51
|
Sørensen M, Hjortebjerg D, Eriksen KT, Ketzel M, Tjønneland A, Overvad K, Raaschou-Nielsen O. Exposure to long-term air pollution and road traffic noise in relation to cholesterol: A cross-sectional study. ENVIRONMENT INTERNATIONAL 2015; 85:238-243. [PMID: 26425807 DOI: 10.1016/j.envint.2015.09.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/18/2015] [Accepted: 09/20/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Exposure to traffic noise and air pollution have both been associated with cardiovascular disease, though the mechanisms behind are not yet clear. OBJECTIVES We aimed to investigate whether the two exposures were associated with levels of cholesterol in a cross-sectional design. METHODS In 1993–1997, 39,863 participants aged 50–64 year and living in the Greater Copenhagen area were enrolled in a population-based cohort study. For each participant, non-fasting total cholesterol was determined in whole blood samples on the day of enrolment. Residential addresses 5-years preceding enrolment were identified in a national register and road traffic noise (Lden) were modeled for all addresses. For air pollution, nitrogen dioxide (NO2) was modeled at all addresses using a dispersion model and PM2.5 was modeled at all enrolment addresses using a land-use regression model. Analyses were done using linear regression with adjustment for potential confounders as well as mutual adjustment for the three exposures. RESULTS Baseline residential exposure to the interquartile range of road traffic noise,NO2 and PM2.5 was associated with a 0.58 mg/dl (95% confidence interval: −0.09; 1.25), a 0.68 mg/dl (0.22; 1.16) and a 0.78 mg/dl (0.22; 1.34) higher level of total cholesterol in single pollutant models, respectively. In two pollutant models with adjustment for noise in air pollution models and vice versa, the association between air pollution and cholesterol remained for both air pollution variables (NO2: 0.72 (0.11; 1.34); PM2.5: 0.70 (0.12; 1.28) mg/dl), whereas there was no association for noise (−0.08mg/dl). In three-pollutant models (NO2, PM2.5 and road traffic noise), estimates for NO2 and PM2.5 were slightly diminished (NO2: 0.58 (−0.05; 1.22); PM2.5: 0.57 (−0.02; 1.17) mg/dl). CONCLUSIONS Air pollution and possibly also road traffic noise may be associated with slightly higher levels of cholesterol, though associations for the two exposures were difficult to separate.
Collapse
Affiliation(s)
- Mette Sørensen
- Diet, Genes and Environment, Danish Cancer Society Research Centre, Copenhagen, Denmark.
| | - Dorrit Hjortebjerg
- Diet, Genes and Environment, Danish Cancer Society Research Centre, Copenhagen, Denmark
| | - Kirsten T Eriksen
- Diet, Genes and Environment, Danish Cancer Society Research Centre, Copenhagen, Denmark
| | - Matthias Ketzel
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Anne Tjønneland
- Diet, Genes and Environment, Danish Cancer Society Research Centre, Copenhagen, Denmark
| | - Kim Overvad
- Department of Public Health, Section for Epidemiology, Aarhus University, Aarhus, Denmark; Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark
| | - Ole Raaschou-Nielsen
- Diet, Genes and Environment, Danish Cancer Society Research Centre, Copenhagen, Denmark; Department of Environmental Science, Aarhus University, Roskilde, Denmark
| |
Collapse
|
52
|
Adar SD, D'Souza J, Mendelsohn-Victor K, Jacobs DR, Cushman M, Sheppard L, Thorne PS, Burke GL, Daviglus ML, Szpiro AA, Diez Roux AV, Kaufman JD, Larson TV. Markers of inflammation and coagulation after long-term exposure to coarse particulate matter: a cross-sectional analysis from the multi-ethnic study of atherosclerosis. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:541-8. [PMID: 25616153 PMCID: PMC4455582 DOI: 10.1289/ehp.1308069] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 01/16/2015] [Indexed: 05/11/2023]
Abstract
BACKGROUND Toxicological research suggests that coarse particles (PM10-2.5) are inflammatory, but responses are complex and may be best summarized by multiple inflammatory markers. Few human studies have investigated associations with PM10-2.5 and, of those, none have explored long-term exposures. Here we examine long-term associations with inflammation and coagulation in the Multi-Ethnic Study of Atherosclerosis. METHODS Participants included 3,295 adults (45-84 years of age) from three metropolitan areas. Site-specific spatial models were used to estimate 5-year concentrations of PM10-2.5 mass and copper, zinc, phosphorus, silicon, and endotoxin found in PM10-2.5. Outcomes included interleukin-6, C-reactive protein, fibrinogen, total homocysteine, D-dimer, factor VIII, plasmin-antiplasmin complex, and inflammation and coagulation scores. We used multivariable regression with multiply imputed data to estimate associations while controlling for potential confounders, including co-pollutants such as fine particulate matter. RESULTS Some limited evidence was found of relationships between inflammation and coagulation and PM10-2.5. Endotoxin was the PM10-2.5 component most strongly associated with inflammation, with an interquartile range (IQR) increase (0.08 EU/m3) associated with 0.15 (95% CI: 0.01, 0.28; p = 0.03) and 0.08 (95% CI: -0.07, 0.23; p = 0.28) higher inflammation scores before and after control for city, respectively. Copper was the component with the strongest association with coagulation, with a 4-ng/m3 increase associated with 0.19 (95% CI: 0.08, 0.30; p = 0.0008) and 0.12 (95% CI: -0.05, 0.30; p = 0.16) unit higher coagulation scores before and after city adjustment, respectively. CONCLUSIONS Our cross-sectional analysis provided some evidence that long-term PM10-2.5 exposure was associated with inflammation and coagulation, but associations were modest and depended on particle composition.
Collapse
Affiliation(s)
- Sara D Adar
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Zhang W. Nutrition Solutions to Counter Health Impact of Air Pollution: Scientific Evidence of Marine Omega-3 Fatty Acids and Vitamins Alleviating Some Harmful Effects of PM2.5. ACTA ACUST UNITED AC 2015. [DOI: 10.15436/2377-0619.15.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
54
|
Klümper C, Krämer U, Lehmann I, von Berg A, Berdel D, Herberth G, Beckmann C, Link E, Heinrich J, Hoffmann B, Schins RPF. Air pollution and cytokine responsiveness in asthmatic and non-asthmatic children. ENVIRONMENTAL RESEARCH 2015; 138:381-90. [PMID: 25769127 DOI: 10.1016/j.envres.2015.02.034] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 02/23/2015] [Accepted: 02/26/2015] [Indexed: 05/23/2023]
Abstract
Epidemiological studies indicate that asthmatic children are more susceptible to traffic-related air pollution exposure than non-asthmatic children. Local and systemic inflammation in combination with oxidative stress have been suggested as a possible susceptibility factor. We investigated effect modification by asthma status for the association between air pollution exposure and systemic effects using whole blood cytokine responsiveness as an inflammatory marker. The study was nested within the two German birth cohort studies GINIplus and LISAplus and initially designed as a random sub-sample enriched with asthmatic children. Using data from 27 asthmatic and 59 non-asthmatic six-year-old children we measured the production of Interleukin-6 (IL)-6, IL-8, IL-10, monocyte chemotactic protein-1 (MCP-1), tumour necrosis factor-alpha (TNF-alpha) and interferon-gamma (IFN-gamma) in whole blood after ex-vivo stimulation with urban particulate matter (EHC-93). Air pollution exposure (nitrogen dioxide (NO2), nitrogen oxides (NOx), particulate matter with an aerodynamic diameter <10μm (PM10), particulate matter with an aerodynamic diameter <2.5μm (PM2.5mass), coarse particulate matter (PMcoarse) and PM2.5absorbance (PM2.5abs)) was modelled for children´s home addresses applying land-use regression. To assess effect modification by asthma status linear regression models with multiplicative interaction terms were used. In asthmatics exposure to NO2 was associated with higher production of pro-inflammatory cytokines: adjusted means ratio (MR) 2.22 (95% confidence interval 1.22-4.04) for IL-6 per 2.68µg/m³ NO2. The interaction term between asthma status and NO2 exposure was significant. Results for NOx, PM10, PM2.5mass and PM2.5abs were in the same direction. No association between air pollution and cytokine responsiveness was found in the group of non-asthmatic children and in the overall group. Traffic-related air pollution exposure is associated with higher pro-inflammatory cytokine responsiveness in whole blood of asthmatic children.
Collapse
Affiliation(s)
- Claudia Klümper
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.
| | - Ursula Krämer
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Irina Lehmann
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Immunology, Leipzig, Germany
| | - Andrea von Berg
- Research Institute, Children´s Department, Marien-Hospital, Wesel, Germany
| | - Dietrich Berdel
- Research Institute, Children´s Department, Marien-Hospital, Wesel, Germany
| | - Gunda Herberth
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Immunology, Leipzig, Germany
| | - Christina Beckmann
- Research Institute, Children´s Department, Marien-Hospital, Wesel, Germany
| | - Elke Link
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Joachim Heinrich
- Helmholtz Centre Munich, German Research Centre for Environmental Health, Institute of Epidemiology, Munich, Germany
| | - Barbara Hoffmann
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany; Heinrich-Heine University of Düsseldorf, Medical Faculty, Deanery of Medicine, Düsseldorf, Germany
| | - Roel P F Schins
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| |
Collapse
|
55
|
Brocato J, Hernandez M, Laulicht F, Sun H, Shamy M, Alghamdi MA, Khoder MI, Kluz T, Chen LC, Costa M. In Vivo Exposures to Particulate Matter Collected from Saudi Arabia or Nickel Chloride Display Similar Dysregulation of Metabolic Syndrome Genes. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2015; 78:1421-36. [PMID: 26692068 PMCID: PMC4709028 DOI: 10.1080/15287394.2015.1095689] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Particulate matter (PM) exposures have been linked to mortality, low birth weights, hospital admissions, and diseases associated with metabolic syndrome, including diabetes mellitus, cardiovascular disease, and obesity. In a previous in vitro and in vivo study, data demonstrated that PM(10μm) collected from Jeddah, Saudi Arabia (PMSA), altered expression of genes involved in lipid and cholesterol metabolism, as well as many other genes associated with metabolic disorders. PMSA contains a relatively high concentration of nickel (Ni), known to be linked to several metabolic disorders. In order to evaluate whether Ni and PM exposures induce similar gene expression profiles, mice were exposed to 100 μg/50 μl PM(SA) (PM-100), 50 μg/50 μl nickel chloride (Ni-50), or 100 μg/50 μl nickel chloride (Ni-100) twice per week for 4 wk and hepatic gene expression changes were determined. Ultimately, 55 of the same genes were altered in all 3 exposures. However, where the two Ni groups differed markedly was in the regulation (up or down) of these genes. Ni-100 and PM-100 groups displayed similar regulations, whereby 104 of the 107 genes were similarly modulated. Many of the 107 genes are involved in metabolic syndrome and include ALDH4A1, BCO2, CYP1A, CYP2U, TOP2A. In addition, the top affected pathways, such as fatty acid α-oxidation, and lipid and carbohydrate metabolism, are involved in metabolic diseases. Most notably, the top diseased outcome affected by these changes in gene expression was cardiovascular disease. Given these data, it appears that Ni and PM(SA) exposures display similar gene expression profiles, modulating the expression of genes involved in metabolic disorders.
Collapse
Affiliation(s)
- Jason Brocato
- Department of Environmental Medicine, NYU School of Medicine, NY, NY, 10016 USA
| | - Michelle Hernandez
- Department of Environmental Medicine, NYU School of Medicine, NY, NY, 10016 USA
| | - Freda Laulicht
- Department of Environmental Medicine, NYU School of Medicine, NY, NY, 10016 USA
| | - Hong Sun
- Department of Environmental Medicine, NYU School of Medicine, NY, NY, 10016 USA
| | - Magdy Shamy
- Department of Environmental Sciences, Faculty of Meteorology, Environmental and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mansour A. Alghamdi
- Department of Environmental Sciences, Faculty of Meteorology, Environmental and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mamdouh I. Khoder
- Department of Environmental Sciences, Faculty of Meteorology, Environmental and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Thomas Kluz
- Department of Environmental Medicine, NYU School of Medicine, NY, NY, 10016 USA
| | - Lung-Chi Chen
- Department of Environmental Medicine, NYU School of Medicine, NY, NY, 10016 USA
| | - Max Costa
- Department of Environmental Medicine, NYU School of Medicine, NY, NY, 10016 USA
| |
Collapse
|
56
|
Chen YC, Weng YH, Chiu YW, Yang CY. Short-Term Effects of Coarse Particulate Matter on Hospital Admissions for Cardiovascular Diseases: A Case-Crossover Study in a Tropical City. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2015; 78:1241-53. [PMID: 26408041 DOI: 10.1080/15287394.2015.1083520] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
This study was undertaken to determine whether there was an association between coarse particles (PM2.5-10) levels and frequency of hospital admissions for cardiovascular diseases (CVD) in Kaohsiung, Taiwan. Hospital admissions for CVD, including ischemic heart disease (IHD), stroke, congestive heart failure (CHF), and arrhythmias, and ambient air pollution data levels for Kaohsiung were obtained for the period 2006-2010. The relative risk of hospital admissions for CVD was estimated using a case-crossover approach, controlling for weather variables, day of the week, seasonality, and long-term time trends. For the single-pollutant model (without adjustment for other pollutants), increased rates of admissions for CVD were significantly associated with higher coarse PM levels only on cool days (< 25°C), with a 10-μg/m(3) elevation in PM2.5-10 concentrations associated with a 3% (95% CI = 2-4%) rise in IHD admissions, 5% (95% CI = 4-6%) increase in stroke admissions, 3% (95% CI = 1-6%) elevation in CHF admissions, and 3% (95% CI = 0-6%) rise in arrhythmias admissions. No significant associations were found between coarse particle levels and number of hospital admissions for CVD on warm days. In the two-pollutant models, PM2.5-10 levels remained significantly correlated with higher rate of CVD admissions even controlling for sulfur dioxide, nitrogen dioxide, carbon monoxide, or ozone on cool days. Compared to the effect estimate associated with a 10-μg/m(3) increase in PM2.5 levels, effect estimates of frequency of CVD-related admissions associated with a 10-μg/m(3) rise in coarse PM levels were weaker. This study provides evidence that higher levels of PM2.5-10 enhance the risk of hospital admissions for CVD.
Collapse
Affiliation(s)
- Ying-Chen Chen
- a Department of Public Health, College of Health Sciences , Kaohsiung Medical University , Kaohsiung , Taiwan
| | - Yi-Hao Weng
- b Division of Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital , Chang Gung University College of Medicine , Taipei , Taiwan
| | - Ya-Wen Chiu
- c Master Program in Global Health and Development, College of Public Health and Nutrition , Taipei Medical University , Taipei , Taiwan
| | - Chun-Yuh Yang
- d Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan, and Division of Environmental Health and Occupational Medicine , National Health Research Institute , Miaoli , Taiwan
| |
Collapse
|
57
|
Møller P, Danielsen PH, Karottki DG, Jantzen K, Roursgaard M, Klingberg H, Jensen DM, Christophersen DV, Hemmingsen JG, Cao Y, Loft S. Oxidative stress and inflammation generated DNA damage by exposure to air pollution particles. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 762:133-66. [DOI: 10.1016/j.mrrev.2014.09.001] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 09/04/2014] [Accepted: 09/04/2014] [Indexed: 01/09/2023]
|
58
|
Fireman E, Bliznuk D, Schwarz Y, Soferman R, Kivity S. Biological monitoring of particulate matter accumulated in the lungs of urban asthmatic children in the Tel-Aviv area. Int Arch Occup Environ Health 2014; 88:443-53. [PMID: 25138777 DOI: 10.1007/s00420-014-0972-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 08/07/2014] [Indexed: 11/27/2022]
Abstract
PURPOSE Lung inflammation from exposure to airborne particulate matter (PM) may be responsible for morbidity in asthma, but several studies using environmental monitoring data showed inconsistent results. Thus, the aim of this study was to evaluate the capability of induced sputum (IS) technology in order to biologically monitor PM in the lungs of urban asthmatic children. METHODS We collected clinical, demographic, biological and environmental monitoring data on 136 children referred for asthma evaluations. The study participants were divided into two groups according to IS eosinophil counts of <3% (non-eosinophilic inflammation, n = 52) and ≥3% (eosinophilic inflammation, n = 84). RESULTS The eosinophilic group displays significantly higher levels of fractional exhaled nitric oxide than the non-eosinophilic one (58.8 ± 47.5 vs 28.9 ± 34.2 ppm, p = 0.007). Particles (0-2.5 and 0-5 µm) comprised a strong risk factor for eosinophilic inflammation in IS (≥3%). Children with >80% of particles (0-2.5 µm) out of the total PM accumulated in the airways displayed the highest OR 10.7 (CI 2.052-56.4 p = 0.005) for an existing eosinophilic inflammation. Heme oxygenase-1 (HO-1) enzyme levels in IS positively correlated with % eosinophils and with particles in IS ranging between 2 and 3 μm. The level of HO-1 enzyme activity and FEV1/FVC in children with <3% eosinophils, but not ≥3%, was positively and significantly correlated, showing a protective effect of HO-1. CONCLUSION Accumulation of PM involves oxidative stress pathways and is a risk factor for developing eosinophilic inflammation in asthmatic children. IS can biologically monitor this process.
Collapse
Affiliation(s)
- Elizabeth Fireman
- Laboratory of Pulmonary and Allergic Diseases, Tel-Aviv Sourasky Medical Center Affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel,
| | | | | | | | | |
Collapse
|
59
|
Adar SD, Filigrana PA, Clements N, Peel JL. Ambient Coarse Particulate Matter and Human Health: A Systematic Review and Meta-Analysis. Curr Environ Health Rep 2014; 1:258-274. [PMID: 25152864 PMCID: PMC4129238 DOI: 10.1007/s40572-014-0022-z] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Airborne particles have been linked to increased mortality and morbidity. As most research has focused on fine particles (PM2.5), the health implications of coarse particles (PM10-2.5) are not well understood. We conducted a systematic review and meta-analysis of associations for short- and long-term PM10-2.5 concentrations with mortality and hospital admissions. Using 23 mortality and 10 hospital admissions studies, we documented suggestive evidence of increased morbidity and mortality in relation to higher short-term PM10-2.5 concentrations, with stronger relationships for respiratory than cardiovascular endpoints. Reported associations were highly heterogeneous, however, especially by geographic region and average PM10-2.5 concentrations. Adjustment for PM2.5 and publication bias resulted in weaker and less precise effect estimates, although positive associations remained for short-term PM10-2.5 concentrations. Inconsistent relationships between effect estimates for PM10-2.5 and correlations between PM10-2.5 and PM2.5 concentrations, however, indicate that PM10-2.5 associations cannot be solely explained by co-exposure to PM2.5. While suggestive evidence was found of increased mortality with long-term PM10-2.5 concentrations, these associations were not robust to control for PM2.5. Additional research is required to better understand sources of heterogeneity of associations between PM10-2.5 and adverse health outcomes.
Collapse
Affiliation(s)
- Sara D. Adar
- Department of Epidemiology, University of Michigan, School of Public Health, 1420 Washington Heights – SPHII-5539, Ann Arbor, MI 48109-2029 USA
| | - Paola A. Filigrana
- Department of Epidemiology, University of Michigan, School of Public Health, 1420 Washington Heights – SPHII-5539, Ann Arbor, MI 48109-2029 USA
| | - Nicholas Clements
- Department of Mechanical Engineering, University of Colorado, 135 30th St., Boulder, CO 80305 USA
| | - Jennifer L. Peel
- Department of Environmental and Radiological Health Sciences, Colorado State University, Campus Delivery 1681, Fort Collins, CO 80523-1681 USA
| |
Collapse
|
60
|
Meier R, Cascio WE, Ghio AJ, Wild P, Danuser B, Riediker M. Associations of short-term particle and noise exposures with markers of cardiovascular and respiratory health among highway maintenance workers. ENVIRONMENTAL HEALTH PERSPECTIVES 2014; 122:726-32. [PMID: 24647077 PMCID: PMC4080522 DOI: 10.1289/ehp.1307100] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 03/14/2014] [Indexed: 05/04/2023]
Abstract
BACKGROUND Highway maintenance workers are constantly and simultaneously exposed to traffic-related particle and noise emissions, both of which have been linked to increased cardiovascular morbidity and mortality in population-based epidemiology studies. OBJECTIVES We aimed to investigate short-term health effects related to particle and noise exposure. METHODS We monitored 18 maintenance workers, during as many as five 24-hr periods from a total of 50 observation days. We measured their exposure to fine particulate matter (diameter ≤ 2.5 μm; PM2.5), ultrafine particles, and noise, and the cardiopulmonary health end points: blood pressure, proinflammatory and prothrombotic markers in the blood, lung function, and fractional exhaled nitric oxide (FeNO) measured approximately 15 hr after work. Heart rate variability was assessed during a sleep period approximately 10 hr after work. RESULTS PM2.5 exposure was significantly associated with C-reactive protein and serum amyloid A, and was negatively associated with tumor necrosis factor α. None of the particle metrics were significantly associated with von Willebrand factor or tissue factor expression. PM2.5 and work noise were associated with markers of increased heart rate variability, and with increased high-frequency and low-frequency power. Systolic and diastolic blood pressure on the following morning were significantly associated with noise exposure after work, and nonsignificantly associated with PM2.5. We observed no significant associations between any of the exposures and lung function or FeNO. CONCLUSIONS Our findings suggest that exposure to particles and noise during highway maintenance work might pose a cardiovascular health risk. Actions to reduce these exposures could lead to better health for this population of workers.
Collapse
Affiliation(s)
- Reto Meier
- Institute for Work and Health (Institut universitaire romand de Santé au Travail), University of Lausanne and University of Geneva, Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
61
|
Zhao Y, Lin Z, Jia R, Li G, Xi Z, Wang D. Transgenerational effects of traffic-related fine particulate matter (PM₂.₅) on nematode Caenorhabditis elegans. JOURNAL OF HAZARDOUS MATERIALS 2014; 274:106-114. [PMID: 24769847 DOI: 10.1016/j.jhazmat.2014.03.064] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/21/2014] [Accepted: 03/28/2014] [Indexed: 06/03/2023]
Abstract
Numerous studies have demonstrated the toxic effects of fine particle matter less than 2.5 μm (PM2.5) on health of human. However, little information is available on PM2.5 ecotoxicity. We employed Caenorhabditis elegans to investigate the adverse effects of traffic-related PM2.5 on exposed animals and their progeny. Acute exposure to high concentrations of PM2.5 in the range of mg/L caused adverse effects on development, lifespan, reproduction, and locomotion behavior of nematodes. In contrast, prolonged exposure to low concentrations of PM2.5 in the range of μg/L resulted in adverse effects on development, lifespan, reproduction, locomotion behavior, and intestinal development of nematodes. Prolonged exposure to PM2.5 could even cause adverse effects on lifespan, reproduction, locomotion behavior, and intestinal development in progeny of exposed nematodes. PM2.5 toxicity was only partially recovered in progeny of exposed nematodes. For the PM2.5 toxicity on nematodes and their progeny, we hypothesize that it might be the combinational effects of oxidative stress, damage on intestinal barrier, and abnormal defecation behavior. Our data here imply the potential toxic effects of long-term exposure to traffic-related PM2.5 on environmental organisms. Our results further highlight the possible crucial roles of biological barrier and defecation behavior in regulating the PM2.5 toxicity.
Collapse
Affiliation(s)
- Yunli Zhao
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School of Southeast University, Nanjing 210009, China
| | - Zhiqing Lin
- Institute of Health and Environmental Medicine, Key Laboratory of Risk Assessment and Control Technology for Environmental & Food Safety, Tianjin 300050, China
| | - Ruhan Jia
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School of Southeast University, Nanjing 210009, China
| | - Guojun Li
- Beijing Research Center for Prevention Medicine, Beijing 100013, China
| | - Zhuge Xi
- Institute of Health and Environmental Medicine, Key Laboratory of Risk Assessment and Control Technology for Environmental & Food Safety, Tianjin 300050, China.
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School of Southeast University, Nanjing 210009, China.
| |
Collapse
|
62
|
Brook RD, Bard RL, Morishita M, Dvonch JT, Wang L, Yang HY, Spino C, Mukherjee B, Kaplan MJ, Yalavarthi S, Oral EA, Ajluni N, Sun Q, Brook JR, Harkema J, Rajagopalan S. Hemodynamic, autonomic, and vascular effects of exposure to coarse particulate matter air pollution from a rural location. ENVIRONMENTAL HEALTH PERSPECTIVES 2014; 122:624-30. [PMID: 24618231 PMCID: PMC4050508 DOI: 10.1289/ehp.1306595] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 03/10/2014] [Indexed: 05/20/2023]
Abstract
BACKGROUND Fine particulate matter (PM) air pollution is associated with numerous adverse health effects, including increased blood pressure (BP) and vascular dysfunction. Coarse PM substantially contributes to global air pollution, yet differs in characteristics from fine particles and is currently not regulated. However, the cardiovascular (CV) impacts of coarse PM exposure remain largely unknown. OBJECTIVES Our goal was to elucidate whether coarse PM, like fine PM, is itself capable of eliciting adverse CV responses. METHODS We performed a randomized double-blind crossover study in which 32 healthy adults (25.9 ± 6.6 years of age) were exposed to concentrated ambient coarse particles (CAP; 76.2 ± 51.5 μg/m(3)) in a rural location and filtered air (FA) for 2 hr. We measured CV outcomes during, immediately after, and 2 hr postexposures. RESULTS Both systolic (mean difference = 0.32 mmHg; 95% CI: 0.05, 0.58; p = 0.021) and diastolic BP (0.27 mmHg; 95% CI: 0.003, 0.53; p = 0.05) linearly increased per 10 min of exposure during the inhalation of coarse CAP when compared with changes during FA exposure. Heart rate was on average higher (4.1 bpm; 95% CI: 3.06, 5.12; p < 0.0001) and the ratio of low-to-high frequency heart rate variability increased (0.24; 95% CI: 0.07, 0.41; p = 0.007) during coarse particle versus FA exposure. Other outcomes (brachial flow-mediated dilatation, microvascular reactive hyperemia index, aortic hemodynamics, pulse wave velocity) were not differentially altered by the exposures. CONCLUSIONS Inhalation of coarse PM from a rural location is associated with a rapid elevation in BP and heart rate during exposure, likely due to the triggering of autonomic imbalance. These findings add mechanistic evidence supporting the biological plausibility that coarse particles could contribute to the triggering of acute CV events.
Collapse
Affiliation(s)
- Robert D Brook
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Weber F, Kowarik I, Säumel I. Herbaceous plants as filters: immobilization of particulates along urban street corridors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 186:234-40. [PMID: 24398336 DOI: 10.1016/j.envpol.2013.12.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 12/12/2013] [Accepted: 12/15/2013] [Indexed: 05/06/2023]
Abstract
Among air pollutants, particulate matter (PM) is considered to be the most serious threat to human health. Plants provide ecosystem services in urban areas, including reducing levels of PM by providing a surface for deposition and immobilization. While previous studies have mostly addressed woody species, we focus on herbaceous roadside vegetation and assess the role of species traits such as leaf surface roughness or hairiness for the immobilization of PM. We found that PM deposition patterns on plant surfaces reflect site-specific traffic densities and that strong differences in particulate deposition are present among species. The amount of immobilized PM differed according to particle type and size and was related to specific plant species traits. Our study suggests that herbaceous vegetation immobilizes a significant amount of the air pollutants relevant to human health and that increasing biodiversity of roadside vegetation supports air filtration and thus healthier conditions along street corridors.
Collapse
Affiliation(s)
- Frauke Weber
- Department of Ecology, Chair of Ecosystem Science/Plant Ecology, Technische Universität Berlin, Rothenburgstr. 12, D-12165 Berlin, Germany.
| | - Ingo Kowarik
- Department of Ecology, Chair of Ecosystem Science/Plant Ecology, Technische Universität Berlin, Rothenburgstr. 12, D-12165 Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195 Berlin, Germany
| | - Ina Säumel
- Department of Ecology, Chair of Ecosystem Science/Plant Ecology, Technische Universität Berlin, Rothenburgstr. 12, D-12165 Berlin, Germany; Department of Ecology, Chair of Ecological Impact Research and Ecotoxicology, Technische Universität Berlin, Ernst Reuter Platz 1, D-10587 Berlin, Germany
| |
Collapse
|
64
|
Lippmann M. Toxicological and epidemiological studies of cardiovascular effects of ambient air fine particulate matter (PM2.5) and its chemical components: coherence and public health implications. Crit Rev Toxicol 2014; 44:299-347. [PMID: 24494826 DOI: 10.3109/10408444.2013.861796] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Recent investigations on PM2.5 constituents' effects in community residents have substantially enhanced our knowledge on the impacts of specific components, especially the HEI-sponsored National Particle Toxicity Component (NPACT) studies at NYU and UW-LRRI that addressed the impact of long-term PM2.5 exposure on cardiovascular disease (CVD) effects. NYU's mouse inhalation studies at five sites showed substantial variations in aortic plaque progression by geographic region that was coherent with the regional variation in annual IHD mortality in the ACS-II cohort, with both the human and mouse responses being primarily attributable to the coal combustion source category. The UW regressions of associations of CVD events and mortality in the WHI cohort, and of CIMT and CAC progression in the MESA cohort, indicated that [Formula: see text] had stronger associations with CVD-related human responses than OC, EC, or Si. The LRRI's mice had CVD-related biomarker responses to [Formula: see text]. NYU also identified components most closely associated with daily hospital admissions (OC, EC, Cu from traffic and Ni and V from residual oil). For daily mortality, they were from coal combustion ([Formula: see text], Se, and As). While the recent NPACT research on PM2.5 components that affect CVD has clearly filled some major knowledge gaps, and helped to define remaining uncertainties, much more knowledge is needed on the effects in other organ systems if we are to identify and characterize the most effective and efficient means for reducing the still considerable adverse health impacts of ambient air PM. More comprehensive speciation data are needed for better definition of human responses.
Collapse
Affiliation(s)
- Morton Lippmann
- Department of Environmental Medicine, New York University School of Medicine , Tuxedo, NY , USA
| |
Collapse
|
65
|
Relationships among smoking habits, airflow limitations, and metabolic abnormalities in school workers. PLoS One 2013; 8:e81145. [PMID: 24312268 PMCID: PMC3843673 DOI: 10.1371/journal.pone.0081145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Accepted: 10/18/2013] [Indexed: 02/03/2023] Open
Abstract
Background Chronic obstructive pulmonary disease is caused mainly by habitual smoking and is common among elderly individuals. It involves not only airflow limitation but also metabolic disorders, leading to increased cardiovascular morbidity and mortality. Objective We evaluated relationships among smoking habits, airflow limitation, and metabolic abnormalities. Methods Between 2001 and 2008, 15,324 school workers (9700 males, 5624 females; age: ≥30 years) underwent medical checkups, including blood tests and spirometry. They also responded to a questionnaire on smoking habits and medical history. Results Airflow limitation was more prevalent in current smokers than in ex-smokers and never-smokers in men and women. The frequency of hypertriglyceridemia was higher in current smokers in all age groups, and those of low high-density-lipoprotein cholesterolemia and diabetes mellitus were higher in current smokers in age groups ≥ 40 s in men, but not in women. There were significant differences in the frequencies of metabolic abnormalities between subjects with airflow limitations and those without in women, but not in men. Smoking index was an independent factor associated with increased frequencies of hypertriglyceridemia (OR 1.015; 95% CI: 1.012–1.018; p<0.0001) and low high-density-lipoprotein cholesterolemia (1.013; 1.010–1.016; p<0.0001) in men. Length of smoking cessation was an independent factor associated with a decreased frequency of hypertriglyceridemia (0.984; 0.975–0.994; p = 0.007). Conclusions Habitual smoking causes high incidences of airflow limitation and metabolic abnormalities. Women, but not men, with airflow limitation had higher frequencies of metabolic abnormalities.
Collapse
|
66
|
Chen T, Jia G, Wei Y, Li J. Beijing ambient particle exposure accelerates atherosclerosis in ApoE knockout mice. Toxicol Lett 2013; 223:146-53. [PMID: 24045146 DOI: 10.1016/j.toxlet.2013.09.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 09/06/2013] [Accepted: 09/08/2013] [Indexed: 11/19/2022]
Abstract
BACKGROUND Air pollution is associated with significant adverse health effects including increased cardiovascular morbidity and mortality. However research on the cardiovascular effect of "real-world" exposure to ambient particulate matter (PM) in susceptible animal model is very limited. In this study, we aimed to investigate the association between Beijing ambient particle exposure and the atherosclerosis development in the apolipoprotein E knockout mice (ApoE(-/-) mice). METHODS Two parallel exposure chambers were used for whole body exposure among ApoE knockout mice. One of the chambers was supplied with untreated ambient air (PM group) and the other chamber was treated with ambient air filtered by high-efficiency particulate air (HEPA) filter (FA group). Twenty mice were divided into two groups and exposed to ambient PM (n=10 for PM group) or filtered air (n=10 for FA group) for two months from January 18th to March 18th, 2010. During the exposure, the mass concentrations of PM2.5 and PM10 in the two chambers were continuously monitored. Additionally, a receptor source apportionment model of chemical mass balance using 19 organic tracers was applied to determine the contributions of sources on the PM2.5 in terms of natural gas, diesel vehicle, gasoline vehicle, coal burning, vegetable debris, biomass burning and cooking. At the end of the two-month exposure, biomarkers of oxidative stress, inflammation and lipid metabolism in bronchoalveolar lavage fluid (BAL) and blood samples were determined and the plaque area on the aortic endothelium was quantified. RESULTS In the experiment, the concentrations of PM10 and PM2.5 in PM chamber were 99.45μg/m(3) and 61.0μg/m(3) respectively, while PM2.5 in FA chamber was 17.6μg/m(3). Source apportionment analysis by organic tracers showed that gasoline vehicle (39.9%) and coal burning (24.3%) emission were the two major sources contributing to the mass concentration of PM2.5 in Beijing. Among the ApoE knockout mice, the PM group were significantly higher than the FA group in terms of serum total cholesterol, low-density lipoprotein, tumor necrosis factor-alpha (TNF-alpha) and C-reactive protein as well as TNF-alpha and interleukin-6 in BAL. Also the total antioxidant capacity and oxidized low-density lipoprotein were significantly different between the two groups. In addition, pathological analysis of aortic arch reveals that the plaques area in the PM group increased significantly compared to the FA group. CONCLUSIONS Our results demonstrated that ambient PM exposure could induce considerable oxidative stress and systemic inflammation in ApoE knockout mice and contribute to the progression of atherosclerosis.
Collapse
Affiliation(s)
- Tian Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, PR China.
| | | | | | | |
Collapse
|
67
|
Williamson BJ, Rollinson G, Pirrie D. Automated mineralogical analysis of PM10: new parameters for assessing PM toxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:5570-5577. [PMID: 23627792 DOI: 10.1021/es305025e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This work provides the first automated mineralogical/phase assessment of urban airborne PM10 and a new method for determining particle surface mineralogy (PSM), which is a major control on PM toxicity in the lung. PM10 was analyzed on a TEOM filter (Aug.-Sept. 2006 collection) from the London Air Quality Network Bexley, East London, U.K. A cross-section of the filter was analyzed using a QEMSCAN automated mineralogical analysis system which provided 381,981 points of analysis for 14,525 particles over a period of 9 h 54 min. The method had a detection limit for individual mineral components of 0.05 ppm (by area). Particle shape and mineralogical characteristics were determined for particles in the size ranges PM(10-4), PM(4-2.5), and PM(2.5-0.8). The PM(2.5-0.8) fraction contained 2 orders of magnitude more mineral particles than the PM(10-4) and PM(4-2.5) fractions, however the PM(10-4) fraction forms 94% and 79% of the mineral mass and surface area, respectively. PSM of the PM10 was dominated by gypsum (36%), plagioclase (16%), Na sulphates (8%), and Fe-S-O phases (8%) in the PM(10-2.5), which may be important in explaining the toxicity of the coarse fraction. The wider implications of the study are discussed.
Collapse
Affiliation(s)
- Ben J Williamson
- University of Exeter, Camborne School of Mines, Penryn, Cornwall TR10 9EZ, United Kingdom.
| | | | | |
Collapse
|
68
|
Abstract
There is new evidence for ambient air pollution (AAP) leading to an increased incidence of respiratory diseases in adults. Research has demonstrated that co-exposures have the potential to dramatically augment the effects of AAP and lower the threshold of effect of a given pollutant. Interactions between genes related to oxidative stress and AAP seem to significantly alter the effect of AAP on an individual and population basis. A better definition of vulnerable populations may bolster local or regional efforts to remediate AAP. Advances in genetic research tools have the potential to identify candidate genes that can guide further research.
Collapse
Affiliation(s)
- Francesco Sava
- Air Pollution Exposure Laboratory, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver General Hospital (VGH)-Research Pavilion, Canada
| | | |
Collapse
|
69
|
Liu L, Breitner S, Schneider A, Cyrys J, Brüske I, Franck U, Schlink U, Marian Leitte A, Herbarth O, Wiedensohler A, Wehner B, Pan X, Wichmann HE, Peters A. Size-fractioned particulate air pollution and cardiovascular emergency room visits in Beijing, China. ENVIRONMENTAL RESEARCH 2013; 121:52-63. [PMID: 23375554 DOI: 10.1016/j.envres.2012.10.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 10/10/2012] [Accepted: 10/23/2012] [Indexed: 06/01/2023]
Abstract
BACKGROUND Although short-term exposure to ambient particulate matter has increasingly been linked with cardiovascular diseases, it is not quite clear how physical characteristics of particles, such as particle size may be responsible for the association. This study aimed at investigating whether daily changes in number or mass concentrations of accurately size-segregated particles in the range of 3nm-10μm are associated with daily cardiovascular emergency room visits in Beijing, China. METHODS Cardiovascular emergency room visit counts, particle size distribution data, and meteorological data were collected from Mar. 2004 to Dec. 2006. Particle size distribution data was used to calculate particle number concentration in different size fractions, which were then converted to particle mass concentration assuming spherical particles. We applied a time-series analysis approach. We evaluated lagged associations between cardiovascular emergency room visits and particulate number and mass concentration using distributed lag non-linear models up to lag 10. We calculated percentage changes of cardiovascular emergency room visits, together with 95% confidence intervals (CI), in association with an interquartile range (IQR, difference between the third and first quartile) increase of 11-day or 2-day moving average number or mass concentration of particulate matter within each size fraction, assuming linear effects. We put interaction terms between season and 11-day or 2-day average particulate concentration in the models to estimate the modification of the particle effects by season. RESULTS We observed delayed associations between number concentration of ultrafine particles and cardiovascular emergency room visits, mainly from lag 4 to lag 10, mostly contributed by 10-30nm and 30-50nm particles. An IQR (9040cm(-3)) increase in 11-day average number concentration of ultrafine particles was associated with a 7.2% (1.1-13.7%) increase in total, and a 7.9% (0.5-15.9%) increase in severe cardiovascular emergency room visits. The delayed effects of particulate mass concentration were small. Regarding immediate effects, 2-day average number concentration of Aitken mode (30-100nm) particles had strongest effects. An IQR (2269cm(-3)) increase in 2-day average number concentration of 30-50nm particles led to a 2.4% (-1.5-6.5%) increase in total, and a 1.7% (-2.9-6.5%) increase in severe cardiovascular emergency room visits. The immediate effects of mass concentration came mainly from 1000-2500nm particles. An IQR (11.7μgm(-3)) increase in 2-day average mass concentration of 1000-2500nm particles led to an around 2.4% (0.4-4.4%) increase in total, and a 1.7% (-0.8-4.2%) increase in severe cardiovascular emergency room visits. The lagged effect curves of number and mass concentrations of 100-300nm particles or 300-1000nm particles were quite similar, indicating that using particulate number or mass concentrations seemed not to affect the cardiovascular effect (of particles within one size fraction). The effects of number concentration of ultrafine particles, sub-micrometer particles (3-1000nm) and 10-30nm particles were substantially higher in winter comparing with in summer. CONCLUSIONS Elevated concentration levels of sub-micrometer particles were associated with increased cardiovascular morbidity. Ultrafine particles showed delayed effects, while accumulation mode (100-1000nm) particles showed immediate effects. Using number or mass concentrations did not affect the particle effects.
Collapse
Affiliation(s)
- Liqun Liu
- Helmholtz Zentrum München-German Research Center for Environmental Health, Institute of Epidemiology II, Neuherberg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Tong H, Rappold AG, Diaz-Sanchez D, Steck SE, Berntsen J, Cascio WE, Devlin RB, Samet JM. Omega-3 fatty acid supplementation appears to attenuate particulate air pollution-induced cardiac effects and lipid changes in healthy middle-aged adults. ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:952-7. [PMID: 22514211 PMCID: PMC3404661 DOI: 10.1289/ehp.1104472] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 04/10/2012] [Indexed: 05/19/2023]
Abstract
BACKGROUND Air pollution exposure has been associated with adverse cardiovascular health effects. Findings of a recent epidemiological study suggested that omega-3 fatty acid (fish oil) supplementation blunted cardiac responses to air pollution exposure. OBJECTIVES We conducted a randomized, controlled exposure study to evaluate the efficacy of fish oil supplements in attenuating adverse cardiac effects of exposure to concentrated ambient fine and ultrafine particulate matter (CAP). METHODS Twenty-nine healthy middle-aged participants (mean, 58 ± 1 years of age) were supplemented in a randomized, double-blinded manner with 3 g/day of either fish oil or olive oil for 4 weeks before sequential chamber exposure to filtered air and CAP (mean mass concentration 278 ± 19 µg/m3) for 2 hr. Cardiac responses were assessed by comparing time and frequency domain changes in heart rate variability (HRV) and electrocardiographic repolarization changes measured before, immediately after, and 20 hr after exposure. Changes in plasma lipids were also evaluated at these time points. RESULTS Fish oil supplementation appeared to attenuate CAP-induced reductions in high-frequency/low-frequency ratio, as well as elevations in normalized low-frequency HRV and prolongation of the QT interval corrected for heart rate (QTc). Very low-density lipoprotein and triglyceride concentrations increased significantly immediately after exposure to CAP in participants supplemented with olive oil, but not in those supplemented with fish oil. CONCLUSIONS Exposure of healthy middle-aged adults to CAP for 2 hr induced acute cardiac and lipid changes after supplementation with olive oil, but not fish oil. Our findings suggest that omega-3 fatty acid supplements offer protection against the adverse cardiac and lipid effects associated with air pollution exposure.
Collapse
Affiliation(s)
- Haiyan Tong
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA.
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Cheung K, Shafer MM, Schauer JJ, Sioutas C. Historical trends in the mass and chemical species concentrations of coarse particulate matter in the Los Angeles Basin and relation to sources and air quality regulations. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2012; 62:541-556. [PMID: 22696804 DOI: 10.1080/10962247.2012.661382] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
UNLABELLED To assess the impact of past, current and proposed air quality regulations on coarse particulate matter (CPM), the concentrations of CPM mass and its chemical constituents were examined in the Los Angeles Basin from 1986 to 2009 using PM data acquired from peer-reviewed journals and regulatory agency database. PM10 mass levels decreased by approximately half from 1988 to 2009 at the three sampling sites examined- located in downtown Los Angeles, Long Beach and Riverside. Annual CPM mass concentrations were calculated from the difference between daily PM10 and PM2.5 from 1999 to 2009. High CPM episodes driven by high wind speed/stagnant condition caused year-to-year fluctuations in the 99th/98th percentile CPM levels. The reductions of average CPM levels were lower than those of PM10 in the same period, therefore the decrease of PM10 level was mainly driven by reductions in the emission levels of PM2.5 (or fine) particles, as demonstrated by the higher annual reduction of average PM2.5 (0.92 microg/m3) compared with CPM (0.39 microg/m3) from 1999 to 2009 in downtown Los Angeles despite their comparable concentrations. This is further confirmed by the significant decrease of Ni, Cr, V and EC in the coarse fraction after 1995. On the other hand, the levels of several inorganic ions (sulfate, chloride and to a lesser extent nitrate) remained comparable. From 1995 to 2008, levels of Cu, a tracer of brake wear, either remained similar or decreased at a smaller rate compared with elements of combustion origins. This differential reduction of CPM components suggests that past and current regulations may have been more effective in reducing fugitive dust (Al, Fe and Si) and combustion emissions (Ni, Cr, V, and EC) rather than CPM from vehicular abrasion (Cu) and inorganic ions (NO3(-), SO4(2-) and Cl(-)) in urban areas. IMPLICATIONS Limited information is currently available to provide the scientific basis for understanding the sources and physical and chemical variations of CPM, and their relations to air quality regulations and adverse health effects. This study investigates the historical trends of CPM mass and its chemical components in the Los Angeles Basin to advance our understanding on the impact of past and current air quality regulations on the coarse fraction of PM. The results of this study will aid policy makers to design more targeted regulations to control CPM sources to ensure substantial protection of public health from CPM exposure. Supplemental Materials: Supplemental materials are available for this article. Go to the publisher's online edition of the Journal of the Air & Waste Management Association for (1) details of the sampling sites and (2) the daily concentrations of high CPM/PM10 episodes.
Collapse
Affiliation(s)
- Kalam Cheung
- Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA, USA
| | | | | | | |
Collapse
|
72
|
Cheung K, Shafer MM, Schauer JJ, Sioutas C. Diurnal trends in oxidative potential of coarse particulate matter in the Los Angeles Basin and their relation to sources and chemical composition. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:3779-87. [PMID: 22380575 DOI: 10.1021/es204211v] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
To investigate the relationship among sources, chemical composition, and redox activity of coarse particulate matter (CPM), three sampling sites were set up up in the Los Angeles Basin to collect ambient coarse particles at four time periods (morning, midday, afternoon, and overnight) in summer 2009 and winter 2010. The generation of reactive oxygen species (ROS) was used to assess the redox activity of these particles. Our results present distinct diurnal profiles of CPM-induced ROS formation in the two seasons, with much higher levels in summer than winter. Higher ROS activity was observed in the midday/afternoon during summertime, while the peak activity occurred in the overnight period in winter. Crustal materials, the major component of CPM, demonstrated very low water-solubility, in contrast with the modestly water-soluble anthropogenic metals, including Ba and Cu. The water-soluble fraction of four elements (V, Pd, Cu, and Rh) with primary anthropogenic origins displayed the highest associations with ROS activity (R(2) > 0.60). Our results show that coarse particles generated by anthropogenic activities, despite their low contribution to CPM mass, are important to the biological activity of CPM, and that a more targeted control strategy may be needed to protect the public health from these toxic CPM sources.
Collapse
Affiliation(s)
- Kalam Cheung
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, California 90089, United States
| | | | | | | |
Collapse
|
73
|
Forsberg NT, Longo BM, Baxter K, Boutté M. Wildfire Smoke Exposure: A Guide for the Nurse Practitioner. J Nurse Pract 2012. [DOI: 10.1016/j.nurpra.2011.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
74
|
Tsai SS, Chen PS, Yang YH, Liou SH, Wu TN, Sung FC, Yang CY. Air pollution and hospital admissions for myocardial infarction: are there potentially sensitive groups? JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2012; 75:242-51. [PMID: 22352332 DOI: 10.1080/15287394.2012.641202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Recent studies showed that air pollution is a risk factor for hospitalization for myocardial infarction (MI). However, there is limited evidence to suggest which subpopulations are at higher risk for MI arising from air pollution. This study was undertaken to examine the modifying effects of specific secondary cardiovascular diagnosis (including hypertension, diabetes, congestive heart failure, and arrhythmias) on the relationship between hospital admissions for MI and exposure to ambient air pollutants. Hospital admissions for MI and ambient air pollution data for Taipei were obtained for the period 1999-2009. The relative risk of hospital admissions for MI was estimated using a case-crossover approach. None of the secondary diagnosis examined showed significant evidence of effect modification. It would appear that the correlation between air pollutant exposure and MI occurrence is not affected by predisposing factors present in other cardiovascular diseases.
Collapse
Affiliation(s)
- Shang-Shyue Tsai
- Department of Healthcare Administration, I-Shou University, Kaohsiung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
75
|
López-Villarrubia E, Iñiguez C, Peral N, García MD, Ballester F. Characterizing mortality effects of particulate matter size fractions in the two capital cities of the Canary Islands. ENVIRONMENTAL RESEARCH 2012; 112:129-38. [PMID: 22099912 DOI: 10.1016/j.envres.2011.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 08/26/2011] [Accepted: 10/14/2011] [Indexed: 05/22/2023]
Abstract
Most of the studies differentiating the effect of size-classified particulate matter (PM) exposure have been carried out in cities where the average levels of fine particles (PM(2.5)) were higher than those of coarse particles (PM(10-2.5)). These studies have suggested that PM(2.5) is associated with daily mortality, but there is only limited evidence that PM(10-2.5) is independently associated with mortality. The citizens of the Canary Islands are exposed to PM which is highly influenced by mineral dust because of the islands' proximity to the Western Coast of Morocco. This offers an excellent opportunity to analyze in detail the short-term association between PM size fractions and total, respiratory and heart disease mortality. A time-series study from 2001 to 2004 was carried out. For each PM size fraction and mortality outcome, Generalized Additive Poisson Model was performed controlling for potential confounding. Different lag structures, unconstrained distributed lag models and two-pollutant models were examined. After assessing the linearity in the relationship, a piecewise linear analysis for exploring the existence of different slopes for different ranges of PM was carried out. The 10 μg/m(3) increase in PM(2.5) and PM(10-2.5) levels was associated with a 7.5% (95% confidence interval=0.4-15.0) and a 7.4 (95% CI=1.5-13.7) increase in heart and respiratory disease mortality, respectively. Spline curves were quite linear over the PM concentrations seen on most days (dominated by combustion sources) in these cities, meanwhile on days with higher particulate levels (natural sources) a risk increase above certain PM levels was found, suggesting a curvilinear association and that, at least in some locations, PM(10-2.5) can play an important role in PM-related toxicity. The overall findings suggest that the establishment of new air quality standards for the short-term effect of PM(2.5) and PM(10-2.5) and further limiting levels of PM(10) in European Union is advisable.
Collapse
Affiliation(s)
- Elena López-Villarrubia
- Dirección General de Salud Pública, Gobierno de Canarias, Alfonso XIII, 4. 35003 Las Palmas de Gran Canaria, España, Spain.
| | | | | | | | | |
Collapse
|
76
|
Tobacco smoke particles and indoor air quality (ToPIQ) - the protocol of a new study. J Occup Med Toxicol 2011; 6:35. [PMID: 22188808 PMCID: PMC3260229 DOI: 10.1186/1745-6673-6-35] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 12/21/2011] [Indexed: 11/13/2022] Open
Abstract
Environmental tobacco smoke (ETS) is a major contributor to indoor air pollution. Since decades it is well documented that ETS can be harmful to human health and causes premature death and disease. In comparison to the huge research on toxicological substances of ETS, less attention was paid on the concentration of indoor ETS-dependent particulate matter (PM). Especially, investigation that focuses on different tobacco products and their concentration of deeply into the airways depositing PM-fractions (PM10, PM2.5 and PM1) must be stated. The tobacco smoke particles and indoor air quality study (ToPIQS) will approach this issue by device supported generation of indoor ETS and simultaneously measurements of PM concentration by laser aerosol spectrometry. Primarily, the ToPIQ study will conduct a field research with focus on PM concentration of different tobacco products and within various microenvironments. It is planned to extend the analysis to basic research on influencing factors of ETS-dependent PM concentration.
Collapse
|
77
|
Mueller D, Uibel S, Takemura M, Klingelhoefer D, Groneberg DA. Ships, ports and particulate air pollution - an analysis of recent studies. J Occup Med Toxicol 2011; 6:31. [PMID: 22141925 PMCID: PMC3244961 DOI: 10.1186/1745-6673-6-31] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 12/05/2011] [Indexed: 11/17/2022] Open
Abstract
The duration of use is usually significantly longer for marine vessels than for roadside vehicles. Therefore, these vessels are often powered by relatively old engines which may propagate air pollution. Also, the quality of fuel used for marine vessels is usually not comparable to the quality of fuels used in the automotive sector and therefore, port areas may exhibit a high degree of air pollution. In contrast to the multitude of studies that addressed outdoor air pollution due to road traffic, only little is known about ship-related air pollution. Therefore the present article aims to summarize recent studies that address air pollution, i.e. particulate matter exposure, due to marine vessels. It can be stated that the data in this area of research is still largely limited. Especially, knowledge on the different air pollutions in different sea areas is needed.
Collapse
Affiliation(s)
- Daniel Mueller
- Department of Toxicology, Institute of Occupational Medicine, Social Medicine and Environmental Medicine, Goethe-University, Frankfurt, Germany.
| | | | | | | | | |
Collapse
|
78
|
Chen R, Li Y, Ma Y, Pan G, Zeng G, Xu X, Chen B, Kan H. Coarse particles and mortality in three Chinese cities: the China Air Pollution and Health Effects Study (CAPES). THE SCIENCE OF THE TOTAL ENVIRONMENT 2011; 409:4934-8. [PMID: 21925709 DOI: 10.1016/j.scitotenv.2011.08.058] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 08/23/2011] [Accepted: 08/25/2011] [Indexed: 05/20/2023]
Abstract
Evidence concerning the health risks of coarse particles (PM(10-2.5)) is limited. There have been no multi-city epidemiologic studies of PM(10-2.5) in developing Asian countries. We examine the short-term association between PM(10-2.5) and daily mortality in three Chinese cities: Beijing, Shanghai, and Shenyang. PM(10-2.5) concentrations were estimated by subtracting PM(2.5) from PM(10) measurements. Data were analyzed using the over-dispersed generalized linear Poisson models. The average daily concentrations of PM(10-2.5) were 101 μg/m(3) for Beijing (2007-2008), 50 μg/m(3) for Shanghai (2004-2008), and 49 μg/m(3) for Shenyang (2006-2008). In the single-pollutant models, the three-city combined analysis showed significant associations between PM(10-2.5) and daily mortality from both total non-accidental causes and from cardiopulmonary diseases. A 10-μg/m(3) increase in 1-day lagged PM(10-2.5) was associated with a 0.25% (95% CI: 0.08 to 0.42) increase in total mortality, 0.25% (95% CI: 0.10 to 0.40) increase in cardiovascular mortality, and 0.48% (95% CI: 0.20 to 0.76) increase in respiratory mortality. However, these associations became statistically insignificant after adjustment for PM(2.5). PM(2.5) was significantly associated with mortality both before and after adjustment for PM(10-2.5). In conclusion, there were no statistically significant associations between PM(10-2.5) and daily mortality after adjustment for PM(2.5) in the three Chinese cities.
Collapse
Affiliation(s)
- Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Cheung K, Daher N, Shafer MM, Ning Z, Schauer JJ, Sioutas C. Diurnal trends in coarse particulate matter composition in the Los Angeles Basin. ACTA ACUST UNITED AC 2011; 13:3277-87. [PMID: 22025084 DOI: 10.1039/c1em10296f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To investigate the diurnal profile of the concentration and composition of ambient coarse particles, three sampling sites were set up in the Los Angeles Basin to collect coarse particulate matter (CPM) in four different time periods of the day (morning, midday, afternoon and overnight) in summer and winter. The samples were analyzed for total and water-soluble elements, inorganic ions and water-soluble organic carbon (WSOC). In summer, highest concentrations of CPM gravimetric mass, mineral and road dust, and WSOC were observed in midday and afternoon, when the prevailing onshore wind was stronger. In general, atmospheric dilution was lower in winter, contributing to the accumulation of air pollutants during stagnation conditions. Turbulences induced by traffic become a significant particle re-suspension mechanism, particularly during winter night time, when mixing height was lowest. This is evident by the high levels of CPM mass, mineral and road dust in winter overnight at the near-freeway sites located in urban Los Angeles, and to a lesser extent in Riverside. WSOC levels were higher in summer, with a similar diurnal profile with mineral and road dust, indicating that they either share common sources, or that WSOC may be adsorbed or absorbed onto the surfaces of these dust particles. In general, the contribution of inorganic ions to CPM mass was greater in the overnight sampling period at all sampling sites, suggesting that the prevailing meteorological conditions (lower temperature and higher relative humidity) favor the formation of these ions in the coarse mode. Nitrate, the most abundant CPM-bound inorganic species in this basin, is found to be predominantly formed by reactions with sea salt particles in summer. When the sea salt concentrations were low, the reaction with mineral dust particles and the condensation of ammonium nitrate on CPM surfaces also contributes to the formation of nitrate in the coarse mode.
Collapse
Affiliation(s)
- Kalam Cheung
- University of Southern California, Department of Civil and Environmental Engineering, 3620 South Vermont Avenue, Los Angeles, CA 90089, USA
| | | | | | | | | | | |
Collapse
|
80
|
Peden DB. The role of oxidative stress and innate immunity in O(3) and endotoxin-induced human allergic airway disease. Immunol Rev 2011; 242:91-105. [PMID: 21682740 DOI: 10.1111/j.1600-065x.2011.01035.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Ozone (O(3)) and endotoxin are common environmental contaminants that cause asthma exacerbation. These pollutants have similar phenotype response characteristics, including induction of neutrophilic inflammation, changes in airway macrophage immunophenotypes, and ability to enhance response to inhaled allergen. Evoked phenotyping studies of volunteers exposed to O(3) and endotoxin were used to identify the response characteristics of volunteers to these pollutants. New studies support the hypotheses that similar innate immune and oxidant processes modulate response to these agents. These include TLR4 and inflammasome-mediated signaling and cytokine production. Innate immune responses are also impacted by oxidative stress. It is likely that continued discovery of common molecular processes which modulate response to these pollutants will occur. Understanding the pathways that modulate response to pollutants will also allow for discovery of genetic and epigenetic factors that regulate response to these pollutants and determine risk of disease exacerbation. Additionally, defining the mechanisms of response will allow rational selection of interventions to examine. Interventions focused on inhibition of Toll-like receptor 4 and inflammasome represent promising new approaches to preventing pollutant-induced asthma exacerbations. Such interventions include specific inhibitors of innate immunity and antioxidant therapies designed to counter the effects of pollutants on cell signaling.
Collapse
Affiliation(s)
- David B Peden
- Division of Pediatric Allergy, Immunology, Rheumatology and Infectious Diseases, Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
81
|
Tsai JH, Chang LTC, Huang YS, Chiang HL. Particulate composition characteristics under different ambient air quality conditions. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2011; 61:796-805. [PMID: 21850835 DOI: 10.3155/1047-3289.61.7.796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Particulate compositions including elemental carbon (EC), organic carbon (OC), water-soluble ionic species, and elemental compositions were investigated during the period from 2004 to 2006 in southern Taiwan. The correlation between the pollutant standard index (PSI) of ambient air quality and the various particle compositions was also addressed in this study. PSI revealed a correlation with fine (r = 0.74) and coarse (r = 0.80) particulate matter (PM). PSI manifested a significant correlation with the amount of analyzed ionic species (r approximately 0.80) in coarse and fine particles and a moderate correlation with carbon content (r = 0.63) in fine particles; however, it showed no correlation with elemental content. Although the ambient air quality ranged from good to moderate, the ionic species including chloride (Cl-), nitrate (NO3-), sulfate (SO4(2-)), sodium (Na+), ammonium (NH4+), magnesium (Mg2+), and calcium (Ca2+) increased significantly (1.5-3.7 times for Daliao and 1.8-6.9 times for Tzouying) in coarse PM. For fine particles, NO3-, SO4(2-), NH4+, and potassium (K+) also increased significantly (1.3-2.4 times for Daliao and 2.8-9.6 times for Tzouying) when the air quality went from good to moderate. For meteorological parameters, temperature evidenced a slightly negative correlation with PM concentration and PSI value, which implied a high PM concentration in the low-temperature condition. This reflects the high frequency of PM episodes in winter and spring in southern Taiwan. In addition, the mixing height increase from 980 to 1450 m corresponds to the air quality condition changing from unhealthy to good.
Collapse
Affiliation(s)
- Jiun-Horng Tsai
- Department of Environmental Engineering, Sustainable Environmental Research Center, National Cheng-Kung University, Tainan, Taiwan, Republic of China
| | | | | | | |
Collapse
|
82
|
Abstract
OBJECTIVE To investigate acute changes in circulating lipids after exposure to relatively high levels of particulate matter through welding. METHODS Using a repeated measures panel study, lipid levels before and after welding and personal exposures to fine particulate matter (PM2.5) were measured in 36 male welders over 63 exposure and/or control days. RESULTS There was a trend toward decrease in HDL (-2.3 mg/dL, P = 0.08) 18 hours after welding. This effect became significant (-2.6 mg/dL, P = 0.05) after adjustment for possible confounders. The effect was strongest (-4.3 mg/dL, P = 0.02) among welders who did not weld the day before the study. There were no significant changes in other lipids associated with welding or PM2.5 exposure. CONCLUSION Welding exposure was associated with an acute decrease in circulating HDL, which may relate to the inflammatory and proatherosclerotic effects of fine particle exposure.
Collapse
|
83
|
Braniš M, Šafránek J. Characterization of coarse particulate matter in school gyms. ENVIRONMENTAL RESEARCH 2011; 111:485-91. [PMID: 21458792 DOI: 10.1016/j.envres.2011.03.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 03/11/2011] [Accepted: 03/15/2011] [Indexed: 05/06/2023]
Abstract
We investigated the mass concentration, mineral composition and morphology of particles resuspended by children during scheduled physical education in urban, suburban and rural elementary school gyms in Prague (Czech Republic). Cascade impactors were deployed to sample the particulate matter. Two fractions of coarse particulate matter (PM(10-2.5) and PM(2.5-1.0)) were characterized by gravimetry, energy dispersive X-ray spectrometry and scanning electron microscopy. Two indicators of human activity, the number of exercising children and the number of physical education hours, were also recorded. Lower mass concentrations of coarse particulate matter were recorded outdoors (average PM(10-2.5) 4.1-7.4 μg m(-3) and PM(2.5-1.0) 2.0-3.3 μg m(-3)) than indoors (average PM(10-2.5) 13.6-26.7 μg m(-3) and PM(2.5-1.0) 3.7-7.4 μg m(-3)). The indoor concentrations of coarse aerosol were elevated during days with scheduled physical education with an average indoor-outdoor (I/O) ratio of 2.5-16.3 for the PM(10-2.5) and 1.4-4.8 for the PM(2.5-1.0) values. Under extreme conditions, the I/O ratios reached 180 (PM(10-2.5)) and 19.1 (PM(2.5-1.0)). The multiple regression analysis based on the number of students and outdoor coarse PM as independent variables showed that the main predictor of the indoor coarse PM concentrations is the number of students in the gym. The effect of outdoor coarse PM was weak and inconsistent. The regression models for the three schools explained 60-70% of the particular dataset variability. X-ray spectrometry revealed 6 main groups of minerals contributing to resuspended indoor dust. The most abundant particles were those of crustal origin composed of Si, Al, O and Ca. Scanning electron microscopy showed that, in addition to numerous inorganic particles, various types of fibers and particularly skin scales make up the main part of the resuspended dust in the gyms. In conclusion, school gyms were found to be indoor microenvironments with high concentrations of coarse particulate matter, which can contribute to increased short-term inhalation exposure of exercising children.
Collapse
Affiliation(s)
- Martin Braniš
- Charles University in Prague, Faculty of Science, Institute for Environmental Studies, Prague, Czech Republic.
| | | |
Collapse
|
84
|
Rivera M, Zechmeister H, Medina-Ramón M, Basagaña X, Foraster M, Bouso L, Moreno T, Solanas P, Ramos R, Köllensperger G, Deltell A, Vizcaya D, Künzli N. Monitoring of heavy metal concentrations in home outdoor air using moss bags. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2011; 159:954-962. [PMID: 21232838 DOI: 10.1016/j.envpol.2010.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 12/01/2010] [Accepted: 12/09/2010] [Indexed: 05/30/2023]
Abstract
One monitoring station is insufficient to characterize the high spatial variation of traffic-related heavy metals within cities. We tested moss bags (Hylocomium splendens), deployed in a dense network, for the monitoring of metals in outdoor air and characterized metals' long-term spatial distribution and its determinants in Girona, Spain. Mosses were exposed outside 23 homes for two months; NO₂ was monitored for comparison. Metals were not highly correlated with NO₂ and showed higher spatial variation than NO₂. Regression models explained 61-85% of Cu, Cr, Mo, Pb, Sb, Sn, and Zn and 72% of NO₂ variability. Metals were strongly associated with the number of bus lines in the nearest street. Heavy metals are an alternative traffic-marker to NO₂ given their toxicological relevance, stronger association with local traffic and higher spatial variability. Monitoring heavy metals with mosses is appealing, particularly for long-term exposure assessment, as mosses can remain on site many months without maintenance.
Collapse
Affiliation(s)
- Marcela Rivera
- Centre for Research in Environmental Epidemiology CREAL, Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Mantecca P, Farina F, Moschini E, Gallinotti D, Gualtieri M, Rohr A, Sancini G, Palestini P, Camatini M. Comparative acute lung inflammation induced by atmospheric PM and size-fractionated tire particles. Toxicol Lett 2010; 198:244-54. [DOI: 10.1016/j.toxlet.2010.07.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 06/29/2010] [Accepted: 07/02/2010] [Indexed: 11/17/2022]
|
86
|
Mann JK, Balmes JR, Bruckner TA, Mortimer KM, Margolis HG, Pratt B, Hammond SK, Lurmann FW, Tager IB. Short-term effects of air pollution on wheeze in asthmatic children in Fresno, California. ENVIRONMENTAL HEALTH PERSPECTIVES 2010; 118:1497-502. [PMID: 20570778 PMCID: PMC2957935 DOI: 10.1289/ehp.0901292] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 06/22/2010] [Indexed: 05/17/2023]
Abstract
BACKGROUND Although studies have demonstrated that air pollution is associated with exacerbation of asthma symptoms in children with asthma, little is known about the susceptibility of subgroups, particularly those with atopy. OBJECTIVE This study was designed to evaluate our a priori hypothesis that identifiable subgroups of asthmatic children are more likely to wheeze with exposure to ambient air pollution. METHODS A cohort of 315 children with asthma, 6-11 years of age, was recruited for longitudinal follow-up in Fresno, California (USA). During the baseline visit, children were administered a respiratory symptom questionnaire and allergen skin-prick test. Three times a year, participants completed 14-day panels during which they answered symptom questions twice daily. Ambient air quality data from a central monitoring station were used to assign exposures to the following pollutants: particulate matter ≤ 2.5 μm in aerodynamic diameter, particulate matter between 2.5 and 10 μm in aerodynamic diameter (PM10-2.5), elemental carbon, nitrogen dioxide (NO2), nitrate, and O3. RESULTS For the group as a whole, wheeze was significantly associated with short-term exposures to NO2 [odds ratio (OR) = 1.10 for 8.7-ppb increase; 95% confidence interval (CI), 1.02-1.20] and PM10-2.5 (OR = 1.11 for 14.7-μg/m3 increase; 95% CI, 1.01-1.22). The association with wheeze was stronger for these two pollutants in children who were skin-test positive to cat or common fungi and in boys with mild intermittent asthma. CONCLUSION A pollutant associated with traffic emissions, NO2, and a pollutant with bioactive constituents, PM10-2.5, were associated with increased risk of wheeze in asthmatic children living in Fresno, California. Children with atopy to cat or common fungi and boys with mild intermittent asthma were the subgroups for which we observed the largest associations.
Collapse
Affiliation(s)
- Jennifer K. Mann
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, California, USA
| | - John R. Balmes
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, California, USA
- Division of Occupational and Environmental Medicine, Department of Medicine, University of California, San Francisco, California, USA
| | - Tim A. Bruckner
- Program in Public Health and Planning, Policy and Design, University of California, Irvine, California, USA
| | - Kathleen M. Mortimer
- Division of Epidemiology, School of Public Health, University of California, Berkeley, California, USA
| | - Helene G. Margolis
- Division of General Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, California, USA
| | - Boriana Pratt
- Division of Epidemiology, School of Public Health, University of California, Berkeley, California, USA
| | - S. Katharine Hammond
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, California, USA
| | | | - Ira B. Tager
- Division of Epidemiology, School of Public Health, University of California, Berkeley, California, USA
- Address correspondence to I.B. Tager, School of Public Health, University of California, 101 Haviland Hall, Berkeley, CA 94720-7358 USA. Telephone: (510) 642-9533. Fax: (425) 988-7868. E-mail:
| |
Collapse
|
87
|
Braniš M, Vyškovská J, Malý M, Hovorka J. Association of size-resolved number concentrations of particulate matter with cardiovascular and respiratory hospital admissions and mortality in Prague, Czech Republic. Inhal Toxicol 2010; 22 Suppl 2:21-8. [DOI: 10.3109/08958378.2010.504758] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
88
|
Schneider A, Neas LM, Graff DW, Herbst MC, Cascio WE, Schmitt MT, Buse JB, Peters A, Devlin RB. Association of cardiac and vascular changes with ambient PM2.5 in diabetic individuals. Part Fibre Toxicol 2010; 7:14. [PMID: 20525188 PMCID: PMC2896918 DOI: 10.1186/1743-8977-7-14] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 06/02/2010] [Indexed: 12/31/2022] Open
Abstract
Background and Objective Exposure to fine airborne particles (PM2.5) has been shown to be responsible for cardiovascular and hematological effects, especially in older people with cardiovascular disease. Some epidemiological studies suggest that individuals with diabetes may be a particularly susceptible population. This study examined effects of short-term exposures to ambient PM2.5 on markers of systemic inflammation, coagulation, autonomic control of heart rate, and repolarization in 22 adults (mean age: 61 years) with type 2 diabetes. Methods Each individual was studied for four consecutive days with daily assessments of plasma levels of blood markers. Cardiac rhythm and electrocardiographic parameters were examined at rest and with 24-hour ambulatory ECG monitors. PM2.5 and meteorological data were measured daily on the rooftop of the patient exam site. Data were analyzed with models adjusting for season, weekday, meteorology, and a random intercept. To identify susceptible subgroups, effect modification was analyzed by clinical characteristics associated with insulin resistance as well as with oxidative stress and by medication intake. Results Interleukin (IL)-6 and tumor necrosis factor alpha showed a significant increase with a lag of two days (percent change of mean level: 20.2% with 95%-confidence interval [6.4; 34.1] and 13.1% [1.9; 24.4], respectively) in association with an increase of 10 μg/m3 in PM2.5. Obese participants as well as individuals with elevated glycosylated hemoglobin, lower adiponectin, higher ferritin or with glutathione S-transferase M1 null genotype showed higher IL-6 effects. Changes in repolarization were found immediately as well as up to four days after exposure in individuals without treatment with a beta-adrenergic receptor blocker. Conclusions Exposure to elevated levels of PM2.5 alters ventricular repolarization and thus may increase myocardial vulnerability to arrhythmias. Exposure to PM2.5 also increases systemic inflammation. Characteristics associated with insulin resistance or with oxidative stress were shown to enhance the association.
Collapse
Affiliation(s)
- Alexandra Schneider
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Epidemiology, Neuherberg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Carll AP, Haykal-Coates N, Winsett DW, Rowan WH, Hazari MS, Ledbetter AD, Nyska A, Cascio WE, Watkinson WP, Costa DL, Farraj AK. Particulate matter inhalation exacerbates cardiopulmonary injury in a rat model of isoproterenol-induced cardiomyopathy. Inhal Toxicol 2010; 22:355-68. [PMID: 20121584 DOI: 10.3109/08958370903365692] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Ambient particulate matter (PM) exposure is linked to cardiovascular events and death, especially among individuals with heart disease. A model of toxic cardiomyopathy was developed in Spontaneously Hypertensive Heart Failure (SHHF) rats to explore potential mechanisms. Rats were infused with isoproterenol (ISO; 2.5 mg/kg/day subcutaneous [sc]), a beta-adrenergic agonist, for 28 days and subsequently exposed to PM by inhalation. ISO induced tachycardia and hypotension throughout treatment followed by postinfusion decrements in heart rate, contractility, and blood pressures (systolic, diastolic, pulse), and fibrotic cardiomyopathy. Changes in heart rate and heart rate variability (HRV) 17 days after ISO cessation indicated parasympathetic dominance with concomitantly altered ventilation. Rats were subsequently exposed to filtered air or Harvard Particle 12 (HP12) (12 mg/m(3))--a metal-rich oil combustion-derived PM--at 18 and 19 days (4 h/day) after ISO infusion via nose-only inhalation to determine if cardio-impaired rats were more responsive to the effects of PM exposure. Inhalation of PM among ISO-pretreated rats significantly increased pulmonary lactate dehydrogenase, serum high-density lipoprotein (HDL) cholesterol, and heart-to-body mass ratio. PM exposure increased the number of ISO-pretreated rats that experienced bradyarrhythmic events, which occurred concomitantly with acute alterations of HRV. PM, however, did not significantly affect mean HRV in the ISO- or saline-pretreated groups. In summary, subchronic ISO treatment elicited some pathophysiologic and histopathological features of heart failure, including cardiomyopathy. The enhanced sensitivity to PM exposure in SHHF rats with ISO-accelerated cardiomyopathy suggests that this model may be useful for elucidating the mechanisms by which PM exposure exacerbates heart disease.
Collapse
Affiliation(s)
- Alex P Carll
- Environmental Sciences and Engineering, UNC Gillings School of Global Public Health, Chapel Hill, North Carolina, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Brook RD, Rajagopalan S, Pope CA, Brook JR, Bhatnagar A, Diez-Roux AV, Holguin F, Hong Y, Luepker RV, Mittleman MA, Peters A, Siscovick D, Smith SC, Whitsel L, Kaufman JD. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation 2010; 121:2331-78. [PMID: 20458016 DOI: 10.1161/cir.0b013e3181dbece1] [Citation(s) in RCA: 3871] [Impact Index Per Article: 276.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In 2004, the first American Heart Association scientific statement on "Air Pollution and Cardiovascular Disease" concluded that exposure to particulate matter (PM) air pollution contributes to cardiovascular morbidity and mortality. In the interim, numerous studies have expanded our understanding of this association and further elucidated the physiological and molecular mechanisms involved. The main objective of this updated American Heart Association scientific statement is to provide a comprehensive review of the new evidence linking PM exposure with cardiovascular disease, with a specific focus on highlighting the clinical implications for researchers and healthcare providers. The writing group also sought to provide expert consensus opinions on many aspects of the current state of science and updated suggestions for areas of future research. On the basis of the findings of this review, several new conclusions were reached, including the following: Exposure to PM <2.5 microm in diameter (PM(2.5)) over a few hours to weeks can trigger cardiovascular disease-related mortality and nonfatal events; longer-term exposure (eg, a few years) increases the risk for cardiovascular mortality to an even greater extent than exposures over a few days and reduces life expectancy within more highly exposed segments of the population by several months to a few years; reductions in PM levels are associated with decreases in cardiovascular mortality within a time frame as short as a few years; and many credible pathological mechanisms have been elucidated that lend biological plausibility to these findings. It is the opinion of the writing group that the overall evidence is consistent with a causal relationship between PM(2.5) exposure and cardiovascular morbidity and mortality. This body of evidence has grown and been strengthened substantially since the first American Heart Association scientific statement was published. Finally, PM(2.5) exposure is deemed a modifiable factor that contributes to cardiovascular morbidity and mortality.
Collapse
|
91
|
Effect of Air Pollution on Blood Pressure, Blood Lipids, and Blood Sugar: A Population-Based Approach. J Occup Environ Med 2010; 52:258-62. [DOI: 10.1097/jom.0b013e3181ceff7a] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
92
|
Lippmann M, Chen LC. Health effects of concentrated ambient air particulate matter (CAPs) and its components. Crit Rev Toxicol 2009; 39:865-913. [DOI: 10.3109/10408440903300080] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
93
|
Lotti M, Olivato I, Bergamo L. Inflammation and short-term cardiopulmonary effects of particulate matter. Nanotoxicology 2009. [DOI: 10.1080/17435390802538763] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Marcello Lotti
- Universita’ degli Studi di Padova, Dipartimento di Medicina Ambientale e Sanita’ Pubblica, Padova, Italy
| | - Iolanda Olivato
- Universita’ degli Studi di Padova, Dipartimento di Medicina Ambientale e Sanita’ Pubblica, Padova, Italy
| | - Lorenzo Bergamo
- Universita’ degli Studi di Padova, Dipartimento di Medicina Ambientale e Sanita’ Pubblica, Padova, Italy
| |
Collapse
|
94
|
Perez L, Medina-Ramón M, Künzli N, Alastuey A, Pey J, Pérez N, Garcia R, Tobias A, Querol X, Sunyer J. Size fractionate particulate matter, vehicle traffic, and case-specific daily mortality in Barcelona, Spain. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2009; 43:4707-4714. [PMID: 19673255 DOI: 10.1021/es8031488] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Recent epidemiological research suggests that short-term effects of particle matter (PM) in urban areas may preferentially be driven by fine fractions. Questions remain concerning the adversehealth effects of coarse particles generated by noncombustion, traffic-related processes and the mechanism of action of PM. Using a time-stratified case-crossover design, we investigated the association between three independent size fractions, coarse (PM10-2.5), intermodal (PM2.5-1), and very fine PMs (PM1), and three health outcomes, respiratory, cardiovascular, and cerebrovascular mortality in Barcelona, Spain, during the period of March 2003-December 2005. Using existing data, we examined the chemical composition of each fraction to explore the effects of PM from different sources and the mechanisms of action. We found that increased levels of PM, and PM10-2.5 were associated with increased levels of cardiovascular and cerebrovascular mortality at lag 1 and lag 2. At lag 1, the odds ratio (OR) for a 1 microg/m3 increase in PM1 was 1.028 [95% confidence interval (CI), 1.000-1.058] for cardiovascular mortality and 1.063 (95% CI, 1.004-1.124) for cerebrovascular mortality. At lag 1, the odds ratio per a 10 microg/ m3 increase of PM10-2.5 was 1.059 (95% CI, 1.026-1.094) for cardiovascular mortality and 1.098 (95% CI, 1.030-1.171) for cerebrovascular mortality. Association with respiratory mortality was only detected for PM2.5-1 at lag 2 (OR, 1.206 per a 10 microg/ m3 increase; 95% CI, 1.028-1.416). Chemical composition data showed that PM in Barcelona was generated in a large proportion by vehicle traffic. Vehicle traffic PM, generated by combustion and noncombustion processes, should be considered in air pollution mitigation strategies in urban areas.
Collapse
Affiliation(s)
- L Perez
- Center for Research in Environmental Epidemiology (CREAL), Dr Aiguader 88, 08003 Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Graff DW, Cascio WE, Rappold A, Zhou H, Huang YCT, Devlin RB. Exposure to concentrated coarse air pollution particles causes mild cardiopulmonary effects in healthy young adults. ENVIRONMENTAL HEALTH PERSPECTIVES 2009; 117:1089-94. [PMID: 19654918 PMCID: PMC2717135 DOI: 10.1289/ehp0900558] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Accepted: 03/23/2009] [Indexed: 05/02/2023]
Abstract
BACKGROUND There is ample epidemiologic and toxicologic evidence that exposure to fine particulate matter (PM) air pollution [aerodynamic diameter < or = 2.5 microm (PM(2.5))], which derives primarily from combustion processes, can result in increased mortality and morbidity. There is less certainty as to the contribution of coarse PM (PM(2.5-10)), which derives from crustal materials and from mechanical processes, to mortality and morbidity. OBJECTIVE To determine whether coarse PM causes cardiopulmonary effects, we exposed 14 healthy young volunteers to coarse concentrated ambient particles (CAPs) and filtered air. Coarse PM concentration averaged 89.0 microg/m(3) (range, 23.7-159.6 microg/m(3)). Volunteers were exposed to coarse CAPs and filtered air for 2 hr while they underwent intermittent exercise in a single-blind, crossover study. We measured pulmonary, cardiac, and hematologic end points before exposure, immediately after exposure, and again 20 hr after exposure. RESULTS Compared with filtered air exposure, coarse CAP exposure produced a small increase in polymorphonuclear neutrophils in the bronchoalveolar lavage fluid 20 hr postexposure, indicating mild pulmonary inflammation. We observed no changes in pulmonary function. Blood tissue plasminogen activator, which is involved in fibrinolysis, was decreased 20 hr after exposure. The standard deviation of normal-to-normal intervals (SDNN), a measure of overall heart rate variability, also decreased 20 hr after exposure to CAPs. CONCLUSIONS Coarse CAP exposure produces a mild physiologic response in healthy young volunteers approximately 20 hr postexposure. These changes are similar in scope and magnitude to changes we and others have previously reported for volunteers exposed to fine CAPs, suggesting that both size fractions are comparable at inducing cardiopulmonary changes in acute exposure settings.
Collapse
Affiliation(s)
| | - Wayne E. Cascio
- Department of Cardiovascular Sciences, East Carolina University Brody School of Medicine, Greenville, North Carolina, USA
| | - Ana Rappold
- Human Studies Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Haibo Zhou
- School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Robert B. Devlin
- Human Studies Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
- Address correspondence to R. Devlin, Human Studies Division, MD 58D, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 USA. Telephone: (919) 966-6255. Fax: (919) 966-6271. E-mail:
| |
Collapse
|
96
|
Wegesser TC, Last JA. Mouse lung inflammation after instillation of particulate matter collected from a working dairy barn. Toxicol Appl Pharmacol 2009; 236:348-57. [PMID: 19272399 PMCID: PMC2680696 DOI: 10.1016/j.taap.2009.02.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 02/23/2009] [Accepted: 02/26/2009] [Indexed: 11/30/2022]
Abstract
Coarse and fine particulate matter (PM(2.5-10) and PM(2.5), respectively) are regulated ambient air pollutants thought to have major adverse health effects in exposed humans. The role of endotoxin and other bioaerosol components in the toxicity of PM from ambient air is controversial. This study evaluated the inflammatory lung response in mice instilled intratracheally with PM(2.5-10) and PM(2.5) emitted from a working dairy barn, a source presumed to have elevated concentrations of endotoxin. PM(2.5-10) was more pro-inflammatory on an equal weight basis than was PM(2.5); both fractions elicited a predominantly neutrophilic response. The inflammatory response was reversible, with a peak response to PM(2.5-10) observed at 24 h after instillation, and a return to control values by 72 h after instillation. The major active pro-inflammatory component in whole PM(2.5-10), but not in whole PM(2.5), is heat-labile, consistent with it being endotoxin. A heat treatment protocol for the gradual inactivation of biological materials in the PM fractions over a measurable time course was developed and optimized in this study using pure lipopolysaccharide (LPS) as a model system. The time course of heat inactivation of pure LPS and of endotoxin activity in PM(2.5-10) as measured by Limulus bioassay is identical. The active material in both PM(2.5-10) and PM(2.5) remained in the insoluble fraction when the whole PM samples were extracted with physiological saline solution. Histological analysis of lung sections from mice instilled with PM(2.5-10) or PM(2.5) showed evidence of inflammation consistent with the cellular responses observed in lung lavage fluid. The major pro-inflammatory components present in endotoxin-rich PM were found in the insoluble fraction of PM(2.5-10); however, in contrast with PM(2.5-10) isolated from ambient air in the Central Valley of California, the active components in the insoluble fraction were heat-labile.
Collapse
Affiliation(s)
- Teresa C. Wegesser
- Pulmonary and Critical Care Medicine, University of California, Davis, Genome and Biomedical Sciences Facility, Room 6510, 451 E. Health Sciences Drive, Davis, CA 95616, USA, Telephone: 530.752.6230 Fax: 530.752.8632,
| | - Jerold A. Last
- Pulmonary and Critical Care Medicine, University of California, Davis, Genome and Biomedical Sciences Facility, Room 6510, 451 E. Health Sciences Drive, Davis, CA 95616, USA, Telephone: 530.752.6230 Fax: 530.752.8632,
| |
Collapse
|
97
|
Samet JM, Rappold A, Graff D, Cascio WE, Berntsen JH, Huang YCT, Herbst M, Bassett M, Montilla T, Hazucha MJ, Bromberg PA, Devlin RB. Concentrated ambient ultrafine particle exposure induces cardiac changes in young healthy volunteers. Am J Respir Crit Care Med 2009; 179:1034-42. [PMID: 19234105 DOI: 10.1164/rccm.200807-1043oc] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Exposure to ambient ultrafine particles has been associated with cardiopulmonary toxicity and mortality. Adverse effects specifically linked to ultrafine particles include loss of sympathovagal balance and altered hemostasis. OBJECTIVES To characterize the effects of acute exposure to ambient ultrafine particles in young healthy humans. METHODS Nineteen healthy nonsmoking male and female subjects between the ages of 18 and 35 were exposed to filtered air or to an atmosphere in which captured ultrafine (<0.16 microm) particles were concentrated by a factor of up to 20-fold over ambient levels with the use of particle concentrators fitted with size-selective outlets (ultrafine concentrated ambient particles [UFCAPs]). Subjects underwent bronchoalveolar lavage 18 hours after each exposure. Cardiovascular endpoints measured included pulmonary function, clinical chemistry, and hematological parameters, as well as heart rate variability and repolarization indices. MEASUREMENTS AND MAIN RESULTS Exposure to UFCAPs was statistically associated with an increase in frequency domain markers of heart rate variability, specifically indicative of elevated vagal input to the heart. Consistent with this finding were increases in the variance associated with the duration of the QT interval. In addition, UFCAP exposure resulted in a significant increase in blood levels of the fibrin degradation product D-dimer as well as a modest elevation in the inflammatory chemokine IL-8 recovered in the lavage fluid. CONCLUSIONS These findings show mild inflammatory and prothrombic responses and are suggestive of alterations in cardiac repolarization induced by UFCAP inhalation.
Collapse
Affiliation(s)
- James M Samet
- Human Studies Division, National Health and Environmental Effects Research Laboratory, Research Triangle Park, Chapel Hill, NC 27599-7315, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Heidenfelder BL, Reif DM, Harkema JR, Cohen Hubal EA, Hudgens EE, Bramble LA, Wagner JG, Morishita M, Keeler GJ, Edwards SW, Gallagher JE. Comparative microarray analysis and pulmonary changes in Brown Norway rats exposed to ovalbumin and concentrated air particulates. Toxicol Sci 2009; 108:207-21. [PMID: 19176365 DOI: 10.1093/toxsci/kfp005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The interaction between air particulates and genetic susceptibility has been implicated in the pathogenesis of asthma. The overall objective of this study was to determine the effects of inhalation exposure to environmentally relevant concentrated air particulates (CAPs) on the lungs of ovalbumin (ova) sensitized and challenged Brown Norway rats. Changes in gene expression were compared with lung tissue histopathology, morphometry, and biochemical and cellular parameters in bronchoalveolar lavage fluid (BALF). Ova challenge was responsible for the preponderance of gene expression changes, related largely to inflammation. CAPs exposure alone resulted in no significant gene expression changes, but CAPs and ova-exposed rodents exhibited an enhanced effect relative to ova alone with differentially expressed genes primarily related to inflammation and airway remodeling. Gene expression data was consistent with the biochemical and cellular analyses of the BALF, the pulmonary pathology, and morphometric changes when comparing the CAPs-ova group to the air-saline or CAPs-saline group. However, the gene expression data were more sensitive than the BALF cell type and number for assessing the effects of CAPs and ova versus the ova challenge alone. In addition, the gene expression results provided some additional insight into the TGF-beta-mediated molecular processes underlying these changes. The broad-based histopathology and functional genomic analyses demonstrate that exposure to CAPs exacerbates rodents with allergic inflammation induced by an allergen and suggests that asthmatics may be at increased risk for air pollution effects.
Collapse
Affiliation(s)
- Brooke L Heidenfelder
- Human Studies Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Lee IM, Tsai SS, Ho CK, Chiu HF, Wu TN, Yang CY. Air pollution and hospital admissions for congestive heart failure: are there potentially sensitive groups? ENVIRONMENTAL RESEARCH 2008; 108:348-353. [PMID: 18786668 DOI: 10.1016/j.envres.2008.07.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2007] [Revised: 07/24/2008] [Accepted: 07/29/2008] [Indexed: 05/26/2023]
Abstract
Recent studies have shown that air pollution is a risk factor for hospitalization for congestive heart failure (CHF). However, there is limited evidence to suggest what subpopulations are at greater risk from air pollution. This study was undertaken to examine the modifying effect of specific secondary diagnosis (including hypertension, diabetes, dysrhythmia, and chronic obstructive pulmonary disease) on the relationship between hospital admissions for CHF and ambient air pollutants. Hospital admissions for CHF and ambient air pollution data for Taipei were obtained for the period from 1996 to 2005. The relative risk of hospital admission was estimated using a case-crossover approach. None of the secondary diagnosis we examined (hypertension, diabetes, dysrhythmia, and chronic obstructive pulmonary disease (COPD)) showed much evidence of effect modification.
Collapse
Affiliation(s)
- I-Ming Lee
- Institute of Occupational Safety and Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | |
Collapse
|
100
|
Loughnan ME, Nicholls N, Tapper NJ. Demographic, seasonal, and spatial differences in acute myocardial infarction admissions to hospital in Melbourne Australia. Int J Health Geogr 2008; 7:42. [PMID: 18664293 PMCID: PMC2517067 DOI: 10.1186/1476-072x-7-42] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2008] [Accepted: 07/30/2008] [Indexed: 11/10/2022] Open
Abstract
Background Seasonal patterns in cardiac disease in the northern hemisphere are well described in the literature. More recently age and gender differences in cardiac mortality and to a lesser extent morbidity have been presented. To date spatial differences between the seasonal patterns of cardiac disease has not been presented. Literature relating to seasonal patterns in cardiac disease in the southern hemisphere and in Australia in particular is scarce. The aim of this paper is to describe the seasonal, age, gender, and spatial patterns of cardiac disease in Melbourne Australia by using acute myocardial infarction admissions to hospital as a marker of cardiac disease. Results There were 33,165 Acute Myocardial Infarction (AMI) admissions over 2186 consecutive days. There is a seasonal pattern in AMI admissions with increased rates during the colder months. The peak month is July. The admissions rate is greater for males than for females, although this difference decreases with advancing age. The maximal AMI season for males extends from April to November. The difference between months of peak and minimum admissions was 33.7%. Increased female AMI admissions occur from May to November, with a variation between peak and minimum of 23.1%. Maps of seasonal AMI admissions demonstrate spatial differences. Analysis using Global and Local Moran's I showed increased spatial clustering during the warmer months. The Bivariate Moran's I statistic indicated a weaker relationship between AMI and age during the warmer months. Conclusion There are two distinct seasons with increased admissions during the colder part of the year. Males present a stronger seasonal pattern than females. There are spatial differences in AMI admissions throughout the year that cannot be explained by the age structure of the population. The seasonal difference in AMI admissions warrants further investigation. This includes detailing the prevalence of cardiac disease in the community and examining issues of social and environmental justice.
Collapse
Affiliation(s)
- Margaret E Loughnan
- School of Geography and Environmental Science Monash University, Wellington Road Clayton, Australia.
| | | | | |
Collapse
|