmunol.181.1.288] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
79
|
Tsai RK, Discher DE. Inhibition of "self" engulfment through deactivation of myosin-II at the phagocytic synapse between human cells. ACTA ACUST UNITED AC 2008; 180:989-1003. [PMID: 18332220 PMCID: PMC2265407 DOI: 10.1083/jcb.200708043] [Citation(s) in RCA: 367] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phagocytosis of foreign cells or particles by macrophages is a rapid process that is inefficient when faced with “self” cells that display CD47—although signaling mechanisms in self-recognition have remained largely unknown. With human macrophages, we show the phagocytic synapse at cell contacts involves a basal level of actin-driven phagocytosis that, in the absence of species-specific CD47 signaling, is made more efficient by phospho-activated myosin. We use “foreign” sheep red blood cells (RBCs) together with CD47-blocked, antibody-opsonized human RBCs in order to visualize synaptic accumulation of phosphotyrosine, paxillin, F-actin, and the major motor isoform, nonmuscle myosin-IIA. When CD47 is functional, the macrophage counter-receptor and phosphatase-activator SIRPα localizes to the synapse, suppressing accumulation of phosphotyrosine and myosin without affecting F-actin. On both RBCs and microbeads, human CD47 potently inhibits phagocytosis as does direct inhibition of myosin. CD47–SIRPα interaction initiates a dephosphorylation cascade directed in part at phosphotyrosine in myosin. A point mutation turns off this motor's contribution to phagocytosis, suggesting that self-recognition inhibits contractile engulfment.
Collapse
Affiliation(s)
- Richard K Tsai
- Biophysical Engineering Laboratory, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
80
|
Girao H, Geli MI, Idrissi FZ. Actin in the endocytic pathway: from yeast to mammals. FEBS Lett 2008; 582:2112-9. [PMID: 18420037 DOI: 10.1016/j.febslet.2008.04.011] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 04/02/2008] [Accepted: 04/09/2008] [Indexed: 02/07/2023]
Abstract
Genetic analysis of endocytosis in yeast early pointed to the essential role of actin in the uptake step. Efforts to identify the machinery involved demonstrated the important contribution of Arp2/3 and the myosins-I. Analysis of the process using live-cell fluorescence microscopy and electron microscopy have recently contributed to refine molecular models explaining clathrin and actin-dependent endocytic uptake. Increasing evidence now also indicates that actin plays important roles in post-internalization events along the endocytic pathway in yeast, including transport of vesicles, motility of endosomes and vacuole fusion. This review describes the present knowledge state on the roles of actin in endocytosis in yeast and points to similarities and differences with analogous processes in mammals.
Collapse
Affiliation(s)
- Henrique Girao
- Instituto de Biología Molecular de Barcelona (IBMB-CSIC), PCB, Edifici Hèlix, Baldiri Reixac 15, 08028 Barcelona, Spain
| | | | | |
Collapse
|
81
|
Abstract
The actin cytoskeleton is required for many important processes during embryonic development. In later stages of life, important homeostatic processes depend on the actin cytoskeleton, such as immune response, haemostasis and blood vessel preservation. Therefore, the function of the actin cytoskeleton must be tightly regulated, and aberrant regulation may cause disease. A growing number of proteins have been described to bind and regulate the actin cytoskeleton. Amongst them, Ena/VASP proteins function as anti-capping proteins, thereby directly modulating the actin ultrastructure. Ena/VASP function is regulated by their recruitment into protein complexes downstream of plasma membrane receptors and by phosphorylation. As regulators of the actin ultrastructure, Ena/VASP proteins are involved in crucial cellular functions, such as shape change, adhesion, migration and cell-cell interaction and hence are important targets for therapeutic intervention. In this chapter, we will first describe the structure, function and regulation of Ena/VASP proteins. Then, we will review the involvement of Ena/VASP proteins in the development of human diseases. Growing evidence links Ena/VASP proteins to important human diseases, such as thrombosis, cancer, arteriosclerosis, cardiomyopathy and nephritis. Finally, present and future perspectives for the development of therapeutic molecules interfering with Ena/VASP-mediated protein-protein interactions are presented.
Collapse
Affiliation(s)
- G Pula
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, UK
| | | |
Collapse
|
82
|
Lacayo CI, Pincus Z, VanDuijn MM, Wilson CA, Fletcher DA, Gertler FB, Mogilner A, Theriot JA. Emergence of large-scale cell morphology and movement from local actin filament growth dynamics. PLoS Biol 2007; 5:e233. [PMID: 17760506 PMCID: PMC1951782 DOI: 10.1371/journal.pbio.0050233] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Accepted: 07/03/2007] [Indexed: 12/30/2022] Open
Abstract
Variations in cell migration and morphology are consequences of changes in underlying cytoskeletal organization and dynamics. We investigated how these large-scale cellular events emerge as direct consequences of small-scale cytoskeletal molecular activities. Because the properties of the actin cytoskeleton can be modulated by actin-remodeling proteins, we quantitatively examined how one such family of proteins, enabled/vasodilator-stimulated phosphoprotein (Ena/VASP), affects the migration and morphology of epithelial fish keratocytes. Keratocytes generally migrate persistently while exhibiting a characteristic smooth-edged “canoe” shape, but may also exhibit less regular morphologies and less persistent movement. When we observed that the smooth-edged canoe keratocyte morphology correlated with enrichment of Ena/VASP at the leading edge, we mislocalized and overexpressed Ena/VASP proteins and found that this led to changes in the morphology and movement persistence of cells within a population. Thus, local changes in actin filament dynamics due to Ena/VASP activity directly caused changes in cell morphology, which is coupled to the motile behavior of keratocytes. We also characterized the range of natural cell-to-cell variation within a population by using measurable morphological and behavioral features—cell shape, leading-edge shape, filamentous actin (F-actin) distribution, cell speed, and directional persistence—that we have found to correlate with each other to describe a spectrum of coordinated phenotypes based on Ena/VASP enrichment at the leading edge. This spectrum stretched from smooth-edged, canoe-shaped keratocytes—which had VASP highly enriched at their leading edges and migrated fast with straight trajectories—to more irregular, rounder cells migrating slower with less directional persistence and low levels of VASP at their leading edges. We developed a mathematical model that accounts for these coordinated cell-shape and behavior phenotypes as large-scale consequences of kinetic contributions of VASP to actin filament growth and protection from capping at the leading edge. This work shows that the local effects of actin-remodeling proteins on cytoskeletal dynamics and organization can manifest as global modifications of the shape and behavior of migrating cells and that mathematical modeling can elucidate these large-scale cell behaviors from knowledge of detailed multiscale protein interactions. The shape of animal cells is largely determined by the organization of their internal structural elements, including the filamentous structures of their cytoskeleton. Motile cells that crawl across solid substrates must assemble their cytoskeletal actin filaments in a spatially organized way, such that net filament growth and cell protrusion occur at the front of the cell. Actin filament dynamics, in turn, influence the overall shape of the cell by pushing on the plasma membrane. In this work, we have explored the ways that variations in small-scale actin filament growth dynamics are coupled to large-scale changes in cell shape and behavior. By manipulating the availability of a family of actin-binding proteins (Ena/VASP) that regulate actin filament growth, we can alter the overall cell shape and motile behavior of epithelial fish keratocytes—unusually fast-moving and regularly shaped cells. We have also found that unperturbed keratocytes in a population exhibit a continuum of shape and behavioral variations that can be correlated with differences in Ena/VASP levels. We have developed a mathematical model that allows us to explain our observations of intrinsic cell-to-cell shape variation, motile behavior, and cell responses to molecular perturbations as a function of actin filament growth dynamics in motile cells. Mathematical modeling predicts global modifications of the shape and behavior of migrating cells from knowledge of detailed multiscale protein interactions.
Collapse
Affiliation(s)
- Catherine I Lacayo
- Department of Biochemistry, Stanford University, Stanford, California, United States of America
| | - Zachary Pincus
- Department of Biochemistry, Stanford University, Stanford, California, United States of America
- Program in Biomedical Informatics, Stanford University, Stanford, California, United States of America
| | - Martijn M VanDuijn
- Department of Bioengineering, University of California, Berkeley, California, United States of America
| | - Cyrus A Wilson
- Department of Biochemistry, Stanford University, Stanford, California, United States of America
| | - Daniel A Fletcher
- Department of Bioengineering, University of California, Berkeley, California, United States of America
| | - Frank B Gertler
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Alex Mogilner
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, California, United States of America
- Department of Mathematics, University of California Davis, Davis, California, United States of America
| | - Julie A Theriot
- Department of Biochemistry, Stanford University, Stanford, California, United States of America
- Department of Microbiology and Immunology, Stanford University, Stanford, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
83
|
Dluzniewska J, Zou L, Harmon IR, Ellingson MT, Peterson EJ. Immature hematopoietic cells display selective requirements for adhesion- and degranulation-promoting adaptor protein in development and homeostatsis. Eur J Immunol 2007; 37:3208-19. [PMID: 17948263 DOI: 10.1002/eji.200737094] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Adhesion- and degranulation-promoting adaptor protein (ADAP) modulates T cell development and function and promotes TCR signaling. Regulation of ADAP protein expression during thymopoiesis and in development of other hematopoietic lineages has not been explored. Using intracellular staining, we detected ADAP protein in bone marrow lymphocyte precursors. Like its binding partner SH2-containing leukocyte phosphoprotein of 76 kDa, ADAP is dynamically regulated during thymocyte positive selection. ADAP is also found in unconventional thymocytes, including NKT, CD8alphaalpha, and TCRgammadelta T cells. In peripheral T cells, ADAP is up-regulated after TCR stimulation and with acquisition of memory status. Although absent in splenic B cells, ADAP is present in pro-B cells, as well as in BM erythrocyte and myeloid progenitors. Studies with radiation chimeras show that ADAP is dispensable for NKT, CD8alphaalpha and TCRgammadelta T cell development, while confirming that ADAP is required for optimal development of conventional TCRalphabeta T cells in the thymus. Interestingly, ADAP is necessary for CD8alphaalpha homeostasis in the small intestinal epithelium, yet is dispensable for optimal reconstitution of splenic B cell populations. Our observations highlight the dynamic regulation of ADAP during T cell maturation and document expression patterns that suggest a possible role for ADAP in development of non-T hematopoietic lineages.
Collapse
Affiliation(s)
- Joanna Dluzniewska
- Department of Internal Medicine and Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
84
|
|
85
|
Ferron F, Rebowski G, Lee SH, Dominguez R. Structural basis for the recruitment of profilin-actin complexes during filament elongation by Ena/VASP. EMBO J 2007; 26:4597-606. [PMID: 17914456 PMCID: PMC2063483 DOI: 10.1038/sj.emboj.7601874] [Citation(s) in RCA: 202] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Accepted: 09/10/2007] [Indexed: 11/09/2022] Open
Abstract
Cells sustain high rates of actin filament elongation by maintaining a large pool of actin monomers above the critical concentration for polymerization. Profilin-actin complexes constitute the largest fraction of polymerization-competent actin monomers. Filament elongation factors such as Ena/VASP and formin catalyze the transition of profilin-actin from the cellular pool onto the barbed end of growing filaments. The molecular bases of this process are poorly understood. Here we present structural and energetic evidence for two consecutive steps of the elongation mechanism: the recruitment of profilin-actin by the last poly-Pro segment of vasodilator-stimulated phosphoprotein (VASP) and the binding of profilin-actin simultaneously to this poly-Pro and to the G-actin-binding (GAB) domain of VASP. The actin monomer bound at the GAB domain is proposed to be in position to join the barbed end of the growing filament concurrently with the release of profilin.
Collapse
Affiliation(s)
- François Ferron
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Grzegorz Rebowski
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Sung Haeng Lee
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Roberto Dominguez
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Department of Physiology, University of Pennsylvania School of Medicine, A507 Richards Building, 3700 Hamilton Walk, Philadelphia, PA 19104-6058, USA. Tel.: +1 215 573 4559; Fax: +1 215 573 5851; E-mail:
| |
Collapse
|
86
|
Abstract
Integrin adhesion receptors are critical for antigen recognition by T cells and for regulated recirculation and trafficking into and through various tissues in the body. T-cell receptor (TCR) signaling induces rapid increases in integrin function that facilitate T-cell activation by promoting stable contact with antigen-presenting cells and extracellular proteins in the environment. In this review, we outline the molecular mechanisms by which the TCR signals to integrins and present a model that highlights four key events: (i) initiation of proximal TCR signals nucleated by the linker for activated T cells (LAT) adapter protein and involving Itk, phospholipase C-gamma1, Vav1, and Src homology 2 domain-containing leukocyte-specific phosphoprotein of 76 kDa; (ii) transmission of integrin activation signals from the LAT signalosome to integrins by protein kinase (PK) C and the adapter protein, adhesion and degranulation-promoting adapter protein; (iii) assembly of integrin-associated signaling complexes that include PKD, the guanosine triphosphatase Rap1 and its effectors, and talin; and (iv) reorganization of the actin cytoskeleton by WAVE2 and other actin-remodeling proteins. These events coordinate changes in integrin conformation and clustering that result in enhanced integrin functional activity following TCR stimulation.
Collapse
Affiliation(s)
- Brandon J Burbach
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
87
|
Lindsay SL, Ramsey S, Aitchison M, Renné T, Evans TJ. Modulation of lamellipodial structure and dynamics by NO-dependent phosphorylation of VASP Ser239. J Cell Sci 2007; 120:3011-21. [PMID: 17684063 DOI: 10.1242/jcs.003061] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The initial step in directed cell movement is lamellipodial protrusion, an action driven by actin polymerization. Enabled/vasodilator-stimulated phosphoprotein (Ena/VASP) family proteins are key regulators of this actin polymerization and can control lamellipodial protrusion rate. Ena/VASP proteins are substrates for modification by cyclic-nucleotide-dependent protein kinases at a number of sites. Phosphorylation of Ser239 of VASP in vitro inhibits its anti-capping and filament-bundling activity but the effects of this modification on lamellipodial structure and function are unknown. To examine the functional effects of this modification in living cells, we studied VASP phosphorylation at Ser239 by nitric oxide (NO) stimulation of cGMP-dependent protein kinase. Using live cell imaging of primary cells transfected with GFP-VASP constructs, we found that NO produced rapid retraction of lamellipodia together with cell rounding that was dependent on guanylate cyclase and type II cGMP-dependent protein kinase. In cells expressing a mutant VASP (Ser239Ala) lacking the site preferentially phosphorylated by this kinase, NO had no effect. Phosphorylation of Ser239 of VASP results in loss of lamellipodial protrusions and cell rounding, and is a powerful means of controlling directed actin polymerization within lamellipodia.
Collapse
Affiliation(s)
- Susan L Lindsay
- Division of Immunology, Infection and Inflammation, University of Glasgow, Glasgow Biomedical Research Centre, 120, University Place, Glasgow, G12 8TA, UK
| | | | | | | | | |
Collapse
|
88
|
Abudula A, Grabbe A, Brechmann M, Polaschegg C, Herrmann N, Goldbeck I, Dittmann K, Wienands J. SLP-65 signal transduction requires Src homology 2 domain-mediated membrane anchoring and a kinase-independent adaptor function of Syk. J Biol Chem 2007; 282:29059-29066. [PMID: 17681949 DOI: 10.1074/jbc.m704043200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The family of SLPs (Src homology 2 domain-containing leukocyte adaptor proteins) are cytoplasmic signal effectors of lymphocyte antigen receptors. A main function of SLP is to orchestrate the assembly of Ca(2+)-mobilizing enzymes at the inner leaflet of the plasma membrane. For this purpose, SLP-76 in T cells utilizes the transmembrane adaptor LAT, but the mechanism of SLP-65 membrane anchoring in B cells remains an enigma. We now employed two genetic reconstitution systems to unravel structural requirements of SLP-65 for the initiation of Ca(2+) mobilization and subsequent activation of gene transcription. First, mutational analysis of SLP-65 in DT40 B cells revealed that its C-terminal Src homology 2 domain controls efficient tyrosine phosphorylation by the kinase Syk, plasma membrane recruitment, as well as downstream signaling to NFAT activation. Second, we dissected these processes by expressing SLP-65 in SLP-76-deficient T cells and found that a kinase-independent adaptor function of Syk is required to link phosphorylated SLP-65 to Ca(2+) mobilization. These approaches unmask a mechanistic complexity of SLP-65 activation and coupling to signaling cascades in that Syk is upstream as well as downstream of SLP-65. Moreover, membrane anchoring of the SLP-65-assembled Ca(2+) initiation complex, which appears to be fundamentally different from that of closely related SLP-76, does not necessarily involve a B cell-specific component.
Collapse
Affiliation(s)
- Abulizi Abudula
- Georg August University of Göttingen, Institute of Cellular & Molecular Immunology, Humboldtallee 34, 37073 Göttingen, Germany
| | - Annika Grabbe
- Georg August University of Göttingen, Institute of Cellular & Molecular Immunology, Humboldtallee 34, 37073 Göttingen, Germany
| | - Markus Brechmann
- Georg August University of Göttingen, Institute of Cellular & Molecular Immunology, Humboldtallee 34, 37073 Göttingen, Germany
| | - Christian Polaschegg
- Georg August University of Göttingen, Institute of Cellular & Molecular Immunology, Humboldtallee 34, 37073 Göttingen, Germany
| | - Nadine Herrmann
- Georg August University of Göttingen, Institute of Cellular & Molecular Immunology, Humboldtallee 34, 37073 Göttingen, Germany
| | - Ingo Goldbeck
- Georg August University of Göttingen, Institute of Cellular & Molecular Immunology, Humboldtallee 34, 37073 Göttingen, Germany
| | - Kai Dittmann
- Georg August University of Göttingen, Institute of Cellular & Molecular Immunology, Humboldtallee 34, 37073 Göttingen, Germany
| | - Jürgen Wienands
- Georg August University of Göttingen, Institute of Cellular & Molecular Immunology, Humboldtallee 34, 37073 Göttingen, Germany.
| |
Collapse
|
89
|
Ménasché G, Kliche S, Bezman N, Schraven B. Regulation of T-cell antigen receptor-mediated inside-out signaling by cytosolic adapter proteins and Rap1 effector molecules. Immunol Rev 2007; 218:82-91. [PMID: 17624945 DOI: 10.1111/j.1600-065x.2007.00543.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Integrins are critical for the migration of T cells to lymphoid organs and to sites of inflammation and are also necessary for productive interactions between T cells and antigen-presenting cells. Integrin activation is enhanced following T-cell receptor (TCR) engagement, as signals initiated by the TCR increase affinity and avidity of integrins for their ligands. This process, known as inside-out signaling, has been shown to require several molecular components including the cytosolic adapter proteins adhesion and degranulation-promoting adapter protein and Src homology 2 domain-containing adapter protein of 55 kDa, the low molecular weight guanosine triphosphatase Rap1, and the Rap1 effector proteins Rap1 guanosine triphosphate-interacting adapter molecule, regulator of adhesion and cell polarization enriched in lymphoid tissues, and protein kinase D1. Herein, we review recent findings about how the TCR is linked to integrin activation through inside-out signaling.
Collapse
Affiliation(s)
- Gaël Ménasché
- Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
90
|
Wanner SJ, Miller JR. Regulation of otic vesicle and hair cell stereocilia morphogenesis by Ena/VASP-like (Evl) in Xenopus. J Cell Sci 2007; 120:2641-51. [PMID: 17635997 DOI: 10.1242/jcs.004556] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The inner ear is derived from a thickening in the embryonic ectoderm, called the otic placode. This structure undergoes extensive morphogenetic movements throughout its development and gives rise to all components of the inner ear. Ena/VASP-like (Evl) is an actin binding protein involved in the regulation of cytoskeletal dynamics and organization. We have examined the role of Evl during the morphogenesis of the Xenopus inner ear. Evl (hereafter referred to as Xevl) is expressed throughout otic vesicle formation and is enriched in the neuroblasts that delaminate to form the vestibulocochlear ganglion and in hair cells that possess mechanosensory stereocilia. Knockdown of Xevl perturbs epithelial morphology and intercellular adhesion in the otic vesicle and disrupts formation of the vestibulocochlear ganglion, evidenced by reduction of ganglion size, disorganization of the ganglion, and defects in neurite outgrowth. Later in embryogenesis, Xevl is required for development of mechanosensory hair cells. In Xevl knockdown embryos, hair cells of the ventromedial sensory epithelium display multiple abnormalities including disruption of the cuticular plate at the base of stereocilia and disorganization of the normal staircase appearance of stereocilia. Based on these data, we propose that Xevl plays an integral role in regulating morphogenesis of the inner ear epithelium and the subsequent development of the vestibulocochlear ganglion and mechanosensory hair cells.
Collapse
Affiliation(s)
- Sarah J Wanner
- Department of Genetics, Cell Biology and Development and Developmental Biology Center, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
91
|
Zimmermann J, Kühne R, Sylvester M, Freund C. Redox-Regulated Conformational Changes in an SH3 Domain,. Biochemistry 2007; 46:6971-7. [PMID: 17511475 DOI: 10.1021/bi700437r] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Oxidation-induced conformational changes in proteins provide a powerful mechanism to sense the redox state of a living cell. In contrast to the unspecific and often irreversible oxidation of intracellular proteins during severe oxidative stress, regulatory redox events need to have specific and transient effects on cellular targets. Here we present evidence for the reversible formation of a vicinal disulfide bond in a prototypic protein interaction domain. NMR spectroscopy was used to determine the structure of the N-terminal hSH3 domain (hSH3N) of the immune cell protein ADAP (adhesion and degranulation promoting adapter protein) in the reduced and oxidized states. An eight-membered ring formed upon oxidation of two neighboring cysteines leads to significant changes in the variable arginine-threonine (RT) loop of the hSH3N domain and alters the helix-sheet packing of the domain. The redox potential for this structural transition is -228 mV at pH 7.4. This is compatible with a role of the cysteinylcysteine moiety in redox signaling during T cell activation.
Collapse
Affiliation(s)
- Jürgen Zimmermann
- Protein Engineering Group, Leibniz-Institut für Molekulare Pharmakologie und Freie Universität Berlin, 13125 Berlin, Germany
| | | | | | | |
Collapse
|
92
|
Di Modugno F, DeMonte L, Balsamo M, Bronzi G, Nicotra MR, Alessio M, Jager E, Condeelis JS, Santoni A, Natali PG, Nisticò P. Molecular cloning of hMena (ENAH) and its splice variant hMena+11a: epidermal growth factor increases their expression and stimulates hMena+11a phosphorylation in breast cancer cell lines. Cancer Res 2007; 67:2657-65. [PMID: 17363586 PMCID: PMC3156572 DOI: 10.1158/0008-5472.can-06-1997] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
hMena (ENAH), an actin regulatory protein involved in the control of cell motility and adhesion, is modulated during human breast carcinogenesis. In fact, whereas undetectable in normal mammary epithelium, hMena becomes overexpressed in high-risk benign lesions and primary and metastatic tumors. In vivo, hMena overexpression correlates with the HER-2(+)/ER(-)/Ki67(+) unfavorable prognostic phenotype. In vitro, neuregulin-1 up-regulates whereas Herceptin treatment down-modulates hMena expression, suggesting that it may couple tyrosine kinase receptor signaling to the actin cytoskeleton. Herein, we report the cloning of hMena and of a splice variant, hMena(+11a), which contains an additional exon corresponding to 21 amino acids located in the EVH2 domain, from a breast carcinoma cell line of epithelial phenotype. Whereas hMena overexpression consistently characterizes the transformed phenotype of tumor cells of different lineages, hMena(+11a) isoform is concomitantly present only in epithelial tumor cell lines. In breast cancer cell lines, epidermal growth factor (EGF) treatment promotes concomitant up-regulation of hMena and hMena(+11a), resulting in an increase of the fraction of phosphorylated hMena(+11a) isoform only. hMena(+11a) overexpression and phosphorylation leads to increased p42/44 mitogen-activated protein kinase (MAPK) activation and cell proliferation as evidenced in hMena(+11a)-transfected breast cancer cell lines. On the contrary, hMena knockdown induces reduction of p42/44 MAPK phosphorylation and of the proliferative response to EGF. The present data provide new insight into the relevance of actin cytoskeleton regulatory proteins and, in particular, of hMena isoforms in coupling multiple signaling pathways involved in breast cancer.
Collapse
Affiliation(s)
| | - Lucia DeMonte
- Tumor Immunology, Dibit, San Raffaele Scientific Institute, Milan, Italy
- Proteome Biochemistry, Dibit, San Raffaele Scientific Institute, Milan, Italy
| | - Michele Balsamo
- Laboratory of Immunology, Regina Elena Cancer Institute, Rome, Italy
| | - Giovanna Bronzi
- Laboratory of Immunology, Regina Elena Cancer Institute, Rome, Italy
| | - Maria Rita Nicotra
- Molecular Biology and Pathology Institute, National Research Council, Rome, Italy
| | - Massimo Alessio
- Proteome Biochemistry, Dibit, San Raffaele Scientific Institute, Milan, Italy
| | - Elke Jager
- Medizinische Klinik II, Hamatologie-Onkologie, Krankenhaus Nordwest, Frankfurt, Germany
| | - John S. Condeelis
- Department of Anatomy, Structural Biology and Analytical Imaging Facility, Albert Einstein College of Medicine, Bronx, New York
| | - Angela Santoni
- Experimental Medicine and Pathology, University “La Sapienza,” Rome, Italy
| | | | - Paola Nisticò
- Laboratory of Immunology, Regina Elena Cancer Institute, Rome, Italy
| |
Collapse
|
93
|
Ménasché G, Kliche S, Chen EJH, Stradal TEB, Schraven B, Koretzky G. RIAM links the ADAP/SKAP-55 signaling module to Rap1, facilitating T-cell-receptor-mediated integrin activation. Mol Cell Biol 2007; 27:4070-81. [PMID: 17403904 PMCID: PMC1900018 DOI: 10.1128/mcb.02011-06] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One outcome of T-cell receptor (TCR) signaling is increased affinity and avidity of integrins for their ligands. This occurs through a process known as inside-out signaling, which has been shown to require several molecular components including the adapter proteins ADAP (adhesion and degranulation-promoting adapter protein) and SKAP-55 (55-kDa src kinase-associated phosphoprotein) and the small GTPase Rap1. Herein, we provide evidence linking ADAP and SKAP-55 to RIAM, a recently described adapter protein that binds selectively to active Rap1. We identified RIAM as a key component linking the ADAP/SKAP-55 module to the small GTPase Rap1, facilitating TCR-mediated integrin activation. We show that RIAM constitutively interacts with SKAP-55 in both a heterologous transfection system and primary T cells and map the region essential for this interaction. Additionally, we find that the SKAP-55/RIAM complex is essential both for TCR-mediated adhesion and for efficient conjugate formation between T cells and antigen-presenting cells. Mechanistic studies revealed that the ADAP/SKAP-55 module relocalized RIAM and Rap1 to the plasma membrane following TCR activation to facilitate integrin activation. These results describe for the first time a link between ADAP/SKAP-55 and the Rap1/RIAM complex and provide a potential new mechanism for TCR-mediated integrin activation.
Collapse
Affiliation(s)
- Gaël Ménasché
- Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, 415 BRBII/III, 421 Curie Blvd., Philadelphia, PA 19104-6160, USA
| | | | | | | | | | | |
Collapse
|
94
|
Luckashenak NA, Ryszkiewicz RL, Ramsey KD, Clements JL. The Src homology 2 domain-containing leukocyte protein of 76-kDa adaptor links integrin ligation with p44/42 MAPK phosphorylation and podosome distribution in murine dendritic cells. THE JOURNAL OF IMMUNOLOGY 2007; 177:5177-85. [PMID: 17015703 DOI: 10.4049/jimmunol.177.8.5177] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The Src homology 2 domain-containing leukocyte protein of 76 kDa (SLP-76) is an important molecular intermediate in multiple signaling pathways governing immune cell function. In this study, we report that SLP-76 is expressed in CD11c+ B220- dendritic cells (DCs) isolated from murine thymus or spleen, and that SLP-76 is rapidly phosphorylated on tyrosine residues upon plating of bone marrow-derived DCs (BMDCs) on integrin agonists. SLP-76 is not required for the in vitro or in vivo generation of DCs, but SLP-76-deficient BMDCs adhere poorly to fibronectin, suggesting impaired integrin function. Consistent with impaired adhesion, cutaneous SLP-76-deficient DCs leave ear tissue at an elevated frequency compared with wild-type DCs. In addition, the pattern and distribution of actin-based podosome formation are visibly altered in BMDCs lacking SLP-76 following integrin engagement. SLP-76-deficient BMDCs manifest multiple signaling defects following integrin ligation, including reduced global tyrosine phosphorylation and markedly impaired phosphorylation of p44/42 MAPK (ERK1/2). These data implicate SLP-76 as an important molecular intermediate in the signaling pathways regulating multiple integrin-dependent DC functions, and add to the growing body of evidence that hemopoietic cells may use unique molecular intermediates and mechanisms for regulating integrin signaling.
Collapse
Affiliation(s)
- Nancy A Luckashenak
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | | | |
Collapse
|
95
|
Evans IR, Renne T, Gertler FB, Nobes CD. Ena/VASP proteins mediate repulsion from ephrin ligands. J Cell Sci 2006; 120:289-98. [PMID: 17179204 DOI: 10.1242/jcs.03333] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Ena/VASP proteins negatively regulate cell motility and contribute to repulsion from several guidance cues; however, there is currently no evidence for a role downstream of Eph receptors. Eph receptors mediate repulsion from ephrins at sites of intercellular contact during several developmental migrations. For example, the expression of ephrin-Bs in posterior halves of somites restricts neural crest cell migration to the anterior halves. Here we show that ephrin-B2 destabilises neural crest cell lamellipodia when presented in a substrate-bound or soluble form. Our timelapse studies show that repulsive events are associated with the rearward collapse and subsequent loss of lamellipodia as membrane ruffles. We hypothesise that Ena/VASP proteins contribute to repulsion from ephrins by destabilising cellular protrusions and show that Ena/VASP-deficient fibroblasts exhibit reduced repulsion from both ephrin-A and ephrin-B stripes compared to wild-type controls. Moreover, when EphB4 and ephrin-B2 were expressed in neighbouring Swiss 3T3 fibroblasts, VASP and Mena co-accumulated with activated Eph receptors at protrusions formed by EphB4-expressing cells. Sequestration of Ena/VASP proteins away from the periphery of these cells inhibited Eph receptor internalisation, a process that facilitates repulsion. Our results suggest that Ena/VASP proteins regulate ephrin-induced Eph receptor signalling events, possibly by destabilising lamellipodial protrusions.
Collapse
Affiliation(s)
- Iwan R Evans
- Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | | | | | | |
Collapse
|
96
|
Abstract
The cellular functions of the actin cytoskeleton require precise regulation of both the initiation of actin polymerization and the organization of the resulting filaments. The actin-related protein-2/3 (ARP2/3) complex is a central player in this regulation. A decade of study has begun to shed light on the molecular mechanisms by which this powerful machine controls the polymerization, organization and recycling of actin-filament networks, both in vitro and in the living cell.
Collapse
Affiliation(s)
- Erin D Goley
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | | |
Collapse
|
97
|
Seth A, Otomo C, Rosen MK. Autoinhibition regulates cellular localization and actin assembly activity of the diaphanous-related formins FRLalpha and mDia1. ACTA ACUST UNITED AC 2006; 174:701-13. [PMID: 16943183 PMCID: PMC2064313 DOI: 10.1083/jcb.200605006] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Diaphanous-related formins (DRFs) are key regulators of actin cytoskeletal dynamics whose in vitro actin assembly activities are thought to be regulated by autoinhibition. However, the in vivo consequences of autoinhibition and the involvement of DRFs in specific biological processes are not well understood. In this study, we show that in the DRFs FRLα (formin-related gene in leukocytes α) and mouse diaphanous 1, autoinhibition regulates a novel membrane localization activity in vivo as well as actin assembly activity in vitro. In FRLα, the Rho family guanosine triphosphatase Cdc42 relieves the autoinhibition of both membrane localization and biochemical actin assembly activities. FRLα is required for efficient Fc-γ receptor–mediated phagocytosis and is recruited to the phagocytic cup by Cdc42. These results suggest that mutual autoinhibition of biochemical activity and cellular localization may be a general regulatory principle for DRFs and demonstrate a novel role for formins in immune function.
Collapse
Affiliation(s)
- Abhinav Seth
- Department of Biochemistry, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | | | | |
Collapse
|
98
|
Kasirer-Friede A, Moran B, Nagrampa-Orje J, Swanson K, Ruggeri ZM, Schraven B, Neel BG, Koretzky G, Shattil SJ. ADAP is required for normal alphaIIbbeta3 activation by VWF/GP Ib-IX-V and other agonists. Blood 2006; 109:1018-25. [PMID: 17003372 PMCID: PMC1785130 DOI: 10.1182/blood-2006-05-022301] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Interaction between von Willebrand factor (VWF) and platelet GP Ib-IX-V is required for hemostasis, in part because intracellular signals from VWF/GP Ib-IX-V activate the ligand-binding function of integrin alphaIIbbeta3. Because they also induce tyrosine phosphorylation of the ADAP adapter, we investigated ADAP's role in GP Ib-IX-V signal transduction. Fibrinogen or ligand-mimetic POW-2 Fab binding to alphaIIbbeta3 was stimulated by adhesion of ADAP+/+ murine platelets to dimeric VWF A1A2 but was significantly reduced in ADAP-/- platelets (P<.01). alphaIIbbeta3 activation by ADP or a Par4 thrombin receptor agonist was also decreased in ADAP-/- platelets. ADAP stabilized the expression of another adapter, SKAP-HOM, via interaction with the latter's SH3 domain. However, no abnormalities in alphaIIbbeta3 activation were observed in SKAP-HOM-/- platelets, which express normal ADAP levels, further implicating ADAP as a modulator of alphaIIbbeta3 function. Under shear flow conditions over a combined surface of VWF A1A2 and fibronectin to test interactions involving GP Ib-IX-V and alphaIIbbeta3, respectively, ADAP-/- platelets displayed reduced alphaIIbbeta3-dependent stable adhesion. Furthermore, ADAP-/- mice demonstrated increased rebleeding from tail wounds. These studies establish ADAP as a component of inside-out signaling pathways that couple GP Ib-IX-V and other platelet agonist receptors to alphaIIbbeta3 activation.
Collapse
Affiliation(s)
- Ana Kasirer-Friede
- Department of Medicine, University of California San Diego, La Jolla 92093-0726, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Stradal TEB, Pusch R, Kliche S. Molecular regulation of cytoskeletal rearrangements during T cell signalling. Results Probl Cell Differ 2006; 43:219-44. [PMID: 17068974 DOI: 10.1007/400_022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Regulation of the cytoskeleton in cells of the haematopoietic system is essential for fulfilling diverse tasks such as migration towards a chemoattractant, phagocytosis or cell-cell communication. This is particularly true for the many types of T cells, which are at the foundation of the adaptive immune system in vertebrates. Deregulation of actin filament turnover is known to be involved in the development of severe immunodeficiencies or immunoproliferative diseases. Therefore, molecular dissection of signalling complexes and effector molecules, which leads to controlled cytoskeletal assembly, has been the focus of immunological research in the last decade. In the past, cytoskeletal remodelling was frequently understood as the finish line of signalling, while today it becomes increasingly evident that actin and microtubule dynamics are required for proper signal transmission in many processes such as T cell activation. Significant effort is made in many laboratories to further elucidate the contribution of cytoskeletal remodelling to immune function. The objective of this article is to summarise the current knowledge on how actin and microtubules are reorganised to support the formation of structures as diverse as the immunological synapse and peripheral protrusions during cell migration.
Collapse
Affiliation(s)
- Theresia E B Stradal
- Signalling and Motility Group, German Research Centre for Biotechnology (GBF), Braunschweig, Germany
| | | | | |
Collapse
|
100
|
Dong JH, Ying GX, Liu X, Wang WY, Wang Y, Ni ZM, Zhou CF. Lesion-induced gelsolin upregulation in the hippocampus following entorhinal deafferentation. Hippocampus 2006; 16:91-100. [PMID: 16261560 DOI: 10.1002/hipo.20134] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gelsolin is an actin-binding protein that regulates actin filament-severing and capping activity in the various processes of cell motilities. Here, we report the expression of gelsolin mRNA and protein in the hippocampus following transections of the entorhinal afferents. Northern blot analysis showed that transcript of gelsolin was upregulated in a transient manner in the deafferented hippocampus by 1.3-, 2.1-, 1.7-, and 1.1- folds of controls, respectively, at 1, 3, 7, and 15 days postlesion (dpl). In situ hybridization and immunohistochemistry confirmed the temporal expression of gelsolin specifically in the entorhinally denervated zones: the stratum lacunosum-molecular (SLM) of the hippocampus and the outer molecular layer (OML) of the dentate gyrus (DG), which initiated as early as at 1 dpl, reached the maximum at 3 dpl, remained prominently elevated by 7 dpl, and discernibly higher at 15 dpl than that of controls. Double labeling of either gelsolin mRNA or protein with markers of glial cells (Griffonia simplicifolia IB4 and CD11b for microglial cells, GFAP for astroglial cells) revealed that gelsolin was highly expressed by both activated microglia and astrocytes. The results suggest that the spatiotemporal upregulation of gelsolin in the hippocampus is induced by entorhinal deafferentation, and that gelsolin would participate in the activation processes of both microglial and astroglial cells and thereby, indirectly play important roles in the subsequent lesion-induced neural reorganization in the hippocampus following entorhinal deafferentation.
Collapse
Affiliation(s)
- Jing-Hui Dong
- Key Laboratory of Neurobiology, Shanghai Institute of Physiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|