51
|
Sugita K, Shima A, Takahashi K, Matsuda Y, Miyajima M, Hirokawa M, Kondo H, Kimura J, Ishihara G, Ohmori K. Successful outcome after a single endoscopic fecal microbiota transplantation in a Shiba dog with non-responsive enteropathy during the treatment with chlorambucil. J Vet Med Sci 2021; 83:984-989. [PMID: 33896875 PMCID: PMC8267193 DOI: 10.1292/jvms.21-0063] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A 7-year 6-month-old, castrated male Shiba dog presented with a 1-month history of
lethargy, anorexia, vomiting, and frequent watery diarrhea. Weight loss, hypoalbuminemia,
anemia, and leukocytosis were detected at the first visit. The dog was diagnosed with
non-responsive enteropathy (NRE) based on clinical and histopathological examinations.
Since the dog did not respond to the immunosuppressive drugs, fecal microbiota
transplantation (FMT) was performed during the treatment with chlorambucil. A single
endoscopic FMT into the cecum and colon drastically recovered clinical signs and
clinicopathological abnormalities and corrected dysbiosis in the dog. No recurrence or
adverse events were observed. The present case report suggests that FMT, possibly together
with chlorambucil, might be a treatment option for NRE in Shiba dogs that have poorer
prognosis compared with other dog breeds.
Collapse
Affiliation(s)
- Koji Sugita
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan.,Sugita Animal Hospital, 3-55-10 Shinshiraoka, Shiraoka, Saitama 349-0212, Japan
| | - Ayaka Shima
- Anicom Specialty Medical Institute Inc., 8-17-1 Nishi-shinjuku, Shinjuku, Tokyo 160-0023, Japan
| | - Kaho Takahashi
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Yasuyoshi Matsuda
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Masaki Miyajima
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Marin Hirokawa
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Hirotaka Kondo
- Laboratory of Veterinary Pathology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-08510, Japan
| | - Junpei Kimura
- College of Veterinary Medicine and Research Institute for Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Genki Ishihara
- Anicom Specialty Medical Institute Inc., 8-17-1 Nishi-shinjuku, Shinjuku, Tokyo 160-0023, Japan
| | - Keitaro Ohmori
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| |
Collapse
|
52
|
Bierlein M, Hedgespeth BA, Azcarate-Peril MA, Stauffer SH, Gookin JL. Dysbiosis of fecal microbiota in cats with naturally occurring and experimentally induced Tritrichomonas foetus infection. PLoS One 2021; 16:e0246957. [PMID: 33606740 PMCID: PMC7894905 DOI: 10.1371/journal.pone.0246957] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/28/2021] [Indexed: 12/21/2022] Open
Abstract
The protozoal pathogen Tritrichomonas foetus infects the colon of domestic cats and is a major cause of chronic colitis and diarrhea. Treatment failure is common, but antibiotics may improve clinical signs in a subset of cats, leading researchers to question involvement of the colonic microbiota in disease pathogenesis. Studies performed in women with venereal Trichomonas vaginalis infections have revealed that dysbiosis of host microbiota contributes to pathogenicity with similar findings also found in mice with intestinal Tritrichomonas musculis The aim of this study was to characterize differences in the fecal microbiota of cats with and without naturally occurring T. foetus infection and in a group of kittens prior to and after experimentally induced infection. Archived fecal DNA from cats undergoing testing for T. foetus infection (n = 89) and experimentally infected kittens (n = 4; at pre-, 2 weeks, and 9 weeks post-infection) were analyzed by sequencing of 16S rRNA genes. Amongst the naturally infected population, the genera Megamonas and Helicobacter were significantly increased in prevalence and abundance in cats testing positive for T. foetus infection. In the group of four experimentally infected kittens, fecal samples post-infection had significantly lower abundance of genus Dialister and Megamonas and greater abundance of the class Betaproteobacteria and family Succinivibrionaceae. We hypothesize that T. foetus promotes dysbiosis by competition for fermentable substrates used by these bacteria and that metabolic byproducts may contribute to the pathogenesis of colonic inflammation and diarrhea. Future studies are warranted for the measurement of fecal concentrations of microbial and protozoal metabolites in cats with T. foetus infection for the identification of potential therapeutic targets.
Collapse
Affiliation(s)
- Metzere Bierlein
- Department of Clinical Sciences, College of Veterinary Medicine and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Barry A. Hedgespeth
- Department of Clinical Sciences, College of Veterinary Medicine and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, United States of America
| | - M. Andrea Azcarate-Peril
- Division of Gastroenterology and Hepatology, Department of Medicine, UNC Microbiome Core, Center for Gastrointestinal Biology and Disease, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Stephen H. Stauffer
- Department of Clinical Sciences, College of Veterinary Medicine and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Jody L. Gookin
- Department of Clinical Sciences, College of Veterinary Medicine and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, United States of America
| |
Collapse
|
53
|
Overstreet AMC, Ramer-Tait AE, Suchodolski JS, Hostetter JM, Wang C, Jergens AE, Phillips GJ, Wannemuehler MJ. Temporal Dynamics of Chronic Inflammation on the Cecal Microbiota in IL-10 -/- Mice. Front Immunol 2021; 11:585431. [PMID: 33664728 PMCID: PMC7921487 DOI: 10.3389/fimmu.2020.585431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022] Open
Abstract
The intestinal microbiota is a critical component of mucosal health as evidenced by the fact that alterations in the taxonomic composition of the gastrointestinal microbiota are associated with inflammatory bowel diseases. To better understand how the progression of inflammation impacts the composition of the gastrointestinal microbiota, we used culture independent taxonomic profiling to identify temporal changes in the cecal microbiota of C3Bir IL-10-/- mice concomitantly with the onset and progression of colitis. This analysis revealed that IL-10-/- mice displayed a biphasic progression in disease severity, as evidenced by histopathological scores and cytokine production. Beginning at 4 weeks of age, pro-inflammatory cytokines including TNF-α, IFN-γ, IL-6, G-CSF, and IL-1α as well as chemokines including RANTES and MIP-1α were elevated in the serum of IL-10-/- mice. By 19 weeks of age, the mice developed clinical signs of disease as evidenced by weight loss, which was accompanied by a significant increase in serum levels of KC and IL-17. While the overall diversity of the microbiota of both wild type and IL-10-/- were similar in young mice, the latter failed to increase in complexity as the mice matured and experienced changes in abundance of specific bacterial taxa that are associated with inflammatory bowel disease in humans. Collectively, these results reveal that there is a critical time in young mice between four to six weeks of age when inflammation and the associated immune responses adversely affect maturation of the microbiota.
Collapse
Affiliation(s)
- Anne-Marie C Overstreet
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - Amanda E Ramer-Tait
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, United States
| | - Jan S Suchodolski
- GI Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Jesse M Hostetter
- Department of Pathology, University of Georgia, Athens, GA, United States
| | - Chong Wang
- Veterinary Diagnostics and Production Animal Medicine, Iowa State University, Ames, IA, United States
| | - Albert E Jergens
- Veterinary Clinical Science, Iowa State University, Ames, IA, United States
| | - Gregory J Phillips
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - Michael J Wannemuehler
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
54
|
On the Variability of Microbial Populations and Bacterial Metabolites within the Canine Stool. An in-Depth Analysis. Animals (Basel) 2021; 11:ani11010225. [PMID: 33477604 PMCID: PMC7831317 DOI: 10.3390/ani11010225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The present study investigated for the first time the impact that different sampling points have on the abundance of microbial populations and metabolites within the canine stool. We found that inner stool subsamples resulted in higher concentrations of bacterial metabolites but not of microbial populations. These findings suggest that stool subsampling is unlikely to represent the canine microbiota and metabolome uniformly. We believe that complete homogenisation of the whole stool prior to analysis may improve the final outcome when investigating the canine gut microbiome. Abstract Canine faecal microbial populations and metabolome are being increasingly studied to understand the interplay between host and gut microbiome. However, the distribution of bacterial taxa and microbial metabolites throughout the canine stool is understudied and currently no guidelines for the collection, storage and preparation of canine faecal samples have been proposed. Here, we assessed the effects that different sampling points have on the abundance of selected microbial populations and bacterial metabolites within the canine stool. Whole fresh faecal samples were obtained from five healthy adult dogs. Stool subsamples were collected from the surface to the inner part and from three equally sized areas (cranial, central, caudal) along the length axis of the stool log. All samples were finally homogenised and compared before and after homogenisation. Firmicutes, Bacteroidetes, Clostridium cluster I, Lactobacillus spp., Bifidobacterium spp. and Enterococcus spp. populations were analysed, as well as pH, ammonia and short-chain fatty acids (SCFA) concentrations. Compared to the surface of the stool, inner subsamples resulted in greater concentrations of SCFA and ammonia, and lower pH values. qPCR assay of microbial taxa did not show any differences between subsamples. Homogenisation of faeces does not affect the variability of microbial and metabolome data. Although the distribution patterns of bacterial populations and metabolites are still unclear, we found that stool subsampling yielded contradictory result and biases that can affect the final outcome when investigating the canine microbiome. Complete homogenisation of the whole stool is therefore recommended.
Collapse
|
55
|
Oba PM, Lee AH, Vidal S, Wyss R, Miao Y, Adesokan Y, Swanson KS. Effect of a novel animal milk oligosaccharide biosimilar on macronutrient digestibility and gastrointestinal tolerance, fecal metabolites, and fecal microbiota of healthy adult cats. J Anim Sci 2021; 99:skaa399. [PMID: 33320182 PMCID: PMC7799586 DOI: 10.1093/jas/skaa399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/11/2020] [Indexed: 11/13/2022] Open
Abstract
GNU100 is a novel animal milk oligosaccharide (AMO) biosimilar. In a recent in vitro fermentation study, GNU100 was shown to be fermentable by feline gastrointestinal microbiota and lead to increased short-chain fatty acid production. Our objectives herein were to evaluate the palatability, safety, and gastrointestinal tolerance of GNU100 in healthy adult cats. Exploratory end-points were measured to assess utility. In study 1, 20 adult cats were used to test the palatability of diets containing 0% or 1% GNU100. In study 2, 32 (mean age = 1.9 yr; mean body weight = 4.6 kg) male (n = 12) and female (n = 20) adult cats were used in a completely randomized design. After a 2-wk baseline, cats were assigned to one of the following treatment groups and fed for 26 wk: control (CT, no GNU100), low dose (LD, 0.5% GNU100), medium dose (MD, 1.0% GNU100), and high dose (HD, 1.5% GNU100). On weeks 2, 4, and 26, fresh fecal samples were collected for the measurement of stool quality and immune and inflammatory markers and on weeks 2 and 4 for microbiota and metabolites. On week 4, total feces were collected to measure apparent total tract macronutrient digestibility. On weeks 2, 4, and 26, blood samples were collected for serum chemistry, hematology, and inflammatory marker measurement. The palatability test showed that 1% GNU100 was strongly preferred (P < 0.05), with GNU100 having a 17.6:1 consumption ratio compared with control. In the long-term study, all cats remained healthy, without any signs of gastrointestinal intolerance or illness. All diets were well accepted, resulting in similar (P > 0.05) food intake, fecal characteristics, immunoglobulin A, and calprotectin, and dry matter, organic matter, fat, and crude protein digestibilities. Fecal butyrate was greater (P = 0.02) in cats fed HD than cats fed LD or MD. Fecal indole was lower (P = 0.02) in cats fed HD than cats fed LD. Cats fed CT had a higher (P = 0.003) relative abundance of Actinobacteria than cats fed LD. The relative abundance of Peptococcus was impacted by diet and time. At 4 wk, Campylobacter was lower in fecal samples of cats fed HD. Overall, the data suggest that dietary GNU100 supplementation was highly palatable, well tolerated, did not cause detrimental effects on fecal quality or nutrient digestibility, increased fecal butyrate concentrations, and reduced fecal indole concentrations, supporting the safety of GNU100 for inclusion in feline diets and suggesting potential benefits on gastrointestinal health of cats.
Collapse
Affiliation(s)
- Patrícia M Oba
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Anne H Lee
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Sara Vidal
- Gnubiotics Sciences SA, Epalinges, Switzerland
| | - Romain Wyss
- Gnubiotics Sciences SA, Epalinges, Switzerland
| | - Yong Miao
- Gnubiotics Sciences SA, Epalinges, Switzerland
| | | | - Kelly S Swanson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL
| |
Collapse
|
56
|
Pilla R, Law TH, Pan Y, Zanghi BM, Li Q, Want EJ, Lidbury JA, Steiner JM, Suchodolski JS, Volk HA. The Effects of a Ketogenic Medium-Chain Triglyceride Diet on the Feces in Dogs With Idiopathic Epilepsy. Front Vet Sci 2020; 7:541547. [PMID: 33415132 PMCID: PMC7783044 DOI: 10.3389/fvets.2020.541547] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 11/25/2020] [Indexed: 02/01/2023] Open
Abstract
Consumption of diets containing medium chain triglycerides have been shown to confer neuroprotective and behavior modulating effects. We aimed to identify metabolic and microbiome perturbations in feces that are associated with consumption of a medium chain triglyceride ketogenic diet (MCT-KD) in dogs with idiopathic epilepsy. We used 16S rRNA gene sequencing to generate microbiome profiles and ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) to generate lipidomic profiles of canine feces. We made comparisons between the MCT-KD, standardized placebo diet and baseline pre-trial diet phases. Consumption of the MCT-KD resulted in a significant increase in the species richness (α-diversity) of bacterial communities found in the feces when compared to the baseline diet. However, phylogenetical diversity between samples (beta-diversity) was not affected by diet. An unnamed Bacteroidaceae species within genus 5-7N15 was identified by LEfSe as a potential biomarker associated with consumption of the MCT-KD, showing an increased abundance (p = 0.005, q = 0.230) during consumption of MCT-KD. In addition, unclassified members of families Erysipelotrichaceae (p = 0.013, q = 0.335) and Fusobacteriaceae (p = 0.022, q = 0.358) were significantly increased during MCT-KD consumption compared to baseline. Blautia sp. and Megamonas sp. instead were decreased during consumption of either placebo or MCT-KD (p = 0.045, q = 0.449, and p = 0.039, q = 0.449, respectively). Bacteroidaceae, including genus 5-7N15, have previously been associated with non-aggressive behavior in dogs. In addition, 5-7N15 is correlated in humans with Akkermansia, a genus known to be involved in the neuroprotective effect of ketogenic diets in mice models of seizures. Five metabolite features, tentatively identified as long chain triglycerides, were significantly higher after consumption of the placebo diet, but no unique features were identified after consumption of the MCT-KD. The data presented in this study highlight significant changes shown in both the fecal microbiome and lipidome as a result of consumption of the MCT-KD. Elucidating the global canine gut response to MCT consumption will improve our understanding of the potential mechanisms which confer anti-seizure and behavior modulating effects. Further studies should aim to characterize the gut microbiome of both dogs with epilepsy and healthy controls.
Collapse
Affiliation(s)
- Rachel Pilla
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Tsz Hong Law
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, United Kingdom
| | - Yuanlong Pan
- Nestlé Purina Research, One Checkerboard Square, St. Louis, MO, United States
| | - Brian M Zanghi
- Nestlé Purina Research, One Checkerboard Square, St. Louis, MO, United States
| | - Qinghong Li
- Nestlé Purina Research, One Checkerboard Square, St. Louis, MO, United States
| | - Elizabeth J Want
- Division of Integrative Systems Medicine and Digestive Disease, Imperial College, London, United Kingdom
| | - Jonathan A Lidbury
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Joerg M Steiner
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Jan S Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Holger Andreas Volk
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, United Kingdom.,Small Animal Clinic, University of Veterinary Medicine, Hanover, Germany
| |
Collapse
|
57
|
Niina A, Kibe R, Suzuki R, Yuchi Y, Teshima T, Matsumoto H, Kataoka Y, Koyama H. Fecal microbiota transplantation as a new treatment for canine inflammatory bowel disease. BIOSCIENCE OF MICROBIOTA FOOD AND HEALTH 2020; 40:98-104. [PMID: 33996366 PMCID: PMC8099633 DOI: 10.12938/bmfh.2020-049] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/10/2020] [Indexed: 12/14/2022]
Abstract
In human medicine, fecal microbiota transplantation (FMT) is an effective treatment for recurrent Clostridioides difficile infection. It has also been tested as a treatment for multiple gastrointestinal diseases, including inflammatory bowel disease (IBD). However, only a few studies have focused on the changes in the microbiome following FMT for canine IBD. Here, we performed FMT in nine dogs with IBD using the fecal matter of healthy dogs and investigated the subsequent changes in the fecal microbiome and clinical signs. In three dogs, the fecal microbiome was examined by 16S rRNA sequencing. Fusobacteria were observed at a low proportion in dogs with IBD. However, the post-FMT microbiome became diverse and showed a significant increase in Fusobacteria proportion. Fusobacterium was detected in the nine dogs by quantitative polymerase chain reaction. The proportion of Fusobacterium in the post-FMT fecal microbiome was significantly increased (p<0.05). The changes in clinical signs (e.g., vomiting, diarrhea, and weight loss) were evaluated according to the canine inflammatory bowel disease activity index. The score of this index significantly decreased in all dogs (p<0.05) with improvements in clinical signs. These improvements were related to the changes in the proportion of microbes, particularly the increase in Fusobacterium. The dogs with IBD showed a lower proportion of Fusobacterium than healthy dogs. This suggests that a low proportion of Fusobacterium is a characteristic feature of canine IBD and that Fusobacterium is involved in this disease. The results of this study may help elucidate the pathogenesis of this disease and its association with Fusobacterium.
Collapse
Affiliation(s)
- Ayaka Niina
- Laboratory of Veterinary Internal Medicine, School of Veterinary Medicine, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo 180-8602, Japan
| | - Ryoko Kibe
- Laboratory of Veterinary Microbiology, School of Veterinary Medicine, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo 180-8602, Japan
| | - Ryohei Suzuki
- Laboratory of Veterinary Internal Medicine, School of Veterinary Medicine, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo 180-8602, Japan
| | - Yunosuke Yuchi
- Laboratory of Veterinary Internal Medicine, School of Veterinary Medicine, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo 180-8602, Japan
| | - Takahiro Teshima
- Laboratory of Veterinary Internal Medicine, School of Veterinary Medicine, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo 180-8602, Japan
| | - Hirotaka Matsumoto
- Laboratory of Veterinary Internal Medicine, School of Veterinary Medicine, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo 180-8602, Japan
| | - Yasushi Kataoka
- Laboratory of Veterinary Microbiology, School of Veterinary Medicine, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo 180-8602, Japan
| | - Hidekazu Koyama
- Laboratory of Veterinary Internal Medicine, School of Veterinary Medicine, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo 180-8602, Japan
| |
Collapse
|
58
|
Bragg M, Freeman EW, Lim HC, Songsasen N, Muletz-Wolz CR. Gut Microbiomes Differ Among Dietary Types and Stool Consistency in the Captive Red Wolf ( Canis rufus). Front Microbiol 2020; 11:590212. [PMID: 33304337 PMCID: PMC7693430 DOI: 10.3389/fmicb.2020.590212] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Captive management of many wildlife species can be challenging, with individuals displaying health disorders that are not generally described in the wild population. Retrospective studies have identified gastrointestinal (GI) diseases, in particular inflammatory bowel disease (IBD), as the second leading cause of captive adult red wolf (Canis rufus) mortality. Recent molecular studies show that imbalanced gut microbial composition is tightly linked to IBD in the domestic dog. The goal of the present study was to address two main questions: (1) how do red wolf gut microbiomes differ between animals with loose stool consistency, indicative of GI issues, and those with normal stool consistency and (2) how does dietary type relate to stool consistency and red wolf gut microbiomes? Fresh fecal samples were collected from 48 captive wolves housed in eight facilities in the United States and from two wild wolves living in Alligator River National Wildlife Refuge, NC, United States. For each individual, the stool consistency was categorized as loose or normal using a standardized protocol and their diet was categorized as either wild, whole meat, a mix of whole meat and kibble or kibble. We characterized gut microbiome structure using 16S rRNA gene amplicon sequencing. We found that red wolves with a loose stool consistency differed in composition than wolves with normal stool consistency, suggesting a link between GI health and microbiome composition. Diet was not related to stool consistency but did significantly impact gut microbiome composition; gut microbiome composition of wolves fed a kibble diet were significantly different than the gut microbiome composition of wolves fed a mixed, whole meat and wild diet. Findings from this study increase the understanding of the interplay between diet and GI health in the red wolf, a critical piece of information needed to maintain a healthy red wolf population ex situ.
Collapse
Affiliation(s)
- Morgan Bragg
- Department of Environmental Science and Policy, George Mason University, Fairfax, VA, United States
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, United States
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, United States
| | - Elizabeth W. Freeman
- School of Integrative Studies, George Mason University, Fairfax, VA, United States
| | - Haw Chuan Lim
- Department of Biology, George Mason University, Fairfax, VA, United States
| | - Nucharin Songsasen
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, United States
| | - Carly R. Muletz-Wolz
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, United States
| |
Collapse
|
59
|
Maldonado-Contreras A, Ferrer L, Cawley C, Crain S, Bhattarai S, Toscano J, Ward DV, Hoffman A. Dysbiosis in a canine model of human fistulizing Crohn's disease. Gut Microbes 2020; 12:1785246. [PMID: 32730134 PMCID: PMC7524328 DOI: 10.1080/19490976.2020.1785246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Crohn's disease (CD) is a chronic immune-mediated inflammatory condition caused by the loss of mucosal tolerance toward the commensal microbiota. On average, 29.5% and 42.7% CD patients experience perianal complications at 10 and 20 y after diagnosis, respectively. Perianal CD (pCD) result in high disease burden, diminished quality of life, and elevated health-care costs. Overall pCD are predictors of poor long-term outcomes. Animal models of gut inflammation have failed to fully recapitulate the human manifestations of fistulizing CD. Here, we evaluated dogs with spontaneous canine anal furunculosis (CAF), a disease with clinical similarities to pCD, as a surrogate model for understanding the microbial contribution of human pCD pathophysiology. By comparing the gut microbiomes between dogs suffering from CAF (CAF dogs) and healthy dogs, we show CAF-dog microbiomes are either very dissimilar (dysbiotic) or similar (healthy-like), yet unique, to healthy dog's microbiomes. Compared to healthy or healthy-like CAF microbiomes, dysbiotic CAF microbiomes showed an increased abundance of Bacteroides vulgatus and Escherichia coli and a decreased abundance of Megamonas species and Prevotella copri. Our results mirror what have been reported in previous microbiome studies of patients with CD; particularly, CAF dogs exhibited two distinct microbiome composition: dysbiotic and healthy-like, with determinant bacterial taxa such as E. coli and P. copri that overlap what it has been found on their human counterpart. Thus, our results support the use of CAF dogs as a surrogate model to advance our understanding of microbial dynamics in pCD.
Collapse
Affiliation(s)
- Ana Maldonado-Contreras
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA,CONTACT Ana Maldonado-Contreras Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Lluís Ferrer
- Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA
| | - Caitlin Cawley
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Sarah Crain
- Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA
| | - Shakti Bhattarai
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Juan Toscano
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Doyle V. Ward
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Andrew Hoffman
- Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA
| |
Collapse
|
60
|
Alessandri G, Argentini C, Milani C, Turroni F, Cristina Ossiprandi M, van Sinderen D, Ventura M. Catching a glimpse of the bacterial gut community of companion animals: a canine and feline perspective. Microb Biotechnol 2020; 13:1708-1732. [PMID: 32864871 PMCID: PMC7533323 DOI: 10.1111/1751-7915.13656] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 12/13/2022] Open
Abstract
Dogs and cats have gained a special position in human society by becoming our principal companion animals. In this context, efforts to ensure their health and welfare have increased exponentially, with in recent times a growing interest in assessing the impact of the gut microbiota on canine and feline health. Recent technological advances have generated new tools to not only examine the intestinal microbial composition of dogs and cats, but also to scrutinize the genetic repertoire and associated metabolic functions of this microbial community. The application of high-throughput sequencing techniques to canine and feline faecal samples revealed similarities in their bacterial composition, with Fusobacteria, Firmicutes and Bacteroidetes as the most prevalent and abundant phyla, followed by Proteobacteria and Actinobacteria. Although key bacterial members were consistently present in their gut microbiota, the taxonomic composition and the metabolic repertoire of the intestinal microbial population may be influenced by several factors, including diet, age and anthropogenic aspects, as well as intestinal dysbiosis. The current review aims to provide a comprehensive overview of the multitude of factors which play a role in the modulation of the canine and feline gut microbiota and that of their human owners with whom they share the same environment.
Collapse
Affiliation(s)
- Giulia Alessandri
- Department of Veterinary Medical ScienceUniversity of ParmaParmaItaly
| | - Chiara Argentini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
- Microbiome Research HubUniversity of ParmaParmaItaly
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
- Microbiome Research HubUniversity of ParmaParmaItaly
| | - Maria Cristina Ossiprandi
- Department of Veterinary Medical ScienceUniversity of ParmaParmaItaly
- Microbiome Research HubUniversity of ParmaParmaItaly
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, Bioscience InstituteNational University of IrelandCorkIreland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
- Microbiome Research HubUniversity of ParmaParmaItaly
| |
Collapse
|
61
|
Ziese AL, Suchodolski JS. Impact of Changes in Gastrointestinal Microbiota in Canine and Feline Digestive Diseases. Vet Clin North Am Small Anim Pract 2020; 51:155-169. [PMID: 33131916 DOI: 10.1016/j.cvsm.2020.09.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The intestinal microbiome is an important immune and metabolic organ in health and disease. Recent molecular and metabolomic approaches have provided a better characterization of different types of dysbiosis, including mucosa-adherent bacteria and functional changes in the microbiome. This article summarizes recent advances in assessment of dysbiosis, the importance of the bile acid-converting Clostridium hiranonis as an important beneficial bacterium in the canine gut, and different therapeutic approaches to dysbiosis.
Collapse
Affiliation(s)
- Anna-Lena Ziese
- Clinic of Small Animal Medicine, Ludwig Maximilian University of Munich, Veterinärstrasse 13, Munich 80539, Germany
| | - Jan S Suchodolski
- Gastrointestinal Laboratory, College of Veterinary Medicine, Texas A&M University, 4474 TAMU, College Station, TX 77845, USA.
| |
Collapse
|
62
|
Abd El-Hack ME, El-Saadony MT, Shafi ME, Qattan SYA, Batiha GE, Khafaga AF, Abdel-Moneim AME, Alagawany M. Probiotics in poultry feed: A comprehensive review. J Anim Physiol Anim Nutr (Berl) 2020; 104:1835-1850. [PMID: 32996177 DOI: 10.1111/jpn.13454] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 01/06/2023]
Abstract
The use of antibiotics to maintain animal well-being, promote growth and improve efficiency has been practised for more than 50 years. However, as early as the 1950s, researchers identified concern on the development of resistant bacteria for the antibiotics streptomycin and tetracycline used in turkeys and broilers respectively. These findings laid the groundwork for agricultural officials to impose stricter regulatory parameters on the use of antibiotics in poultry feeds. Probiotics are live micro-organisms included in the diet of animals as feed additives or supplements. Commonly known as a direct-fed microbial, probiotics provide beneficial properties to the host, primarily through action in the gastrointestinal tract (GIT) of the animal. Supplementation of probiotics in the diet can improve animal health and performance, through contributions to gut health and nutrient use. For instance, supplementation of probiotics has been demonstrated to benefit farm animals in immune modulation, structural modulation and increased cytokine production, which positively affect the intestinal mucosal lining against pathogens. Bacillus subtilis has been a popular bacterium used within the industry and was shown to improve intestinal villus height. Increasing the villus height and structure of the crypts in the GIT allows for the improvement of nutrient digestion and absorption. Tight junctions maintain important defences against pathogenic bacteria and cellular homeostasis. Heat stress can be a major environmental challenge in the poultry industry. Heat stress causes the bird to fluctuate its internal core temperature beyond their comfort zone. To overcome such challenges, poultry will attempt to balance its heat production and dissipation through behavioural and physiological adaptation mechanisms.
Collapse
Affiliation(s)
| | - Mohamed T El-Saadony
- Agricultural Microbiology Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Manal E Shafi
- Department of Biological Sciences, Zoology, Abdulaziz University, Jeddah, Saudi Arabia
| | - Shaza Y A Qattan
- Department of Biological Sciences, Microbiology, Faculty of Science, Abdulaziz University, Jeddah, Saudi Arabia
| | - Gaber E Batiha
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan.,Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Al-Beheira, Egypt
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, Egypt
| | | | - Mahmoud Alagawany
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| |
Collapse
|
63
|
Pilla R, Gaschen FP, Barr JW, Olson E, Honneffer J, Guard BC, Blake AB, Villanueva D, Khattab MR, AlShawaqfeh MK, Lidbury JA, Steiner JM, Suchodolski JS. Effects of metronidazole on the fecal microbiome and metabolome in healthy dogs. J Vet Intern Med 2020; 34:1853-1866. [PMID: 32856349 PMCID: PMC7517498 DOI: 10.1111/jvim.15871] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 07/17/2020] [Accepted: 07/28/2020] [Indexed: 12/27/2022] Open
Abstract
Background Metronidazole has a substantial impact on the gut microbiome. However, the recovery of the microbiome after discontinuation of administration, and the metabolic consequences of such alterations have not been investigated to date. Objectives To describe the impact of 14‐day metronidazole administration, alone or in combination with a hydrolyzed protein diet, on fecal microbiome, metabolome, bile acids (BAs), and lactate production, and on serum metabolome in healthy dogs. Animals Twenty‐four healthy pet dogs. Methods Prospective, nonrandomized controlled study. Dogs fed various commercial diets were divided in 3 groups: control group (no intervention, G1); group receiving hydrolyzed protein diet, followed by metronidazole administration (G2); and group receiving metronidazole only (G3). Microbiome composition was evaluated with sequencing of 16S rRNA genes and quantitative polymerase chain reaction (qPCR)‐based dysbiosis index. Untargeted metabolomics analysis of fecal and serum samples was performed, followed by targeted assays for fecal BAs and lactate. Results No changes were observed in G1, or G2 during diet change. Metronidazole significantly changed microbiome composition in G2 and G3, including decreases in richness (P < .001) and in key bacteria such as Fusobacteria (q < 0.001) that did not fully resolve 4 weeks after metronidazole discontinuation. Fecal dysbiosis index was significantly increased (P < .001). Those changes were accompanied by increased fecal total lactate (P < .001), and decreased secondary BAs deoxycholic acid and lithocholic acid (P < .001). Conclusion and Clinical Importance Our results indicate a minimum 4‐week effect of metronidazole on fecal microbiome and metabolome, supporting a cautious approach to prescription of metronidazole in dogs.
Collapse
Affiliation(s)
- Rachel Pilla
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, Texas, USA
| | - Frederic P Gaschen
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - James W Barr
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, Texas, USA
| | - Erin Olson
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Julia Honneffer
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, Texas, USA
| | - Blake C Guard
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, Texas, USA
| | - Amanda B Blake
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, Texas, USA
| | - Dean Villanueva
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, Texas, USA
| | - Mohammad R Khattab
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, Texas, USA
| | - Mustafa K AlShawaqfeh
- School of Electrical Engineering and Information Technology, German-Jordanian University, Amman, Jordan
| | - Jonathan A Lidbury
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, Texas, USA
| | - Jörg M Steiner
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, Texas, USA
| | - Jan S Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
64
|
An ambient temperature collection and stabilization strategy for canine microbiota studies. Sci Rep 2020; 10:13383. [PMID: 32770113 PMCID: PMC7414149 DOI: 10.1038/s41598-020-70232-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 07/27/2020] [Indexed: 12/14/2022] Open
Abstract
Similar to humans, the fecal microbiome of dogs may be useful in diagnosing diseases or assessing dietary interventions. The accuracy and reproducibility of microbiome data depend on sample integrity, which can be affected by storage methods. Here, we evaluated the ability of a stabilization device to preserve canine fecal samples under various storage conditions simulating shipping in hot or cold climates. Microbiota data from unstabilized samples stored at room temperature (RT) and samples placed in PERFORMAbiome·GUT collection devices (PB-200) (DNA Genotek, Inc. Ottawa, Canada) and stored at RT, 37 °C, 50 °C, or undergoing repeated freeze-thaw cycles, were compared with freshly extracted samples. Alpha- and beta diversity indices were not affected in stabilized samples, regardless of storage temperature. Unstabilized samples stored at RT, however, had higher alpha diversity. Moreover, the relative abundance of dominant bacterial phyla (Firmicutes, Fusobacteria, Bacteriodetes, and Actinobacteria) and 24 genera were altered in unstabilized samples stored at RT, while microbiota abundance was not significantly changed in stabilized samples stored at RT. Our results suggest that storage method is important in microbiota studies and that the stabilization device may be useful in maintaining microbial profile integrity, especially for samples collected off-site and/or those undergoing temperature changes during shipment or storage.
Collapse
|
65
|
Abstract
Clinical findings with triaditis and individual disease components overlap and may include hyporexia, weight loss, lethargy, vomiting, diarrhea, dehydration, icterus, abdominal pain, thickened bowel loops, pyrexia, dyspnea, and shock. A definitive diagnosis of triaditis requires histologic confirmation of inflammation in each organ, but this may not be possible because of financial or patient-related constraints. Evidence-based data indicate that histologic lesions of triaditis are present in 30% to 50% of cats diagnosed with pancreatitis and cholangitis/inflammatory liver disease. Treatment of triaditis is based on the overall health status of the patient and the type and severity of disease in component organs.
Collapse
|
66
|
Cintio M, Scarsella E, Sgorlon S, Sandri M, Stefanon B. Gut Microbiome of Healthy and Arthritic Dogs. Vet Sci 2020; 7:vetsci7030092. [PMID: 32674496 PMCID: PMC7558702 DOI: 10.3390/vetsci7030092] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/20/2020] [Accepted: 07/11/2020] [Indexed: 12/13/2022] Open
Abstract
Several studies have underlined the interplay among host-microbiome and pathophysiological conditions of animals. Research has also focused specifically on whether and how changes in the gut microbiome have provoked the occurrence of pathological phenomena affecting cartilage and joints in humans and in laboratory animals. Here, we tried to evaluate the relationship between the gut microbiome and the hip and elbow arthritis in owned dogs. The study included 14 dogs suffering from chronic arthritis (AD) and 13 healthy dogs (HD). After the first visit and during the period of the study, the dogs, under the supervision of the owner, were fed a semi-moist complete diet supplemented with omega 3 fatty acids. Feces and blood samples were collected in the clinic at the first visit (T0) and after days (T45). The plasma C-reactive protein (CRP) was higher, and the serum vitamin B12 and folate concentrations were lower (p < 0.05) in the AD group in comparison to the HD group. Data of the fecal microbiome showed that the relative abundances of the genus Megamonas were higher in AD (p < 0.001), while the relative abundance of the families Paraprevotellaceae, Porphyromonadaceae, and Mogibacteriaceae was significantly lower in comparison to HD. The results of the study identified several bacterial groups that differed significantly in the fecal microbiome between healthy and diseased dogs. If the observed differences in fecal bacterial composition predispose dogs to hip and elbow arthritis or if these differences reflect a correlation with these conditions deserves further investigation.
Collapse
|
67
|
Quyushengxin Formula Causes Differences in Bacterial and Phage Composition in Ulcerative Colitis Patients. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:5859023. [PMID: 32454865 PMCID: PMC7240791 DOI: 10.1155/2020/5859023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/24/2020] [Accepted: 03/13/2020] [Indexed: 12/14/2022]
Abstract
Background Ulcerative colitis (UC) is a chronic inflammatory disease that affects the colon and the rectum. Recently, some studies have shown that microorganisms in the gut play important roles in many chronic diseases such as UC. Methods To study the candidate viruses and bacteria involved in UC and to investigate the therapeutic mechanism of Quyushengxin formula (QYSX) in UC patients, metagenomic sequencing was performed on the feces from healthy donors and UC patients before and after QYSX treatment. Results QYSX improved the symptoms of UC. In all participants, Caudovirales and Herpesvirales were the most dominant viruses. The abundance of Caudovirales in UC patients was significantly higher than that in the normal controls, while QYSX restored Caudovirales abundance. Furthermore, the abundance of crAssphage was enhanced in UC patients compared with the normal control, while the diversity was then decreased after QYSX treatment. However, there was no significant difference (P > 0.05). Additionally, other non-crAssphage bacteriophages including phiST, SP-10, and phi17:2 were higher in UC patients and QYSX decreased these viruses, while the trends of MED4−213, P-HM1, and P−HM2 were adverse. Interestingly, PhiDP23.1 was only found in UC patients before and after QYSX treatment. In addition, Bifidobacterium, Bacteroidetes, Prevotellaceae, Actinobacteria, and Corynebacteriales were the biomarkers in UC patients after QYSX treatment due to their high abundance. GO terms and KEGG analysis showed that the identified gut microbiome was involved in many biological processes and pathways. Conclusions QYSX could regulate disordered gut microbiome and phages, indicating that QYSX has great therapeutic potential for UC.
Collapse
|
68
|
Garcia-Mazcorro JF, Minamoto Y, Kawas JR, Suchodolski JS, de Vos WM. Akkermansia and Microbial Degradation of Mucus in Cats and Dogs: Implications to the Growing Worldwide Epidemic of Pet Obesity. Vet Sci 2020; 7:vetsci7020044. [PMID: 32326394 PMCID: PMC7355976 DOI: 10.3390/vetsci7020044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 02/07/2023] Open
Abstract
Akkermansia muciniphila is a mucin-degrading bacterium that has shown the potential to provide anti-inflammatory and anti-obesity effects in mouse and man. We here focus on companion animals, specifically cats and dogs, and evaluate the microbial degradation of mucus and its health impact in the context of the worldwide epidemic of pet obesity. A literature survey revealed that the two presently known Akkermansia spp., A. muciniphila and A. glycaniphila, as well as other members of the phylum of Verrucomicrobia seem to be neither very prevalent nor abundant in the digestive tract of cats and dog. While this may be due to methodological aspects, it suggests that bacteria related to Akkermansia are not the major mucus degraders in these pets and hence other mucus-utilizing taxa may deserve attention. Hence, we will discuss the potential of these endogenous mucus utilizers and dietary interventions to boost these as well as the use of Akkermansia spp. related bacteria or their components as strategies to target feline and canine obesity.
Collapse
Affiliation(s)
- Jose F. Garcia-Mazcorro
- Research and Development, MNA de Mexico, San Nicolas de los Garza, Nuevo Leon 66477, Mexico
- Correspondence: ; Tel.: +52-81-8850-5204
| | | | - Jorge R. Kawas
- Faculty of Agronomy, Universidad Autonoma de Nuevo Leon, General Escobedo, Nuevo Leon 66050, Mexico;
| | - Jan S. Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4474, USA;
| | - Willem M. de Vos
- Laboratory of Microbiology, Wageningen University, 6708 WE Wageningen, The Netherlands;
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, P.O. Box 63, 00014 Helsinki, Finland
| |
Collapse
|
69
|
Sandri M, Sgorlon S, Scarsella E, Stefanon B. Effect of different starch sources in a raw meat-based diet on fecal microbiome in dogs housed in a shelter. ACTA ACUST UNITED AC 2020; 6:353-361. [PMID: 33005769 PMCID: PMC7503078 DOI: 10.1016/j.aninu.2020.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/11/2020] [Accepted: 03/15/2020] [Indexed: 12/18/2022]
Abstract
A dietary intervention study was assessed to determine if different sources of starch in homemade diets could significantly modify fecal microbiome of dogs. Twenty-seven adult dogs were enrolled and fed a diet based on a mixture of rice and pasta with fresh raw meat (CD). After 90 d, 8 dogs continued to receive CD diet, 10 dogs received a diet made of a raw meat and a complementary food with rice as the main source of starch (B1), and 9 dogs were fed a diet with the same raw meat and a complementary food with potato as the main source of starch (B2). Samples of feces were collected from each dog in the mornings at the beginning of the study and after 15 d and analyzed for pH, ammonia N (N–NH3) and total N, short chain fatty acids (SCFA) and lactic acid. Relative abundance of fecal microbiota was assessed by sequencing and annotating the V3–V4 regions of the 16S rRNA. Total starch intake was similar between diets but differed in the in vitro rate digestion and in the resistant starch, which was higher in B2 than in B1 and CD diets. Dogs fed B2 diet showed lower (P < 0.05) N–NH3 and pH but higher (P < 0.05) molar proportion of lactic acid. Linear discriminant analysis of the genera relative abundances indicated a significant (P < 0.01) increase of SMB53 genus at the end of the study in B1 diet and of Megamonas genus in B1 and B2 diets in comparison to CD diet. These results suggest that changes of starch source in a raw meat-based diet have limited effects on fecal microbiome in healthy dogs, but underline a high variability of microbiota among dogs.
Collapse
Affiliation(s)
- Misa Sandri
- Department of AgriFood, Environmental and Animal Science, University of Udine, Udine, 33100, Italy
| | - Sandy Sgorlon
- Department of AgriFood, Environmental and Animal Science, University of Udine, Udine, 33100, Italy
| | - Elisa Scarsella
- Department of AgriFood, Environmental and Animal Science, University of Udine, Udine, 33100, Italy
| | - Bruno Stefanon
- Department of AgriFood, Environmental and Animal Science, University of Udine, Udine, 33100, Italy
| |
Collapse
|
70
|
Scarsella E, Cintio M, Iacumin L, Ginaldi F, Stefanon B. Interplay between Neuroendocrine Biomarkers and Gut Microbiota in Dogs Supplemented with Grape Proanthocyanidins: Results of Dietary Intervention Study. Animals (Basel) 2020; 10:ani10030531. [PMID: 32235730 PMCID: PMC7142954 DOI: 10.3390/ani10030531] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/20/2020] [Accepted: 03/20/2020] [Indexed: 12/17/2022] Open
Abstract
Simple Summary The connection between animal health and gut microbiota has been studied during the past years through different diet modulation experiments; however, there is still a paucity of information about the prebiotic functions in the gastrointestinal tract of companion animals. Considering this, a population of dogs living in the same environment has been subjected to a nutritional study, with different doses of proanthocyanidins extracted from grapevine supplied to the diet. Characterization of the gut microbiota and data from endocrine analysis in saliva have been collected. Dogs responded differently to the dietary intervention, and results underlined the existence of a difference between subjects in terms of fecal microorganisms and neuroendocrine markers, leading us to think the balance of gut microbiota is going to play a strong role in diet formulation based on host health modulation. Abstract Several studies on the interaction between gut microbiota and diets, including prebiotics, have been reported in dogs, but no data are available about the effects of dietary administration of grape proanthocyanidins. In the study, 24 healthy adult dogs of different breeds were recruited and divided in 3 groups of 8 subjects each. A group was fed with a control diet (D0), whilst the others were supplemented with 1 (D1) or 3 (D3) mg/kg live weight of grape proanthocyanidins. Samples of feces were collected at the beginning and after 14 and 28 days for microbiota, short chain fatty acid, and lactic acid analysis. Serotonin and cortisol were measured in saliva, collected at the beginning of the study and after 28 days. A significantly higher abundance (p < 0.01) of Enterococcus and Adlercreutzia were observed in D0, whilst Escherichia and Eubacterium were higher in D1. Fusobacterium and Phascolarctobacterium were higher (p < 0.01) in D3. Salivary serotonin increased (p < 0.01) at T28 for D1 and D3 groups but cortisol did not vary. Proanthocyanidins administration influenced the fecal microbiota and neuroendocrine response of dogs, but a high variability of taxa was observed, suggesting a uniqueness and stability of fecal microbiota related to the individual.
Collapse
|
71
|
Attenuated Lactococcus lactis and Surface Bacteria as Tools for Conditioning the Microbiota and Driving the Ripening of Semisoft Caciotta Cheese. Appl Environ Microbiol 2020; 86:AEM.02165-19. [PMID: 31862717 PMCID: PMC7028956 DOI: 10.1128/aem.02165-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023] Open
Abstract
This study aimed at establishing the effects of attenuated starters and surface bacteria on various features of caciotta cheese. The cheese undergoes a ripening period during which the house microbiota contaminates the surface. Conventional cheese (the control cheese [CC]) is made using only primary starters. Primary starters and attenuated (i.e., unable to grow and synthesize lactic acid) Lactococcus lactis (Lc. lactis) subsp. lactis were used to produce caciotta cheese without (ATT cheese) or with an inoculum of surface bacteria: (i) Leuconostoc lactis (Le. lactis) (LL cheese), (ii) Vibrio casei (VC cheese), (iii) Staphylococcus equorum (SE cheese), (iv) Brochothrix thermosphacta (BX cheese), and (v) a mixture of all four (MIX cheese). Attenuated Lc. lactis increased microbial diversity during cheese ripening. At the core, attenuated starter mainly increased indigenous lactococci and Lactobacillus delbrueckii group bacteria. At the surface, the main effect was on Macrococcus caseolyticus Autochthonous Le. lactis strains took advantage of the attenuated starter, becoming dominant. Adjunct Le. lactis positively affected Lactobacillus sakei group bacteria on the LL cheese surface. Adjunct V. casei, S. equorum, and B. thermosphacta did not become dominant. Surfaces of VC, SE, and BX cheeses mainly harbored Staphylococcus succinus Peptidase activities were higher in cheeses made with attenuated starter than in CC, which had the lowest concentration of free amino acids. Based on the enzymatic activities of adjunct Le. lactis, LL and MIX cheeses exhibited the highest glutamate dehydrogenase, cystathionine-γ-lyase, and esterase activities. As shown by multivariate statistical analyses, LL and MIX cheeses showed the highest similarity for microbiological and biochemical features. LL and MIX cheeses received the highest scores for overall sensory acceptability.IMPORTANCE This study provides in-depth knowledge of the effects of attenuated starters and surface bacterial strains on the microbiota and related metabolic activities during cheese ripening. The use of attenuated Lc. lactis strongly impacted the microbiota assembly of caciotta cheese. This led to improved biochemical and sensory features compared to conventional cheese. Among surface bacterial strains, Le. lactis played a key role in the metabolic activities involved in cheese ripening. This resulted in an improvement of the sensory quality of caciotta cheese. The use of attenuated lactic acid bacteria and the surface adjunct Le. lactis could be a useful biotechnology to improve the flavor formation of caciotta cheese.
Collapse
|
72
|
Pilla R, Suchodolski JS. The Role of the Canine Gut Microbiome and Metabolome in Health and Gastrointestinal Disease. Front Vet Sci 2020; 6:498. [PMID: 31993446 PMCID: PMC6971114 DOI: 10.3389/fvets.2019.00498] [Citation(s) in RCA: 196] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/17/2019] [Indexed: 12/22/2022] Open
Abstract
The gut microbiome contributes to host metabolism, protects against pathogens, educates the immune system, and, through these basic functions, affects directly or indirectly most physiologic functions of its host. Molecular techniques have allowed us to expand our knowledge by unveiling a wide range of unculturable bacteria that were previously unknown. Most bacterial sequences identified in the canine gastrointestinal (GI) tract fall into five phyla: Firmicutes, Fusobacteria, Bacteroidetes, Proteobacteria, and Actinobacteria. While there are variations in the microbiome composition along the GI tract, most clinical studies concentrate on fecal microbiota. Age, diet, and many other environmental factors may play a significant role in the maintenance of a healthy microbiome, however, the alterations they cause pale in comparison with the alterations found in diseased animals. GI dysfunctions are the most obvious association with gut dysbiosis. In dogs, intestinal inflammation, whether chronic or acute, is associated with significant differences in the composition of the intestinal microbiota. Gut dysbiosis happens when such alterations result in functional changes in the microbial transcriptome, proteome, or metabolome. Commonly affected metabolites include short-chain fatty acids, and amino acids, including tryptophan and its catabolites. A recently developed PCR-based algorithm termed “Dysbiosis Index” is a tool that allows veterinarians to quantify gut dysbiosis and can be used to monitor disease progression and response to treatment. Alterations or imbalances in the microbiota affect immune function, and strategies to manipulate the gut microbiome may be useful for GI related diseases. Antibiotic usage induces a rapid and significant drop in taxonomic richness, diversity, and evenness. For that reason, a renewed interest has been put on probiotics, prebiotics, and fecal microbiota transplantation (FMT). Although probiotics are typically unable to colonize the gut, the metabolites they produce during their transit through the GI tract can ameliorate clinical signs and modify microbiome composition. Another interesting development is FMT, which may be a promising tool to aid recovery from dysbiosis, but further studies are needed to evaluate its potential and limitations.
Collapse
Affiliation(s)
- Rachel Pilla
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Jan S Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
73
|
Giaretta PR, Suchodolski JS, Jergens AE, Steiner JM, Lidbury JA, Cook AK, Hanifeh M, Spillmann T, Kilpinen S, Syrjä P, Rech RR. Bacterial Biogeography of the Colon in Dogs With Chronic Inflammatory Enteropathy. Vet Pathol 2020; 57:258-265. [PMID: 31916499 DOI: 10.1177/0300985819891259] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The intestinal microbiota is believed to play a role in the pathogenesis of inflammatory bowel disease in humans and chronic inflammatory enteropathy (CIE) in dogs. While most previous studies have described the gut microbiota using sequencing methods, it is fundamental to assess the spatial distribution of the bacteria for a better understanding of their relationship with the host. The microbiota in the colonic mucosa of 22 dogs with CIE and 11 control dogs was investigated using fluorescence in situ hybridization (FISH) with a universal eubacterial probe (EUB338) and specific probes for select bacterial groups. The number of total bacteria labeled with EUB338 probe was lower within the colonic crypts of dogs with CIE compared to controls. Helicobacter spp. and Akkermansia spp. were decreased on the colonic surface and in the crypts of dogs with CIE. Dogs with CIE had increased number of Escherichia coli/Shigella spp. on the colonic surface and within the crypts compared to control dogs. In conclusion, the bacterial microbiota in the colonic mucosa differed between dogs with and without CIE, with depletion of the crypt bacteria in dogs with CIE. The crypt bacterial species that was intimately associated with the host mucosa in control dogs was composed mainly of Helicobacter spp.
Collapse
Affiliation(s)
- Paula R Giaretta
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Jan S Suchodolski
- Department of Small Animal Clinical Sciences, Gastrointestinal Laboratory, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Albert E Jergens
- Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Jörg M Steiner
- Department of Small Animal Clinical Sciences, Gastrointestinal Laboratory, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Jonathan A Lidbury
- Department of Small Animal Clinical Sciences, Gastrointestinal Laboratory, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Audrey K Cook
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Mohsen Hanifeh
- Faculty of Veterinary Medicine, Department of Equine and Small Animal Medicine, University of Helsinki, Helsinki, Finland
| | - Thomas Spillmann
- Faculty of Veterinary Medicine, Department of Equine and Small Animal Medicine, University of Helsinki, Helsinki, Finland
| | - Susanne Kilpinen
- Faculty of Veterinary Medicine, Department of Equine and Small Animal Medicine, University of Helsinki, Helsinki, Finland
| | - Pernilla Syrjä
- Faculty of Veterinary Medicine, Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Raquel R Rech
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
74
|
Atherly T, Rossi G, White R, Seo YJ, Wang C, Ackermann M, Breuer M, Allenspach K, Mochel JP, Jergens AE. Glucocorticoid and dietary effects on mucosal microbiota in canine inflammatory bowel disease. PLoS One 2019; 14:e0226780. [PMID: 31887117 PMCID: PMC6936794 DOI: 10.1371/journal.pone.0226780] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/03/2019] [Indexed: 01/14/2023] Open
Abstract
The pathogenesis of canine inflammatory bowel disease (IBD) involves complex interactions between mucosal immunity and the intestinal microbiota. Glucocorticoids are commonly administered to reduce mucosal inflammation and gastrointestinal signs. The study objective was to evaluate the effects of diet and oral prednisone on the spatial distribution of mucosal bacteria in IBD dogs. Eight dogs diagnosed with IBD were treated with immunosuppressive doses of prednisone. The mucosal microbiota from endoscopic biopsies of IBD dogs and healthy controls (HC; n = 15 dogs) was evaluated by fluorescence in situ hybridization (FISH) targeting the 16S rRNA genes of total bacteria and bacterial species relevant in canine/human IBD. Apicaljunction protein (AJP) expression using immunohistochemistry investigated the effect of medical therapy on intestinal barrier integrity. All IBD dogs had a reduction in GI signs following diet and prednisone therapy compared with baseline CIBDAI scores (P < 0.05). The mucosal microbiota of HC and diseased dogs was most abundant in free and adherent mucus. Only Lactobacilli were increased (P < 0.05) in the adherent mucus of IBD dogs compared to HC. The spatial distribution of mucosal bacteria was significantly different (P < 0.05) in IBD dogs following prednisone therapy, with higher numbers of Bifidobacteria and Streptococci detected across all mucosal compartments and increased numbers of Bifidobacterium spp., Faecalibacterium spp., and Streptococcus spp. present within adherent mucus. Differences in intestinal AJPs were detected with expression of occludin increased (P < 0.05) in IBD dogs versus HC. The expressions of occludin and E-cadherin were increased but zonulin decreased (P < 0.05 for each) in IBD dogs following prednisone therapy. In conclusion, the spatial distribution of mucosal bacteria differs between IBD and HC dogs, and in response to diet and glucocorticoid administration. Medical therapy was associated with beneficial changes in microbial community structure and enhanced mucosal epithelial AJP expression.
Collapse
Affiliation(s)
- Todd Atherly
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Giacomo Rossi
- School of Biosciences and Veterinary Medicine, University of Camerino, Macerata, Italy
| | - Robin White
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Yeon-Jung Seo
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Chong Wang
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Mark Ackermann
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Mary Breuer
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Karin Allenspach
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Jonathan P. Mochel
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Albert E. Jergens
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
75
|
Li Y, Rahman SU, Huang Y, Zhang Y, Ming P, Zhu L, Chu X, Li J, Feng S, Wang X, Wu J. Green tea polyphenols decrease weight gain, ameliorate alteration of gut microbiota, and mitigate intestinal inflammation in canines with high-fat-diet-induced obesity. J Nutr Biochem 2019; 78:108324. [PMID: 32004926 DOI: 10.1016/j.jnutbio.2019.108324] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 10/25/2019] [Accepted: 12/10/2019] [Indexed: 12/17/2022]
Abstract
Green tea polyphenols (GTPs) exhibit beneficial effects towards obesity and intestinal inflammation; however, the mechanisms and association with gut microbiota are unclear. We examined the role of the gut microbiota of GTPs treatment for obesity and inflammation. Canines were fed either a normal diet or high-fat diet with low (0.48% g/kg), medium (0.96% g/kg), or high (1.92% g/kg), doses of GTPs for 18 weeks. GTPs decreased the relative abundance of Bacteroidetes and Fusobacteria and increased the relative abundance of Firmicutes as revealed by 16S rRNA gene sequencing analysis. The relative proportion of Acidaminococcus, Anaerobiospirillum, Anaerovibrio, Bacteroides, Blautia, Catenibactetium, Citrobacter, Clostridium, Collinsella, and Escherichia were significantly associated with GTPs-induced weight loss. GTPs significantly (P<.01) decreased expression levels of inflammatory cytokines, including TNF-α, IL-6, and IL-1β, and inhibited induction of the TLR4 signaling pathway compared with high-fat diet. We show that the therapeutic effects of GTPs correspond with changes in gut microbiota and intestinal inflammation, which may be related to the anti-inflammatory and anti-obesity mechanisms of GTPs.
Collapse
Affiliation(s)
- Yu Li
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
| | - Sajid Ur Rahman
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
| | - Yingying Huang
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
| | - Yafei Zhang
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
| | - Pengfei Ming
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
| | - Lei Zhu
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
| | - Xiaoyan Chu
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
| | - Jinchun Li
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
| | - Shibin Feng
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
| | - Xichun Wang
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China.
| | - Jinjie Wu
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China.
| |
Collapse
|
76
|
Niina A, Kibe R, Suzuki R, Yuchi Y, Teshima T, Matsumoto H, Kataoka Y, Koyama H. Improvement in Clinical Symptoms and Fecal Microbiome After Fecal Microbiota Transplantation in a Dog with Inflammatory Bowel Disease. VETERINARY MEDICINE-RESEARCH AND REPORTS 2019; 10:197-201. [PMID: 31819862 PMCID: PMC6898721 DOI: 10.2147/vmrr.s230862] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/18/2019] [Indexed: 12/20/2022]
Abstract
Purpose Recently, fecal microbiota transplantation (FMT) has been tested in veterinary medicine as a treatment option for multiple gastrointestinal (GI) diseases, such as inflammatory bowel disease (IBD). However, there are no reports of changes in the microbial diversity of fecal microbiome after treatment with FMT in canine IBD cases. Moreover, little is known about the long-term efficacy and safety of FMT treatment for dogs. Herein, we present a case of canine intractable IBD treated with repeated, long-term FMT. Patients and methods The patient was a 10-year-old, neutered, male, 4-kg Toy Poodle with a prolonged history of vomiting and diarrhea. Fecal examination for pathogens was negative. Despite treatment with multiple antibacterial and antidiarrheal agents, the patient showed no improvement. Endoscopic mucus sampling diagnosed a case of lymphocytic-plasmacytic duodenitis, ie, idiopathic IBD. Eventually, we performed periodic, long-term fecal microbiota transplantation of fresh donor feces collected from a 4-year-old, 32.8-kg, neutered male Golden Retriever by rectal enema. Additionally, we performed 16S rRNA sequence analysis, before and after FMT, to evaluate the microbiome diversity. Results Fecal microbiome diversity after FMT resembled that of the healthy donor dog’s fecal microbiome, before FMT, which led us to conclude that the fecal microbiome in our patient normalized with FMT. Moreover, the clinical symptoms improved remarkably with regard to the changes in the fecal microbiome. Additionally, we noted no observable side effects during FMT treatment. Conclusion This report indicates the efficacy and safety of long-term, periodic FMT for a case of canine IBD based on attenuation of clinical symptoms and changes in fecal microbiome diversity. Therefore, FMT could be chosen as a treatment option for IBD in canines in the future.
Collapse
Affiliation(s)
- Ayaka Niina
- Laboratory of Veterinary Internal Medicine, School of Veterinary Medicine, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Tokyo, Japan
| | - Ryoko Kibe
- Laboratory of Veterinary Microbiology, School of Veterinary Medicine, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Tokyo, Japan
| | - Ryohei Suzuki
- Laboratory of Veterinary Internal Medicine, School of Veterinary Medicine, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Tokyo, Japan
| | - Yunosuke Yuchi
- Laboratory of Veterinary Internal Medicine, School of Veterinary Medicine, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Tokyo, Japan
| | - Takahiro Teshima
- Laboratory of Veterinary Internal Medicine, School of Veterinary Medicine, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Tokyo, Japan
| | - Hirotaka Matsumoto
- Laboratory of Veterinary Internal Medicine, School of Veterinary Medicine, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Tokyo, Japan
| | - Yasushi Kataoka
- Laboratory of Veterinary Microbiology, School of Veterinary Medicine, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Tokyo, Japan
| | - Hidekazu Koyama
- Laboratory of Veterinary Internal Medicine, School of Veterinary Medicine, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Tokyo, Japan
| |
Collapse
|
77
|
In vitro fermentation of Cucumis sativus fructus extract by canine gut microbiota in combination with two probiotic strains. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
78
|
Meroni M, Longo M, Dongiovanni P. The Role of Probiotics in Nonalcoholic Fatty Liver Disease: A New Insight into Therapeutic Strategies. Nutrients 2019; 11:nu11112642. [PMID: 31689910 PMCID: PMC6893730 DOI: 10.3390/nu11112642] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) encompasses a broad spectrum of pathological hepatic conditions ranging from simple steatosis to nonalcoholic steatohepatitis (NASH), which may predispose to liver cirrhosis and hepatocellular carcinoma (HCC). Due to the epidemic obesity, NAFLD is representing a global health issue and the leading cause of liver damage worldwide. The pathogenesis of NAFLD is closely related to insulin resistance (IR), adiposity and physical inactivity as well as genetic and epigenetic factors corroborate to the development and progression of hepatic steatosis and liver injury. Emerging evidence has outlined the implication of gut microbiota and gut-derived endotoxins as actively contributors to NAFLD pathophysiology probably due to the tight anatomo-functional crosstalk between the gut and the liver. Obesity, nutrition and environmental factors might alter intestinal permeability producing a favorable micro-environment for bacterial overgrowth, mucosal inflammation and translocation of both invasive pathogens and harmful byproducts, which, in turn, influence hepatic fat composition and exacerbated pro-inflammatory and fibrotic processes. To date, no therapeutic interventions are available for NAFLD prevention and management, except for modifications in lifestyle, diet and physical exercise even though they show discouraging results due to the poor compliance of patients. The premise of this review is to discuss the role of gut–liver axis in NAFLD and emphasize the beneficial effects of probiotics on gut microbiota composition as a novel attractive therapeutic strategy to introduce in clinical practice.
Collapse
Affiliation(s)
- Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Pad. Granelli, via F Sforza 35, 20122 Milan, Italy.
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milano, Italy.
| | - Miriam Longo
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Pad. Granelli, via F Sforza 35, 20122 Milan, Italy.
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milano, Italy.
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Pad. Granelli, via F Sforza 35, 20122 Milan, Italy.
| |
Collapse
|
79
|
Mori A, Goto A, Kibe R, Oda H, Kataoka Y, Sako T. Comparison of the effects of four commercially available prescription diet regimens on the fecal microbiome in healthy dogs. J Vet Med Sci 2019; 81:1783-1790. [PMID: 31611485 PMCID: PMC6943313 DOI: 10.1292/jvms.19-0055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The effects of prescription diets on canine intestinal microbiota are unknown. In this
study, we used next generation sequencing to investigate the impact of four commercially
available prescription diet regimens on the fecal microbiome in six healthy dogs. The diet
regimens used were as follows: weight-loss diet, low-fat diet, renal diet, and
anallergenic diet. We found a significantly decreased proportion of phylum Actinobacteria
with the weight-loss diet compared to the anallergenic diet. There were no significant
differences in the proportion of phylum Bacteroidetes between the four diets. The
proportion of phylum Firmicutes was significantly decreased with the weight-loss diet
compared to the anallergenic diet. The proportion of phylum Fusobacteria was significantly
increased with the weight-loss diet compared to the anallergenic diet. There were no
significant differences in the proportion of phylum Proteobacteria after consumption of
the four diets. We therefore demonstrated that commercial prescription diet influences the
fecal microbiome in healthy dogs. These results might be useful when choosing a
prescription diet for targeting a disease.
Collapse
Affiliation(s)
- Akihiro Mori
- School of Veterinary Nursing & Technology, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan, Musashino, Tokyo 180-8602, Japan
| | - Ai Goto
- School of Veterinary Nursing & Technology, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan, Musashino, Tokyo 180-8602, Japan
| | - Ryoko Kibe
- School of Veterinary Science, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan, Musashino, Tokyo 180-8602, Japan
| | - Hitomi Oda
- School of Veterinary Nursing & Technology, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan, Musashino, Tokyo 180-8602, Japan
| | - Yasushi Kataoka
- School of Veterinary Science, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan, Musashino, Tokyo 180-8602, Japan
| | - Toshinori Sako
- School of Veterinary Nursing & Technology, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan, Musashino, Tokyo 180-8602, Japan
| |
Collapse
|
80
|
Mondo E, Marliani G, Accorsi PA, Cocchi M, Di Leone A. Role of gut microbiota in dog and cat's health and diseases. Open Vet J 2019; 9:253-258. [PMID: 31998619 PMCID: PMC6794400 DOI: 10.4314/ovj.v9i3.10] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 08/08/2019] [Indexed: 12/18/2022] Open
Abstract
Mammalian gastrointestinal tract is colonized by a large number of microorganisms, known as gut microbiota, that play a key role in the physiological and pathological states. In particular, the gastrointestinal tract of dogs and cats harbors a complex and highly biodiverse microbial ecosystem. Recent studies see it involved in a wide range of life processes, including energy needs, metabolism, immunological activity, and neuro-behavioral development. This review focuses on the role of the microbiota on the health of pets and will discuss changes that occur in the disease.
Collapse
Affiliation(s)
- Elisabetta Mondo
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Giovanna Marliani
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Pier Attilio Accorsi
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Massimo Cocchi
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Alberto Di Leone
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
81
|
Jarett JK, Carlson A, Rossoni Serao M, Strickland J, Serfilippi L, Ganz HH. Diets with and without edible cricket support a similar level of diversity in the gut microbiome of dogs. PeerJ 2019; 7:e7661. [PMID: 31565574 PMCID: PMC6743483 DOI: 10.7717/peerj.7661] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/12/2019] [Indexed: 12/14/2022] Open
Abstract
The gut microbiome plays an important role in the health of dogs. Both beneficial microbes and overall diversity can be modulated by diet. Fermentable sources of fiber in particular often increase the abundance of beneficial microbes. Banded crickets (Gryllodes sigillatus) contain the fermentable polysaccharides chitin and chitosan. In addition, crickets are an environmentally sustainable protein source. Considering crickets as a potential source of both novel protein and novel fiber for dogs, four diets ranging from 0% to 24% cricket content were fed to determine their effects on healthy dogs’ (n = 32) gut microbiomes. Fecal samples were collected serially at 0, 14, and 29 days, and processed using high-throughput sequencing of 16S rRNA gene PCR amplicons. Microbiomes were generally very similar across all diets at both the phylum and genus level, and alpha and beta diversities did not differ between the various diets at 29 days. A total of 12 ASVs (amplicon sequence variants) from nine genera significantly changed in abundance following the addition of cricket, often in a dose-response fashion with increasing amounts of cricket. A net increase was observed in Catenibacterium, Lachnospiraceae [Ruminococcus], and Faecalitalea, whereas Bacteroides, Faecalibacterium, Lachnospiracaeae NK4A136 group and others decreased in abundance. Similar changes in Catenibacterium and Bacteroides have been associated with gut health benefits in other studies. However, the total magnitude of all changes was small and only a few specific taxa changed in abundance. Overall, we found that diets containing cricket supported the same level of gut microbiome diversity as a standard healthy balanced diet. These results support crickets as a potential healthy, novel food ingredient for dogs.
Collapse
|
82
|
Wang S, Martins R, Sullivan MC, Friedman ES, Misic AM, El-Fahmawi A, De Martinis ECP, O'Brien K, Chen Y, Bradley C, Zhang G, Berry ASF, Hunter CA, Baldassano RN, Rondeau MP, Beiting DP. Diet-induced remission in chronic enteropathy is associated with altered microbial community structure and synthesis of secondary bile acids. MICROBIOME 2019; 7:126. [PMID: 31472697 PMCID: PMC6717631 DOI: 10.1186/s40168-019-0740-4] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/19/2019] [Indexed: 05/10/2023]
Abstract
BACKGROUND The microbiome has been implicated in the initiation and persistence of inflammatory bowel disease. Despite the fact that diet is one of the most potent modulators of microbiome composition and function and that dietary intervention is the first-line therapy for treating pediatric Crohn's disease, the relationships between diet-induced remission, enteropathy, and microbiome are poorly understood. Here, we leverage a naturally-occurring canine model of chronic inflammatory enteropathy that exhibits robust remission following nutritional therapy, to perform a longitudinal study that integrates clinical monitoring, 16S rRNA gene amplicon sequencing, metagenomic sequencing, metabolomic profiling, and whole genome sequencing to investigate the relationship between therapeutic diet, microbiome, and disease. RESULTS We show that remission induced by a hydrolyzed protein diet is accompanied by alterations in microbial community structure marked by decreased abundance of pathobionts (e.g., Escherichia coli and Clostridium perfringens), reduced severity of dysbiosis, and increased levels of the secondary bile acids, lithocholic and deoxycholic acid. Physiologic levels of these bile acids inhibited the growth of E. coli and C. perfringens isolates, in vitro. Metagenomic analysis and whole genome sequencing identified the bile acid producer Clostridium hiranonis as elevated after dietary therapy and a likely source of secondary bile acids during remission. When C. hiranonis was administered to mice, levels of deoxycholic acid were preserved and pathology associated with DSS colitis was ameliorated. Finally, a closely related bile acid producer, Clostridium scindens, was associated with diet-induced remission in human pediatric Crohn's disease. CONCLUSIONS These data highlight that remission induced by a hydrolyzed protein diet is associated with improved microbiota structure, an expansion of bile acid-producing clostridia, and increased levels of secondary bile acids. Our observations from clinical studies of exclusive enteral nutrition in human Crohn's disease, along with our in vitro inhibition assays and in vivo studies in mice, suggest that this may be a conserved response to diet therapy with the potential to ameliorate disease. These findings provide insight into diet-induced remission of gastrointestinal disease and could help guide the rational design of more effective therapeutic diets.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Rene Martins
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Megan C Sullivan
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Elliot S Friedman
- Division of Gastroenterology, School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ana M Misic
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ayah El-Fahmawi
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | - Kevin O'Brien
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ying Chen
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Charles Bradley
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Grace Zhang
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Alexander S F Berry
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Pediatric Gastroenterology Hepatology and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Christopher A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Robert N Baldassano
- Department of Pediatric Gastroenterology Hepatology and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Mark P Rondeau
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Daniel P Beiting
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
83
|
Soontararak S, Chow L, Johnson V, Coy J, Webb C, Wennogle S, Dow S. Humoral immune responses against gut bacteria in dogs with inflammatory bowel disease. PLoS One 2019; 14:e0220522. [PMID: 31369623 PMCID: PMC6675102 DOI: 10.1371/journal.pone.0220522] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/17/2019] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD) in dogs is associated with clinical signs of intestinal dysfunction, as well as abnormal lymphocytic and myeloid cell infiltrates in the small and/or large intestine. Thus, in many respects IBD in dogs resembles IBD in humans. However, the factors that trigger intestinal inflammation in dogs with IBD are not well understood and have been variously attributed to immune responses against dietary antigens or intestinal antigens. Previous studies in humans with IBD have documented increased production of IgG and IgA antibodies specific to intestinal bacteria, and this abnormal immune response has been linked to disease pathogenesis. Therefore, we investigated the humoral immune response against gut bacteria in dogs with IBD, using flow cytometry to quantitate IgG and IgA binding. Studies were also done to investigate the source of these antibodies (locally produced versus systemic production) and whether greater antibody binding to bacteria is associated with increased inflammatory responses. We found that dogs with IBD had significantly higher percentages and overall amounts of IgG bound to their intestinal bacteria compared to healthy dogs. Similarly, significantly higher percentages of bacteria were IgA+ bacteria were also found in dogs with IBD. Serum antibody recognition of gut bacteria was not different between healthy dogs and dogs with IBD, suggesting that anti-bacterial antibodies were primarily produced locally in the gut rather than systemically. Importantly, bacteria in the Actinobacteria phylum and in particular the genus Collinsella had significantly greater levels of antibody binding in dogs with IBD. Based on these findings, we concluded that antibody binding to commensal gut bacteria was significantly increased in dogs with IBD, that particular phyla were preferential targets for gut antibodies, and that anti-bacterial antibody responses may play an important role in regulating gut inflammation.
Collapse
Affiliation(s)
- Sirikul Soontararak
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Lyndah Chow
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Valerie Johnson
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jonathan Coy
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Craig Webb
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Sara Wennogle
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Steven Dow
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
84
|
Meazzi S, Stranieri A, Lauzi S, Bonsembiante F, Ferro S, Paltrinieri S, Giordano A. Feline gut microbiota composition in association with feline coronavirus infection: A pilot study. Res Vet Sci 2019; 125:272-278. [PMID: 31326703 PMCID: PMC7111766 DOI: 10.1016/j.rvsc.2019.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/04/2019] [Accepted: 07/09/2019] [Indexed: 12/14/2022]
Abstract
Feline coronaviruses (FCoV) colonize the intestinal tract, however, due to not fully understood mutations, they can spread systemically and cause feline infectious peritonitis (FIP). Recent studies on human medicine report that gut microbiota is involved in the development of systemic disorders and could influence the immune response to viral diseases. The aim of this study was to provide preliminary data on the fecal microbiota composition in healthy cats compared to FCoV-infected cats, with and without FIP. Cats were equally grouped as healthy FCoV-negative, healthy FCoV-positive or FIP affected (total n = 15). Fecal sample were evaluated for the microbiota composition. A total of 3,231,916 sequences were analyzed. The samples' alpha-diversity curves did not reach a proper plateau and, for the beta-diversity, the samples seemed not to group perfectly by category, even if the healthy FCoV-positive group showed a hybrid microbial composition between FCoV-negative and FIP groups. Although there were no taxa significantly linked to the different conditions, some peculiar patterns were recognized: Firmicutes was always the most represented phylum, followed by Bacteroidetes and Actinobacteria. In FCoV-positive cats, the Firmicutes and Bacteroidetes were respectively over- and under-represented, compared to the other groups. Among FIP cats, three subjects shared a similar microbiome, one cat showed a different microbial profile and the other one had the lowest number of diverse phyla. Despite the limited number of animals, some differences in the fecal microbiome between the groups were observed, suggesting to further investigate the possible correlation between gut microbiota and FCoV infection in cats. Mutated form of enteric feline coronaviruses (FCoV) may spread systemically inducing feline infectious peritonitis (FIP). Gut microbiota is known to be influenced by viral diseases in people and in some animal species. Fecal microbiota was evaluated in 15 cats divided in three groups as healthy, positive to FCoV and affected by FIP. Some microbiota peculiarities have been observed associated with the presence of coronavirus and/or disease. Feline gut microbiota composition may be associated with FCoV infection and thus need to be further investigated.
Collapse
Affiliation(s)
- Sara Meazzi
- Department of Veterinary Medicine, University of Milan, Via Celoria 10, 20122 Milano, MI, Italy; Veterinary Teaching Hospital, University of Milan, via dell'Università, 6, 26900 Lodi, LO, Italy.
| | - Angelica Stranieri
- Department of Veterinary Medicine, University of Milan, Via Celoria 10, 20122 Milano, MI, Italy; Veterinary Teaching Hospital, University of Milan, via dell'Università, 6, 26900 Lodi, LO, Italy
| | - Stefania Lauzi
- Department of Veterinary Medicine, University of Milan, Via Celoria 10, 20122 Milano, MI, Italy; Veterinary Teaching Hospital, University of Milan, via dell'Università, 6, 26900 Lodi, LO, Italy
| | - Federico Bonsembiante
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 15, 35020 Legnaro, PD, Italy
| | - Silvia Ferro
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 15, 35020 Legnaro, PD, Italy
| | - Saverio Paltrinieri
- Department of Veterinary Medicine, University of Milan, Via Celoria 10, 20122 Milano, MI, Italy; Veterinary Teaching Hospital, University of Milan, via dell'Università, 6, 26900 Lodi, LO, Italy
| | - Alessia Giordano
- Department of Veterinary Medicine, University of Milan, Via Celoria 10, 20122 Milano, MI, Italy; Veterinary Teaching Hospital, University of Milan, via dell'Università, 6, 26900 Lodi, LO, Italy
| |
Collapse
|
85
|
Fox M, Knorr DA, Haptonstall KM. Alzheimer's disease and symbiotic microbiota: an evolutionary medicine perspective. Ann N Y Acad Sci 2019; 1449:3-24. [PMID: 31180143 DOI: 10.1111/nyas.14129] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/19/2019] [Accepted: 05/03/2019] [Indexed: 12/15/2022]
Abstract
Microorganisms resident in our bodies participate in a variety of regulatory and pathogenic processes. Here, we describe how etiological pathways implicated in Alzheimer's disease (AD) may be regulated or disturbed by symbiotic microbial activity. Furthermore, the composition of symbiotic microbes has changed dramatically across human history alongside the rise of agriculturalism, industrialization, and globalization. We postulate that each of these lifestyle transitions engendered progressive depletion of microbial diversity and enhancement of virulence, thereby enhancing AD risk pathways. It is likely that the human life span extended into the eighth decade tens of thousands of years ago, yet little is known about premodern geriatric epidemiology. We propose that microbiota of the gut, oral cavity, nasal cavity, and brain may modulate AD pathogenesis, and that changes in the microbial composition of these body regions across history suggest escalation of AD risk. Dysbiosis may promote immunoregulatory dysfunction due to inadequate education of the immune system, chronic inflammation, and epithelial barrier permeability. Subsequently, proinflammatory agents-and occasionally microbes-may infiltrate the brain and promote AD pathogenic processes. APOE genotypes appear to moderate the effect of dysbiosis on AD risk. Elucidating the effect of symbiotic microbiota on AD pathogenesis could contribute to basic and translational research.
Collapse
Affiliation(s)
- Molly Fox
- Department of Anthropology, University of California Los Angeles, Los Angeles, California.,Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California
| | - Delaney A Knorr
- Department of Anthropology, University of California Los Angeles, Los Angeles, California
| | - Kacey M Haptonstall
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
86
|
Villot C, Ma T, Renaud DL, Ghaffari MH, Gibson DJ, Skidmore A, Chevaux E, Guan LL, Steele MA. Saccharomyces cerevisiae boulardii CNCM I-1079 affects health, growth, and fecal microbiota in milk-fed veal calves. J Dairy Sci 2019; 102:7011-7025. [PMID: 31155261 DOI: 10.3168/jds.2018-16149] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/29/2019] [Indexed: 12/30/2022]
Abstract
The objective of this study was to investigate the effect of one specific strain of yeast, Saccharomyces cerevisiae boulardii CNCM I-1079 (SCB), on the growth performance, health, and fecal bacterial profile of veal calves. A total of 84 animals were enrolled in an experiment at a commercial veal farm for a total of 7 wk. Calves were fed twice a day with a milk replacer meal during the entire experiment and were randomly assigned to receive daily either SCB supplementation (10 × 109 cfu/d) or a placebo (CON). Individual feed intake and body weight were monitored on a daily and weekly basis, respectively. Fecal samples were collected at arrival to the veal facility (wk 0) and additional samples were taken on d 14 (wk 2) and d 49 (wk 7). These samples were subjected to 16S rRNA gene amplicon sequencing using Illumina MiSeq (Illumina Inc., San Diego, CA) to examine the bacterial profiles and real-time quantitative PCR to quantify Saccharomyces cerevisiae and specific bacterial groups. The significant increase of S. cerevisiae in the feces of SCB calves at wk 2 and 7 compared with wk 0 (respectively 1.7 × 107, 1.2 × 107, and 2.2 × 105 copy number of S. cerevisiae/g of feces) indicates a good survival of that yeast strain along the gastrointestinal tract. Supplementation of SCB did not improve overall growth performance with regard to average daily gain (ADG), final body weight, and feed intake. Nevertheless, a total of 69.1% of nonsupplemented calves had diarrhea and 28.6% experienced severe diarrhea, whereas 50.0% of the calves supplemented with SCB had diarrhea and 9.5% experienced severe diarrhea. With respect to antibiotic use, 89.7% of the diarrheic calves recorded in the CON group were treated, whereas only 66.7% of the SCB diarrheic calves received an antibiotic. In addition, diarrheic calves supplemented with SCB maintained an ADG similar to nondiarrheic animals, whereas the CON diarrheic calves had a significantly lower ADG in comparison with nondiarrheic CON calves. Fecalibacterium was the most predominant bacterial genus in fecal samples of nondiarrheic and diarrheic calves supplemented with SCB, whereas fecal microbiota was predominated by Collinsella in diarrheic calves from the CON group. Live yeast supplementation in milk replacer led to a decrease of diarrhea in milk-fed veal calves and the fecal microbiota of diarrheic calves maintained a healthy community similar to nondiarrheic animals, with Fecalibacterium being the predominant genus.
Collapse
Affiliation(s)
- C Villot
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - T Ma
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada; Feed Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, Beijing, 100081, China
| | - D L Renaud
- Department of Population Medicine, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - M H Ghaffari
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - D J Gibson
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - A Skidmore
- Lallemand Animal Nutrition, F-31702 Blagnac, France, and Milwaukee, WI 53218
| | - E Chevaux
- Lallemand Animal Nutrition, F-31702 Blagnac, France, and Milwaukee, WI 53218
| | - L L Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - M A Steele
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada; Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
87
|
Minamoto Y, Minamoto T, Isaiah A, Sattasathuchana P, Buono A, Rangachari VR, McNeely IH, Lidbury J, Steiner JM, Suchodolski JS. Fecal short-chain fatty acid concentrations and dysbiosis in dogs with chronic enteropathy. J Vet Intern Med 2019; 33:1608-1618. [PMID: 31099928 PMCID: PMC6639498 DOI: 10.1111/jvim.15520] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 05/03/2019] [Indexed: 01/14/2023] Open
Abstract
Background Accumulating evidence shows an important relationship between the gastrointestinal (GI) microbiota and host health. Microbial metabolites are believed to play a critical role in host‐microbial interactions. Short‐chain fatty acids (SCFAs) are major end products of bacterial carbohydrate fermentation in the intestinal tract. Decreased concentrations of SCFAs have been observed in humans with GI disease. However, large‐scale clinical data in dogs are lacking. Hypothesis/Objective To evaluate fecal concentrations of SCFAs and the fecal microbiota in healthy control (HC) dogs and dogs with chronic enteropathy (CE). Animals Forty‐nine privately owned HC dogs and 73 dogs with CE. Methods Prospective cohort study. Fecal concentrations of SCFAs were measured using gas chromatography/mass spectrometry. Illumina sequencing and quantitative real‐time polymerase chain reaction were utilized to evaluate the fecal microbiota. Results Fecal concentrations (median [range] μmol/g of dry matter) of acetate were lower (P = .03) in dogs with CE (185.8 [20.1‐1042.1]) than in HC dogs (224.0 [87.7‐672.8]). Propionate were also lower (P < .001) in dogs with CE (46.4 [0.4‐227.9]) than in HC dogs (105.9 [1.6‐266.9]). Moreover, total SCFAs were lower (P = .005) in dogs with CE (268.1 [21.8‐1378.2]) than in HC dogs (377.2 [126.6‐927.0]). Dysbiosis in dogs with CE was characterized by decreased bacterial diversity and richness, distinct microbial community clustering compared with that in HC dogs, and a higher dysbiosis index. Conclusions and Clinical Importance Dogs with CE had an altered fecal SCFA concentration accompanied by significant changes of the fecal microbiota.
Collapse
Affiliation(s)
- Yasushi Minamoto
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Tomomi Minamoto
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Anitha Isaiah
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Panpicha Sattasathuchana
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Agostino Buono
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Venkat R Rangachari
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Isaac H McNeely
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Jonathan Lidbury
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Jörg M Steiner
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Jan S Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| |
Collapse
|
88
|
Liu Z, Cominelli F, Di Martino L, Liu R, Devireddy N, Devireddy LR, Wald DN. Lipocalin 24p3 Induction in Colitis Adversely Affects Inflammation and Contributes to Mortality. Front Immunol 2019; 10:812. [PMID: 31057545 PMCID: PMC6478753 DOI: 10.3389/fimmu.2019.00812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 03/27/2019] [Indexed: 12/12/2022] Open
Abstract
Recognition of microorganism associated molecular patterns by epithelial cells elicits signaling cascades resulting in the production of host defense proteins. Lipocalin 24p3 is purported to be one such protein. 24p3 binds prokaryotic and eukaryotic siderophores and by sequestering iron laden bacterial siderophores it was believed to restrict bacterial replication. As such mice deficient for 24p3 are susceptible to systemic infections. However, it is not clear whether deficiency of 24p3 on the gut mucosa contributes to inflammation. In line with 24p3's function as a bacteriostat, it would be reasonable to assume that deficiencies in the control of intestinal flora from 24p3 absence play a role in inflammatory intestinal diseases. Surprisingly, we show 24p3 is a contributor of inflammation and 24p3 deficiency protects mice from dextran sodium sulfate (DSS)-induced colitis. 24p3 was found to be a negative regulator of platelet-derived growth factor (PDGF), which helps maintain the integrity of the gut mucosa. Neutralization of PDGF-BB abrogated resistance of 24p3 null mice to DSS confirming the direct link between 24p3 and PDGF-BB. Finally, iron handling in wild-type and 24p3-null mice upon DSS treatment also differed. In summary, differential iron levels and enhanced expression of PDGF-BB in 24p3 null mice confers resistance to DSS.
Collapse
Affiliation(s)
- Zhuoming Liu
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Fabio Cominelli
- Department of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Luca Di Martino
- Department of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Ruifu Liu
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | | | - Lax R Devireddy
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - David N Wald
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States.,Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| |
Collapse
|
89
|
Kalenyak K, Heilmann RM, van de Lest CHA, Brouwers JF, Burgener IA. Comparison of the systemic phospholipid profile in dogs diagnosed with idiopathic inflammatory bowel disease or food-responsive diarrhea before and after treatment. PLoS One 2019; 14:e0215435. [PMID: 30990833 PMCID: PMC6467395 DOI: 10.1371/journal.pone.0215435] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 04/02/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) and food-responsive diarrhea (FRD) are common chronic enteropathies in dogs, of which the exact pathogenesis has not been fully understood. In people dyslipidemia has been reported in patients with IBD, and potential therapeutic benefits of polyunsaturated fatty acids (PUFA) in the treatment of IBD have been investigated. Studies on the phospholipid profile in dogs with IBD and FRD are still lacking. AIM To investigate the systemic phospholipid profile of dogs with IBD or FRD and to evaluate possible differences in phospholipids before and after treatment. METHODS The phospholipids in whole blood and EDTA plasma of 32 dogs diagnosed with either IBD (n = 16) or FRD (n = 16) were analyzed by hydrophilic interaction liquid chromatography (HILIC) prior to and after initiation of treatment, which included an elimination diet enriched with PUFAs. RESULTS A clear separation of the phospholipids between whole blood and plasma was demonstrated on principal component analysis plots. In addition to the type of specimen, treatment and disease severity were the most significant factors determining the variance of the phospholipid profile. An increase in lysolipids was observed after treatment. The phosphatidylcholine (PC) species changed from PC 38:4 before treatment to mainly lysophosphatidylcholine 18:0 after treatment. Furthermore, several differences in the abundance of individual phospholipids were identified between dogs with IBD and dogs with FRD and between treatment statuses using random forest analysis. CONCLUSION Significant variances were identified in the phospholipid profiles of dogs with IBD and FRD. These were particularly determined by type of specimen used, disease severity and treatment status. After treatment, a shift of phospholipid species towards lysophosphatidylcholine 18:0 was observed. Future studies should further investigate the role of lipids in the pathophysiology of IBD and FRD as well as their potential therapeutic benefits.
Collapse
Affiliation(s)
- Katja Kalenyak
- Department for Small Animals, Veterinary Teaching Hospital, College of Veterinary Medicine, University of Leipzig, Leipzig, Saxony, Germany
- * E-mail:
| | - Romy M. Heilmann
- Department for Small Animals, Veterinary Teaching Hospital, College of Veterinary Medicine, University of Leipzig, Leipzig, Saxony, Germany
| | - Chris H. A. van de Lest
- Faculty of Veterinary Medicine, Department of Biochemistry & Cell Biology, Lipidomics Facility, Utrecht University, CM Utrecht, Netherlands
| | - Jos F. Brouwers
- Faculty of Veterinary Medicine, Department of Biochemistry & Cell Biology, Lipidomics Facility, Utrecht University, CM Utrecht, Netherlands
| | - Iwan A. Burgener
- Division of Small Animal Internal Medicine, Department for Companion Animals and Horses, Vetmeduni Vienna, Vienna, Austria
| |
Collapse
|
90
|
Guard BC, Honneffer JB, Jergens AE, Jonika MM, Toresson L, Lawrence YA, Webb CB, Hill S, Lidbury JA, Steiner JM, Suchodolski JS. Longitudinal assessment of microbial dysbiosis, fecal unconjugated bile acid concentrations, and disease activity in dogs with steroid-responsive chronic inflammatory enteropathy. J Vet Intern Med 2019; 33:1295-1305. [PMID: 30957301 PMCID: PMC6524081 DOI: 10.1111/jvim.15493] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 03/21/2019] [Indexed: 01/08/2023] Open
Abstract
Background Mounting evidence from human studies suggests that bile acid dysmetabolism might play a role in various human chronic gastrointestinal diseases. It is unknown whether fecal bile acid dysmetabolism occurs in dogs with chronic inflammatory enteropathy (CE). Objective To assess microbial dysbiosis, fecal unconjugated bile acids (fUBA), and disease activity in dogs with steroid‐responsive CE. Animals Twenty‐four healthy control dogs and 23 dogs with steroid‐responsive CE. Methods In this retrospective study, fUBA were measured and analyzed. Fecal microbiota were assessed using a dysbiosis index. The canine inflammatory bowel disease activity index was used to evaluate remission of clinical signs. This was a multi‐institutional study where dogs with steroid‐responsive CE were evaluated over time. Results The dysbiosis index was increased in dogs with CE (median, 2.5; range, −6.2 to 6.5) at baseline compared with healthy dogs (median, −4.5; range, −6.5 to −2.6; P = .002) but did not change in dogs with CE over time. Secondary fUBA were decreased in dogs with CE (median, 29%; range, 1%‐99%) compared with healthy dogs (median, 88%; 4%‐96%; P = .049). The percent of secondary fUBA in dogs with CE increased from baseline values (median, 28%; range, 1%‐99%) after 2‐3 months of treatment (median, 94%; range, 1%‐99%; P = 0.0183). Conclusions and Clinical Importance These findings suggest that corticosteroids regulate fecal bile acids in dogs with CE. Additionally, resolution of clinical activity index in dogs with therapeutically managed CE and bile acid dysmetabolism are likely correlated. However, subclinical disease (i.e., microbial dysbiosis) can persist in dogs with steroid‐responsive CE.
Collapse
Affiliation(s)
- Blake C Guard
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, Texas
| | - Julia B Honneffer
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, Texas
| | - Albert E Jergens
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Michelle M Jonika
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, Texas
| | - Linda Toresson
- Evidensia Specialist Animal Hospital, Helsingborg, Sweden.,Helsinki University, Helsinki, Finland
| | - Yuri A Lawrence
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, Texas
| | - Craig B Webb
- Clinical Sciences Department, Colorado State University, Fort Collins, Colorado
| | - Steve Hill
- Veterinary Specialty Hospital, San Diego, California
| | - Jonathan A Lidbury
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, Texas
| | - Joerg M Steiner
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, Texas
| | - Jan S Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, Texas
| |
Collapse
|
91
|
Yilmaz B, Juillerat P, Øyås O, Ramon C, Bravo FD, Franc Y, Fournier N, Michetti P, Mueller C, Geuking M, Pittet VEH, Maillard MH, Rogler G, Wiest R, Stelling J, Macpherson AJ. Microbial network disturbances in relapsing refractory Crohn's disease. Nat Med 2019; 25:323-336. [PMID: 30664783 DOI: 10.1038/s41591-018-0308-z] [Citation(s) in RCA: 245] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 11/19/2018] [Indexed: 02/06/2023]
Abstract
Inflammatory bowel diseases (IBD) can be broadly divided into Crohn's disease (CD) and ulcerative colitis (UC) from their clinical phenotypes. Over 150 host susceptibility genes have been described, although most overlap between CD, UC and their subtypes, and they do not adequately account for the overall incidence or the highly variable severity of disease. Replicating key findings between two long-term IBD cohorts, we have defined distinct networks of taxa associations within intestinal biopsies of CD and UC patients. Disturbances in an association network containing taxa of the Lachnospiraceae and Ruminococcaceae families, typically producing short chain fatty acids, characterize frequently relapsing disease and poor responses to treatment with anti-TNF-α therapeutic antibodies. Alterations of taxa within this network also characterize risk of later disease recurrence of patients in remission after the active inflamed segment of CD has been surgically removed.
Collapse
Affiliation(s)
- Bahtiyar Yilmaz
- Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, Bern, Switzerland.,Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Pascal Juillerat
- Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, Bern, Switzerland.,Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ove Øyås
- Department of Biosystems Science and Engineering and SIB Swiss Institute of Bioinformatics, ETH Zurich, Basel, Switzerland
| | - Charlotte Ramon
- Department of Biosystems Science and Engineering and SIB Swiss Institute of Bioinformatics, ETH Zurich, Basel, Switzerland
| | - Francisco Damian Bravo
- Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Yannick Franc
- Institute of Social and Preventive Medicine (IUMSP), Lausanne University Hospital, Lausanne, Switzerland
| | - Nicolas Fournier
- Institute of Social and Preventive Medicine (IUMSP), Lausanne University Hospital, Lausanne, Switzerland
| | - Pierre Michetti
- Gastroenterology La Source-Beaulieu, Lausanne, Switzerland.,Service of Gastroenterology and Hepatology, Department of Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Christoph Mueller
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Markus Geuking
- Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, Bern, Switzerland
| | - Valerie E H Pittet
- Institute of Social and Preventive Medicine (IUMSP), Lausanne University Hospital, Lausanne, Switzerland
| | - Michel H Maillard
- Gastroenterology La Source-Beaulieu, Lausanne, Switzerland.,Service of Gastroenterology and Hepatology, Department of Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | - Reiner Wiest
- Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, Bern, Switzerland.,Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jörg Stelling
- Department of Biosystems Science and Engineering and SIB Swiss Institute of Bioinformatics, ETH Zurich, Basel, Switzerland
| | - Andrew J Macpherson
- Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, Bern, Switzerland. .,Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Bern, Switzerland.
| |
Collapse
|
92
|
Wu XM, Tan RX. Interaction between gut microbiota and ethnomedicine constituents. Nat Prod Rep 2019; 36:788-809. [DOI: 10.1039/c8np00041g] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This highlight reviews the interaction processes between gut microbiota and ethnomedicine constituents, which may conceptualize future therapeutic strategies.
Collapse
Affiliation(s)
- Xue Ming Wu
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy
- Nanjing University of Chinese Medicine
- Nanjing
- China
| | - Ren Xiang Tan
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy
- Nanjing University of Chinese Medicine
- Nanjing
- China
- State Key Laboratory of Pharmaceutical Biotechnology
| |
Collapse
|
93
|
A Bronze-Tomato Enriched Diet Affects the Intestinal Microbiome under Homeostatic and Inflammatory Conditions. Nutrients 2018; 10:nu10121862. [PMID: 30513801 PMCID: PMC6315348 DOI: 10.3390/nu10121862] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/22/2018] [Accepted: 11/24/2018] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel diseases (IBD) are debilitating chronic inflammatory disorders that develop as a result of a defective immune response toward intestinal bacteria. Intestinal dysbiosis is associated with the onset of IBD and has been reported to persist even in patients in deep remission. We investigated the possibility of a dietary-induced switch to the gut microbiota composition using Winnie mice as a model of spontaneous ulcerative colitis and chow enriched with 1% Bronze tomato. We used the near isogenic tomato line strategy to investigate the effects of a diet enriched in polyphenols administered to mild but established chronic intestinal inflammation. The Bronze-enriched chow administered for two weeks was not able to produce any macroscopic effect on the IBD symptoms, although, at molecular level there was a significant induction of anti-inflammatory genes and intracellular staining of T cells revealed a mild decrease in IL17A and IFNγ production. Analysis of the microbial composition revealed that two weeks of Bronze enriched diet was sufficient to perturb the microbial composition of Winnie and control mice, suggesting that polyphenol-enriched diets may create unfavorable conditions for distinct bacterial species. In conclusion, dietary regimes enriched in polyphenols may efficiently support IBD remission affecting the intestinal dysbiosis.
Collapse
|
94
|
Eissa N, Kittana H, Gomes-Neto JC, Hussein H. Mucosal immunity and gut microbiota in dogs with chronic enteropathy. Res Vet Sci 2018; 122:156-164. [PMID: 30504001 DOI: 10.1016/j.rvsc.2018.11.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 11/19/2018] [Accepted: 11/23/2018] [Indexed: 12/18/2022]
Abstract
Chronic enteropathy (CE) in dogs is a chronic and relapsing immunopathology, of unknown etiology, that usually manifests with a plethora of clinical signs reflecting the underlying heterogeneity in its pathogenesis. Alterations of the mucosal immune responses and the gut microbiota composition are thought to play an essential role in CE. Similar to humans, it is hypothesized that the breakdown in mucosal tolerance leads to aberrant and pathological immune responses toward the gut microbiota, that in turn, may contribute to the severity of disease, at least for certain CE subsets. Therefore, in this review, we discuss some of the most relevant and recent insights microbiological and immunological aspects characterizing CE in dogs.
Collapse
Affiliation(s)
- Nour Eissa
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada.
| | - Hatem Kittana
- Department of Food Science and Technology, University of Nebraska-, Lincoln, NE, USA
| | - João Carlos Gomes-Neto
- Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska, Lincoln, NE, USA
| | - Hayam Hussein
- Department of Parasitology and Animal Diseases, Veterinary Research Division, National Research Centre, Giza, Egypt
| |
Collapse
|
95
|
Bresciani F, Minamoto Y, Suchodolski JS, Galiazzo G, Vecchiato CG, Pinna C, Biagi G, Pietra M. Effect of an extruded animal protein-free diet on fecal microbiota of dogs with food-responsive enteropathy. J Vet Intern Med 2018; 32:1903-1910. [PMID: 30353569 PMCID: PMC6271313 DOI: 10.1111/jvim.15227] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 04/13/2018] [Accepted: 05/03/2018] [Indexed: 12/20/2022] Open
Abstract
Background Dietary interventions are thought to modify gut microbial communities in healthy individuals. In dogs with chronic enteropathies, resolution of dysbiosis, along with remission of clinical signs, is expected with treatment. Hypothesis/Objective To evaluate changes in the fecal microbiota in dogs with food‐responsive chronic enteropathy (FRE) and in healthy control (HC) dogs before and after an elimination dietary trial with an animal protein‐free diet (APFD). Animals Dogs with FRE (n = 10) and HC (n = 14). Methods Dogs were fed the APFD for 60 days. Fecal microbiota was analyzed by Illumina 16S rRNA sequencing and quantitative polymerase chain reaction (PCR). Results A significantly lower bacterial alpha‐diversity was observed in dogs with FRE compared with HC dogs at baseline, and compared with FRE dogs after the trial. Distinct microbial communities were observed in dogs with FRE at baseline compared with HC dogs at baseline and compared with dogs with FRE after the trial. Microbial communities still were different in FRE dogs after the trial compared with HC dogs at baseline. In HC dogs, the fecal microbiota did not show a significant modification after administration of the APFD. Conclusion and Clinical Importance Our results suggest that, in FRE dogs, treatment with the APFD led to a partial recovery of the fecal microbiota by significantly increasing microbiota richness, which was significantly closer to a healthy microbiota after the treatment. In contrast, no changes were detected in the fecal microbiota of HC dogs fed the same APFD.
Collapse
Affiliation(s)
- Francesca Bresciani
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Yasushi Minamoto
- Department of Small Animal Clinical Sciences, Gastrointestinal Laboratory, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, Texas
| | - Jan S Suchodolski
- Department of Small Animal Clinical Sciences, Gastrointestinal Laboratory, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, Texas
| | - Giorgia Galiazzo
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Carla G Vecchiato
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Carlo Pinna
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Giacomo Biagi
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Marco Pietra
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
96
|
Stewart HL, Southwood LL, Indugu N, Vecchiarelli B, Engiles JB, Pitta D. Differences in the equine faecal microbiota between horses presenting to a tertiary referral hospital for colic compared with an elective surgical procedure. Equine Vet J 2018; 51:336-342. [PMID: 30153353 DOI: 10.1111/evj.13010] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/20/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND The faecal microbiota is emerging as potentially important in intestinal disease. More research is needed to characterise the faecal microbiota from horses with colic. OBJECTIVES To compare the relative abundance of bacterial populations comprising the faecal microbiota in horses presenting for colic compared with an elective surgical procedure. STUDY DESIGN Prospective observational clinical study. METHODS Admission faecal samples were collected from horses presenting for colic and elective surgical procedures. Faecal samples were extracted for genomic DNA, PCR- amplified, sequenced and analysed using QIIME. Species richness and Shannon diversity were estimated for each faecal sample. The extent of the relationship between bacterial communities (beta diversity) was quantified using pairwise UniFrac distances, visualised using principal coordinate analysis (PCoA) and statistically analysed using PERMANOVA. The relative abundance of bacterial populations between the two treatment groups were compared using ANCOM. RESULTS Faecal bacterial communities in horses presenting for colic had fewer species (P<0.001) and lower diversity (P<0.001) compared with horses presenting for elective surgical procedures. Based on the PERMANOVA analysis, there was a significant difference in the bacterial community composition between horses admitted for colic vs. elective procedures (P = 0.001). Based on ANCOM test, at the genus level, 14 bacterial lineages differed between the two groups. The relative abundance of known commensal bacteria including Prevotella, Clostridia, Lachnospiraceae were reduced whereas Christenellaceae, Streptococcus and Sphaerochaeta were increased in horses with colic when compared with elective cases. MAIN LIMITATIONS Relative low numbers and a diverse population of horses. CONCLUSIONS Changes in bacterial populations in the faecal microbiota of horses presenting for colic observed in this study concurs with previous studies in veterinary and human patients with gastrointestinal disease. Future studies focusing on different causes of colic, chronic or recurrent disease, and the association with histological changes within the intestine are needed. The Summary is available in Portuguese - see Supporting Information.
Collapse
Affiliation(s)
- H L Stewart
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Equine Orthopaedic Research Center, Colorado State University, Fort Collins, Colorado, USA
| | - L L Southwood
- Department of Clinical Studies, New Bolton Center, University of Pennsylvania, School of Veterinary Medicine, Kennett Square, Pennsylvania, USA
| | - N Indugu
- Department of Clinical Studies, New Bolton Center, University of Pennsylvania, School of Veterinary Medicine, Kennett Square, Pennsylvania, USA
| | - B Vecchiarelli
- Department of Clinical Studies, New Bolton Center, University of Pennsylvania, School of Veterinary Medicine, Kennett Square, Pennsylvania, USA
| | - J B Engiles
- Department of Pathobiology, New Bolton Center, University of Pennsylvania, School of Veterinary Medicine, Kennett Square, Pennsylvania, USA
| | - D Pitta
- Department of Clinical Studies, New Bolton Center, University of Pennsylvania, School of Veterinary Medicine, Kennett Square, Pennsylvania, USA
| |
Collapse
|
97
|
Wholemeal wheat flours drive the microbiome and functional features of wheat sourdoughs. Int J Food Microbiol 2018; 302:35-46. [PMID: 30177230 DOI: 10.1016/j.ijfoodmicro.2018.08.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/02/2018] [Accepted: 08/09/2018] [Indexed: 12/12/2022]
Abstract
This study aimed to evaluate the effect of soft (Triticum aestivum) and durum (Triticum durum) wheat flours at different extraction rate (type 00, 0, 1 and 2) and wholemeal flours on the microbial composition and functionality of type I sourdough. Enterobacteriaceae constituted the main component of the microbiome of refined soft and durum wheat flours. On the contrary, wholemeal durum wheat flour harboured mainly Xanthomonadaceae. Differences were also found between the soft and durum wheat flours. After 8 h of fermentation (1 day), a different behaviour of the microbiome components was observed. All the mature sourdoughs harboured a core microbiome constituted by 4 species (Pediococcus pentosaceus, Lactobacillus brantae, Pediococcus argentinicus and Weissella cibaria). Based on the type of flour, the relative abundance of each core species differed among sourdoughs. In addition, other dominant lactic acid bacteria species were variously detected in sourdoughs. Mature sourdoughs showed marked variations for the concentrations of glucose, fructose, maltose, lactic and acetic acids, ethanol and free amino acids (FAA). Specific correlations (r > 0.7; FDR < 0.05) were found between the microbiome and total phenols, fibres and metabolome of mature sourdoughs. Breads made by using wholemeal soft wheat or durum wheat doughs started by wholemeal wheat flour-based sourdoughs were characterized by the highest total amount of free cations (Ca2+, Zn2+, Fe2+, Mg2+), antioxidant activity and improved sensory traits.
Collapse
|
98
|
Garraway K, Johannes CM, Bryan A, Peauroi J, Rossi G, Zhang M, Wang C, Allenspach K, Jergens AE. Relationship of the mucosal microbiota to gastrointestinal inflammation and small cell intestinal lymphoma in cats. J Vet Intern Med 2018; 32:1692-1702. [PMID: 30084202 PMCID: PMC6189339 DOI: 10.1111/jvim.15291] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/13/2018] [Accepted: 06/27/2018] [Indexed: 12/23/2022] Open
Abstract
Background The gastrointestinal (GI) microbiota in healthy cats is altered in IBD. Little research has been performed to identify whether specific bacterial groups are associated with small cell GI lymphoma (LSA). Hypothesis Mucosal bacteria, including Enterobacteriaceae and Fusobacterium spp., are abundant in intestinal biopsies of cats with small cell GI LSA compared to cats with IBD. Animals Fourteen cats with IBD and 14 cats with small cell GI LSA. Methods Retrospective case control study. A search of the medical records was performed to identify cats diagnosed with IBD and with GI LSA. Bacterial groups identified by FISH in GI biopsies were compared between cohorts and correlated to CD11b+ and NF‐κB expression. Results Fusobacterium spp. (median; IQR bacteria/region) were higher in cats with small cell GI LSA in ileal (527; 455.5 – 661.5; P = .046) and colonic (404.5; 328.8 – 455.5; P = .016) adherent mucus, and combined colonic compartments (free mucus, adherent mucus, attaching to epithelium) (8; 0 – 336; P = .017) compared to cats with IBD (ileum: 67; 31.5 – 259; colon: 142.5; 82.3 – 434.5; combined: 3; 0 – 34). Bacteroides spp. were higher in ileal adherent mucus (P = .036) and 3 combined ileal compartments (P = .034) of cats with small cell GI LSA. There were significant correlations between Fusobacterium spp. totals and CD11b+ cell (P = .009; rs .476) and NF‐κB expression (P = .004; rs .523). Conclusions The bacterial alterations appreciated might be influential in development of small cell GI LSA, and should drive further studies to elucidate the effects of microbial‐mediated inflammation on GI cancer progression.
Collapse
Affiliation(s)
- Kayode Garraway
- Iowa State University, College of Veterinary Medicine, Ames, IA
| | | | - Angela Bryan
- College of Veterinary Medicine, Iowa State University
| | - John Peauroi
- VDx Veterinary Diagnostics and Preclinical Research Services
| | - Giacomo Rossi
- School of Biosciences & Veterinary Medicine, University of Camerino, Italy
| | - Min Zhang
- Department of Statistics, College of Liberal Arts & Sciences, Iowa State University
| | - Chong Wang
- Department of Statistics, College of Liberal Arts & Sciences, Iowa State University
| | | | | |
Collapse
|
99
|
Moon CD, Young W, Maclean PH, Cookson AL, Bermingham EN. Metagenomic insights into the roles of Proteobacteria in the gastrointestinal microbiomes of healthy dogs and cats. Microbiologyopen 2018; 7:e00677. [PMID: 29911322 PMCID: PMC6182564 DOI: 10.1002/mbo3.677] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/09/2018] [Accepted: 05/21/2018] [Indexed: 12/17/2022] Open
Abstract
Interests in the impact of the gastrointestinal microbiota on health and wellbeing have extended from humans to that of companion animals. While relatively fewer studies to date have examined canine and feline gut microbiomes, analysis of the metagenomic DNA from fecal communities using next‐generation sequencing technologies have provided insights into the microbes that are present, their function, and potential to contribute to overall host nutrition and health. As carnivores, healthy dogs and cats possess fecal microbiomes that reflect the generally higher concentrations of protein and fat in their diets, relative to omnivores and herbivores. The phyla Firmicutes and Bacteroidetes are highly abundant, and Fusobacteria, Actinobacteria, and Proteobacteria also feature prominently. Proteobacteria is the most diverse bacterial phylum and commonly features in the fecal microbiota of healthy dogs and cats, although its reputation is often sullied as its members include a number of well‐known opportunistic pathogens, such as Escherichia coli, Salmonella, and Campylobacter, which may impact the health of the host and its owner. Furthermore, in other host species, high abundances of Proteobacteria have been associated with dysbiosis in hosts with metabolic or inflammatory disorders. In this review, we seek to gain further insight into the prevalence and roles of the Proteobacteria within the gastrointestinal microbiomes of healthy dogs and cats. We draw upon the growing number of metagenomic DNA sequence‐based studies which now allow us take a culture‐independent approach to examine the functions that this more minor, yet important, group contribute to normal microbiome function. The fecal microbiomes of healthy dogs and cats often include Proteobacteria at varying abundances. This phylum can have a sullied reputation as it contains a number of well‐known pathogenic members. We explored the functions of the Proteobacteria in fecal shotgun metagenome datasets from healthy dogs and cats. The Proteobacteria appeared to be enriched for functions that are consistent with a role in helping to maintain the anaerobic environment of the gut for normal microbiome function.
Collapse
Affiliation(s)
- Christina D Moon
- AgResearch, Grasslands Research Centre, Palmerston North, New Zealand
| | - Wayne Young
- AgResearch, Grasslands Research Centre, Palmerston North, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand.,High-Value Nutrition, National Science Challenge, Auckland, New Zealand
| | - Paul H Maclean
- AgResearch, Lincoln Research Centre, Lincoln, New Zealand
| | - Adrian L Cookson
- AgResearch, Hopkirk Research Institute, Palmerston North, New Zealand
| | - Emma N Bermingham
- AgResearch, Grasslands Research Centre, Palmerston North, New Zealand.,High-Value Nutrition, National Science Challenge, Auckland, New Zealand
| |
Collapse
|
100
|
Hullar MAJ, Lampe JW, Torok-Storb BJ, Harkey MA. The canine gut microbiome is associated with higher risk of gastric dilatation-volvulus and high risk genetic variants of the immune system. PLoS One 2018; 13:e0197686. [PMID: 29889838 PMCID: PMC5995382 DOI: 10.1371/journal.pone.0197686] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 05/07/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Large and giant dog breeds have a high risk for gastric dilatation-volvulus (GDV) which is an acute, life-threatening condition. Previous work by our group identified a strong risk of GDV linked to specific alleles in innate and adaptive immune genes. We hypothesize that variation in the genes of the immune system act through modulation of the gut microbiome, or through autoimmune mechanisms, or both, to predispose dogs to this condition. Here, we investigate whether differences in the canine fecal microbiome are associated with GDV and are linked to previously identified risk alleles. METHODOLOGY/PRINCIPLE FINDINGS Fecal samples from healthy Great Danes (n = 38), and dogs with at least one occurrence of GDV (n = 37) were collected and analyzed by paired-end sequencing of the 16S rRNA gene. Dietary intake and temperament were estimated from a study-specific dietary and temperament questionnaire. Dogs with GDV had significantly more diverse fecal microbiomes than healthy control dogs. Alpha diversity was significantly increased in dogs with GDV, as well as dogs with at least one risk allele for DRB1 and TRL5. We found no significant association of dietary intake and GDV. Dogs with GDV showed a significant expansion of the rare lineage Actinobacteria (p = 0.004), as well as a significantly greater abundance of Firmicutes (p = 0.004) and a significantly lower abundance of Bacteroidetes (p<0.004). There was a significant difference in the abundance of 10 genera but after correction for multiple comparisons, none were significant. Bacterial phyla were significantly different between controls and dogs with GDV and at least one risk allele for DRB1 and TRL5. Actinobacteria were significantly higher in dogs with GDV and with one risk allele for DRB1 and TLR5 but not DLA88 genes. Furthermore, Collinsella was significantly increased in dogs with at least one risk allele for DRB1 and TLR5. Logistic regression showed that a model which included Actinobacteria, at least one risk allele,and temperament, explained 29% of the variation in risk of GDV in Great Danes. CONCLUSIONS The microbiome in GDV was altered by an expansion of a minor lineage and was associated with specific alleles of both innate and adaptive immunity genes. These associations are consistent with our hypothesis that immune genes may play a role in predisposition to GDV by altering the gut microbiome. Further research will be required to directly test the causal relationships of immune genes, the gut microbiome and GDV.
Collapse
Affiliation(s)
- Meredith A. J. Hullar
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Johanna W. Lampe
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Beverly J. Torok-Storb
- Department of Transplantation Biology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Michael A. Harkey
- Department of Transplantation Biology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| |
Collapse
|