51
|
Tomberlin JK, Crippen TL, Tarone AM, Chaudhury MFB, Singh B, Cammack JA, Meisel RP. A Review of Bacterial Interactions With Blow Flies (Diptera: Calliphoridae) of Medical, Veterinary, and Forensic Importance. ANNALS OF THE ENTOMOLOGICAL SOCIETY OF AMERICA 2017; 110:19-36. [DOI: 10.1093/aesa/saw086] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
|
52
|
SSUnique: Detecting Sequence Novelty in Microbiome Surveys. mSystems 2016; 1:mSystems00133-16. [PMID: 28028549 PMCID: PMC5183599 DOI: 10.1128/msystems.00133-16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 11/23/2016] [Indexed: 11/20/2022] Open
Abstract
Extensive SSU rRNA gene sequence libraries, constructed from DNA extracts of environmental or host-associated samples, often contain many unclassified sequences, many representing organisms with novel taxonomy (taxonomic “blind spots”) and potentially unique ecology. This novelty is poorly explored in standard workflows, which narrows the breadth and discovery potential of such studies. Here we present the SSUnique analysis pipeline, which will promote the exploration of unclassified diversity in microbiome research and, importantly, enable the discovery of substantial novel taxonomic lineages through the analysis of a large variety of existing data sets. High-throughput sequencing of small-subunit (SSU) rRNA genes has revolutionized understanding of microbial communities and facilitated investigations into ecological dynamics at unprecedented scales. Such extensive SSU rRNA gene sequence libraries, constructed from DNA extracts of environmental or host-associated samples, often contain a substantial proportion of unclassified sequences, many representing organisms with novel taxonomy (taxonomic “blind spots”) and potentially unique ecology. Indeed, these novel taxonomic lineages are associated with so-called microbial “dark matter,” which is the genomic potential of these lineages. Unfortunately, characterization beyond “unclassified” is challenging due to relatively short read lengths and large data set sizes. Here we demonstrate how mining of phylogenetically novel sequences from microbial ecosystems can be automated using SSUnique, a software pipeline that filters unclassified and/or rare operational taxonomic units (OTUs) from 16S rRNA gene sequence libraries by screening against consensus structural models for SSU rRNA. Phylogenetic position is inferred against a reference data set, and additional characterization of novel clades is also included, such as targeted probe/primer design and mining of assembled metagenomes for genomic context. We show how SSUnique reproduced a previous analysis of phylogenetic novelty from an Arctic tundra soil and demonstrate the recovery of highly novel clades from data sets associated with both the Earth Microbiome Project (EMP) and Human Microbiome Project (HMP). We anticipate that SSUnique will add to the expanding computational toolbox supporting high-throughput sequencing approaches for the study of microbial ecology and phylogeny. IMPORTANCE Extensive SSU rRNA gene sequence libraries, constructed from DNA extracts of environmental or host-associated samples, often contain many unclassified sequences, many representing organisms with novel taxonomy (taxonomic “blind spots”) and potentially unique ecology. This novelty is poorly explored in standard workflows, which narrows the breadth and discovery potential of such studies. Here we present the SSUnique analysis pipeline, which will promote the exploration of unclassified diversity in microbiome research and, importantly, enable the discovery of substantial novel taxonomic lineages through the analysis of a large variety of existing data sets.
Collapse
|
53
|
He C, Yang Z, Lu N. Imbalance of Gastrointestinal Microbiota in the Pathogenesis of Helicobacter pylori-Associated Diseases. Helicobacter 2016; 21:337-48. [PMID: 26876927 DOI: 10.1111/hel.12297] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The development of new nucleotide sequencing techniques and advanced bioinformatics tools has opened the field for studying the diversity and complexity of the gastrointestinal microbiome independent of traditional cultural methods. Owing largely to the gastric acid barrier, the human stomach was long thought to be sterile. The discovery of Helicobacter pylori, the gram-negative bacterium that infects upwards of 50% of the global population, has started a major paradigm shift in our understanding of the stomach as an ecologic niche for bacteria. Recent sequencing analysis of gastric microbiota showed that H. pylori was not alone and the interaction of H. pylori with those microorganisms might play a part in H. pylori-associated diseases such as gastric cancer. In this review, we summarize the available literature about the changes of gastrointestinal microbiota after H. pylori infection in humans and animal models, and discuss the possible underlying mechanisms including the alterations of the gastric environment, the secretion of hormones and the degree of inflammatory response. In general, information regarding the composition and function of gastrointestinal microbiome is still in its infancy, future studies are needed to elucidate whether and to what extent H. pylori infection perturbs the established microbiota. It is assumed that clarifying the role of gastrointestinal communities in H. pylori-associated diseases will provide an opportunity for translational application as a biomarker for the risk of serious H. pylori diseases and perhaps identify specific organisms for therapeutic eradication.
Collapse
Affiliation(s)
- Cong He
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Zhen Yang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Nonghua Lu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China.
| |
Collapse
|
54
|
Shelton AO, O'Donnell JL, Samhouri JF, Lowell N, Williams GD, Kelly RP. A framework for inferring biological communities from environmental DNA. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2016; 26:1645-1659. [PMID: 27755698 DOI: 10.1890/15-1733.1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 01/17/2016] [Accepted: 01/28/2016] [Indexed: 06/06/2023]
Abstract
Environmental DNA (eDNA), genetic material recovered from an environmental medium such as soil, water, or feces, reflects the membership of the ecological community present in the sampled environment. As such, eDNA is a potentially rich source of data for basic ecology, conservation, and management, because it offers the prospect of quantitatively reconstructing whole ecological communities from easily obtained samples. However, like all sampling methods, eDNA sequencing is subject to methodological limitations that can generate biased descriptions of ecological communities. Here, we demonstrate parallels between eDNA sampling and traditional sampling techniques, and use these parallels to offer a statistical structure for framing the challenges faced by eDNA and for illuminating the gaps in our current knowledge. Although the current state of knowledge on some of these steps precludes a full estimate of biomass for each taxon in a sampled eDNA community, we provide a map that illustrates potential methods for bridging these gaps. Additionally, we use an original data set to estimate the relative abundances of taxon-specific template DNA prior to PCR, given the abundance of DNA sequences recovered post-PCR-and-sequencing, a critical step in the chain of eDNA inference. While we focus on the use of eDNA samples to determine the relative abundance of taxa within a community, our approach also applies to single-taxon applications (including applications using qPCR), studies of diversity, and studies focused on occurrence. By grounding inferences about eDNA community composition in a rigorous statistical framework, and by making these inferences explicit, we hope to improve the inferential potential for the emerging field of community-level eDNA analysis.
Collapse
Affiliation(s)
- Andrew Olaf Shelton
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, 98112, USA.
| | - James Lawrence O'Donnell
- School of Marine and Environmental Affairs, University of Washington, 3707 Brooklyn Avenue NE, Seattle, Washington, 98105, USA
| | - Jameal F Samhouri
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, 98112, USA
| | - Natalie Lowell
- School of Marine and Environmental Affairs, University of Washington, 3707 Brooklyn Avenue NE, Seattle, Washington, 98105, USA
| | - Gregory D Williams
- Pacific States Marine Fisheries Commission, Under Contract to Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, 98112, USA
| | - Ryan P Kelly
- School of Marine and Environmental Affairs, University of Washington, 3707 Brooklyn Avenue NE, Seattle, Washington, 98105, USA
| |
Collapse
|
55
|
Direct 16S rRNA-seq from bacterial communities: a PCR-independent approach to simultaneously assess microbial diversity and functional activity potential of each taxon. Sci Rep 2016; 6:32165. [PMID: 27577787 PMCID: PMC5006002 DOI: 10.1038/srep32165] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 07/28/2016] [Indexed: 12/04/2022] Open
Abstract
The analysis of environmental microbial communities has largely relied on a PCR-dependent amplification of genes entailing species identity as 16S rRNA. This approach is susceptible to biases depending on the level of primer matching in different species. Moreover, possible yet-to-discover taxa whose rRNA could differ enough from known ones would not be revealed. DNA-based methods moreover do not provide information on the actual physiological relevance of each taxon within an environment and are affected by the variable number of rRNA operons in different genomes. To overcome these drawbacks we propose an approach of direct sequencing of 16S ribosomal RNA without any primer- or PCR-dependent step. The method was tested on a microbial community developing in an anammox bioreactor sampled at different time-points. A conventional PCR-based amplicon pyrosequencing was run in parallel. The community resulting from direct rRNA sequencing was highly consistent with the known biochemical processes operative in the reactor. As direct rRNA-seq is based not only on taxon abundance but also on physiological activity, no comparison between its results and those from PCR-based approaches can be applied. The novel principle is in this respect proposed not as an alternative but rather as a complementary methodology in microbial community studies.
Collapse
|
56
|
Pierre JF, Martinez KB, Ye H, Nadimpalli A, Morton TC, Yang J, Wang Q, Patno N, Chang EB, Yin DP. Activation of bile acid signaling improves metabolic phenotypes in high-fat diet-induced obese mice. Am J Physiol Gastrointest Liver Physiol 2016; 311:G286-304. [PMID: 27340128 PMCID: PMC5007288 DOI: 10.1152/ajpgi.00202.2016] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 06/15/2016] [Indexed: 01/31/2023]
Abstract
The metabolic benefits induced by gastric bypass, currently the most effective treatment for morbid obesity, are associated with bile acid (BA) delivery to the distal intestine. However, mechanistic insights into BA signaling in the mediation of metabolic benefits remain an area of study. The bile diversion () mouse model, in which the gallbladder is anastomosed to the distal jejunum, was used to test the specific role of BA in the regulation of glucose and lipid homeostasis. Metabolic phenotype, including body weight and composition, glucose tolerance, energy expenditure, thermogenesis genes, total BA and BA composition in the circulation and portal vein, and gut microbiota were examined. BD improves the metabolic phenotype, which is in accord with increased circulating primary BAs and regulation of enterohormones. BD-induced hypertrophy of the proximal intestine in the absence of BA was reversed by BA oral gavage, but without influencing BD metabolic benefits. BD-enhanced energy expenditure was associated with elevated TGR5, D2, and thermogenic genes, including UCP1, PRDM16, PGC-1α, PGC-1β, and PDGFRα in epididymal white adipose tissue (WAT) and inguinal WAT, but not in brown adipose tissue. BD resulted in an altered gut microbiota profile (i.e., Firmicutes bacteria were decreased, Bacteroidetes were increased, and Akkermansia was positively correlated with higher levels of circulating primary BAs). Our study demonstrates that enhancement of BA signaling regulates glucose and lipid homeostasis, promotes thermogenesis, and modulates the gut microbiota, which collectively resulted in an improved metabolic phenotype.
Collapse
Affiliation(s)
- Joseph F. Pierre
- 1Department of Medicine, University of Chicago, Chicago, Illinois;
| | | | - Honggang Ye
- 1Department of Medicine, University of Chicago, Chicago, Illinois;
| | | | - Timothy C. Morton
- 3Department of Ecology and Evolution, University of Chicago, Chicago, Illinois
| | - Jinghui Yang
- 2Department of Surgery, University of Chicago, Chicago, Illinois; and
| | - Qiang Wang
- 2Department of Surgery, University of Chicago, Chicago, Illinois; and
| | - Noelle Patno
- 1Department of Medicine, University of Chicago, Chicago, Illinois;
| | - Eugene B. Chang
- 1Department of Medicine, University of Chicago, Chicago, Illinois;
| | - Deng Ping Yin
- Department of Surgery, University of Chicago, Chicago, Illinois; and
| |
Collapse
|
57
|
Gohl DM, Vangay P, Garbe J, MacLean A, Hauge A, Becker A, Gould TJ, Clayton JB, Johnson TJ, Hunter R, Knights D, Beckman KB. Systematic improvement of amplicon marker gene methods for increased accuracy in microbiome studies. Nat Biotechnol 2016; 34:942-9. [DOI: 10.1038/nbt.3601] [Citation(s) in RCA: 422] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 05/11/2016] [Indexed: 12/26/2022]
|
58
|
Gokul JK, Hodson AJ, Saetnan ER, Irvine-Fynn TDL, Westall PJ, Detheridge AP, Takeuchi N, Bussell J, Mur LAJ, Edwards A. Taxon interactions control the distributions of cryoconite bacteria colonizing a High Arctic ice cap. Mol Ecol 2016; 25:3752-67. [PMID: 27261672 DOI: 10.1111/mec.13715] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 05/16/2016] [Accepted: 05/31/2016] [Indexed: 01/07/2023]
Abstract
Microbial colonization of glacial ice surfaces incurs feedbacks which affect the melting rate of the ice surface. Ecosystems formed as microbe-mineral aggregates termed cryoconite locally reduce ice surface albedo and represent foci of biodiversity and biogeochemical cycling. Consequently, greater understanding the ecological processes in the formation of functional cryoconite ecosystems upon glacier surfaces is sought. Here, we present the first bacterial biogeography of an ice cap, evaluating the respective roles of dispersal, environmental and biotic filtration occurring at local scales in the assembly of cryoconite microbiota. 16S rRNA gene amplicon semiconductor sequencing of cryoconite colonizing a Svalbard ice cap coupled with digital elevation modelling of physical parameters reveals the bacterial community is dominated by a ubiquitous core of generalist taxa, with evidence for a moderate pairwise distance-decay relationship. While geographic position and melt season duration are prominent among environmental predictors of community structure, the core population of taxa appears highly influential in structuring the bacterial community. Taxon co-occurrence network analysis reveals a highly modular community structured by positive interactions with bottleneck taxa, predominantly Actinobacteria affiliated to isolates from soil humus. In contrast, the filamentous cyanobacterial taxon (assigned to Leptolyngbya/Phormidesmis pristleyi) which dominates the community and binds together granular cryoconite are poorly connected to other taxa. While our study targeted one ice cap, the prominent role of generalist core taxa with close environmental relatives across the global cryosphere indicate discrete roles for cosmopolitan Actinobacteria and Cyanobacteria as respective keystone taxa and ecosystem engineers of cryoconite ecosystems colonizing ice caps.
Collapse
Affiliation(s)
- Jarishma K Gokul
- Institute of Biological, Rural and Environmental Sciences, Aberystwyth University, Cledwyn Building, Aberystwyth, SY23 3DD, UK
| | - Andrew J Hodson
- Department of Geography, University of Sheffield, Sheffield, S10 2TN, UK.,Department of Arctic Geology, University Centre in Svalbard (UNIS), Longyearbyen, N-9171, Svalbard, UK
| | - Eli R Saetnan
- Institute of Biological, Rural and Environmental Sciences, Aberystwyth University, Cledwyn Building, Aberystwyth, SY23 3DD, UK
| | - Tristram D L Irvine-Fynn
- Department of Geography and Earth Sciences, Aberystwyth University, Llandinam Building, Aberystwyth, SY23 3DB, UK
| | - Philippa J Westall
- Institute of Biological, Rural and Environmental Sciences, Aberystwyth University, Cledwyn Building, Aberystwyth, SY23 3DD, UK
| | - Andrew P Detheridge
- Institute of Biological, Rural and Environmental Sciences, Aberystwyth University, Cledwyn Building, Aberystwyth, SY23 3DD, UK
| | - Nozomu Takeuchi
- Department of Earth Sciences, Graduate School of Science, Chiba University, 1-33, Yayoicho, Inage-ku, Chiba, 263-8522, Japan
| | - Jennifer Bussell
- Institute of Biological, Rural and Environmental Sciences, Aberystwyth University, Cledwyn Building, Aberystwyth, SY23 3DD, UK.,University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Luis A J Mur
- Institute of Biological, Rural and Environmental Sciences, Aberystwyth University, Cledwyn Building, Aberystwyth, SY23 3DD, UK
| | - Arwyn Edwards
- Institute of Biological, Rural and Environmental Sciences, Aberystwyth University, Cledwyn Building, Aberystwyth, SY23 3DD, UK
| |
Collapse
|
59
|
Fougy L, Desmonts MH, Coeuret G, Fassel C, Hamon E, Hézard B, Champomier-Vergès MC, Chaillou S. Reducing Salt in Raw Pork Sausages Increases Spoilage and Correlates with Reduced Bacterial Diversity. Appl Environ Microbiol 2016; 82:3928-3939. [PMID: 27107120 PMCID: PMC4907177 DOI: 10.1128/aem.00323-16] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/17/2016] [Indexed: 01/22/2023] Open
Abstract
UNLABELLED Raw sausages are perishable foodstuffs; reducing their salt content raises questions about a possible increased spoilage of these products. In this study, we evaluated the influence of salt reduction (from 2.0% to 1.5% [wt/wt]), in combination with two types of packaging (modified atmosphere [50% mix of CO2-N2] and vacuum packaging), on the onset of spoilage and on the diversity of spoilage-associated bacteria. After 21 days of storage at 8°C, spoilage was easily observed, characterized by noticeable graying of the products and the production of gas and off-odors defined as rancid, sulfurous, or sour. At least one of these types of spoilage occurred in each sample, and the global spoilage intensity was more pronounced in samples stored under modified atmosphere than under vacuum packaging and in samples with the lower salt content. Metagenetic 16S rRNA pyrosequencing revealed that vacuum-packaged samples contained a higher total bacterial richness (n = 69 operational taxonomic units [OTUs]) than samples under the other packaging condition (n = 46 OTUs). The core community was composed of 6 OTUs (Lactobacillus sakei, Lactococcus piscium, Carnobacterium divergens, Carnobacterium maltaromaticum, Serratia proteamaculans, and Brochothrix thermosphacta), whereas 13 OTUs taxonomically assigned to the Enterobacteriaceae, Enterococcaceae, and Leuconostocaceae families comprised a less-abundant subpopulation. This subdominant community was significantly more abundant when 2.0% salt and vacuum packaging were used, and this correlated with a lower degree of spoilage. Our results demonstrate that salt reduction, particularly when it is combined with CO2-enriched packaging, promotes faster spoilage of raw sausages by lowering the overall bacterial diversity (both richness and evenness). IMPORTANCE Our study takes place in the context of raw meat product manufacturing and is linked to a requirement for salt reduction. Health guidelines are calling for a reduction in dietary salt intake. However, salt has been used for a very long time as a hurdle technology, and salt reduction in meat products raises the question of spoilage and waste of food. The study was conceived to assess the role of sodium chloride reduction in meat products, both at the level of spoilage development and at the level of bacterial diversity, using 16S rRNA amplicon sequencing and raw pork sausage as a meat model.
Collapse
Affiliation(s)
- Lysiane Fougy
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
- Aérial, Parc d'Innovation, Illkirch, France
| | | | - Gwendoline Coeuret
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | | | | | | | | | - Stéphane Chaillou
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
60
|
Skopina MY, Vasileva AA, Pershina EV, Pinevich AV. Diversity at low abundance: The phenomenon of the rare bacterial biosphere. Microbiology (Reading) 2016. [DOI: 10.1134/s0026261716030139] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
61
|
Pessi IS, Maalouf PDC, Laughinghouse HD, Baurain D, Wilmotte A. On the use of high-throughput sequencing for the study of cyanobacterial diversity in Antarctic aquatic mats. JOURNAL OF PHYCOLOGY 2016; 52:356-68. [PMID: 27273529 DOI: 10.1111/jpy.12399] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 01/31/2016] [Indexed: 05/12/2023]
Abstract
The study of Antarctic cyanobacterial diversity has been mostly limited to morphological identification and traditional molecular techniques. High-throughput sequencing (HTS) allows a much better understanding of microbial distribution in the environment, but its application is hampered by several methodological and analytical challenges. In this work, we explored the use of HTS as a tool for the study of cyanobacterial diversity in Antarctic aquatic mats. Our results highlight the importance of using artificial communities to validate the parameters of the bioinformatics procedure used to analyze natural communities, since pipeline-dependent biases had a strong effect on the observed community structures. Analysis of microbial mats from five Antarctic lakes and an aquatic biofilm from the Sub-Antarctic showed that HTS is a valuable tool for the assessment of cyanobacterial diversity. The majority of the operational taxonomic units retrieved were related to filamentous taxa such as Leptolyngbya and Phormidium, which are common genera in Antarctic lacustrine microbial mats. However, other phylotypes related to different taxa such as Geitlerinema, Pseudanabaena, Synechococcus, Chamaesiphon, Calothrix, and Coleodesmium were also found. Results revealed a much higher diversity than what had been reported using traditional methods and also highlighted remarkable differences between the cyanobacterial communities of the studied lakes. The aquatic biofilm from the Sub-Antarctic had a distinct cyanobacterial community from the Antarctic lakes, which in turn displayed a salinity-dependent community structure at the phylotype level.
Collapse
Affiliation(s)
- Igor Stelmach Pessi
- Centre for Protein Engineering, University of Liège, Allée du Six Août 13, B6a, Quartier Agora, Sart-Tilman, 4000, Liège, Belgium
| | - Pedro De Carvalho Maalouf
- Centre for Protein Engineering, University of Liège, Allée du Six Août 13, B6a, Quartier Agora, Sart-Tilman, 4000, Liège, Belgium
| | - Haywood Dail Laughinghouse
- Centre for Protein Engineering, University of Liège, Allée du Six Août 13, B6a, Quartier Agora, Sart-Tilman, 4000, Liège, Belgium
| | - Denis Baurain
- Eukaryotic Phylogenomics, Department of Life Sciences/PhytoSYSTEMS, University of Liège, Chemin de la Vallée 4, B22, Quartier Vallée 1, Sart-Tilman, 4000, Liège, Belgium
| | - Annick Wilmotte
- Centre for Protein Engineering, University of Liège, Allée du Six Août 13, B6a, Quartier Agora, Sart-Tilman, 4000, Liège, Belgium
| |
Collapse
|
62
|
Zepeda-Mendoza ML, Bohmann K, Carmona Baez A, Gilbert MTP. DAMe: a toolkit for the initial processing of datasets with PCR replicates of double-tagged amplicons for DNA metabarcoding analyses. BMC Res Notes 2016; 9:255. [PMID: 27142414 PMCID: PMC4855357 DOI: 10.1186/s13104-016-2064-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 04/26/2016] [Indexed: 01/23/2023] Open
Abstract
Background DNA metabarcoding is an approach for identifying multiple taxa in an environmental sample using specific genetic loci and taxa-specific primers. When combined with high-throughput sequencing it enables the taxonomic characterization of large numbers of samples in a relatively time- and cost-efficient manner. One recent laboratory development is the addition of 5′-nucleotide tags to both primers producing double-tagged amplicons and the use of multiple PCR replicates to filter erroneous sequences. However, there is currently no available toolkit for the straightforward analysis of datasets produced in this way. Results We present DAMe, a toolkit for the processing of datasets generated by double-tagged amplicons from multiple PCR replicates derived from an unlimited number of samples. Specifically, DAMe can be used to (i) sort amplicons by tag combination, (ii) evaluate PCR replicates dissimilarity, and (iii) filter sequences derived from sequencing/PCR errors, chimeras, and contamination. This is attained by calculating the following parameters: (i) sequence content similarity between the PCR replicates from each sample, (ii) reproducibility of each unique sequence across the PCR replicates, and (iii) copy number of the unique sequences in each PCR replicate. We showcase the insights that can be obtained using DAMe prior to taxonomic assignment, by applying it to two real datasets that vary in their complexity regarding number of samples, sequencing libraries, PCR replicates, and used tag combinations. Finally, we use a third mock dataset to demonstrate the impact and importance of filtering the sequences with DAMe. Conclusions DAMe allows the user-friendly manipulation of amplicons derived from multiple samples with PCR replicates built in a single or multiple sequencing libraries. It allows the user to: (i) collapse amplicons into unique sequences and sort them by tag combination while retaining the sample identifier and copy number information, (ii) identify sequences carrying unused tag combinations, (iii) evaluate the comparability of PCR replicates of the same sample, and (iv) filter tagged amplicons from a number of PCR replicates using parameters of minimum length, copy number, and reproducibility across the PCR replicates. This enables an efficient analysis of complex datasets, and ultimately increases the ease of handling datasets from large-scale studies. Electronic supplementary material The online version of this article (doi:10.1186/s13104-016-2064-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marie Lisandra Zepeda-Mendoza
- Evogenomics, Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen, Denmark.
| | - Kristine Bohmann
- Evogenomics, Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen, Denmark
| | - Aldo Carmona Baez
- Evogenomics, Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen, Denmark.,Undergraduate Program on Genomic Sciences, Center for Genomic Sciences, National Autonomous University of Mexico (UNAM), Av. Universidad s/n Col. Chamilpa, 62210, Cuernavaca, Morelos, Mexico
| | - M Thomas P Gilbert
- Evogenomics, Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen, Denmark
| |
Collapse
|
63
|
Robinson CK, Brotman RM, Ravel J. Intricacies of assessing the human microbiome in epidemiologic studies. Ann Epidemiol 2016; 26:311-21. [PMID: 27180112 PMCID: PMC4892937 DOI: 10.1016/j.annepidem.2016.04.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/29/2016] [Accepted: 04/05/2016] [Indexed: 12/11/2022]
Abstract
PURPOSE In the past decade, remarkable relationships have been documented between dysbiosis of the human microbiota and adverse health outcomes. This review seeks to highlight some of the challenges and pitfalls that may be encountered during all stages of microbiota research, from study design and sample collection, to nucleic acid extraction and sequencing, and bioinformatic and statistical analysis. METHODS Literature focused on human microbiota research was reviewed and summarized. RESULTS Although most studies have focused on surveying the composition of the microbiota, fewer have explored the causal roles of these bacteria, archaea, viruses, and fungi in affecting disease states. Microbiome research is in its relatively early years and many aspects remain challenging, including the complexity and personalized aspects of microbial communities, the influence of exogenous and often confounding factors, the need to apply fundamental principles of ecology and epidemiology, the necessity for new software tools, and the rapidly evolving genomic, technological, and analytical landscapes. CONCLUSIONS Incorporating human microbiome research in large epidemiologic studies will soon help us unravel the intricate relationships that we have with our microbial partners and provide interventional opportunities to improve human health.
Collapse
Affiliation(s)
- Courtney K Robinson
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore
| | - Rebecca M Brotman
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore; Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore.
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore; Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore.
| |
Collapse
|
64
|
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic immune-mediated disease with a subclinical prodromal period, characterized by selective loss of insulin-producing-β cells in the pancreatic islets of genetically susceptible individuals. The incidence of T1DM has increased several fold in most developed countries since World War II, in conjunction with other immune-mediated diseases. Rapid environmental changes and modern lifestyles are probably the driving factors that underlie this increase. These effects might be mediated by changes in the human microbiota, particularly the intestinal microbiota. Research on the gut microbiome of individuals at risk of developing T1DM and in patients with established disease is still in its infancy, but initial findings indicate that the intestinal microbiome of individuals with prediabetes or diabetes mellitus is different to that of healthy individuals. The gut microbiota in individuals with preclinical T1DM is characterized by Bacteroidetes dominating at the phylum level, a dearth of butyrate-producing bacteria, reduced bacterial and functional diversity and low community stability. However, these changes seem to emerge after the appearance of autoantibodies that are predictive of T1DM, which suggests that the intestinal microbiota might be involved in the progression from β-cell autoimmunity to clinical disease rather than in the initiation of the disease process.
Collapse
Affiliation(s)
- Mikael Knip
- Children's Hospital, University of Helsinki and Helsinki University Hospital, PO Box 22, FI-00014 Helsinki, Finland
| | - Heli Siljander
- Children's Hospital, University of Helsinki and Helsinki University Hospital, PO Box 22, FI-00014 Helsinki, Finland
| |
Collapse
|
65
|
Pasulka AL, Levin LA, Steele JA, Case DH, Landry MR, Orphan VJ. Microbial eukaryotic distributions and diversity patterns in a deep-sea methane seep ecosystem. Environ Microbiol 2016; 18:3022-43. [PMID: 26663587 DOI: 10.1111/1462-2920.13185] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 12/03/2015] [Accepted: 12/08/2015] [Indexed: 11/30/2022]
Abstract
Although chemosynthetic ecosystems are known to support diverse assemblages of microorganisms, the ecological and environmental factors that structure microbial eukaryotes (heterotrophic protists and fungi) are poorly characterized. In this study, we examined the geographic, geochemical and ecological factors that influence microbial eukaryotic composition and distribution patterns within Hydrate Ridge, a methane seep ecosystem off the coast of Oregon using a combination of high-throughput 18S rRNA tag sequencing, terminal restriction fragment length polymorphism fingerprinting, and cloning and sequencing of full-length 18S rRNA genes. Microbial eukaryotic composition and diversity varied as a function of substrate (carbonate versus sediment), activity (low activity versus active seep sites), sulfide concentration, and region (North versus South Hydrate Ridge). Sulfide concentration was correlated with changes in microbial eukaryotic composition and richness. This work also revealed the influence of oxygen content in the overlying water column and water depth on microbial eukaryotic composition and diversity, and identified distinct patterns from those previously observed for bacteria, archaea and macrofauna in methane seep ecosystems. Characterizing the structure of microbial eukaryotic communities in response to environmental variability is a key step towards understanding if and how microbial eukaryotes influence seep ecosystem structure and function.
Collapse
Affiliation(s)
- Alexis L Pasulka
- Integrative Oceanography Division and Center for Marine Biodiversity and Conservation, Scripps Institution of Oceanography, University of California, San Diego, CA, USA. .,Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA.
| | - Lisa A Levin
- Integrative Oceanography Division and Center for Marine Biodiversity and Conservation, Scripps Institution of Oceanography, University of California, San Diego, CA, USA
| | - Josh A Steele
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA.,Southern California Coastal Water Research Project, Costa Mesa, CA, USA
| | - David H Case
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Michael R Landry
- Integrative Oceanography Division and Center for Marine Biodiversity and Conservation, Scripps Institution of Oceanography, University of California, San Diego, CA, USA
| | - Victoria J Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
66
|
Avramenko RW, Redman EM, Lewis R, Yazwinski TA, Wasmuth JD, Gilleard JS. Exploring the Gastrointestinal "Nemabiome": Deep Amplicon Sequencing to Quantify the Species Composition of Parasitic Nematode Communities. PLoS One 2015; 10:e0143559. [PMID: 26630572 PMCID: PMC4668017 DOI: 10.1371/journal.pone.0143559] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/05/2015] [Indexed: 11/25/2022] Open
Abstract
Parasitic helminth infections have a considerable impact on global human health as well as animal welfare and production. Although co-infection with multiple parasite species within a host is common, there is a dearth of tools with which to study the composition of these complex parasite communities. Helminth species vary in their pathogenicity, epidemiology and drug sensitivity and the interactions that occur between co-infecting species and their hosts are poorly understood. We describe the first application of deep amplicon sequencing to study parasitic nematode communities as well as introduce the concept of the gastro-intestinal “nemabiome”. The approach is analogous to 16S rDNA deep sequencing used to explore microbial communities, but utilizes the nematode ITS-2 rDNA locus instead. Gastro-intestinal parasites of cattle were used to develop the concept, as this host has many well-defined gastro-intestinal nematode species that commonly occur as complex co-infections. Further, the availability of pure mono-parasite populations from experimentally infected cattle allowed us to prepare mock parasite communities to determine, and correct for, species representation biases in the sequence data. We demonstrate that, once these biases have been corrected, accurate relative quantitation of gastro-intestinal parasitic nematode communities in cattle fecal samples can be achieved. We have validated the accuracy of the method applied to field-samples by comparing the results of detailed morphological examination of L3 larvae populations with those of the sequencing assay. The results illustrate the insights that can be gained into the species composition of parasite communities, using grazing cattle in the mid-west USA as an example. However, both the technical approach and the concept of the ‘nemabiome’ have a wide range of potential applications in human and veterinary medicine. These include investigations of host-parasite and parasite-parasite interactions during co-infection, parasite epidemiology, parasite ecology and the response of parasite populations to both drug treatments and control programs.
Collapse
Affiliation(s)
- Russell W. Avramenko
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Elizabeth M. Redman
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Roy Lewis
- Merck Animal Health, Calgary, Alberta, Canada
| | - Thomas A. Yazwinski
- Department of Animal Science, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - James D. Wasmuth
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - John S. Gilleard
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
67
|
Cracking the Code of Human Diseases Using Next-Generation Sequencing: Applications, Challenges, and Perspectives. BIOMED RESEARCH INTERNATIONAL 2015; 2015:161648. [PMID: 26665001 PMCID: PMC4668301 DOI: 10.1155/2015/161648] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 09/30/2015] [Accepted: 10/18/2015] [Indexed: 02/07/2023]
Abstract
Next-generation sequencing (NGS) technologies have greatly impacted on every field of molecular research mainly because they reduce costs and increase throughput of DNA sequencing. These features, together with the technology's flexibility, have opened the way to a variety of applications including the study of the molecular basis of human diseases. Several analytical approaches have been developed to selectively enrich regions of interest from the whole genome in order to identify germinal and/or somatic sequence variants and to study DNA methylation. These approaches are now widely used in research, and they are already being used in routine molecular diagnostics. However, some issues are still controversial, namely, standardization of methods, data analysis and storage, and ethical aspects. Besides providing an overview of the NGS-based approaches most frequently used to study the molecular basis of human diseases at DNA level, we discuss the principal challenges and applications of NGS in the field of human genomics.
Collapse
|
68
|
Lange A, Jost S, Heider D, Bock C, Budeus B, Schilling E, Strittmatter A, Boenigk J, Hoffmann D. AmpliconDuo: A Split-Sample Filtering Protocol for High-Throughput Amplicon Sequencing of Microbial Communities. PLoS One 2015; 10:e0141590. [PMID: 26523925 PMCID: PMC4629888 DOI: 10.1371/journal.pone.0141590] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/09/2015] [Indexed: 11/18/2022] Open
Abstract
High throughput sequencing (HTSeq) of small ribosomal subunit amplicons has the potential for a comprehensive characterization of microbial community compositions, down to rare species. However, the error-prone nature of the multi-step experimental process requires that the resulting raw sequences are subjected to quality control procedures. These procedures often involve an abundance cutoff for rare sequences or clustering of sequences, both of which limit genetic resolution. Here we propose a simple experimental protocol that retains the high genetic resolution granted by HTSeq methods while effectively removing many low abundance sequences that are likely due to PCR and sequencing errors. According to this protocol, we split samples and submit both halves to independent PCR and sequencing runs. The resulting sequence data is graphically and quantitatively characterized by the discordance between the two experimental branches, allowing for a quick identification of problematic samples. Further, we discard sequences that are not found in both branches (“AmpliconDuo filter”). We show that the majority of sequences removed in this way, mostly low abundance but also some higher abundance sequences, show features expected from random modifications of true sequences as introduced by PCR and sequencing errors. On the other hand, the filter retains many low abundance sequences observed in both branches and thus provides a more reliable census of the rare biosphere. We find that the AmpliconDuo filter increases biological resolution as it increases apparent community similarity between biologically similar communities, while it does not affect apparent community similarities between biologically dissimilar communities. The filter does not distort overall apparent community compositions. Finally, we quantitatively explain the effect of the AmpliconDuo filter by a simple mathematical model.
Collapse
Affiliation(s)
- Anja Lange
- Research Group Bioinformatics, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Steffen Jost
- Department of Biodiversity, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Dominik Heider
- Research Group Bioinformatics, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Christina Bock
- Department of Biodiversity, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Bettina Budeus
- Research Group Bioinformatics, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | | | | | - Jens Boenigk
- Department of Biodiversity, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
- * E-mail: (JB); (D. Hoffmann)
| | - Daniel Hoffmann
- Research Group Bioinformatics, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
- * E-mail: (JB); (D. Hoffmann)
| |
Collapse
|
69
|
Hinchliff CE, Smith SA, Allman JF, Burleigh JG, Chaudhary R, Coghill LM, Crandall KA, Deng J, Drew BT, Gazis R, Gude K, Hibbett DS, Katz LA, Laughinghouse HD, McTavish EJ, Midford PE, Owen CL, Ree RH, Rees JA, Soltis DE, Williams T, Cranston KA. Synthesis of phylogeny and taxonomy into a comprehensive tree of life. Proc Natl Acad Sci U S A 2015; 112:12764-9. [PMID: 26385966 PMCID: PMC4611642 DOI: 10.1073/pnas.1423041112] [Citation(s) in RCA: 372] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Reconstructing the phylogenetic relationships that unite all lineages (the tree of life) is a grand challenge. The paucity of homologous character data across disparately related lineages currently renders direct phylogenetic inference untenable. To reconstruct a comprehensive tree of life, we therefore synthesized published phylogenies, together with taxonomic classifications for taxa never incorporated into a phylogeny. We present a draft tree containing 2.3 million tips-the Open Tree of Life. Realization of this tree required the assembly of two additional community resources: (i) a comprehensive global reference taxonomy and (ii) a database of published phylogenetic trees mapped to this taxonomy. Our open source framework facilitates community comment and contribution, enabling the tree to be continuously updated when new phylogenetic and taxonomic data become digitally available. Although data coverage and phylogenetic conflict across the Open Tree of Life illuminate gaps in both the underlying data available for phylogenetic reconstruction and the publication of trees as digital objects, the tree provides a compelling starting point for community contribution. This comprehensive tree will fuel fundamental research on the nature of biological diversity, ultimately providing up-to-date phylogenies for downstream applications in comparative biology, ecology, conservation biology, climate change, agriculture, and genomics.
Collapse
Affiliation(s)
- Cody E Hinchliff
- Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109
| | - Stephen A Smith
- Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109;
| | | | | | - Ruchi Chaudhary
- Department of Biology, University of Florida, Gainesville, FL 32611
| | | | - Keith A Crandall
- Computational Biology Institute, George Washington University, Ashburn, VA 20147
| | - Jiabin Deng
- Department of Biology, University of Florida, Gainesville, FL 32611
| | - Bryan T Drew
- Department of Biology, University of Nebraska-Kearney, Kearney, NE 68849
| | - Romina Gazis
- Department of Biology, Clark University, Worcester, MA 01610
| | - Karl Gude
- School of Journalism, Michigan State University, East Lansing, MI 48824
| | - David S Hibbett
- Department of Biology, Clark University, Worcester, MA 01610
| | - Laura A Katz
- Biological Science, Clark Science Center, Smith College, Northampton, MA 01063
| | | | - Emily Jane McTavish
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045
| | | | | | | | - Jonathan A Rees
- National Evolutionary Synthesis Center, Duke University, Durham, NC 27705
| | - Douglas E Soltis
- Department of Biology, University of Florida, Gainesville, FL 32611; Florida Museum of Natural History, University of Florida, Gainesville, FL 32611
| | - Tiffani Williams
- Computer Science and Engineering, Texas A&M University, College Station, TX 77843
| | - Karen A Cranston
- National Evolutionary Synthesis Center, Duke University, Durham, NC 27705;
| |
Collapse
|
70
|
Iyer S, Casey E, Bouzek H, Kim M, Deng W, Larsen BB, Zhao H, Bumgarner RE, Rolland M, Mullins JI. Comparison of Major and Minor Viral SNPs Identified through Single Template Sequencing and Pyrosequencing in Acute HIV-1 Infection. PLoS One 2015; 10:e0135903. [PMID: 26317928 PMCID: PMC4552882 DOI: 10.1371/journal.pone.0135903] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 07/27/2015] [Indexed: 01/03/2023] Open
Abstract
Massively parallel sequencing (MPS) technologies, such as 454-pyrosequencing, allow for the identification of variants in sequence populations at lower levels than consensus sequencing and most single-template Sanger sequencing experiments. We sought to determine if the greater depth of population sampling attainable using MPS technology would allow detection of minor variants in HIV founder virus populations very early in infection in instances where Sanger sequencing detects only a single variant. We compared single nucleotide polymorphisms (SNPs) during acute HIV-1 infection from 32 subjects using both single template Sanger and 454-pyrosequencing. Pyrosequences from a median of 2400 viral templates per subject and encompassing 40% of the HIV-1 genome, were compared to a median of five individually amplified near full-length viral genomes sequenced using Sanger technology. There was no difference in the consensus nucleotide sequences over the 3.6kb compared in 84% of the subjects infected with single founders and 33% of subjects infected with multiple founder variants: among the subjects with disagreements, mismatches were found in less than 1% of the sites evaluated (of a total of nearly 117,000 sites across all subjects). The majority of the SNPs observed only in pyrosequences were present at less than 2% of the subject’s viral sequence population. These results demonstrate the utility of the Sanger approach for study of early HIV infection and provide guidance regarding the design, utility and limitations of population sequencing from variable template sources, and emphasize parameters for improving the interpretation of massively parallel sequencing data to address important questions regarding target sequence evolution.
Collapse
Affiliation(s)
- Shyamala Iyer
- Department of Microbiology, University of Washington, Seattle, WA, 98195, United States of America
| | - Eleanor Casey
- Department of Microbiology, University of Washington, Seattle, WA, 98195, United States of America
| | - Heather Bouzek
- Department of Microbiology, University of Washington, Seattle, WA, 98195, United States of America
| | - Moon Kim
- Department of Microbiology, University of Washington, Seattle, WA, 98195, United States of America
| | - Wenjie Deng
- Department of Microbiology, University of Washington, Seattle, WA, 98195, United States of America
| | - Brendan B. Larsen
- Department of Microbiology, University of Washington, Seattle, WA, 98195, United States of America
| | - Hong Zhao
- Department of Microbiology, University of Washington, Seattle, WA, 98195, United States of America
| | - Roger E. Bumgarner
- Department of Microbiology, University of Washington, Seattle, WA, 98195, United States of America
| | - Morgane Rolland
- US Military HIV Research Program, WRAIR, Silver Spring, MD, 20910, United States of America
- Henry Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, 20817, United States of America
| | - James I. Mullins
- Department of Microbiology, University of Washington, Seattle, WA, 98195, United States of America
- Department of Medicine, University of Washington, Seattle, WA, 98195, United States of America
- Department of Laboratory Medicine, Seattle, WA, 98195, United States of America
- * E-mail:
| |
Collapse
|
71
|
Tremblay J, Singh K, Fern A, Kirton ES, He S, Woyke T, Lee J, Chen F, Dangl JL, Tringe SG. Primer and platform effects on 16S rRNA tag sequencing. Front Microbiol 2015; 6:771. [PMID: 26300854 PMCID: PMC4523815 DOI: 10.3389/fmicb.2015.00771] [Citation(s) in RCA: 311] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 07/14/2015] [Indexed: 12/24/2022] Open
Abstract
Sequencing of 16S rRNA gene tags is a popular method for profiling and comparing microbial communities. The protocols and methods used, however, vary considerably with regard to amplification primers, sequencing primers, sequencing technologies; as well as quality filtering and clustering. How results are affected by these choices, and whether data produced with different protocols can be meaningfully compared, is often unknown. Here we compare results obtained using three different amplification primer sets (targeting V4, V6–V8, and V7–V8) and two sequencing technologies (454 pyrosequencing and Illumina MiSeq) using DNA from a mock community containing a known number of species as well as complex environmental samples whose PCR-independent profiles were estimated using shotgun sequencing. We find that paired-end MiSeq reads produce higher quality data and enabled the use of more aggressive quality control parameters over 454, resulting in a higher retention rate of high quality reads for downstream data analysis. While primer choice considerably influences quantitative abundance estimations, sequencing platform has relatively minor effects when matched primers are used. Beta diversity metrics are surprisingly robust to both primer and sequencing platform biases.
Collapse
Affiliation(s)
- Julien Tremblay
- Department of Energy Joint Genome Institute Walnut Creek, CA, USA ; National Research Council Canada Montreal, QC, Canada
| | - Kanwar Singh
- Department of Energy Joint Genome Institute Walnut Creek, CA, USA
| | - Alison Fern
- Department of Energy Joint Genome Institute Walnut Creek, CA, USA
| | - Edward S Kirton
- Department of Energy Joint Genome Institute Walnut Creek, CA, USA
| | - Shaomei He
- Department of Energy Joint Genome Institute Walnut Creek, CA, USA
| | - Tanja Woyke
- Department of Energy Joint Genome Institute Walnut Creek, CA, USA
| | - Janey Lee
- Department of Energy Joint Genome Institute Walnut Creek, CA, USA
| | - Feng Chen
- Illumina, Inc. San Francisco, CA, USA
| | - Jeffery L Dangl
- Department of Biology and Howard Hughes Medical Institute, Curriculum in Genetics and Molecular Biology, Department of Microbiology and Immunology, Carolina Center for Genome Sciences, University of North Carolina Chapel Hill, NC, USA
| | | |
Collapse
|
72
|
Herbold CW, Pelikan C, Kuzyk O, Hausmann B, Angel R, Berry D, Loy A. A flexible and economical barcoding approach for highly multiplexed amplicon sequencing of diverse target genes. Front Microbiol 2015; 6:731. [PMID: 26236305 PMCID: PMC4503924 DOI: 10.3389/fmicb.2015.00731] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 07/03/2015] [Indexed: 12/11/2022] Open
Abstract
High throughput sequencing of phylogenetic and functional gene amplicons provides tremendous insight into the structure and functional potential of complex microbial communities. Here, we introduce a highly adaptable and economical PCR approach to barcoding and pooling libraries of numerous target genes. In this approach, we replace gene- and sequencing platform-specific fusion primers with general, interchangeable barcoding primers, enabling nearly limitless customized barcode-primer combinations. Compared to barcoding with long fusion primers, our multiple-target gene approach is more economical because it overall requires lower number of primers and is based on short primers with generally lower synthesis and purification costs. To highlight our approach, we pooled over 900 different small-subunit rRNA and functional gene amplicon libraries obtained from various environmental or host-associated microbial community samples into a single, paired-end Illumina MiSeq run. Although the amplicon regions ranged in size from approximately 290 to 720 bp, we found no significant systematic sequencing bias related to amplicon length or gene target. Our results indicate that this flexible multiplexing approach produces large, diverse, and high quality sets of amplicon sequence data for modern studies in microbial ecology.
Collapse
Affiliation(s)
| | | | | | | | | | - David Berry
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network Chemistry Meets Microbiology, University of ViennaVienna, Austria
| | | |
Collapse
|
73
|
Visco JA, Apothéloz-Perret-Gentil L, Cordonier A, Esling P, Pillet L, Pawlowski J. Environmental Monitoring: Inferring the Diatom Index from Next-Generation Sequencing Data. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:7597-7605. [PMID: 26052741 DOI: 10.1021/es506158m] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Diatoms are widely used as bioindicators for the assessment of water quality in rivers and streams. Classically, the diatom biotic indices are based on the relative abundance of morphologically identified species weighted by their autoecological value. Obtaining such indices is time-consuming, costly, and requires excellent taxonomic expertise, which is not always available. Here we tested the possibility to overcome these limitations using a next-generation sequencing (NGS) approach to identify and quantify diatoms found in environmental DNA and RNA samples. We analyzed 27 river sites in the Geneva area (Switzerland), in order to compare the values of the Swiss Diatom Index (DI-CH) computed either by microscopic quantification of diatom species or directly from NGS data. Despite gaps in the reference database and variations in relative abundance of analyzed species, the diatom index shows a significant correlation between morphological and molecular data indicating similar biological quality status for the majority of sites. This proof-of-concept study demonstrates the potential of the NGS approach for identification and quantification of diatoms in environmental samples, opening new avenues toward the routine application of genetic tools for bioassessment and biomonitoring of aquatic ecosystems.
Collapse
Affiliation(s)
- Joana Amorim Visco
- †Department of Genetics and Evolution, University of Geneva, Boulevard d'Yvoy 4, CH 1205 Geneva, Switzerland
| | | | - Arielle Cordonier
- ‡Water Ecology Service, Department of Environment, Transports and Agriculture, Canton of Geneva, CH 1205 Geneva, Switzerland
| | - Philippe Esling
- †Department of Genetics and Evolution, University of Geneva, Boulevard d'Yvoy 4, CH 1205 Geneva, Switzerland
- §IRCAM, UMR 9912, Université Pierre et Marie Curie, 4 place Jussieu, 75005 Paris, France
| | - Loïc Pillet
- †Department of Genetics and Evolution, University of Geneva, Boulevard d'Yvoy 4, CH 1205 Geneva, Switzerland
- ∥CNRS, UMR 7144, Laboratoire Adaptation et Diversité en Milieu Marin, Place Georges Teissier, CS90074, 29688 Roscoff, France
| | - Jan Pawlowski
- †Department of Genetics and Evolution, University of Geneva, Boulevard d'Yvoy 4, CH 1205 Geneva, Switzerland
| |
Collapse
|
74
|
Goldsmith DB, Parsons RJ, Beyene D, Salamon P, Breitbart M. Deep sequencing of the viral phoH gene reveals temporal variation, depth-specific composition, and persistent dominance of the same viral phoH genes in the Sargasso Sea. PeerJ 2015; 3:e997. [PMID: 26157645 PMCID: PMC4476143 DOI: 10.7717/peerj.997] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 05/13/2015] [Indexed: 11/20/2022] Open
Abstract
Deep sequencing of the viral phoH gene, a host-derived auxiliary metabolic gene, was used to track viral diversity throughout the water column at the Bermuda Atlantic Time-series Study (BATS) site in the summer (September) and winter (March) of three years. Viral phoH sequences reveal differences in the viral communities throughout a depth profile and between seasons in the same year. Variation was also detected between the same seasons in subsequent years, though these differences were not as great as the summer/winter distinctions. Over 3,600 phoH operational taxonomic units (OTUs; 97% sequence identity) were identified. Despite high richness, most phoH sequences belong to a few large, common OTUs whereas the majority of the OTUs are small and rare. While many OTUs make sporadic appearances at just a few times or depths, a small number of OTUs dominate the community throughout the seasons, depths, and years.
Collapse
Affiliation(s)
- Dawn B Goldsmith
- College of Marine Science, University of South Florida , St. Petersburg, FL , USA
| | | | - Damitu Beyene
- Department of Mathematics and Statistics, San Diego State University , San Diego, CA , USA
| | - Peter Salamon
- Department of Mathematics and Statistics, San Diego State University , San Diego, CA , USA
| | - Mya Breitbart
- College of Marine Science, University of South Florida , St. Petersburg, FL , USA
| |
Collapse
|
75
|
Lavy O, Sher N, Malik A, Chiel E. Do Bacterial Symbionts Govern Aphid's Dropping Behavior? ENVIRONMENTAL ENTOMOLOGY 2015; 44:588-592. [PMID: 26313964 DOI: 10.1093/ee/nvv044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 03/14/2015] [Indexed: 06/04/2023]
Abstract
Defensive symbiosis is amongst nature's most important interactions shaping the ecology and evolution of all partners involved. The pea aphid, Acyrthosiphon pisum Harris (Hemiptera: Aphididae), harbors one obligatory bacterial symbiont and up to seven different facultative symbionts, some of which are known to protect the aphid from pathogens, natural enemies, and other mortality factors. Pea aphids typically drop off the plant when a mammalian herbivore approaches it to avoid incidental predation. Here, we examined whether bacterial symbionts govern the pea aphid dropping behavior by comparing the bacterial fauna in dropping and nondropping aphids of two A. pisum populations, using two molecular techniques: high-throughput profiling of community structure using 16 S reads sequenced on the Illumina platform, and diagnostic polymerase chain reaction (PCR). We found that in addition to the obligatory symbiont, Buchnera aphidicola, the tested colonies of A. pisum harbored the facultative symbionts Serratia symbiotica, Regiella insecticola and Rickettsia, with no significant differences in infection proportions between dropping and nondropping aphids. While S. symbiotica was detected by both techniques, R. insecticola and Rickettsia could be detected only by diagnostic PCR. We therefore conclude that A. pisum's dropping behavior is not affected by its bacterial symbionts and is possibly affected by other factors.
Collapse
Affiliation(s)
- Omer Lavy
- Department of Biology and Environment, University of Haifa, Oranim, Tivon 36006, Israel.
| | - Noa Sher
- Bioinformatics Service Unit, University of Haifa, Haifa, Israel
| | - Assaf Malik
- Bioinformatics Service Unit, University of Haifa, Haifa, Israel
| | - Elad Chiel
- Department of Biology and Environment, University of Haifa, Oranim, Tivon 36006, Israel
| |
Collapse
|
76
|
Green SJ, Venkatramanan R, Naqib A. Deconstructing the polymerase chain reaction: understanding and correcting bias associated with primer degeneracies and primer-template mismatches. PLoS One 2015; 10:e0128122. [PMID: 25996930 PMCID: PMC4440812 DOI: 10.1371/journal.pone.0128122] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 04/22/2015] [Indexed: 12/26/2022] Open
Abstract
The polymerase chain reaction (PCR) is sensitive to mismatches between primer and template, and mismatches can lead to inefficient amplification of targeted regions of DNA template. In PCRs in which a degenerate primer pool is employed, each primer can behave differently. Therefore, inefficiencies due to different primer melting temperatures within a degenerate primer pool, in addition to mismatches between primer binding sites and primers, can lead to a distortion of the true relative abundance of targets in the original DNA pool. A theoretical analysis indicated that a combination of primer-template and primer-amplicon interactions during PCR cycles 3–12 is potentially responsible for this distortion. To test this hypothesis, we developed a novel amplification strategy, entitled “Polymerase-exonuclease (PEX) PCR”, in which primer-template interactions and primer-amplicon interactions are separated. The PEX PCR method substantially and significantly improved the evenness of recovery of sequences from a mock community of known composition, and allowed for amplification of templates with introduced mismatches near the 3’ end of the primer annealing sites. When the PEX PCR method was applied to genomic DNA extracted from complex environmental samples, a significant shift in the observed microbial community was detected. Furthermore, the PEX PCR method provides a mechanism to identify which primers in a primer pool are annealing to target gDNA. Primer utilization patterns revealed that at high annealing temperatures in the PEX PCR method, perfect match annealing predominates, while at lower annealing temperatures, primers with up to four mismatches with templates can contribute substantially to amplification. The PEX PCR method is simple to perform, is limited to PCR mixes and a single exonuclease step which can be performed without reaction cleanup, and is recommended for reactions in which degenerate primer pools are used or when mismatches between primers and template are possible.
Collapse
Affiliation(s)
- Stefan J. Green
- DNA Services Facility, Research Resources Center, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Dept. of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| | - Raghavee Venkatramanan
- DNA Services Facility, Research Resources Center, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Dept. of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Ankur Naqib
- DNA Services Facility, Research Resources Center, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Dept. of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
77
|
Murray DC, Coghlan ML, Bunce M. From benchtop to desktop: important considerations when designing amplicon sequencing workflows. PLoS One 2015; 10:e0124671. [PMID: 25902146 PMCID: PMC4406758 DOI: 10.1371/journal.pone.0124671] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/16/2015] [Indexed: 02/08/2023] Open
Abstract
Amplicon sequencing has been the method of choice in many high-throughput DNA sequencing (HTS) applications. To date there has been a heavy focus on the means by which to analyse the burgeoning amount of data afforded by HTS. In contrast, there has been a distinct lack of attention paid to considerations surrounding the importance of sample preparation and the fidelity of library generation. No amount of high-end bioinformatics can compensate for poorly prepared samples and it is therefore imperative that careful attention is given to sample preparation and library generation within workflows, especially those involving multiple PCR steps. This paper redresses this imbalance by focusing on aspects pertaining to the benchtop within typical amplicon workflows: sample screening, the target region, and library generation. Empirical data is provided to illustrate the scope of the problem. Lastly, the impact of various data analysis parameters is also investigated in the context of how the data was initially generated. It is hoped this paper may serve to highlight the importance of pre-analysis workflows in achieving meaningful, future-proof data that can be analysed appropriately. As amplicon sequencing gains traction in a variety of diagnostic applications from forensics to environmental DNA (eDNA) it is paramount workflows and analytics are both fit for purpose.
Collapse
Affiliation(s)
- Dáithí C. Murray
- Trace and Environmental DNA Laboratory, Department of Environment and Agriculture, Curtin University, Perth, Western Australia, Australia
| | - Megan L. Coghlan
- Trace and Environmental DNA Laboratory, Department of Environment and Agriculture, Curtin University, Perth, Western Australia, Australia
| | - Michael Bunce
- Trace and Environmental DNA Laboratory, Department of Environment and Agriculture, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|
78
|
Pramanik A, Basak P, Banerjee S, Sengupta S, Chattopadhyay D, Bhattacharyya M. Pyrosequencing based profiling of the bacterial community in the Chilika Lake, the largest lagoon of India. GENOMICS DATA 2015; 4:112-4. [PMID: 26484193 PMCID: PMC4536005 DOI: 10.1016/j.gdata.2015.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 04/01/2015] [Accepted: 04/01/2015] [Indexed: 11/08/2022]
Abstract
Brackish water lake is the most extraordinary reservoir for bacterial community with an adaptability of tolerance to saline stress. In the present study, metagenomic approach was implemented utilising 454-pyrosequencing platform to gain deeper insights into the bacterial diversity profile of the soil sediment of Chilika Lake, Odisha, India. Metagenome contained 68,150 sequences with 31,896,430 bp and 56.79% G + C content. Metagenome sequences data are now available at NCBI under the Sequence Read Archive (SRA) database with accession no. SRX753382. Bacterial community metagenome sequences were analysed by MG-RAST server representing the presence of 16,212 species belonging to 45 different phyla. The dominating phyla were Proteobacteria, Chloroflexi, Firmicutes, Acidobacteria, Actinobacteria, Bacteroidetes and Planctomycetes. The analysis of bacterial community datasets obtained from two different saline soil sediments revealed significant differences in bacterial community composition and diversity value providing better understanding of the ecosystem dynamics of Chilika Lake.
Collapse
Affiliation(s)
- Arnab Pramanik
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700 019, West Bengal, India
| | - Pijush Basak
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700 019, West Bengal, India
| | - Satabdi Banerjee
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700 019, West Bengal, India
| | - Sanghamitra Sengupta
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700 019, West Bengal, India
| | - Dhrubajyoti Chattopadhyay
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700 019, West Bengal, India
| | - Maitree Bhattacharyya
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700 019, West Bengal, India
| |
Collapse
|
79
|
McCarthy A, Chiang E, Schmidt ML, Denef VJ. RNA preservation agents and nucleic acid extraction method bias perceived bacterial community composition. PLoS One 2015; 10:e0121659. [PMID: 25798612 PMCID: PMC4370824 DOI: 10.1371/journal.pone.0121659] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 02/11/2015] [Indexed: 01/08/2023] Open
Abstract
Bias is a pervasive problem when characterizing microbial communities. An important source is the difference in lysis efficiencies of different populations, which vary depending on the extraction protocol used. To avoid such biases impacting comparisons between gene and transcript abundances in the environment, the use of one protocol that simultaneously extracts both types of nucleic acids from microbial community samples has gained popularity. However, knowledge regarding tradeoffs to combined nucleic acid extraction protocols is limited, particularly regarding yield and biases in the observed community composition. Here, we evaluated a commercially available protocol for simultaneous extraction of DNA and RNA, which we adapted for freshwater microbial community samples that were collected on filters. DNA and RNA yields were comparable to other commonly used, but independent DNA and RNA extraction protocols. RNA protection agents benefited RNA quality, but decreased DNA yields significantly. Choice of extraction protocol influenced the perceived bacterial community composition, with strong method-dependent biases observed for specific phyla such as the Verrucomicrobia. The combined DNA/RNA extraction protocol detected significantly higher levels of Verrucomicrobia than the other protocols, and those higher numbers were confirmed by microscopic analysis. Use of RNA protection agents as well as independent sequencing runs caused a significant shift in community composition as well, albeit smaller than the shift caused by using different extraction protocols. Despite methodological biases, sample origin was the strongest determinant of community composition. However, when the abundance of specific phylogenetic groups is of interest, researchers need to be aware of the biases their methods introduce. This is particularly relevant if different methods are used for DNA and RNA extraction, in addition to using RNA protection agents only for RNA samples.
Collapse
Affiliation(s)
- Ann McCarthy
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, United States of America
| | - Edna Chiang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, United States of America
| | - Marian L. Schmidt
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, United States of America
| | - Vincent J. Denef
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, United States of America
- * E-mail:
| |
Collapse
|
80
|
Brooks JP, Edwards DJ, Harwich MD, Rivera MC, Fettweis JM, Serrano MG, Reris RA, Sheth NU, Huang B, Girerd P, Strauss JF, Jefferson KK, Buck GA. The truth about metagenomics: quantifying and counteracting bias in 16S rRNA studies. BMC Microbiol 2015; 15:66. [PMID: 25880246 PMCID: PMC4433096 DOI: 10.1186/s12866-015-0351-6] [Citation(s) in RCA: 316] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 01/16/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Characterizing microbial communities via next-generation sequencing is subject to a number of pitfalls involving sample processing. The observed community composition can be a severe distortion of the quantities of bacteria actually present in the microbiome, hampering analysis and threatening the validity of conclusions from metagenomic studies. We introduce an experimental protocol using mock communities for quantifying and characterizing bias introduced in the sample processing pipeline. We used 80 bacterial mock communities comprised of prescribed proportions of cells from seven vaginally-relevant bacterial strains to assess the bias introduced in the sample processing pipeline. We created two additional sets of 80 mock communities by mixing prescribed quantities of DNA and PCR product to quantify the relative contribution to bias of (1) DNA extraction, (2) PCR amplification, and (3) sequencing and taxonomic classification for particular choices of protocols for each step. We developed models to predict the "true" composition of environmental samples based on the observed proportions, and applied them to a set of clinical vaginal samples from a single subject during four visits. RESULTS We observed that using different DNA extraction kits can produce dramatically different results but bias is introduced regardless of the choice of kit. We observed error rates from bias of over 85% in some samples, while technical variation was very low at less than 5% for most bacteria. The effects of DNA extraction and PCR amplification for our protocols were much larger than those due to sequencing and classification. The processing steps affected different bacteria in different ways, resulting in amplified and suppressed observed proportions of a community. When predictive models were applied to clinical samples from a subject, the predicted microbiome profiles were better reflections of the physiology and diagnosis of the subject at the visits than the observed community compositions. CONCLUSIONS Bias in 16S studies due to DNA extraction and PCR amplification will continue to require attention despite further advances in sequencing technology. Analysis of mock communities can help assess bias and facilitate the interpretation of results from environmental samples.
Collapse
Affiliation(s)
- J Paul Brooks
- Department of Statistical Sciences and Operations Research, Virginia Commonwealth University, 23284-3083, Richmond, VA, USA. .,Center for the Study of Biological Complexity, Virginia Commonwealth University, 23284, Richmond, VA, USA.
| | - David J Edwards
- Department of Statistical Sciences and Operations Research, Virginia Commonwealth University, 23284-3083, Richmond, VA, USA.
| | - Michael D Harwich
- Department of Microbiology and Immunology, Virginia Commonwealth University, 23284, Richmond, VA, USA.
| | - Maria C Rivera
- Department of Biology, Virginia Commonwealth University, 23284, Richmond, VA, USA.
| | - Jennifer M Fettweis
- Department of Microbiology and Immunology, Virginia Commonwealth University, 23284, Richmond, VA, USA.
| | - Myrna G Serrano
- Center for the Study of Biological Complexity, Virginia Commonwealth University, 23284, Richmond, VA, USA. .,Department of Microbiology and Immunology, Virginia Commonwealth University, 23284, Richmond, VA, USA.
| | - Robert A Reris
- Department of Statistical Sciences and Operations Research, Virginia Commonwealth University, 23284-3083, Richmond, VA, USA.
| | - Nihar U Sheth
- Center for the Study of Biological Complexity, Virginia Commonwealth University, 23284, Richmond, VA, USA.
| | - Bernice Huang
- Department of Microbiology and Immunology, Virginia Commonwealth University, 23284, Richmond, VA, USA.
| | - Philippe Girerd
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, 23284, Richmond, VA, USA.
| | | | - Jerome F Strauss
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, 23284, Richmond, VA, USA.
| | - Kimberly K Jefferson
- Center for the Study of Biological Complexity, Virginia Commonwealth University, 23284, Richmond, VA, USA. .,Department of Microbiology and Immunology, Virginia Commonwealth University, 23284, Richmond, VA, USA.
| | - Gregory A Buck
- Center for the Study of Biological Complexity, Virginia Commonwealth University, 23284, Richmond, VA, USA. .,Department of Microbiology and Immunology, Virginia Commonwealth University, 23284, Richmond, VA, USA.
| |
Collapse
|
81
|
Abstract
The profound influence of microorganisms on human life and global biogeochemical cycles underlines the value of studying the biogeography of microorganisms, exploring microbial genomes and expanding our understanding of most microbial species on Earth: that is, those present at low relative abundance. The detection and subsequent analysis of low-abundance microbial populations—the 'rare biosphere'—have demonstrated the persistence, population dynamics, dispersion and predation of these microbial species. We discuss the ecology of rare microbial populations, and highlight molecular and computational methods for targeting taxonomic 'blind spots' within the rare biosphere of complex microbial communities.
Collapse
|
82
|
West CE, Renz H, Jenmalm MC, Kozyrskyj AL, Allen KJ, Vuillermin P, Prescott SL. The gut microbiota and inflammatory noncommunicable diseases: associations and potentials for gut microbiota therapies. J Allergy Clin Immunol 2015; 135:3-13; quiz 14. [PMID: 25567038 DOI: 10.1016/j.jaci.2014.11.012] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 11/10/2014] [Accepted: 11/10/2014] [Indexed: 02/08/2023]
Abstract
Rapid environmental transition and modern lifestyles are likely driving changes in the biodiversity of the human gut microbiota. With clear effects on physiologic, immunologic, and metabolic processes in human health, aberrations in the gut microbiome and intestinal homeostasis have the capacity for multisystem effects. Changes in microbial composition are implicated in the increasing propensity for a broad range of inflammatory diseases, such as allergic disease, asthma, inflammatory bowel disease (IBD), obesity, and associated noncommunicable diseases (NCDs). There are also suggestive implications for neurodevelopment and mental health. These diverse multisystem influences have sparked interest in strategies that might favorably modulate the gut microbiota to reduce the risk of many NCDs. For example, specific prebiotics promote favorable intestinal colonization, and their fermented products have anti-inflammatory properties. Specific probiotics also have immunomodulatory and metabolic effects. However, when evaluated in clinical trials, the effects are variable, preliminary, or limited in magnitude. Fecal microbiota transplantation is another emerging therapy that regulates inflammation in experimental models. In human subjects it has been successfully used in cases of Clostridium difficile infection and IBD, although controlled trials are lacking for IBD. Here we discuss relationships between gut colonization and inflammatory NCDs and gut microbiota modulation strategies for their treatment and prevention.
Collapse
Affiliation(s)
- Christina E West
- International Inflammation (in-FLAME) Network of the World Universities Network; Department of Clinical Sciences, Pediatrics, Umeå University, Umeå, Sweden.
| | - Harald Renz
- International Inflammation (in-FLAME) Network of the World Universities Network; Department of Clinical Chemistry and Molecular Diagnostics, University of Marburg, Marburg, Germany
| | - Maria C Jenmalm
- International Inflammation (in-FLAME) Network of the World Universities Network; Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Anita L Kozyrskyj
- International Inflammation (in-FLAME) Network of the World Universities Network; Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Katrina J Allen
- International Inflammation (in-FLAME) Network of the World Universities Network; Murdoch Childrens Research Institute and Department of Pediatrics, University of Melbourne, Melbourne, Australia
| | - Peter Vuillermin
- International Inflammation (in-FLAME) Network of the World Universities Network; Child Health research Unit, Barwon Health, Geelong, Australia
| | - Susan L Prescott
- International Inflammation (in-FLAME) Network of the World Universities Network; School of Paediatrics and Child Health, University of Western Australia, Perth, Australia
| | | |
Collapse
|
83
|
Heisel T, Podgorski H, Staley CM, Knights D, Sadowsky MJ, Gale CA. Complementary amplicon-based genomic approaches for the study of fungal communities in humans. PLoS One 2015; 10:e0116705. [PMID: 25706290 PMCID: PMC4338280 DOI: 10.1371/journal.pone.0116705] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 12/14/2014] [Indexed: 12/12/2022] Open
Abstract
Recent studies highlight the importance of intestinal fungal microbiota in the development of human disease. Infants, in particular, are an important population in which to study intestinal microbiomes because microbial community structure and dynamics during this formative window of life have the potential to influence host immunity and metabolism. When compared to bacteria, much less is known about the early development of human fungal communities, owing partly to their lower abundance and the relative lack of established molecular and taxonomic tools for their study. Herein, we describe the development, validation, and use of complementary amplicon-based genomic strategies to characterize infant fungal communities and provide quantitative information about Candida, an important fungal genus with respect to intestinal colonization and human disease. Fungal communities were characterized from 11 infant fecal samples using primers that target the internal transcribed spacer (ITS) 2 locus, a region that provides taxonomic discrimination of medically relevant fungi. Each sample yielded an average of 27,553 fungal sequences and Candida albicans was the most abundant species identified by sequencing and quantitative PCR (qPCR). Low numbers of Candida krusei and Candida parapsilosis sequences were observed in several samples, but their presence was detected by species-specific qPCR in only one sample, highlighting a challenge inherent in the study of low-abundance organisms. Overall, the sequencing results revealed that infant fecal samples had fungal diversity comparable to that of bacterial communities in similar-aged infants, which correlated with the relative abundance of C. albicans. We conclude that targeted sequencing of fungal ITS2 amplicons in conjunction with qPCR analyses of specific fungi provides an informative picture of fungal community structure in the human intestinal tract. Our data suggests that the infant intestine harbors diverse fungal species and is consistent with prior culture-based analyses showing that the predominant fungus in the infant intestine is C. albicans.
Collapse
Affiliation(s)
- Timothy Heisel
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55454, United States of America
| | - Heather Podgorski
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55454, United States of America
| | - Christopher M. Staley
- Biotechnology Institute, University of Minnesota, St. Paul, MN, 55108, United States of America
| | - Dan Knights
- Biotechnology Institute, University of Minnesota, St. Paul, MN, 55108, United States of America
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, 55455, United States of America
| | - Michael J. Sadowsky
- Biotechnology Institute, University of Minnesota, St. Paul, MN, 55108, United States of America
- Department of Soil, Water, and Climate, University of Minnesota, St. Paul, MN, 55108, United States of America
| | - Cheryl A. Gale
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55454, United States of America
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, 55455, United States of America
| |
Collapse
|
84
|
Esling P, Lejzerowicz F, Pawlowski J. Accurate multiplexing and filtering for high-throughput amplicon-sequencing. Nucleic Acids Res 2015; 43:2513-24. [PMID: 25690897 PMCID: PMC4357712 DOI: 10.1093/nar/gkv107] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Tagging amplicons with tag sequences appended to PCR primers allow the multiplexing of numerous samples for high-throughput sequencing (HTS). This approach is routinely used in HTS-based diversity analyses, especially in microbial ecology and biomedical diagnostics. However, amplicon library preparation is subject to pervasive sample sequence cross-contaminations as a result of tag switching events referred to as mistagging. Here, we sequenced seven amplicon libraries prepared using various multiplexing designs in order to measure the magnitude of this phenomenon and its impact on diversity analyses. Up to 28.2% of the unique sequences correspond to undetectable (critical) mistags in single- or saturated double-tagging libraries. We show the advantage of multiplexing samples following Latin Square Designs in order to optimize the detection of mistags and maximize the information on their distribution across samples. We use this information in designs incorporating PCR replicates to filter the critical mistags and to recover the exact composition of mock community samples. Being parameter-free and data-driven, our approach can provide more accurate and reproducible HTS data sets, improving the reliability of their interpretations.
Collapse
Affiliation(s)
- Philippe Esling
- Department of Genetics and Evolution, University of Geneva, Sciences 3, 30, Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland IRCAM, UMR 9912, Université Pierre et Marie Curie, Paris, France
| | - Franck Lejzerowicz
- Department of Genetics and Evolution, University of Geneva, Sciences 3, 30, Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| | - Jan Pawlowski
- Department of Genetics and Evolution, University of Geneva, Sciences 3, 30, Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
85
|
Korajkic A, Parfrey LW, McMinn BR, Baeza YV, VanTeuren W, Knight R, Shanks OC. Changes in bacterial and eukaryotic communities during sewage decomposition in Mississippi river water. WATER RESEARCH 2015; 69:30-39. [PMID: 25463929 DOI: 10.1016/j.watres.2014.11.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 10/08/2014] [Accepted: 11/04/2014] [Indexed: 05/12/2023]
Abstract
Microbial decay processes are one of the mechanisms whereby sewage contamination is reduced in the environment. This decomposition process involves a highly complex array of bacterial and eukaryotic communities from both sewage and ambient waters. However, relatively little is known about how these communities change due to mixing and subsequent decomposition of the sewage contaminant. We investigated decay of sewage in upper Mississippi River using Illumina sequencing of 16S and 18S rRNA gene hypervariable regions and qPCR for human-associated and general fecal Bacteroidales indicators. Mixtures of primary treated sewage and river water were placed in dialysis bags and incubated in situ under ambient conditions for seven days. We assessed changes in microbial community composition under two treatments in a replicated factorial design: sunlight exposure versus shaded and presence versus absence of native river microbiota. Initial diversity was higher in sewage compared to river water for 16S sequences, but the reverse was observed for 18S sequences. Both treatments significantly shifted community composition for eukaryotes and bacteria (P < 0.05). Data indicated that the presence of native river microbiota, rather than exposure to sunlight, accounted for the majority of variation between treatments for both 16S (R = 0.50; P > 0.001) and 18S (R = 0.91; P = 0.001) communities. A comparison of 16S sequence data and fecal indicator qPCR measurements indicated that the latter was a good predictor of overall bacterial community change over time (rho: 0.804-0.814, P = 0.001). These findings suggest that biotic interactions, such as predation by bacterivorous protozoa, can be critical factors in the decomposition of sewage in freshwater habitats and support the use of Bacteroidales genetic markers as indicators of fecal pollution.
Collapse
Affiliation(s)
- Asja Korajkic
- National Exposure Research Laboratory, U.S. Environmental Protection Agency, Cincinnati, USA
| | | | - Brian R McMinn
- National Exposure Research Laboratory, U.S. Environmental Protection Agency, Cincinnati, USA
| | | | - Will VanTeuren
- Biofrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Rob Knight
- Biofrontiers Institute, University of Colorado, Boulder, CO, USA; Howard Hughes Medical Institute, Boulder, CO, USA
| | - Orin C Shanks
- National Risk Management Research Laboratory, US. Environmental Protection Agency, Cincinnati, USA.
| |
Collapse
|
86
|
Benskin CMH, Rhodes G, Pickup RW, Mainwaring MC, Wilson K, Hartley IR. Life history correlates of fecal bacterial species richness in a wild population of the blue tit Cyanistes caeruleus. Ecol Evol 2015; 5:821-35. [PMID: 25750710 PMCID: PMC4338966 DOI: 10.1002/ece3.1384] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 12/04/2014] [Indexed: 11/24/2022] Open
Abstract
Very little is known about the normal gastrointestinal flora of wild birds, or how it might affect or reflect the host's life-history traits. The aim of this study was to survey the species richness of bacteria in the feces of a wild population of blue tits Cyanistes caeruleus and to explore the relationships between bacterial species richness and various life-history traits, such as age, sex, and reproductive success. Using PCR-TGGE, 55 operational taxonomic units (OTUs) were identified in blue tit feces. DNA sequencing revealed that the 16S rRNA gene was amplified from a diverse range of bacteria, including those that shared closest homology with Bacillus licheniformis, Campylobacter lari, Pseudomonas spp., and Salmonella spp. For adults, there was a significant negative relationship between bacterial species richness and the likelihood of being detected alive the following breeding season; bacterial richness was consistent across years but declined through the breeding season; and breeding pairs had significantly more similar bacterial richness than expected by chance alone. Reduced adult survival was correlated with the presence of an OTU most closely resembling C. lari; enhanced adult survival was associated with an OTU most similar to Arthrobacter spp. For nestlings, there was no significant change in bacterial species richness between the first and second week after hatching, and nestlings sharing the same nest had significantly more similar bacterial richness. Collectively, these results provide compelling evidence that bacterial species richness was associated with several aspects of the life history of their hosts.
Collapse
Affiliation(s)
| | - Glenn Rhodes
- Centre for Ecology and Hydrology, Lancaster Environment Centre Library Avenue, Bailrigg, Lancaster, LA1 4AP, UK
| | - Roger W Pickup
- Division of Biomedical and Life Sciences, School of Health and Medicine, Lancaster University Lancaster, LA1 4YQ, UK
| | - Mark C Mainwaring
- Lancaster Environment Centre, Lancaster University Lancaster, LA1 4YQ, UK
| | - Kenneth Wilson
- Lancaster Environment Centre, Lancaster University Lancaster, LA1 4YQ, UK
| | - Ian R Hartley
- Lancaster Environment Centre, Lancaster University Lancaster, LA1 4YQ, UK
| |
Collapse
|
87
|
D'Argenio V, Salvatore F. The role of the gut microbiome in the healthy adult status. Clin Chim Acta 2015; 451:97-102. [PMID: 25584460 DOI: 10.1016/j.cca.2015.01.003] [Citation(s) in RCA: 239] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 01/06/2015] [Indexed: 02/07/2023]
Abstract
The gut microbiome, which hosts up to 1000 bacterial species that encode about 5 million genes, perform many of the functions required for host physiology and survival. Consequently, it is also known as "our forgotten organ". The recent development of next-generation sequencing technologies has greatly improved metagenomic research. In particular, it has increased our knowledge about the microbiome and its mutually beneficial relationships with the human host. Microbial colonization begins immediately at birth. Although influenced by a variety of stimuli, namely, diet, physical activity, travel, illness, hormonal cycles and therapies, the microbiome is practically stable in healthy adults. This suggests that the microbiome plays a role in the maintenance of a healthy state in adulthood. Quantitative and qualitative alterations in the composition of the gut microbiome could lead to pathological dysbiosis, and have been related to an increasing number of intestinal and extra-intestinal diseases. With the increase in knowledge about gut microbiome functions, it is becoming increasingly more possible to develop novel diagnostic, prognostic and, most important, therapeutic strategies based on microbiome manipulation.
Collapse
Affiliation(s)
- Valeria D'Argenio
- CEINGE-Biotecnologie Avanzate, via G. Salvatore 486, 80145 Naples, Italy; Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, via Pansini 5, 80131 Naples, Italy
| | - Francesco Salvatore
- CEINGE-Biotecnologie Avanzate, via G. Salvatore 486, 80145 Naples, Italy; Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, via Pansini 5, 80131 Naples, Italy; IRCCS-Fondazione SDN, 80143 Naples, Italy.
| |
Collapse
|
88
|
Gustavsen JA, Winget DM, Tian X, Suttle CA. High temporal and spatial diversity in marine RNA viruses implies that they have an important role in mortality and structuring plankton communities. Front Microbiol 2014; 5:703. [PMID: 25566218 PMCID: PMC4266044 DOI: 10.3389/fmicb.2014.00703] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 11/26/2014] [Indexed: 01/26/2023] Open
Abstract
Viruses in the order Picornavirales infect eukaryotes, and are widely distributed in coastal waters. Amplicon deep-sequencing of the RNA dependent RNA polymerase (RdRp) revealed diverse and highly uneven communities of picorna-like viruses in the coastal waters of British Columbia (BC), Canada. Almost 300 000 pyrosequence reads revealed 145 operational taxonomic units (OTUs) based on 95% sequence similarity at the amino-acid level. Each sample had between 24 and 71 OTUs and there was little overlap among samples. Phylogenetic analysis revealed that some clades of OTUs were only found at one site; whereas, other clades included OTUs from all sites. Since most of these OTUs are likely from viruses that infect eukaryotic phytoplankton, and viral isolates infecting phytoplankton are strain-specific; each OTU probably arose from the lysis of a specific phytoplankton taxon. Moreover, the patchiness in OTU distribution, and the high turnover of viruses in the mixed layer, implies continuous infection and lysis by RNA viruses of a diverse array of eukaryotic phytoplankton taxa. Hence, these viruses are likely important elements structuring the phytoplankton community, and play a significant role in nutrient cycling and energy transfer.
Collapse
Affiliation(s)
- Julia A Gustavsen
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia Vancouver, BC, Canada
| | - Danielle M Winget
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia Vancouver, BC, Canada
| | - Xi Tian
- Bioinformatics Graduate Program, Faculty of Science, University of British Columbia Vancouver, BC, Canada
| | - Curtis A Suttle
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia Vancouver, BC, Canada ; Departments of Botany, and Microbiology & Immunology, University of British Columbia Vancouver, BC, Canada ; Canadian Institute for Advanced Research Toronto, ON, Canada
| |
Collapse
|
89
|
Medlar A, Aivelo T, Löytynoja A. Séance: reference-based phylogenetic analysis for 18S rRNA studies. BMC Evol Biol 2014; 14:235. [PMID: 25433763 PMCID: PMC4265393 DOI: 10.1186/s12862-014-0235-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 11/06/2014] [Indexed: 11/10/2022] Open
Abstract
Background Marker gene studies often use short amplicons spanning one or more hypervariable regions from an rRNA gene to interrogate the community structure of uncultured environmental samples. Target regions are chosen for their discriminatory power, but the limited phylogenetic signal of short high-throughput sequencing reads precludes accurate phylogenetic analysis. This is particularly unfortunate in the study of microscopic eukaryotes where horizontal gene flow is limited and the rRNA gene is expected to accurately reflect the species phylogeny. A promising alternative to full phylogenetic analysis is phylogenetic placement, where a reference phylogeny is inferred using the complete marker gene and iteratively extended with the short sequences from a metagenetic sample under study. Results Based on the phylogenetic placement approach we built Séance, a community analysis pipeline focused on the analysis of 18S marker gene data. Séance combines the alignment extension and phylogenetic placement capabilities of the Pagan multiple sequence alignment program with a suite of tools to preprocess, cluster and visualise datasets composed of many samples. We showcase Séance by analysing 454 data from a longitudinal study of intestinal parasite communities in wild rufous mouse lemurs (Microcebus rufus) as well as in simulation. We demonstrate both improved OTU picking at higher levels of sequence similarity for 454 data and show the accuracy of phylogenetic placement to be comparable to maximum likelihood methods for lower numbers of taxa. Conclusions Séance is an open source community analysis pipeline that provides reference-based phylogenetic analysis for rRNA marker gene studies. Whilst in this article we focus on studying nematodes using the 18S marker gene, the concepts are generic and reference data for alternative marker genes can be easily created. Séance can be downloaded from http://wasabiapp.org/software/seance/. Electronic supplementary material The online version of this article (doi:10.1186/s12862-014-0235-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alan Medlar
- Institute of Biotechnology, University of Helsinki, Helsinki, P.O.Box 56, Finland.
| | - Tuomas Aivelo
- Institute of Biotechnology, University of Helsinki, Helsinki, P.O.Box 56, Finland.
| | - Ari Löytynoja
- Institute of Biotechnology, University of Helsinki, Helsinki, P.O.Box 56, Finland.
| |
Collapse
|
90
|
Fernandes KA, Kittelmann S, Rogers CW, Gee EK, Bolwell CF, Bermingham EN, Thomas DG. Faecal microbiota of forage-fed horses in New Zealand and the population dynamics of microbial communities following dietary change. PLoS One 2014; 9:e112846. [PMID: 25383707 PMCID: PMC4226576 DOI: 10.1371/journal.pone.0112846] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 10/17/2014] [Indexed: 11/19/2022] Open
Abstract
The effects of abrupt dietary transition on the faecal microbiota of forage-fed horses over a 3-week period were investigated. Yearling Thoroughbred fillies reared as a cohort were exclusively fed on either an ensiled conserved forage-grain diet ("Group A"; n = 6) or pasture ("Group B"; n = 6) for three weeks prior to the study. After the Day 0 faecal samples were collected, horses of Group A were abruptly transitioned to pasture. Both groups continued to graze similar pasture for three weeks, with faecal samples collected at 4-day intervals. DNA was isolated from the faeces and microbial 16S and 18S rRNA gene amplicons were generated and analysed by pyrosequencing. The faecal bacterial communities of both groups of horses were highly diverse (Simpson's index of diversity > 0.8), with differences between the two groups on Day 0 (P < 0.017 adjusted for multiple comparisons). There were differences between Groups A and B in the relative abundances of four genera, BF311 (family Bacteroidaceae; P = 0.003), CF231 (family Paraprevotellaceae; P = 0.004), and currently unclassified members within the order Clostridiales (P = 0.003) and within the family Lachnospiraceae (P = 0.006). The bacterial community of Group A horses became similar to Group B within four days of feeding on pasture, whereas the structure of the archaeal community remained constant pre- and post-dietary change. The community structure of the faecal microbiota (bacteria, archaea and ciliate protozoa) of pasture-fed horses was also identified. The initial differences observed appeared to be linked to recent dietary history, with the bacterial community of the forage-fed horses responding rapidly to abrupt dietary change.
Collapse
Affiliation(s)
- Karlette A. Fernandes
- Institute of Veterinary, Animal, and Biomedical Sciences, College of Sciences, Massey University, Palmerston North 4442, New Zealand
- * E-mail:
| | - Sandra Kittelmann
- AgResearch Ltd, Grasslands Research Centre, Palmerston North 4442, New Zealand
| | - Christopher W. Rogers
- Institute of Veterinary, Animal, and Biomedical Sciences, College of Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Erica K. Gee
- Institute of Veterinary, Animal, and Biomedical Sciences, College of Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Charlotte F. Bolwell
- Institute of Veterinary, Animal, and Biomedical Sciences, College of Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Emma N. Bermingham
- AgResearch Ltd, Grasslands Research Centre, Palmerston North 4442, New Zealand
| | - David G. Thomas
- Institute of Veterinary, Animal, and Biomedical Sciences, College of Sciences, Massey University, Palmerston North 4442, New Zealand
| |
Collapse
|
91
|
Rundell EA, Banta LM, Ward DV, Watts CD, Birren B, Esteban DJ. 16S rRNA gene survey of microbial communities in Winogradsky columns. PLoS One 2014; 9:e104134. [PMID: 25101630 PMCID: PMC4125166 DOI: 10.1371/journal.pone.0104134] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 07/10/2014] [Indexed: 12/18/2022] Open
Abstract
A Winogradsky column is a clear glass or plastic column filled with enriched sediment. Over time, microbial communities in the sediment grow in a stratified ecosystem with an oxic top layer and anoxic sub-surface layers. Winogradsky columns have been used extensively to demonstrate microbial nutrient cycling and metabolic diversity in undergraduate microbiology labs. In this study, we used high-throughput 16s rRNA gene sequencing to investigate the microbial diversity of Winogradsky columns. Specifically, we tested the impact of sediment source, supplemental cellulose source, and depth within the column, on microbial community structure. We found that the Winogradsky columns were highly diverse communities but are dominated by three phyla: Proteobacteria, Bacteroidetes, and Firmicutes. The community is structured by a founding population dependent on the source of sediment used to prepare the columns and is differentiated by depth within the column. Numerous biomarkers were identified distinguishing sample depth, including Cyanobacteria, Alphaproteobacteria, and Betaproteobacteria as biomarkers of the soil-water interface, and Clostridia as a biomarker of the deepest depth. Supplemental cellulose source impacted community structure but less strongly than depth and sediment source. In columns dominated by Firmicutes, the family Peptococcaceae was the most abundant sulfate reducer, while in columns abundant in Proteobacteria, several Deltaproteobacteria families, including Desulfobacteraceae, were found, showing that different taxonomic groups carry out sulfur cycling in different columns. This study brings this historical method for enrichment culture of chemolithotrophs and other soil bacteria into the modern era of microbiology and demonstrates the potential of the Winogradsky column as a model system for investigating the effect of environmental variables on soil microbial communities.
Collapse
Affiliation(s)
- Ethan A. Rundell
- Department of Biology, Vassar College, Poughkeepsie, New York, United States of America
| | - Lois M. Banta
- Department of Biology, Williams College, Williamstown, Massachusetts, United States of America
| | - Doyle V. Ward
- Genome Sequencing Center, Broad Institute, Cambridge, Massachusetts, United States of America
| | - Corey D. Watts
- Department of Biology, Williams College, Williamstown, Massachusetts, United States of America
| | - Bruce Birren
- Genome Sequencing Center, Broad Institute, Cambridge, Massachusetts, United States of America
| | - David J. Esteban
- Department of Biology, Vassar College, Poughkeepsie, New York, United States of America
- * E-mail:
| |
Collapse
|
92
|
Intracellular diversity of the V4 and V9 regions of the 18S rRNA in marine protists (radiolarians) assessed by high-throughput sequencing. PLoS One 2014; 9:e104297. [PMID: 25090095 PMCID: PMC4121268 DOI: 10.1371/journal.pone.0104297] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 07/12/2014] [Indexed: 11/25/2022] Open
Abstract
Metabarcoding is a powerful tool for exploring microbial diversity in the environment, but its accurate interpretation is impeded by diverse technical (e.g. PCR and sequencing errors) and biological biases (e.g. intra-individual polymorphism) that remain poorly understood. To help interpret environmental metabarcoding datasets, we investigated the intracellular diversity of the V4 and V9 regions of the 18S rRNA gene from Acantharia and Nassellaria (radiolarians) using 454 pyrosequencing. Individual cells of radiolarians were isolated, and PCRs were performed with generalist primers to amplify the V4 and V9 regions. Different denoising procedures were employed to filter the pyrosequenced raw amplicons (Acacia, AmpliconNoise, Linkage method). For each of the six isolated cells, an average of 541 V4 and 562 V9 amplicons assigned to radiolarians were obtained, from which one numerically dominant sequence and several minor variants were found. At the 97% identity, a diversity metrics commonly used in environmental surveys, up to 5 distinct OTUs were detected in a single cell. However, most amplicons grouped within a single OTU whereas other OTUs contained very few amplicons. Different analytical methods provided evidence that most minor variants forming different OTUs correspond to PCR and sequencing artifacts. Duplicate PCR and sequencing from the same DNA extract of a single cell had only 9 to 16% of unique amplicons in common, and alignment visualization of V4 and V9 amplicons showed that most minor variants contained substitutions in highly-conserved regions. We conclude that intracellular variability of the 18S rRNA in radiolarians is very limited despite its multi-copy nature and the existence of multiple nuclei in these protists. Our study recommends some technical guidelines to conservatively discard artificial amplicons from metabarcoding datasets, and thus properly assess the diversity and richness of protists in the environment.
Collapse
|
93
|
Katra I, Arotsker L, Krasnov H, Zaritsky A, Kushmaro A, Ben-Dov E. Richness and diversity in dust stormborne biomes at the southeast mediterranean. Sci Rep 2014; 4:5265. [PMID: 24919765 PMCID: PMC4053720 DOI: 10.1038/srep05265] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 05/15/2014] [Indexed: 12/26/2022] Open
Abstract
Dust storms include particulate matter that is transported over land and sea with biota that could impact downwind ecosystems. In addition to the physico-chemical compositions, organismal diversities of dust from two storm events in southern Israel, December 2012 (Ev12) and January 2013 (Ev13), were determined by pyro-sequencing using primers universal to 16S and 18S rRNA genes and compared. The bio-assemblages in the collected dust samples were affiliated with scores of different taxa. Distinct patterns of richness and diversity of the two events were influenced by the origins of the air masses: Ev13 was rich with reads affiliated to Betaproteobacteria and Embryophyta, consistent with a European origin. Ev12, originated in north-Africa, contained significantly more of the Actinobacteria and fungi, without conifers. The abundance of bacterial and eukaryotic reads demonstrates dissemination of biological material in dust that may impose health hazards of pathogens and allergens, and influence vegetation migration throughout the world.
Collapse
Affiliation(s)
- Itzhak Katra
- Department of Geography and Environmental Development, Ben-Gurion University of the Negev, POB 653, Be'er-Sheva, 84104, Israel
| | - Luba Arotsker
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, POB 653, Be'er-Sheva, 84104, Israel
| | - Helena Krasnov
- Department of Geography and Environmental Development, Ben-Gurion University of the Negev, POB 653, Be'er-Sheva, 84104, Israel
| | - Arieh Zaritsky
- Department of Life Sciences, Ben-Gurion University of the Negev, POB 653, Be'er-Sheva, 84104, Israel
| | - Ariel Kushmaro
- 1] Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, POB 653, Be'er-Sheva, 84104, Israel [2] National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, POB 653, Be'er-Sheva, 84104, Israel [3] School of Materials Science and Engineering, Nanyang Technological University, Singapore 637819 (Singapore)
| | - Eitan Ben-Dov
- 1] National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, POB 653, Be'er-Sheva, 84104, Israel [2] Department of Life Sciences, Achva Academic College MP Shikmim, 79800, Israel
| |
Collapse
|
94
|
Ibarbalz FM, Pérez MV, Figuerola ELM, Erijman L. The bias associated with amplicon sequencing does not affect the quantitative assessment of bacterial community dynamics. PLoS One 2014; 9:e99722. [PMID: 24923665 PMCID: PMC4055690 DOI: 10.1371/journal.pone.0099722] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 05/19/2014] [Indexed: 11/19/2022] Open
Abstract
The performance of two sets of primers targeting variable regions of the 16S rRNA gene V1–V3 and V4 was compared in their ability to describe changes of bacterial diversity and temporal turnover in full-scale activated sludge. Duplicate sets of high-throughput amplicon sequencing data of the two 16S rRNA regions shared a collection of core taxa that were observed across a series of twelve monthly samples, although the relative abundance of each taxon was substantially different between regions. A case in point was the changes in the relative abundance of filamentous bacteria Thiothrix, which caused a large effect on diversity indices, but only in the V1–V3 data set. Yet the relative abundance of Thiothrix in the amplicon sequencing data from both regions correlated with the estimation of its abundance determined using fluorescence in situ hybridization. In nonmetric multidimensional analysis samples were distributed along the first ordination axis according to the sequenced region rather than according to sample identities. The dynamics of microbial communities indicated that V1–V3 and the V4 regions of the 16S rRNA gene yielded comparable patterns of: 1) the changes occurring within the communities along fixed time intervals, 2) the slow turnover of activated sludge communities and 3) the rate of species replacement calculated from the taxa–time relationships. The temperature was the only operational variable that showed significant correlation with the composition of bacterial communities over time for the sets of data obtained with both pairs of primers. In conclusion, we show that despite the bias introduced by amplicon sequencing, the variable regions V1–V3 and V4 can be confidently used for the quantitative assessment of bacterial community dynamics, and provide a proper qualitative account of general taxa in the community, especially when the data are obtained over a convenient time window rather than at a single time point.
Collapse
Affiliation(s)
- Federico M. Ibarbalz
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Buenos Aires, Argentina
| | - María Victoria Pérez
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Buenos Aires, Argentina
- Agua y Saneamientos Argentinos S.A. (AySA), Buenos Aires, Argentina
| | - Eva L. M. Figuerola
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Buenos Aires, Argentina
| | - Leonardo Erijman
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
95
|
Tytgat B, Verleyen E, Obbels D, Peeters K, De Wever A, D’hondt S, De Meyer T, Van Criekinge W, Vyverman W, Willems A. Bacterial diversity assessment in Antarctic terrestrial and aquatic microbial mats: a comparison between bidirectional pyrosequencing and cultivation. PLoS One 2014; 9:e97564. [PMID: 24887330 PMCID: PMC4041716 DOI: 10.1371/journal.pone.0097564] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 04/21/2014] [Indexed: 12/26/2022] Open
Abstract
The application of high-throughput sequencing of the 16S rRNA gene has increased the size of microbial diversity datasets by several orders of magnitude, providing improved access to the rare biosphere compared with cultivation-based approaches and more established cultivation-independent techniques. By contrast, cultivation-based approaches allow the retrieval of both common and uncommon bacteria that can grow in the conditions used and provide access to strains for biotechnological applications. We performed bidirectional pyrosequencing of the bacterial 16S rRNA gene diversity in two terrestrial and seven aquatic Antarctic microbial mat samples previously studied by heterotrophic cultivation. While, not unexpectedly, 77.5% of genera recovered by pyrosequencing were not among the isolates, 25.6% of the genera picked up by cultivation were not detected by pyrosequencing. To allow comparison between both techniques, we focused on the five phyla (Proteobacteria, Actinobacteria, Bacteroidetes, Firmicutes and Deinococcus-Thermus) recovered by heterotrophic cultivation. Four of these phyla were among the most abundantly recovered by pyrosequencing. Strikingly, there was relatively little overlap between cultivation and the forward and reverse pyrosequencing-based datasets at the genus (17.1–22.2%) and OTU (3.5–3.6%) level (defined on a 97% similarity cut-off level). Comparison of the V1–V2 and V3–V2 datasets of the 16S rRNA gene revealed remarkable differences in number of OTUs and genera recovered. The forward dataset missed 33% of the genera from the reverse dataset despite comprising 50% more OTUs, while the reverse dataset did not contain 40% of the genera of the forward dataset. Similar observations were evident when comparing the forward and reverse cultivation datasets. Our results indicate that the region under consideration can have a large impact on perceived diversity, and should be considered when comparing different datasets. Finally, a high number of OTUs could not be classified using the RDP reference database, suggesting the presence of a large amount of novel diversity.
Collapse
Affiliation(s)
- Bjorn Tytgat
- Laboratory for Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- * E-mail:
| | - Elie Verleyen
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, Ghent University, Ghent, Belgium
| | - Dagmar Obbels
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, Ghent University, Ghent, Belgium
| | - Karolien Peeters
- Laboratory for Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Aaike De Wever
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, Ghent University, Ghent, Belgium
| | - Sofie D’hondt
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, Ghent University, Ghent, Belgium
| | - Tim De Meyer
- Laboratory of Bioinformatics and Computational Genomics, Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent University, Ghent, Belgium
| | - Wim Van Criekinge
- Laboratory of Bioinformatics and Computational Genomics, Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent University, Ghent, Belgium
| | - Wim Vyverman
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, Ghent University, Ghent, Belgium
| | - Anne Willems
- Laboratory for Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
96
|
Gomez-Alvarez V, Schrantz KA, Pressman JG, Wahman DG. Biofilm community dynamics in bench-scale annular reactors simulating arrestment of chloraminated drinking water nitrification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:5448-5457. [PMID: 24754322 DOI: 10.1021/es5005208] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Annular reactors (ARs) were used to study biofilm community succession and provide ecological insight during nitrification arrestment through simultaneously increasing monochloramine (NH2Cl) and chlorine to nitrogen mass ratios, resulting in four operational periods (I-IV). Analysis of 16S rRNA-encoding gene sequence reads (454-pyrosequencing) examined viable and total biofilm communities and found total samples were representative of the underlying viable community. Bacterial community structure showed dynamic changes corresponding with AR operational parameters. Period I (complete nitrification and no NH2Cl residual) was dominated by Bradyrhizobium (total cumulative distribution: 38%), while environmental Legionella-like phylotypes peaked (19%) during Period II (complete nitrification and minimal NH2Cl residual). Nitrospira moscoviensis (nitrite-oxidizing bacteria) was detected in early periods (2%) but decreased to <0.02% in later periods, corresponding to nitrite accumulation. Methylobacterium (19%) and members of Nitrosomonadaceae (42%) dominated Period III (complete ammonia and partial nitrite oxidation and low NH2Cl residual). An increase in Afipia (haloacetic acid-degrading bacteria) relative abundance (<2% to 42%) occurred during Period IV (minimal nitrification and moderate to high NH2Cl residual). Microbial community and operational data provided no evidence of taxa-time relationship, but rapid community transitions indicated that the system had experienced ecological regime shifts to alternative stable states.
Collapse
Affiliation(s)
- Vicente Gomez-Alvarez
- U.S. Environmental Protection Agency, Office of Research and Development, 26 West Martin Luther King Drive, Cincinnati, Ohio 45268, United States
| | | | | | | |
Collapse
|
97
|
Morgan XC, Huttenhower C. Meta'omic analytic techniques for studying the intestinal microbiome. Gastroenterology 2014; 146:1437-1448.e1. [PMID: 24486053 DOI: 10.1053/j.gastro.2014.01.049] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 01/03/2014] [Accepted: 01/24/2014] [Indexed: 12/16/2022]
Abstract
Nucleotide sequencing has become increasingly common and affordable, and is now a vital tool for studies of the human microbiome. Comprehensive microbial community surveys such as MetaHit and the Human Microbiome Project have described the composition and molecular functional profile of the healthy (normal) intestinal microbiome. This knowledge will increase our ability to analyze host and microbial DNA (genome) and RNA (transcriptome) sequences. Bioinformatic and statistical tools then can be used to identify dysbioses that might cause disease, and potential treatments. Analyses that identify perturbations in specific molecules can leverage thousands of culture-based isolate genomes to contextualize culture-independent sequences, or may integrate sequence data with whole-community functional assays such as metaproteomic or metabolomic analyses. We review the state of available systems-level models for studies of the intestinal microbiome, along with analytic techniques and tools that can be used to determine its functional capabilities in healthy and unhealthy individuals.
Collapse
Affiliation(s)
- Xochitl C Morgan
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts; The Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts; The Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts.
| |
Collapse
|
98
|
Lebuhn M, Hanreich A, Klocke M, Schlüter A, Bauer C, Pérez CM. Towards molecular biomarkers for biogas production from lignocellulose-rich substrates. Anaerobe 2014; 29:10-21. [PMID: 24785351 DOI: 10.1016/j.anaerobe.2014.04.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 04/10/2014] [Accepted: 04/11/2014] [Indexed: 12/01/2022]
Abstract
Biogas production from lignocellulose-rich agricultural residues is gaining increasingly importance in sustainable energy production. Hydrolysis/acidogenesis (H/A) of lignocellulose as the initial rate-limiting step deserves particular optimization. A mixture of straw/hay was methanized applying two-phase digester systems with an initial H/A reactor and a one-stage system at different, meso- and thermophilic temperatures. H/A was intensified with increasing pH values and increasing temperature. H/A fermenters, however, were prone to switch to methanogenic systems at these conditions. Substrate turnover was accelerated in the bi-phasic process but did not reach the methanation efficiency of the single-stage digestion. There was no indication that two different cellulolytic inocula could establish in the given process. Bacterial communities were analyzed applying conventional amplicon clone sequencing targeting the hypervariable 16S rRNA gene region V6-V8 and by metagenome analyses applying direct DNA pyrosequencing without a PCR step. Corresponding results suggested that PCR did not introduce a bias but offered better phylogenetic resolution. Certain Clostridium IV and Prevotella members were most abundant in the H/A system operated at 38 °C, certain Clostridium III and Lachnospiraceae bacteria in the 45 °C, and certain Clostridium IV and Thermohydrogenium/Thermoanaerobacterium members in the 55 °C H/A system. Clostridium III representatives, Lachnospiraceae and Thermotogae dominated in the thermophilic single-stage system, in which also a higher portion of known syntrophic acetate oxidizers was found. Specific (RT-)qPCR systems were designed and applied for the most significant and abundant populations to assess their activity in the different digestion systems. The RT-qPCR results agreed with the DNA based community profiles obtained at the different temperatures. Up to 10(12) 16S rRNA copies mL(-1) were determined in H/A fermenters with prevalence of rRNA of a Ruminococcaceae subgroup. Besides, Thermohydrogenium/Thermoanaerobacterium rRNA prevailed at thermophilic and Prevotellaceae rRNA at mesophilic conditions. The developed (RT)-qPCR systems can be used as biomarkers to optimize biogas production from straw/hay and possibly other lignocellulosic substrates.
Collapse
Affiliation(s)
- Michael Lebuhn
- Bavarian State Research Center for Agriculture, Central Department for Quality Assurance and Analytics, Lange Point 6, D-85354 Freising, Germany.
| | - Angelika Hanreich
- Leibniz-Institut für Agrartechnik Potsdam-Bornim e.V., Abt. Bioverfahrenstechnik - AG Mikrobielle Systemökologie, Max-Eyth-Allee 100, D-14469 Potsdam, Germany
| | - Michael Klocke
- Leibniz-Institut für Agrartechnik Potsdam-Bornim e.V., Abt. Bioverfahrenstechnik - AG Mikrobielle Systemökologie, Max-Eyth-Allee 100, D-14469 Potsdam, Germany
| | - Andreas Schlüter
- Institute for Genome Research and Systems Biology, CeBiTec, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - Christoph Bauer
- Bavarian State Research Center for Agriculture, Central Department for Quality Assurance and Analytics, Lange Point 6, D-85354 Freising, Germany
| | - Carmen Marín Pérez
- Bavarian State Research Center for Agriculture, Institute for Agricultural Engineering and Animal Husbandry, Vöttinger Str. 36, D-85354 Freising, Germany
| |
Collapse
|
99
|
Diversity and transport of microorganisms in intertidal sands of the California coast. Appl Environ Microbiol 2014; 80:3943-51. [PMID: 24747906 DOI: 10.1128/aem.00513-14] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Forced by tides and waves, large volumes of seawater are flushed through the beach daily. Organic material and nutrients in seawater are remineralized and cycled as they pass through the beach. Microorganisms are responsible for most of the biogeochemical cycling in the beach; however, few studies have characterized their diversity in intertidal sands, and little work has characterized the extent to which microbes are transported between different compartments of the beach. The present study uses next-generation massively parallel sequencing to characterize the microbial community present at 49 beaches along the coast of California. In addition, we characterize the transport of microorganisms within intertidal sands using laboratory column experiments. We identified extensive diversity in the beach sands. Nearly 1,000 unique taxa were identified in sands from 10 or more unique beaches, suggesting the existence of a group of "cosmopolitan" sand microorganisms. A biogeographical analysis identified a taxon-distance relationship among the beaches. In addition, sands with similar grain size, organic carbon content, exposed to a similar wave climate, and having the same degree of anthropogenic influence tended to have similar microbial communities. Column experiments identified microbes readily mobilized by seawater infiltrating through unsaturated intertidal sands. The ease with which microbes were mobilized suggests that intertidal sands may represent a reservoir of bacteria that seed the beach aquifer where they may partake in biogeochemical cycling.
Collapse
|
100
|
Parsons RJ, Nelson CE, Carlson CA, Denman CC, Andersson AJ, Kledzik AL, Vergin KL, McNally SP, Treusch AH, Giovannoni SJ. Marine bacterioplankton community turnover within seasonally hypoxic waters of a subtropical sound: Devil's Hole, Bermuda. Environ Microbiol 2014; 17:3481-99. [DOI: 10.1111/1462-2920.12445] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 02/23/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Rachel J. Parsons
- Bermuda Institute for Ocean Science (BIOS); St. George's GE 01 Bermuda
| | - Craig E. Nelson
- Department of Ecology, Evolution and Marine Biology; Marine Science Institute; University of California; Santa Barbara CA USA
- Center for Microbial Oceanography: Research and Education; Department of Oceanography; University of Hawai‘i at Mānoa; Honolulu HI USA
| | - Craig A. Carlson
- Bermuda Institute for Ocean Science (BIOS); St. George's GE 01 Bermuda
- Department of Ecology, Evolution and Marine Biology; Marine Science Institute; University of California; Santa Barbara CA USA
| | - Carmen C. Denman
- Department of Microbiology; Oregon State University; Corvallis OR USA
- London School of Hygiene and Tropical Medicine; London UK
| | - Andreas J. Andersson
- Bermuda Institute for Ocean Science (BIOS); St. George's GE 01 Bermuda
- Scripps Institution of Oceanography; University of California San Diego; San Diego CA USA
| | - Andrew L. Kledzik
- Department of Marine and Environmental Systems; Florida Institute of Technology; Melbourne FL USA
| | - Kevin L. Vergin
- Department of Microbiology; Oregon State University; Corvallis OR USA
| | - Sean P. McNally
- Bermuda Institute for Ocean Science (BIOS); St. George's GE 01 Bermuda
- College of the Environment and Life Sciences; The University of Rhode Island; Kingston RI USA
| | - Alexander H. Treusch
- Department of Microbiology; Oregon State University; Corvallis OR USA
- Department of Biology; Nordic Centre for Earth Evolution; University of Southern Denmark; Odense Denmark
| | | |
Collapse
|