51
|
Paquette SG, Huang SSH, Banner D, Xu L, Leόn A, Kelvin AA, Kelvin DJ. Impaired heterologous immunity in aged ferrets during sequential influenza A H1N1 infection. Virology 2014; 464-465:177-183. [PMID: 25086242 PMCID: PMC4157083 DOI: 10.1016/j.virol.2014.07.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 05/23/2014] [Accepted: 07/07/2014] [Indexed: 02/05/2023]
Abstract
The major burden of influenza morbidity resides within the elderly population. The challenge managing influenza-associated illness in the elderly is the decline of immune function, where mechanisms leading to immunological senescence have not been elucidated. To better represent the immune environment, we investigated clinical morbidity and immune function during sequential homologous and heterologous H1N1 influenza infection in an aged ferret model. Our findings demonstrated experimentally that aged ferrets had significant morbidity during monosubtypic heterologous 2° challenge with significant weight loss and respiratory symptoms. Furthermore, increased clinical morbidity was associated with slower and shorter hemagglutinin antibody generation and attenuated type 1 T-cell gene responses in peripheral blood. These results revealed dampened immune activation during sequential influenza infection in aged ferrets. With the presence of an aged model, dissecting clinical morbidity, viral dynamics and immune response during influenza infection will aid the development of future prophylactics such as age specific influenza vaccines.
Collapse
Affiliation(s)
- Stéphane G Paquette
- Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Stephen S H Huang
- Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - David Banner
- Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Luoling Xu
- Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Alberto Leόn
- Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Alyson A Kelvin
- Immune Diagnostics & Research, Toronto Medical Discovery Tower, 101 College Street 3-913, Toronto, Ontario, Canada M5G 1L7.
| | - David J Kelvin
- Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; International Institute of Infection and Immunity, Shantou University Medical College, Guangdong, Shantou, China; Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Guangdong, China; Sezione di Microbiologia Sperimentale e Clinica, Dipartimento di Scienze Biomediche, Universita' degli Studi di Sassari, Sassari, Italy
| |
Collapse
|
52
|
Huang SSH, Banner D, Paquette SG, Leon AJ, Kelvin AA, Kelvin DJ. Pathogenic influenza B virus in the ferret model establishes lower respiratory tract infection. J Gen Virol 2014; 95:2127-2139. [PMID: 24989173 PMCID: PMC4165929 DOI: 10.1099/vir.0.064352-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Influenza B viruses have become increasingly more prominent during influenza seasons. Influenza B infection is typically considered a mild disease and receives less attention than influenza A, but has been causing 20 to 50 % of the total influenza incidence in several regions around the world. Although there is increasing evidence of mid to lower respiratory tract diseases such as bronchitis and pneumonia in influenza B patients, little is known about the pathogenesis of recent influenza B viruses. Here we investigated the clinical and pathological profiles of infection with strains representing the two current co-circulating B lineages (B/Yamagata and B/Victoria) in the ferret model. Specifically, we studied two B/Victoria (B/Brisbane/60/2008 and B/Bolivia/1526/2010) and two B/Yamagata (B/Florida/04/2006 and B/Wisconsin/01/2010) strain infections in ferrets and observed strain-specific but not lineage-specific pathogenicity. We found B/Brisbane/60/2008 caused the most severe clinical illness and B/Brisbane/60/2008 and the B/Yamagata strains instigated pathology in the middle to lower respiratory tract. Importantly, B/Brisbane/60/2008 established efficient lower respiratory tract infection with high viral burden. Our phylogenetic analyses demonstrate profound reassortment among recent influenza B viruses, which indicates the genetic make-up of B/Brisbane/60/2008 differs from the other strains. This may explain the pathogenicity difference post-infection in ferrets.
Collapse
Affiliation(s)
- Stephen S H Huang
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, Toronto, ON, Canada
| | - David Banner
- Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, Toronto, ON, Canada
| | - Stephane G Paquette
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, Toronto, ON, Canada
| | - Alberto J Leon
- Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, Toronto, ON, Canada
| | | | - David J Kelvin
- International Institute of Infection and Immunity, Shantou University Medical College, Shantou, Guangdong, PR China.,Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, Toronto, ON, Canada.,Dipartimento di Scienze Biomediche, Universita' degli Studi di Sassari, Sassari, Sardinia, Italy.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
53
|
Music N, Reber AJ, Lipatov AS, Kamal RP, Blanchfield K, Wilson JR, Donis RO, Katz JM, York IA. Influenza vaccination accelerates recovery of ferrets from lymphopenia. PLoS One 2014; 9:e100926. [PMID: 24968319 PMCID: PMC4072694 DOI: 10.1371/journal.pone.0100926] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 06/01/2014] [Indexed: 01/06/2023] Open
Abstract
Ferrets are a useful animal model for human influenza virus infections, since they closely mimic the pathogenesis of influenza viruses observed in humans. However, a lack of reagents, especially for flow cytometry of immune cell subsets, has limited research in this model. Here we use a panel of primarily species cross-reactive antibodies to identify ferret T cells, cytotoxic T lymphocytes (CTL), B cells, and granulocytes in peripheral blood. Following infection with seasonal H3N2 or H1N1pdm09 influenza viruses, these cell types showed rapid and dramatic changes in frequency, even though clinically the infections were mild. The loss of B cells and CD4 and CD8 T cells, and the increase in neutrophils, were especially marked 1–2 days after infection, when about 90% of CD8+ T cells disappeared from the peripheral blood. The different virus strains led to different kinetics of leukocyte subset alterations. Vaccination with homologous vaccine reduced clinical symptoms slightly, but led to a much more rapid return to normal leukocyte parameters. Assessment of clinical symptoms may underestimate the effectiveness of influenza vaccine in restoring homeostasis.
Collapse
Affiliation(s)
- Nedzad Music
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Adrian J. Reber
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Aleksandr S. Lipatov
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Ram P. Kamal
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Kristy Blanchfield
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Jason R. Wilson
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Ruben O. Donis
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Jacqueline M. Katz
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Ian A. York
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
54
|
Thangavel RR, Bouvier NM. Animal models for influenza virus pathogenesis, transmission, and immunology. J Immunol Methods 2014; 410:60-79. [PMID: 24709389 PMCID: PMC4163064 DOI: 10.1016/j.jim.2014.03.023] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/22/2014] [Accepted: 03/24/2014] [Indexed: 12/24/2022]
Abstract
In humans, infection with an influenza A or B virus manifests typically as an acute and self-limited upper respiratory tract illness characterized by fever, cough, sore throat, and malaise. However, influenza can present along a broad spectrum of disease, ranging from sub-clinical or even asymptomatic infection to a severe primary viral pneumonia requiring advanced medical supportive care. Disease severity depends upon the virulence of the influenza virus strain and the immune competence and previous influenza exposures of the patient. Animal models are used in influenza research not only to elucidate the viral and host factors that affect influenza disease outcomes in and spread among susceptible hosts, but also to evaluate interventions designed to prevent or reduce influenza morbidity and mortality in man. This review will focus on the three animal models currently used most frequently in influenza virus research - mice, ferrets, and guinea pigs - and discuss the advantages and disadvantages of each.
Collapse
Affiliation(s)
- Rajagowthamee R Thangavel
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Nicole M Bouvier
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA.
| |
Collapse
|
55
|
Kelvin AA, Degousee N, Banner D, Stefanski E, Leόn AJ, Angoulvant D, Paquette SG, Huang SSH, Danesh A, Robbins CS, Noyan H, Husain M, Lambeau G, Gelb M, Kelvin DJ, Rubin BB. Lack of group X secreted phospholipase A₂ increases survival following pandemic H1N1 influenza infection. Virology 2014; 454-455:78-92. [PMID: 24725934 PMCID: PMC4106042 DOI: 10.1016/j.virol.2014.01.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 11/11/2013] [Accepted: 01/28/2014] [Indexed: 02/05/2023]
Abstract
The role of Group X secreted phospholipase A2 (GX-sPLA2) during influenza infection has not been previously investigated. We examined the role of GX-sPLA2 during H1N1 pandemic influenza infection in a GX-sPLA2 gene targeted mouse (GX(-/-)) model and found that survival after infection was significantly greater in GX(-/-) mice than in GX(+/+) mice. Downstream products of GX-sPLA2 activity, PGD2, PGE2, LTB4, cysteinyl leukotrienes and Lipoxin A4 were significantly lower in GX(-/-) mice BAL fluid. Lung microarray analysis identified an earlier and more robust induction of T and B cell associated genes in GX(-/-) mice. Based on the central role of sPLA2 enzymes as key initiators of inflammatory processes, we propose that activation of GX-sPLA2 during H1N1pdm infection is an early step of pulmonary inflammation and its inhibition increases adaptive immunity and improves survival. Our findings suggest that GX-sPLA2 may be a potential therapeutic target during influenza.
Collapse
Affiliation(s)
| | - Norbert Degousee
- Division of Vascular Surgery, Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network and the University of Toronto, Toronto, Ontario, Canada
| | - David Banner
- Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Eva Stefanski
- Division of Vascular Surgery, Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network and the University of Toronto, Toronto, Ontario, Canada
| | - Alberto J Leόn
- Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; International Institute of Infection and Immunity, Shantou University Medical College, Shantou, Guangdong, China
| | - Denis Angoulvant
- Division of Cardiology, Trousseau Hospital, Tours University Hospital Center and EA 4245, Francois Rabelais University, Tours, France
| | - Stéphane G Paquette
- Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Stephen S H Huang
- Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ali Danesh
- Blood Systems Research Institute, San Francisco, CA 2-Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Clinton S Robbins
- Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Hossein Noyan
- Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Mansoor Husain
- Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Heart & Stroke Richard Lewar Centre of Excellence, University of Toronto, University Health Network, Toronto, Ontario, Canada
| | - Gerard Lambeau
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275 CNRS and Université de Nice Sophia Antipolis, IPMC, Sophia Antipolis, 06560 Valbonne, France
| | - Michael Gelb
- Departments of Chemistry and Biochemistry, University of Washington, Seattle, Washington, USA
| | - David J Kelvin
- Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; International Institute of Infection and Immunity, Shantou University Medical College, Shantou, Guangdong, China; Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Sezione di Microbiologia Sperimentale e Clinica, Dipartimento di Scienze Biomediche, Universita׳ degli Studi di Sassari, Sassari, Italy.
| | - Barry B Rubin
- Division of Vascular Surgery, Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network and the University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
56
|
H1N1, but not H3N2, influenza A virus infection protects ferrets from H5N1 encephalitis. J Virol 2013; 88:3077-91. [PMID: 24371072 DOI: 10.1128/jvi.01840-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Seasonal influenza causes substantial morbidity and mortality because of efficient human-to-human spread. Rarely, zoonotic strains of influenza virus spread to humans, where they have the potential to mediate new pandemics with high mortality. We studied systemic viral spread after intranasal infection with highly pathogenic avian influenza virus (H5N1 [A/Viet Nam/1203/2004]) in ferrets with or without prior pandemic H1N1pdm09 (A/Mexico/4108/2009) or H3N2 (A/Victoria/361/2011) infection. After intranasal challenge with H5N1 influenza virus, naive ferrets rapidly succumbed to systemic infection. Animals challenged with H5N1 influenza virus greater than 3 months after recovering from an initial H1N1pdm09 infection survived H5N1 virus challenge and cleared virus from the respiratory tract 4 days after infection. However, a prolonged low-level infection of hematopoietic elements in the small bowel lamina propria, liver, and spleen was present for greater than 2 weeks postinfection, raising the potential for reassortment of influenza genes in a host infected with multiple strains of influenza. Animals previously infected with an H3N2 influenza virus succumbed to systemic disease and encephalitis after H5N1 virus challenge. These results indicate prior infection with different seasonal influenza strains leads to radically different protection from H5N1 challenge and fatal encephalitis. IMPORTANCE Seasonal influenza is efficiently transmitted from human to human, causing substantial morbidity and mortality. Rarely, zoonotic strains of influenza virus spread to humans, where they have the potential to mediate new pandemics with high mortality. Infection of naive ferrets with H5N1 avian influenza virus causes a rapid and lethal systemic disease. We studied systemic H5N1 viral spread after infection of ferrets with or without prior exposure to either of two seasonal influenza virus strains, H1N1 and H3N2. Ferrets previously infected with H1N1 survive H5N1 challenge while those previously infected with H3N2 die of encephalitis. However ferrets protected from lethal H5N1 infection develop persistent low-level infection of the small intestine, liver, or spleen, providing a nidus for future viral strain recombination. The mechanism by which prior infection with specific strains of seasonal influenza virus protect from lethal H5N1 challenge needs to be elucidated in order to design effective immunization and treatments.
Collapse
|
57
|
Paquette SG, Banner D, Chi LTB, Leόn AJ, Xu L, Ran L, Huang SSH, Farooqui A, Kelvin DJ, Kelvin AA. Pandemic H1N1 influenza A directly induces a robust and acute inflammatory gene signature in primary human bronchial epithelial cells downstream of membrane fusion. Virology 2013; 448:91-103. [PMID: 24314640 DOI: 10.1016/j.virol.2013.09.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 09/22/2013] [Accepted: 09/23/2013] [Indexed: 12/13/2022]
Abstract
Pandemic H1N1 influenza A (H1N1pdm) elicits stronger pulmonary inflammation than previously circulating seasonal H1N1 influenza A (sH1N1), yet mechanisms of inflammatory activation in respiratory epithelial cells during H1N1pdm infection are unclear. We investigated host responses to H1N1pdm/sH1N1 infection and virus entry mechanisms in primary human bronchial epithelial cells in vitro. H1N1pdm infection rapidly initiated a robust inflammatory gene signature (3 h post-infection) not elicited by sH1N1 infection. Protein secretion inhibition had no effect on gene induction. Infection with membrane fusion deficient H1N1pdm failed to induce robust inflammatory gene expression which was rescued with restoration of fusion ability, suggesting H1N1pdm directly triggered the inflammatory signature downstream of membrane fusion. Investigation of intra-virion components revealed H1N1pdm viral RNA (vRNA) triggered a stronger inflammatory phenotype than sH1N1 vRNA. Thus, our study is first to report H1N1pdm induces greater inflammatory gene expression than sH1N1 in vitro due to direct virus-epithelial cell interaction.
Collapse
Affiliation(s)
- Stéphane G Paquette
- Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Cho KJ, Lee JH, Hong KW, Kim SH, Park Y, Lee JY, Kang S, Kim S, Yang JH, Kim EK, Seok JH, Unzai S, Park SY, Saelens X, Kim CJ, Lee JY, Kang C, Oh HB, Chung MS, Kim KH. Insight into structural diversity of influenza virus haemagglutinin. J Gen Virol 2013; 94:1712-1722. [DOI: 10.1099/vir.0.051136-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Influenza virus infects host cells through membrane fusion, a process mediated by the low pH-induced conformational change of the viral surface glycoprotein haemagglutinin (HA). We determined the structures and biochemical properties of the HA proteins from A/Korea/01/2009 (KR01), a 2009 pandemic strain, and A/Thailand/CU44/2006 (CU44), a seasonal strain. The crystal structure of KR01 HA revealed a V-shaped head-to-head arrangement, which is not seen in other HA proteins including CU44 HA. We isolated a broadly neutralizing H1-specific monoclonal antibody GC0757. The KR01 HA-Fab0757 complex structure also exhibited a head-to-head arrangement of HA. Both native and Fab complex structures reveal a different spatial orientation of HA1 relative to HA2, indicating that HA is flexible and dynamic at neutral pH. Further, the KR01 HA exhibited significantly lower protein stability and increased susceptibility to proteolytic cleavage compared with other HAs. Our structures provide important insights into the conformational flexibility of HA.
Collapse
Affiliation(s)
- Ki Joon Cho
- Department of Biotechnology & Bioinformatics, College of Science & Technology, Korea University, Sejong 339-700, Korea
| | - Ji-Hye Lee
- Department of Biotechnology & Bioinformatics, College of Science & Technology, Korea University, Sejong 339-700, Korea
| | - Kwang W. Hong
- Antibody Engineering Laboratory, Central Research Center, Green Cross Corp., Yongin Kyunggi 446-799, Korea
| | - Se-Ho Kim
- Antibody Engineering Laboratory, Central Research Center, Green Cross Corp., Yongin Kyunggi 446-799, Korea
| | - Yiho Park
- Department of Biotechnology & Bioinformatics, College of Science & Technology, Korea University, Sejong 339-700, Korea
| | - Jun Young Lee
- Department of Biotechnology & Bioinformatics, College of Science & Technology, Korea University, Sejong 339-700, Korea
| | - Seokha Kang
- Department of Biotechnology & Bioinformatics, College of Science & Technology, Korea University, Sejong 339-700, Korea
| | - Sella Kim
- Department of Biotechnology & Bioinformatics, College of Science & Technology, Korea University, Sejong 339-700, Korea
| | - Ji Hoon Yang
- Department of Biotechnology & Bioinformatics, College of Science & Technology, Korea University, Sejong 339-700, Korea
| | - Eui-Ki Kim
- Department of Biotechnology & Bioinformatics, College of Science & Technology, Korea University, Sejong 339-700, Korea
| | - Jong Hyeon Seok
- Department of Biotechnology & Bioinformatics, College of Science & Technology, Korea University, Sejong 339-700, Korea
| | - Satoru Unzai
- Protein Design Laboratory, Yokohama City University, Yokohama 230-0045, Japan
| | - Sam Yong Park
- Protein Design Laboratory, Yokohama City University, Yokohama 230-0045, Japan
| | - Xavier Saelens
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
- Department for Molecular Biomedical Research, VIB, 9052 Ghent, Belgium
| | - Chul-Joong Kim
- College of Veterinary Medicine, Chungnam National University, DaeJeon 305-764, Korea
| | - Joo-Yeon Lee
- Influenza Virus Team, Center for Infectious Diseases, Korea Centers for Disease Control and Prevention, Osong Chungbuk 363-951, Korea
| | - Chun Kang
- Influenza Virus Team, Center for Infectious Diseases, Korea Centers for Disease Control and Prevention, Osong Chungbuk 363-951, Korea
| | - Hee-Bok Oh
- Influenza Virus Team, Center for Infectious Diseases, Korea Centers for Disease Control and Prevention, Osong Chungbuk 363-951, Korea
| | - Mi Sook Chung
- Department of Food and Nutrition, Duksung Women’s University, Seoul 132-714, Korea
| | - Kyung Hyun Kim
- Department of Biotechnology & Bioinformatics, College of Science & Technology, Korea University, Sejong 339-700, Korea
| |
Collapse
|
59
|
Chaves SS, Aragon D, Bennett N, Cooper T, D'Mello T, Farley M, Fowler B, Hancock E, Kirley PD, Lynfield R, Ryan P, Schaffner W, Sharangpani R, Tengelsen L, Thomas A, Thurston D, Williams J, Yousey-Hindes K, Zansky S, Finelli L. Patients hospitalized with laboratory-confirmed influenza during the 2010-2011 influenza season: exploring disease severity by virus type and subtype. J Infect Dis 2013; 208:1305-14. [PMID: 23863950 DOI: 10.1093/infdis/jit316] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The 2010-2011 influenza season was dominated by influenza A(H3N2) virus, but influenza A(H1N1) pdm09 (pH1N1) and B viruses cocirculated. This provided an opportunity to explore within-season predictors of severity among hospitalized patients, avoiding biases associated with season-to-season differences in strain virulence, population immunity, and healthcare seeking. METHODS Population-based, laboratory-confirmed influenza hospitalization surveillance data were used to examine the association between virus type/subtype and outcomes in children and adults. Multivariable analysis explored virus type/subtype, prompt antiviral treatment, medical conditions, and age as predictors for severity (intensive care unit admission or death). RESULTS In children, pH1N1 (adjusted odds ratio [aOR], 2.19; 95% confidence interval [CI], 1.11-4.3), chronic metabolic disease (aOR, 5.23; 95% CI, 1.74-15.69), and neuromuscular disorder (aOR, 4.84; 95% CI, 2.02-11.58) were independently associated with severity. In adults, independent predictors were pH1N1 (aOR, 2.21; 95% CI, 1.66-2.94), chronic lung disease (aOR, 1.46, 95% CI, 1.12-1.89), and neuromuscular disorder (aOR, 1.68; 95% CI, 1.11-2.52).Antiviral treatment reduced the odds of severity among adults (aOR, 0.47; 95% CI, .33-.68). CONCLUSIONS During the 2010-2011 season, pH1N1 caused more severe disease than H3N2 or B in hospitalized patients. Underlying medical conditions increased severity despite virus strain. Antiviral treatment reduced severity among adults. Our findings underscore the importance of influenza prevention.
Collapse
|
60
|
Tretyakova I, Pearce MB, Florese R, Tumpey TM, Pushko P. Intranasal vaccination with H5, H7 and H9 hemagglutinins co-localized in a virus-like particle protects ferrets from multiple avian influenza viruses. Virology 2013; 442:67-73. [PMID: 23618102 DOI: 10.1016/j.virol.2013.03.027] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 03/14/2013] [Accepted: 03/27/2013] [Indexed: 11/26/2022]
Abstract
Avian influenza H5, H7 and H9 viruses top the World Health Organization's (WHO) list of subtypes with the greatest pandemic potential. Here we describe a recombinant virus-like particle (VLP) that co-localizes hemagglutinin (HA) proteins derived from H5N1, H7N2, and H9N2 viruses as an experimental vaccine against these viruses. A baculovirus vector was configured to co-express the H5, H7, and H9 genes from A/Viet Nam/1203/2004 (H5N1), A/New York/107/2003 (H7N2) and A/Hong Kong/33982/2009 (H9N2) viruses, respectively, as well as neuraminidase (NA) and matrix (M1) genes from A/Puerto Rico/8/1934 (H1N1) virus. Co-expression of these genes in Sf9 cells resulted in production of triple-subtype VLPs containing HA molecules derived from the three influenza viruses. The triple-subtype VLPs exhibited hemagglutination and neuraminidase activities and morphologically resembled influenza virions. Intranasal vaccination of ferrets with the VLPs resulted in induction of serum antibody responses and efficient protection against experimental challenges with H5N1, H7N2, and H9N2 viruses.
Collapse
|
61
|
Abstract
Since their introduction as pets several decades ago, ferrets have become an increasingly popular household pet. Great strides have been made in improving their diet and understanding common diseases (eg, insulinoma, hyperadrenocorticism, lymphoma) that affect them. With the frequency with which these conditions are seen, it sometimes is easy to forget that ferrets can be affected by other diseases. Some of these diseases, such as cryptococcosis, are known, but may be increasing in incidence and range, whereas others, such as hypothyroidism and pure red cell aplasia, may be underrecognized or underreported. This review highlights new and emerging diseases not already well reviewed in the literature.
Collapse
Affiliation(s)
- Nicole R Wyre
- Section of Exotic Companion Animal Medicine and Surgery, Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | |
Collapse
|
62
|
Abstract
Experimental animals in biomedical research provide insights into disease mechanisms and models for determining the efficacy and safety of new therapies and for discovery of corresponding biomarkers. Although mouse and rat models are most widely used, observations in these species cannot always be faithfully extrapolated to human patients. Thus, a number of domestic species are additionally used in specific disease areas. This review summarizes the most important applications of domestic animal models and emphasizes the new possibilities genetic tailoring of disease models, specifically in pigs, provides.
Collapse
Affiliation(s)
- A Bähr
- Chair for Molecular Animal Breeding and Biotechnology, Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, Munich, Germany
| | | |
Collapse
|
63
|
Smee DF, Barnard DL. Methods for evaluation of antiviral efficacy against influenza virus infections in animal models. Methods Mol Biol 2013; 1030:407-25. [PMID: 23821285 DOI: 10.1007/978-1-62703-484-5_31] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Compounds undergoing preclinical development for anti-influenza virus activity require evaluation in small animal models. Laboratory mice are most commonly used for initial studies because of size, cost, and availability. Cotton rats, guinea pigs, and ferrets (particularly) have been used for more advanced studies. Each animal infection model has certain limitations relative to human influenza infections. For example, the fever response that is evident in humans only occurs with consistency in ferrets. Mice infected with mouse-adapted viruses and ferrets infected with highly pathogenic avian influenza viruses suffer severe disease, whereas cotton rats and guinea pigs manifest few symptoms. Thus, for each animal model there is a certain set of disease parameters that can be measured. Here we describe methods for assessing the efficacy of anti-influenza virus compounds in each of these animal species.
Collapse
Affiliation(s)
- Donald F Smee
- Department of Animal, Dairy, and Veterinary Sciences, Institute for Antiviral Research, Utah State University, Logan, UT, USA
| | | |
Collapse
|
64
|
Huang SSH, Lin Z, Banner D, León AJ, Paquette SG, Rubin B, Rubino S, Guan Y, Kelvin DJ, Kelvin AA. Immunity toward H1N1 influenza hemagglutinin of historical and contemporary strains suggests protection and vaccine failure. Sci Rep 2013; 3:1698. [PMID: 23608887 PMCID: PMC3633051 DOI: 10.1038/srep01698] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 04/05/2013] [Indexed: 11/09/2022] Open
Abstract
Evolution of H1N1 influenza A outbreaks of the past 100 years is interesting and significantly complex and details of H1N1 genetic drift remains unknown. Here we investigated the clinical characteristics and immune cross-reactivity of significant historical H1N1 strains. We infected ferrets with H1N1 strains from 1943, 1947, 1977, 1986, 1999, and 2009 and showed each produced a unique clinical signature. We found significant cross-reactivity between viruses with similar HA sequences. Interestingly, A/FortMonmouth/1/1947 antisera cross-reacted with A/USSR/90/1977 virus, thought to be a 1947 resurfaced virus. Importantly, our immunological data that didn't show cross-reactivity can be extrapolated to failure of past H1N1 influenza vaccines, ie. 1947, 1986 and 2009. Together, our results help to elucidate H1N1 immuno-genetic alterations that occurred in the past 100 years and immune responses caused by H1N1 evolution. This work will facilitate development of future influenza therapeutics and prophylactics such as influenza vaccines.
Collapse
Affiliation(s)
- Stephen S. H. Huang
- Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- These authors contributed equally to this work
| | - Zhen Lin
- Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
- International Institute of Infection and Immunity, Shantou University Medical College, Shantou, Guangdong, China
- These authors contributed equally to this work
| | - David Banner
- Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Alberto J. León
- Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
- International Institute of Infection and Immunity, Shantou University Medical College, Shantou, Guangdong, China
| | - Stéphane G. Paquette
- Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Barry Rubin
- Division of Vascular Surgery, Peter Munk Cardiac Centre, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Salvatore Rubino
- Universita' degli Studi di Sassari, Sezione di Microbiologia Sperimentale e Clinica, Dipartimento di Scienze Biomediche, Viale San Pietro 43/b, 07100 Sassari, Italia
| | - Yi Guan
- International Institute of Infection and Immunity, Shantou University Medical College, Shantou, Guangdong, China
| | - David J. Kelvin
- Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Universita' degli Studi di Sassari, Sezione di Microbiologia Sperimentale e Clinica, Dipartimento di Scienze Biomediche, Viale San Pietro 43/b, 07100 Sassari, Italia
- International Institute of Infection and Immunity, Shantou University Medical College, Shantou, Guangdong, China
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
65
|
Abstract
Ferrets have become an indispensable tool in the understanding of influenza virus virulence and pathogenesis. Furthermore, ferrets are the preferred preclinical model for influenza vaccine and therapeutic testing. Here we characterized the influenza infectome during the different stages of the infectious process in ferrets with and without prior specific immunity to influenza. RNA from lung tissue and lymph nodes from infected and naïve animals was subjected to next-generation sequencing, followed by de novo data assembly and annotation of the resulting sequences; this process generated a library comprising 13,202 ferret mRNAs. Gene expression profiles during pandemic H1N1 (pdmH1N1) influenza virus infection were analyzed by digital gene expression and solid support microarrays. As expected during primary infection, innate immune responses were triggered in the lung tissue; meanwhile, in the lymphoid tissue, genes encoding antigen presentation and maturation of effector cells of adaptive immunity increased dramatically. After 5 days postinfection, the innate immune gene expression was replaced by the adaptive immune response, which correlates with viral clearance. Reinfection with homologous pandemic influenza virus resulted in a diminished innate immune response, early adaptive immune gene regulation, and a reduction in clinical severity. The fully annotated ferret infectome will be a critical aid to the understanding of the molecular events that regulate disease severity and host-influenza virus interactions among seasonal, pandemic, and highly pathogenic avian influenzas.
Collapse
|
66
|
Differential pathological and immune responses in newly weaned ferrets are associated with a mild clinical outcome of pandemic 2009 H1N1 infection. J Virol 2012; 86:13187-201. [PMID: 23055557 DOI: 10.1128/jvi.01456-12] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Young children are typically considered a high-risk group for disease associated with influenza virus infection. Interestingly, recent clinical reports suggested that young children were the smallest group of cases with severe pandemic 2009 H1N1 (H1N1pdm) influenza virus infection. Here we established a newly weaned ferret model for the investigation of H1N1pdm infection in young age groups compared to adults. We found that young ferrets had a significantly milder fever and less weight loss than adult ferrets, which paralleled the mild clinical symptoms in the younger humans. Although there was no significant difference in viral clearance, disease severity was associated with pulmonary pathology, where newly weaned ferrets had an earlier pathology improvement. We examined the immune responses associated with protection of the young age group during H1N1pdm infection. We found that interferon and regulatory interleukin-10 responses were more robust in the lungs of young ferrets. In contrast, myeloperoxidase and major histocompatibility complex responses were persistently higher in the adult lungs; as well, the numbers of inflammation-prone granulocytes were highly elevated in the adult peripheral blood. Importantly, we observed that H1N1pdm infection triggered formation of lung structures that resembled inducible bronchus-associated lymphoid tissues (iBALTs) in young ferrets which were associated with high levels of homeostatic chemokines CCL19 and CXCL13, but these were not seen in the adult ferrets with severe disease. These results may be extrapolated to a model of the mild disease seen in human children. Furthermore, these mechanistic analyses provide significant new insight into the developing immune system and effective strategies for intervention and vaccination against respiratory viruses.
Collapse
|
67
|
Yang P, Deng J, Li C, Zhang P, Xing L, Li Z, Wang W, Zhao Y, Yan Y, Gu H, Liu X, Zhao Z, Zhang S, Wang X, Jiang C. Characterization of the 2009 pandemic A/Beijing/501/2009 H1N1 influenza strain in human airway epithelial cells and ferrets. PLoS One 2012; 7:e46184. [PMID: 23049974 PMCID: PMC3458874 DOI: 10.1371/journal.pone.0046184] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 08/29/2012] [Indexed: 12/22/2022] Open
Abstract
Background A novel 2009 swine-origin influenza A H1N1 virus (S-OIV H1N1) has been transmitted among humans worldwide. However, the pathogenesis of this virus in human airway epithelial cells and mammals is not well understood. Methodology/Principal Finding In this study, we showed that a 2009 A (H1N1) influenza virus strain, A/Beijing/501/2009, isolated from a human patient, caused typical influenza-like symptoms including weight loss, fluctuations in body temperature, and pulmonary pathological changes in ferrets. We demonstrated that the human lung adenocarcinoma epithelial cell line A549 was susceptible to infection and that the infected cells underwent apoptosis at 24 h post-infection. In contrast to the seasonal H1N1 influenza virus, the 2009 A (H1N1) influenza virus strain A/Beijing/501/2009 induced more cell death involving caspase-3-dependent apoptosis in A549 cells. Additionally, ferrets infected with the A/Beijing/501/2009 H1N1 virus strain exhibited increased body temperature, greater weight loss, and higher viral titers in the lungs. Therefore, the A/Beijing/501/2009 H1N1 isolate successfully infected the lungs of ferrets and caused more pathological lesions than the seasonal influenza virus. Our findings demonstrate that the difference in virulence of the 2009 pandemic H1N1 influenza virus and the seasonal H1N1 influenza virus in vitro and in vivo may have been mediated by different mechanisms. Conclusion/Significance Our understanding of the pathogenesis of the 2009 A (H1N1) influenza virus infection in both humans and animals is broadened by our findings that apoptotic cell death is involved in the cytopathic effect observed in vitro and that the pathological alterations in the lungs of S-OIV H1N1-infected ferrets are much more severe.
Collapse
Affiliation(s)
- Penghui Yang
- Beijing Institute of Microbiology and Epidemiology, State Key Laboratory of Pathogen and Biosecurity, Beijing, China
- Department of Hepatobiliary, 302 Military Hospital, Beijing, China
| | - Jiejie Deng
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Peking Union Medical College, Tsinghua University; Chinese Academy of Medical Sciences, Beijing, China
| | - Chenggang Li
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Peking Union Medical College, Tsinghua University; Chinese Academy of Medical Sciences, Beijing, China
| | - Peirui Zhang
- Department of Hepatobiliary, 302 Military Hospital, Beijing, China
| | - Li Xing
- Beijing Institute of Microbiology and Epidemiology, State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Zhiwei Li
- Department of Hepatobiliary, 302 Military Hospital, Beijing, China
| | - Wei Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Peking Union Medical College, Tsinghua University; Chinese Academy of Medical Sciences, Beijing, China
| | - Yan Zhao
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Peking Union Medical College, Tsinghua University; Chinese Academy of Medical Sciences, Beijing, China
| | - Yiwu Yan
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Peking Union Medical College, Tsinghua University; Chinese Academy of Medical Sciences, Beijing, China
| | - Hongjing Gu
- Beijing Institute of Microbiology and Epidemiology, State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Xin Liu
- Beijing Institute of Microbiology and Epidemiology, State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Zhongpeng Zhao
- Beijing Institute of Microbiology and Epidemiology, State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Shaogeng Zhang
- Department of Hepatobiliary, 302 Military Hospital, Beijing, China
- * E-mail: (SZ); (CJ); (XW)
| | - Xiliang Wang
- Beijing Institute of Microbiology and Epidemiology, State Key Laboratory of Pathogen and Biosecurity, Beijing, China
- * E-mail: (SZ); (CJ); (XW)
| | - Chengyu Jiang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Peking Union Medical College, Tsinghua University; Chinese Academy of Medical Sciences, Beijing, China
- * E-mail: (SZ); (CJ); (XW)
| |
Collapse
|
68
|
Campagnolo ER, Moll ME, Tuhacek K, Simeone AJ, Miller WS, Waller KO, Simwale O, Rankin JT, Ostroff SM. Concurrent 2009 pandemic influenza A (H1N1) virus infection in ferrets and in a community in Pennsylvania. Zoonoses Public Health 2012; 60:117-24. [PMID: 22697485 DOI: 10.1111/j.1863-2378.2012.01503.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report a fall 2010 cluster of pandemic influenza A/H1N1 (pH1N1) infections in pet ferrets in Lehigh Valley region of Pennsylvania. The ferrets were associated with one pet shop. The influenza cluster occurred during a period when the existing human surveillance systems had identified little to no pH1N1 in humans in the Lehigh Valley, and there were no routine influenza surveillance systems for exotic pets. The index case was a 2.5-month-old neutered male ferret that was presented to a veterinary clinic with severe influenza-like illness (ILI). In response to laboratory notification of a positive influenza test result, and upon request from the Pennsylvania Department of Health (PADOH), the Pennsylvania Department of Agriculture (PDA) conducted an investigation to identify other ill ferrets and to identify the source and extent of infection. PDA notified the PADOH of the pH1N1 infection in the ferrets, leading to enhanced human surveillance and the detection of pH1N1 human infections in the surrounding community. Five additional ferrets with ILI linked to the pet shop were identified. This simultaneous outbreak of ferret and human pH1N1 demonstrates the important link between animal health and public health and highlights the potential use of veterinary clinics for sentinel surveillance of diseases shared between animals and humans.
Collapse
Affiliation(s)
- E R Campagnolo
- Office of Public Health Preparedness and Response, Office of Science and Public Health Practice, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|