51
|
Zaghi GGD, Godinho J, Ferreira EDF, Ribeiro MHDM, Previdelli IS, de Oliveira RMW, Milani H. Robust and enduring atorvastatin-mediated memory recovery following the 4-vessel occlusion/internal carotid artery model of chronic cerebral hypoperfusion in middle-aged rats. Prog Neuropsychopharmacol Biol Psychiatry 2016; 65:179-87. [PMID: 26485403 DOI: 10.1016/j.pnpbp.2015.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/12/2015] [Accepted: 10/13/2015] [Indexed: 12/12/2022]
Abstract
Chronic cerebral hypoperfusion (CCH) is a common condition associated with the development and/or worsening of age-related dementia.We previously reported persistent memory loss and neurodegeneration after CCH in middle-aged rats. Statin-mediated neuroprotection has been reported after acute cerebral ischemia. Unknown, however, is whether statins can alleviate the outcome of CCH. The present study investigated whether atorvastatin attenuates the cognitive and neurohistological outcome of CCH. Rats (12–15 months old) were trained in a non-food-rewarded radial maze, and then subjected to CCH. Atorvastatin (10 mg/kg, p.o.) was administered for 42 days or 15 days, beginning 5 h after the first occlusion stage. Retrograde memory performance was assessed at 7, 14, 21, 28, and 35 days of CCH, and expressed by “latency,” “number of reference memory errors” and “number of working memory errors.” Neurodegeneration was then examined at the hippocampus and cerebral cortex. Compared to sham, CCH caused profound and persistent memory loss in the vehicle-treated groups, as indicated by increased latency (91.2% to 107.3%) and number of errors (123.5% to 2508.2%), effects from which the animals did not spontaneously recover across time. This CCH-induced retrograde amnesia was completely prevented by atorvastatin (latency: −4.3% to 3.3%; reference/working errors: −2.5% to 45.7%), regardless of the treatment duration. This effect was sustained during the entire behavioral testing period (5 weeks), even after discontinuing treatment. This robust and sustained memory-protective effect of atorvastatin occurred in the absence of neuronal rescue (39.58% to 56.45% cell loss). We suggest that atorvastatin may be promising for the treatment of cognitive sequelae associated with CCH.
Collapse
Affiliation(s)
| | - Jacqueline Godinho
- Department of Pharmacology and Therapeutics, Health Science Center, Brazil
| | | | - Matheus Henrique Dal Molin Ribeiro
- Department of Statistics, Exact Science Center, State University of Maringá, Maringá, Brazil; Federal Institute of Parana, Palmas, Paraná, Brazil
| | | | | | - Humberto Milani
- Department of Pharmacology and Therapeutics, Health Science Center, Brazil.
| |
Collapse
|
52
|
Detrimental or beneficial: the role of TRPM2 in ischemia/reperfusion injury. Acta Pharmacol Sin 2016; 37:4-12. [PMID: 26725732 DOI: 10.1038/aps.2015.141] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 10/14/2015] [Indexed: 12/30/2022] Open
Abstract
Ischemia/reperfusion (I/R) injury is the main cause of tissue damage and dysfunction. I/R injury is characterized by Ca(2+) overload and production of reactive oxygen species (ROS), which play critical roles in the process of I/R injury to the brain, heart and kidney, but the underlying mechanisms are largely elusive. Recent evidence demonstrates that TRPM2, a Ca(2+)-permeable cationic channel and ROS sensor, is involved in I/R injury, but whether TRPM2 plays a protective or detrimental role in this process remains controversial. In this review, we discuss the recent progress in understanding the role of TRPM2 in reperfusion process after brain, heart and kidney ischemia and the potential of targeting TRPM2 for the development of therapeutic drugs to treat I/R injury.
Collapse
|
53
|
Li X, Zhao Y, Liu P, Zhu X, Chen M, Wang H, Lu D, Qi R. Senegenin Inhibits Hypoxia/Reoxygenation-Induced Neuronal Apoptosis by Upregulating RhoGDIα. Mol Neurobiol 2015; 52:1561-1571. [PMID: 25367882 DOI: 10.1007/s12035-014-8948-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 10/20/2014] [Indexed: 02/08/2023]
Abstract
Neuronal apoptosis is an important event in hypoxia/reoxygenation (H/R)-induced neuronal injury. Senegenin (Sen), the predominant and most active component in Radix Polygalae root extracts, displays anti-apoptotic and anti-oxidative properties. Sen protects against H/R-induced neuronal apoptosis of highly differentiated PC12 cells and primary cortical neurons. Sen has also been investigated as a source of potential therapeutic targets. In this study, a proteomic approach was used to identify Sen-regulated proteins in PC12 cells. We found that Sen protected against H/R-induced neuronal apoptosis by upregulating RhoGDIα protein expression. The regulatory functions of RhoGDIα were investigated by knocking down RhoGDIα expression in PC12 cells using small interfering RNA (siRNA), followed by quantification of apoptosis and then altering the expression levels of apoptosis-related proteins. Our data show that after silencing RhoGDIα, the neuroprotective effects of Sen on H/R-induced PC12 cell apoptosis were absent. Furthermore, RhoGDIα silencing alleviated the Sen-mediated inhibition of the JNK pathway. Therefore, these findings indicated that Sen attenuates H/R-induced neuronal apoptosis by upregulating RhoGDIα expression and inhibiting the JNK pathway. In addition to the mechanism underlying neuroprotective effects of Sen, RhoGDIα was identified as a putative target of Sen based on a primary rat cortical neuron model of H/R-induced injury.
Collapse
Affiliation(s)
- Xuemin Li
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, No. 601 Huangpu Avenue West, 510632, Guangzhou, Guangdong, China
- Department of Pathology, Municipal People's Hospital, 243000, Maanshan, Anhui, China
| | - Yandong Zhao
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, No. 601 Huangpu Avenue West, 510632, Guangzhou, Guangdong, China
| | - Panhong Liu
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, No. 601 Huangpu Avenue West, 510632, Guangzhou, Guangdong, China
| | - Xiaoqing Zhu
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, No. 601 Huangpu Avenue West, 510632, Guangzhou, Guangdong, China
- Department of Gynecology, Clifford Hospital, 511495, Guangzhou, Guangdong, China
| | - Minyi Chen
- Texas A & M University, College Station, TX 77843, USA
| | - Huadong Wang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, No. 601 Huangpu Avenue West, 510632, Guangzhou, Guangdong, China
| | - Daxiang Lu
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, No. 601 Huangpu Avenue West, 510632, Guangzhou, Guangdong, China
| | - Renbin Qi
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, No. 601 Huangpu Avenue West, 510632, Guangzhou, Guangdong, China.
| |
Collapse
|
54
|
Lu Q, Tucker D, Dong Y, Zhao N, Zhang Q. Neuroprotective and Functional Improvement Effects of Methylene Blue in Global Cerebral Ischemia. Mol Neurobiol 2015; 53:5344-55. [PMID: 26433378 DOI: 10.1007/s12035-015-9455-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/25/2015] [Indexed: 11/25/2022]
Abstract
Transient global cerebral ischemia (GCI) causes delayed neuronal cell death in the vulnerable hippocampus CA1 subfield, as well as behavioral deficits. Ischemia reperfusion (I/R) produces excessive reactive oxygen species and plays a key role in brain injury. The mitochondrial electron respiratory chain is the main cellular source of free radical generation, and dysfunction of mitochondria has a significant impact on the neuronal cell death in ischemic brain. The aim of the present study is to investigate the potential beneficial effects of methylene blue (MB) in a four-vessel occlusion (4VO) GCI model on adult male rats. MB was delivered at a dose of 0.5 mg/kg/day for 7 days, through a mini-pump implanted subcutaneously after GCI. We first found that MB significantly improved ischemic neuronal survival in the hippocampal CA1 region as measured by cresyl violet staining as well as NeuN staining. We also found that MB has the ability to rescue ischemia-induced decreases of cytochrome c oxidase activity and ATP generation in the CA1 region following I/R. Further analysis with labeling of MitoTracker® Red revealed that the depolarization of mitochondrial membrane potential (MMP) was markedly attenuated following MB treatment. In addition, the induction of caspase-3, caspase-8, and caspase-9 activities and the increased numbers of TUNEL-positive cells of the CA1 region were significantly reduced by MB application. Correspondingly, Barnes maze tests showed that the deterioration of spatial learning and memory performance following GCI was significantly improved in the MB-treatment group compared to the ischemic control group. In summary, our study suggests that MB may be a promising therapeutic agent targeting neuronal cell death and cognitive deficits following transient global cerebral ischemia.
Collapse
Affiliation(s)
- Qing Lu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regent University, 1120 15th Street, CA3050, Augusta, GA, 30912, USA
| | - Donovan Tucker
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regent University, 1120 15th Street, CA3050, Augusta, GA, 30912, USA
| | - Yan Dong
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regent University, 1120 15th Street, CA3050, Augusta, GA, 30912, USA
| | - Ningjun Zhao
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regent University, 1120 15th Street, CA3050, Augusta, GA, 30912, USA
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regent University, 1120 15th Street, CA3050, Augusta, GA, 30912, USA.
| |
Collapse
|
55
|
Meng S, Su Z, Liu Z, Wang N, Wang Z. Rac1 contributes to cerebral ischemia reperfusion-induced injury in mice by regulation of Notch2. Neuroscience 2015; 306:100-14. [DOI: 10.1016/j.neuroscience.2015.08.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 07/07/2015] [Accepted: 08/06/2015] [Indexed: 11/16/2022]
|
56
|
Altenhöfer S, Radermacher KA, Kleikers PWM, Wingler K, Schmidt HHHW. Evolution of NADPH Oxidase Inhibitors: Selectivity and Mechanisms for Target Engagement. Antioxid Redox Signal 2015; 23:406-27. [PMID: 24383718 PMCID: PMC4543484 DOI: 10.1089/ars.2013.5814] [Citation(s) in RCA: 388] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Oxidative stress, an excess of reactive oxygen species (ROS) production versus consumption, may be involved in the pathogenesis of different diseases. The only known enzymes solely dedicated to ROS generation are nicotinamide adenine dinucleotide phosphate (NADPH) oxidases with their catalytic subunits (NOX). After the clinical failure of most antioxidant trials, NOX inhibitors are the most promising therapeutic option for diseases associated with oxidative stress. RECENT ADVANCES Historical NADPH oxidase inhibitors, apocynin and diphenylene iodonium, are un-specific and not isoform selective. Novel NOX inhibitors stemming from rational drug discovery approaches, for example, GKT137831, ML171, and VAS2870, show improved specificity for NADPH oxidases and moderate NOX isoform selectivity. Along with NOX2 docking sequence (NOX2ds)-tat, a peptide-based inhibitor, the use of these novel small molecules in animal models has provided preliminary in vivo evidence for a pathophysiological role of specific NOX isoforms. CRITICAL ISSUES Here, we discuss whether novel NOX inhibitors enable reliable validation of NOX isoforms' pathological roles and whether this knowledge supports translation into pharmacological applications. Modern NOX inhibitors have increased the evidence for pathophysiological roles of NADPH oxidases. However, in comparison to knockout mouse models, NOX inhibitors have limited isoform selectivity. Thus, their use does not enable clear statements on the involvement of individual NOX isoforms in a given disease. FUTURE DIRECTIONS The development of isoform-selective NOX inhibitors and biologicals will enable reliable validation of specific NOX isoforms in disease models other than the mouse. Finally, GKT137831, the first NOX inhibitor in clinical development, is poised to provide proof of principle for the clinical potential of NOX inhibition.
Collapse
Affiliation(s)
- Sebastian Altenhöfer
- Department of Pharmacology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University , Maastricht, the Netherlands
| | - Kim A Radermacher
- Department of Pharmacology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University , Maastricht, the Netherlands
| | - Pamela W M Kleikers
- Department of Pharmacology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University , Maastricht, the Netherlands
| | - Kirstin Wingler
- Department of Pharmacology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University , Maastricht, the Netherlands
| | - Harald H H W Schmidt
- Department of Pharmacology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University , Maastricht, the Netherlands
| |
Collapse
|
57
|
Luca M, Luca A, Calandra C. The Role of Oxidative Damage in the Pathogenesis and Progression of Alzheimer's Disease and Vascular Dementia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:504678. [PMID: 26301043 PMCID: PMC4537746 DOI: 10.1155/2015/504678] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 04/08/2015] [Indexed: 01/12/2023]
Abstract
Oxidative stress (OS) has been demonstrated to be involved in the pathogenesis of the two major types of dementia: Alzheimer's disease (AD) and vascular dementia (VaD). Evidence of OS and OS-related damage in AD is largely reported in the literature. Moreover, OS is not only linked to VaD, but also to all its risk factors. Several researches have been conducted in order to investigate whether antioxidant therapy exerts a role in the prevention and treatment of AD and VaD. Another research field is that pertaining to the heat shock proteins (Hsps), that has provided promising findings. However, the role of OS antioxidant defence system and more generally stress responses is very complex. Hence, research on this topic should be improved in order to reach further knowledge and discover new therapeutic strategies to face a disorder with such a high burden which is dementia.
Collapse
Affiliation(s)
- Maria Luca
- Psychiatry Unit, Department of Medical and Surgical Sciences and Advanced Technologies, University Hospital Policlinico-Vittorio Emanuele, Santa Sofia Street 78, Catania, 95100 Sicily, Italy
| | - Antonina Luca
- Department of “G.F. Ingrassia”, University Hospital Policlinico-Vittorio Emanuele, Santa Sofia Street 78, Catania, 95100 Sicily, Italy
| | - Carmela Calandra
- Psychiatry Unit, Department of Medical and Surgical Sciences and Advanced Technologies, University Hospital Policlinico-Vittorio Emanuele, Santa Sofia Street 78, Catania, 95100 Sicily, Italy
| |
Collapse
|
58
|
Gong J, Li ZZ, Guo S, Zhang XJ, Zhang P, Zhao GN, Gao L, Zhang Y, Zheng A, Zhang XF, Xiang M, Li H. Neuron-Specific Tumor Necrosis Factor Receptor-Associated Factor 3 Is a Central Regulator of Neuronal Death in Acute Ischemic Stroke. Hypertension 2015; 66:604-16. [PMID: 26269654 DOI: 10.1161/hypertensionaha.115.05430] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 06/05/2015] [Indexed: 12/30/2022]
Abstract
Neuronal death after ischemic stroke involves multiple pathophysiological events, as well as a complex molecular mechanism. Inhibiting a single therapeutic target that is involved in several ischemic signaling cascades may be a promising strategy for stroke management. Here, we report the versatile biological roles of tumor necrosis factor receptor-associated factor 3 (TRAF3) in ischemic stroke. Using several genetically manipulated mouse strains, we also demonstrated that TRAF3 inhibition can be neuroprotective. TRAF3 expression, which is robustly induced in response to ischemia/reperfusion (I/R) injury, was detected in neurons. Overexpression of TRAF3 in neurons led to aggravated neuronal loss and enlarged infarcts; these effects were reversed in TRAF3-knockout mice. Neuronal TRAF3 also contributed to c-Jun kinase-, nuclear factor κB- and Rac-1-induced neuronal death, inflammation, and oxidative stress. Mechanistically, we showed that TRAF3 interacts with transforming growth factor-β-activated kinase 1 (TAK1) and potentiates phosphorylation and activation of TAK1. Phosphorylated TAK1 sequentially initiated activation of nuclear factor κB, Rac-1/NADPH oxidase, and c-Jun kinase/c-Jun signaling cascades. Using a combination of adenoviruses encoding dominant-negative TAK1 and the TAK1 inhibitor 5Z-7-oxozeaenol, we demonstrated that the TRAF3-mediated activation of ischemic cascades was TAK1-dependent. More importantly, the adverse phenotypes observed in TRAF3-overexpressing mice were completely reversed when the TRAF3-TAK1 interaction was prevented. Therefore, we have shown that TRAF3 is a central regulator of ischemic pathways, including nuclear factor κB, Rac-1, and c-Jun kinase signaling, via its interaction with and activation of TAK1. Furthermore, certain components of the TRAF3-TAK1 signaling pathway are potentially promising therapeutic targets in ischemic stroke.
Collapse
Affiliation(s)
- Jun Gong
- From the Department of Cardiology, Renmin Hospital (J.G., S.G., X.-J.Z., P.Z., G.-N.Z., Y.Z., A.Z., M.X., H.L.), Animal Experiment Center/Animal Biosafety Level-III Laboratory (J.G., S.G., X.-J.Z., P.Z., G.-N.Z., Y.Z., A.Z., M.X., H.L.), and College of Life Sciences (X.-F.Z.), Wuhan University, Wuhan, China; Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (Z.-Z.L.); National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (Z.-Z.L.); and Department of Cardiology, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (L.G.)
| | - Zuo-Zhi Li
- From the Department of Cardiology, Renmin Hospital (J.G., S.G., X.-J.Z., P.Z., G.-N.Z., Y.Z., A.Z., M.X., H.L.), Animal Experiment Center/Animal Biosafety Level-III Laboratory (J.G., S.G., X.-J.Z., P.Z., G.-N.Z., Y.Z., A.Z., M.X., H.L.), and College of Life Sciences (X.-F.Z.), Wuhan University, Wuhan, China; Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (Z.-Z.L.); National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (Z.-Z.L.); and Department of Cardiology, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (L.G.)
| | - Sen Guo
- From the Department of Cardiology, Renmin Hospital (J.G., S.G., X.-J.Z., P.Z., G.-N.Z., Y.Z., A.Z., M.X., H.L.), Animal Experiment Center/Animal Biosafety Level-III Laboratory (J.G., S.G., X.-J.Z., P.Z., G.-N.Z., Y.Z., A.Z., M.X., H.L.), and College of Life Sciences (X.-F.Z.), Wuhan University, Wuhan, China; Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (Z.-Z.L.); National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (Z.-Z.L.); and Department of Cardiology, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (L.G.)
| | - Xiao-Jing Zhang
- From the Department of Cardiology, Renmin Hospital (J.G., S.G., X.-J.Z., P.Z., G.-N.Z., Y.Z., A.Z., M.X., H.L.), Animal Experiment Center/Animal Biosafety Level-III Laboratory (J.G., S.G., X.-J.Z., P.Z., G.-N.Z., Y.Z., A.Z., M.X., H.L.), and College of Life Sciences (X.-F.Z.), Wuhan University, Wuhan, China; Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (Z.-Z.L.); National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (Z.-Z.L.); and Department of Cardiology, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (L.G.)
| | - Peng Zhang
- From the Department of Cardiology, Renmin Hospital (J.G., S.G., X.-J.Z., P.Z., G.-N.Z., Y.Z., A.Z., M.X., H.L.), Animal Experiment Center/Animal Biosafety Level-III Laboratory (J.G., S.G., X.-J.Z., P.Z., G.-N.Z., Y.Z., A.Z., M.X., H.L.), and College of Life Sciences (X.-F.Z.), Wuhan University, Wuhan, China; Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (Z.-Z.L.); National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (Z.-Z.L.); and Department of Cardiology, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (L.G.)
| | - Guang-Nian Zhao
- From the Department of Cardiology, Renmin Hospital (J.G., S.G., X.-J.Z., P.Z., G.-N.Z., Y.Z., A.Z., M.X., H.L.), Animal Experiment Center/Animal Biosafety Level-III Laboratory (J.G., S.G., X.-J.Z., P.Z., G.-N.Z., Y.Z., A.Z., M.X., H.L.), and College of Life Sciences (X.-F.Z.), Wuhan University, Wuhan, China; Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (Z.-Z.L.); National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (Z.-Z.L.); and Department of Cardiology, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (L.G.)
| | - Lu Gao
- From the Department of Cardiology, Renmin Hospital (J.G., S.G., X.-J.Z., P.Z., G.-N.Z., Y.Z., A.Z., M.X., H.L.), Animal Experiment Center/Animal Biosafety Level-III Laboratory (J.G., S.G., X.-J.Z., P.Z., G.-N.Z., Y.Z., A.Z., M.X., H.L.), and College of Life Sciences (X.-F.Z.), Wuhan University, Wuhan, China; Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (Z.-Z.L.); National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (Z.-Z.L.); and Department of Cardiology, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (L.G.)
| | - Yan Zhang
- From the Department of Cardiology, Renmin Hospital (J.G., S.G., X.-J.Z., P.Z., G.-N.Z., Y.Z., A.Z., M.X., H.L.), Animal Experiment Center/Animal Biosafety Level-III Laboratory (J.G., S.G., X.-J.Z., P.Z., G.-N.Z., Y.Z., A.Z., M.X., H.L.), and College of Life Sciences (X.-F.Z.), Wuhan University, Wuhan, China; Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (Z.-Z.L.); National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (Z.-Z.L.); and Department of Cardiology, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (L.G.)
| | - Ankang Zheng
- From the Department of Cardiology, Renmin Hospital (J.G., S.G., X.-J.Z., P.Z., G.-N.Z., Y.Z., A.Z., M.X., H.L.), Animal Experiment Center/Animal Biosafety Level-III Laboratory (J.G., S.G., X.-J.Z., P.Z., G.-N.Z., Y.Z., A.Z., M.X., H.L.), and College of Life Sciences (X.-F.Z.), Wuhan University, Wuhan, China; Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (Z.-Z.L.); National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (Z.-Z.L.); and Department of Cardiology, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (L.G.)
| | - Xiao-Fei Zhang
- From the Department of Cardiology, Renmin Hospital (J.G., S.G., X.-J.Z., P.Z., G.-N.Z., Y.Z., A.Z., M.X., H.L.), Animal Experiment Center/Animal Biosafety Level-III Laboratory (J.G., S.G., X.-J.Z., P.Z., G.-N.Z., Y.Z., A.Z., M.X., H.L.), and College of Life Sciences (X.-F.Z.), Wuhan University, Wuhan, China; Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (Z.-Z.L.); National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (Z.-Z.L.); and Department of Cardiology, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (L.G.)
| | - Mei Xiang
- From the Department of Cardiology, Renmin Hospital (J.G., S.G., X.-J.Z., P.Z., G.-N.Z., Y.Z., A.Z., M.X., H.L.), Animal Experiment Center/Animal Biosafety Level-III Laboratory (J.G., S.G., X.-J.Z., P.Z., G.-N.Z., Y.Z., A.Z., M.X., H.L.), and College of Life Sciences (X.-F.Z.), Wuhan University, Wuhan, China; Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (Z.-Z.L.); National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (Z.-Z.L.); and Department of Cardiology, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (L.G.)
| | - Hongliang Li
- From the Department of Cardiology, Renmin Hospital (J.G., S.G., X.-J.Z., P.Z., G.-N.Z., Y.Z., A.Z., M.X., H.L.), Animal Experiment Center/Animal Biosafety Level-III Laboratory (J.G., S.G., X.-J.Z., P.Z., G.-N.Z., Y.Z., A.Z., M.X., H.L.), and College of Life Sciences (X.-F.Z.), Wuhan University, Wuhan, China; Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (Z.-Z.L.); National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (Z.-Z.L.); and Department of Cardiology, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (L.G.).
| |
Collapse
|
59
|
Tejada-Simon MV. Modulation of actin dynamics by Rac1 to target cognitive function. J Neurochem 2015; 133:767-79. [PMID: 25818528 DOI: 10.1111/jnc.13100] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 03/11/2015] [Accepted: 03/14/2015] [Indexed: 12/14/2022]
Abstract
The small GTPase Rac1 is well known for regulating actin cytoskeleton reorganization in cells. Formation of extensions at the surface of the cell is required for migration and even for cell invasion and metastases. Because an elevated level and hyperactivation of this protein has been associated with metastasis in cancer, direct regulators of Rac1 are currently envisioned as a potential strategy to treat certain cancers. Less research, however, has been done regarding the role of this small GTP-binding protein in brain development, where it has an important role in dendritic spine morphogenesis through the regulation of actin. Alteration of dendritic development and spinogenesis has been often associated with mental disorders. Rac1 is associated with and required for learning and the formation of memories in the brain. Rac1 appears to be dysregulated in certain neurodevelopmental disorders that present all these three alterations: mental retardation, atypical synaptic plasticity and aberrant spine morphology. Thus, to develop novel therapies for rescuing cognitive impairment, a reasonable approach might be to target this protein, Rac1, which plays a pivotal role in directing signals that regulate actin dynamics, which in turn might have an effect in spine cytoarchitecture and synaptic function. It is possible that novel drugs that regulate Rac1 activation and function could modulate actin cytoskeleton and spine dynamics, representing potential candidates to repair intellectual disability in disorders associated with spine abnormalities. Herein, we present a list of the current Rac1 inhibitors that might fulfill this role together with a summary of the latest findings concerning their function as they relate to neuronal studies. While the small GTPase Rac1 is well known for regulating actin cytoskeleton reorganization in different type of cells, it appears to be also required for learning and the formation of memories in the brain. Abnormal regulation of this protein has been associated with cognitive disabilities, atypical synaptic plasticity and abnormal morphology of dendritic spines in certain neurodevelopmental disorders. Thus, modulation of Rac1 activity using novel inhibitors might be a strategy to reestablish cognitive function.
Collapse
Affiliation(s)
- Maria V Tejada-Simon
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, Texas, USA.,Department of Biology, University of Houston, Houston, Texas, USA.,Department of Psychology, University of Houston, Houston, Texas, USA.,Biology of Behavior Institute (BoBI), University of Houston, Houston, Texas, USA
| |
Collapse
|
60
|
Romanini CV, Ferreira EDF, Soares LM, Santiago AN, Milani H, de Oliveira RMW. 4-hydroxy-3-methoxy-acetophenone-mediated long-lasting memory recovery, hippocampal neuroprotection, and reduction of glial cell activation after transient global cerebral ischemia in rats. J Neurosci Res 2015; 93:1240-9. [DOI: 10.1002/jnr.23575] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 12/31/2014] [Accepted: 01/22/2015] [Indexed: 12/17/2022]
Affiliation(s)
- Cássia Valério Romanini
- Department of Pharmacology and Therapeutics; State University of Maringá; Maringá Paraná Brazil
| | | | - Lígia Mendes Soares
- Department of Pharmacology and Therapeutics; State University of Maringá; Maringá Paraná Brazil
| | - Amanda Nunes Santiago
- Department of Pharmacology and Therapeutics; State University of Maringá; Maringá Paraná Brazil
| | - Humberto Milani
- Department of Pharmacology and Therapeutics; State University of Maringá; Maringá Paraná Brazil
| | | |
Collapse
|
61
|
Schmitz HP, Jendretzki A, Wittland J, Wiechert J, Heinisch JJ. Identification of Dck1 and Lmo1 as upstream regulators of the small GTPase Rho5 inSaccharomyces cerevisiae. Mol Microbiol 2015; 96:306-24. [DOI: 10.1111/mmi.12937] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2015] [Indexed: 12/29/2022]
Affiliation(s)
- Hans-Peter Schmitz
- Faculty of Biology/Chemistry, Department of Genetics Barbarastr. 11; University of Osnabrueck; Osnabrueck D-49076 Germany
| | - Arne Jendretzki
- Faculty of Biology/Chemistry, Department of Genetics Barbarastr. 11; University of Osnabrueck; Osnabrueck D-49076 Germany
| | - Janina Wittland
- Faculty of Biology/Chemistry, Department of Genetics Barbarastr. 11; University of Osnabrueck; Osnabrueck D-49076 Germany
| | - Johanna Wiechert
- Faculty of Biology/Chemistry, Department of Genetics Barbarastr. 11; University of Osnabrueck; Osnabrueck D-49076 Germany
| | - Jürgen J. Heinisch
- Faculty of Biology/Chemistry, Department of Genetics Barbarastr. 11; University of Osnabrueck; Osnabrueck D-49076 Germany
| |
Collapse
|
62
|
Abstract
NMDA receptor signaling plays a complex role in CREB activation and CREB-mediated gene transcription, depending on the subcellular location of NMDA receptors, as well as how strongly they are activated. However, it is not known whether Rac1, the prototype of Rac GTPase, plays a role in neuronal CREB activation induced by NMDA receptor signaling. Here, we report that NSC23766, a widely used specific Rac1 inhibitor, inhibits basal CREB phosphorylation at S133 (pCREB) and antagonizes changes in pCREB levels induced by NMDA bath application in rat cortical neurons. Unexpectedly, we found that NSC23766 affects the levels of neuronal pCREB in a Rac1-independent manner. Instead, our results indicate that NSC23766 can directly regulate NMDA receptors as indicated by their strong effects on both exogenous and synaptically evoked NMDA receptor-mediated currents in mouse and rat neurons, respectively. Our findings strongly suggest that Rac1 does not affect pCREB signaling in cortical neurons and reveal that NSC23766 could be a novel NMDA receptor antagonist.
Collapse
|
63
|
Lee JC, Kim IH, Park JH, Ahn JH, Cho JH, Cho GS, Tae HJ, Chen BH, Yan BC, Yoo KY, Choi JH, Lee CH, Hwang IK, Cho JH, Kwon YG, Kim YM, Won MH. Ischemic preconditioning protects hippocampal pyramidal neurons from transient ischemic injury via the attenuation of oxidative damage through upregulating heme oxygenase-1. Free Radic Biol Med 2015; 79:78-90. [PMID: 25483558 DOI: 10.1016/j.freeradbiomed.2014.11.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 11/05/2014] [Accepted: 11/25/2014] [Indexed: 01/17/2023]
Abstract
Ischemic preconditioning (IPC) provides neuroprotection against subsequent severe ischemic injury by activating specific mechanisms. In this study, we tested the hypothesis that IPC attenuates postischemic neuronal death via heme oxygenase-1 (HO-1). Animals used in this study were randomly assigned to 4 groups; sham-operated group, ischemia-operated group, IPC plus (+) sham-operated group and IPC+ischemia-operated group. IPC was induced by subjecting gerbils to 2min of ischemia followed by 1 day of recovery. A significant loss of neurons was observed in pyramidal neurons of the hippocampal CA1 region (CA1) in the ischemia-operated groups at 5 days postischemia. In the IPC+ischemia-operated groups, CA1 pyramidal neurons were well protected. The level of HO-1 protein and its activity increased significantly in the CA1 of the IPC+sham-operated group, and the level and activity was maintained in all the time after ischemia-reperfusion compared with the ischemia-operated groups. HO-1 immunoreactivity was induced in the CA1 pyramidal neurons in both IPC+sham-operated- and IPC+ischemia-operated groups. We also found that levels or immunoreactivities of superoxide anion, 8-hydroxy-2'-deoxyguanosine and 4-hydroxy-2-nonenal were significantly decreased in the CA1 of both IPC+sham-operated- and IPC+ischemia-operated groups. Whereas, treatment with zinc protoporphyrin IX (a HO-1 inhibitor) into the IPC+ischemia-operated groups did not preserve the IPC-mediated increase of HO-1 and lost beneficial effects of IPC by inhibiting ischemia-induced DNA damage and lipid peroxidation. In brief, IPC protects CA1 pyramidal neurons from ischemic injury by upregulating HO-1, and we suggest that the enhancement of HO-1 expression by IPC may be a legitimate strategy for a therapeutic intervention of cerebral ischemic damage.
Collapse
Affiliation(s)
- Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - In Hye Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - Joon Ha Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - Ji Hyeon Ahn
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - Jeong-Hwi Cho
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - Geum-Sil Cho
- Department of Neuroscience, College of Medicine, Korea University, Seoul 136-705, South Korea
| | - Hyun-Jin Tae
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 200-702, South Korea
| | - Bai Hui Chen
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 200-702, South Korea
| | - Bing Chun Yan
- Institute of Integrative Traditional & Western Medicine & Medical College, Yangzhou University, Yangzhou 225-001, China
| | - Ki-Yeon Yoo
- Department of Oral Anatomy, College of Dentistry, Gangneung-Wonju National University, Gangneung 210-702, South Korea
| | - Jung Hoon Choi
- Department of Anatomy, College of Veterinary Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - Choong Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan 330-714, South Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 151-742, South Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - Young-Guen Kwon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, South Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea.
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea.
| |
Collapse
|
64
|
Brennan-Minnella AM, Won SJ, Swanson RA. NADPH oxidase-2: linking glucose, acidosis, and excitotoxicity in stroke. Antioxid Redox Signal 2015; 22:161-74. [PMID: 24628477 PMCID: PMC4281853 DOI: 10.1089/ars.2013.5767] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Neuronal superoxide production contributes to cell death in both glutamate excitotoxicity and brain ischemia (stroke). NADPH oxidase-2 (NOX2) is the major source of neuronal superoxide production in these settings, and regulation of NOX2 activity can thereby influence outcome in stroke. RECENT ADVANCES Reduced NOX2 activity can rescue cells from oxidative stress and cell death that otherwise occur in excitotoxicity and ischemia. NOX2 activity is regulated by several factors previously shown to affect outcome in stroke, including glucose availability, intracellular pH, protein kinase ζ/δ, casein kinase 2, phosphoinositide-3-kinase, Rac1/2, and phospholipase A2. The newly identified functions of these factors as regulators of NOX2 activity suggest alternative mechanisms for their effects on ischemic brain injury. CRITICAL ISSUES Key aspects of these regulatory influences remain unresolved, including the mechanisms by which rac1 and phospholipase activities are coupled to N-methyl-D-aspartate (NMDA) receptors, and whether superoxide production by NOX2 triggers subsequent superoxide production by mitochondria. FUTURE DIRECTIONS It will be important to establish whether interventions targeting the signaling pathways linking NMDA receptors to NOX2 in brain ischemia can provide a greater neuroprotective efficacy or a longer time window to treatment than provided by NMDA receptor blockade alone. It will likewise be important to determine whether dissociating superoxide production from the other signaling events initiated by NMDA receptors can mitigate the deleterious effects of NMDA receptor blockade.
Collapse
|
65
|
Zhao Y, Xiao M, He W, Cai Z. Minocycline upregulates cyclic AMP response element binding protein and brain-derived neurotrophic factor in the hippocampus of cerebral ischemia rats and improves behavioral deficits. Neuropsychiatr Dis Treat 2015; 11:507-16. [PMID: 25750531 PMCID: PMC4348135 DOI: 10.2147/ndt.s73836] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND AND PURPOSE The cAMP response element binding protein (CREB) plays an important role in the mechanism of cognitive impairment and is also pivotal in the switch from short-term to long-term memory. Brain-derived neurotrophic factor (BDNF) seems a promising avenue in the treatment of cerebral ischemia injury since this neurotrophin could stimulate structural plasticity and repair cognitive impairment. Several findings have displayed that the dysregulation of the CREB-BDNF cascade has been involved in cognitive impairment. The aim of this study was to investigate the effect of cerebral ischemia on learning and memory as well as on the levels of CREB, phosphorylated CREB (pCREB), and BDNF, and to determine the effect of minocycline on CREB, pCREB, BDNF, and behavioral functional recovery after cerebral ischemia. METHODS The animal model was established by permanent bilateral occlusion of both common carotid arteries. Behavior was evaluated 5 days before decapitation with Morris water maze and open-field task. Four days after permanent bilateral occlusion of both common carotid arteries, minocycline was administered by douche via the stomach for 4 weeks. CREB and pCREB were examined by Western blotting, reverse transcription polymerase chain reaction, and immunohistochemistry. BDNF was measured by immunohistochemistry and Western blotting. RESULTS The model rats after minocycline treatment swam shorter distances than control rats before finding the platform (P=0.0007). The number of times the platform position was crossed for sham-operation rats was more than that of the model groups in the corresponding platform location (P=0.0021). The number of times the platform position was crossed for minocycline treatment animals was significantly increased compared to the model groups in the corresponding platform position (P=0.0016). CREB, pCREB, and BDNF were downregulated after permanent bilateral occlusion of both common carotid arteries in the model group. Minocycline increased the expression of CREB, pCREB, and BDNF, and improved cognitive suffered from impairment of permanent bilateral occlusion of both common carotid arteries. CONCLUSION Minocycline improved cognitive impairment from cerebral ischemia via enhancing CREB, pCREB, and BDNF activity in the hippocampus.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Neurology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Ming Xiao
- Department of Anatomy, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Wenbo He
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan Renmin Hospital, Shiyan, Hubei Province, People's Republic of China
| | - Zhiyou Cai
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan Renmin Hospital, Shiyan, Hubei Province, People's Republic of China
| |
Collapse
|
66
|
Differential Tiam1/Rac1 activation in hippocampal and cortical neurons mediates differential spine shrinkage in response to oxygen/glucose deprivation. J Cereb Blood Flow Metab 2014; 34:1898-906. [PMID: 25248834 PMCID: PMC4269742 DOI: 10.1038/jcbfm.2014.158] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 08/18/2014] [Accepted: 08/20/2014] [Indexed: 01/09/2023]
Abstract
Distinct neuronal populations show differential sensitivity to global ischemia, with hippocampal CA1 neurons showing greater vulnerability compared to cortical neurons. The mechanisms that underlie differential vulnerability are unclear, and we hypothesize that intrinsic differences in neuronal cell biology are involved. Dendritic spine morphology changes in response to ischemic insults in vivo, but cell type-specific differences and the molecular mechanisms leading to such morphologic changes are unexplored. To directly compare changes in spine size in response to oxygen/glucose deprivation (OGD) in cortical and hippocampal neurons, we used separate and equivalent cultures of each cell type. We show that cortical neurons exhibit significantly greater spine shrinkage compared to hippocampal neurons. Rac1 is a Rho-family GTPase that regulates the actin cytoskeleton and is involved in spine dynamics. We show that Rac1 and the Rac guanine nucleotide exchange factor (GEF) Tiam1 are differentially activated by OGD in hippocampal and cortical neurons. Hippocampal neurons express more Tiam1 than cortical neurons, and reducing Tiam1 expression in hippocampal neurons by shRNA enhances OGD-induced spine shrinkage. Tiam1 knockdown also reduces hippocampal neuronal vulnerability to OGD. This work defines fundamental differences in signalling pathways that regulate spine morphology in distinct neuronal populations that may have a role in the differential vulnerability to ischemia.
Collapse
|
67
|
Gao G, Wang W, Tadagavadi RK, Briley NE, Love MI, Miller BA, Reeves WB. TRPM2 mediates ischemic kidney injury and oxidant stress through RAC1. J Clin Invest 2014; 124:4989-5001. [PMID: 25295536 DOI: 10.1172/jci76042] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 09/04/2014] [Indexed: 02/06/2023] Open
Abstract
Ischemia is a leading cause of acute kidney injury. Kidney ischemia is associated with loss of cellular ion homeostasis; however, the pathways that underlie ion homeostasis dysfunction are poorly understood. Here, we evaluated the nonselective cation channel transient receptor potential melastatin 2 (TRPM2) in a murine model of kidney ischemia/reperfusion (I/R) injury. TRPM2-deficient mice were resistant to ischemic injury, as reflected by improved kidney function, reduced histologic damage, suppression of proapoptotic pathways, and reduced inflammation. Moreover, pharmacologic TRPM2 inhibition was also protective against I/R injury. TRPM2 was localized mainly in kidney proximal tubule epithelial cells, and studies in chimeric mice indicated that the effects of TRPM2 are due to expression in parenchymal cells rather than hematopoietic cells. TRPM2-deficient mice had less oxidative stress and lower levels of NADPH oxidase activity after ischemia. While RAC1 is a component of the NADPH oxidase complex, its relation to TRPM2 and kidney ischemic injury is unknown. Following kidney ischemia, TRPM2 promoted RAC1 activation, with active RAC1 physically interacting with TRPM2 and increasing TRPM2 expression at the cell membrane. Finally, inhibition of RAC1 reduced oxidant stress and ischemic injury in vivo. These results demonstrate that TRPM2-dependent RAC1 activation increases oxidant stress and suggest that therapeutic approaches targeting TRPM2 and/or RAC1 may be effective in reducing ischemic kidney injury.
Collapse
|
68
|
Stankiewicz TR, Linseman DA. Rho family GTPases: key players in neuronal development, neuronal survival, and neurodegeneration. Front Cell Neurosci 2014; 8:314. [PMID: 25339865 PMCID: PMC4187614 DOI: 10.3389/fncel.2014.00314] [Citation(s) in RCA: 281] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 09/18/2014] [Indexed: 12/11/2022] Open
Abstract
The Rho family of GTPases belongs to the Ras superfamily of low molecular weight (∼21 kDa) guanine nucleotide binding proteins. The most extensively studied members are RhoA, Rac1, and Cdc42. In the last few decades, studies have demonstrated that Rho family GTPases are important regulatory molecules that link surface receptors to the organization of the actin and microtubule cytoskeletons. Indeed, Rho GTPases mediate many diverse critical cellular processes, such as gene transcription, cell–cell adhesion, and cell cycle progression. However, Rho GTPases also play an essential role in regulating neuronal morphology. In particular, Rho GTPases regulate dendritic arborization, spine morphogenesis, growth cone development, and axon guidance. In addition, more recent efforts have underscored an important function for Rho GTPases in regulating neuronal survival and death. Interestingly, Rho GTPases can exert either a pro-survival or pro-death signal in neurons depending upon both the cell type and neurotoxic insult involved. This review summarizes key findings delineating the involvement of Rho GTPases and their effectors in the regulation of neuronal survival and death. Collectively, these results suggest that dysregulation of Rho family GTPases may potentially underscore the etiology of some forms of neurodegenerative disease such as amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Trisha R Stankiewicz
- Research Service, Veterans Affairs Medical Center Denver, CO, USA ; Department of Biological Sciences and Eleanor Roosevelt Institute, University of Denver Denver, CO, USA
| | - Daniel A Linseman
- Research Service, Veterans Affairs Medical Center Denver, CO, USA ; Department of Biological Sciences and Eleanor Roosevelt Institute, University of Denver Denver, CO, USA ; Division of Clinical Pharmacology and Toxicology, Department of Medicine and Neuroscience Program, University of Colorado Denver Aurora, CO, USA
| |
Collapse
|
69
|
Delayed treatment with NSC23766 in streptozotocin-induced diabetic rats ameliorates post-ischemic neuronal apoptosis through suppression of mitochondrial p53 translocation. Neuropharmacology 2014; 85:508-16. [DOI: 10.1016/j.neuropharm.2014.06.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 06/03/2014] [Accepted: 06/05/2014] [Indexed: 11/19/2022]
|
70
|
Meilin S, Machicao F, Elmlinger M. Treatment with Actovegin improves spatial learning and memory in rats following transient forebrain ischaemia. J Cell Mol Med 2014; 18:1623-30. [PMID: 24797227 PMCID: PMC4190908 DOI: 10.1111/jcmm.12297] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 03/12/2014] [Indexed: 01/02/2023] Open
Abstract
This study aimed to investigate whether Actovegin, which is a deproteinized ultrafiltrate derived from calf blood, demonstrates neuroprotective effects in a rat model of transient global cerebral ischaemia. Forty Sprague Dawley rats were subjected to four-vessel occlusion to induce transient global cerebral ischaemia followed by either saline or Actovegin treatment. Sham operations were performed on 15 rats. Actovegin (200 mg/kg) or saline was administered 6 hrs after carotid artery occlusion and then daily until Day 40. Learning and memory were evaluated using the Morris water maze test over two different 5-day periods, and grip strength testing was also performed to control for potential motor impairments. Rat brains were harvested for histological analysis on Day 68. In comparison to controls, Actovegin-treated rats exhibited a decreased latency to reach the hidden platform on the second learning trial of water maze testing (46.82 ± 6.18 versus 27.64 ± 4.53 sec., P < 0.05; 38.3 ± 8.23 versus 13.37 ± 2.73 sec., P < 0.01 for the first and second 5-day testing periods, respectively). In addition, Actovegin-treated rats spent more time in the platform quadrant than saline-treated rats during memory trials (P < 0.05). No differences in grip strength were detected. Histological analyses demonstrated increased cell survival in the CA1 region of the hippocampus following Actovegin treatment (left hemisphere, 166 ± 50 versus 332 ± 27 cells, P < 0.05; right hemisphere, 170 ± 45 versus 307 ± 28 cells, P < 0.05, in saline- versus Actovegin-treated rats, respectively). In rats, Actovegin treatment improves spatial learning and memory following cerebral ischaemia, which may be related to hippocampal CA1 neuroprotection.
Collapse
Affiliation(s)
- Sigal Meilin
- Neurology Service, MD Biosciences Ltd, Nes-Ziona, Israel
| | | | | |
Collapse
|
71
|
Non-muscle myosin II regulates neuronal actin dynamics by interacting with guanine nucleotide exchange factors. PLoS One 2014; 9:e95212. [PMID: 24752242 PMCID: PMC3994028 DOI: 10.1371/journal.pone.0095212] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 03/25/2014] [Indexed: 11/24/2022] Open
Abstract
Background Non-muscle myosin II (NM II) regulates a wide range of cellular functions, including neuronal differentiation, which requires precise spatio-temporal activation of Rho GTPases. The molecular mechanism underlying the NM II-mediated activation of Rho GTPases is poorly understood. The present study explored the possibility that NM II regulates neuronal differentiation, particularly morphological changes in growth cones and the distal axon, through guanine nucleotide exchange factors (GEFs) of the Dbl family. Principal Findings NM II colocalized with GEFs, such as βPIX, kalirin and intersectin, in growth cones. Inactivation of NM II by blebbistatin (BBS) led to the increased formation of short and thick filopodial actin structures at the periphery of growth cones. In line with these observations, FRET analysis revealed enhanced Cdc42 activity in BBS-treated growth cones. BBS treatment also induced aberrant targeting of various GEFs to the distal axon where GEFs were seldom observed under physiological conditions. As a result, numerous protrusions and branches were generated on the shaft of the distal axon. The disruption of the NM II–GEF interactions by overexpression of the DH domains of βPIX or Tiam1, or by βPIX depletion with specific siRNAs inhibited growth cone formation and induced slender axons concomitant with multiple branches in cultured hippocampal neurons. Finally, stimulation with nerve growth factor induced transient dissociation of the NM II–GEF complex, which was closely correlated with the kinetics of Cdc42 and Rac1 activation. Conclusion Our results suggest that NM II maintains proper morphology of neuronal growth cones and the distal axon by regulating actin dynamics through the GEF–Rho GTPase signaling pathway.
Collapse
|
72
|
Travaglione S, Loizzo S, Ballan G, Fiorentini C, Fabbri A. The E. coli CNF1 as a pioneering therapy for the central nervous system diseases. Toxins (Basel) 2014; 6:270-82. [PMID: 24402235 PMCID: PMC3920261 DOI: 10.3390/toxins6010270] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/17/2013] [Accepted: 12/31/2013] [Indexed: 01/24/2023] Open
Abstract
The Cytotoxic Necrotizing Factor 1 (CNF1), a protein toxin from pathogenic E. coli, modulates the Rho GTPases, thus, directing the organization of the actin cytoskeleton. In the nervous system, the Rho GTPases play a key role in several processes, controlling the morphogenesis of dendritic spines and synaptic plasticity in brain tissues. This review is focused on the peculiar property of CNF1 to enhance brain plasticity in in vivo animal models of central nervous system (CNS) diseases, and on its possible application in therapy.
Collapse
Affiliation(s)
- Sara Travaglione
- Department of Therapeutic Research and Medicines Evaluation, Superior Health Institute, viale Regina Elena 299, Rome 00161, Italy.
| | - Stefano Loizzo
- Department of Therapeutic Research and Medicines Evaluation, Superior Health Institute, viale Regina Elena 299, Rome 00161, Italy.
| | - Giulia Ballan
- Department of Therapeutic Research and Medicines Evaluation, Superior Health Institute, viale Regina Elena 299, Rome 00161, Italy.
| | - Carla Fiorentini
- Department of Therapeutic Research and Medicines Evaluation, Superior Health Institute, viale Regina Elena 299, Rome 00161, Italy.
| | - Alessia Fabbri
- Department of Therapeutic Research and Medicines Evaluation, Superior Health Institute, viale Regina Elena 299, Rome 00161, Italy.
| |
Collapse
|
73
|
Pal R, Monroe TO, Palmieri M, Sardiello M, Rodney GG. Rotenone induces neurotoxicity through Rac1-dependent activation of NADPH oxidase in SHSY-5Y cells. FEBS Lett 2013; 588:472-81. [PMID: 24374334 DOI: 10.1016/j.febslet.2013.12.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 12/17/2013] [Indexed: 12/31/2022]
Abstract
Neurodegenerative diseases are attributed to impairment of the ubiquitin-proteasome system (UPS). Oxidative stress has been considered a contributing factor in the pathology of impaired UPS by promoting protein misfolding and subsequent protein aggregate formation. Increasing evidence suggests that NADPH oxidase is a likely source of excessive oxidative stress in neurodegenerative disorders. However, the mechanism of activation and its role in impaired UPS is not understood. We show that activation of NADPH oxidase in a neuroblastoma cell line (SHSY-5Y) resulted in increased oxidative and nitrosative stress, elevated cytosolic calcium, ER-stress, impaired UPS, and apoptosis. Rac1 inhibition mitigated the oxidative/nitrosative stress, prevented calcium-dependent ER-stress, and partially rescued UPS function. These findings demonstrate that Rac1 and NADPH oxidase play an important role in rotenone neurotoxicity.
Collapse
Affiliation(s)
- Rituraj Pal
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Tanner O Monroe
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Michela Palmieri
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Marco Sardiello
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - George G Rodney
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
74
|
Wu JS, Tsai HD, Huang CY, Chen JJ, Lin TN. 15-Deoxy-∆12,14-PGJ 2, by activating peroxisome proliferator-activated receptor-gamma, suppresses p22phox transcription to protect brain endothelial cells against hypoxia-induced apoptosis. Mol Neurobiol 2013; 50:221-38. [PMID: 24352801 DOI: 10.1007/s12035-013-8600-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 11/26/2013] [Indexed: 10/25/2022]
Abstract
15-Deoxy-∆(12,14)-PGJ(2) (15d-PGJ(2)) and thiazolidinedione attenuate reactive oxygen species (ROS) production via a peroxisome proliferator-activated receptor-gamma (PPAR-γ)-dependent pathway. Nonetheless, how PPAR-γ mediates ROS production to ameliorate ischemic brain injury is not clear. Recent studies indicated that nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is the major source of ROS in the vascular system. In the present study, we used an in vitro oxygen-glucose deprivation and reoxygenation (hypoxia reoxygenation [HR]) paradigm to study whether PPAR-γ interacts with NADPH oxidase, thereby regulating ROS formation in cerebral endothelial cells (CECs). With pharmacological (PPAR-γ antagonist GW9662), loss-of-function (PPAR-γ siRNA), and gain-of-function (Ad-PPAR-γ) approaches, we first demonstrated that 15d-PGJ(2) protected HR-treated CECs against ROS-induced apoptosis in a PPAR-γ-dependent manner. Results of promoter and subcellular localization analyses further revealed that 15d-PGJ(2), by activating PPAR-γ, blocked HR-induced NF-κB nuclear translocation, which led to inhibited transcription of the NADPH oxidase subunit p22phox. In summary, we report a novel transrepression mechanism whereby PPAR-γ downregulates hypoxia-activated p22phox transcription and the subsequent NADPH oxidase activation, ROS formation, and CEC apoptosis.
Collapse
Affiliation(s)
- Jui-Sheng Wu
- Institute of Biomedical Sciences, Academia Sinica, Rm 404, Taipei, 11529, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
75
|
Electroacupuncture Ameliorates Learning and Memory via Activation of the CREB Signaling Pathway in the Hippocampus to Attenuate Apoptosis after Cerebral Hypoperfusion. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:156489. [PMID: 24228057 PMCID: PMC3817932 DOI: 10.1155/2013/156489] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 09/02/2013] [Accepted: 09/09/2013] [Indexed: 02/05/2023]
Abstract
Studies have shown that electroacupuncture (EA) ameliorates learning and memory after ischemic injury. However, there have been few studies elucidating the mechanisms of EA on learning and memory in cerebral hypoperfusion. In this study, we explored the cAMP response element-binding protein (CREB) signaling pathway-mediated antiapoptotic action involved in EA-induced improvement of learning and memory. EA at GV20 and GV14 acupoints was applied in cerebral hypoperfusion rats. A Morris water maze task was performed, and the immunoreactivities of pCREB, Bcl-2, and Bax in the hippocampal CA1 area were evaluated by the Western blotting technique. Our findings indicated that (1) EA ameliorated spatial learning and memory impairment in cerebral hypoperfusion rats; (2) EA increased the immunoreactivities of pCREB and Bcl-2 and decreased the immunoreactivity of Bax; (3) intracerebroventricular administration of H89 (the inhibitor of protein kinase A) blocked EA-induced, pCREB-mediated antiapoptotic action and improved learning and memory. These results suggest that EA can ameliorate learning and memory via activation of the CREB signaling pathway in the hippocampus to attenuate apoptosis after cerebral hypoperfusion.
Collapse
|
76
|
Wang R, Tu J, Zhang Q, Zhang X, Zhu Y, Ma W, Cheng C, Brann DW, Yang F. Genistein attenuates ischemic oxidative damage and behavioral deficits via eNOS/Nrf2/HO-1 signaling. Hippocampus 2013; 23:634-47. [PMID: 23536494 DOI: 10.1002/hipo.22126] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2013] [Indexed: 11/06/2022]
Abstract
Global cerebral ischemia, such as occurs following cardiac arrest, can lead to oxidative stress, hippocampal neuronal cell death, and cognitive defects. The current study examined the potential beneficial effect and underlying mechanisms of post-treatment with the naturally occurring isoflavonic phytoestrogen, genistein, which has been implicated to attenuate oxidative stress. Genistein (1 mg kg(-1)) was administered i.v. 5 min after reperfusion in rats subjected to four-vessel global cerebral ischemia (GCI). The results revealed that genistein exerted significant neuroprotection of hippocampal CA1 neurons following GCI, as evidenced by an increase in NeuN-positive neurons and the decrease in TUNEL-positive neurons. Furthermore, genistein treatment also resulted in significantly improved spatial learning and memory as compared to vehicle control animals. The beneficial effects of genistein appear to be mediated by an increase of phosphorylation/activation of eNOS, with subsequent activation of the antioxidant/detoxification Nrf2/Keap1 transcription system. Along these lines, genistein increased keap1 S-nitrosylation, with a corresponding nuclear accumulation and enhanced DNA binding activity of Nrf2. Genistein also enhanced levels of the Nrf2 downstream antioxidant protein, heme oxygenase (HO)-1, as compared to vehicle control groups. In accordance with its induction of Nrf2 activation, genistein exerted a robust attenuation of oxidative DNA damage and lipid peroxidative damage in hippocampal CA1 neurons after GCI, as measured by immunofluorescence staining of the oxidative stress markers, 8-hydroxy-2-deoxyguanosine (8-OHdG) and 4-Hydroxynonenal (4-HNE). Interestingly, the aforementioned effects of genistein were abolished by pretreatment with L-NAME, an inhibitor of eNOS activation. In conclusion, the results of the study demonstrate that low dose genistein can exert significant antioxidant, neuroprotective, and cognitive-enhancing effects in the hippocampal CA1 region following GCI. Mechanistically, the beneficial effects of genistein appear to be mediated by enhanced eNOS phosphorylation/activation and nitric oxide (NO)-mediated thiol modification of Keap1, with subsequent upregulation of the Nrf2/HO-1 antioxidative signaling pathway and a resultant attenuation of oxidative stress.
Collapse
Affiliation(s)
- Ruimin Wang
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Kahles T, Brandes RP. Which NADPH oxidase isoform is relevant for ischemic stroke? The case for nox 2. Antioxid Redox Signal 2013; 18:1400-17. [PMID: 22746273 PMCID: PMC3603497 DOI: 10.1089/ars.2012.4721] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
UNLABELLED Significance and Recent Advances: Ischemic stroke is the leading cause of disability and third in mortality in industrialized nations. Immediate restoration of cerebral blood flow is crucial to salvage brain tissue, but only few patients are eligible for recanalization therapy. Thus, the need for alternative neuroprotective strategies is huge, and antioxidant interventions have long been studied in this context. Reactive oxygen species (ROS) physiologically serve as signaling molecules, but excessive amounts of ROS, as generated during ischemia/reperfusion (I/R), contribute to tissue injury. CRITICAL ISSUES Nevertheless and despite a strong rational of ROS being a pharmacological target, all antioxidant interventions failed to improve functional outcome in human clinical trials. Antioxidants may interfere with physiological functions of ROS or do not reach the crucial target structures of ROS-induced injury effectively. FUTURE DIRECTIONS Thus, a potentially more promising approach is the inhibition of the source of disease-promoting ROS. Within recent years, NADPH oxidases (Nox) of the Nox family have been identified as mediators of neuronal pathology. As, however, several Nox homologs are expressed in neuronal tissue, and as many of the pharmacological inhibitors employed are rather unspecific, the concept of Nox as mediators of brain damage is far from being settled. In this review, we will discuss the contribution of Nox homologs to I/R injury at large as well as to neuronal damage in particular. We will illustrate that the current data provide evidence for Nox2 as the most important NADPH oxidase mediating cerebral injury.
Collapse
Affiliation(s)
- Timo Kahles
- Institut für Kardiovaskuläre Physiologie, Fachbereich Medizin der Goethe-Universität , Frankfurt am Main, Germany
| | | |
Collapse
|
78
|
Copin JC, da Silva RF, Fraga-Silva RA, Capettini L, Quintao S, Lenglet S, Pelli G, Galan K, Burger F, Braunersreuther V, Schaller K, Deruaz M, Proudfoot AE, Dallegri F, Stergiopulos N, Santos RAS, Gasche Y, Mach F, Montecucco F. Treatment with Evasin-3 reduces atherosclerotic vulnerability for ischemic stroke, but not brain injury in mice. J Cereb Blood Flow Metab 2013; 33:490-8. [PMID: 23250107 PMCID: PMC3618389 DOI: 10.1038/jcbfm.2012.198] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Neutrophilic inflammation might have a pathophysiological role in both carotid plaque rupture and ischemic stroke injury. Here, we investigated the potential benefits of the CXC chemokine-binding protein Evasin-3, which potently inhibits chemokine bioactivity and related neutrophilic inflammation in two mouse models of carotid atherosclerosis and ischemic stroke, respectively. In the first model, the chronic treatment with Evasin-3 as compared with Vehicle (phosphate-buffered saline (PBS)) was investigated in apolipoprotein E-deficient mice implanted of a 'cast' carotid device. In the second model, acute Evasin-3 treatment (5 minutes after cerebral ischemia onset) was assessed in mice subjected to transient left middle cerebral artery occlusion. Although CXCL1 and CXCL2 were upregulated in both atherosclerotic plaques and infarcted brain, only CXCL1 was detectable in serum. In carotid atherosclerosis, treatment with Evasin-3 was associated with reduction in intraplaque neutrophil and matrix metalloproteinase-9 content and weak increase in collagen as compared with Vehicle. In ischemic stroke, treatment with Evasin-3 was associated with reduction in ischemic brain neutrophil infiltration and protective oxidants. No other effects in clinical and histological outcomes were observed. We concluded that Evasin-3 treatment was associated with reduction in neutrophilic inflammation in both mouse models. However, Evasin-3 administration after cerebral ischemia onset failed to improve poststroke outcomes.
Collapse
|
79
|
Zhang QG, Wang RM, Scott E, Han D, Dong Y, Tu JY, Yang F, Reddy Sareddy G, Vadlamudi RK, Brann DW. Hypersensitivity of the hippocampal CA3 region to stress-induced neurodegeneration and amyloidogenesis in a rat model of surgical menopause. ACTA ACUST UNITED AC 2013; 136:1432-45. [PMID: 23474850 DOI: 10.1093/brain/awt046] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Females who enter menopause prematurely via bilateral ovariectomy (surgical menopause) have a significantly increased risk for cognitive decline and dementia. To help elucidate the mechanisms underlying this phenomenon, we used an animal model of surgical menopause, long-term (10-week) bilateral ovariectomy in female rats. Herein, we demonstrate that long-term oestrogen deprivation dramatically increases sensitivity of the normally resistant hippocampal CA3 region to ischaemic stress, an effect that was gender-specific, as it was not observed in long-term orchiectomized males. Furthermore, the enhanced damage to the CA3 region correlated with a worse cognitive outcome after ischaemic stress. Long-term ovariectomized rats also displayed a robust hyperinduction of Alzheimer's disease-related proteins in the CA3 region and a switch in amyloid precursor protein processing from non-amyloidogenic to amyloidogenic following ischaemic stress CA3 hypersensitivity also extended to an Alzheimer's disease-relevant insult, as the CA3 region of long-term ovariectomized rats was profoundly hypersensitive to the neurotoxic effects of amyloid-β1-42, the most amyloidogenic form of the amyloid-β peptide. Additional studies revealed that CA3 region hypersensitivity, Alzheimer's disease-related protein induction, and amyloidogenesis are mediated by a NADPH oxidase/superoxide/c-Jun N-terminal kinase/c-Jun signalling pathway, involving both transcriptional and post-translational mechanisms. In addition, while 17β-oestradiol replacement at the end of the long-term oestrogen deprivation period could not prevent CA3 hypersensitivity and amyloidogenesis, if 17β-oestradiol was initiated at the time of ovariectomy and maintained throughout the 10-week oestrogen deprivation period, it completely prevented these events, providing support for the 'critical window' hypothesis for oestrogen replacement therapy benefit. Collectively, these findings may help explain the increased risk of cognitive decline and dementia observed in women following surgical menopause, and they provide increased support that early 17β-oestradiol replacement is critical in preventing the negative neural effects associated with bilateral ovariectomy.
Collapse
Affiliation(s)
- Quan-Guang Zhang
- Department of Neurology, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Georgia Regents University, 1120 15th Street, Augusta, GA 30912, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Zhou J, Zhuang J, Li J, Ooi E, Bloom J, Poon C, Lax D, Rosenbaum DM, Barone FC. Long-term post-stroke changes include myelin loss, specific deficits in sensory and motor behaviors and complex cognitive impairment detected using active place avoidance. PLoS One 2013; 8:e57503. [PMID: 23505432 PMCID: PMC3591420 DOI: 10.1371/journal.pone.0057503] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 01/22/2013] [Indexed: 12/14/2022] Open
Abstract
Persistent neurobehavioral deficits and brain changes need validation for brain restoration. Two hours middle cerebral artery occlusion (tMCAO) or sham surgery was performed in male Sprague-Dawley rats. Neurobehavioral and cognitive deficits were measured over 10 weeks included: (1) sensory, motor, beam balance, reflex/abnormal responses, hindlimb placement, forepaw foot fault and cylinder placement tests, and (2) complex active place avoidance learning (APA) and simple passive avoidance retention (PA). Electroretinogram (ERG), hemispheric loss (infarction), hippocampus CA1 neuronal loss and myelin (Luxol Fast Blue) staining in several fiber tracts were also measured. In comparison to Sham surgery, tMCAO surgery produced significant deficits in all behavioral tests except reflex/abnormal responses. Acute, short lived deficits following tMCAO were observed for forelimb foot fault and forelimb cylinder placement. Persistent, sustained deficits for the whole 10 weeks were exhibited for motor (p<0.001), sensory (p<0.001), beam balance performance (p<0.01) and hindlimb placement behavior (p<0.01). tMCAO produced much greater and prolonged cognitive deficits in APA learning (maximum on last trial of 604±83% change, p<0.05) but only a small, comparative effect on PA retention. Hemispheric loss/atrophy was measured 10 weeks after tMCAO and cross-validated by two methods (e.g., almost identical % ischemic hemispheric loss of 33.4±3.5% for H&E and of 34.2±3.5% for TTC staining). No visual dysfunction by ERG and no hippocampus neuronal loss were detected after tMCAO. Fiber tract damage measured by Luxol Fast Blue myelin staining intensity was significant (p<0.01) in the external capsule and striatum but not in corpus callosum and anterior commissure. In summary, persistent neurobehavioral deficits were validated as important endpoints for stroke restorative research in the future. Fiber myelin loss appears to contribute to these long term behavioral dysfunctions and can be important for cognitive behavioral control necessary for complex APA learning.
Collapse
Affiliation(s)
- Jin Zhou
- Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, New York, United States of America.
| | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Duchemin S, Belanger E, Wu R, Ferland G, Girouard H. Chronic perfusion of angiotensin II causes cognitive dysfunctions and anxiety in mice. Physiol Behav 2013; 109:63-8. [DOI: 10.1016/j.physbeh.2012.10.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 09/24/2012] [Accepted: 10/19/2012] [Indexed: 11/27/2022]
|
82
|
Falsini B, Bush RA, Sieving PA. Neuroprotection. Retina 2013. [DOI: 10.1016/b978-1-4557-0737-9.00037-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
83
|
Wen H, Gwathmey JK, Xie LH. Oxidative stress-mediated effects of angiotensin II in the cardiovascular system. World J Hypertens 2012; 2:34-44. [PMID: 24587981 PMCID: PMC3936474 DOI: 10.5494/wjh.v2.i4.34] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Angiotensin II (Ang II), an endogenous peptide hormone, plays critical roles in the pathophysiological modulation of cardiovascular functions. Ang II is the principle effector of the renin-angiotensin system for maintaining homeostasis in the cardiovascular system, as well as a potent stimulator of NAD(P)H oxidase, which is the major source and primary trigger for reactive oxygen species (ROS) generation in various tissues. Recent accumulating evidence has demonstrated the importance of oxidative stress in Ang II-induced heart diseases. Here, we review the recent progress in the study on oxidative stress-mediated effects of Ang II in the cardiovascular system. In particular, the involvement of Ang II-induced ROS generation in arrhythmias, cell death/heart failure, ischemia/reperfusion injury, cardiac hypertrophy and hypertension are discussed. Ca2+/calmodulin-dependent protein kinase II is an important molecule linking Ang II, ROS and cardiovascular pathological conditions.
Collapse
|
84
|
Du Z, Hu Y, Yang Y, Sun Y, Zhang S, Zhou T, Zeng L, Zhang W, Huang X, Kong W, Zhang H. NADPH oxidase-dependent oxidative stress and mitochondrial damage in hippocampus of D-galactose-induced aging rats. ACTA ACUST UNITED AC 2012; 32:466-472. [PMID: 22886955 DOI: 10.1007/s11596-012-0081-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Indexed: 12/20/2022]
Abstract
Mitochondrial DNA (mtDNA) common deletion (CD) plays a significant role in aging and age-related diseases. In this study, we used D-galactose (D-gal) to generate an animal model of aging and the involvement and causative mechanisms of mitochondrial damage in such a model were investigated. Twenty 5-week-old male Sprague-Dawley rats were randomly divided into two groups: D-gal group (n=10) and control group (n=10). The quantity of the mtDNA CD in the hippocampus was determined using a TaqMan real-time PCR assay. Transmission electron microscopy was used to observe the mitochondrial ultrastructure in the hippocampus. Western blot was used to detect the protein levels of NADPH oxidase (NOX) and uncoupling protein 2 (UCP2). We found that the level of mtDNA CD was significantly higher in the hippocampus of D-gal-induced aging rats than in control rats. In comparison with the control group, the mitochondrial ultrastructure in the hippocampus of D-gal-treated rats was damaged, and the protein levels of NOX and UCP2 were significantly increased in the hippocampus of D-gal-induced aging rats. This study demonstrated that the levels of mtDNA CD and NOX protein expression were significantly increased in the hippocampus of D-gal-induced aging rats. These findings indicate that NOX-dependent reactive oxygen species generation may contribute to D-gal-induced mitochondrial damage.
Collapse
Affiliation(s)
- Zhengde Du
- Department of Otorhinolaryngology, Huazhong University of Science and Technology, Wuhan, 430022, China.,Department of Otorhinolaryngology, Shenzhen Sixth People's Hospital (Nanshan Hospital), Huazhong University of Science and Technology, Shenzhen, 518052, China
| | - Yujuan Hu
- Department of Otorhinolaryngology, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yang Yang
- Department of Otorhinolaryngology, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu Sun
- Department of Otorhinolaryngology, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Sulin Zhang
- Department of Otorhinolaryngology, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tao Zhou
- Department of Otorhinolaryngology, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lingling Zeng
- Department of Otorhinolaryngology, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wenjuan Zhang
- Department of Otorhinolaryngology, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiang Huang
- Department of Otorhinolaryngology, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Weijia Kong
- Department of Otorhinolaryngology, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Honglian Zhang
- Department of Public Health, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
85
|
Kim HA, Miller AA, Drummond GR, Thrift AG, Arumugam TV, Phan TG, Srikanth VK, Sobey CG. Vascular cognitive impairment and Alzheimer’s disease: role of cerebral hypoperfusion and oxidative stress. Naunyn Schmiedebergs Arch Pharmacol 2012; 385:953-9. [DOI: 10.1007/s00210-012-0790-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 07/27/2012] [Indexed: 10/27/2022]
|
86
|
Kahles T, Brandes RP. NADPH oxidases as therapeutic targets in ischemic stroke. Cell Mol Life Sci 2012; 69:2345-63. [PMID: 22618244 PMCID: PMC11114534 DOI: 10.1007/s00018-012-1011-8] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 11/06/2011] [Accepted: 04/20/2012] [Indexed: 01/07/2023]
Abstract
Reactive oxygen species (ROS) act physiologically as signaling molecules. In pathological conditions, such as ischemic stroke, ROS are released in excessive amounts and upon reperfusion exceed the body's antioxidant detoxifying capacity. This process leads to brain tissue damage during reoxygenation. Consequently, antioxidant strategies have long been suggested as a therapy for experimental stroke, but clinical trials have not yet been able to promote the translation of this concept into patient treatment regimens. As an evolution of this concept, recent studies have targeted the sources of ROS generation-rather than ROS themselves. In this context, NADPH oxidases have been identified as important generators of ROS in the cerebral vasculature under both physiological conditions in general and during ischemia/reoxygenation in particular. Inhibition of NADPH oxidases or genetic deletion of certain NADPH oxidase isoforms has been found to considerably reduce ischemic injury in experimental stroke. This review focuses on recent advances in the understanding of NADPH oxidase-mediated tissue injury in the cerebral vasculature, particularly at the level of the blood-brain barrier, and highlights promising inhibitory strategies that target the NADPH oxidases.
Collapse
Affiliation(s)
- Timo Kahles
- Institut für Kardiovaskuläre Physiologie, Fachbereich Medizin der Goethe-Universität, Frankfurt, Germany.
| | | |
Collapse
|
87
|
Bosco EE, Kumar S, Marchioni F, Biesiada J, Kordos M, Szczur K, Meller J, Seibel W, Mizrahi A, Pick E, Filippi MD, Zheng Y. Rational design of small molecule inhibitors targeting the Rac GTPase-p67(phox) signaling axis in inflammation. ACTA ACUST UNITED AC 2012; 19:228-42. [PMID: 22365606 DOI: 10.1016/j.chembiol.2011.12.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 12/08/2011] [Accepted: 12/22/2011] [Indexed: 12/11/2022]
Abstract
The NADPH oxidase enzyme complex, NOX2, is responsible for reactive oxygen species production in neutrophils and has been recognized as a key mediator of inflammation. Here, we have performed rational design and in silico screen to identify a small molecule inhibitor, Phox-I1, targeting the interactive site of p67(phox) with Rac GTPase, which is a necessary step of the signaling leading to NOX2 activation. Phox-I1 binds to p67(phox) with a submicromolar affinity and abrogates Rac1 binding and is effective in inhibiting NOX2-mediated superoxide production dose-dependently in human and murine neutrophils without detectable toxicity. Medicinal chemistry characterizations have yielded promising analogs and initial information of the structure-activity relationship of Phox-I1. Our studies suggest the potential utility of Phox-I class inhibitors in NOX2 oxidase inhibition and present an application of rational targeting of a small GTPase-effector interface.
Collapse
Affiliation(s)
- Emily E Bosco
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Influence of acupuncture on cognitive function and markers of oxidative DNA damage in patients with vascular dementia. J TRADIT CHIN MED 2012; 32:199-202. [DOI: 10.1016/s0254-6272(13)60011-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
89
|
Targeting microglia-mediated neurotoxicity: the potential of NOX2 inhibitors. Cell Mol Life Sci 2012; 69:2409-27. [PMID: 22581365 DOI: 10.1007/s00018-012-1015-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 04/18/2012] [Accepted: 04/20/2012] [Indexed: 12/24/2022]
Abstract
Microglia are key sentinels of central nervous system health, and their dysfunction has been widely implicated in the progressive nature of neurodegenerative diseases. While microglia can produce a host of factors that are toxic to neighboring neurons, NOX2 has been implicated as a common and essential mechanism of microglia-mediated neurotoxicity. Accumulating evidence indicates that activation of the NOX2 enzyme complex in microglia is neurotoxic, both through the production of extracellular reactive oxygen species that damage neighboring neurons as well as the initiation of redox signaling in microglia that amplifies the pro-inflammatory response. More specifically, evidence supports that NOX2 redox signaling enhances microglial sensitivity to pro-inflammatory stimuli, and amplifies the production of neurotoxic cytokines, to promote chronic and neurotoxic microglial activation. Here, we describe the evidence denoting the role of NOX2 in microglia-mediated neurotoxicity with an emphasis on Alzheimer's and Parkinson's disease, describe available inhibitors that have been tested, and detail evidence of the neuroprotective and therapeutic potential of targeting this enzyme complex to regulate microglia.
Collapse
|
90
|
Zhang QG, Laird MD, Han D, Nguyen K, Scott E, Dong Y, Dhandapani KM, Brann DW. Critical role of NADPH oxidase in neuronal oxidative damage and microglia activation following traumatic brain injury. PLoS One 2012; 7:e34504. [PMID: 22485176 PMCID: PMC3317633 DOI: 10.1371/journal.pone.0034504] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 03/05/2012] [Indexed: 01/20/2023] Open
Abstract
Background Oxidative stress is known to play an important role in the pathology of traumatic brain injury. Mitochondria are thought to be the major source of the damaging reactive oxygen species (ROS) following TBI. However, recent work has revealed that the membrane, via the enzyme NADPH oxidase can also generate the superoxide radical (O2−), and thereby potentially contribute to the oxidative stress following TBI. The current study thus addressed the potential role of NADPH oxidase in TBI. Methodology/Principal Findings The results revealed that NADPH oxidase activity in the cerebral cortex and hippocampal CA1 region increases rapidly following controlled cortical impact in male mice, with an early peak at 1 h, followed by a secondary peak from 24–96 h after TBI. In situ localization using oxidized hydroethidine and the neuronal marker, NeuN, revealed that the O2− induction occurred in neurons at 1 h after TBI. Pre- or post-treatment with the NADPH oxidase inhibitor, apocynin markedly inhibited microglial activation and oxidative stress damage. Apocynin also attenuated TBI-induction of the Alzheimer's disease proteins β-amyloid and amyloid precursor protein. Finally, both pre- and post-treatment of apocynin was also shown to induce significant neuroprotection against TBI. In addition, a NOX2-specific inhibitor, gp91ds-tat was also shown to exert neuroprotection against TBI. Conclusions/Significance As a whole, the study demonstrates that NADPH oxidase activity and superoxide production exhibit a biphasic elevation in the hippocampus and cortex following TBI, which contributes significantly to the pathology of TBI via mediation of oxidative stress damage, microglial activation, and AD protein induction in the brain following TBI.
Collapse
Affiliation(s)
- Quan-Guang Zhang
- Department of Neurology, Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, Augusta, Georgia, United States of America
| | - Melissa D. Laird
- Department of Neurosurgery, Georgia Health Sciences University, Augusta, Georgia, United States of America
| | - Dong Han
- Department of Neurology, Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, Augusta, Georgia, United States of America
| | - Khoi Nguyen
- Department of Neurology, Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, Augusta, Georgia, United States of America
| | - Erin Scott
- Department of Neurology, Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, Augusta, Georgia, United States of America
| | - Yan Dong
- Department of Neurology, Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, Augusta, Georgia, United States of America
| | - Krishnan M. Dhandapani
- Department of Neurosurgery, Georgia Health Sciences University, Augusta, Georgia, United States of America
| | - Darrell W. Brann
- Department of Neurology, Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, Augusta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
91
|
Barakat DJ, Dvoriantchikova G, Ivanov D, Shestopalov VI. Astroglial NF-κB mediates oxidative stress by regulation of NADPH oxidase in a model of retinal ischemia reperfusion injury. J Neurochem 2012; 120:586-97. [PMID: 22118627 DOI: 10.1111/j.1471-4159.2011.07595.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Astrocytes undergo rapid activation after injury, which is mediated in part by the transcription factor nuclear factor-kappaB (NF-κB). Consequently, activated astrocytes have been shown to induce the NF-κB regulated phagocyte NADPH oxidase (PHOX), resulting in elevated production of reactive oxygen species. We investigated the regulatory mechanisms of PHOX-induced oxidative stress in astrocytes and its non-cell-autonomous effects on retinal ganglion cell loss following retinal ischemia-reperfusion (IR) injury. To study PHOX activity and neurotoxicity mediated by glial NF-κB, we employed GFAP-IκBα-dn transgenic mice, where the NF-κB canonical pathway is suppressed specifically in astrocytes. Our analysis showed that NF-κB activation in astrocytes correlated with an increased expression of PHOX and reactive oxygen species production in primary cells and whole retinas subjected to oxygen-glucose deprivation or IR injury. Selective blockade of NF-κB in astrocytes or application of NADPH oxidase inhibitors suppressed retinal ganglion cell loss in co-cultures with astroglia challenged by oxygen-glucose deprivation. Furthermore, genetic suppression of astroglial NF-κB reduced oxidative stress in ganglion layer neurons in vivo in retinal IR. Collectively, our results suggest that astroglial NF-κB-regulated PHOX activity is a crucial toxicity pathway in the pathogenesis of retinal IR injury.
Collapse
Affiliation(s)
- David J Barakat
- Department of Molecular, Cell and Developmental Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | | | | | | |
Collapse
|
92
|
Abstract
17β-Oestradiol (E(2)) is an important hormone signal that regulates multiple tissues and functions in the body. This review focuses on the neuroprotective actions of E(2) in the brain against cerebral ischaemia and the potential underlying mechanisms. A particular focus of the review will be on the role of E(2) to attenuate NADPH oxidase activation, superoxide and reactive oxygen species generation and reduce oxidative stress in the ischaemic brain as a potentially key neuroprotective mechanism. Evidence of a potential novel role of extranuclear oestrogen receptors in mediating E(2) signalling and neuroprotective actions is also discussed. An additional subject is the growing evidence indicating that periods of long-term oestrogen deprivation, such as those occurring after menopause or surgical menopause, may lead to loss or attenuation of E(2) signalling and neuroprotective actions in the brain, as well as enhanced sensitivity of the hippocampus to ischaemic stress damage. These findings have important implications with respect to the 'critical period hypothesis', which proposes that oestrogen replacement must be initiated at peri-menopause in humans to exert its beneficial cardiovascular and neural effects. The insights gained from these various studies will prove valuable for guiding future directions in the field.
Collapse
Affiliation(s)
- Darrell Brann
- Institute of Molecular Medicine and Genetics, Georgia Health Sciences University Augusta, GA USA 30912
- Corresponding author: Dr. Darrell W. Brann, Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, 1120 15th Street, Augusta, GA 30912, USA, Phone: 706-721-7771,
| | - Limor Raz
- Institute of Molecular Medicine and Genetics, Georgia Health Sciences University Augusta, GA USA 30912
| | - Ruimin Wang
- Hebei United University, Experimental and Research Center, Hebei United University, 57 South Jian-she Road, Tangshan, Hebei, 063600, PR China
| | - Ratna Vadlamudi
- Department of Obstetrics & Gynecology, University of Texas Health Science Center at San Antonio, Floyd Curl Drive, San Antonio TX 78229
| | - Quanguang Zhang
- Institute of Molecular Medicine and Genetics, Georgia Health Sciences University Augusta, GA USA 30912
- Co-Corresponding author: Dr. Quanguang Zhang, Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, 1120 15th Street, Augusta, GA 30912, USA, Phone: 706-721-7771,
| |
Collapse
|
93
|
Lu L, Gu X, Li D, Liang L, Zhao Z, Gao J. Mechanisms regulating superoxide generation in experimental models of phenylketonuria: an essential role of NADPH oxidase. Mol Genet Metab 2011; 104:241-8. [PMID: 21640623 DOI: 10.1016/j.ymgme.2011.05.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 05/13/2011] [Accepted: 05/13/2011] [Indexed: 11/20/2022]
Abstract
This study was designed to investigate whether nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, a superoxide-producing enzyme, could be involved in phenylketonuria (PKU)-associated oxidative stress. A Pah(enu2)-BTBR PKU mouse model, and an in vitro cell culture model of PKU mimicking high phenylalanine insults in PKU, were employed for this study. The concentration of phenylalanine in mouse cerebral cortex was determined by liquid chromatography-tandem mass spectrometry. Superoxide production was displayed with dihydroethidium staining. NADPH oxidase expression level was measured by real-time RT-PCR, Western blotting and immunofluorescence. NADPH oxidase activity was measured by the colorimetric method. The phenylalanine concentrations in cerebral cortices of PKU mice were significantly higher than those in wild-type control mice. Similar results concerning superoxide production and NADPH oxidase protein expression and activity, were also found in this brain region. In addition, it was found that cerebral cortical neurons subjected to an in vitro high phenylalanine insult, displayed increased superoxide production accompanied by increases of NADPH oxidase protein expression and activity. Pretreatment with the inhibitor of this oxidase (diphenylene iodonium or apocynin) prevented this superoxide-increasing effect. Collectively, these findings provide evidence that NADPH oxidase might be a key enzyme involved in enhanced superoxide production in PKU and suggest that it may be a potential therapeutic target in neuroprotective strategies against phenylalanine-evoked oxidative brain injury in PKU.
Collapse
Affiliation(s)
- Lihua Lu
- Department of Pediatric Endocrinology and Genetical Metabolism, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai Institute for Pediatric Research, 1665 Kongjiang Road, Shanghai 200092, China
| | | | | | | | | | | |
Collapse
|
94
|
Raz L, Zhang QG, Han D, Dong Y, De Sevilla L, Brann DW. Acetylation of the pro-apoptotic factor, p53 in the hippocampus following cerebral ischemia and modulation by estrogen. PLoS One 2011; 6:e27039. [PMID: 22046440 PMCID: PMC3202599 DOI: 10.1371/journal.pone.0027039] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 10/09/2011] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Recent studies demonstrate that acetylation of the transcription factor, p53 on lysine(373) leads to its enhanced stabilization/activity and increased susceptibility of cells to stress. However, it is not known whether acetylation of p53 is altered in the hippocampus following global cerebral ischemia (GCI) or is regulated by the hormone, 17β-estradiol (17β-E(2)), and thus, this study examined these issues. METHODOLOGY/PRINCIPAL FINDINGS The study revealed that Acetyl p53-Lysine(373) levels were markedly increased in the hippocampal CA1 region after GCI at 3 h, 6 h and 24 h after reperfusion, an effect strongly attenuated by 17β-E(2). 17β-E(2) also enhanced interaction of p53 with the ubiquitin ligase, Mdm2, increased ubiquitination of p53, and induced its down-regulation, as well as attenuated elevation of the p53 transcriptional target, Puma. We also observed enhanced acetylation of p53 at a different lysine (Lys(382)) at 3 h after reperfusion, and 17β-E(2) also markedly attenuated this effect. Furthermore, administration of an inhibitor of CBP/p300 acetyltransferase, which acetylates p53, was strongly neuroprotective of the CA1 region following GCI. In long-term estrogen deprived (LTED) animals, the ability of 17β-E(2) to attenuate p53 acetylation was lost, and intriguingly, Acetyl p53-Lysine(373) levels were markedly elevated in sham (non-ischemic) LTED animals. Finally, intracerebroventricular injections of Gp91ds-Tat, a specific NADPH oxidase (NOX2) inhibitor, but not the scrambled tat peptide control (Sc-Tat), attenuated acetylation of p53 and reduced levels of Puma following GCI. CONCLUSIONS/SIGNIFICANCE The studies demonstrate that p53 undergoes enhanced acetylation in the hippocampal CA1 region following global cerebral ischemia, and that the neuroprotective agent, 17β-E(2), markedly attenuates the ischemia-induced p53 acetylation. Furthermore, following LTED, the suppressive effect of 17β-E(2) on p53 acetylation is lost, and p53 acetylation increases in the hippocampus, which may explain previous reports of increased sensitivity of the hippocampus to ischemic stress following LTED.
Collapse
Affiliation(s)
- Limor Raz
- Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, Augusta, Georgia, United States of America
| | - Quan-guang Zhang
- Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, Augusta, Georgia, United States of America
| | - Dong Han
- Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, Augusta, Georgia, United States of America
| | - Yan Dong
- Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, Augusta, Georgia, United States of America
| | - Liesl De Sevilla
- Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, Augusta, Georgia, United States of America
| | - Darrell W. Brann
- Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, Augusta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
95
|
Shen J, Bai XY, Qin Y, Jin WW, Zhou JY, Zhou JP, Yan YG, Wang Q, Bruce IC, Chen JH, Xia Q. Interrupted reperfusion reduces the activation of NADPH oxidase after cerebral I/R injury. Free Radic Biol Med 2011; 50:1780-6. [PMID: 21458562 DOI: 10.1016/j.freeradbiomed.2011.03.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 03/23/2011] [Accepted: 03/24/2011] [Indexed: 12/14/2022]
Abstract
Interrupted reperfusion reduces ischemia/reperfusion (I/R) injury. This study was designed to determine whether NADPH oxidase participates in the neural protection against global I/R injury after interrupted reperfusion. Mice were randomly divided into five groups: sham (sham-operated), I/R (20-min global I/R), RR (I/R+interrupted reperfusion), Apo (I/R+apocynin administration), and RR+Apo. Behavioral tests (pole test, beam walking, and Morris water maze) and Nissl staining were undertaken in all five groups; superoxide levels, expression of gp91(phox) and p47(phox), p47(phox) translocation, and Rac1 activation were measured in the sham, I/R, and RR groups. The motor coordination, bradykinesia, and spatial learning and memory, as well as the neuron survival rates, were better in the RR, Apo, and RR+Apo groups than in the I/R group. The NADPH oxidase-dependent superoxide levels, p47(phox) and gp91(phox) expression, p47(phox) translocation, and Rac1 activation were lower in the RR group than in the I/R group. In conclusion, the neural protective effect of interrupted reperfusion is at least partly mediated by decreasing the expression and assembly of NADPH oxidase and the levels of NADPH oxidase-derived superoxide. The most striking reduction Rac1-GTP in the RR group suggests that interrupted reperfusion also acts on the activation of assembled NADPH oxidase by reducing the availability of Rac1-GTP.
Collapse
Affiliation(s)
- Jia Shen
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Nair D, Dayyat EA, Zhang SX, Wang Y, Gozal D. Intermittent hypoxia-induced cognitive deficits are mediated by NADPH oxidase activity in a murine model of sleep apnea. PLoS One 2011; 6:e19847. [PMID: 21625437 PMCID: PMC3100309 DOI: 10.1371/journal.pone.0019847] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 04/18/2011] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND In rodents, exposure to intermittent hypoxia (IH), a hallmark of obstructive sleep apnea (OSA), is associated with neurobehavioral impairments, increased apoptosis in the hippocampus and cortex, as well as increased oxidant stress and inflammation. Excessive NADPH oxidase activity may play a role in IH-induced CNS dysfunction. METHODS AND FINDINGS The effect of IH during light period on two forms of spatial learning in the water maze and well as markers of oxidative stress was assessed in mice lacking NADPH oxidase activity (gp91phox(_/Y)) and wild-type littermates. On a standard place training task, gp91phox(_/Y) displayed normal learning, and were protected from the spatial learning deficits observed in wild-type littermates exposed to IH. Moreover, anxiety levels were increased in wild-type mice exposed to IH as compared to room air (RA) controls, while no changes emerged in gp91phox(_/Y) mice. Additionally, wild-type mice, but not gp91phox(_/Y) mice had significantly elevated levels of NADPH oxidase expression and activity, as well as MDA and 8-OHDG in cortical and hippocampal lysates following IH exposures. CONCLUSIONS The oxidative stress responses and neurobehavioral impairments induced by IH during sleep are mediated, at least in part, by excessive NADPH oxidase activity, and thus pharmacological agents targeting NADPH oxidase may provide a therapeutic strategy in sleep-disordered breathing.
Collapse
Affiliation(s)
- Deepti Nair
- Department of Pediatrics, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Ehab A. Dayyat
- Department of Pediatrics, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Shelley X. Zhang
- Department of Pediatrics, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Yang Wang
- Department of Pediatrics, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - David Gozal
- Department of Pediatrics, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|