51
|
Shaw PA, Forsyth E, Haseeb F, Yang S, Bradley M, Klausen M. Two-Photon Absorption: An Open Door to the NIR-II Biological Window? Front Chem 2022; 10:921354. [PMID: 35815206 PMCID: PMC9263132 DOI: 10.3389/fchem.2022.921354] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
The way in which photons travel through biological tissues and subsequently become scattered or absorbed is a key limitation for traditional optical medical imaging techniques using visible light. In contrast, near-infrared wavelengths, in particular those above 1000 nm, penetrate deeper in tissues and undergo less scattering and cause less photo-damage, which describes the so-called "second biological transparency window". Unfortunately, current dyes and imaging probes have severely limited absorption profiles at such long wavelengths, and molecular engineering of novel NIR-II dyes can be a tedious and unpredictable process, which limits access to this optical window and impedes further developments. Two-photon (2P) absorption not only provides convenient access to this window by doubling the absorption wavelength of dyes, but also increases the possible resolution. This review aims to provide an update on the available 2P instrumentation and 2P luminescent materials available for optical imaging in the NIR-II window.
Collapse
Affiliation(s)
| | | | | | | | | | - Maxime Klausen
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
52
|
Ultrafast two-photon fluorescence imaging of cerebral blood circulation in the mouse brain in vivo. Proc Natl Acad Sci U S A 2022; 119:e2117346119. [PMID: 35648820 PMCID: PMC9191662 DOI: 10.1073/pnas.2117346119] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
SignificanceCharacterizing blood flow by tracking individual red blood cells as they move through vessels is essential for understanding vascular function. With high spatial resolution, two-photon fluorescence microscopy is the method of choice for imaging blood flow at the cellular level. However, its application is limited to a low flow speed regimen in anesthetized animals by its slow focus scanning mechanism. Using an ultrafast scanning module, we demonstrated two-photon fluorescence imaging of blood flow at 1,000 two-dimensional frames and 1,000,000 one-dimensional line scans per second in the brains of awake mice. These ultrafast measurements enabled us to study hemodynamic and fluid mechanical regimens beyond the reach of conventional methods.
Collapse
|
53
|
Sinefeld D, Xia F, Wang M, Wang T, Wu C, Yang X, Paudel HP, Ouzounov DG, Bifano TG, Xu C. Three-Photon Adaptive Optics for Mouse Brain Imaging. Front Neurosci 2022; 16:880859. [PMID: 35692424 PMCID: PMC9185169 DOI: 10.3389/fnins.2022.880859] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/05/2022] [Indexed: 11/24/2022] Open
Abstract
Three-photon microscopy (3PM) was shown to allow deeper imaging than two-photon microscopy (2PM) in scattering biological tissues, such as the mouse brain, since the longer excitation wavelength reduces tissue scattering and the higher-order non-linear excitation suppresses out-of-focus background fluorescence. Imaging depth and resolution can further be improved by aberration correction using adaptive optics (AO) techniques where a spatial light modulator (SLM) is used to correct wavefront aberrations. Here, we present and analyze a 3PM AO system for in vivo mouse brain imaging. We use a femtosecond source at 1300 nm to generate three-photon (3P) fluorescence in yellow fluorescent protein (YFP) labeled mouse brain and a microelectromechanical (MEMS) SLM to apply different Zernike phase patterns. The 3P fluorescence signal is used as feedback to calculate the amount of phase correction without direct phase measurement. We show signal improvement in the cortex and the hippocampus at greater than 1 mm depth and demonstrate close to diffraction-limited imaging in the cortical layers of the brain, including imaging of dendritic spines. In addition, we characterize the effective volume for AO correction within brain tissues, and discuss the limitations of AO correction in 3PM of mouse brain.
Collapse
Affiliation(s)
- David Sinefeld
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, United States
- Department of Applied Physics, Electro-Optics Engineering Faculty, Jerusalem College of Technology, Jerusalem, Israel
- *Correspondence: David Sinefeld,
| | - Fei Xia
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, United States
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| | - Mengran Wang
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, United States
| | - Tianyu Wang
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, United States
| | - Chunyan Wu
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, United States
| | - Xusan Yang
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, United States
| | - Hari P. Paudel
- Photonics Center, Boston University, Boston, MA, United States
| | - Dimitre G. Ouzounov
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, United States
| | | | - Chris Xu
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, United States
| |
Collapse
|
54
|
Zheng Z, Zhang H, Cao H, Gong J, He M, Gou X, Yang T, Wei P, Qian J, Xi W, Tang BZ. Intra- and Intermolecular Synergistic Engineering of Aggregation-Induced Emission Luminogens to Boost Three-Photon Absorption for Through-Skull Brain Imaging. ACS NANO 2022; 16:6444-6454. [PMID: 35357126 DOI: 10.1021/acsnano.2c00672] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Three-photon fluorescence microscopic (3PFM) bioimaging is a promising imaging technique for visualizing the brain in its native environment thanks to its advantages of high spatial resolution and large imaging depth. However, developing fluorophores with strong three-photon absorption (3PA) and bright emission that meets the requirements for efficient three-photon fluorescence microscopic (3PFM) bioimaging is still challenging. Herein, four bright fluorophores with aggregation-induced emission features are facilely synthesized, and their powders exhibit high quantum yields of up to 56.4%. The intramolecular engineering of luminogens endows (E)-2-(benzo[d]thiazol-2-yl)-3-(7-(diphenylamino)-9-ethyl-9H-carbazol-2-yl)acrylonitrile (DCBT) molecules with bright near-infrared emission and large 3PA cross sections of up to 1.57 × 10-78 cm6 s2 photon-2 at 1550 nm, which is boosted by 3.6-fold to 5.61 × 10-78 cm6 s2 photon-2 in DCBT dots benefiting from the extensive intermolecular interactions in molecular stacking. DCBT dots are successfully applied for 3PFM imaging of brain vasculature on mice with a removed or intact skull, providing images with high spatial resolution, and even small capillaries can be recognized below the skull. This study will inspire more insights for developing advanced multiphoton absorbing materials for biomedical applications.
Collapse
Affiliation(s)
- Zheng Zheng
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hequn Zhang
- Zhejiang University Interdisciplinary Institute of Neuroscience and Technology (ZIINT), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310029, China
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Hui Cao
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Junyi Gong
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Mubin He
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Xuexin Gou
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Tianyu Yang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Peifa Wei
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Jun Qian
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Wang Xi
- Zhejiang University Interdisciplinary Institute of Neuroscience and Technology (ZIINT), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| |
Collapse
|
55
|
Imperato S, Harms F, Hubert A, Mercier M, Bourdieu L, Fragola A. Single-shot quantitative aberration and scattering length measurements in mouse brain tissues using an extended-source Shack-Hartmann wavefront sensor. OPTICS EXPRESS 2022; 30:15250-15265. [PMID: 35473251 DOI: 10.1364/oe.456651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/31/2022] [Indexed: 05/18/2023]
Abstract
Deep fluorescence imaging in mammalian brain tissues remains challenging due to scattering and optical aberration-induced loss in signal and resolution. Correction of aberrations using adaptive optics (AO) requires their reliable measurement in the tissues. Here, we show that an extended-source Shack-Hartmann wavefront sensor (ESSH) allows quantitative aberration measurements through fixed brain slices with a thickness up to four times their scattering length. We demonstrate in particular that this wavefront measurement method based on image correlation is more robust to scattering compared to the standard centroid-based approach. Finally, we obtain a measurement of the tissue scattering length taking advantage of the geometry of a Shack-Hartmann sensor.
Collapse
|
56
|
Long-term in vivo imaging of mouse spinal cord through an optically cleared intervertebral window. Nat Commun 2022; 13:1959. [PMID: 35414131 PMCID: PMC9005710 DOI: 10.1038/s41467-022-29496-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/17/2022] [Indexed: 11/08/2022] Open
Abstract
The spinal cord accounts for the main communication pathway between the brain and the peripheral nervous system. Spinal cord injury is a devastating and largely irreversible neurological trauma, and can result in lifelong disability and paralysis with no available cure. In vivo spinal cord imaging in mouse models without introducing immunological artifacts is critical to understand spinal cord pathology and discover effective treatments. We developed a minimally invasive intervertebral window by retaining the ligamentum flavum to protect the underlying spinal cord. By introducing an optical clearing method, we achieve repeated two-photon fluorescence and stimulated Raman scattering imaging at subcellular resolution with up to 15 imaging sessions over 6-167 days and observe no inflammatory response. Using this optically cleared intervertebral window, we study neuron-glia dynamics following laser axotomy and observe strengthened contact of microglia with the nodes of Ranvier during axonal degeneration. By enabling long-term, repetitive, stable, high-resolution and inflammation-free imaging of mouse spinal cord, our method provides a reliable platform in the research aiming at interpretation of spinal cord physiology and pathology.
Collapse
|
57
|
Tran CHT. Toolbox for studying neurovascular coupling in vivo, with a focus on vascular activity and calcium dynamics in astrocytes. NEUROPHOTONICS 2022; 9:021909. [PMID: 35295714 PMCID: PMC8920490 DOI: 10.1117/1.nph.9.2.021909] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/23/2022] [Indexed: 05/14/2023]
Abstract
Significance: Insights into the cellular activity of each member of the neurovascular unit (NVU) is critical for understanding their contributions to neurovascular coupling (NVC)-one of the key control mechanisms in cerebral blood flow regulation. Advances in imaging and genetic tools have enhanced our ability to observe, manipulate and understand the cellular activity of NVU components, namely neurons, astrocytes, microglia, endothelial cells, vascular smooth muscle cells, and pericytes. However, there are still many unresolved questions. Since astrocytes are considered electrically unexcitable,Ca 2 + signaling is the main parameter used to monitor their activity. It is therefore imperative to study astrocyticCa 2 + dynamics simultaneously with vascular activity using tools appropriate for the question of interest. Aim: To highlight currently available genetic and imaging tools for studying the NVU-and thus NVC-with a focus on astrocyteCa 2 + dynamics and vascular activity, and discuss the utility, technical advantages, and limitations of these tools for elucidating NVC mechanisms. Approach: We draw attention to some outstanding questions regarding the mechanistic basis of NVC and emphasize the role of astrocyticCa 2 + elevations in functional hyperemia. We further discuss commonly used genetic, and optical imaging tools, as well as some newly developed imaging modalities for studying NVC at the cellular level, highlighting their advantages and limitations. Results: We provide an overview of the current state of NVC research, focusing on the role of astrocyticCa 2 + elevations in functional hyperemia; summarize recent advances in genetically engineeredCa 2 + indicators, fluorescence microscopy techniques for studying NVC; and discuss the unmet challenges for future imaging development. Conclusions: Advances in imaging techniques together with improvements in genetic tools have significantly contributed to our understanding of NVC. Many pieces of the puzzle have been revealed, but many more remain to be discovered. Ultimately, optimizing NVC research will require a concerted effort to improve imaging techniques, available genetic tools, and analytical software.
Collapse
Affiliation(s)
- Cam Ha T. Tran
- University of Nevada, Reno School of Medicine, Department of Physiology and Cell Biology, Reno, Nevada, United States
| |
Collapse
|
58
|
Engelmann SA, Zhou A, Hassan AM, Williamson MR, Jarrett JW, Perillo EP, Tomar A, Spence DJ, Jones TA, Dunn AK. Diamond Raman laser and Yb fiber amplifier for in vivo multiphoton fluorescence microscopy. BIOMEDICAL OPTICS EXPRESS 2022; 13:1888-1898. [PMID: 35519268 PMCID: PMC9045921 DOI: 10.1364/boe.448978] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Here we introduce a fiber amplifier and a diamond Raman laser that output high powers (6.5 W, 1.3 W) at valuable wavelengths (1060 nm, 1250 nm) for two-photon excitation of red-shifted fluorophores. These custom excitation sources are both simple to construct and cost-efficient in comparison to similar custom and commercial alternatives. Furthermore, they operate at a repetition rate (80 MHz) that allows fast image acquisition using resonant scanners. With our system we demonstrate compatibility with fast resonant scanning, the ability to acquire neuronal images, and the capability to image vasculature at deep locations (>1 mm) within the mouse cerebral cortex.
Collapse
Affiliation(s)
- Shaun A. Engelmann
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
| | - Annie Zhou
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
| | - Ahmed M. Hassan
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
| | - Michael R. Williamson
- Institute for Neuroscience, The University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA
| | - Jeremy W. Jarrett
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
| | - Evan P. Perillo
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
| | - Alankrit Tomar
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
| | - David J. Spence
- MQ Photonics, Department of Physics and Astronomy, Macquarie University, NSW 2109, Australia
| | - Theresa A. Jones
- Institute for Neuroscience, The University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA
| | - Andrew K. Dunn
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
| |
Collapse
|
59
|
Francis AT, Manifold B, Carlson EC, Hu R, Hill AH, Men S, Fu D. In vivo simultaneous nonlinear absorption Raman and fluorescence (SNARF) imaging of mouse brain cortical structures. Commun Biol 2022; 5:222. [PMID: 35273325 PMCID: PMC8913696 DOI: 10.1038/s42003-022-03166-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/08/2022] [Indexed: 12/03/2022] Open
Abstract
Label-free multiphoton microscopy is a powerful platform for biomedical imaging. Recent advancements have demonstrated the capabilities of transient absorption microscopy (TAM) for label-free quantification of hemoglobin and stimulated Raman scattering (SRS) microscopy for pathological assessment of label-free virtual histochemical staining. We propose the combination of TAM and SRS with two-photon excited fluorescence (TPEF) to characterize, quantify, and compare hemodynamics, vessel structure, cell density, and cell identity in vivo between age groups. In this study, we construct a simultaneous nonlinear absorption, Raman, and fluorescence (SNARF) microscope with the highest reported in vivo imaging depth for SRS and TAM at 250–280 μm to enable these multimodal measurements. Using machine learning, we predict capillary-lining cell identities with 90% accuracy based on nuclear morphology and capillary relationship. The microscope and methodology outlined herein provides an exciting route to study several research topics, including neurovascular coupling, blood-brain barrier, and neurodegenerative diseases. In this study a microscope is constructed that carries out simultaneous nonlinear absorption, Raman, and fluorescence (SNARF). Machine learning is then used to predict capillary-lining cell identities with 90% accuracy based on nuclear morphology and capillary relationship, which in combination with the developed microscope, can provide a means to study several fields such as neurovascular coupling.
Collapse
Affiliation(s)
- Andrew T Francis
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Bryce Manifold
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Elena C Carlson
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Ruoqian Hu
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Andrew H Hill
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Shuaiqian Men
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Dan Fu
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
60
|
Borah BJ, Sun CK. A rapid denoised contrast enhancement method digitally mimicking an adaptive illumination in submicron-resolution neuronal imaging. iScience 2022; 25:103773. [PMID: 35169684 PMCID: PMC8829796 DOI: 10.1016/j.isci.2022.103773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/07/2021] [Accepted: 01/12/2022] [Indexed: 12/02/2022] Open
Abstract
Optical neuronal imaging often shows ultrafine structures, such as a nerve fiber, coexisting with ultrabright structures, such as a soma with a substantially higher fluorescence-protein concentration. Owing to experimental and environmental factors, a laser-scanning multiphoton optical microscope (MPM) often encounters a high-frequency background noise that might contaminate such weak-intensity ultrafine neuronal structures. A straightforward contrast enhancement often leads to the saturation of the brighter ones, and might further amplify the high-frequency background noise. We report a digital approach called rapid denoised contrast enhancement (DCE), which digitally mimics a hardware-based adaptive/controlled illumination technique by means of digitally optimizing the signal strengths and hence the visibility of such weak-intensity structures while mostly preventing the saturation of the brightest ones. With large field-of-view (FOV) two-photon excitation fluorescence (TPEF) neuronal imaging, we validate the effectiveness of DCE over state-of-the-art digital image processing algorithms. With compute-unified-device-architecture (CUDA)-acceleration, a real-time DCE is further enabled with a reduced time complexity. A real-time applicable CUDA-accelerated Noise-suppressed Contrast Enhancement method Digitally mimics a traditional hardware-based adaptive/controlled illumination Drastically improves the visibility of noise-contaminated ultrafine neuronal structures Applicable in large-field high-NFOM multiphoton optical microscopes
Collapse
Affiliation(s)
- Bhaskar Jyoti Borah
- Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
| | - Chi-Kuang Sun
- Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan.,Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan.,Molecular Imaging Center, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
61
|
Kim TH, Schnitzer MJ. Fluorescence imaging of large-scale neural ensemble dynamics. Cell 2022; 185:9-41. [PMID: 34995519 PMCID: PMC8849612 DOI: 10.1016/j.cell.2021.12.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/14/2022]
Abstract
Recent progress in fluorescence imaging allows neuroscientists to observe the dynamics of thousands of individual neurons, identified genetically or by their connectivity, across multiple brain areas and for extended durations in awake behaving mammals. We discuss advances in fluorescent indicators of neural activity, viral and genetic methods to express these indicators, chronic animal preparations for long-term imaging studies, and microscopes to monitor and manipulate the activity of large neural ensembles. Ca2+ imaging studies of neural activity can track brain area interactions and distributed information processing at cellular resolution. Across smaller spatial scales, high-speed voltage imaging reveals the distinctive spiking patterns and coding properties of targeted neuron types. Collectively, these innovations will propel studies of brain function and dovetail with ongoing neuroscience initiatives to identify new neuron types and develop widely applicable, non-human primate models. The optical toolkit's growing sophistication also suggests that "brain observatory" facilities would be useful open resources for future brain-imaging studies.
Collapse
Affiliation(s)
- Tony Hyun Kim
- James Clark Center for Biomedical Engineering & Sciences, Stanford University, Stanford, CA 94305, USA; CNC Program, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| | - Mark J Schnitzer
- James Clark Center for Biomedical Engineering & Sciences, Stanford University, Stanford, CA 94305, USA; CNC Program, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
62
|
Abdelfattah AS, Ahuja S, Akkin T, Allu SR, Brake J, Boas DA, Buckley EM, Campbell RE, Chen AI, Cheng X, Čižmár T, Costantini I, De Vittorio M, Devor A, Doran PR, El Khatib M, Emiliani V, Fomin-Thunemann N, Fainman Y, Fernandez-Alfonso T, Ferri CGL, Gilad A, Han X, Harris A, Hillman EMC, Hochgeschwender U, Holt MG, Ji N, Kılıç K, Lake EMR, Li L, Li T, Mächler P, Miller EW, Mesquita RC, Nadella KMNS, Nägerl UV, Nasu Y, Nimmerjahn A, Ondráčková P, Pavone FS, Perez Campos C, Peterka DS, Pisano F, Pisanello F, Puppo F, Sabatini BL, Sadegh S, Sakadzic S, Shoham S, Shroff SN, Silver RA, Sims RR, Smith SL, Srinivasan VJ, Thunemann M, Tian L, Tian L, Troxler T, Valera A, Vaziri A, Vinogradov SA, Vitale F, Wang LV, Uhlířová H, Xu C, Yang C, Yang MH, Yellen G, Yizhar O, Zhao Y. Neurophotonic tools for microscopic measurements and manipulation: status report. NEUROPHOTONICS 2022; 9:013001. [PMID: 35493335 PMCID: PMC9047450 DOI: 10.1117/1.nph.9.s1.013001] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Neurophotonics was launched in 2014 coinciding with the launch of the BRAIN Initiative focused on development of technologies for advancement of neuroscience. For the last seven years, Neurophotonics' agenda has been well aligned with this focus on neurotechnologies featuring new optical methods and tools applicable to brain studies. While the BRAIN Initiative 2.0 is pivoting towards applications of these novel tools in the quest to understand the brain, this status report reviews an extensive and diverse toolkit of novel methods to explore brain function that have emerged from the BRAIN Initiative and related large-scale efforts for measurement and manipulation of brain structure and function. Here, we focus on neurophotonic tools mostly applicable to animal studies. A companion report, scheduled to appear later this year, will cover diffuse optical imaging methods applicable to noninvasive human studies. For each domain, we outline the current state-of-the-art of the respective technologies, identify the areas where innovation is needed, and provide an outlook for the future directions.
Collapse
Affiliation(s)
- Ahmed S. Abdelfattah
- Brown University, Department of Neuroscience, Providence, Rhode Island, United States
| | - Sapna Ahuja
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Taner Akkin
- University of Minnesota, Department of Biomedical Engineering, Minneapolis, Minnesota, United States
| | - Srinivasa Rao Allu
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Joshua Brake
- Harvey Mudd College, Department of Engineering, Claremont, California, United States
| | - David A. Boas
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Erin M. Buckley
- Georgia Institute of Technology and Emory University, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
- Emory University, Department of Pediatrics, Atlanta, Georgia, United States
| | - Robert E. Campbell
- University of Tokyo, Department of Chemistry, Tokyo, Japan
- University of Alberta, Department of Chemistry, Edmonton, Alberta, Canada
| | - Anderson I. Chen
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Xiaojun Cheng
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Tomáš Čižmár
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Irene Costantini
- University of Florence, European Laboratory for Non-Linear Spectroscopy, Department of Biology, Florence, Italy
- National Institute of Optics, National Research Council, Rome, Italy
| | - Massimo De Vittorio
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, Italy
| | - Anna Devor
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States
| | - Patrick R. Doran
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Mirna El Khatib
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | | | - Natalie Fomin-Thunemann
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Yeshaiahu Fainman
- University of California San Diego, Department of Electrical and Computer Engineering, La Jolla, California, United States
| | - Tomas Fernandez-Alfonso
- University College London, Department of Neuroscience, Physiology and Pharmacology, London, United Kingdom
| | - Christopher G. L. Ferri
- University of California San Diego, Departments of Neurosciences, La Jolla, California, United States
| | - Ariel Gilad
- The Hebrew University of Jerusalem, Institute for Medical Research Israel–Canada, Department of Medical Neurobiology, Faculty of Medicine, Jerusalem, Israel
| | - Xue Han
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Andrew Harris
- Weizmann Institute of Science, Department of Brain Sciences, Rehovot, Israel
| | | | - Ute Hochgeschwender
- Central Michigan University, Department of Neuroscience, Mount Pleasant, Michigan, United States
| | - Matthew G. Holt
- University of Porto, Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal
| | - Na Ji
- University of California Berkeley, Department of Physics, Berkeley, California, United States
| | - Kıvılcım Kılıç
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Evelyn M. R. Lake
- Yale School of Medicine, Department of Radiology and Biomedical Imaging, New Haven, Connecticut, United States
| | - Lei Li
- California Institute of Technology, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, Pasadena, California, United States
| | - Tianqi Li
- University of Minnesota, Department of Biomedical Engineering, Minneapolis, Minnesota, United States
| | - Philipp Mächler
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Evan W. Miller
- University of California Berkeley, Departments of Chemistry and Molecular & Cell Biology and Helen Wills Neuroscience Institute, Berkeley, California, United States
| | | | | | - U. Valentin Nägerl
- Interdisciplinary Institute for Neuroscience University of Bordeaux & CNRS, Bordeaux, France
| | - Yusuke Nasu
- University of Tokyo, Department of Chemistry, Tokyo, Japan
| | - Axel Nimmerjahn
- Salk Institute for Biological Studies, Waitt Advanced Biophotonics Center, La Jolla, California, United States
| | - Petra Ondráčková
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Francesco S. Pavone
- National Institute of Optics, National Research Council, Rome, Italy
- University of Florence, European Laboratory for Non-Linear Spectroscopy, Department of Physics, Florence, Italy
| | - Citlali Perez Campos
- Columbia University, Zuckerman Mind Brain Behavior Institute, New York, United States
| | - Darcy S. Peterka
- Columbia University, Zuckerman Mind Brain Behavior Institute, New York, United States
| | - Filippo Pisano
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, Italy
| | - Ferruccio Pisanello
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, Italy
| | - Francesca Puppo
- University of California San Diego, Departments of Neurosciences, La Jolla, California, United States
| | - Bernardo L. Sabatini
- Harvard Medical School, Howard Hughes Medical Institute, Department of Neurobiology, Boston, Massachusetts, United States
| | - Sanaz Sadegh
- University of California San Diego, Departments of Neurosciences, La Jolla, California, United States
| | - Sava Sakadzic
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States
| | - Shy Shoham
- New York University Grossman School of Medicine, Tech4Health and Neuroscience Institutes, New York, New York, United States
| | - Sanaya N. Shroff
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - R. Angus Silver
- University College London, Department of Neuroscience, Physiology and Pharmacology, London, United Kingdom
| | - Ruth R. Sims
- Sorbonne University, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Spencer L. Smith
- University of California Santa Barbara, Department of Electrical and Computer Engineering, Santa Barbara, California, United States
| | - Vivek J. Srinivasan
- New York University Langone Health, Departments of Ophthalmology and Radiology, New York, New York, United States
| | - Martin Thunemann
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Lei Tian
- Boston University, Departments of Electrical Engineering and Biomedical Engineering, Boston, Massachusetts, United States
| | - Lin Tian
- University of California Davis, Department of Biochemistry and Molecular Medicine, Davis, California, United States
| | - Thomas Troxler
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Antoine Valera
- University College London, Department of Neuroscience, Physiology and Pharmacology, London, United Kingdom
| | - Alipasha Vaziri
- Rockefeller University, Laboratory of Neurotechnology and Biophysics, New York, New York, United States
- The Rockefeller University, The Kavli Neural Systems Institute, New York, New York, United States
| | - Sergei A. Vinogradov
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Flavia Vitale
- Center for Neuroengineering and Therapeutics, Departments of Neurology, Bioengineering, Physical Medicine and Rehabilitation, Philadelphia, Pennsylvania, United States
| | - Lihong V. Wang
- California Institute of Technology, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, Pasadena, California, United States
| | - Hana Uhlířová
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Chris Xu
- Cornell University, School of Applied and Engineering Physics, Ithaca, New York, United States
| | - Changhuei Yang
- California Institute of Technology, Departments of Electrical Engineering, Bioengineering and Medical Engineering, Pasadena, California, United States
| | - Mu-Han Yang
- University of California San Diego, Department of Electrical and Computer Engineering, La Jolla, California, United States
| | - Gary Yellen
- Harvard Medical School, Department of Neurobiology, Boston, Massachusetts, United States
| | - Ofer Yizhar
- Weizmann Institute of Science, Department of Brain Sciences, Rehovot, Israel
| | - Yongxin Zhao
- Carnegie Mellon University, Department of Biological Sciences, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
63
|
Cho ES, Han S, Lee KH, Kim CH, Yoon YG. 3DM: deep decomposition and deconvolution microscopy for rapid neural activity imaging. OPTICS EXPRESS 2021; 29:32700-32711. [PMID: 34615335 DOI: 10.1364/oe.439619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/14/2021] [Indexed: 05/18/2023]
Abstract
We report the development of deep decomposition and deconvolution microscopy (3DM), a computational microscopy method for the volumetric imaging of neural activity. 3DM overcomes the major challenge of deconvolution microscopy, the ill-posed inverse problem. We take advantage of the temporal sparsity of neural activity to reformulate and solve the inverse problem using two neural networks which perform sparse decomposition and deconvolution. We demonstrate the capability of 3DM via in vivo imaging of the neural activity of a whole larval zebrafish brain with a field of view of 1040 µm × 400 µm × 235 µm and with estimated lateral and axial resolutions of 1.7 µm and 5.4 µm, respectively, at imaging rates of up to 4.2 volumes per second.
Collapse
|
64
|
Borah BJ, Lee JC, Chi HH, Hsiao YT, Yen CT, Sun CK. Nyquist-exceeding high voxel rate acquisition in mesoscopic multiphoton microscopy for full-field submicron resolution resolvability. iScience 2021; 24:103041. [PMID: 34585109 PMCID: PMC8450254 DOI: 10.1016/j.isci.2021.103041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/15/2021] [Accepted: 08/23/2021] [Indexed: 12/04/2022] Open
Abstract
The Nyquist-Shannon criterion has never been realized in a laser-scanning mesoscopic multiphoton microscope (MPM) with a large field-of-view (FOV)-resolution ratio, especially when employing a high-frequency resonant-raster-scanning. With a high optical resolution nature, a current mesoscopic-MPM either neglects the criterion and degrades the digital resolution to twice the pixel size, or reduces the FOV and/or the raster-scanning speed to avoid aliasing. We introduce a Nyquist figure-of-merit (NFOM) parameter to characterize a laser-scanning MPM in terms of its optical-resolution retrieving ability. Based on NFOM, we define the maximum aliasing-free FOV, and subsequently, a cross-over excitation wavelength, below which the FOV becomes NFOM-constrained irrespective of an optimized optical design. We validate our idea in a custom-built mesoscopic-MPM with millimeter-scale FOV yielding an ultra-high FOV-resolution ratio of >3,000, while securing up-to a 1.6 mm Nyquist-satisfied aliasing-free FOV, a ∼400 nm lateral resolution, and a 70 M/s effective voxel-sampling rate, all at the same time. Nyquist figure-of-merit is introduced to characterize laser-scanning MPM digitization Maximum aliasing-free FOV and cross-over excitation wavelength are formulated High repetition-rate laser can enable high-speed large-FOV high-resolution MPM imaging Up-to 1.6 mm-wide non-aliased FOV and ∼400 nm digital resolution at 8 kHz line-rate
Collapse
Affiliation(s)
- Bhaskar Jyoti Borah
- Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
| | - Jye-Chang Lee
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Han-Hsiung Chi
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Yang-Ting Hsiao
- Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
| | - Chen-Tung Yen
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Chi-Kuang Sun
- Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan.,Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan.,Molecular Imaging Center, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
65
|
Lang RT, Spring BQ. Two-photon peak molecular brightness spectra reveal long-wavelength enhancements of multiplexed imaging depth and photostability. BIOMEDICAL OPTICS EXPRESS 2021; 12:5909-5919. [PMID: 34692224 PMCID: PMC8515958 DOI: 10.1364/boe.433989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
The broad use of two-photon microscopy has been enabled in part by Ti:Sapphire femtosecond lasers, which offer a wavelength-tunable source of pulsed excitation. Action spectra have thus been primarily reported for the tunable range of Ti:Sapphire lasers (∼700-1000 nm). However, longer wavelengths offer deeper imaging in tissue via reduced scattering and spectral dips in water absorption, and new generations of pulsed lasers offer wider tunable ranges. We present the peak molecular brightness spectra for eight Alexa Fluor dyes between 700-1300 nm as a first-order surrogate for action spectra measured with an unmodified commercial microscope, which reveal overlapping long-wavelength excitation peaks with potential for multiplexed excitation. We demonstrate simultaneous single-wavelength excitation of six spectrally overlapping fluorophores using either short (∼790 nm) or long (∼1090 nm) wavelengths, and that the newly characterized excitation peaks measured past 1000 nm offer improved photostability and enhanced fidelity of linear spectral unmixing at depth compared to shorter wavelengths.
Collapse
Affiliation(s)
- Ryan T. Lang
- Translational Biophotonics Cluster, Northeastern University, Boston, MA 02115, USA
- Department of Physics, Northeastern University, Boston, MA 02115, USA
| | - Bryan Q. Spring
- Translational Biophotonics Cluster, Northeastern University, Boston, MA 02115, USA
- Department of Physics, Northeastern University, Boston, MA 02115, USA
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
66
|
Chen X, Jiang Y, Choi S, Pohmann R, Scheffler K, Kleinfeld D, Yu X. Assessment of single-vessel cerebral blood velocity by phase contrast fMRI. PLoS Biol 2021; 19:e3000923. [PMID: 34499636 PMCID: PMC8454982 DOI: 10.1371/journal.pbio.3000923] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/21/2021] [Accepted: 07/28/2021] [Indexed: 12/30/2022] Open
Abstract
Current approaches to high-field functional MRI (fMRI) provide 2 means to map hemodynamics at the level of single vessels in the brain. One is through changes in deoxyhemoglobin in venules, i.e., blood oxygenation level-dependent (BOLD) fMRI, while the second is through changes in arteriole diameter, i.e., cerebral blood volume (CBV) fMRI. Here, we introduce cerebral blood flow-related velocity-based fMRI, denoted CBFv-fMRI, which uses high-resolution phase contrast (PC) MRI to form velocity measurements of flow. We use CBFv-fMRI in measure changes in blood velocity in single penetrating microvessels across rat parietal cortex. In contrast to the venule-dominated BOLD and arteriole-dominated CBV fMRI signals, CBFv-fMRI is comparable from both arterioles and venules. A single fMRI platform is used to map changes in blood pO2 (BOLD), volume (CBV), and velocity (CBFv). This combined high-resolution single-vessel fMRI mapping scheme enables vessel-specific hemodynamic mapping in animal models of normal and diseased states and further has translational potential to map vascular dementia in diseased or injured human brains with ultra-high-field fMRI.
Collapse
Affiliation(s)
- Xuming Chen
- High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department of Neurology, Wuhan University, Renmin Hospital, Wuhan, China
| | - Yuanyuan Jiang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Sangcheon Choi
- High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Graduate Training Centre of Neuroscience, International Max Planck Research School, University of Tübingen, Tübingen, Germany
| | - Rolf Pohmann
- High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Klaus Scheffler
- High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - David Kleinfeld
- Department of Physics, University of California at San Diego, La Jolla, California, United States of America
- Section of Neurobiology, University of California at San Diego, La Jolla, California, United States of America
| | - Xin Yu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States of America
| |
Collapse
|
67
|
Krajnik B, Golacki LW, Fiedorczyk E, Bański M, Noculak A, Hołodnik KM, Podhorodecki A. Quantitative comparison of luminescence probes for biomedical applications. Methods Appl Fluoresc 2021; 9. [PMID: 34198274 DOI: 10.1088/2050-6120/ac10ae] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/01/2021] [Indexed: 12/30/2022]
Abstract
Optical imaging holds great promise for the early-stage detection of diseases. It plays an important role in the process of protecting the patient's health. Most of the organic dyes suffer due to photobleaching, light scattering, short light penetration depth, and autofluorescence of specimen, thus, need to be replaced with alternative nanoprobes emitting light in the optical biological window (700-1350 nm). The group of candidates which can challenged described problems are colloidal quantum dots (e.g. CdSe and PbS) and upconverting nanocrystals (e.g. NaGdF4:Er, Yb). This paper presents comprehensive and systematic studies of the aforementioned probes, using specially designed tissue phantom, and custom-built wide-field fluorescence microscope. We investigated how the absorption and scattering of light at the water, hemoglobin, and intralipid may affect the intensity of luminescence probes and the quality of optical images. We propose a protocol, that could be easily implemented for investigating other nanoprobes that allow for comparison of their optical performance.
Collapse
Affiliation(s)
- B Krajnik
- Department of Experimental Physics, Wroclaw University of Science and Technology, Wyb. S. Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - L W Golacki
- Department of Experimental Physics, Wroclaw University of Science and Technology, Wyb. S. Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - E Fiedorczyk
- Department of Experimental Physics, Wroclaw University of Science and Technology, Wyb. S. Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - M Bański
- Department of Experimental Physics, Wroclaw University of Science and Technology, Wyb. S. Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - A Noculak
- Department of Experimental Physics, Wroclaw University of Science and Technology, Wyb. S. Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - K M Hołodnik
- Department of Experimental Physics, Wroclaw University of Science and Technology, Wyb. S. Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - A Podhorodecki
- Department of Experimental Physics, Wroclaw University of Science and Technology, Wyb. S. Wyspiańskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
68
|
Yu T, Li D, Zhu D. Tissue Optical Clearing for Biomedical Imaging: From In Vitro to In Vivo. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 3233:217-255. [PMID: 34053030 DOI: 10.1007/978-981-15-7627-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Tissue optical clearing technique provides a prospective solution for the application of advanced optical methods in life sciences. This chapter firstly gives a brief introduction to mechanisms of tissue optical clearing techniques, from the physical mechanism to chemical mechanism, which is the most important foundation to develop tissue optical clearing methods. During the past years, in vitro and in vivo tissue optical clearing methods were developed. In vitro tissue optical clearing techniques, including the solvent-based clearing methods and the hydrophilic reagents-based clearing methods, combined with labeling technique and advanced microscopy, can be applied to image 3D microstructure of tissue blocks or whole organs such as brain and spinal cord with high resolution. In vivo skin or skull optical clearing, promise various optical imaging techniques to detect cutaneous or cortical cell and vascular structure and function without surgical window.
Collapse
Affiliation(s)
- Tingting Yu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dongyu Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China. .,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
69
|
Redlich MJ, Prall B, Canto-Said E, Busarov Y, Shirinyan-Tuka L, Meah A, Lim H. High-pulse-energy multiphoton imaging of neurons and oligodendrocytes in deep murine brain with a fiber laser. Sci Rep 2021; 11:7950. [PMID: 33846422 PMCID: PMC8041775 DOI: 10.1038/s41598-021-86924-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 03/22/2021] [Indexed: 12/21/2022] Open
Abstract
Here we demonstrate high-pulse-energy multiphoton microscopy (MPM) for intravital imaging of neurons and oligodendrocytes in the murine brain. Pulses with an order of magnitude higher energy (~ 10 nJ) were employed from a ytterbium doped fiber laser source at a 1-MHz repetition rate, as compared to the standard 80-MHz Ti:Sapphire laser. Intravital imaging was performed on mice expressing common fluorescent proteins, including green (GFP) and yellow fluorescent proteins (YFP), and TagRFPt. One fifth of the average power could be used for superior depths of MPM imaging, as compared to the Ti:Sapphire laser: A depth of ~ 860 µm was obtained by imaging the Thy1-YFP brain in vivo with 6.5 mW, and cortical myelin as deep as 400 µm ex vivo by intrinsic third-harmonic generation using 50 mW. The substantially higher pulse energy enables novel regimes of photophysics to be exploited for microscopic imaging. The limitation from higher order phototoxicity is also discussed.
Collapse
Affiliation(s)
- Michael J Redlich
- Department of Physics and Astronomy, Hunter College, New York, NY, 10065, USA
- Department of Physics, The Graduate Center of the City University of New York, New York, NY, 10016, USA
| | - Brad Prall
- Clark-MXR, Inc., 7300 W. Huron River Drive, Dexter, MI, 48130, USA
| | | | - Yevgeniy Busarov
- Department of Physics and Astronomy, Hunter College, New York, NY, 10065, USA
| | | | - Arafat Meah
- Department of Physics and Astronomy, Hunter College, New York, NY, 10065, USA
| | - Hyungsik Lim
- Department of Physics and Astronomy, Hunter College, New York, NY, 10065, USA.
- Department of Physics, The Graduate Center of the City University of New York, New York, NY, 10016, USA.
| |
Collapse
|
70
|
Taira N, Nashimoto Y, Ino K, Ida H, Imaizumi T, Kumatani A, Takahashi Y, Shiku H. Micropipet-Based Navigation in a Microvascular Model for Imaging Endothelial Cell Topography Using Scanning Ion Conductance Microscopy. Anal Chem 2021; 93:4902-4908. [PMID: 33710857 DOI: 10.1021/acs.analchem.0c05174] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Scanning ion conductance microscopy (SICM) has enabled cell surface topography at a high resolution with low invasiveness. However, SICM has not been applied to the observation of cell surfaces in hydrogels, which can serve as scaffolds for three-dimensional cell culture. In this study, we applied SICM for imaging a cell surface in a microvascular lumen reconstructed in a hydrogel. To achieve this goal, we developed a micropipet navigation technique using ionic current to detect the position of a microvascular lumen. Combining this navigation technique with SICM, endothelial cells in a microvascular model and blebs were visualized successfully at the single-cell level. To the best of our knowledge, this is the first report on visualizing cell surfaces in hydrogels using a SICM. This technique will be useful for furthering our understanding of the mechanism of intravascular diseases.
Collapse
Affiliation(s)
- Noriko Taira
- Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Yuji Nashimoto
- Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi 980-8579, Japan.,Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan.,Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Kosuke Ino
- Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi 980-8579, Japan.,Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Hiroki Ida
- Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi 980-8579, Japan.,Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, Sendai, Miyagi 980-8578, Japan.,WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, Miyagi 980-8577, Japan.,Precursory Research for Embryonic Science and Technology (PRESTO), Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| | - Takuto Imaizumi
- Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Akichika Kumatani
- Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi 980-8579, Japan.,WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, Miyagi 980-8577, Japan.,WPI-International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan.,Center for Science and Innovation in Spintronics, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Yasufumi Takahashi
- Precursory Research for Embryonic Science and Technology (PRESTO), Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan.,WPI-Nano Life Science Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Hitoshi Shiku
- Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi 980-8579, Japan.,Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan
| |
Collapse
|
71
|
Hontani Y, Xia F, Xu C. Multicolor three-photon fluorescence imaging with single-wavelength excitation deep in mouse brain. SCIENCE ADVANCES 2021; 7:eabf3531. [PMID: 33731355 PMCID: PMC7968831 DOI: 10.1126/sciadv.abf3531] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/27/2021] [Indexed: 05/03/2023]
Abstract
Multiphoton fluorescence microscopy is a powerful technique for deep-tissue observation of living cells. In particular, three-photon microscopy is highly beneficial for deep-tissue imaging because of the long excitation wavelength and the high nonlinear confinement in living tissues. Because of the large spectral separation of fluorophores of different color, multicolor three-photon imaging typically requires multiple excitation wavelengths. Here, we report a new three-photon excitation scheme: excitation to a higher-energy electronic excited state instead of the conventional excitation to the lowest-energy excited state, enabling multicolor three-photon fluorescence imaging with deep-tissue penetration in the living mouse brain using single-wavelength excitation. We further demonstrate that our excitation method results in ≥10-fold signal enhancement for some of the common red fluorescent molecules. The multicolor imaging capability and the possibility of enhanced three-photon excitation cross section will open new opportunities for life science applications of three-photon microscopy.
Collapse
Affiliation(s)
- Yusaku Hontani
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA.
| | - Fei Xia
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Chris Xu
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
72
|
Fontaine AK, Futia GL, Rajendran PS, Littich SF, Mizoguchi N, Shivkumar K, Ardell JL, Restrepo D, Caldwell JH, Gibson EA, Weir RFF. Optical vagus nerve modulation of heart and respiration via heart-injected retrograde AAV. Sci Rep 2021; 11:3664. [PMID: 33574459 PMCID: PMC7878800 DOI: 10.1038/s41598-021-83280-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/18/2021] [Indexed: 12/16/2022] Open
Abstract
Vagus nerve stimulation has shown many benefits for disease therapies but current approaches involve imprecise electrical stimulation that gives rise to off-target effects, while the functionally relevant pathways remain poorly understood. One method to overcome these limitations is the use of optogenetic techniques, which facilitate targeted neural communication with light-sensitive actuators (opsins) and can be targeted to organs of interest based on the location of viral delivery. Here, we tested whether retrograde adeno-associated virus (rAAV2-retro) injected in the heart can be used to selectively express opsins in vagus nerve fibers controlling cardiac function. Furthermore, we investigated whether perturbations in cardiac function could be achieved with photostimulation at the cervical vagus nerve. Viral injection in the heart resulted in robust, primarily afferent, opsin reporter expression in the vagus nerve, nodose ganglion, and brainstem. Photostimulation using both one-photon stimulation and two-photon holography with a GRIN-lens incorporated nerve cuff, was tested on the pilot-cohort of injected mice. Changes in heart rate, surface electrocardiogram, and respiratory responses were observed in response to both one- and two-photon photostimulation. The results demonstrate feasibility of retrograde labeling for organ targeted optical neuromodulation.
Collapse
Affiliation(s)
- Arjun K Fontaine
- Departments of Bioengineering, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA.
- Biomechatronics Development Laboratory, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA.
| | - Gregory L Futia
- Departments of Bioengineering, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA
| | - Pradeep S Rajendran
- UCLA Cardiac Arrhythmia Center, University of California Los Angeles, Los Angeles, CA, USA
- UCLA Neurocardiology Research Program of Excellence, University of California Los Angeles, Los Angeles, CA, USA
| | - Samuel F Littich
- Departments of Bioengineering, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA
- Biomechatronics Development Laboratory, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA
| | - Naoko Mizoguchi
- Departments of Cell and Developmental Biology, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA
- Division of Pharmacology, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, Saitama, Japan
| | - Kalyanam Shivkumar
- UCLA Cardiac Arrhythmia Center, University of California Los Angeles, Los Angeles, CA, USA
- UCLA Neurocardiology Research Program of Excellence, University of California Los Angeles, Los Angeles, CA, USA
| | - Jeffrey L Ardell
- UCLA Cardiac Arrhythmia Center, University of California Los Angeles, Los Angeles, CA, USA
- UCLA Neurocardiology Research Program of Excellence, University of California Los Angeles, Los Angeles, CA, USA
| | - Diego Restrepo
- Departments of Cell and Developmental Biology, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA
| | - John H Caldwell
- Departments of Cell and Developmental Biology, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA
| | - Emily A Gibson
- Departments of Bioengineering, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA
| | - Richard F Ff Weir
- Departments of Bioengineering, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA
- Biomechatronics Development Laboratory, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA
- Rocky Mountain Veterans Affairs Medical Center (VAMC), Aurora, CO, USA
| |
Collapse
|
73
|
He Z, Wang P, Ye X. Novel endoscopic optical diagnostic technologies in medical trial research: recent advancements and future prospects. Biomed Eng Online 2021; 20:5. [PMID: 33407477 PMCID: PMC7789310 DOI: 10.1186/s12938-020-00845-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 12/23/2020] [Indexed: 12/20/2022] Open
Abstract
Novel endoscopic biophotonic diagnostic technologies have the potential to non-invasively detect the interior of a hollow organ or cavity of the human body with subcellular resolution or to obtain biochemical information about tissue in real time. With the capability to visualize or analyze the diagnostic target in vivo, these techniques gradually developed as potential candidates to challenge histopathology which remains the gold standard for diagnosis. Consequently, many innovative endoscopic diagnostic techniques have succeeded in detection, characterization, and confirmation: the three critical steps for routine endoscopic diagnosis. In this review, we mainly summarize researches on emerging endoscopic optical diagnostic techniques, with emphasis on recent advances. We also introduce the fundamental principles and the development of those techniques and compare their characteristics. Especially, we shed light on the merit of novel endoscopic imaging technologies in medical research. For example, hyperspectral imaging and Raman spectroscopy provide direct molecular information, while optical coherence tomography and multi-photo endomicroscopy offer a more extensive detection range and excellent spatial-temporal resolution. Furthermore, we summarize the unexplored application fields of these endoscopic optical techniques in major hospital departments for biomedical researchers. Finally, we provide a brief overview of the future perspectives, as well as bottlenecks of those endoscopic optical diagnostic technologies. We believe all these efforts will enrich the diagnostic toolbox for endoscopists, enhance diagnostic efficiency, and reduce the rate of missed diagnosis and misdiagnosis.
Collapse
Affiliation(s)
- Zhongyu He
- Biosensor National Special Laboratory, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Peng Wang
- Biosensor National Special Laboratory, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Xuesong Ye
- Biosensor National Special Laboratory, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, People's Republic of China.
- State Key Laboratory of CAD and CG, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
74
|
Deng X, He C, Cheng H, Li J, Lu Y, Qiu P, Wang K. Measurement of two-photon properties of indocyanine green in water and human plasma excited at the 1700-nm window. JOURNAL OF BIOPHOTONICS 2020; 13:e202000299. [PMID: 33026179 DOI: 10.1002/jbio.202000299] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 06/11/2023]
Abstract
Indocyanine green (ICG) is a human compatible dye and is ideal for deep-tissue two-photon fluorescence (2PF) microscopy excited at the 1700-nm window in vivo. However, the two-photon excitation and emission properties of this dye remain unknown. Here we demonstrate measurement of the two-photon excitation and emission properties of ICG in both water and human plasma, using home-built two-photon action cross-sectional measurement and two-photon emission spectrum measurement systems. Our results show that excited from 1600 to 1800 nm, 2PF can be generated from ICG dissolved in both water and human plasma. The measured two-photon action cross-sectional ησ2 of ICG dissolved in human plasma is an order-of-magnitude larger than that dissolved in water. The measured two-photon emission spectrum overlaps with the one-photon emission spectrum for ICG dissolved in both human plasma and water. Our results will provide key two-photon parameters for the clinical use of ICG.
Collapse
Affiliation(s)
- Xiangquan Deng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Chen He
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Hui Cheng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Jia Li
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Yuan Lu
- Department of Dermatology, The Sixth Hospital of Shenzhen University (Nanshan Hospital), Shenzhen, China
| | - Ping Qiu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Ke Wang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
75
|
Fast A, Lal A, Durkin AF, Lentsch G, Harris RM, Zachary CB, Ganesan AK, Balu M. Fast, large area multiphoton exoscope (FLAME) for macroscopic imaging with microscopic resolution of human skin. Sci Rep 2020; 10:18093. [PMID: 33093610 PMCID: PMC7582965 DOI: 10.1038/s41598-020-75172-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
We introduce a compact, fast large area multiphoton exoscope (FLAME) system with enhanced molecular contrast for macroscopic imaging of human skin with microscopic resolution. A versatile imaging platform, FLAME combines optical and mechanical scanning mechanisms with deep learning image restoration to produce depth-resolved images that encompass sub-mm2 to cm2 scale areas of tissue within minutes and provide means for a comprehensive analysis of live or resected thick human skin tissue. The FLAME imaging platform, which expands on a design recently introduced by our group, also features time-resolved single photon counting detection to uniquely allow fast discrimination and 3D virtual staining of melanin. We demonstrate its performance and utility by fast ex vivo and in vivo imaging of human skin. With the ability to provide rapid access to depth resolved images of skin over cm2 area and to generate 3D distribution maps of key sub-cellular skin components such as melanocytic dendrites and melanin, FLAME is ready to be translated into a clinical imaging tool for enhancing diagnosis accuracy, guiding therapy and understanding skin biology.
Collapse
Affiliation(s)
- Alexander Fast
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, 1002 Health Sciences Rd., Irvine, CA, 92612, USA
| | - Akarsh Lal
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, 1002 Health Sciences Rd., Irvine, CA, 92612, USA
| | - Amanda F Durkin
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, 1002 Health Sciences Rd., Irvine, CA, 92612, USA
| | - Griffin Lentsch
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, 1002 Health Sciences Rd., Irvine, CA, 92612, USA
| | - Ronald M Harris
- Department of Dermatology, University of California, Irvine, 1 Medical Plaza Dr., Irvine, CA, 92697, USA
| | - Christopher B Zachary
- Department of Dermatology, University of California, Irvine, 1 Medical Plaza Dr., Irvine, CA, 92697, USA
| | - Anand K Ganesan
- Department of Dermatology, University of California, Irvine, 1 Medical Plaza Dr., Irvine, CA, 92697, USA
| | - Mihaela Balu
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, 1002 Health Sciences Rd., Irvine, CA, 92612, USA.
| |
Collapse
|
76
|
Antonini A, Sattin A, Moroni M, Bovetti S, Moretti C, Succol F, Forli A, Vecchia D, Rajamanickam VP, Bertoncini A, Panzeri S, Liberale C, Fellin T. Extended field-of-view ultrathin microendoscopes for high-resolution two-photon imaging with minimal invasiveness. eLife 2020; 9:58882. [PMID: 33048047 PMCID: PMC7685710 DOI: 10.7554/elife.58882] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/12/2020] [Indexed: 11/24/2022] Open
Abstract
Imaging neuronal activity with high and homogeneous spatial resolution across the field-of-view (FOV) and limited invasiveness in deep brain regions is fundamental for the progress of neuroscience, yet is a major technical challenge. We achieved this goal by correcting optical aberrations in gradient index lens-based ultrathin (≤500 µm) microendoscopes using aspheric microlenses generated through 3D-microprinting. Corrected microendoscopes had extended FOV (eFOV) with homogeneous spatial resolution for two-photon fluorescence imaging and required no modification of the optical set-up. Synthetic calcium imaging data showed that, compared to uncorrected endoscopes, eFOV-microendoscopes led to improved signal-to-noise ratio and more precise evaluation of correlated neuronal activity. We experimentally validated these predictions in awake head-fixed mice. Moreover, using eFOV-microendoscopes we demonstrated cell-specific encoding of behavioral state-dependent information in distributed functional subnetworks in a primary somatosensory thalamic nucleus. eFOV-microendoscopes are, therefore, small-cross-section ready-to-use tools for deep two-photon functional imaging with unprecedentedly high and homogeneous spatial resolution.
Collapse
Affiliation(s)
- Andrea Antonini
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy.,Nanostructures Department, Istituto Italiano di Tecnologia, Genova, Italy
| | - Andrea Sattin
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy.,University of Genova, Genova, Italy.,Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova and Rovereto, Italy
| | - Monica Moroni
- Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova and Rovereto, Italy.,Neural Computation Laboratory, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy.,Center for Mind and Brain Sciences (CIMeC), University of Trento, Rovereto, Italy
| | - Serena Bovetti
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| | - Claudio Moretti
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy.,University of Genova, Genova, Italy
| | - Francesca Succol
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| | - Angelo Forli
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy.,Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova and Rovereto, Italy
| | - Dania Vecchia
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy.,Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova and Rovereto, Italy
| | - Vijayakumar P Rajamanickam
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy.,Nanostructures Department, Istituto Italiano di Tecnologia, Genova, Italy.,Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Andrea Bertoncini
- Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Stefano Panzeri
- Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova and Rovereto, Italy.,Neural Computation Laboratory, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Carlo Liberale
- Nanostructures Department, Istituto Italiano di Tecnologia, Genova, Italy.,Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Tommaso Fellin
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy.,Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova and Rovereto, Italy
| |
Collapse
|
77
|
Yang J, Chen IA, Chang S, Tang J, Lee B, Kılıç K, Sunil S, Wang H, Varadarajan D, Magnain C, Chen SC, Costantini I, Pavone F, Fischl B, Boas DA. Improving the characterization of ex vivo human brain optical properties using high numerical aperture optical coherence tomography by spatially constraining the confocal parameters. NEUROPHOTONICS 2020; 7:045005. [PMID: 33094126 PMCID: PMC7575831 DOI: 10.1117/1.nph.7.4.045005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/30/2020] [Indexed: 05/24/2023]
Abstract
Significance: The optical properties of biological samples provide information about the structural characteristics of the tissue and any changes arising from pathological conditions. Optical coherence tomography (OCT) has proven to be capable of extracting tissue's optical properties using a model that combines the exponential decay due to tissue scattering and the axial point spread function that arises from the confocal nature of the detection system, particularly for higher numerical aperture (NA) measurements. A weakness in estimating the optical properties is the inter-parameter cross-talk between tissue scattering and the confocal parameters defined by the Rayleigh range and the focus depth. Aim: In this study, we develop a systematic method to improve the characterization of optical properties with high-NA OCT. Approach: We developed a method that spatially parameterizes the confocal parameters in a previously established model for estimating the optical properties from the depth profiles of high-NA OCT. Results: The proposed parametrization model was first evaluated on a set of intralipid phantoms and then validated using a low-NA objective in which cross-talk from the confocal parameters is negligible. We then utilize our spatially parameterized model to characterize optical property changes introduced by a tissue index matching process using a simple immersion agent, 2,2'-thiodiethonal. Conclusions: Our approach improves the confidence of parameter estimation by reducing the degrees of freedom in the non-linear fitting model.
Collapse
Affiliation(s)
- Jiarui Yang
- Boston University, Department of Biomedical Engineering, Boston, United States
| | - Ichun Anderson Chen
- Boston University, Department of Biomedical Engineering, Boston, United States
| | - Shuaibin Chang
- Boston University, Department of Electrical and Computer Engineering, Boston, United States
| | - Jianbo Tang
- Boston University, Department of Biomedical Engineering, Boston, United States
| | - Blaire Lee
- Boston University, Department of Biomedical Engineering, Boston, United States
| | - Kıvılcım Kılıç
- Boston University, Department of Biomedical Engineering, Boston, United States
| | - Smrithi Sunil
- Boston University, Department of Biomedical Engineering, Boston, United States
| | - Hui Wang
- Massachusetts General Hospital, A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Boston, United States
| | - Divya Varadarajan
- Massachusetts General Hospital, A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Boston, United States
| | - Caroline Magnain
- Massachusetts General Hospital, A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Boston, United States
| | - Shih-Chi Chen
- The Chinese University of Hong Kong, Department of Mechanical Engineering, Hong Kong Special Administrative Region, China
| | - Irene Costantini
- University of Florence, European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino, Florence, Italy
- National Research Council, National Institute of Optics, Italy
| | - Francesco Pavone
- University of Florence, European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino, Florence, Italy
| | - Bruce Fischl
- Massachusetts General Hospital, A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Boston, United States
- Health Science and Technology/Computer Science & Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
| | - David A. Boas
- Boston University, Department of Biomedical Engineering, Boston, United States
| |
Collapse
|
78
|
Liu CJ, Roy A, Simons AA, Farinella DM, Kara P. Three-photon imaging of synthetic dyes in deep layers of the neocortex. Sci Rep 2020; 10:16351. [PMID: 33004996 PMCID: PMC7529898 DOI: 10.1038/s41598-020-73438-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 09/16/2020] [Indexed: 11/09/2022] Open
Abstract
Multiphoton microscopy has emerged as the primary imaging tool for studying the structural and functional dynamics of neural circuits in brain tissue, which is highly scattering to light. Recently, three-photon microscopy has enabled high-resolution fluorescence imaging of neurons in deeper brain areas that lie beyond the reach of conventional two-photon microscopy, which is typically limited to ~ 450 µm. Three-photon imaging of neuronal calcium signals, through the genetically-encoded calcium indicator GCaMP6, has been used to successfully record neuronal activity in deeper neocortical layers and parts of the hippocampus in rodents. Bulk-loading cells in deeper cortical layers with synthetic calcium indicators could provide an alternative strategy for labelling that obviates dependence on viral tropism and promoter penetration, particularly in non-rodent species. Here we report a strategy for visualized injection of a calcium dye, Oregon Green BAPTA-1 AM (OGB-1 AM), at 500-600 µm below the surface of the mouse visual cortex in vivo. We demonstrate successful OGB-1 AM loading of cells in cortical layers 5-6 and subsequent three-photon imaging of orientation- and direction- selective visual responses from these cells.
Collapse
Affiliation(s)
- Chao J Liu
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
- Centre for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Arani Roy
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
- Centre for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Anthony A Simons
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
- Centre for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Deano M Farinella
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
- Centre for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Prakash Kara
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA.
- Centre for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
79
|
Cheng H, Tong S, Deng X, Li J, Qiu P, Wang K. In vivo deep-brain imaging of microglia enabled by three-photon fluorescence microscopy. OPTICS LETTERS 2020; 45:5271-5274. [PMID: 32932509 DOI: 10.1364/ol.408329] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
Microglia act as the first and main form of active immune defense in brain. However, in animal models, research on these cells is limited to the superficial layer of the brain, due to the lack of a deep-imaging technique. Here we break this depth limit using three-photon fluorescence (3PF) microscopy excited at the 1700-nm window. Three-photon action cross-section (ησ3) measurement lays the basis for dye selection and the resultant maximization of 3PF generation. 3PF imaging suppresses the surface background, leading to a much improved signal-to-background ratio compared to the commonly used two-photon microscopy (2PM). We can image microglia 1124 µm below the brain surface in vivo, 3.7 times deeper than previous results using 2PM for microglia imaging. This technique enables us to visualize microglia in the white matter layer in vivo for the first time.
Collapse
|
80
|
Spatial Organization and Dynamics of the Extracellular Space in the Mouse Retina. J Neurosci 2020; 40:7785-7794. [PMID: 32887746 DOI: 10.1523/jneurosci.1717-20.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/24/2020] [Accepted: 08/31/2020] [Indexed: 11/21/2022] Open
Abstract
The extracellular space (ECS) plays an important role in the physiology of neural circuits. Despite our detailed understanding of the cellular architecture of the mammalian retina, little is known about the organization and dynamics of the retinal ECS. We developed an optical technique based on two-photon imaging of fluorescently labeled extracellular fluid to measure the ECS volume fraction (α) in the ex vivo retina of male and female mice. This method has high spatial resolution and can detect rapid changes in α evoked by osmotic challenge and neuronal activity. The measured ECS α varied dramatically in different layers of the adult mouse retina, with α equaling ∼0.050 in the ganglion cell layer, ∼0.122 in the inner plexiform layer (IPL), ∼0.025 in the inner nuclear layer (INL), ∼0.087 in the outer plexiform layer, and ∼0.026 in the outer nuclear layer (ONL). ECS α was significantly larger early in retinal development; α was 67% larger in the IPL and 100% larger in the INL in neonatal mice compared with adults. In adult retinas, light stimulation evoked rapid decreases in ECS α. Light-driven reductions in ECS α were largest in the IPL, where visual stimuli decreased α values ∼10%. These light-evoked decreases demonstrate that a physiological stimulus can lead to rapid changes in ECS α and indicate that activity-dependent regulation of extracellular space may contribute to visual processing in the retina.SIGNIFICANCE STATEMENT The volume fraction of the extracellular space (ECS α), that portion of CNS tissue occupied by interstitial space, influences the diffusion of neurotransmitters from the synaptic cleft and the volume transmission of transmitters. However, ECS α has never been measured in live retina, and little is known about how ECS α varies following physiological stimulation. Here we show that ECS α values vary dramatically between different retinal layers and decrease by 10% following light stimulation. ECS α differences within the retina will influence volume transmission and light-evoked α variations may modulate synaptic transmission and visual processing in the retina. Activity-dependent ECS α variations may represent a mechanism of synaptic modulation throughout the CNS.
Collapse
|
81
|
Carp SA, Tamborini D, Mazumder D, Wu KC(T, Robinson MR, Stephens KA, Shatrovoy O, Lue N, Ozana N, Blackwell MH, Franceschini MA. Diffuse correlation spectroscopy measurements of blood flow using 1064 nm light. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:JBO-200140RR. [PMID: 32996299 PMCID: PMC7522668 DOI: 10.1117/1.jbo.25.9.097003] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/11/2020] [Indexed: 05/18/2023]
Abstract
SIGNIFICANCE Diffuse correlation spectroscopy (DCS) is an established optical modality that enables noninvasive measurements of blood flow in deep tissue by quantifying the temporal light intensity fluctuations generated by dynamic scattering of moving red blood cells. Compared with near-infrared spectroscopy, DCS is hampered by a limited signal-to-noise ratio (SNR) due to the need to use small detection apertures to preserve speckle contrast. However, DCS is a dynamic light scattering technique and does not rely on hemoglobin contrast; thus, there are significant SNR advantages to using longer wavelengths (>1000 nm) for the DCS measurement due to a variety of biophysical and regulatory factors. AIM We offer a quantitative assessment of the benefits and challenges of operating DCS at 1064 nm versus the typical 765 to 850 nm wavelength through simulations and experimental demonstrations. APPROACH We evaluate the photon budget, depth sensitivity, and SNR for detecting blood flow changes using numerical simulations. We discuss continuous wave (CW) and time-domain (TD) DCS hardware considerations for 1064 nm operation. We report proof-of-concept measurements in tissue-like phantoms and healthy adult volunteers. RESULTS DCS at 1064 nm offers higher intrinsic sensitivity to deep tissue compared with DCS measurements at the typically used wavelength range (765 to 850 nm) due to increased photon counts and a slower autocorrelation decay. These advantages are explored using simulations and are demonstrated using phantom and in vivo measurements. We show the first high-speed (cardiac pulsation-resolved), high-SNR measurements at large source-detector separation (3 cm) for CW-DCS and late temporal gates (1 ns) for TD-DCS. CONCLUSIONS DCS at 1064 nm offers a leap forward in the ability to monitor deep tissue blood flow and could be especially useful in increasing the reliability of cerebral blood flow monitoring in adults.
Collapse
Affiliation(s)
- Stefan A. Carp
- Massachusetts General Hospital, Harvard Medical School, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
- Address all correspondence to Stefan A. Carp, E-mail:
| | - Davide Tamborini
- Massachusetts General Hospital, Harvard Medical School, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Dibbyan Mazumder
- Massachusetts General Hospital, Harvard Medical School, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Kuan-Cheng (Tony) Wu
- Massachusetts General Hospital, Harvard Medical School, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Mitchell R. Robinson
- Massachusetts General Hospital, Harvard Medical School, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
- MIT, Health Sciences and Technology Program, Cambridge, Massachusetts, United States
| | - Kimberly A. Stephens
- Massachusetts General Hospital, Harvard Medical School, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Oleg Shatrovoy
- MIT Lincoln Laboratory, Lexington, Massachusetts, United States
| | - Niyom Lue
- MIT Lincoln Laboratory, Lexington, Massachusetts, United States
| | - Nisan Ozana
- Massachusetts General Hospital, Harvard Medical School, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | | | - Maria A. Franceschini
- Massachusetts General Hospital, Harvard Medical School, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| |
Collapse
|
82
|
Wang S, Li B, Zhang F. Molecular Fluorophores for Deep-Tissue Bioimaging. ACS CENTRAL SCIENCE 2020; 6:1302-1316. [PMID: 32875073 PMCID: PMC7453417 DOI: 10.1021/acscentsci.0c00544] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Indexed: 05/08/2023]
Abstract
Fluorescence imaging has made tremendous inroads toward understanding the complexity of biological systems, but in vivo deep-tissue imaging remains a great challenge due to the optical opacity of biological tissue. Recent improvements in laser and detector manufacturing have allowed the expansion of nonlinear and linear fluorescence imaging to the underexplored "tissue-transparent" second near-infrared (NIR-II; 1000-1700 nm) window, opening up new opportunities for optical access deep inside opaque tissue. Molecular fluorophores have historically played a major role in fluorescence bioimaging. It is increasingly important to design new molecular fluorophores to fully unlock the potential of NIR-II imaging techniques. In this outlook, we give an overview of the novel molecular fluorophores developed for deep-tissue bioimaging in the past five years and discuss their pros and cons in applications. Guidelines for designing new molecular fluorophores with the desirable properties are also provided.
Collapse
Affiliation(s)
| | | | - Fan Zhang
- Department of Chemistry,
State Key Laboratory of Molecular Engineering of Polymers, Shanghai
Key Laboratory of Molecular Catalysis and Innovative Materials and
iChem, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
83
|
Konno A, Matsumoto N, Tomono Y, Okazaki S. Pathological application of carbocyanine dye-based multicolour imaging of vasculature and associated structures. Sci Rep 2020; 10:12613. [PMID: 32724051 PMCID: PMC7387484 DOI: 10.1038/s41598-020-69394-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/09/2020] [Indexed: 12/28/2022] Open
Abstract
Simultaneous visualisation of vasculature and surrounding tissue structures is essential for a better understanding of vascular pathologies. In this work, we describe a histochemical strategy for three-dimensional, multicolour imaging of vasculature and associated structures, using a carbocyanine dye-based technique, vessel painting. We developed a series of applications to allow the combination of vessel painting with other histochemical methods, including immunostaining and tissue clearing for confocal and two-photon microscopies. We also introduced a two-photon microscopy setup that incorporates an aberration correction system to correct aberrations caused by the mismatch of refractive indices between samples and immersion mediums, for higher-quality images of intact tissue structures. Finally, we demonstrate the practical utility of our approach by visualising fine pathological alterations to the renal glomeruli of IgA nephropathy model mice in unprecedented detail. The technical advancements should enhance the versatility of vessel painting, offering rapid and cost-effective methods for vascular pathologies.
Collapse
Affiliation(s)
- Alu Konno
- Institute for Medical Photonics Research, Preeminent Medical Photonics Education and Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Naoya Matsumoto
- Central Research Laboratory, Hamamatsu Photonics K.K., Hamamatsu, Japan
| | - Yasuko Tomono
- Division of Molecular and Cell Biology, Shigei Medical Research Institute, Okayama, Japan
| | - Shigetoshi Okazaki
- Institute for Medical Photonics Research, Preeminent Medical Photonics Education and Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| |
Collapse
|
84
|
Liu H, Chen X, Deng X, Zhuang Z, Tong S, Xie W, Li J, Qiu P, Wang K. In vivo deep-brain blood flow speed measurement through third-harmonic generation imaging excited at the 1700-nm window. BIOMEDICAL OPTICS EXPRESS 2020; 11:2738-2744. [PMID: 32499956 PMCID: PMC7249836 DOI: 10.1364/boe.389662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/14/2020] [Accepted: 04/15/2020] [Indexed: 05/28/2023]
Abstract
Measurement of the hemodynamic physical parameter blood flow speed in the brain in vivo is key to understanding brain physiology and pathology. 2-photon fluorescence microscopy with single blood vessel resolution is typically used, which necessitates injection of toxic fluorescent dyes. Here we demonstrate a label-free nonlinear optical technique, third-harmonic generation microscopy excited at the 1700-nm window, that is promising for such measurement. Using a simple femtosecond laser system based on soliton self-frequency shift, we can measure blood flow speed through the whole cortical grey matter, even down to the white matter layer. Together with 3-photon fluorescence microscopy, we further demonstrate that the blood vessel walls generate strong THG signals, and that plasma and circulating blood cells are mutually exclusive in space. This technique can be readily applied to brain research.
Collapse
Affiliation(s)
- Hongji Liu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xinlin Chen
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiangquan Deng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ziwei Zhuang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Shen Tong
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Weixin Xie
- College of Electronics and information engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jia Li
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ping Qiu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ke Wang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
85
|
Sanchez-Cano A, Saldaña-Díaz JE, Perdices L, Pinilla I, Salgado-Remacha FJ, Jarabo S. Measurement method of optical properties of ex vivo biological tissues of rats in the near-infrared range. APPLIED OPTICS 2020; 59:D111-D117. [PMID: 32400631 DOI: 10.1364/ao.384614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/06/2020] [Indexed: 06/11/2023]
Abstract
An optical fiber-based supercontinuum setup and a custom-made spectrophotometer that can measure spectra from 1100 to 2300 nm, are used to describe attenuation properties from different ex vivo rat tissues. Our method is able to differentiate between scattering and absorption coefficients in biological tissues. Theoretical assumptions combined with experimental measurements demonstrate that, in this infrared range, tissue attenuation and absorption can be accurately measured, and scattering can be described as the difference between both magnitudes. Attenuation, absorption, and scattering spectral coefficients of heart, brain, spleen, retina, and kidney are given by applying these theoretical and experimental methods. Light through these tissues is affected by high scattering, resulting in multiple absorption events, and longer wavelengths should be used to obtain lower attenuation values. It can be observed that the absorption coefficient has a similar behavior in the samples under study, with two main zones of absorption due to the water absorption bands at 1450 and 1950 nm, and with different absolute absorption values depending on the constituents of each tissue. The scattering coefficient can be determined, showing slight differences between retina and brain samples, and among heart, spleen and kidney tissues.
Collapse
|
86
|
Ahn SJ, Ruiz-Uribe NE, Li B, Porter J, Sakadzic S, Schaffer CB. Label-free assessment of hemodynamics in individual cortical brain vessels using third harmonic generation microscopy. BIOMEDICAL OPTICS EXPRESS 2020; 11:2665-2678. [PMID: 32499951 PMCID: PMC7249811 DOI: 10.1364/boe.385848] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/07/2020] [Accepted: 04/15/2020] [Indexed: 05/04/2023]
Abstract
We show that third harmonic generation (THG) microscopy using a 1-MHz train of 1,300-nm femtosecond duration laser pulses enabled visualization of the structure and quantification of flow speed in the cortical microvascular network of mice to a depth of > 1 mm. Simultaneous three-photon imaging of an intravascular fluorescent tracer enabled us to quantify the cell free layer thickness. Using the label-free imaging capability of THG, we measured flow speed in different types of vessels with and without the presence of an intravascular tracer conjugated to a high molecular weight dextran (2 MDa FITC-dextran, 5% w/v in saline, 100 µl). We found a ∼20% decrease in flow speeds in arterioles and venules due to the dextran-conjugated FITC, which we confirmed with Doppler optical coherence tomography. Capillary flow speeds did not change, although we saw a ∼7% decrease in red blood cell flux with dextran-conjugated FITC injection.
Collapse
Affiliation(s)
- Sung Ji Ahn
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Nancy E. Ruiz-Uribe
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Baoqiang Li
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Jason Porter
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Sava Sakadzic
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Chris B. Schaffer
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
87
|
Lesani P, Singh G, Viray CM, Ramaswamy Y, Zhu DM, Kingshott P, Lu Z, Zreiqat H. Two-Photon Dual-Emissive Carbon Dot-Based Probe: Deep-Tissue Imaging and Ultrasensitive Sensing of Intracellular Ferric Ions. ACS APPLIED MATERIALS & INTERFACES 2020; 12:18395-18406. [PMID: 32239906 DOI: 10.1021/acsami.0c05217] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Carbon dots (CDs)-based nanoparticles have been extensively explored for biological applications in sensing and bioimaging. However, the major translational barriers to CDs for imaging and sensing applications include synthetic strategies to obtain monodisperse CDs with tunable structural, electronic, and optical properties in order to achieve high-resolution deep-tissue imaging, intracellular detection, and sensing of metal ions with high sensitivity down to nanomolar levels. Herein, we report a novel strategy to synthesize and develop a multifunctional nitrogen-doped CDs probe of different sizes using a new combination of carbon and nitrogen sources. Our results show that the structural characteristics (i.e., the surface density of emissive traps and bandgaps levels) depend on the size of the CDs, which ultimately influences their optical properties. This work also demonstrates the development of a two-photon dual-emissive fluorescent multifunctional probes (3-FCDs) by conjugating fluorescein isothiocyanate on the surface of nitrogen-doped CDs. 3-FCDs show excellent near-infrared two-photon excitation ability, single-wavelength excitation, high photostability, biocompatibility, low cytotoxicity, and good cell permeability. Using two-photon fluorescence imaging, our multifunctional probe shows excellent deep-tissue high-resolution imaging capabilities with penetration depth up to 3000 and 280 μm in hydrogel scaffold and pigskin tissue, respectively. The designed probe exhibits ultrasensitivity and specificity toward Fe3+ ions with a remarkable detection limit of 2.21 nM using two-photon excitation. In addition, we also demonstrate the use of multifunctional CDs probe for ultrasensitive exogenous and real-time endogenous sensing of Fe3+ ions and imaging in live fibroblasts with rapid response times for intracellular ferric ion detection.
Collapse
|
88
|
Li B, Ohtomo R, Thunemann M, Adams SR, Yang J, Fu B, Yaseen MA, Ran C, Polimeni JR, Boas DA, Devor A, Lo EH, Arai K, Sakadžić S. Two-photon microscopic imaging of capillary red blood cell flux in mouse brain reveals vulnerability of cerebral white matter to hypoperfusion. J Cereb Blood Flow Metab 2020; 40:501-512. [PMID: 30829101 PMCID: PMC7026840 DOI: 10.1177/0271678x19831016] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 01/19/2019] [Accepted: 01/21/2019] [Indexed: 01/15/2023]
Abstract
Despite the importance of understanding the regulation of microvascular blood flow in white matter, no data on subcortical capillary blood flow parameters are available, largely due to the lack of appropriate imaging methods. To address this knowledge gap, we employed two-photon microscopy using a far-red fluorophore Alexa680 and photon-counting detection to measure capillary red blood cell (RBC) flux in both cerebral gray and white matter, in isoflurane-anesthetized mice. We have found that in control animals, baseline capillary RBC flux in the white matter was significantly higher than in the adjacent cerebral gray matter. In response to mild hypercapnia, RBC flux in the white matter exhibited significantly smaller fractional increase than in the gray matter. Finally, during global cerebral hypoperfusion, RBC flux in the white matter was reduced significantly in comparison to the controls, while RBC flux in the gray matter was preserved. Our results suggest that blood flow in the white matter may be less efficiently regulated when challenged by physiological perturbations as compared to the gray matter. Importantly, the blood flow in the white matter may be more susceptible to hypoperfusion than in the gray matter, potentially exacerbating the white matter deterioration in brain conditions involving global cerebral hypoperfusion.
Collapse
Affiliation(s)
- Baoqiang Li
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Ryo Ohtomo
- Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Martin Thunemann
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Stephen R Adams
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Jing Yang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Buyin Fu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Mohammad A Yaseen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Chongzhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Jonathan R Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - David A Boas
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Anna Devor
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Department of Radiology, University of California San Diego, La Jolla, CA, USA
| | - Eng H Lo
- Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Ken Arai
- Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Sava Sakadžić
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
89
|
High spatiotemporal resolution and low photo-toxicity fluorescence imaging in live cells and in vivo. Biochem Soc Trans 2020; 47:1635-1650. [PMID: 31829403 DOI: 10.1042/bst20190020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 12/18/2022]
Abstract
Taking advantage of high contrast and molecular specificity, fluorescence microscopy has played a critical role in the visualization of subcellular structures and function, enabling unprecedented exploration from cell biology to neuroscience in living animals. To record and quantitatively analyse complex and dynamic biological processes in real time, fluorescence microscopes must be capable of rapid, targeted access deep within samples at high spatial resolutions, using techniques including super-resolution fluorescence microscopy, light sheet fluorescence microscopy, and multiple photon microscopy. In recent years, tremendous breakthroughs have improved the performance of these fluorescence microscopies in spatial resolution, imaging speed, and penetration. Here, we will review recent advancements of these microscopies in terms of the trade-off among spatial resolution, sampling speed and penetration depth and provide a view of their possible applications.
Collapse
|
90
|
Allan-Rahill NH, Lamont MRE, Chilian WM, Nishimura N, Small DM. Intravital Microscopy of the Beating Murine Heart to Understand Cardiac Leukocyte Dynamics. Front Immunol 2020; 11:92. [PMID: 32117249 PMCID: PMC7010807 DOI: 10.3389/fimmu.2020.00092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/14/2020] [Indexed: 12/24/2022] Open
Abstract
Cardiovascular disease is the leading cause of worldwide mortality. Intravital microscopy has provided unprecedented insight into leukocyte biology by enabling the visualization of dynamic responses within living organ systems at the cell-scale. The heart presents a uniquely dynamic microenvironment driven by periodic, synchronous electrical conduction leading to rhythmic contractions of cardiomyocytes, and phasic coronary blood flow. In addition to functions shared throughout the body, immune cells have specific functions in the heart including tissue-resident macrophage-facilitated electrical conduction and rapid monocyte infiltration upon injury. Leukocyte responses to cardiac pathologies, including myocardial infarction and heart failure, have been well-studied using standard techniques, however, certain questions related to spatiotemporal relationships remain unanswered. Intravital imaging techniques could greatly benefit our understanding of the complexities of in vivo leukocyte behavior within cardiac tissue, but these techniques have been challenging to apply. Different approaches have been developed including high frame rate imaging of the beating heart, explantation models, micro-endoscopy, and mechanical stabilization coupled with various acquisition schemes to overcome challenges specific to the heart. The field of cardiac science has only begun to benefit from intravital microscopy techniques. The current focused review presents an overview of leukocyte responses in the heart, recent developments in intravital microscopy for the murine heart, and a discussion of future developments and applications for cardiovascular immunology.
Collapse
Affiliation(s)
- Nathaniel H Allan-Rahill
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| | - Michael R E Lamont
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| | - William M Chilian
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Nozomi Nishimura
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| | - David M Small
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| |
Collapse
|
91
|
Chakraborty S, Chen ST, Hsiao YT, Chiu MJ, Sun CK. Additive-color multi-harmonic generation microscopy for simultaneous label-free differentiation of plaques, tangles, and neuronal axons. BIOMEDICAL OPTICS EXPRESS 2020; 11:571-585. [PMID: 32206388 PMCID: PMC7041468 DOI: 10.1364/boe.378447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/19/2019] [Accepted: 12/19/2019] [Indexed: 05/10/2023]
Abstract
Multicolor fluorescence imaging has been widely used by neuroscientists to simultaneously observe different neuropathological features of the brain. However, these optical modalities rely on exogenous labeling. Here, we demonstrate, for the first time, a label-free additive-color multi-harmonic generation microscopy to elucidate, concurrently with different hues, Alzheimer's disease (AD) neuropathological hallmarks: amyloid β (Aβ) plaques and neurofibrillary tangles (NFT). By treating third harmonic generation (THG) and second harmonic generation (SHG) as two primary colors, our study can simultaneously label-free differentiate AD hallmarks by providing different additive colors between Aβ plaques, NFT, and neuronal axons, with weaker THG presentation from NFT in most places of the brain. Interestingly our pixel-based quantification and Pearson's correlation results further corroborated these findings. Our proposed label-free technique fulfills the unmet challenge in the clinical histopathology for stain-free slide-free differential visualization of neurodegenerative disease pathologies, with a sub-femtoliter resolution in a single image field-of-view.
Collapse
Affiliation(s)
- Sandeep Chakraborty
- Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
| | - Sheng-Tse Chen
- Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
| | - Yang-Ting Hsiao
- Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
| | - Ming-Jang Chiu
- Department of Neurology, National Taiwan University Hospital, Taipei 10051, Taiwan
- College of Medicine, National Taiwan University, Taipei 10051, Taiwan
- Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei 10051, Taiwan
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan
- Graduate Institute of Psychology, National Taiwan University, Taipei 10617, Taiwan
| | - Chi-Kuang Sun
- Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
- College of Medicine, National Taiwan University, Taipei 10051, Taiwan
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
92
|
Wang T, Wu C, Ouzounov DG, Gu W, Xia F, Kim M, Yang X, Warden MR, Xu C. Quantitative analysis of 1300-nm three-photon calcium imaging in the mouse brain. eLife 2020; 9:53205. [PMID: 31999253 PMCID: PMC7028383 DOI: 10.7554/elife.53205] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/29/2020] [Indexed: 12/12/2022] Open
Abstract
1300 nm three-photon calcium imaging has emerged as a useful technique to allow calcium imaging in deep brain regions. Application to large-scale neural activity imaging entails a careful balance between recording fidelity and perturbation to the sample. We calculated and experimentally verified the excitation pulse energy to achieve the minimum photon count required for the detection of calcium transients in GCaMP6s-expressing neurons for 920 nm two-photon and 1320 nm three-photon excitation. By considering the combined effects of in-focus signal attenuation and out-of-focus background generation, we quantified the cross-over depth beyond which three-photon microscopy outpeforms two-photon microscopy in recording fidelity. Brain tissue heating by continuous three-photon imaging was simulated with Monte Carlo method and experimentally validated with immunohistochemistry. Increased immunoreactivity was observed with 150 mW excitation power at 1 and 1.2 mm imaging depths. Our analysis presents a translatable model for the optimization of three-photon calcium imaging based on experimentally tractable parameters.
Collapse
Affiliation(s)
- Tianyu Wang
- School of Applied and Engineering Physics, Cornell University, Ithaca, United States
| | - Chunyan Wu
- School of Applied and Engineering Physics, Cornell University, Ithaca, United States.,College of Veterinary Medicine, Cornell University, Ithaca, United States
| | - Dimitre G Ouzounov
- School of Applied and Engineering Physics, Cornell University, Ithaca, United States
| | - Wenchao Gu
- Department of Neurobiology and Behavior, Cornell University, Ithaca, United States
| | - Fei Xia
- Meining School of Biomedical Engineering, Cornell University, Ithaca, United States
| | - Minsu Kim
- College of Human Ecology, Cornell University, Ithaca, United States
| | - Xusan Yang
- School of Applied and Engineering Physics, Cornell University, Ithaca, United States
| | - Melissa R Warden
- Department of Neurobiology and Behavior, Cornell University, Ithaca, United States
| | - Chris Xu
- School of Applied and Engineering Physics, Cornell University, Ithaca, United States
| |
Collapse
|
93
|
Superficial Bound of the Depth Limit of Two-Photon Imaging in Mouse Brain. eNeuro 2020; 7:ENEURO.0255-19.2019. [PMID: 31907211 PMCID: PMC6984806 DOI: 10.1523/eneuro.0255-19.2019] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/27/2019] [Accepted: 12/02/2019] [Indexed: 01/29/2023] Open
Abstract
Two-photon fluorescence microscopy has been used extensively to probe the structure and functions of cells in living biological tissue. Two-photon excitation generates fluorescence from the focal plane, but also from outside the focal plane, with out-of-focus fluorescence increasing as the focus is pushed deeper into tissue. It has been postulated that the two-photon depth limit, beyond which results become inaccurate, is where in-focus and out-of-focus fluorescence are equal, which we term the balance depth. Calculations suggest that the balance depth should be at ∼600 µm in mouse cortex. Neither the two-photon depth limit nor the balance depth have been measured in brain tissue. We found the depth limit and balance depth of two-photon excitation in mice with GCaMP6 indicator expression in all layers of visual cortex, by comparing near-simultaneous two-photon and three-photon excitation. Two-photon and three-photon results from superficial locations were almost identical. two-photon results were inaccurate beyond the balance depth, consistent with the depth limit matching the balance depth for two-photon excitation. However, the two-photon depth limit and balance depth were at 450 µm, shallower than predicted by calculations. Our results were from tissue with a largely homogenous distribution of fluorophores. The expected balance depth is deeper in tissue with fewer fluorophores outside the focal plane and our results therefore establish a superficial bound on the two-photon depth limit in mouse visual cortex.
Collapse
|
94
|
Sriram G, Sudhaharan T, Wright GD. Multiphoton Microscopy for Noninvasive and Label-Free Imaging of Human Skin and Oral Mucosa Equivalents. Methods Mol Biol 2020; 2150:195-212. [PMID: 30941721 DOI: 10.1007/7651_2019_220] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Multiphoton microscopy has emerged as a powerful modality for noninvasive, spatial, and temporal imaging of biological tissues without the use of labels and/or dyes. It provides complimentary imaging modalities, which include two-photon excited fluorescence (2PEF) and second harmonic generation (SHG). 2PEF from endogenous chromophores such as nicotinamide adenine dinucleotides (NADH), flavins and keratin enable visualization of cellular and subcellular structures. SHG provides visualization of asymmetric macromolecular structures such as collagen. These modalities enable the visualization of biochemical and biological alterations within live tissues in their native state.Organotypic cultures of the skin and oral mucosa equivalents have been increasingly used across basic and translational research. However, assessment of the skin and oral mucosa equivalents is predominantly based on histological techniques which are not suited for real-time imaging and longitudinal studies of the tissues in their native state. 2PEF from endogenous chromophores and SHG from collagen can be effectively used as an imaging tool for noninvasive and label-free acquisition of cellular and matrix structures of live skin and oral mucosa cultures.In this chapter, the methods for noninvasive and label-free imaging of monolayer and organotypic cultures of the skin and oral mucosa using multiphoton microscopy are described.
Collapse
Affiliation(s)
- Gopu Sriram
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore.
| | - Thankiah Sudhaharan
- Institute of Medical Biology, A*STAR, Singapore, Singapore
- Skin Research Institute of Singapore, A*STAR, Singapore, Singapore
| | - Graham D Wright
- Institute of Medical Biology, A*STAR, Singapore, Singapore
- Skin Research Institute of Singapore, A*STAR, Singapore, Singapore
| |
Collapse
|
95
|
Li L, Han Z, Qiu L, Kang D, Zhan Z, Tu H, Chen J. Evaluation of breast carcinoma regression after preoperative chemotherapy by label-free multiphoton imaging and image analysis. JOURNAL OF BIOPHOTONICS 2020; 13:e201900216. [PMID: 31587512 DOI: 10.1002/jbio.201900216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/24/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
Neoadjuvant chemotherapy is increasingly being used in breast carcinoma as it significantly improves the prognosis and consistently leads to an increased rate of breast preservation. How to accurately assess tumor response after treatment is a crucial factor for developing reasonable therapeutic strategy. In this study, we were in an attempt to monitor tumor response by multimodal multiphoton imaging including two-photon excitation fluorescence and second-harmonic generation imaging. We found that multiphoton imaging can identify different degrees of tumor response such as a slight, significant, or complete response and can detect morphological alteration associated with extracellular matrix during the progression of breast carcinoma following preoperative chemotherapy. Two quantitative optical biomarkers including tumor cellularity and collagen content were extracted based on automatic image analysis to help monitor changes in tumor and its microenvironment. Furthermore, tumor regression grade diagnosis was tried to evaluate by multiphoton microscopy. These results may offer a basic framework for using multiphoton microscopic imaging techniques as a helpful diagnostic tool for assessing breast carcinoma response after presurgical treatment.
Collapse
Affiliation(s)
- Lianhuang Li
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, People's Republic of China
| | - Zhonghua Han
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China
| | - Lida Qiu
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, People's Republic of China
- College of Physics and Electronic Information Engineering, Minjiang University, Fuzhou, People's Republic of China
| | - Deyong Kang
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China
| | - Zhenlin Zhan
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, People's Republic of China
| | - Haohua Tu
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Jianxin Chen
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, People's Republic of China
| |
Collapse
|
96
|
Picot A, Dominguez S, Liu C, Chen IW, Tanese D, Ronzitti E, Berto P, Papagiakoumou E, Oron D, Tessier G, Forget BC, Emiliani V. Temperature Rise under Two-Photon Optogenetic Brain Stimulation. Cell Rep 2019; 24:1243-1253.e5. [PMID: 30067979 DOI: 10.1016/j.celrep.2018.06.119] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 03/26/2018] [Accepted: 06/28/2018] [Indexed: 10/28/2022] Open
Abstract
In recent decades, optogenetics has been transforming neuroscience research, enabling neuroscientists to drive and read neural circuits. The recent development in illumination approaches combined with two-photon (2P) excitation, either sequential or parallel, has opened the route for brain circuit manipulation with single-cell resolution and millisecond temporal precision. Yet, the high excitation power required for multi-target photostimulation, especially under 2P illumination, raises questions about the induced local heating inside samples. Here, we present and experimentally validate a theoretical model that makes it possible to simulate 3D light propagation and heat diffusion in optically scattering samples at high spatial and temporal resolution under the illumination configurations most commonly used to perform 2P optogenetics: single- and multi-spot holographic illumination and spiral laser scanning. By investigating the effects of photostimulation repetition rate, spot spacing, and illumination dependence of heat diffusion, we found conditions that make it possible to design a multi-target 2P optogenetics experiment with minimal sample heating.
Collapse
Affiliation(s)
- Alexis Picot
- Wavefront-Engineering Microscopy Group, Neurophotonics Laboratory, UMR 8250 CNRS, University Paris Descartes, 45 rue des Saints-Pères, 75006 Paris, France
| | - Soledad Dominguez
- Wavefront-Engineering Microscopy Group, Neurophotonics Laboratory, UMR 8250 CNRS, University Paris Descartes, 45 rue des Saints-Pères, 75006 Paris, France
| | - Chang Liu
- Holographic Microscopy Group, Neurophotonics Laboratory, UMR 8250 CNRS, University Paris Descartes, 45 rue des Saints-Pères, 75006 Paris, France; Sorbonne Université, CNRS, INSERM, Institut de la Vision, 17 Rue Moreau, 75011 Paris, France
| | - I-Wen Chen
- Wavefront-Engineering Microscopy Group, Neurophotonics Laboratory, UMR 8250 CNRS, University Paris Descartes, 45 rue des Saints-Pères, 75006 Paris, France
| | - Dimitrii Tanese
- Wavefront-Engineering Microscopy Group, Neurophotonics Laboratory, UMR 8250 CNRS, University Paris Descartes, 45 rue des Saints-Pères, 75006 Paris, France
| | - Emiliano Ronzitti
- Wavefront-Engineering Microscopy Group, Neurophotonics Laboratory, UMR 8250 CNRS, University Paris Descartes, 45 rue des Saints-Pères, 75006 Paris, France; Sorbonne Université, CNRS, INSERM, Institut de la Vision, 17 Rue Moreau, 75011 Paris, France
| | - Pascal Berto
- Holographic Microscopy Group, Neurophotonics Laboratory, UMR 8250 CNRS, University Paris Descartes, 45 rue des Saints-Pères, 75006 Paris, France
| | - Eirini Papagiakoumou
- Wavefront-Engineering Microscopy Group, Neurophotonics Laboratory, UMR 8250 CNRS, University Paris Descartes, 45 rue des Saints-Pères, 75006 Paris, France; Institut National de la Santé et de la Recherche Médicale (Inserm), Paris, France
| | - Dan Oron
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Gilles Tessier
- Holographic Microscopy Group, Neurophotonics Laboratory, UMR 8250 CNRS, University Paris Descartes, 45 rue des Saints-Pères, 75006 Paris, France; Sorbonne Université, CNRS, INSERM, Institut de la Vision, 17 Rue Moreau, 75011 Paris, France
| | - Benoît C Forget
- Wavefront-Engineering Microscopy Group, Neurophotonics Laboratory, UMR 8250 CNRS, University Paris Descartes, 45 rue des Saints-Pères, 75006 Paris, France
| | - Valentina Emiliani
- Wavefront-Engineering Microscopy Group, Neurophotonics Laboratory, UMR 8250 CNRS, University Paris Descartes, 45 rue des Saints-Pères, 75006 Paris, France.
| |
Collapse
|
97
|
Kim J, Bixel MG. Intravital Multiphoton Imaging of the Bone and Bone Marrow Environment. Cytometry A 2019; 97:496-503. [DOI: 10.1002/cyto.a.23937] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/30/2019] [Accepted: 11/05/2019] [Indexed: 12/11/2022]
Affiliation(s)
- JungMo Kim
- Department of Tissue MorphogenesisMax Planck Institute for Molecular Biomedicine D‐48149 Münster Germany
| | - Maria Gabriele Bixel
- Department of Tissue MorphogenesisMax Planck Institute for Molecular Biomedicine D‐48149 Münster Germany
| |
Collapse
|
98
|
Yamanaka M, Hayakawa N, Nishizawa N. Signal-to-background ratio and lateral resolution in deep tissue imaging by optical coherence microscopy in the 1700 nm spectral band. Sci Rep 2019; 9:16041. [PMID: 31690729 PMCID: PMC6831679 DOI: 10.1038/s41598-019-52175-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/09/2019] [Indexed: 11/08/2022] Open
Abstract
We quantitatively investigated the image quality in deep tissue imaging with optical coherence microscopy (OCM) in the 1700 nm spectral band, in terms of the signal-to-background ratio (SBR) and lateral resolution. In this work, to demonstrate the benefits of using the 1700 nm spectral band for OCM imaging of brain samples, we compared the imaging quality of OCM en-face images obtained at the same position by using a hybrid 1300 nm/1700 nm spectral domain (SD) OCM system with shared sample and reference arms. By observing a reflective resolution test target through a 1.5 mm-thick tissue phantom, which had a similar scattering coefficient to brain cortex tissue, we confirmed that 1700 nm OCM achieved an SBR about 6-times higher than 1300 nm OCM, although the lateral resolution of the both OCMs was similarly degraded with the increase of the imaging depth. Finally, we also demonstrated high-contrast deep tissue imaging of a mouse brain at a depth up to 1.8 mm by using high-resolution 1700 nm SD-OCM.
Collapse
Affiliation(s)
- Masahito Yamanaka
- Department of Electronics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan.
| | - Naoki Hayakawa
- Department of Electronics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan
| | - Norihiko Nishizawa
- Department of Electronics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan
| |
Collapse
|
99
|
Zheng Z, Li D, Liu Z, Peng HQ, Sung HHY, Kwok RTK, Williams ID, Lam JWY, Qian J, Tang BZ. Aggregation-Induced Nonlinear Optical Effects of AIEgen Nanocrystals for Ultradeep In Vivo Bioimaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1904799. [PMID: 31523871 DOI: 10.1002/adma.201904799] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/23/2019] [Indexed: 05/22/2023]
Abstract
Nonlinear optical microscopy has become a powerful tool in bioimaging research due to its unique capabilities of deep optical sectioning, high-spatial-resolution imaging, and 3D reconstruction of biological specimens. Developing organic fluorescent probes with strong nonlinear optical effects, in particular third-harmonic generation (THG), is promising for exploiting nonlinear microscopic imaging for biomedical applications. Herein, a simple method for preparing organic nanocrystals based on an aggregation-induced emission (AIE) luminogen (DCCN) with bright near-infrared emission is successfully demonstrated. Aggregation-induced nonlinear optical effects, including two-photon fluorescence (2PF), three-photon fluorescence (3PF), and THG, of DCCN are observed in nanoparticles, especially for crystalline nanoparticles. The nanocrystals of DCCN are successfully applied for 2PF microscopy at 1040 nm NIR-II excitation and THG microscopy at 1560 nm NIR-II excitation, respectively, to reconstruct the 3D vasculature of the mouse cerebral vasculature. Impressively, the THG microscopy provides much higher spatial resolution and brightness than the 2PF microscopy and can visualize small vessels with diameters of ≈2.7 µm at the deepest depth of 800 µm in a mouse brain. Thus, this is expected to inspire new insights into the development of advanced AIE materials with multiple nonlinearity, in particular THG, for multimodal nonlinear optical microscopy.
Collapse
Affiliation(s)
- Zheng Zheng
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Dongyu Li
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Zhiyang Liu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Hui-Qing Peng
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Herman H Y Sung
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ryan T K Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ian D Williams
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jun Qian
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
- Center for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
100
|
Nguyen KTT, Frijlink HW, Hinrichs WLJ. Inhomogeneous Distribution of Components in Solid Protein Pharmaceuticals: Origins, Consequences, Analysis, and Resolutions. J Pharm Sci 2019; 109:134-153. [PMID: 31606540 DOI: 10.1016/j.xphs.2019.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 12/21/2022]
Abstract
Successful development of stable solid protein formulations usually requires the addition of one or several excipients to achieve optimal stability. In these products, there is a potential risk of an inhomogeneous distribution of the various ingredients, specifically the ratio of protein and stabilizer may vary. Such inhomogeneity can be detrimental for stability but is mostly neglected in literature. In the past, it was challenging to analyze inhomogeneous component distribution, but recent advances in analytical techniques have revealed new options to investigate this phenomenon. This paper aims to review fundamental aspects of the inhomogeneous distribution of components of freeze-dried and spray-dried protein formulations. Four key topics will be presented and discussed, including the sources of component inhomogeneity, its consequences on protein stability, the analytical methods to reveal component inhomogeneity, and possible solutions to prevent or mitigate inhomogeneity.
Collapse
Affiliation(s)
- Khanh T T Nguyen
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9700 RB Groningen, the Netherlands
| | - Henderik W Frijlink
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9700 RB Groningen, the Netherlands
| | - Wouter L J Hinrichs
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9700 RB Groningen, the Netherlands.
| |
Collapse
|