51
|
Li Y, Héloir M, Zhang X, Geissler M, Trouvelot S, Jacquens L, Henkel M, Su X, Fang X, Wang Q, Adrian M. Surfactin and fengycin contribute to the protection of a Bacillus subtilis strain against grape downy mildew by both direct effect and defence stimulation. MOLECULAR PLANT PATHOLOGY 2019; 20:1037-1050. [PMID: 31104350 PMCID: PMC6640177 DOI: 10.1111/mpp.12809] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Bacillus subtilis GLB191 (hereafter GLB191) is an efficient biological control agent against the biotrophic oomycete Plasmopara viticola, the causal agent of grapevine downy mildew. In this study, we show that GLB191 supernatant is also highly active against downy mildew and that the activity results from both direct effect against the pathogen and stimulation of the plant defences (induction of defence gene expression and callose production). High-performance thin-layer chromatography analysis revealed the presence of the cyclic lipopeptides fengycin and surfactin in the supernatant. Mutants affected in the production of fengycin and/or surfactin were thus obtained and allowed us to show that both surfactin and fengycin contribute to the double activity of GLB191 supernatant against downy mildew. Altogether, this study suggests that GLB191 supernatant could be used as a new biocontrol product against grapevine downy mildew.
Collapse
Affiliation(s)
- Yan Li
- Department of Plant Pathology, College of Plant ProtectionChina Agricultural UniversityBeijing100193P. R. China
| | - Marie‐Claire Héloir
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne, Univ. Bourgogne Franche‐ComtéDijonF‐21000France
| | - Xun Zhang
- Department of Plant Pathology, College of Plant ProtectionChina Agricultural UniversityBeijing100193P. R. China
| | - Mareen Geissler
- Institute of Food Science and Biotechnology, Department of Bioprocess EngineeringUniversity of HohenheimFruwirthstrasse 12Stuttgart70599Germany
| | - Sophie Trouvelot
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne, Univ. Bourgogne Franche‐ComtéDijonF‐21000France
| | - Lucile Jacquens
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne, Univ. Bourgogne Franche‐ComtéDijonF‐21000France
| | - Marius Henkel
- Institute of Food Science and Biotechnology, Department of Bioprocess EngineeringUniversity of HohenheimFruwirthstrasse 12Stuttgart70599Germany
| | - Xin Su
- Department of Plant Pathology, College of Plant ProtectionChina Agricultural UniversityBeijing100193P. R. China
| | - Xuewen Fang
- Department of Plant Pathology, College of Plant ProtectionChina Agricultural UniversityBeijing100193P. R. China
| | - Qi Wang
- Department of Plant Pathology, College of Plant ProtectionChina Agricultural UniversityBeijing100193P. R. China
| | - Marielle Adrian
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne, Univ. Bourgogne Franche‐ComtéDijonF‐21000France
| |
Collapse
|
52
|
Zhou C, Zhou H, Zhang H, Lu F. Optimization of alkaline protease production by rational deletion of sporulation related genes in Bacillus licheniformis. Microb Cell Fact 2019; 18:127. [PMID: 31345221 PMCID: PMC6657089 DOI: 10.1186/s12934-019-1174-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/17/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Our laboratory has constructed a Bacillus licheniformis strain that secretes alkaline protease (AprE) with excellent enzymatic properties. B. licheniformis is generally regarded as safe and has a high industrial exoenzyme secretion capacity, but the host retains some undomesticated characteristic that increase its competitiveness and survival, such as spore-formation, which increases the requirements and difficulties in industrial operations (e.g. sterilization and enzyme activity control). Furthermore, the influence of sporulation on alkaline protease production in B. licheniformis has not been elucidated in detail. RESULT A series of asporogenic variants of the parent strain were constructed by individually knocking out the master regulator genes (spo0A, sigF and sigE) involved in sporulation. Most of the variants formed abortively disporic cells characterized by asymmetric septa at the poles and unable to survive incubation at 75 °C for 10 min. Two of them (ΔsigF and ΔsigE) exhibited superior characteristics in protease production, especially improving the expression of the aprE gene. Under the currently used fermentation conditions, the vegetative production phase of ΔsigF can be prolonged to 72 h, and the highest protease production of ΔsigF reached 29,494 ± 1053 U/mL, which was about 19.7% higher than that of the wild-type strain. CONCLUSION We first constructed three key sporulation-deficient strain to investigate the effect of sporulation on alkaline protease synthesis. The sigF mutant retained important industrial properties such as facilitating the sterilization process, a prolonged stable phase of enzyme production and slower decreasing trend, which will be superior in energy conservation, simpler operations and target product controlling effect. In summary, the work provides a useful industrial host with preferable characteristics and a novel strategy to enhance the production of protease.
Collapse
Affiliation(s)
- Cuixia Zhou
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Road, Tianjin Economic-Technological Development Area, Tianjin 022, 300457, People's Republic of China
| | - Huiying Zhou
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Road, Tianjin Economic-Technological Development Area, Tianjin 022, 300457, People's Republic of China
| | - Huitu Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Road, Tianjin Economic-Technological Development Area, Tianjin 022, 300457, People's Republic of China.
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Road, Tianjin Economic-Technological Development Area, Tianjin 022, 300457, People's Republic of China.
| |
Collapse
|
53
|
Li L, Liu X, Wei K, Lu Y, Jiang W. Synthetic biology approaches for chromosomal integration of genes and pathways in industrial microbial systems. Biotechnol Adv 2019; 37:730-745. [PMID: 30951810 DOI: 10.1016/j.biotechadv.2019.04.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/01/2019] [Accepted: 04/01/2019] [Indexed: 12/14/2022]
Abstract
Industrial biotechnology is reliant on native pathway engineering or foreign pathway introduction for efficient biosynthesis of target products. Chromosomal integration, with intrinsic genetic stability, is an indispensable step for reliable expression of homologous or heterologous genes and pathways in large-scale and long-term fermentation. With advances in synthetic biology and CRISPR-based genome editing approaches, a wide variety of novel enabling technologies have been developed for single-step, markerless, multi-locus genomic integration of large biochemical pathways, which significantly facilitate microbial overproduction of chemicals, pharmaceuticals and other value-added biomolecules. Notably, the newly discovered homology-mediated end joining strategy could be widely applicable for high-efficiency genomic integration in a number of homologous recombination-deficient microbes. In this review, we explore the fundamental principles and characteristics of genomic integration, and highlight the development and applications of targeted integration approaches in the three representative industrial microbial systems, including Escherichia coli, actinomycetes and yeasts.
Collapse
Affiliation(s)
- Lei Li
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiaocao Liu
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Keke Wei
- Department of Biochemistry, Shanghai Institute of Pharmaceutical Industry, Shanghai 201210, China
| | - Yinhua Lu
- College of Life Sciences, Shanghai Normal University, 200232, China.
| | - Weihong Jiang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
54
|
Zhou C, Liu H, Yuan F, Chai H, Wang H, Liu F, Li Y, Zhang H, Lu F. Development and application of a CRISPR/Cas9 system for Bacillus licheniformis genome editing. Int J Biol Macromol 2019; 122:329-337. [PMID: 30401651 DOI: 10.1016/j.ijbiomac.2018.10.170] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/24/2018] [Accepted: 10/25/2018] [Indexed: 10/28/2022]
Abstract
A highly efficient genome editing system for Bacillus licheniformis was developed based on single-plasmid CRISPR/Cas9. For highly efficient genome editing the shuttle vector pWH1520 was selected to construct the knockout plasmids. A construct harboring a pS promoter driving cas9 endonuclease expression, a strong pLY-2 promoter driving the transcription of a single guide RNA was demonstrated as being the most effective. To verify the feasibility of the method the uprT gene coding uracil phosphoribosyltransferase was selected as the reporter gene. The efficiency of introducing nucleotide point mutations and single gene deletion reached an editing efficiency of up to 99.2% and 97.3%, respectively. After a upp-deficient strain was engineered, the system and strain were applied to introduce genomic deletions of another two genes, amyL and chiA (encoding amylase and chitinase, respectively) with about 90% deletion efficiency. As two native extracellular proteins with relatively high secretion in the host, amylase and chitinase can hamper the secretion and expression of alkaline protease. It was demonstrated that the mutant with deletions of the two genes effectively improved the alkaline protease yield by 24.8%. The results illustrated that the establishment of a CRISPR/Cas9 system for Bacillus licheniformis is of significance, and confirmed the system's high efficiency. The system provides support for effective molecular modification and metabolic regulation of Bacillus licheniformis, and offers promise for applications in genetic modification of other industrially relevant Bacillus species.
Collapse
Affiliation(s)
- Cuixia Zhou
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science &Technology, Tianjin 022, PR China
| | - Huan Liu
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science &Technology, Tianjin 022, PR China
| | - Feiyan Yuan
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science &Technology, Tianjin 022, PR China
| | - Haonan Chai
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science &Technology, Tianjin 022, PR China
| | - Haikuan Wang
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science &Technology, Tianjin 022, PR China
| | - Fufeng Liu
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science &Technology, Tianjin 022, PR China
| | - Yu Li
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science &Technology, Tianjin 022, PR China
| | - Huitu Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science &Technology, Tianjin 022, PR China.
| | - Fuping Lu
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science &Technology, Tianjin 022, PR China.
| |
Collapse
|
55
|
Development of Bacillus amyloliquefaciens as a high-level recombinant protein expression system. ACTA ACUST UNITED AC 2019; 46:113-123. [DOI: 10.1007/s10295-018-2089-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 10/15/2018] [Indexed: 12/29/2022]
Abstract
Abstract
Bacillus amyloliquefaciens K11 is a hyperproducer of extracellular neutral protease, which can produce recombinant homologous protein steadily and is amenable to scale up to high-cell density fermentation. The present study aims to genetically modify strain K11 as a highly efficient secretory expression system for high-level production of heterologous proteins. Using B. amyloliquefaciens K11 and alkaline protease gene BcaprE as the expression host and model gene, the gene expression levels mediated by combinations of promoters PamyQ, PaprE and Pnpr and signal peptides SPamyQ, SPaprE and SPnpr were assessed on shake flask level. The PamyQ-SPaprE was found to be the best secretory expression cassette, giving the highest enzyme activities of extracellular BcaprE (13,800 ± 308 U/mL). Using the same expression system, the maltogenic α-amylase Gs-MAase and neutral protease BaNPR were successfully produced with the enzyme activities of 19. ± 0.2 U/mL and 17,495 ± 417 U/mL, respectively. After knocking out the endogenous neutral protease-encoding gene Banpr, the enzyme activities of BcaprE and Gs-MAase were further improved by 25.4% and 19.4%, respectively. Moreover, the enzyme activities of BcaprE were further improved to 30,200 ± 312 U/mL in a 15 L fermenter following optimization of the fermentation conditions. In the present study, the genetically engineered B. amyloliquefaciens strain 7-6 containing PamyQ-SPaprE as the secretory expression cassette was developed. This efficient expression system shows general applicability and represents an excellent industrial strain for the production of heterologous proteins.
Collapse
|
56
|
Wang H, Chou C, Hsu K, Lee C, Wang AH. New paradigm of functional regulation by DNA mimic proteins: Recent updates. IUBMB Life 2018; 71:539-548. [DOI: 10.1002/iub.1992] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 11/21/2018] [Accepted: 11/24/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Hao‐Ching Wang
- Graduate Institute of Translational MedicineCollege of Medical Science and Technology, Taipei Medical University Taipei 110 Taiwan
| | - Chia‐Cheng Chou
- National Center for High‐performance ComputingNational Applied Research Laboratories Hsinchu 300 Taiwan
| | - Kai‐Cheng Hsu
- Graduate Institute of Cancer Molecular Biology and Drug DiscoveryCollege of Medical Science and Technology, Taipei Medical University Taipei 110 Taiwan
| | - Chi‐Hua Lee
- Institute of Biological Chemistry, Academia Sinica Taipei 115 Taiwan
| | - Andrew H.‐J. Wang
- Graduate Institute of Translational MedicineCollege of Medical Science and Technology, Taipei Medical University Taipei 110 Taiwan
- Institute of Biological Chemistry, Academia Sinica Taipei 115 Taiwan
| |
Collapse
|
57
|
Zeng Q, Xie J, Li Y, Gao T, Xu C, Wang Q. Comparative genomic and functional analyses of four sequenced Bacillus cereus genomes reveal conservation of genes relevant to plant-growth-promoting traits. Sci Rep 2018; 8:17009. [PMID: 30451927 PMCID: PMC6242881 DOI: 10.1038/s41598-018-35300-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/30/2018] [Indexed: 12/31/2022] Open
Abstract
Some Bacillus strains function as predominant plant-growth-promoting rhizobacteria. Bacillus cereus 905 is a rod-shaped Gram-positive bacterium isolated from wheat rhizosphere and is a rhizobacterium that exhibits significant plant-growth-promoting effects. Species belonging to the genus Bacillus are observed in numerous different habitats. Several papers on B. cereus are related to pathogens that causes food-borne illness and industrial applications. However, genomic analysis of plant-associated B. cereus has yet to be reported. Here, we conducted a genomic analysis comparing strain 905 with three other B. cereus strains and investigate the genomic characteristics and evolution traits of the species in different niches. The genome sizes of four B. cereus strains range from 5.38 M to 6.40 M, and the number of protein-coding genes varies in the four strains. Comparisons of the four B. cereus strains reveal 3,998 core genes. The function of strain-specific genes are related to carbohydrate, amino acid and coenzyme metabolism and transcription. Analysis of single nucleotide polymorphisms (SNPs) indicates local diversification of the four strains. SNPs are unevenly distributed throughout the four genomes, and function interpretation of regions with high SNP density coincides with the function of strain-specific genes. Detailed analysis indicates that certain SNPs contribute to the formation of strain-specific genes. By contrast, genes related to plant-growth-promoting traits are highly conserved. This study shows the genomic differences between four strains from different niches and provides an in-depth understanding of the genome architecture of these species, thus facilitating genetic engineering and agricultural applications in the future.
Collapse
Affiliation(s)
- Qingchao Zeng
- Key Laboratory of Plant Pathology, Ministry of Agriculture, College of Plant Protection, China Agricultural University, Beijing, 100193, P. R. China
| | - Jianbo Xie
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Yan Li
- Key Laboratory of Plant Pathology, Ministry of Agriculture, College of Plant Protection, China Agricultural University, Beijing, 100193, P. R. China
| | - Tantan Gao
- Key Laboratory of Plant Pathology, Ministry of Agriculture, College of Plant Protection, China Agricultural University, Beijing, 100193, P. R. China
| | - Cheng Xu
- Key Laboratory of Plant Pathology, Ministry of Agriculture, College of Plant Protection, China Agricultural University, Beijing, 100193, P. R. China
| | - Qi Wang
- Key Laboratory of Plant Pathology, Ministry of Agriculture, College of Plant Protection, China Agricultural University, Beijing, 100193, P. R. China.
| |
Collapse
|
58
|
Wang L, Deng A, Zhang Y, Liu S, Liang Y, Bai H, Cui D, Qiu Q, Shang X, Yang Z, He X, Wen T. Efficient CRISPR-Cas9 mediated multiplex genome editing in yeasts. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:277. [PMID: 30337956 PMCID: PMC6180501 DOI: 10.1186/s13068-018-1271-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 09/26/2018] [Indexed: 05/27/2023]
Abstract
BACKGROUND The thermotolerant methylotrophic yeast Ogataea polymorpha has been regarded as an important organism for basic research and biotechnological applications. It is generally recognized as an efficient and safe cell factory in fermentative productions of chemicals, biofuels and other bio-products. However, it is difficult to genetically engineer for the deficiency of an efficient and versatile genome editing technology. RESULTS In this study, we developed a CRISPR-Cas9-assisted multiplex genome editing (CMGE) approach including multiplex genes knock-outs, multi-locus (ML) and multi-copy (MC) integration methods in yeasts. Based on CMGE, various genome modifications, including gene deletion, integration, and precise point mutation, were performed in O. polymorpha. Using the CMGE-ML integration method, three genes TAL from Herpetosiphon aurantiacus, 4CL from Arabidopsis thaliana and STS from Vitis vinifera of resveratrol biosynthetic pathway were simultaneously integrated at three different loci, firstly achieving the biosynthesis of resveratrol in O. polymorpha. Using the CMGE-MC method, ∼ 10 copies of the fusion expression cassette P ScTEF1 -TAL-P ScTPI1 -4CL-P ScTEF2 -STS were integrated into the genome. Resveratrol production was increased ~ 20 fold compared to the one copy integrant and reached 97.23 ± 4.84 mg/L. Moreover, the biosynthesis of human serum albumin and cadaverine were achieved in O. polymorpha using CMGE-MC to integrate genes HSA and cadA, respectively. In addition, the CMGE-MC method was successfully developed in Saccharomyces cerevisiae. CONCLUSIONS An efficient and versatile multiplex genome editing method was developed in yeasts. The method would provide an efficient toolkit for genetic engineering and synthetic biology researches of O. polymorpha and other yeast species.
Collapse
Affiliation(s)
- Laiyou Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Aihua Deng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Yun Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Shuwen Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Yong Liang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Hua Bai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Di Cui
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Qidi Qiu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xiuling Shang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Zhao Yang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Xiuping He
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Tingyi Wen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
59
|
Leenay RT, Vento JM, Shah M, Martino ME, Leulier F, Beisel CL. Genome Editing with CRISPR‐Cas9 in
Lactobacillus plantarum
Revealed That Editing Outcomes Can Vary Across Strains and Between Methods. Biotechnol J 2018; 14:e1700583. [DOI: 10.1002/biot.201700583] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/17/2018] [Indexed: 01/22/2023]
Affiliation(s)
- Ryan T. Leenay
- Department of Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleighNC27695USA
| | - Justin M. Vento
- Department of Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleighNC27695USA
| | - Malay Shah
- Department of Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleighNC27695USA
| | - Maria Elena Martino
- Institut de Génomique Fonctionnelle de LyonUniversité de LyonEcole Normale Supérieure de LyonCentre National de la Recherche ScientifiqueUniversité Claude Bernard Lyon 1Unité Mixte de Recherche 524269364 LyonCedex 07France
| | - François Leulier
- Institut de Génomique Fonctionnelle de LyonUniversité de LyonEcole Normale Supérieure de LyonCentre National de la Recherche ScientifiqueUniversité Claude Bernard Lyon 1Unité Mixte de Recherche 524269364 LyonCedex 07France
| | - Chase L. Beisel
- Department of Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleighNC27695USA
- Helmholtz Institute for RNA‐based Infection ResearchJosef‐Schneider‐Straße 297080WürzburgGermany
- Faculty of MedicineUniversity of WürzburgJosef‐Schneider‐Straße 297080WürzburgGermany
| |
Collapse
|
60
|
Bacterial Adaptation to the Host's Diet Is a Key Evolutionary Force Shaping Drosophila-Lactobacillus Symbiosis. Cell Host Microbe 2018; 24:109-119.e6. [PMID: 30008290 PMCID: PMC6054917 DOI: 10.1016/j.chom.2018.06.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/27/2018] [Accepted: 05/11/2018] [Indexed: 01/09/2023]
Abstract
Animal-microbe facultative symbioses play a fundamental role in ecosystem and organismal health. Yet, due to the flexible nature of their association, the selection pressures that act on animals and their facultative symbionts remain elusive. Here we apply experimental evolution to Drosophila melanogaster associated with its growth-promoting symbiont Lactobacillus plantarum, representing a well-established model of facultative symbiosis. We find that the diet of the host, rather than the host itself, is a predominant driving force in the evolution of this symbiosis. Furthermore, we identify a mechanism resulting from the bacterium's adaptation to the diet, which confers growth benefits to the colonized host. Our study reveals that bacterial adaptation to the host's diet may be the foremost step in determining the evolutionary course of a facultative animal-microbe symbiosis. L. plantarum experimental evolution leads to the improvement of its symbiotic benefit L. plantarum increases its growth-promotion ability by adapting to Drosophila diet Mutation of ackA gene enhances both L. plantarum fitness and benefit to the host N-acetyl-glutamine production is sufficient to improve L. plantarum growth promotion
Collapse
|
61
|
Yang Y, Li Y, Gao T, Zhang Y, Wang Q. C-di-GMP turnover influences motility and biofilm formation in Bacillus amyloliquefaciens PG12. Res Microbiol 2018; 169:205-213. [PMID: 29859892 DOI: 10.1016/j.resmic.2018.04.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 03/22/2018] [Accepted: 04/05/2018] [Indexed: 12/11/2022]
Abstract
Bis-(3'→5') cyclic dimeric guanosine monophosphate (c-di-GMP) is defined as a highly versatile secondary messenger in bacteria, coordinating diverse aspects of bacterial growth and behavior, including motility and biofilm formation. Bacillus amyloliquefaciens PG12 is an effective biocontrol agent against apple ring rot caused by Botryosphaeria dothidea. In this study, we characterized the core regulators of c-di-GMP turnover in B. amyloliquefaciens PG12. Using bioinformatic analysis, heterologous expression and biochemical characterization of knockout and overexpression derivatives, we identified and characterized two active diguanylate cyclases (which catalyze c-di-GMP biosynthesis), YhcK and YtrP and one active c-di-GMP phosphodiesterase (which degrades c-di-GMP), YuxH. Furthermore, we showed that elevating c-di-GMP levels up to a certain threshold inhibited the swimming motility of B. amyloliquefaciens PG12. Although yhcK, ytrP and yuxH knockout mutants did not display defects in biofilm formation, significant increases in c-di-GMP levels induced by YtrP or YuxH overexpression stimulated biofilm formation in B. amyloliquefaciens PG12. Our results indicate that B. amyloliquefaciens possesses a functional c-di-GMP signaling system that influences the bacterium's motility and ability to form biofilms. Since motility and biofilm formation influence the efficacy of biological control agent, our work provides a basis for engineering a more effective strain of B. amyloliquefaciens PG12.
Collapse
Affiliation(s)
- Yang Yang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Yan Li
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Tantan Gao
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Yue Zhang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Qi Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
62
|
Navone L, McCubbin T, Gonzalez-Garcia RA, Nielsen LK, Marcellin E. Genome-scale model guided design of Propionibacterium for enhanced propionic acid production. Metab Eng Commun 2018; 6:1-12. [PMID: 29255672 PMCID: PMC5725212 DOI: 10.1016/j.meteno.2017.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/12/2017] [Accepted: 11/20/2017] [Indexed: 12/17/2022] Open
Abstract
Production of propionic acid by fermentation of propionibacteria has gained increasing attention in the past few years. However, biomanufacturing of propionic acid cannot compete with the current oxo-petrochemical synthesis process due to its well-established infrastructure, low oil prices and the high downstream purification costs of microbial production. Strain improvement to increase propionic acid yield is the best alternative to reduce downstream purification costs. The recent generation of genome-scale models for a number of Propionibacterium species facilitates the rational design of metabolic engineering strategies and provides a new opportunity to explore the metabolic potential of the Wood-Werkman cycle. Previous strategies for strain improvement have individually targeted acid tolerance, rate of propionate production or minimisation of by-products. Here we used the P. freudenreichii subsp. shermanii and the pan-Propionibacterium genome-scale metabolic models (GEMs) to simultaneously target these combined issues. This was achieved by focussing on strategies which yield higher energies and directly suppress acetate formation. Using P. freudenreichii subsp. shermanii, two strategies were assessed. The first tested the ability to manipulate the redox balance to favour propionate production by over-expressing the first two enzymes of the pentose-phosphate pathway (PPP), Zwf (glucose-6-phosphate 1-dehydrogenase) and Pgl (6-phosphogluconolactonase). Results showed a 4-fold increase in propionate to acetate ratio during the exponential growth phase. Secondly, the ability to enhance the energy yield from propionate production by over-expressing an ATP-dependent phosphoenolpyruvate carboxykinase (PEPCK) and sodium-pumping methylmalonyl-CoA decarboxylase (MMD) was tested, which extended the exponential growth phase. Together, these strategies demonstrate that in silico design strategies are predictive and can be used to reduce by-product formation in Propionibacterium. We also describe the benefit of carbon dioxide to propionibacteria growth, substrate conversion and propionate yield.
Collapse
Affiliation(s)
- Laura Navone
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Australia
| | - Tim McCubbin
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Australia
| | | | - Lars K. Nielsen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Australia
| | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Australia
- Queensland Node of Metabolomics Australia, The University of Queensland, Australia
| |
Collapse
|
63
|
Rapidly moving new bacteria to model-organism status. Curr Opin Biotechnol 2018; 51:116-122. [DOI: 10.1016/j.copbio.2017.12.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/11/2017] [Indexed: 11/23/2022]
|
64
|
Freed E, Fenster J, Smolinski SL, Walker J, Henard CA, Gill R, Eckert CA. Building a genome engineering toolbox in nonmodel prokaryotic microbes. Biotechnol Bioeng 2018; 115:2120-2138. [PMID: 29750332 DOI: 10.1002/bit.26727] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/02/2018] [Accepted: 03/10/2018] [Indexed: 12/26/2022]
Abstract
The realization of a sustainable bioeconomy requires our ability to understand and engineer complex design principles for the development of platform organisms capable of efficient conversion of cheap and sustainable feedstocks (e.g., sunlight, CO2 , and nonfood biomass) into biofuels and bioproducts at sufficient titers and costs. For model microbes, such as Escherichia coli, advances in DNA reading and writing technologies are driving the adoption of new paradigms for engineering biological systems. Unfortunately, microbes with properties of interest for the utilization of cheap and renewable feedstocks, such as photosynthesis, autotrophic growth, and cellulose degradation, have very few, if any, genetic tools for metabolic engineering. Therefore, it is important to develop "design rules" for building a genetic toolbox for novel microbes. Here, we present an overview of our current understanding of these rules for the genetic manipulation of prokaryotic microbes and the available genetic tools to expand our ability to genetically engineer nonmodel systems.
Collapse
Affiliation(s)
- Emily Freed
- National Renewable Energy Laboratory, Biosciences Center, Golden, CO.,Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO
| | - Jacob Fenster
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO.,Chemical and Biological Engineering, University of Colorado, Boulder, CO
| | | | - Julie Walker
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO
| | - Calvin A Henard
- National Renewable Energy Laboratory, National Bioenergy Center, Golden, CO
| | - Ryan Gill
- National Renewable Energy Laboratory, Biosciences Center, Golden, CO.,Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO.,Chemical and Biological Engineering, University of Colorado, Boulder, CO
| | - Carrie A Eckert
- National Renewable Energy Laboratory, Biosciences Center, Golden, CO.,Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO
| |
Collapse
|
65
|
Wang B, Hu Q, Zhang Y, Shi R, Chai X, Liu Z, Shang X, Zhang Y, Wen T. A RecET-assisted CRISPR-Cas9 genome editing in Corynebacterium glutamicum. Microb Cell Fact 2018; 17:63. [PMID: 29685154 PMCID: PMC5913818 DOI: 10.1186/s12934-018-0910-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/13/2018] [Indexed: 12/27/2022] Open
Abstract
Background Extensive modification of genome is an efficient manner to regulate the metabolic network for producing target metabolites or non-native products using Corynebacterium glutamicum as a cell factory. Genome editing approaches by means of homologous recombination and counter-selection markers are laborious and time consuming due to multiple round manipulations and low editing efficiencies. The current two-plasmid-based CRISPR–Cas9 editing methods generate false positives due to the potential instability of Cas9 on the plasmid, and require a high transformation efficiency for co-occurrence of two plasmids transformation. Results Here, we developed a RecET-assisted CRISPR–Cas9 genome editing method using a chromosome-borne Cas9–RecET and a single plasmid harboring sgRNA and repair templates. The inducible expression of chromosomal RecET promoted the frequencies of homologous recombination, and increased the efficiency for gene deletion. Due to the high transformation efficiency of a single plasmid, this method enabled 10- and 20-kb region deletion, 2.5-, 5.7- and 7.5-kb expression cassette insertion and precise site-specific mutation, suggesting a versatility of this method. Deletion of argR and farR regulators as well as site-directed mutation of argB and pgi genes generated the mutant capable of accumulating l-arginine, indicating the stability of chromosome-borne Cas9 for iterative genome editing. Using this method, the model-predicted target genes were modified to redirect metabolic flux towards 1,2-propanediol biosynthetic pathway. The final engineered strain produced 6.75 ± 0.46 g/L of 1,2-propanediol that is the highest titer reported in C. glutamicum. Furthermore, this method is available for Corynebacterium pekinense 1.563, suggesting its universal applicability in other Corynebacterium species. Conclusions The RecET-assisted CRISPR–Cas9 genome editing method will facilitate engineering of metabolic networks for the synthesis of interested bio-based products from renewable biomass using Corynebacterium species as cell factories. Electronic supplementary material The online version of this article (10.1186/s12934-018-0910-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bo Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qitiao Hu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruilin Shi
- Beijing Zhongke Eppen Biotech Co., Ltd, Beijing, 100085, China
| | - Xin Chai
- Beijing Zhongke Eppen Biotech Co., Ltd, Beijing, 100085, China
| | - Zhe Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiuling Shang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yun Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Tingyi Wen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China. .,Beijing Zhongke Eppen Biotech Co., Ltd, Beijing, 100085, China. .,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
66
|
Okshevsky M, Louw MG, Lamela EO, Nilsson M, Tolker‐Nielsen T, Meyer RL. A transposon mutant library of Bacillus cereus ATCC 10987 reveals novel genes required for biofilm formation and implicates motility as an important factor for pellicle-biofilm formation. Microbiologyopen 2018; 7:e00552. [PMID: 29164822 PMCID: PMC5911993 DOI: 10.1002/mbo3.552] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/05/2017] [Accepted: 09/18/2017] [Indexed: 11/16/2022] Open
Abstract
Bacillus cereus is one of the most common opportunistic pathogens causing foodborne illness, as well as a common source of contamination in the dairy industry. B. cereus can form robust biofilms on food processing surfaces, resulting in food contamination due to shedding of cells and spores. Despite the medical and industrial relevance of this species, the genetic basis of biofilm formation in B. cereus is not well studied. In order to identify genes required for biofilm formation in this bacterium, we created a library of 5000 + transposon mutants of the biofilm-forming strain B. cereusATCC 10987, using an unbiased mariner transposon approach. The mutant library was screened for the ability to form a pellicle biofilm at the air-media interface, as well as a submerged biofilm at the solid-media interface. A total of 91 genes were identified as essential for biofilm formation. These genes encode functions such as chemotaxis, amino acid metabolism and cellular repair mechanisms, and include numerous genes not previously known to be required for biofilm formation. Although the majority of disrupted genes are not directly responsible for motility, further investigations revealed that the vast majority of the biofilm-deficient mutants were also motility impaired. This observation implicates motility as a pivotal factor in the formation of a biofilm by B. cereus. These results expand our knowledge of the fundamental molecular mechanisms of biofilm formation by B. cereus.
Collapse
Affiliation(s)
- Mira Okshevsky
- Interdisciplinary Nanoscience CenterAarhus UniversityAarhusDenmark
| | | | | | - Martin Nilsson
- Department of Immunology and MicrobiologyUniversity of CopenhagenCopenhagenDenmark
| | - Tim Tolker‐Nielsen
- Department of Immunology and MicrobiologyUniversity of CopenhagenCopenhagenDenmark
| | - Rikke Louise Meyer
- Interdisciplinary Nanoscience CenterAarhus UniversityAarhusDenmark
- Department of BioscienceAarhus UniversityAarhusDenmark
| |
Collapse
|
67
|
Wu J, Deng A, Sun Q, Bai H, Sun Z, Shang X, Zhang Y, Liu Q, Liang Y, Liu S, Che Y, Wen T. Bacterial Genome Editing via a Designed Toxin-Antitoxin Cassette. ACS Synth Biol 2018; 7:822-831. [PMID: 28094982 DOI: 10.1021/acssynbio.6b00287] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Manipulating the bacterial genomes in an efficient manner is essential to biological and biotechnological research. Here, we reprogrammed the bacterial TA systems as the toxin counter-selectable cassette regulated by an antitoxin switch (TCCRAS) for genetic modifications in the extensively studied and utilized Gram-positive bacteria, B. subtilis and Corynebacterium glutamicum. In the five characterized type II TA systems, the RelBE complex can specifically and efficiently regulate cell growth and death by the conditionally controlled antitoxin RelB switch, thereby serving as a novel counter-selectable cassette to establish the TCCRAS system. Using a single vector, such a system has been employed to perform in-frame deletion, functional knock-in, gene replacement, precise point mutation, large-scale insertion, and especially, deletion of the fragments up to 194.9 kb in B. subtilis. In addition, the biosynthesis of lycopene was first achieved in B. subtilis using TCCRAS to integrate a 5.4-kb fusion cluster ( P spac- crtI- crtE- crtB). The system was further adapted for gene knockdown and replacement, and large-scale deletion of the fragments up to 179.8 kb in C. glutamicum, with the mutation efficiencies increased by 0.8-1.0-fold compared to the conventional SacB method. TCCRAS thus holds promise as an effective and versatile genome-scale engineering technology for metabolic engineering and synthetic genomics research in a broad range of the Gram-positive bacteria.
Collapse
Affiliation(s)
- Jie Wu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Aihua Deng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qinyun Sun
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hua Bai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaopeng Sun
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiuling Shang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yun Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qian Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yong Liang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuwen Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongsheng Che
- State Key Laboratory of Toxicology & Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China
| | - Tingyi Wen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid medical school, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
68
|
Bai H, Deng A, Liu S, Cui D, Qiu Q, Wang L, Yang Z, Wu J, Shang X, Zhang Y, Wen T. A Novel Tool for Microbial Genome Editing Using the Restriction-Modification System. ACS Synth Biol 2018; 7:98-106. [PMID: 28968490 DOI: 10.1021/acssynbio.7b00254] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Scarless genetic manipulation of genomes is an essential tool for biological research. The restriction-modification (R-M) system is a defense system in bacteria that protects against invading genomes on the basis of its ability to distinguish foreign DNA from self DNA. Here, we designed an R-M system-mediated genome editing (RMGE) technique for scarless genetic manipulation in different microorganisms. For bacteria with Type IV REase, an RMGE technique using the inducible DNA methyltransferase gene, bceSIIM (RMGE-bceSIIM), as the counter-selection cassette was developed to edit the genome of Escherichia coli. For bacteria without Type IV REase, an RMGE technique based on a restriction endonuclease (RMGE-mcrA) was established in Bacillus subtilis. These techniques were successfully used for gene deletion and replacement with nearly 100% counter-selection efficiencies, which were higher and more stable compared to conventional methods. Furthermore, precise point mutation without limiting sites was achieved in E. coli using RMGE-bceSIIM to introduce a single base mutation of A128C into the rpsL gene. In addition, the RMGE-mcrA technique was applied to delete the CAN1 gene in Saccharomyces cerevisiae DAY414 with 100% counter-selection efficiency. The effectiveness of the RMGE technique in E. coli, B. subtilis, and S. cerevisiae suggests the potential universal usefulness of this technique for microbial genome manipulation.
Collapse
Affiliation(s)
- Hua Bai
- CAS
Key Laboratory of Pathogenic Microbiology and Immunology, Institute
of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Aihua Deng
- CAS
Key Laboratory of Pathogenic Microbiology and Immunology, Institute
of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuwen Liu
- CAS
Key Laboratory of Pathogenic Microbiology and Immunology, Institute
of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Di Cui
- CAS
Key Laboratory of Pathogenic Microbiology and Immunology, Institute
of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qidi Qiu
- CAS
Key Laboratory of Pathogenic Microbiology and Immunology, Institute
of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Laiyou Wang
- CAS
Key Laboratory of Pathogenic Microbiology and Immunology, Institute
of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhao Yang
- CAS
Key Laboratory of Pathogenic Microbiology and Immunology, Institute
of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jie Wu
- CAS
Key Laboratory of Pathogenic Microbiology and Immunology, Institute
of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiuling Shang
- CAS
Key Laboratory of Pathogenic Microbiology and Immunology, Institute
of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yun Zhang
- CAS
Key Laboratory of Pathogenic Microbiology and Immunology, Institute
of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tingyi Wen
- CAS
Key Laboratory of Pathogenic Microbiology and Immunology, Institute
of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid
Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
69
|
Fagen JR, Collias D, Singh AK, Beisel CL. Advancing the design and delivery of CRISPR antimicrobials. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2017. [DOI: 10.1016/j.cobme.2017.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
70
|
The restriction modification system of Bacillus licheniformis MS1 and generation of a readily transformable deletion mutant. Appl Microbiol Biotechnol 2017; 101:7933-7944. [PMID: 28942561 DOI: 10.1007/s00253-017-8532-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 01/19/2023]
Abstract
Restriction modification systems (R-M systems), consisting of a restriction endonuclease and a cognate methyltransferase, constitute an effective means of a cell to protect itself from foreign DNA. Identification, characterization, and deletion of the restriction modification system BliMSI, a putative isoschizomer of ClaI from Caryophanon latum, were performed in the wild isolate Bacillus licheniformis MS1. BliMSI was produced as recombinant protein in Escherichia coli, purified, and in vitro analysis demonstrated identical restriction endonuclease activity as for ClaI. A recombinant E. coli strain, expressing the heterologous bliMSIM gene, was constructed and used as the host for in vivo methylation of plasmids prior to their introduction into B. licheniformis to improve transformation efficiencies. The establishment of suicide plasmids in the latter was rendered possible. The subsequent deletion of the restriction endonuclease encoding gene, bliMSIR, caused doubled transformation efficiencies in the respective mutant B. licheniformis MS2 (∆bliMSIR). Along with above in vivo methylation, the establishment of further gene deletions (∆upp, ∆yqfD) was performed. The constructed triple mutant (∆bliMSIR, ∆upp, ∆yqfD) enables rapid genome manipulation, a requirement for genetic engineering of industrially important strains.
Collapse
|
71
|
Restriction-modification mediated barriers to exogenous DNA uptake and incorporation employed by Prevotella intermedia. PLoS One 2017; 12:e0185234. [PMID: 28934361 PMCID: PMC5608340 DOI: 10.1371/journal.pone.0185234] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 09/09/2017] [Indexed: 12/18/2022] Open
Abstract
Prevotella intermedia, a major periodontal pathogen, is increasingly implicated in human respiratory tract and cystic fibrosis lung infections. Nevertheless, the specific mechanisms employed by this pathogen remain only partially characterized and poorly understood, largely due to its total lack of genetic accessibility. Here, using Single Molecule, Real-Time (SMRT) genome and methylome sequencing, bisulfite sequencing, in addition to cloning and restriction analysis, we define the specific genetic barriers to exogenous DNA present in two of the most widespread laboratory strains, P. intermedia ATCC 25611 and P. intermedia Strain 17. We identified and characterized multiple restriction-modification (R-M) systems, some of which are considerably divergent between the two strains. We propose that these R-M systems are the root cause of the P. intermedia transformation barrier. Additionally, we note the presence of conserved Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) systems in both strains, which could provide a further barrier to exogenous DNA uptake and incorporation. This work will provide a valuable resource during the development of a genetic system for P. intermedia, which will be required for fundamental investigation of this organism’s physiology, metabolism, and pathogenesis in human disease.
Collapse
|
72
|
Yan S, Wu G. Bottleneck in secretion of α-amylase in Bacillus subtilis. Microb Cell Fact 2017; 16:124. [PMID: 28724440 PMCID: PMC5518135 DOI: 10.1186/s12934-017-0738-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 07/10/2017] [Indexed: 11/10/2022] Open
Abstract
Amylase plays an important role in biotechnology industries, and Gram-positive bacterium Bacillus subtilis is a major host to produce heterogeneous α-amylases. However, the secretion stress limits the high yield of α-amylase in B. subtilis although huge efforts have been made to address this secretion bottleneck. In this question-oriented review, every effort is made to answer the following questions, which look simple but are long-standing, through reviewing of literature: (1) Does α-amylase need a specific and dedicated chaperone? (2) What signal sequence does CsaA recognize? (3) Does CsaA require ATP for its operation? (4) Does an unfolded α-amylase is less soluble than a folded one? (5) Does α-amylase aggregate before transporting through Sec secretion system? (6) Is α-amylase sufficient stable to prevent itself from misfolding? (7) Does α-amylase need more disulfide bonds to be stabilized? (8) Which secretion system does PrsA pass through? (9) Is PrsA ATP-dependent? (10) Is PrsA reused after folding of α-amylase? (11) What is the fate of PrsA? (12) Is trigger factor (TF) ATP-dependent? The literature review suggests that not only the most of those questions are still open to answers but also it is necessary to calculate ATP budget in order to better understand how B. subtilis uses its energy for production and secretion.
Collapse
Affiliation(s)
- Shaomin Yan
- National Engineering Research Center for Non-food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, 530007, Guangxi, China
| | - Guang Wu
- National Engineering Research Center for Non-food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, 530007, Guangxi, China.
| |
Collapse
|
73
|
Waller MC, Bober JR, Nair NU, Beisel CL. Toward a genetic tool development pipeline for host-associated bacteria. Curr Opin Microbiol 2017. [PMID: 28624690 DOI: 10.1016/j.mib.2017.05.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bacteria reside in externally accessible niches on and in multicellular organisms, often forming mutualistic relationships with their host. Recent studies have linked the composition of these microbial communities with alterations in the host's health, behavior, and development, yet the causative mediators of host-microbiota interactions remain poorly understood. Advances in understanding and engineering these interactions require the development of genetic tools to probe the molecular interactions driving the structure and function of microbial communities as well as their interactions with their host. This review discusses the current challenges to rendering culturable, non-model members of microbial communities genetically tractable - including overcoming barriers to DNA delivery, achieving predictable gene expression, and applying CRISPR-based tools - and details recent efforts to create generalized pipelines that simplify and expedite the tool-development process. We use the bacteria present in the human gastrointestinal tract as representative microbiota to illustrate some of the recent achievements and future opportunities for genetic tool development.
Collapse
Affiliation(s)
- Matthew C Waller
- North Carolina State University, Department of Chemical and Biomolecular Engineering, Raleigh, NC 27695, United States
| | - Josef R Bober
- Tufts University, Department of Chemical and Biological Engineering, Medford, MA 02155, United States
| | - Nikhil U Nair
- Tufts University, Department of Chemical and Biological Engineering, Medford, MA 02155, United States
| | - Chase L Beisel
- North Carolina State University, Department of Chemical and Biomolecular Engineering, Raleigh, NC 27695, United States.
| |
Collapse
|
74
|
|
75
|
Chai X, Shang X, Zhang Y, Liu S, Liang Y, Zhang Y, Wen T. A novel pyruvate kinase and its application in lactic acid production under oxygen deprivation in Corynebacterium glutamicum. BMC Biotechnol 2016; 16:79. [PMID: 27852252 PMCID: PMC5112673 DOI: 10.1186/s12896-016-0313-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 11/01/2016] [Indexed: 11/18/2022] Open
Abstract
Background Pyruvate kinase (Pyk) catalyzes the generation of pyruvate and ATP in glycolysis and functions as a key switch in the regulation of carbon flux distribution. Both the substrates and products of Pyk are involved in the tricarboxylic acid cycle, anaplerosis and energy anabolism, which places Pyk at a primary metabolic intersection. Pyks are highly conserved in most bacteria and lower eukaryotes. Corynebacterium glutamicum is an industrial workhorse for the production of various amino acids and organic acids. Although C. glutamicum was assumed to possess only one Pyk (pyk1, NCgl2008), NCgl2809 was annotated as a pyruvate kinase with an unknown role. Results Here, we identified that NCgl2809 was a novel pyruvate kinase (pyk2) in C. glutamicum. Complementation of the WTΔpyk1Δpyk2 strain with the pyk2 gene restored its growth on d-ribose, which demonstrated that Pyk2 could substitute for Pyk1 in vivo. Pyk2 was co-dependent on Mn2+ and K+ and had a higher affinity for ADP than phosphoenolpyruvate (PEP). The catalytic activity of Pyk2 was allosterically regulated by fructose 1,6-bisphosphate (FBP) activation and ATP inhibition. Furthermore, pyk2 and ldhA, which encodes l-lactate dehydrogenase, were co-transcribed as a bicistronic mRNA under aerobic conditions and pyk2 deficiency had a slight effect on the intracellular activity of Pyk. However, the mRNA level of pyk2 in the wild-type strain under oxygen deprivation was 14.24-fold higher than that under aerobic conditions. Under oxygen deprivation, pyk1 or pyk2 deficiency decreased the generation of lactic acid, and the overexpression of either pyk1 or pyk2 increased the production of lactic acid as the activity of Pyk increased. Fed-batch fermentation of the pyk2-overexpressing WTΔpyk1 strain produced 60.27 ± 1.40 g/L of lactic acid, which was a 47% increase compared to the parent strain under oxygen deprivation. Conclusions Pyk2 functioned as a pyruvate kinase and contributed to the increased level of Pyk activity under oxygen deprivation. Electronic supplementary material The online version of this article (doi:10.1186/s12896-016-0313-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xin Chai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xiuling Shang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Yu Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Shuwen Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Yong Liang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Yun Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.
| | - Tingyi Wen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China. .,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
76
|
A new strategy to express the extracellular α-amylase from Pyrococcus furiosus in Bacillus amyloliquefaciens. Sci Rep 2016; 6:22229. [PMID: 26916714 PMCID: PMC4768087 DOI: 10.1038/srep22229] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/05/2016] [Indexed: 11/12/2022] Open
Abstract
Extracellular α-amylase from Pyrococcus furiosus (PFA) shows great starch-processing potential for industrial application due to its thermostability, long half-life and optimal activity at low pH; however, it is difficult to produce in large quantities. In contrast, α-amylase from Bacillus amyloliquefaciens (BAA) can be produced in larger quantities, but shows lower stability at high temperatures and low pH. Here, we describe a BAA protein expression pattern-mimicking strategy to express PFA in B. amyloliquefaciens using the expression and secretion elements of BAA, including the codon usage bias and mRNA structure of gene, promoter, signal peptide, host and cultivation conditions. This design was assessed to be successful by comparing the various genes (mpfa and opfa), promoters (PamyA and P43), and strains (F30, F31, F32 and F30-∆amyA). The final production of PFA yielded 2714 U/mL, about 3000- and 14-fold that reportedly produced in B. subtilis or E. coli, respectively. The recombinant PFA was optimally active at ~100 °C and pH 5 and did not require Ca2+ for activity or thermostability, and >80% of the enzyme activity was retained after treatment at 100 °C for 4 h.
Collapse
|
77
|
Wang H, Yang L, Ping Y, Bai Y, Luo H, Huang H, Yao B. Engineering of a Bacillus amyloliquefaciens Strain with High Neutral Protease Producing Capacity and Optimization of Its Fermentation Conditions. PLoS One 2016; 11:e0146373. [PMID: 26752595 PMCID: PMC4708984 DOI: 10.1371/journal.pone.0146373] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 12/16/2015] [Indexed: 01/03/2023] Open
Abstract
The neutral protease has high potential for industrial applications, and attempts to improve enzyme expression level have important application values. In the present study, a neutral protease-encoding gene, Banpr, was cloned from Bacillus amyloliquefaciens strain K11, and a genetic manipulation method specific for this difficult-to-transform strain was developed for the high-level expression of neutral protease. The recombinant plasmid pUB110-Banpr was constructed in Bacillus subtilis strain WB600 and then transformed into strain K11 under optimized conditions. A positive transformant 110N-6 with the highest protease secreting capacity on skim milk plates and great genetic stability for more than 100 generations was selected for further study. Optimization of the fermentation conditions increased the enzyme activity of strain 110N-6 to 8995 ± 250 U/ml in flask culture and 28084 ± 1282 U/ml in 15-l fermentor, which are significantly higher than that of the native strain K11 and industrial strain B. subtilis AS.1398, respectively. The high expression level and extreme genetic stability make B. amyloliquefaciens strain 110N-6 more favorable for mass production of neutral protease for industrial uses.
Collapse
Affiliation(s)
- Hui Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Lian Yang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Yanhai Ping
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Yingguo Bai
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Huiying Luo
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Huoqing Huang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Bin Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| |
Collapse
|
78
|
Kolek J, Sedlar K, Provaznik I, Patakova P. Dam and Dcm methylations prevent gene transfer into Clostridium pasteurianum NRRL B-598: development of methods for electrotransformation, conjugation, and sonoporation. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:14. [PMID: 26793273 PMCID: PMC4719659 DOI: 10.1186/s13068-016-0436-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/08/2016] [Indexed: 05/15/2023]
Abstract
BACKGROUND Butanol is currently one of the most discussed biofuels. Its use provides many benefits in comparison to bio-ethanol, but the price of its fermentative production is still high. Genetic improvements could help solve many problems associated with butanol production during ABE fermentation, such as its toxicity, low concentration achievable in the cultivation medium, the need for a relatively expensive substrate, and many more. Clostridium pasteurianum NRRL B-598 is non-type strain producing butanol, acetone, and a negligible amount of ethanol. Its main benefits are high oxygen tolerance, utilization of a wide range of carbon and nitrogen sources, and the availability of its whole genome sequence. However, there is no established method for the transfer of foreign DNA into this strain; this is the next step necessary for progress in its use for butanol production. RESULTS We have described functional protocols for conjugation and transformation of the bio-butanol producer C. pasteurianum NRRL B-598 by foreign plasmid DNA. We show that the use of unmethylated plasmid DNA is necessary for efficient transformation or successful conjugation. Genes encoding DNA methylation and those for restriction-modification systems and antibiotic resistance were searched for in the whole genome sequence and their homologies with other clostridial bacteria were determined. Furthermore, activity of described novel type I restriction system was proved experimentally. The described electrotransformation protocol achieved an efficiency 1.2 × 10(2) cfu/μg DNA after step-by-step optimization and an efficiency of 1.6 × 10(2) cfu/μg DNA was achieved by the sonoporation technique using a standard laboratory ultrasound bath. The highest transformation efficiency was achieved using a combination of these approaches; sono/electroporation led to an increase in transformation efficiency, to 5.3 × 10(2) cfu/μg DNA. CONCLUSIONS Both Dam and Dcm methylations are detrimental for transformation of C. pasteurianum NRRL B-598. Methods for conjugation, electroporation, sonoporation, and a combined method for sono/electroporation were established for this strain. The methods described could be used for genetic improvement of this strain, which is suitable for bio-butanol production.
Collapse
Affiliation(s)
- Jan Kolek
- />Department of Biotechnology, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague, Czech Republic
| | - Karel Sedlar
- />Department of Biomedical Engineering, Brno University of Technology, Technicka 12, 616 00 Brno, Czech Republic
| | - Ivo Provaznik
- />Department of Biomedical Engineering, Brno University of Technology, Technicka 12, 616 00 Brno, Czech Republic
| | - Petra Patakova
- />Department of Biotechnology, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague, Czech Republic
| |
Collapse
|
79
|
Restriction modification system analysis and development of in vivo methylation for the transformation of Clostridium cellulovorans. Appl Microbiol Biotechnol 2015; 100:2289-99. [PMID: 26590584 DOI: 10.1007/s00253-015-7141-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 10/28/2015] [Accepted: 11/02/2015] [Indexed: 12/11/2022]
Abstract
Clostridium cellulovorans, a cellulolytic bacterium producing butyric and acetic acids as main fermentation products, is a promising host for biofuel production from cellulose. However, the transformation method of C. cellulovorans was not available, hindering its genetic engineering. To overcome this problem, its restriction modification (RM) systems were analyzed and a novel in vivo methylation was established for its successful transformation in the present study. Specifically, two RM systems, Cce743I and Cce743II, were determined. R. Cce743I has the same specificity as LlaJI, recognizing 5'-GACGC-3' and 5'-GCGTC-3', while M. Cce743I methylates the external cytosine in the strand (5'-GACG(m)C-3'). R. Cce743II, has the same specificity as LlaI, recognizing 5'-CCAGG-3' and 5'-CCTGG-3', while M. Cce743II methylates the external cytosine of both strands. An in vivo methylation system, expressing M. Cce743I and M. Cce743II from C. cellulovorans in Escherichia coli, was then established to protect plasmids used in electrotransformation. Transformants expressing an aldehyde/alcohol dehydrogenase (adhE2), which converted butyryl-CoA to n-butanol and acetyl-CoA to ethanol, were obtained. For the first time, an effective transformation method was developed for metabolic engineering of C. cellulovorans for biofuel production directly from cellulose.
Collapse
|
80
|
Liu Q, Liang Y, Zhang Y, Shang X, Liu S, Wen J, Wen T. YjeH Is a Novel Exporter of l-Methionine and Branched-Chain Amino Acids in Escherichia coli. Appl Environ Microbiol 2015; 81:7753-66. [PMID: 26319875 PMCID: PMC4616930 DOI: 10.1128/aem.02242-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 08/25/2015] [Indexed: 01/01/2023] Open
Abstract
Amino acid efflux transport systems have important physiological functions and play vital roles in the fermentative production of amino acids. However, no methionine exporter has yet been identified in Escherichia coli. In this study, we identified a novel amino acid exporter, YjeH, in E. coli. The yjeH overexpression strain exhibited high tolerance to the structural analogues of l-methionine and branched-chain amino acids, decreased intracellular amino acid levels, and enhanced export rates in the presence of a Met-Met, Leu-Leu, Ile-Ile, or Val-Val dipeptide, suggesting that YjeH functions as an exporter of l-methionine and the three branched-chain amino acids. The export of the four amino acids in the yjeH overexpression strain was competitively inhibited in relation to each other. The expression of yjeH was strongly induced by increasing cytoplasmic concentrations of substrate amino acids. Green fluorescent protein (GFP)-tagged YjeH was visualized by total internal reflection fluorescence microscopy to confirm the plasma membrane localization of YjeH. Phylogenetic analysis of transporters indicated that YjeH belongs to the amino acid efflux family of the amino acid/polyamine/organocation (APC) superfamily. Structural modeling revealed that YjeH has the typical "5 + 5" transmembrane α-helical segment (TMS) inverted-repeat fold of APC superfamily transporters, and its binding sites are strictly conserved. The enhanced capacity of l-methionine export by the overexpression of yjeH in an l-methionine-producing strain resulted in a 70% improvement in titer. This study supplements the transporter classification and provides a substantial basis for the application of the methionine exporter in metabolic engineering.
Collapse
Affiliation(s)
- Qian Liu
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yong Liang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yun Zhang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiuling Shang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shuwen Liu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jifu Wen
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China University of Chinese Academy of Sciences, Beijing, China
| | - Tingyi Wen
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
81
|
Premethylation of foreign DNA improves integrative transformation efficiency in Synechocystis sp. strain PCC 6803. Appl Environ Microbiol 2015; 81:8500-6. [PMID: 26452551 DOI: 10.1128/aem.02575-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 09/22/2015] [Indexed: 01/11/2023] Open
Abstract
Restriction digestion of foreign DNA is one of the key biological barriers against genetic transformation in microorganisms. To establish a high-efficiency transformation protocol in the model cyanobacterium, Synechocystis sp. strain PCC 6803 (Synechocystis 6803), we investigated the effects of premethylation of foreign DNA on the integrative transformation of this strain. In this study, two type II methyltransferase-encoding genes, i.e., sll0729 (gene M) and slr0214 (gene C), were cloned from the chromosome of Synechocystis 6803 and expressed in Escherichia coli harboring an integration plasmid. After premethylation treatment in E. coli, the integration plasmid was extracted and used for transformation of Synechocystis 6803. The results showed that although expression of methyltransferase M had little impact on the transformation of Synechocystis 6803, expression of methyltransferase C resulted in 11- to 161-fold-higher efficiency in the subsequent integrative transformation of Synechocystis 6803. Effective expression of methyltransferase C, which could be achieved by optimizing the 5' untranslated region, was critical to efficient premethylation of the donor DNA and thus high transformation efficiency in Synechocystis 6803. Since premethylating foreign DNA prior to transforming Synechocystis avoids changing the host genetic background, the study thus provides an improved method for high-efficiency integrative transformation of Synechocystis 6803.
Collapse
|
82
|
Abstract
Staphylococcus aureus is a prominent global nosocomial and community-acquired bacterial pathogen. A strong restriction barrier presents a major hurdle for the introduction of recombinant DNA into clinical isolates of S. aureus. Here, we describe the construction and characterization of the IMXXB series of Escherichia coli strains that mimic the type I adenine methylation profiles of S. aureus clonal complexes 1, 8, 30, and ST93. The IMXXB strains enable direct, high-efficiency transformation and streamlined genetic manipulation of major S. aureus lineages. The genetic manipulation of clinical S. aureus isolates has been hampered due to the presence of restriction modification barriers that detect and subsequently degrade inappropriately methylated DNA. Current methods allow the introduction of plasmid DNA into a limited subset of S. aureus strains at high efficiency after passage of plasmid DNA through the restriction-negative, modification-proficient strain RN4220. Here, we have constructed and validated a suite of E. coli strains that mimic the adenine methylation profiles of different clonal complexes and show high-efficiency plasmid DNA transfer. The ability to bypass RN4220 will reduce the cost and time involved for plasmid transfer into S. aureus. The IMXXB series of E. coli strains should expedite the process of mutant construction in diverse genetic backgrounds and allow the application of new techniques to the genetic manipulation of S. aureus.
Collapse
|
83
|
A high-efficiency recombineering system with PCR-based ssDNA in Bacillus subtilis mediated by the native phage recombinase GP35. Appl Microbiol Biotechnol 2015; 99:5151-62. [PMID: 25750031 DOI: 10.1007/s00253-015-6485-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 02/02/2015] [Accepted: 02/14/2015] [Indexed: 02/02/2023]
Abstract
Bacillus subtilis and its closely related species are important strains for industry, agriculture, and medicine. However, it is difficult to perform genetic manipulations using the endogenous recombination machinery. In many bacteria, phage recombineering systems have been employed to improve recombineering frequencies. To date, an efficient phage recombineering system for B. subtilis has not been reported. Here, we, for the first time, identified that GP35 from the native phage SPP1 exhibited a high recombination activity in B. subtilis. On this basis, we developed a high-efficiency GP35-meditated recombineering system. Taking single-stranded DNA (ssDNA) as a recombineering substrate, ten recombinases from diverse sources were investigated in B. subtilis W168. GP35 showed the highest recombineering frequency (1.71 ± 0.15 × 10(-1)). Besides targeting the purine nucleoside phosphorylase gene (deoD), we also demonstrated the utility of GP35 and Beta from Escherichia coli lambda phage by deleting the alpha-amylase gene (amyE) and uracil phosphoribosyltransferase gene (upp). In all three genetic loci, GP35 exhibited a higher frequency than Beta. Moreover, a phylogenetic tree comparing the kinship of different recombinase hosts with B. subtilis was constructed, and the relationship between the recombineering frequency and the kinship of the host was further analyzed. The results suggested that closer kinship to B. subtilis resulted in higher frequency in B. subtilis. In conclusion, the recombinase from native phage or prophage can significantly promote the genetic recombineering frequency in its host, providing an effective genetic tool for constructing genetically engineered strains and investigating bacterial physiology.
Collapse
|
84
|
Wang HC, Ho CH, Hsu KC, Yang JM, Wang AHJ. DNA mimic proteins: functions, structures, and bioinformatic analysis. Biochemistry 2014; 53:2865-74. [PMID: 24766129 DOI: 10.1021/bi5002689] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
DNA mimic proteins have DNA-like negative surface charge distributions, and they function by occupying the DNA binding sites of DNA binding proteins to prevent these sites from being accessed by DNA. DNA mimic proteins control the activities of a variety of DNA binding proteins and are involved in a wide range of cellular mechanisms such as chromatin assembly, DNA repair, transcription regulation, and gene recombination. However, the sequences and structures of DNA mimic proteins are diverse, making them difficult to predict by bioinformatic search. To date, only a few DNA mimic proteins have been reported. These DNA mimics were not found by searching for functional motifs in their sequences but were revealed only by structural analysis of their charge distribution. This review highlights the biological roles and structures of 16 reported DNA mimic proteins. We also discuss approaches that might be used to discover new DNA mimic proteins.
Collapse
Affiliation(s)
- Hao-Ching Wang
- Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University , Taipei 110, Taiwan
| | | | | | | | | |
Collapse
|
85
|
Establishment of an efficient transformation protocol and its application in marine-derived Bacillus strain. SCIENCE CHINA-LIFE SCIENCES 2014; 57:627-35. [PMID: 24771061 DOI: 10.1007/s11427-014-4632-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 12/07/2013] [Indexed: 12/31/2022]
Abstract
Marine-derived Bacillus strains have been proved to be a very promising source for natural product leads. However, transformation of environmental strains is much more difficult than that of domesticated strains. Here, we report the development of an efficient and robust electroporation-based transformation system for marine-derived Bacillus marinus B-9987, which is a macrolactin antibiotics producer and a very promising biological control agent against fungal plant diseases. The transformation efficiency was greatly enhanced 10(3)-fold by using unmethylated plasmid to bypass modification-restriction barrier, and using glycine betaine to protect cells from electrical damages during electroporation. Addition of HEPES and 2 mmol L(-1) MgCl2 further improved the efficiency by additional 2-fold, with a maximum value of 7.1×10(4) cfu/μg pHT3101. To demonstrate the feasibility and efficiency of the protocol, a green fluorescent protein reporter system was constructed; furthermore, phosphopantetheinyl transferase gene sfp, which is essential to the biosynthesis of polyketides and nonribosomal peptides, was overexpressed in B-9987, leading to increased production of macrolactin A by about 1.6-fold. In addition, this protocol is also applicable to marine-derived Bacillus licheniforms EI-34-6, indicating it could be a reference for other undomesticated Bacillus strains. To our knowledge, this is the first report regarding the transformation of marine-derived Bacillus strain.
Collapse
|
86
|
Su F, Xu P. Genomic analysis of thermophilic Bacillus coagulans strains: efficient producers for platform bio-chemicals. Sci Rep 2014; 4:3926. [PMID: 24473268 PMCID: PMC3905273 DOI: 10.1038/srep03926] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 01/14/2014] [Indexed: 11/16/2022] Open
Abstract
Microbial strains with high substrate efficiency and excellent environmental tolerance are urgently needed for the production of platform bio-chemicals. Bacillus coagulans has these merits; however, little genetic information is available about this species. Here, we determined the genome sequences of five B. coagulans strains, and used a comparative genomic approach to reconstruct the central carbon metabolism of this species to explain their fermentation features. A novel xylose isomerase in the xylose utilization pathway was identified in these strains. Based on a genome-wide positive selection scan, the selection pressure on amino acid metabolism may have played a significant role in the thermal adaptation. We also researched the immune systems of B. coagulans strains, which provide them with acquired resistance to phages and mobile genetic elements. Our genomic analysis provides comprehensive insights into the genetic characteristics of B. coagulans and paves the way for improving and extending the uses of this species.
Collapse
Affiliation(s)
- Fei Su
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
87
|
Restriction enzyme cutting site distribution regularity for DNA looping technology. Gene 2014; 534:222-8. [PMID: 24211387 DOI: 10.1016/j.gene.2013.10.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/15/2013] [Accepted: 10/24/2013] [Indexed: 01/06/2023]
Abstract
The restriction enzyme cutting site distribution regularity and looping conditions were studied systematically. We obtained the restriction enzyme cutting site distributions of 13 commonly used restriction enzymes in 5 model organism genomes through two novel self-compiled software programs. All of the average distances between two adjacent restriction sites fell sharply with increasing statistic intervals, and most fragments were 0-499 bp. A shorter DNA fragment resulted in a lower looping rate, which was also directly proportional to the DNA concentration. When the length was more than 500 bp, the concentration did not affect the looping rate. Therefore, the best known fragment length was longer than 500 bp, and did not contain the restriction enzyme cutting sites which would be used for digestion. In order to make the looping efficiencies reach nearly 100%, 4-5 single cohesive end systems were recommended to digest the genome separately.
Collapse
|
88
|
Restriction-Modification Systems as a Barrier for Genetic Manipulation of Staphylococcus aureus. Methods Mol Biol 2014; 1373:9-23. [PMID: 25646604 DOI: 10.1007/7651_2014_180] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Genetic manipulation is a powerful approach to study fundamental aspects of bacterial physiology, metabolism, and pathogenesis. Most Staphylococcus aureus strains are remarkably difficult to genetically manipulate as they possess strong host defense mechanisms that protect bacteria from cellular invasion by foreign DNA. In S. aureus these bacterial "immunity" mechanisms against invading genomes are mainly associated with restriction-modification systems. To date, prokaryotic restriction-modification systems are classified into four different types (Type I-IV), all of which have been found in the sequenced S. aureus genomes. This chapter describes the roles, classification, mechanisms of action of different types of restriction-modification systems and the recent advances in the biology of restriction and modification in S. aureus.
Collapse
|
89
|
Roberts GA, Houston PJ, White JH, Chen K, Stephanou AS, Cooper LP, Dryden DTF, Lindsay JA. Impact of target site distribution for Type I restriction enzymes on the evolution of methicillin-resistant Staphylococcus aureus (MRSA) populations. Nucleic Acids Res 2013; 41:7472-84. [PMID: 23771140 PMCID: PMC3753647 DOI: 10.1093/nar/gkt535] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A limited number of Methicillin-resistant Staphylococcus aureus (MRSA) clones are responsible for MRSA infections worldwide, and those of different lineages carry unique Type I restriction-modification (RM) variants. We have identified the specific DNA sequence targets for the dominant MRSA lineages CC1, CC5, CC8 and ST239. We experimentally demonstrate that this RM system is sufficient to block horizontal gene transfer between clinically important MRSA, confirming the bioinformatic evidence that each lineage is evolving independently. Target sites are distributed randomly in S. aureus genomes, except in a set of large conjugative plasmids encoding resistance genes that show evidence of spreading between two successful MRSA lineages. This analysis of the identification and distribution of target sites explains evolutionary patterns in a pathogenic bacterium. We show that a lack of specific target sites enables plasmids to evade the Type I RM system thereby contributing to the evolution of increasingly resistant community and hospital MRSA.
Collapse
Affiliation(s)
- Gareth A Roberts
- EaStCHEM School of Chemistry, University of Edinburgh, The King's Buildings, Edinburgh EH9 3JJ, UK and Division of Clinical Sciences, St. George's, University of London, Cranmer Terrace, London, SW17 0RE, UK
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Brancaccio VF, Zhurina DS, Riedel CU. Tough nuts to crack: site-directed mutagenesis of bifidobacteria remains a challenge. Bioengineered 2013; 4:197-202. [PMID: 23314785 DOI: 10.4161/bioe.23381] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Most members of the genus Bifidobacterium are commensals of the human gastrointestinal tract and some strains were shown to exert beneficial effects on their host. Based on these effects and due to their status as GRAS (generally recognized as safe) microorganisms, specific strains of bifidobacteria are marketed as probiotics. Despite their important role in food and dairy industries, the mechanisms responsible for the probiotic effects of bifidobacteria are mostly unknown. Over the last decade, the genomes of a large number of bifidobacteria have been sequenced and analyzed. This has yielded a number of genes and their products that are speculated to contribute to the probiotic effects of bifidobacteria. The gold standard to demonstrate a role for specific genes is the analysis of mutants. At present, only a small number of mutants of bifidobacteria have been generated by targeted mutagenesis. This is owed to the genetic inaccessibility of most strains and a lack of appropriate molecular tools. Successful generation of mutants of bifidobacteria was achieved by various methods including classical suicide vector strategies, increase of transformation efficiencies by methylation of plasmids and the use of temperature-sensitive vectors. In this commentary, we will describe the methods successfully used for mutagenesis of bifidobacteria and discuss their advantages and limitations.
Collapse
|