51
|
Human-Specific NOTCH2NL Genes Expand Cortical Neurogenesis through Delta/Notch Regulation. Cell 2018; 173:1370-1384.e16. [PMID: 29856955 PMCID: PMC6092419 DOI: 10.1016/j.cell.2018.03.067] [Citation(s) in RCA: 243] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/16/2018] [Accepted: 03/26/2018] [Indexed: 12/03/2022]
Abstract
The cerebral cortex underwent rapid expansion and increased complexity during recent hominid evolution. Gene duplications constitute a major evolutionary force, but their impact on human brain development remains unclear. Using tailored RNA sequencing (RNA-seq), we profiled the spatial and temporal expression of hominid-specific duplicated (HS) genes in the human fetal cortex and identified a repertoire of 35 HS genes displaying robust and dynamic patterns during cortical neurogenesis. Among them NOTCH2NL, human-specific paralogs of the NOTCH2 receptor, stood out for their ability to promote cortical progenitor maintenance. NOTCH2NL promote the clonal expansion of human cortical progenitors, ultimately leading to higher neuronal output. At the molecular level, NOTCH2NL function by activating the Notch pathway through inhibition of cis Delta/Notch interactions. Our study uncovers a large repertoire of recently evolved genes active during human corticogenesis and reveals how human-specific NOTCH paralogs may have contributed to the expansion of the human cortex. Identification of >35 HS protein-coding genes expressed during human corticogenesis NOTCH2NL human-specific paralogs of NOTCH2 expressed in human cortical progenitors NOTCH2NL genes expand human cortical progenitors and their neuronal output NOTCH2NL promotes Notch signaling through cis-inhibition of Delta/Notch interactions
Collapse
|
52
|
Evolution and genomics of the human brain. NEUROLOGÍA (ENGLISH EDITION) 2018. [DOI: 10.1016/j.nrleng.2015.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
53
|
Florio M, Heide M, Pinson A, Brandl H, Albert M, Winkler S, Wimberger P, Huttner WB, Hiller M. Evolution and cell-type specificity of human-specific genes preferentially expressed in progenitors of fetal neocortex. eLife 2018; 7:32332. [PMID: 29561261 PMCID: PMC5898914 DOI: 10.7554/elife.32332] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 03/09/2018] [Indexed: 01/21/2023] Open
Abstract
Understanding the molecular basis that underlies the expansion of the neocortex during primate, and notably human, evolution requires the identification of genes that are particularly active in the neural stem and progenitor cells of the developing neocortex. Here, we have used existing transcriptome datasets to carry out a comprehensive screen for protein-coding genes preferentially expressed in progenitors of fetal human neocortex. We show that 15 human-specific genes exhibit such expression, and many of them evolved distinct neural progenitor cell-type expression profiles and levels compared to their ancestral paralogs. Functional studies on one such gene, NOTCH2NL, demonstrate its ability to promote basal progenitor proliferation in mice. An additional 35 human genes with progenitor-enriched expression are shown to have orthologs only in primates. Our study provides a resource of genes that are promising candidates to exert specific, and novel, roles in neocortical development during primate, and notably human, evolution.
Collapse
Affiliation(s)
- Marta Florio
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Michael Heide
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Anneline Pinson
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Holger Brandl
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Mareike Albert
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Sylke Winkler
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Pauline Wimberger
- Klinik und Poliklinik für Frauenheilkunde und Geburtshilfe, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| |
Collapse
|
54
|
Hanada K, Tezuka A, Nozawa M, Suzuki Y, Sugano S, Nagano AJ, Ito M, Morinaga SI. Functional divergence of duplicate genes several million years after gene duplication in Arabidopsis. DNA Res 2018; 25:4898128. [PMID: 29481587 PMCID: PMC6014284 DOI: 10.1093/dnares/dsy005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 02/02/2018] [Indexed: 12/02/2022] Open
Abstract
Lineage-specific duplicated genes likely contribute to the phenotypic divergence in closely related species. However, neither the frequency of duplication events nor the degree of selection pressures immediately after gene duplication is clear in the speciation process. Here, using Illumina DNA-sequencing reads from Arabidopsis halleri, which has multiple closely related species with high-quality genome assemblies (A. thaliana and A. lyrata), we succeeded in generating orthologous gene groups in Brassicaceae. The duplication frequency of retained genes in the Arabidopsis lineage was ∼10 times higher than the duplication frequency inferred by comparative genomics of Arabidopsis, poplar, rice and moss (Physcomitrella patens). The difference of duplication frequencies can be explained by a rapid decay of anciently duplicated genes. To examine the degree of selection pressure on genes duplicated in either the A. halleri-lyrata or the A. halleri lineage, we examined positive and purifying selection in the A. halleri-lyrata and A. halleri lineages throughout the ratios of nonsynonymous to synonymous substitution rates (KA/KS). Duplicate genes tended to have a higher proportion of positive selection compared with non-duplicated genes. Interestingly, we found that functional divergence of duplicated genes was accelerated several million years after gene duplication compared with immediately after gene duplication.
Collapse
Affiliation(s)
- Kousuke Hanada
- Department of Bioscience and Bioinformatics, Frontier Research Academy for Young Researchers, Kyusyu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
- RIKEN Center for Sustainable Resource Science, RIKEN, Yokohama, Kanagawa 230-0045, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Ayumi Tezuka
- Department of Bioscience and Bioinformatics, Frontier Research Academy for Young Researchers, Kyusyu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| | - Masafumi Nozawa
- Center for Information Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Yutaka Suzuki
- Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Sumio Sugano
- Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Atsushi J Nagano
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
- Center of Ecological Research, Kyoto University, Hirano, Otsu, Shiga 520-2113, Japan
| | - Motomi Ito
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Shin-Ichi Morinaga
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
- College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| |
Collapse
|
55
|
Levchenko A, Kanapin A, Samsonova A, Gainetdinov RR. Human Accelerated Regions and Other Human-Specific Sequence Variations in the Context of Evolution and Their Relevance for Brain Development. Genome Biol Evol 2018; 10:166-188. [PMID: 29149249 PMCID: PMC5767953 DOI: 10.1093/gbe/evx240] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2017] [Indexed: 12/24/2022] Open
Abstract
The review discusses, in a format of a timeline, the studies of different types of genetic variants, present in Homo sapiens, but absent in all other primate, mammalian, or vertebrate species, tested so far. The main characteristic of these variants is that they are found in regions of high evolutionary conservation. These sequence variations include single nucleotide substitutions (called human accelerated regions), deletions, and segmental duplications. The rationale for finding such variations in the human genome is that they could be responsible for traits, specific to our species, of which the human brain is the most remarkable. As became obvious, the vast majority of human-specific single nucleotide substitutions are found in noncoding, likely regulatory regions. A number of genes, associated with these human-specific alleles, often through novel enhancer activity, were in fact shown to be implicated in human-specific development of certain brain areas, including the prefrontal cortex. Human-specific deletions may remove regulatory sequences, such as enhancers. Segmental duplications, because of their large size, create new coding sequences, like new functional paralogs. Further functional study of these variants will shed light on evolution of our species, as well as on the etiology of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Anastasia Levchenko
- Institute of Translational Biomedicine, Saint Petersburg State University, Russia
| | - Alexander Kanapin
- Institute of Translational Biomedicine, Saint Petersburg State University, Russia
- Department of Oncology, University of Oxford, United Kingdom
| | - Anastasia Samsonova
- Institute of Translational Biomedicine, Saint Petersburg State University, Russia
- Department of Oncology, University of Oxford, United Kingdom
| | - Raul R Gainetdinov
- Institute of Translational Biomedicine, Saint Petersburg State University, Russia
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia
| |
Collapse
|
56
|
Heide M, Long KR, Huttner WB. Novel gene function and regulation in neocortex expansion. Curr Opin Cell Biol 2017; 49:22-30. [PMID: 29227861 DOI: 10.1016/j.ceb.2017.11.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 11/18/2017] [Accepted: 11/26/2017] [Indexed: 01/01/2023]
Abstract
The expansion of the neocortex during human evolution is due to changes in our genome that result in increased and prolonged proliferation of neural stem and progenitor cells during neocortex development. Three principal types of such genomic changes can be distinguished, first, novel gene regulation in human, second, novel function in human of genes existing in both human and non-human species, and third, novel, human-specific genes. The latter comprise both, increases in the copy number of genes existing also in non-human species, and the emergence of genes giving rise to unique, human-specific gene products. Examples of all these types of changes in the human genome have been identified, with ARHGAP11B constituting a paradigmatic example of a unique, human-specific protein.
Collapse
Affiliation(s)
- Michael Heide
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, D-01307 Dresden, Germany
| | - Katherine R Long
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, D-01307 Dresden, Germany
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, D-01307 Dresden, Germany.
| |
Collapse
|
57
|
Boddy AM, Harrison PW, Montgomery SH, Caravas JA, Raghanti MA, Phillips KA, Mundy NI, Wildman DE. Evidence of a Conserved Molecular Response to Selection for Increased Brain Size in Primates. Genome Biol Evol 2017; 9:700-713. [PMID: 28391320 PMCID: PMC5381557 DOI: 10.1093/gbe/evx028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2017] [Indexed: 12/12/2022] Open
Abstract
The adaptive significance of human brain evolution has been frequently studied through comparisons with other primates. However, the evolution of increased brain size is not restricted to the human lineage but is a general characteristic of primate evolution. Whether or not these independent episodes of increased brain size share a common genetic basis is unclear. We sequenced and de novo assembled the transcriptome from the neocortical tissue of the most highly encephalized nonhuman primate, the tufted capuchin monkey (Cebus apella). Using this novel data set, we conducted a genome-wide analysis of orthologous brain-expressed protein coding genes to identify evidence of conserved gene–phenotype associations and species-specific adaptations during three independent episodes of brain size increase. We identify a greater number of genes associated with either total brain mass or relative brain size across these six species than show species-specific accelerated rates of evolution in individual large-brained lineages. We test the robustness of these associations in an expanded data set of 13 species, through permutation tests and by analyzing how genome-wide patterns of substitution co-vary with brain size. Many of the genes targeted by selection during brain expansion have glutamatergic functions or roles in cell cycle dynamics. We also identify accelerated evolution in a number of individual capuchin genes whose human orthologs are associated with human neuropsychiatric disorders. These findings demonstrate the value of phenotypically informed genome analyses, and suggest at least some aspects of human brain evolution have occurred through conserved gene–phenotype associations. Understanding these commonalities is essential for distinguishing human-specific selection events from general trends in brain evolution.
Collapse
Affiliation(s)
- Amy M Boddy
- The Biodesign Institute, Arizona State University, Tempe, AZ.,Wayne State University School of Medicine, Center for Molecular Medicine and Genetics, Detroit, Michigan, Detroit, MI
| | - Peter W Harrison
- Department of Genetics Evolution & Environment, University College London, United Kingdom.,European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Stephen H Montgomery
- Department of Genetics Evolution & Environment, University College London, United Kingdom.,Department of Zoology, University of Cambridge, United Kingdom
| | - Jason A Caravas
- Wayne State University School of Medicine, Center for Molecular Medicine and Genetics, Detroit, Michigan, Detroit, MI
| | - Mary Ann Raghanti
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, OH
| | | | | | - Derek E Wildman
- Wayne State University School of Medicine, Center for Molecular Medicine and Genetics, Detroit, Michigan, Detroit, MI.,Department of Molecular & Integrative Physiology, University of Illinois, Urbana-Champaign, Urbana, IL.,Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL
| |
Collapse
|
58
|
Abstract
What made us human? Gene expression changes clearly played a significant part in human evolution, but pinpointing the causal regulatory mutations is hard. Comparative genomics enabled the identification of human accelerated regions (HARs) and other human-specific genome sequences. The major challenge in the past decade has been to link diverged sequences to uniquely human biology. This review discusses approaches to this problem, progress made at the molecular level, and prospects for moving towards genetic causes for uniquely human biology.
Collapse
Affiliation(s)
- Lucía F Franchini
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Katherine S Pollard
- Gladstone Institutes, San Francisco, CA, 94158, USA. .,Department of Epidemiology & Biostatistics, Institute for Human Genetics, Institute for Computational Health Sciences, University of California, San Francisco, CA, 94158, USA.
| |
Collapse
|
59
|
Wang S, Zhu XQ, Cai X. Gene Duplication Analysis Reveals No Ancient Whole Genome Duplication but Extensive Small-Scale Duplications during Genome Evolution and Adaptation of Schistosoma mansoni. Front Cell Infect Microbiol 2017; 7:412. [PMID: 28983471 PMCID: PMC5613093 DOI: 10.3389/fcimb.2017.00412] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 09/05/2017] [Indexed: 01/19/2023] Open
Abstract
Gene duplication (GD), thought to facilitate evolutionary innovation and adaptation, has been studied in many phylogenetic lineages. However, it remains poorly investigated in trematodes, a medically important parasite group that has been evolutionarily specialized during long-term host-parasite interaction. In this study, we conducted a genome-wide study of GD modes and contributions in Schistosoma mansoni, a pathogen causing human schistosomiasis. We combined several lines of evidence provided by duplicate age distributions, genomic sequence similarity, depth-of-coverage and gene synteny to identify the dominant drivers that contribute to the origins of new genes in this parasite. The gene divergences following duplication events (gene structure, expression and function retention) were also analyzed. Our results reveal that the genome lacks whole genome duplication (WGD) in a long evolutionary time and has few large segmental duplications, but is extensively shaped by the continuous small-scale gene duplications (SSGDs) (i.e., dispersed, tandem and proximal GDs) that may be derived from (retro-) transposition and unequal crossing over. Additionally, our study shows that the genes generated by tandem duplications have the smallest divergence during the evolution. Finally, we demonstrate that SSGDs, especially the tandem duplications, greatly contribute to the expansions of some preferentially retained pathogenesis-associated gene families that are associated with the parasite's survival during infection. This study is the first to systematically summarize the landscape of GDs in trematodes and provides new insights of adaptations to parasitism linked to GD events for these parasites.
Collapse
Affiliation(s)
- Shuai Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural SciencesLanzhou, China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural SciencesLanzhou, China
| | - Xuepeng Cai
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural SciencesLanzhou, China
| |
Collapse
|
60
|
Enhancing our brains: Genomic mechanisms underlying cortical evolution. Semin Cell Dev Biol 2017; 76:23-32. [PMID: 28864345 DOI: 10.1016/j.semcdb.2017.08.045] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 08/24/2017] [Indexed: 12/31/2022]
Abstract
Our most distinguishing higher cognitive functions are controlled by the cerebral cortex. Comparative studies detail abundant anatomical and cellular features unique to the human developing and adult neocortex. Emerging genomic studies have further defined vast differences distinguishing developing human neocortices from related primates. These human-specific changes can affect gene function and/or expression, and result from structural variations such as chromosomal deletions and duplications, or from point mutations in coding and noncoding regulatory regions. Here, we review this rapidly growing field which aims to identify and characterize genetic loci unique to the human cerebral cortex. We catalog known human-specific genomic changes distinct from other primates, including those whose function has been interrogated in animal models. We also discuss how new model systems and technologies such as single cell RNA sequencing, primate iPSCs, and gene editing, are enabling the field to gain unprecedented resolution into function of these human-specific changes. Some neurological disorders are thought to uniquely present in humans, thus reinforcing the need to comprehensively understand human-specific gene expression in the developing brain.
Collapse
|
61
|
Sousa AMM, Meyer KA, Santpere G, Gulden FO, Sestan N. Evolution of the Human Nervous System Function, Structure, and Development. Cell 2017; 170:226-247. [PMID: 28708995 DOI: 10.1016/j.cell.2017.06.036] [Citation(s) in RCA: 256] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 04/21/2017] [Accepted: 06/22/2017] [Indexed: 12/22/2022]
Abstract
The nervous system-in particular, the brain and its cognitive abilities-is among humans' most distinctive and impressive attributes. How the nervous system has changed in the human lineage and how it differs from that of closely related primates is not well understood. Here, we consider recent comparative analyses of extant species that are uncovering new evidence for evolutionary changes in the size and the number of neurons in the human nervous system, as well as the cellular and molecular reorganization of its neural circuits. We also discuss the developmental mechanisms and underlying genetic and molecular changes that generate these structural and functional differences. As relevant new information and tools materialize at an unprecedented pace, the field is now ripe for systematic and functionally relevant studies of the development and evolution of human nervous system specializations.
Collapse
Affiliation(s)
- André M M Sousa
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Kyle A Meyer
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Gabriel Santpere
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Forrest O Gulden
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA; Department of Genetics, Yale School of Medicine, New Haven, CT, USA; Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA; Section of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA; Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, CT, USA; Yale Child Study Center, Yale School of Medicine, New Haven, CT, USA; Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
62
|
Dougherty ML, Nuttle X, Penn O, Nelson BJ, Huddleston J, Baker C, Harshman L, Duyzend MH, Ventura M, Antonacci F, Sandstrom R, Dennis MY, Eichler EE. The birth of a human-specific neural gene by incomplete duplication and gene fusion. Genome Biol 2017; 18:49. [PMID: 28279197 PMCID: PMC5345166 DOI: 10.1186/s13059-017-1163-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/27/2017] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Gene innovation by duplication is a fundamental evolutionary process but is difficult to study in humans due to the large size, high sequence identity, and mosaic nature of segmental duplication blocks. The human-specific gene hydrocephalus-inducing 2, HYDIN2, was generated by a 364 kbp duplication of 79 internal exons of the large ciliary gene HYDIN from chromosome 16q22.2 to chromosome 1q21.1. Because the HYDIN2 locus lacks the ancestral promoter and seven terminal exons of the progenitor gene, we sought to characterize transcription at this locus by coupling reverse transcription polymerase chain reaction and long-read sequencing. RESULTS 5' RACE indicates a transcription start site for HYDIN2 outside of the duplication and we observe fusion transcripts spanning both the 5' and 3' breakpoints. We observe extensive splicing diversity leading to the formation of altered open reading frames (ORFs) that appear to be under relaxed selection. We show that HYDIN2 adopted a new promoter that drives an altered pattern of expression, with highest levels in neural tissues. We estimate that the HYDIN duplication occurred ~3.2 million years ago and find that it is nearly fixed (99.9%) for diploid copy number in contemporary humans. Examination of 73 chromosome 1q21 rearrangement patients reveals that HYDIN2 is deleted or duplicated in most cases. CONCLUSIONS Together, these data support a model of rapid gene innovation by fusion of incomplete segmental duplications, altered tissue expression, and potential subfunctionalization or neofunctionalization of HYDIN2 early in the evolution of the Homo lineage.
Collapse
Affiliation(s)
- Max L Dougherty
- Department of Genome Sciences, University of Washington School of Medicine, 3720 15 Ave NE, S413C, Box 355065, Seattle, WA, 98195-5065, USA
| | - Xander Nuttle
- Department of Genome Sciences, University of Washington School of Medicine, 3720 15 Ave NE, S413C, Box 355065, Seattle, WA, 98195-5065, USA
| | - Osnat Penn
- Department of Genome Sciences, University of Washington School of Medicine, 3720 15 Ave NE, S413C, Box 355065, Seattle, WA, 98195-5065, USA
| | - Bradley J Nelson
- Department of Genome Sciences, University of Washington School of Medicine, 3720 15 Ave NE, S413C, Box 355065, Seattle, WA, 98195-5065, USA
| | - John Huddleston
- Department of Genome Sciences, University of Washington School of Medicine, 3720 15 Ave NE, S413C, Box 355065, Seattle, WA, 98195-5065, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| | - Carl Baker
- Department of Genome Sciences, University of Washington School of Medicine, 3720 15 Ave NE, S413C, Box 355065, Seattle, WA, 98195-5065, USA
| | - Lana Harshman
- Department of Genome Sciences, University of Washington School of Medicine, 3720 15 Ave NE, S413C, Box 355065, Seattle, WA, 98195-5065, USA
| | - Michael H Duyzend
- Department of Genome Sciences, University of Washington School of Medicine, 3720 15 Ave NE, S413C, Box 355065, Seattle, WA, 98195-5065, USA
| | - Mario Ventura
- Department of Biology, University of Bari, Bari, 70121, Italy
| | | | | | - Megan Y Dennis
- Department of Genome Sciences, University of Washington School of Medicine, 3720 15 Ave NE, S413C, Box 355065, Seattle, WA, 98195-5065, USA
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, 95616, CA, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, 3720 15 Ave NE, S413C, Box 355065, Seattle, WA, 98195-5065, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
63
|
Dehbashi M, Kamali E, Vallian S. Comparative genomics of human stem cell factor (SCF). MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2017; 6:1-11. [PMID: 28447043 PMCID: PMC5396809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Stem cell factor (SCF) is a critical protein with key roles in the cell such as hematopoiesis, gametogenesis and melanogenesis. In the present study a comparative analysis on nucleotide sequences of SCF was performed in Humanoids using bioinformatics tools including NCBI-BLAST, MEGA6, and JBrowse. Our analysis of nucleotide sequences to find closely evolved organisms with high similarity by NCBI-BLAST tools and MEGA6 showed that human and Chimpanzee (Pan troglodytes) were placed into the same cluster. By using JBrowse, we found that SCF in Neanderthal had a single copy number similar to modern human and partly conserved nucleotide sequences. Together, the results approved the gene flow and genetics similarity of SCF among human and P. troglodytes. This may suggest that during evolution, SCF gene transferred partly intact either on the basis of sequence or function from the same ancestors to P. troglodytes, the ancient human like Neanderthal, and then to the modern human.
Collapse
Affiliation(s)
| | | | - Sadeq Vallian
- Genetics Division, Department of Biology, Faculty of Science, University of Isfahan, Isfahan, Iran
| |
Collapse
|
64
|
Dennis MY, Harshman L, Nelson BJ, Penn O, Cantsilieris S, Huddleston J, Antonacci F, Penewit K, Denman L, Raja A, Baker C, Mark K, Malig M, Janke N, Espinoza C, Stessman HAF, Nuttle X, Hoekzema K, Lindsay-Graves TA, Wilson RK, Eichler EE. The evolution and population diversity of human-specific segmental duplications. Nat Ecol Evol 2017; 1:69. [PMID: 28580430 PMCID: PMC5450946 DOI: 10.1038/s41559-016-0069] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Segmental duplications contribute to human evolution, adaptation and genomic instability but are often poorly characterized. We investigate the evolution, genetic variation and coding potential of human-specific segmental duplications (HSDs). We identify 218 HSDs based on analysis of 322 deeply sequenced archaic and contemporary hominid genomes. We sequence 550 human and nonhuman primate genomic clones to reconstruct the evolution of the largest, most complex regions with protein-coding potential (n=80 genes/33 gene families). We show that HSDs are non-randomly organized, associate preferentially with ancestral ape duplications termed “core duplicons”, and evolved primarily in an interspersed inverted orientation. In addition to Homo sapiens-specific gene expansions (e.g., TCAF1/2), we highlight ten gene families (e.g., ARHGAP11B and SRGAP2C) where copy number never returns to the ancestral state, there is evidence of mRNA splicing, and no common gene-disruptive mutations are observed in the general population. Such duplicates are candidates for the evolution of human-specific adaptive traits.
Collapse
Affiliation(s)
- Megan Y Dennis
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA 95616, USA.,Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Lana Harshman
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Bradley J Nelson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Osnat Penn
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Stuart Cantsilieris
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - John Huddleston
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA.,Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Francesca Antonacci
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", Bari 70125, Italy
| | - Kelsi Penewit
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Laura Denman
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Archana Raja
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA.,Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Carl Baker
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Kenneth Mark
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Maika Malig
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Nicolette Janke
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Claudia Espinoza
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Holly A F Stessman
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Xander Nuttle
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Tina A Lindsay-Graves
- McDonnell Genome Institute at Washington University, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Richard K Wilson
- McDonnell Genome Institute at Washington University, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA.,Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
65
|
Worley KC, Richards S, Rogers J. The value of new genome references. Exp Cell Res 2016; 358:433-438. [PMID: 28017728 DOI: 10.1016/j.yexcr.2016.12.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 12/22/2016] [Indexed: 12/24/2022]
Abstract
Genomic information has become a ubiquitous and almost essential aspect of biological research. Over the last 10-15 years, the cost of generating sequence data from DNA or RNA samples has dramatically declined and our ability to interpret those data increased just as remarkably. Although it is still possible for biologists to conduct interesting and valuable research on species for which genomic data are not available, the impact of having access to a high quality whole genome reference assembly for a given species is nothing short of transformational. Research on a species for which we have no DNA or RNA sequence data is restricted in fundamental ways. In contrast, even access to an initial draft quality genome (see below for definitions) opens a wide range of opportunities that are simply not available without that reference genome assembly. Although a complete discussion of the impact of genome sequencing and assembly is beyond the scope of this short paper, the goal of this review is to summarize the most common and highest impact contributions that whole genome sequencing and assembly has had on comparative and evolutionary biology.
Collapse
Affiliation(s)
- Kim C Worley
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | - Stephen Richards
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jeffrey Rogers
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
66
|
Suryawanshi V, Talke IN, Weber M, Eils R, Brors B, Clemens S, Krämer U. Between-species differences in gene copy number are enriched among functions critical for adaptive evolution in Arabidopsis halleri. BMC Genomics 2016; 17:1034. [PMID: 28155655 PMCID: PMC5259951 DOI: 10.1186/s12864-016-3319-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background Gene copy number divergence between species is a form of genetic polymorphism that contributes significantly to both genome size and phenotypic variation. In plants, copy number expansions of single genes were implicated in cultivar- or species-specific tolerance of high levels of soil boron, aluminium or calamine-type heavy metals, respectively. Arabidopsis halleri is a zinc- and cadmium-hyperaccumulating extremophile species capable of growing on heavy-metal contaminated, toxic soils. In contrast, its non-accumulating sister species A. lyrata and the closely related reference model species A. thaliana exhibit merely basal metal tolerance. Results For a genome-wide assessment of the role of copy number divergence (CND) in lineage-specific environmental adaptation, we conducted cross-species array comparative genome hybridizations of three plant species and developed a global signal scaling procedure to adjust for sequence divergence. In A. halleri, transition metal homeostasis functions are enriched twofold among the genes detected as copy number expanded. Moreover, biotic stress functions including mostly disease Resistance (R) gene-related genes are enriched twofold among genes detected as copy number reduced, when compared to the abundance of these functions among all genes. Conclusions Our results provide genome-wide support for a link between evolutionary adaptation and CND in A. halleri as shown previously for Heavy metal ATPase4. Moreover our results support the hypothesis that elemental defences, which result from the hyperaccumulation of toxic metals, allow the reduction of classical defences against biotic stress as a trade-off. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3319-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vasantika Suryawanshi
- Department of Plant Physiology, Ruhr University Bochum, Universitätsstrasse 150, Bochum, 44801, Germany.,BioQuant, University of Heidelberg, Im Neuenheimer Feld 267, Heidelberg, 69120, Germany
| | - Ina N Talke
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam, 14476, Germany
| | - Michael Weber
- Department of Plant Physiology, University of Bayreuth, Universitätsstrasse 30, Bayreuth, 95447, Germany
| | - Roland Eils
- Division of Theoretical Bioinformatics, DKFZ, Im Neuenheimer Feld 280, Heidelberg, 69121, Germany.,BioQuant, University of Heidelberg, Im Neuenheimer Feld 267, Heidelberg, 69120, Germany.,Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Im Neuenheimer Feld 364, Heidelberg, 69120, Germany
| | - Benedikt Brors
- Division of Theoretical Bioinformatics, DKFZ, Im Neuenheimer Feld 280, Heidelberg, 69121, Germany
| | - Stephan Clemens
- Department of Plant Physiology, University of Bayreuth, Universitätsstrasse 30, Bayreuth, 95447, Germany
| | - Ute Krämer
- Department of Plant Physiology, Ruhr University Bochum, Universitätsstrasse 150, Bochum, 44801, Germany. .,BioQuant, University of Heidelberg, Im Neuenheimer Feld 267, Heidelberg, 69120, Germany.
| |
Collapse
|
67
|
Dennis MY, Eichler EE. Human adaptation and evolution by segmental duplication. Curr Opin Genet Dev 2016; 41:44-52. [PMID: 27584858 PMCID: PMC5161654 DOI: 10.1016/j.gde.2016.08.001] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/02/2016] [Accepted: 08/02/2016] [Indexed: 12/29/2022]
Abstract
Duplications are the primary force by which new gene functions arise and provide a substrate for large-scale structural variation. Analysis of thousands of genomes shows that humans and great apes have more genetic differences in content and structure over recent segmental duplications than any other euchromatic region. Novel human-specific duplicated genes, ARHGAP11B and SRGAP2C, have recently been described with a potential role in neocortical expansion and increased neuronal spine density. Large segmental duplications and the structural variants they promote are also frequently stratified between human populations with a subset being subjected to positive selection. The impact of recent duplications on human evolution and adaptation is only beginning to be realized as new technologies enhance their discovery and accurate genotyping.
Collapse
Affiliation(s)
- Megan Y Dennis
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
68
|
Holst F. Estrogen receptor alpha gene amplification in breast cancer: 25 years of debate. World J Clin Oncol 2016; 7:160-173. [PMID: 27081639 PMCID: PMC4826962 DOI: 10.5306/wjco.v7.i2.160] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 01/05/2016] [Accepted: 02/16/2016] [Indexed: 02/06/2023] Open
Abstract
Twenty-five years ago, Nembrot and colleagues reported amplification of the estrogen receptor alpha gene (ESR1) in breast cancer, initiating a broad and still ongoing scientific debate on the prevalence and clinical significance of this genetic aberration, which affects one of the most important genes in breast cancer. Since then, a multitude of studies on this topic has been published, covering a wide range of divergent results and arguments. The reported prevalence of this alteration in breast cancer ranges from 0% to 75%, suggesting that ESR1 copy number analysis is hampered by technical and interpreter issues. To date, two major issues related to ESR1 amplification remain to be conclusively addressed: (1) The extent to which abundant amounts of messenger RNA can mimic amplification in standard fluorescence in situ hybridization assays in the analysis of strongly expressed genes like ESR1, and (2) the clinical relevance of ESR1 amplification: Such relevance is strongly disputed, with data showing predictive value for response as well as for resistance of the cancer to anti-estrogen therapies, or for subsequent development of cancers in the case of precursor lesions that display amplification of ESR1. This review provides a comprehensive summary of the various views on ESR1 amplification, and highlights explanations for the contradictions and conflicting data that could inform future ESR1 research.
Collapse
|
69
|
Bai Z, Chen J, Liao Y, Wang M, Liu R, Ge S, Wing RA, Chen M. The impact and origin of copy number variations in the Oryza species. BMC Genomics 2016; 17:261. [PMID: 27025496 PMCID: PMC4812662 DOI: 10.1186/s12864-016-2589-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 03/15/2016] [Indexed: 02/16/2023] Open
Abstract
Background Copy number variation (CNV), a complex genomic rearrangement, has been extensively studied in humans and other organisms. In plants, CNVs of several genes were found to be responsible for various important traits; however, the cause and consequence of CNVs remains largely unknown. Recently released next-generation sequencing (NGS) data provide an opportunity for a genome-wide study of CNVs in rice. Results Here, by an NGS-based approach, we generated a CNV map comprising 9,196 deletions compared to the reference genome ‘Nipponbare’. Using Oryza glaberrima as the outgroup, 80 % of the CNV events turned out to be insertions in Nipponbare. There were 2,806 annotated genes affected by these CNV events. We experimentally validated 28 functional CNV genes including OsMADS56, BPH14, OsDCL2b and OsMADS30, implying that CNVs might have contributed to phenotypic variations in rice. Most CNV genes were found to be located in non-co-linear positions by comparison to O. glaberrima. One of the origins of these non-co-linear genes was genomic duplications caused by transposon activity or double-strand break repair. Comprehensive analysis of mutation mechanisms suggested an abundance of CNVs formed by non-homologous end-joining and mobile element insertion. Conclusions This study showed the impact and origin of copy number variations in rice on a genomic scale. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2589-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zetao Bai
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jinfeng Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi Liao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Meijiao Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Rong Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Song Ge
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Rod A Wing
- Arizona Genomics Institute, School of Plant Science, University of Arizona, Tucson, AZ, 85721, USA
| | - Mingsheng Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
70
|
Zhao J, Teufel AI, Liberles DA, Liu L. A generalized birth and death process for modeling the fates of gene duplication. BMC Evol Biol 2015; 15:275. [PMID: 26643106 PMCID: PMC4672517 DOI: 10.1186/s12862-015-0539-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 11/10/2015] [Indexed: 01/15/2023] Open
Abstract
Background Accurately estimating the timing and mode of gene duplications along the evolutionary history of species can provide invaluable information about underlying mechanisms by which the genomes of organisms evolved and the genes with novel functions arose. Mechanistic models have previously been introduced that allow for probabilistic inference of the evolutionary mechanism for duplicate gene retention based upon the average rate of loss over time of the duplicate. However, there is currently no probabilistic model embedded in a birth-death modeling framework that can take into account the effects of different evolutionary mechanisms of gene retention when analyzing gene family data. Results In this study, we describe a generalized birth-death process for modeling the fates of gene duplication. Use of mechanistic models in a phylogenetic framework requires an age-dependent birth-death process. Starting with a single population corresponding to the lineage of a phylogenetic tree and with an assumption of a clock that starts ticking for each duplicate at its birth, an age-dependent birth-death process is developed by extending the results from the time-dependent birth-death process. The implementation of such models in a full phylogenetic framework is expected to enable large scale probabilistic analysis of duplicates in comparative genomic studies. Conclusions We develop an age-dependent birth-death model for understanding the mechanisms of gene retention, which allows a gene loss rate dependent on each duplication event. Simulation results indicate that different mechanisms of gene retentions produce distinct likelihood functions, which can be used with genomic data to quantitatively distinguish those mechanisms.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Statistics, University of Georgia, 101 Cedar Street, Athens, GA, 30602, USA.
| | - Ashley I Teufel
- Department of Molecular Biology, University of Wyoming, Laramie, WY, 82071, USA. .,Center for Computational Genetics and Genomics and Department of Biology, Temple University, Philadelphia, PA, 19122, USA.
| | - David A Liberles
- Department of Molecular Biology, University of Wyoming, Laramie, WY, 82071, USA. .,Center for Computational Genetics and Genomics and Department of Biology, Temple University, Philadelphia, PA, 19122, USA.
| | - Liang Liu
- Department of Statistics, University of Georgia, 101 Cedar Street, Athens, GA, 30602, USA. .,Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
71
|
Affiliation(s)
- Dieter G Hillert
- School of Speech, Language, and Hearing Sciences, San Diego State University San Diego, CA, USA ; School of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
72
|
Franchini LF, Pollard KS. Genomic approaches to studying human-specific developmental traits. Development 2015; 142:3100-12. [DOI: 10.1242/dev.120048] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Changes in developmental regulatory programs drive both disease and phenotypic differences among species. Linking human-specific traits to alterations in development is challenging, because we have lacked the tools to assay and manipulate regulatory networks in human and primate embryonic cells. This field was transformed by the sequencing of hundreds of genomes – human and non-human – that can be compared to discover the regulatory machinery of genes involved in human development. This approach has identified thousands of human-specific genome alterations in developmental genes and their regulatory regions. With recent advances in stem cell techniques, genome engineering, and genomics, we can now test these sequences for effects on developmental gene regulation and downstream phenotypes in human cells and tissues.
Collapse
Affiliation(s)
- Lucía F. Franchini
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1428, Argentina
| | - Katherine S. Pollard
- Gladstone Institutes, San Francisco, CA 94158, USA
- Institute for Human Genetics, Department of Epidemiology & Biostatistics, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
73
|
Abstract
The recent finding that the human version of a neurodevelopmental enhancer of the Wnt receptor Frizzled 8 (FZD8) gene alters neural progenitor cell cycle timing and brain size is a step forward to understanding human brain evolution. The human brain is distinctive in terms of its cognitive abilities as well as its susceptibility to neurological disease. Identifying which of the millions of genomic changes that occurred during human evolution led to these and other uniquely human traits is extremely challenging. Recent studies have demonstrated that many of the fastest evolving regions of the human genome function as gene regulatory enhancers during embryonic development and that the human‐specific mutations in them might alter expression patterns. However, elucidating molecular and cellular effects of sequence or expression pattern changes is a major obstacle to discovering the genetic bases of the evolution of our species. There is much work to do before human‐specific genetic and genomic changes are linked to complex human traits. Also watch the Video Abstract.
Collapse
Affiliation(s)
- Lucía F Franchini
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Katherine S Pollard
- Gladstone Institutes, San Francisco, CA, USA.,Institute for Human Genetics, Department of Epidemiology & Biostatistics, University of California, San Francisco, CA, USA
| |
Collapse
|
74
|
Rosales-Reynoso MA, Juárez-Vázquez CI, Barros-Núñez P. Evolution and genomics of the human brain. Neurologia 2015; 33:254-265. [PMID: 26304653 DOI: 10.1016/j.nrl.2015.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 06/01/2015] [Indexed: 01/20/2023] Open
Abstract
Most living beings are able to perform actions that can be considered intelligent or, at the very least, the result of an appropriate reaction to changing circumstances in their environment. However, the intelligence or intellectual processes of humans are vastly superior to those achieved by all other species. The adult human brain is a highly complex organ weighing approximately 1500g, which accounts for only 2% of the total body weight but consumes an amount of energy equal to that required by all skeletal muscle at rest. Although the human brain displays a typical primate structure, it can be identified by its specific distinguishing features. The process of evolution and humanisation of the Homo sapiens brain resulted in a unique and distinct organ with the largest relative volume of any animal species. It also permitted structural reorganization of tissues and circuits in specific segments and regions. These steps explain the remarkable cognitive abilities of modern humans compared not only with other species in our genus, but also with older members of our own species. Brain evolution required the coexistence of two adaptation mechanisms. The first involves genetic changes that occur at the species level, and the second occurs at the individual level and involves changes in chromatin organisation or epigenetic changes. The genetic mechanisms include: a) genetic changes in coding regions that lead to changes in the sequence and activity of existing proteins; b) duplication and deletion of previously existing genes; c) changes in gene expression through changes in the regulatory sequences of different genes; and d) synthesis of non-coding RNAs. Lastly, this review describes some of the main documented chromosomal differences between humans and great apes. These differences have also contributed to the evolution and humanisation process of the H. sapiens brain.
Collapse
Affiliation(s)
- M A Rosales-Reynoso
- División de Medicina Molecular, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, México
| | - C I Juárez-Vázquez
- División de Medicina Molecular, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, México
| | - P Barros-Núñez
- División de Genética, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, México.
| |
Collapse
|
75
|
Bu L, Katju V. Early evolutionary history and genomic features of gene duplicates in the human genome. BMC Genomics 2015; 16:621. [PMID: 26290067 PMCID: PMC4546093 DOI: 10.1186/s12864-015-1827-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 08/07/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Human gene duplicates have been the focus of intense research since the development of array-based and targeted next-generation sequencing approaches in the last decade. These studies have primarily concentrated on determining the extant copy-number variation from a population-genomic perspective but lack a robust evolutionary framework to elucidate the early structural and genomic characteristics of gene duplicates at emergence and their subsequent evolution with increasing age. RESULTS We analyzed 184 gene duplicate pairs comprising small gene families in the draft human genome with 10% or less synonymous sequence divergence. Human gene duplicates primarily originate from DNA-mediated events, taking up genomic residence as intrachromosomal copies in direct or inverse orientation. The distribution of paralogs on autosomes follows random expectations in contrast to their significant enrichment on the sex chromosomes. Furthermore, human gene duplicates exhibit a skewed gradient of distribution along the chromosomal length with significant clustering in pericentromeric regions. Surprisingly, despite the large average length of human genes, the majority of extant duplicates (83%) are complete duplicates, wherein the entire ORF of the ancestral copy was duplicated. The preponderance of complete duplicates is in accord with an extremely large median duplication span of 36 kb, which enhances the probability of capturing ancestral ORFs in their entirety. With increasing evolutionary age, human paralogs exhibit declines in (i) the frequency of intrachromosomal paralogs, and (ii) the proportion of complete duplicates. These changes may reflect lower survival rates of certain classes of duplicates and/or the role of purifying selection. Duplications arising from RNA-mediated events comprise a small fraction (11.4%) of all human paralogs and are more numerous in older evolutionary cohorts of duplicates. CONCLUSIONS The degree of structural resemblance, genomic location and duplication span appear to influence the long-term maintenance of paralogs in the human genome. The median duplication span in the human genome far exceeds that in C. elegans and yeast and likely contributes to the high prevalence of complete duplicates relative to structurally heterogeneous duplicates (partial and chimeric). The relative roles of regulatory sequence versus exon-intron structure changes in the acquisition of novel function by human paralogs remains to be determined.
Collapse
Affiliation(s)
- Lijing Bu
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA.
| | - Vaishali Katju
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA. .,Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, TX, 77843-4458, USA.
| |
Collapse
|
76
|
Sperling K. Die Natur-Kultur-Grenze im Licht des Humangenomprojekts. MED GENET-BERLIN 2015. [DOI: 10.1007/s11825-015-0037-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Karl Sperling
- Aff1 grid.6363.0 0000000122184662 Institut für Medizinische Genetik und Humangenetik Charité – Universitätsmedizin Berlin Augustenburger Platz. 1 13353 Berlin Deutschland
| |
Collapse
|
77
|
Global patterns of apparent copy number variation in birds revealed by cross-species comparative genomic hybridization. Chromosome Res 2014; 22:59-70. [PMID: 24570127 DOI: 10.1007/s10577-014-9405-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
There is a growing interest in copy number variation (CNV) and the recognition of its importance in phenotype, disease, adaptation and speciation. CNV data is usually ascertained by array-CGH within-species, but similar inter-species comparisons have also been made in primates, mice and domestic mammals. Here, we conducted a broad appraisal of putative cross-species CNVs in birds, 16 species in all, using the standard array-CGH approach. Using a chicken oligonucleotide microarray, we detected 790 apparent CNVs within 135 unique regions and developed a bioinformatic tool 'CNV Analyser' for analysing and visualising cross-species data sets. We successfully addressed four hypotheses as follows: (a) Cross-species CNVs (compared to chicken) are, as suggested from preliminary evidence, smaller and fewer in number than in mammals; this 'dogma' was rejected in the light of the new evidence. (b) CNVs in birds are likely to have a functional effect through an association with genes; a large proportion of detected regions (70 %) were indeed associated with genes (suggesting functional significance), however, not necessarily more so than in mammals. (c) There are more CNVs in birds with more rearranged karyotypes; this hypothesis was rejected. Indeed, Falco species contained fewer than most with relatively standard (chicken-like) karyotypes. (d) There are more CNVs per megabase on micro-chromosomes than macrochromosomes; this hypothesis was accepted. Indeed, in species with rearranged karyotypes characterised by chromosomal fusions, the fused former microchromosomes still 'behaved' as though they were their microchromosomal ancestors. Gene ontology analysis of CNVRs revealed enrichment in immune response and antigen presentation genes and five CNVRs were perfectly correlated with the unique loss of sexual dichromatism in one Galliformes species.
Collapse
|
78
|
Zhang YE, Long M. New genes contribute to genetic and phenotypic novelties in human evolution. Curr Opin Genet Dev 2014; 29:90-6. [PMID: 25218862 PMCID: PMC4631527 DOI: 10.1016/j.gde.2014.08.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 08/26/2014] [Accepted: 08/27/2014] [Indexed: 12/31/2022]
Abstract
New genes in human genomes have been found relevant in evolution and biology of humans. It was conservatively estimated that the human genome encodes more than 300 human-specific genes and 1000 primate-specific genes. These new arrivals appear to be implicated in brain function and male reproduction. Surprisingly, increasing evidence indicates that they may also bring negative pleiotropic effects, while assuming various possible biological functions as sources of phenotypic novelties, suggesting a non-progressive route for functional evolution. Similar to these fixed new genes, polymorphic new genes were found to contribute to functional evolution within species, for example, with respect to digestion or disease resistance, revealing that new genes can acquire new or diverged functions in its initial stage as prototypic genes. These progresses have provided new opportunities to explore the genetic basis of human biology and human evolutionary history in a new dimension.
Collapse
Affiliation(s)
- Yong E Zhang
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Manyuan Long
- Department of Ecology and Evolution, The University of Chicago, Chicago, USA.
| |
Collapse
|
79
|
Nery MF, Arroyo JI, Opazo JC. Increased rate of hair keratin gene loss in the cetacean lineage. BMC Genomics 2014; 15:869. [PMID: 25287022 PMCID: PMC4195889 DOI: 10.1186/1471-2164-15-869] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/29/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hair represents an evolutionary innovation that appeared early on mammalian evolutionary history, and presumably contributed significantly to the rapid radiation of the group. An interesting event in hair evolution has been its secondary loss in some mammalian groups, such as cetaceans, whose hairless phenotype appears to be an adaptive response to better meet the environmental conditions. To determine whether different repertoire of keratin genes among mammals can potentially explain the phenotypic hair features of different lineages, we characterized the type I and II clusters of alpha keratins from eight mammalian species, including the hairless dolphin and minke whale representing the order Cetacea. RESULTS We combined the available genomic information with phylogenetic analysis to conduct a comprehensive analysis of the evolutionary patterns of keratin gene clusters. We found that both type I and II gene clusters are fairly conserved among the terrestrial mammals included in this study, with lineage specific gene duplication and gene loss. Nevertheless, there is also evidence for an increased rate of pseudogenization in the cetacean lineage when compared to their terrestrial relatives, especially among the hair type keratins. CONCLUSIONS Here we present a comprehensive characterization of alpha-keratin genes among mammals and elucidate the mechanisms involved in the evolution of this gene family. We identified lineage-specific gene duplications and gene loss among the Laurasiatherian and Euarchontoglires species included in the study. Interestingly, cetaceans present an increased loss of hair-type keratin genes when compared to other terrestrial mammals. As suggested by the 'less-is-more' hypothesis, we do not rule out the possibility that the gene loss of hair-type keratin genes in these species might be associated to the hairless phenotype and could have been adaptive in response to new selective pressures imposed by the colonization of a new habitat. Our study provides support for the idea that pseudogenes are not simply 'genomic fossils' but instead have adaptive roles during the evolutionary process.
Collapse
Affiliation(s)
- Mariana F Nery
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile.
| | | | | |
Collapse
|
80
|
Abstract
The great ape families are the species most closely related to our own, comprising chimpanzees, bonobos, gorillas, and orangutans. They live exclusively in tropical rainforests in Central Africa and the islands of Southeast Asia. Due to their close evolutionary relationship with humans, great apes share many cognitive, physiological, and morphological similarities with humans. The members of the great ape family make obvious models to facilitate the further understanding about humans' biology and history. This review will discuss how the recent addition of genome-wide data from great apes has furthered humans' understanding of these species and humanity, especially in the realm of evolutionary genetics.
Collapse
|
81
|
Zhang X, Gierman HJ, Levy D, Plump A, Dobrin R, Goring HHH, Curran JE, Johnson MP, Blangero J, Kim SK, O’Donnell CJ, Emilsson V, Johnson AD. Synthesis of 53 tissue and cell line expression QTL datasets reveals master eQTLs. BMC Genomics 2014; 15:532. [PMID: 24973796 PMCID: PMC4102726 DOI: 10.1186/1471-2164-15-532] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 06/18/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Gene expression genetic studies in human tissues and cells identify cis- and trans-acting expression quantitative trait loci (eQTLs). These eQTLs provide insights into regulatory mechanisms underlying disease risk. However, few studies systematically characterized eQTL results across cell and tissues types. We synthesized eQTL results from >50 datasets, including new primary data from human brain, peripheral plaque and kidney samples, in order to discover features of human eQTLs. RESULTS We find a substantial number of robust cis-eQTLs and far fewer trans-eQTLs consistent across tissues. Analysis of 45 full human GWAS scans indicates eQTLs are enriched overall, and above nSNPs, among positive statistical signals in genetic mapping studies, and account for a significant fraction of the strongest human trait effects. Expression QTLs are enriched for gene centricity, higher population allele frequencies, in housekeeping genes, and for coincidence with regulatory features, though there is little evidence of 5' or 3' positional bias. Several regulatory categories are not enriched including microRNAs and their predicted binding sites and long, intergenic non-coding RNAs. Among the most tissue-ubiquitous cis-eQTLs, there is enrichment for genes involved in xenobiotic metabolism and mitochondrial function, suggesting these eQTLs may have adaptive origins. Several strong eQTLs (CDK5RAP2, NBPFs) coincide with regions of reported human lineage selection. The intersection of new kidney and plaque eQTLs with related GWAS suggest possible gene prioritization. For example, butyrophilins are now linked to arterial pathogenesis via multiple genetic and expression studies. Expression QTL and GWAS results are made available as a community resource through the NHLBI GRASP database [http://apps.nhlbi.nih.gov/grasp/]. CONCLUSIONS Expression QTLs inform the interpretation of human trait variability, and may account for a greater fraction of phenotypic variability than protein-coding variants. The synthesis of available tissue eQTL data highlights many strong cis-eQTLs that may have important biologic roles and could serve as positive controls in future studies. Our results indicate some strong tissue-ubiquitous eQTLs may have adaptive origins in humans. Efforts to expand the genetic, splicing and tissue coverage of known eQTLs will provide further insights into human gene regulation.
Collapse
Affiliation(s)
- Xiaoling Zhang
- />Division of Intramural Research, National Heart, Lung and Blood Institute, Cardiovascular Epidemiology and Human Genomics Branch, The Framingham Heart Study, 73 Mt. Wayte Ave., Suite #2, Framingham, MA USA
| | - Hinco J Gierman
- />Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Daniel Levy
- />Division of Intramural Research, National Heart, Lung and Blood Institute, Cardiovascular Epidemiology and Human Genomics Branch, The Framingham Heart Study, 73 Mt. Wayte Ave., Suite #2, Framingham, MA USA
| | - Andrew Plump
- />Sanofi Aventis Pharmaceuticals, Bridgewater, NJ 08807 USA
| | - Radu Dobrin
- />Johnson & Johnson Pharmaceutical Research and Development, Radnor, PA 19477 USA
| | - Harald HH Goring
- />Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX 78227 USA
| | - Joanne E Curran
- />Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX 78227 USA
| | - Matthew P Johnson
- />Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX 78227 USA
| | - John Blangero
- />Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX 78227 USA
| | - Stuart K Kim
- />Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Christopher J O’Donnell
- />Division of Intramural Research, National Heart, Lung and Blood Institute, Cardiovascular Epidemiology and Human Genomics Branch, The Framingham Heart Study, 73 Mt. Wayte Ave., Suite #2, Framingham, MA USA
- />Division of Cardiology, Massachusetts General Hospital, Boston, MA 02114 USA
| | | | - Andrew D Johnson
- />Division of Intramural Research, National Heart, Lung and Blood Institute, Cardiovascular Epidemiology and Human Genomics Branch, The Framingham Heart Study, 73 Mt. Wayte Ave., Suite #2, Framingham, MA USA
| |
Collapse
|
82
|
Keeney JG, Dumas L, Sikela JM. The case for DUF1220 domain dosage as a primary contributor to anthropoid brain expansion. Front Hum Neurosci 2014; 8:427. [PMID: 25009482 PMCID: PMC4067907 DOI: 10.3389/fnhum.2014.00427] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 05/28/2014] [Indexed: 12/14/2022] Open
Abstract
Here we present the hypothesis that increasing copy number (dosage) of sequences encoding DUF1220 protein domains is a major contributor to the evolutionary increase in brain size, neuron number, and cognitive capacity that is associated with the primate order. We further propose that this relationship is restricted to the anthropoid sub-order of primates, with DUF1220 copy number markedly increasing in monkeys, further in apes, and most extremely in humans where the greatest number of copies (~272 haploid copies) is found. We show that this increase closely parallels the increase in brain size and neuron number that has occurred among anthropoid primate species. We also provide evidence linking DUF1220 copy number to brain size within the human species, both in normal populations and in individuals associated with brain size pathologies (1q21-associated microcephaly and macrocephaly). While we believe these and other findings presented here strongly suggest increase in DUF1220 copy number is a key contributor to anthropoid brain expansion, the data currently available rely largely on correlative measures that, though considerable, do not yet provide direct evidence for a causal connection. Nevertheless, we believe the evidence presented is sufficient to provide the basis for a testable model which proposes that DUF1220 protein domain dosage increase is a main contributor to the increase in brain size and neuron number found among the anthropoid primate species and that is at its most extreme in human.
Collapse
Affiliation(s)
- Jonathon G Keeney
- Department of Biochemistry and Molecular Genetics and Human Medical Genetics and Neuroscience Programs, University of Colorado School of Medicine, Anschutz Medical Campus Aurora, CO, USA
| | - Laura Dumas
- Department of Biochemistry and Molecular Genetics and Human Medical Genetics and Neuroscience Programs, University of Colorado School of Medicine, Anschutz Medical Campus Aurora, CO, USA
| | - James M Sikela
- Department of Biochemistry and Molecular Genetics and Human Medical Genetics and Neuroscience Programs, University of Colorado School of Medicine, Anschutz Medical Campus Aurora, CO, USA
| |
Collapse
|
83
|
Almeida FC, Sánchez-Gracia A, Campos JL, Rozas J. Family size evolution in Drosophila chemosensory gene families: a comparative analysis with a critical appraisal of methods. Genome Biol Evol 2014; 6:1669-82. [PMID: 24951565 PMCID: PMC4122928 DOI: 10.1093/gbe/evu130] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Gene turnover rates and the evolution of gene family sizes are important aspects of genome evolution. Here, we use curated sequence data of the major chemosensory gene families from Drosophila—the gustatory receptor, odorant receptor, ionotropic receptor, and odorant-binding protein families—to conduct a comparative analysis among families, exploring different methods to estimate gene birth and death rates, including an ad hoc simulation study. Remarkably, we found that the state-of-the-art methods may produce very different rate estimates, which may lead to disparate conclusions regarding the evolution of chemosensory gene family sizes in Drosophila. Among biological factors, we found that a peculiarity of D. sechellia’s gene turnover rates was a major source of bias in global estimates, whereas gene conversion had negligible effects for the families analyzed herein. Turnover rates vary considerably among families, subfamilies, and ortholog groups although all analyzed families were quite dynamic in terms of gene turnover. Computer simulations showed that the methods that use ortholog group information appear to be the most accurate for the Drosophila chemosensory families. Most importantly, these results reveal the potential of rate heterogeneity among lineages to severely bias some turnover rate estimation methods and the need of further evaluating the performance of these methods in a more diverse sampling of gene families and phylogenetic contexts. Using branch-specific codon substitution models, we find further evidence of positive selection in recently duplicated genes, which attests to a nonneutral aspect of the gene birth-and-death process.
Collapse
Affiliation(s)
- Francisca C Almeida
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Spain Present address: CONICET, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Instituto IEGEBA, Buenos Aires, Argentina
| | - Alejandro Sánchez-Gracia
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Spain
| | - Jose Luis Campos
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Spain Present address: Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Julio Rozas
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Spain
| |
Collapse
|
84
|
O'Bleness M, Searles VB, Dickens CM, Astling D, Albracht D, Mak ACY, Lai YYY, Lin C, Chu C, Graves T, Kwok PY, Wilson RK, Sikela JM. Finished sequence and assembly of the DUF1220-rich 1q21 region using a haploid human genome. BMC Genomics 2014; 15:387. [PMID: 24885025 PMCID: PMC4053653 DOI: 10.1186/1471-2164-15-387] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 05/06/2014] [Indexed: 12/22/2022] Open
Abstract
Background Although the reference human genome sequence was declared finished in 2003, some regions of the genome remain incomplete due to their complex architecture. One such region, 1q21.1-q21.2, is of increasing interest due to its relevance to human disease and evolution. Elucidation of the exact variants behind these associations has been hampered by the repetitive nature of the region and its incomplete assembly. This region also contains 238 of the 270 human DUF1220 protein domains, which are implicated in human brain evolution and neurodevelopment. Additionally, examinations of this protein domain have been challenging due to the incomplete 1q21 build. To address these problems, a single-haplotype hydatidiform mole BAC library (CHORI-17) was used to produce the first complete sequence of the 1q21.1-q21.2 region. Results We found and addressed several inaccuracies in the GRCh37sequence of the 1q21 region on large and small scales, including genomic rearrangements and inversions, and incorrect gene copy number estimates and assemblies. The DUF1220-encoding NBPF genes required the most corrections, with 3 genes removed, 2 genes reassigned to the 1p11.2 region, 8 genes requiring assembly corrections for DUF1220 domains (~91 DUF1220 domains were misassigned), and multiple instances of nucleotide changes that reassigned the domain to a different DUF1220 subtype. These corrections resulted in an overall increase in DUF1220 copy number, yielding a haploid total of 289 copies. Approximately 20 of these new DUF1220 copies were the result of a segmental duplication from 1q21.2 to 1p11.2 that included two NBPF genes. Interestingly, this duplication may have been the catalyst for the evolutionarily important human lineage-specific chromosome 1 pericentric inversion. Conclusions Through the hydatidiform mole genome sequencing effort, the 1q21.1-q21.2 region is complete and misassemblies involving inter- and intra-region duplications have been resolved. The availability of this single haploid sequence path will aid in the investigation of many genetic diseases linked to 1q21, including several associated with DUF1220 copy number variations. Finally, the corrected sequence identified a recent segmental duplication that added 20 additional DUF1220 copies to the human genome, and may have facilitated the chromosome 1 pericentric inversion that is among the most notable human-specific genomic landmarks.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - James M Sikela
- Department of Biochemistry and Molecular Genetics, Human Medical Genetics and Neuroscience Programs, University of Colorado School of Medicine, 12801 E, 17th Avenue, Aurora, CO 80045, USA.
| |
Collapse
|
85
|
Comparative primate genomics: emerging patterns of genome content and dynamics. Nat Rev Genet 2014; 15:347-59. [PMID: 24709753 DOI: 10.1038/nrg3707] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Advances in genome sequencing technologies have created new opportunities for comparative primate genomics. Genome assemblies have been published for various primate species, and analyses of several others are underway. Whole-genome assemblies for the great apes provide remarkable new information about the evolutionary origins of the human genome and the processes involved. Genomic data for macaques and other non-human primates offer valuable insights into genetic similarities and differences among species that are used as models for disease-related research. This Review summarizes current knowledge regarding primate genome content and dynamics, and proposes a series of goals for the near future.
Collapse
|
86
|
Machado HE, Jui G, Joyce DA, Reilly CRL, Lunt DH, Renn SCP. Gene duplication in an African cichlid adaptive radiation. BMC Genomics 2014; 15:161. [PMID: 24571567 PMCID: PMC3944005 DOI: 10.1186/1471-2164-15-161] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 02/19/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gene duplication is a source of evolutionary innovation and can contribute to the divergence of lineages; however, the relative importance of this process remains to be determined. The explosive divergence of the African cichlid adaptive radiations provides both a model for studying the general role of gene duplication in the divergence of lineages and also an exciting foray into the identification of genomic features that underlie the dramatic phenotypic and ecological diversification in this particular lineage. We present the first genome-wide study of gene duplication in African cichlid fishes, identifying gene duplicates in three species belonging to the Lake Malawi adaptive radiation (Metriaclima estherae, Protomelas similis, Rhamphochromis "chilingali") and one closely related species from a non-radiated riverine lineage (Astatotilapia tweddlei). RESULTS Using Astatotilapia burtoni as reference, microarray comparative genomic hybridization analysis of 5689 genes reveals 134 duplicated genes among the four cichlid species tested. Between 51 and 55 genes were identified as duplicated in each of the three species from the Lake Malawi radiation, representing a 38%-49% increase in number of duplicated genes relative to the non-radiated lineage (37 genes). Duplicated genes include several that are involved in immune response, ATP metabolism and detoxification. CONCLUSIONS These results contribute to our understanding of the abundance and type of gene duplicates present in cichlid fish lineages. The duplicated genes identified in this study provide candidates for the analysis of functional relevance with regard to phenotype and divergence. Comparative sequence analysis of gene duplicates can address the role of positive selection and adaptive evolution by gene duplication, while further study across the phylogenetic range of cichlid radiations (and more generally in other adaptive radiations) will determine whether the patterns of gene duplication seen in this study consistently accompany rapid radiation.
Collapse
Affiliation(s)
| | | | | | | | | | - Suzy C P Renn
- Department of Biology, Reed College, Portland, OR 97202, USA.
| |
Collapse
|
87
|
Li W, Freudenberg J, Miramontes P. Diminishing return for increased Mappability with longer sequencing reads: implications of the k-mer distributions in the human genome. BMC Bioinformatics 2014; 15:2. [PMID: 24386976 PMCID: PMC3927684 DOI: 10.1186/1471-2105-15-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Accepted: 12/17/2013] [Indexed: 11/10/2022] Open
Abstract
Background The amount of non-unique sequence (non-singletons) in a genome directly affects the difficulty of read alignment to a reference assembly for high throughput-sequencing data. Although a longer read is more likely to be uniquely mapped to the reference genome, a quantitative analysis of the influence of read lengths on mappability has been lacking. To address this question, we evaluate the k-mer distribution of the human reference genome. The k-mer frequency is determined for k ranging from 20 bp to 1000 bp. Results We observe that the proportion of non-singletons k-mers decreases slowly with increasing k, and can be fitted by piecewise power-law functions with different exponents at different ranges of k. A slower decay at greater values for k indicates more limited gains in mappability for read lengths between 200 bp and 1000 bp. The frequency distributions of k-mers exhibit long tails with a power-law-like trend, and rank frequency plots exhibit a concave Zipf’s curve. The most frequent 1000-mers comprise 172 regions, which include four large stretches on chromosomes 1 and X, containing genes of biomedical relevance. Comparison with other databases indicates that the 172 regions can be broadly classified into two types: those containing LINE transposable elements and those containing segmental duplications. Conclusion Read mappability as measured by the proportion of singletons increases steadily up to the length scale around 200 bp. When read length increases above 200 bp, smaller gains in mappability are expected. Moreover, the proportion of non-singletons decreases with read lengths much slower than linear. Even a read length of 1000 bp would not allow the unique alignment of reads for many coding regions of human genes. A mix of techniques will be needed for efficiently producing high-quality data that cover the complete human genome.
Collapse
Affiliation(s)
- Wentian Li
- The Robert S, Boas Center for Genomics and Human Genetic, The Feinstein Institute for Medical Research, North Shore LIJ Health System, 350 Community Drive, Manhasset, USA.
| | | | | |
Collapse
|
88
|
Abstract
During the course of evolution, genomes acquire novel genetic elements as sources of functional and phenotypic diversity, including new genes that originated in recent evolution. In the past few years, substantial progress has been made in understanding the evolution and phenotypic effects of new genes. In particular, an emerging picture is that new genes, despite being present in the genomes of only a subset of species, can rapidly evolve indispensable roles in fundamental biological processes, including development, reproduction, brain function and behaviour. The molecular underpinnings of how new genes can develop these roles are starting to be characterized. These recent discoveries yield fresh insights into our broad understanding of biological diversity at refined resolution.
Collapse
|
89
|
Castillo-Morales A, Monzón-Sandoval J, Urrutia AO, Gutiérrez H. Increased brain size in mammals is associated with size variations in gene families with cell signalling, chemotaxis and immune-related functions. Proc Biol Sci 2013; 281:20132428. [PMID: 24285197 PMCID: PMC3866400 DOI: 10.1098/rspb.2013.2428] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Genomic determinants underlying increased encephalization across mammalian lineages are unknown. Whole genome comparisons have revealed large and frequent changes in the size of gene families, and it has been proposed that these variations could play a major role in shaping morphological and physiological differences among species. Using a genome-wide comparative approach, we examined changes in gene family size (GFS) and degree of encephalization in 39 fully sequenced mammalian species and found a significant over-representation of GFS variations in line with increased encephalization in mammals. We found that this relationship is not accounted for by known correlates of brain size such as maximum lifespan or body size and is not explained by phylogenetic relatedness. Genes involved in chemotaxis, immune regulation and cell signalling-related functions are significantly over-represented among those gene families most highly correlated with encephalization. Genes within these families are prominently expressed in the human brain, particularly the cortex, and organized in co-expression modules that display distinct temporal patterns of expression in the developing cortex. Our results suggest that changes in GFS associated with encephalization represent an evolutionary response to the specific functional requirements underlying increased brain size in mammals.
Collapse
Affiliation(s)
| | | | - Araxi O. Urrutia
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
- e-mail:
| | - Humberto Gutiérrez
- School of Life Sciences, University of Lincoln, Lincoln LN6 7TS, UK
- e-mail:
| |
Collapse
|
90
|
Kamm GB, López-Leal R, Lorenzo JR, Franchini LF. A fast-evolving human NPAS3 enhancer gained reporter expression in the developing forebrain of transgenic mice. Philos Trans R Soc Lond B Biol Sci 2013; 368:20130019. [PMID: 24218632 DOI: 10.1098/rstb.2013.0019] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The developmental brain gene NPAS3 stands out as a hot spot in human evolution because it contains the largest number of human-specific, fast-evolving, conserved, non-coding elements. In this paper we studied 2xHAR142, one of these elements that is located in the fifth intron of NPAS3. Using transgenic mice, we show that the mouse and chimp 2xHAR142 orthologues behave as transcriptional enhancers driving expression of the reporter gene lacZ to a similar NPAS3 expression subdomain in the mouse central nervous system. Interestingly, the human 2xHAR142 orthologue drives lacZ expression to an extended expression pattern in the nervous system. Thus, molecular evolution of 2xHAR142 provides the first documented example of human-specific heterotopy in the forebrain promoted by a transcriptional enhancer and suggests that it may have contributed to assemble the unique properties of the human brain.
Collapse
Affiliation(s)
- Gretel B Kamm
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), , Buenos Aires, Argentina
| | | | | | | |
Collapse
|
91
|
Dumont BL, Eichler EE. Signals of historical interlocus gene conversion in human segmental duplications. PLoS One 2013; 8:e75949. [PMID: 24124524 PMCID: PMC3790853 DOI: 10.1371/journal.pone.0075949] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 08/17/2013] [Indexed: 12/04/2022] Open
Abstract
Standard methods of DNA sequence analysis assume that sequences evolve independently, yet this assumption may not be appropriate for segmental duplications that exchange variants via interlocus gene conversion (IGC). Here, we use high quality multiple sequence alignments from well-annotated segmental duplications to systematically identify IGC signals in the human reference genome. Our analysis combines two complementary methods: (i) a paralog quartet method that uses DNA sequence simulations to identify a statistical excess of sites consistent with inter-paralog exchange, and (ii) the alignment-based method implemented in the GENECONV program. One-quarter (25.4%) of the paralog families in our analysis harbor clear IGC signals by the quartet approach. Using GENECONV, we identify 1477 gene conversion tracks that cumulatively span 1.54 Mb of the genome. Our analyses confirm the previously reported high rates of IGC in subtelomeric regions and Y-chromosome palindromes, and identify multiple novel IGC hotspots, including the pregnancy specific glycoproteins and the neuroblastoma breakpoint gene families. Although the duplication history of a paralog family is described by a single tree, we show that IGC has introduced incredible site-to-site variation in the evolutionary relationships among paralogs in the human genome. Our findings indicate that IGC has left significant footprints in patterns of sequence diversity across segmental duplications in the human genome, out-pacing the contributions of single base mutation by orders of magnitude. Collectively, the IGC signals we report comprise a catalog that will provide a critical reference for interpreting observed patterns of DNA sequence variation across duplicated genomic regions, including targets of recent adaptive evolution in humans.
Collapse
Affiliation(s)
- Beth L. Dumont
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Seattle, Washington, United States of America
| |
Collapse
|
92
|
Abstract
Copy number variation (CNV) contributes to disease and has restructured the genomes of great apes. The diversity and rate of this process, however, have not been extensively explored among great ape lineages. We analyzed 97 deeply sequenced great ape and human genomes and estimate 16% (469 Mb) of the hominid genome has been affected by recent CNV. We identify a comprehensive set of fixed gene deletions (n = 340) and duplications (n = 405) as well as >13.5 Mb of sequence that has been specifically lost on the human lineage. We compared the diversity and rates of copy number and single nucleotide variation across the hominid phylogeny. We find that CNV diversity partially correlates with single nucleotide diversity (r2 = 0.5) and recapitulates the phylogeny of apes with few exceptions. Duplications significantly outpace deletions (2.8-fold). The load of segregating duplications remains significantly higher in bonobos, Western chimpanzees, and Sumatran orangutans—populations that have experienced recent genetic bottlenecks (P = 0.0014, 0.02, and 0.0088, respectively). The rate of fixed deletion has been more clocklike with the exception of the chimpanzee lineage, where we observe a twofold increase in the chimpanzee–bonobo ancestor (P = 4.79 × 10−9) and increased deletion load among Western chimpanzees (P = 0.002). The latter includes the first genomic disorder in a chimpanzee with features resembling Smith-Magenis syndrome mediated by a chimpanzee-specific increase in segmental duplication complexity. We hypothesize that demographic effects, such as bottlenecks, have contributed to larger and more gene-rich segments being deleted in the chimpanzee lineage and that this effect, more generally, may account for episodic bursts in CNV during hominid evolution.
Collapse
|
93
|
Sassa T. The Role of Human-Specific Gene Duplications During Brain Development and Evolution. J Neurogenet 2013; 27:86-96. [DOI: 10.3109/01677063.2013.789512] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
94
|
Novo C, Arnoult N, Bordes WY, Castro-Vega L, Gibaud A, Dutrillaux B, Bacchetti S, Londoño-Vallejo A. The heterochromatic chromosome caps in great apes impact telomere metabolism. Nucleic Acids Res 2013; 41:4792-801. [PMID: 23519615 PMCID: PMC3643582 DOI: 10.1093/nar/gkt169] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In contrast with the limited sequence divergence accumulated after separation of higher primate lineages, marked cytogenetic variation has been associated with the genome evolution in these species. Studying the impact of such structural variations on defined molecular processes can provide valuable insights on how genome structural organization contributes to organismal evolution. Here, we show that telomeres on chromosome arms carrying subtelomeric heterochromatic caps in the chimpanzee, which are completely absent in humans, replicate later than telomeres on chromosome arms without caps. In gorilla, on the other hand, a proportion of the subtelomeric heterochromatic caps present in most chromosome arms are associated with large blocks of telomere-like sequences that follow a replication program different from that of bona fide telomeres. Strikingly, telomere-containing RNA accumulates extrachromosomally in gorilla mitotic cells, suggesting that at least some aspects of telomere-containing RNA biogenesis have diverged in gorilla, perhaps in concert with the evolution of heterochromatic caps in this species.
Collapse
Affiliation(s)
- Clara Novo
- Telomeres and Cancer laboratory, 'Equipe Labellisée Ligue contre le Cancer', UMR3244, Institut Curie, 26 rue d'Ulm, 75248 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
95
|
Kamm GB, Pisciottano F, Kliger R, Franchini LF. The developmental brain gene NPAS3 contains the largest number of accelerated regulatory sequences in the human genome. Mol Biol Evol 2013; 30:1088-102. [PMID: 23408798 PMCID: PMC3670734 DOI: 10.1093/molbev/mst023] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
To identify the evolutionary genetic novelties that contributed to shape human-specific traits such as the use of a complex language, long-term planning and exceptional learning abilities is one of the ultimate frontiers of modern biology. Evolutionary signatures of functional shifts could be detected by comparing noncoding regions that are highly conserved across mammals or primates and rapidly accumulated nucleotide substitutions only in the lineage leading to humans. As gene loci densely populated with human-accelerated elements (HAEs) are more likely to have contributed to human-specific novelties, we sought to identify the transcriptional units and genomic 1 Mb intervals of the entire human genome carrying the highest number of HAEs. To this end, we took advantage of four available data sets of human genomic accelerated regions obtained through different comparisons and algorithms and performed a meta-analysis of the combined data. We found that the brain developmental transcription factor neuronal PAS domain-containing protein 3 (NPAS3) contains the largest cluster of noncoding-accelerated regions in the human genome with up to 14 elements that are highly conserved in mammals, including primates, but carry human-specific nucleotide substitutions. We then tested the ability of the 14 HAEs identified at the NPAS3 locus to act as transcriptional regulatory sequences in a reporter expression assay performed in transgenic zebrafish. We found that 11 out of the 14 HAEs present in NPAS3 act as transcriptional enhancers during development, particularly within the nervous system. As NPAS3 is known to play a crucial role during mammalian brain development, our results indicate that the high density of HAEs present in the human NPAS3 locus could have modified the spatiotemporal expression pattern of NPAS3 in the developing human brain and, therefore, contributed to human brain evolution.
Collapse
Affiliation(s)
- Gretel B Kamm
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, INGEBI, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
96
|
Abstract
Given the unprecedented tools that are now available for rapidly comparing genomes, the identification and study of genetic and genomic changes that are unique to our species have accelerated, and we are entering a golden age of human evolutionary genomics. Here we provide an overview of these efforts, highlighting important recent discoveries, examples of the different types of human-specific genomic and genetic changes identified, and salient trends, such as the localization of evolutionary adaptive changes to complex loci that are highly enriched for disease associations. Finally, we discuss the remaining challenges, such as the incomplete nature of current genome sequence assemblies and difficulties in linking human-specific genomic changes to human-specific phenotypic traits.
Collapse
|
97
|
Research proceedings on primate comparative genomics. Zool Res 2013; 33:108-18. [DOI: 10.3724/sp.j.1141.2012.01108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
98
|
DUF1220-domain copy number implicated in human brain-size pathology and evolution. Am J Hum Genet 2012; 91:444-54. [PMID: 22901949 DOI: 10.1016/j.ajhg.2012.07.016] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 05/17/2012] [Accepted: 07/25/2012] [Indexed: 02/04/2023] Open
Abstract
DUF1220 domains show the largest human-lineage-specific increase in copy number of any protein-coding region in the human genome and map primarily to 1q21, where deletions and reciprocal duplications have been associated with microcephaly and macrocephaly, respectively. Given these findings and the high correlation between DUF1220 copy number and brain size across primate lineages (R(2) = 0.98; p = 1.8 × 10(-6)), DUF1220 sequences represent plausible candidates for underlying 1q21-associated brain-size pathologies. To investigate this possibility, we used specialized bioinformatics tools developed for scoring highly duplicated DUF1220 sequences to implement targeted 1q21 array comparative genomic hybridization on individuals (n = 42) with 1q21-associated microcephaly and macrocephaly. We show that of all the 1q21 genes examined (n = 53), DUF1220 copy number shows the strongest association with brain size among individuals with 1q21-associated microcephaly, particularly with respect to the three evolutionarily conserved DUF1220 clades CON1(p = 0.0079), CON2 (p = 0.0134), and CON3 (p = 0.0116). Interestingly, all 1q21 DUF1220-encoding genes belonging to the NBPF family show significant correlations with frontal-occipital-circumference Z scores in the deletion group. In a similar survey of a nondisease population, we show that DUF1220 copy number exhibits the strongest correlation with brain gray-matter volume (CON1, p = 0.0246; and CON2, p = 0.0334). Notably, only DUF1220 sequences are consistently significant in both disease and nondisease populations. Taken together, these data strongly implicate the loss of DUF1220 copy number in the etiology of 1q21-associated microcephaly and support the view that DUF1220 domains function as general effectors of evolutionary, pathological, and normal variation in brain size.
Collapse
|
99
|
O’Bleness MS, Dickens CM, Dumas LJ, Kehrer-Sawatzki H, Wyckoff GJ, Sikela JM. Evolutionary history and genome organization of DUF1220 protein domains. G3 (BETHESDA, MD.) 2012; 2:977-86. [PMID: 22973535 PMCID: PMC3429928 DOI: 10.1534/g3.112.003061] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 06/05/2012] [Indexed: 12/04/2022]
Abstract
DUF1220 protein domains exhibit the most extreme human lineage-specific (HLS) copy number increase of any protein coding region in the human genome and have recently been linked to evolutionary and pathological changes in brain size (e.g., 1q21-associated microcephaly). These findings lend support to the view that DUF1220 domain dosage is a key factor in the determination of primate (and human) brain size. Here we analyze 41 animal genomes and present the most complete account to date of the evolutionary history and genome organization of DUF1220 domains and the gene family that encodes them (NBPF). Included among the novel features identified by this analysis is a DUF1220 domain precursor in nonmammalian vertebrates, a unique predicted promoter common to all mammalian NBPF genes, six distinct clades into which DUF1220 sequences can be subdivided, and a previously unknown member of the NBPF gene family (NBPF25). Most importantly, we show that the exceptional HLS increase in DUF1220 copy number (from 102 in our last common ancestor with chimp to 272 in human; an average HLS increase of ~28 copies every million years since the Homo/Pan split) was driven by intragenic domain hyperamplification. This increase primarily involved a 4.7 kb, tandemly repeated three DUF1220 domain unit we have named the HLS DUF1220 triplet, a motif that is a likely candidate to underlie key properties unique to the Homo sapiens brain. Interestingly, all copies of the HLS DUF1220 triplet lie within a human-specific pericentric inversion that also includes the 1q12 C-band, a polymorphic heterochromatin expansion that is unique to the human genome. Both cytogenetic features likely played key roles in the rapid HLS DUF1220 triplet hyperamplification, which is among the most striking genomic changes specific to the human lineage.
Collapse
Affiliation(s)
- Majesta S. O’Bleness
- Department of Biochemistry and Molecular Genetics, Human Medical Genetics and Neuroscience Programs, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - C. Michael Dickens
- Department of Biochemistry and Molecular Genetics, Human Medical Genetics and Neuroscience Programs, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Laura J. Dumas
- Department of Biochemistry and Molecular Genetics, Human Medical Genetics and Neuroscience Programs, University of Colorado School of Medicine, Aurora, Colorado 80045
| | | | - Gerald J. Wyckoff
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri, Kansas City, Missouri 64110
| | - James M. Sikela
- Department of Biochemistry and Molecular Genetics, Human Medical Genetics and Neuroscience Programs, University of Colorado School of Medicine, Aurora, Colorado 80045
| |
Collapse
|
100
|
Varieties of behavioral natural variation. Curr Opin Neurobiol 2012; 23:24-8. [PMID: 22889698 DOI: 10.1016/j.conb.2012.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 07/11/2012] [Accepted: 07/18/2012] [Indexed: 12/24/2022]
Abstract
Behavior is flexible at different timescales, modifiable by experience in the short term and by evolution in the long term. In order to understand how behavior evolves, we must both understand how trait differences between individuals are inherited and how a subset of these differences get fixed within a species' lineage. Work over the past few decades has shown that this will not be easy; the genetic basis of heritable behavioral differences between two individuals is typically complex, caused by multiple genetic variants of small effect. Here I describe how the underlying genetic networks impact the types of genetic variants that can be selected for by evolution.
Collapse
|