51
|
He Z, Ni Q, Song Y, Wang R, Tang Y, Wu Y, Liu L, Bao J, Chen J, Long M, Wei J, Li C, Li T, Zhou Z, Pan G. Development of a nucleic acid lateral flow strip for rapid, visual detection of Nosema bombycis in silkworm eggs. J Invertebr Pathol 2019; 164:59-65. [DOI: 10.1016/j.jip.2019.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 04/18/2019] [Accepted: 04/22/2019] [Indexed: 02/07/2023]
|
52
|
Nishat S, Awan FR, Bajwa SZ. Nanoparticle-based Point of Care Immunoassays for in vitro Biomedical Diagnostics. ANAL SCI 2019; 35:123-131. [PMID: 30224569 DOI: 10.2116/analsci.18r001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In resource-limited settings, the availability of medical practitioners and early diagnostic facilities are inadequate relative to the population size and disease burden. To address cost and delayed time issues in diagnostics, strip-based immunoassays, e.g. dipstick, lateral flow assay (LFA) and microfluidic paper-based analytical devices (microPADs), have emerged as promising alternatives to conventional diagnostic approaches. These assays rely on chromogenic agents to detect disease biomarkers. However, limited specificity and sensitivity have motivated scientists to improve the efficiency of these assays by conjugating chromogenic agents with nanoparticles for enhanced qualitative and quantitative output. Various nanomaterials, which include metallic, magnetic and luminescent nanoparticles, are being used in the fabrication of biosensors to detect and quantify biomolecules and disease biomarkers. This review discusses some of the principles and applications of such nanoparticle-based point of care biosensors in biomedical diagnosis.
Collapse
Affiliation(s)
- Sumaira Nishat
- National Institute for Biotechnology and Genetic Engineering (NIBGE).,akistan Institute of Engineering and Applied Sciences (PIEAS).,Department of Computer Science, University of Agriculture
| | - Fazli Rabbi Awan
- National Institute for Biotechnology and Genetic Engineering (NIBGE).,akistan Institute of Engineering and Applied Sciences (PIEAS)
| | - Sadia Zafar Bajwa
- National Institute for Biotechnology and Genetic Engineering (NIBGE).,akistan Institute of Engineering and Applied Sciences (PIEAS)
| |
Collapse
|
53
|
Hristov DR, Rodriguez-Quijada C, Gomez-Marquez J, Hamad-Schifferli K. Designing Paper-Based Immunoassays for Biomedical Applications. SENSORS (BASEL, SWITZERLAND) 2019; 19:E554. [PMID: 30699964 PMCID: PMC6387326 DOI: 10.3390/s19030554] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/14/2019] [Accepted: 01/21/2019] [Indexed: 12/18/2022]
Abstract
Paper-based sensors and assays have been highly attractive for numerous biological applications, including rapid diagnostics and assays for disease detection, food safety, and clinical care. In particular, the paper immunoassay has helped drive many applications in global health due to its low cost and simplicity of operation. This review is aimed at examining the fundamentals of the technology, as well as different implementations of paper-based assays and discuss novel strategies for improving their sensitivity, performance, or enabling new capabilities. These innovations can be categorized into using unique nanoparticle materials and structures for detection via different techniques, novel biological species for recognizing biomarkers, or innovative device design and/or architecture.
Collapse
Affiliation(s)
- Delyan R Hristov
- Department of Engineering, University of Massachusetts, Boston, MA 02125, USA.
| | | | - Jose Gomez-Marquez
- Little Devices Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | |
Collapse
|
54
|
Markwalter C, Kantor AG, Moore CP, Richardson KA, Wright DW. Inorganic Complexes and Metal-Based Nanomaterials for Infectious Disease Diagnostics. Chem Rev 2019; 119:1456-1518. [PMID: 30511833 PMCID: PMC6348445 DOI: 10.1021/acs.chemrev.8b00136] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Indexed: 12/12/2022]
Abstract
Infectious diseases claim millions of lives each year. Robust and accurate diagnostics are essential tools for identifying those who are at risk and in need of treatment in low-resource settings. Inorganic complexes and metal-based nanomaterials continue to drive the development of diagnostic platforms and strategies that enable infectious disease detection in low-resource settings. In this review, we highlight works from the past 20 years in which inorganic chemistry and nanotechnology were implemented in each of the core components that make up a diagnostic test. First, we present how inorganic biomarkers and their properties are leveraged for infectious disease detection. In the following section, we detail metal-based technologies that have been employed for sample preparation and biomarker isolation from sample matrices. We then describe how inorganic- and nanomaterial-based probes have been utilized in point-of-care diagnostics for signal generation. The following section discusses instrumentation for signal readout in resource-limited settings. Next, we highlight the detection of nucleic acids at the point of care as an emerging application of inorganic chemistry. Lastly, we consider the challenges that remain for translation of the aforementioned diagnostic platforms to low-resource settings.
Collapse
Affiliation(s)
| | | | | | | | - David W. Wright
- Department of Chemistry, Vanderbilt
University, Nashville, Tennessee 37235, United States
| |
Collapse
|
55
|
Xu X, Wang X, Hu J, Gong Y, Wang L, Zhou W, Li X, Xu F. A smartphone-based on-site nucleic acid testing platform at point-of-care settings. Electrophoresis 2018; 40:914-921. [PMID: 30511768 DOI: 10.1002/elps.201800449] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 11/18/2018] [Accepted: 11/20/2018] [Indexed: 11/07/2022]
Abstract
We developed a smartphone-based on-site nucleic acid testing (NAT) platform that can image and analyze lateral flow nucleic acid assays at point-of-care settings. An inexpensive add-on was devised to run lateral flow assays while providing homogeneous ambient light for imaging. In addition, an Android app with a user-friendly interface was developed for the result analysis and management. Linear color calibration is implemented inside the app to minimize the colorimetric reaction difference between smartphones. A relationship function between nucleic acid concentration and colorimetric reaction was established and evaluated by leave-one-out cross validation. The predicted concentration and true concentration showed a good agreement with an R-squared value of 0.96. This smartphone-based NAT platform can be used to diagnose infectious diseases and monitor disease progression, and assess treatment efficacy, especially for resource-limited settings.
Collapse
Affiliation(s)
- Xiayu Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Shaanxi, P. R. China
- Bioinspired Engineering & Biomechanics Center (BEBC), Xi'an Jiaotong University, Shaanxi, P. R. China
| | - Xuemin Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Shaanxi, P. R. China
- Bioinspired Engineering & Biomechanics Center (BEBC), Xi'an Jiaotong University, Shaanxi, P. R. China
| | - Jie Hu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Shaanxi, P. R. China
- Bioinspired Engineering & Biomechanics Center (BEBC), Xi'an Jiaotong University, Shaanxi, P. R. China
| | - Yang Gong
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Shaanxi, P. R. China
- Bioinspired Engineering & Biomechanics Center (BEBC), Xi'an Jiaotong University, Shaanxi, P. R. China
| | - Lin Wang
- College of medicine, Xi'an International University, Shaanxi, P. R. China
| | - Wan Zhou
- Department of Chemistry and Biochemistry, Border Biomedical Research Center, & Biomedical Engineering (BME), University of Texas at El Paso, TX, USA
| | - XiuJun Li
- Department of Chemistry and Biochemistry, Border Biomedical Research Center, & Biomedical Engineering (BME), University of Texas at El Paso, TX, USA
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Shaanxi, P. R. China
- Bioinspired Engineering & Biomechanics Center (BEBC), Xi'an Jiaotong University, Shaanxi, P. R. China
| |
Collapse
|
56
|
Land KJ. The Many Roads to an Ideal Paper-based Device. PAPER-BASED DIAGNOSTICS 2018. [PMCID: PMC7119996 DOI: 10.1007/978-3-319-96870-4_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The recent Zika and Ebola virus outbreaks highlight the need for low-cost diagnostics that can be rapidly deployed and used outside of established clinical infrastructure. This demand for robust point-of-care (POC) diagnostics is further driven by the increasing burden of drug-resistant diseases, concern for food and water safety, and bioterrorism. As has been discussed in previous chapters, paper-based tests provide a simple and compelling solution to such needs.
Collapse
Affiliation(s)
- Kevin J. Land
- Council for Scientific and Industrial Research, Pretoria, South Africa
| |
Collapse
|
57
|
Rapid and simple detection of Tamiflu-resistant influenza virus: Development of oseltamivir derivative-based lateral flow biosensor for point-of-care (POC) diagnostics. Sci Rep 2018; 8:12999. [PMID: 30158601 PMCID: PMC6115449 DOI: 10.1038/s41598-018-31311-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/16/2018] [Indexed: 01/16/2023] Open
Abstract
We have developed a novel oseltamivir derivative (oseltamivir hexylthiol; OHT) that exhibits a higher binding affinity for Tamiflu-resistant virus (Tamiflu resistance) than for the wild-type virus (Tamiflu-susceptible virus; WT) as an antibody. First, OHT-modified gold nanoparticles (OHT-GNPs) are used in a simple colorimetric assay as nanoprobes for the Tamiflu-resistant virus. In the presence of Tamiflu-resistant virus, they show a colorimetric change from deep red to purple because of the OHT-GNP aggregation driven by strong interactions between OHT and neuraminidase (NA) on the surface of the Tamiflu-resistance. Moreover, the color gradually turns purple as the concentration of the Tamiflu-resistant virus increases, allowing the determination of the presence of the virus with the naked eye. Furthermore, an OHT-based lateral flow assay (LFA) has been developed as a rapid and easy detection device for Tamiflu resistance. It shows detection specificity for various virus concentrations of Tamiflu-resistant virus even for the mixture of WT and Tamiflu-resistant viruses, where the limit of detection (LOD) is 5 × 102 ~ 103 PFU per test (=1 × 104 PFU/mL). It has been confirmed that this platform can provide accurate information on whether a virus exhibits Tamiflu resistance, thus supporting the selection of appropriate treatments using point-of-care (POC) diagnostics.
Collapse
|
58
|
Brook G. HIV viral load point-of-care testing: the what, the whys and the wherefores. Sex Transm Infect 2018; 94:394-395. [PMID: 29954870 DOI: 10.1136/sextrans-2018-053688] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 06/08/2018] [Indexed: 11/04/2022] Open
|
59
|
Tsang HF, Chan LWC, Tong JCH, Wong HT, Lai CKC, Au TCC, Chan AKC, Ng LPW, Cho WCS, Wong SCC. Implementation and new insights in molecular diagnostics for HIV infection. Expert Rev Mol Diagn 2018; 18:433-441. [PMID: 29641941 DOI: 10.1080/14737159.2018.1464393] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Acquired immunodeficiency syndrome (AIDS) is a kind of acquired disease that breaks down the immune system. Human immunodeficiency virus (HIV) is the causative agent of AIDS. By the end of 2016, there were 36.7 million people living with HIV worldwide. Early diagnosis can alert infected individuals to risk behaviors in order to control HIV transmission. Infected individuals are also benefited from proper treatment and management upon early diagnosis. Thanks to the public awareness of the disease, the annual increase of new HIV infections has been slowly declining over the past decades. The advent of molecular diagnostics has allowed early detection and better management of HIV infected patients. Areas covered: In this review, the authors summarized and discussed the current and future technologies in molecular diagnosis as well as the biomarkers developed for HIV infection. Expert Commentary: A simple and rapid detection of viral load is important for patients and doctors to monitor HIV progression and antiretroviral treatment efficiency. In the near future, it is expected that new technologies such as digital PCR and CRISPR-based technology will play more important role in HIV detection and patient management.
Collapse
Affiliation(s)
- Hin-Fung Tsang
- a Department of Health Technology and Informatics, Faculty of Health and Social Sciences , The Hong Kong Polytechnic University , Kowloon , Hong Kong Special Administrative Region , China
| | - Lawrence Wing-Chi Chan
- a Department of Health Technology and Informatics, Faculty of Health and Social Sciences , The Hong Kong Polytechnic University , Kowloon , Hong Kong Special Administrative Region , China
| | - Jennifer Chiu-Hung Tong
- b School of Medical and Health Sciences , Tung Wah College , Kowloon , Hong Kong Special Administrative Region , China
| | - Heong-Ting Wong
- c Department of Pathology , Kiang Wu Hospital , Macau Special Administrative Region , China
| | - Christopher Koon-Chi Lai
- d Department of Pathology , Queen Elizabeth Hospital , Kowloon , Hong Kong Special Administrative Region , China
| | - Thomas Chi-Chuen Au
- e State Key Laboratory in Oncology in South China, Sir Y K Pao Centre for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute and Prince of Wales Hospital, Shatin , The Chinese University of Hong Kong , Hong Kong Special Administrative Region , China
| | - Amanda Kit-Ching Chan
- d Department of Pathology , Queen Elizabeth Hospital , Kowloon , Hong Kong Special Administrative Region , China
| | - Lawrence Po-Wah Ng
- d Department of Pathology , Queen Elizabeth Hospital , Kowloon , Hong Kong Special Administrative Region , China
| | - William Chi-Shing Cho
- f Department of Clinical Oncology , Queen Elizabeth Hospital , Kowloon , Hong Kong Special Administrative Region , China
| | - Sze-Chuen Cesar Wong
- a Department of Health Technology and Informatics, Faculty of Health and Social Sciences , The Hong Kong Polytechnic University , Kowloon , Hong Kong Special Administrative Region , China.,d Department of Pathology , Queen Elizabeth Hospital , Kowloon , Hong Kong Special Administrative Region , China.,e State Key Laboratory in Oncology in South China, Sir Y K Pao Centre for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute and Prince of Wales Hospital, Shatin , The Chinese University of Hong Kong , Hong Kong Special Administrative Region , China
| |
Collapse
|
60
|
The Emergency Medical Service Microbiome. Appl Environ Microbiol 2018; 84:AEM.02098-17. [PMID: 29222105 DOI: 10.1128/aem.02098-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/01/2017] [Indexed: 11/20/2022] Open
Abstract
Emergency medical services (EMS) personnel are an integral component of the health care framework and function to transport patients from various locations to and between care facilities. In addition to physical injury, EMS personnel are expected to be at high risk to acquire and transmit health care-associated infections (HAIs) in the workplace. However, currently, little is known about EMS biosafety risk factors and the epidemiological contribution of EMS to pathogen transmission within and outside the health care sector. Health care facility microbiomes contain diverse bacterial, fungal, and viral pathogens that cause over 1.7 million HAIs each year in the United States alone. While hospital microbiomes have been relatively well studied, there is scant information about EMS infrastructure and equipment microbiomes or the role(s) they play in HAI transmission between health care facilities. We review recent literature investigating the microbiome of ambulances and other EMS service facilities which consistently identify antibiotic-resistant pathogens causing HAIs, including methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus, and Klebsiella pneumoniae Our review provides evidence that EMS microbiomes are dynamic and important pathogen reservoirs, and it underscores the need for more widespread and in-depth microbiome studies to elucidate patterns of pathogen transmission. We discuss emerging DNA sequencing technologies and other methods that can be applied to characterize and mitigate EMS biosafety risks in the future. Understanding the complex interplay between EMS and hospital microbiomes will provide key insights into pathogen transmission mechanisms and identify strategies to minimize HAIs and community infection.
Collapse
|
61
|
Draz MS, Shafiee H. Applications of gold nanoparticles in virus detection. Theranostics 2018; 8:1985-2017. [PMID: 29556369 PMCID: PMC5858513 DOI: 10.7150/thno.23856] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/09/2018] [Indexed: 12/12/2022] Open
Abstract
Viruses are the smallest known microbes, yet they cause the most significant losses in human health. Most of the time, the best-known cure for viruses is the innate immunological defense system of the host; otherwise, the initial prevention of viral infection is the only alternative. Therefore, diagnosis is the primary strategy toward the overarching goal of virus control and elimination. The introduction of a new class of nanoscale materials with multiple unique properties and functions has sparked a series of breakthrough applications. Gold nanoparticles (AuNPs) are widely reported to guide an impressive resurgence in biomedical and diagnostic applications. Here, we review the applications of AuNPs in virus testing and detection. The developed AuNP-based detection techniques are reported for various groups of clinically relevant viruses with a special focus on the applied types of bio-AuNP hybrid structures, virus detection targets, and assay modalities and formats. We pay particular attention to highlighting the functional role and activity of each core Au nanostructure and the resultant detection improvements in terms of sensitivity, detection range, and time. In addition, we provide a general summary of the contributions of AuNPs to the mainstream methods of virus detection, technical measures, and recommendations required in guidance toward commercial in-field applications.
Collapse
Affiliation(s)
- Mohamed Shehata Draz
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Hadi Shafiee
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
62
|
Akyazi T, Basabe-Desmonts L, Benito-Lopez F. Review on microfluidic paper-based analytical devices towards commercialisation. Anal Chim Acta 2018; 1001:1-17. [DOI: 10.1016/j.aca.2017.11.010] [Citation(s) in RCA: 311] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/23/2017] [Accepted: 11/03/2017] [Indexed: 12/20/2022]
|
63
|
Kim J, Poling-Skutvik R, Trabuco JRC, Kourentzi K, Willson RC, Conrad JC. Orientational binding modes of reporters in a viral-nanoparticle lateral flow assay. Analyst 2018; 142:55-64. [PMID: 27704069 DOI: 10.1039/c6an00567e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Using microscopy and image analysis, we characterize binding of filamentous viral nanoparticles to a fibrous affinity matrix as models for reporter capture in a lateral flow assay (LFA). M13 bacteriophage (M13) displaying an in vivo-biotinylated peptide (AviTag) genetically fused to the M13 tail protein p3 are functionalized with fluorescent labels. We functionalize glass fiber LFA membranes with antibodies to M13, which primarily capture M13 on the major p8 coat proteins, or with avidin, which captures M13 at the biotin-functionalized tail, and compare orientational modes of reporter capture for the side- versus tip-binding recognition interactions. The number of captured M13 is greater for side-binding than for tip-binding, as expected from the number of recognition groups. Whereas two-thirds of side-bound M13 captured by an anti-M13 antibody bind immediately after colliding with the membrane, tip-bound M13 prominently exhibit three additional orientational modes that require M13 to reorient to enable binding. These results are consistent with the idea that the elongated M13 shape couples with the complex flow field in an open and disordered fibrous LFA membrane to enhance capture.
Collapse
Affiliation(s)
- Jinsu Kim
- Department of Chemical & Biomolecular Engineering, University of Houston, Houston, TX 77204, USA.
| | - Ryan Poling-Skutvik
- Department of Chemical & Biomolecular Engineering, University of Houston, Houston, TX 77204, USA.
| | - João R C Trabuco
- Department of Chemical & Biomolecular Engineering, University of Houston, Houston, TX 77204, USA.
| | - Katerina Kourentzi
- Department of Chemical & Biomolecular Engineering, University of Houston, Houston, TX 77204, USA.
| | - Richard C Willson
- Department of Chemical & Biomolecular Engineering, University of Houston, Houston, TX 77204, USA. and Department of Biology & Biochemistry, University of Houston, Houston, Texas 77004, USA and Centro de Biotecnología FEMSA, Tecnológico de Monterrey, Monterrey, Nuevo León, Mexico
| | - Jacinta C Conrad
- Department of Chemical & Biomolecular Engineering, University of Houston, Houston, TX 77204, USA.
| |
Collapse
|
64
|
Chan K, Wong PY, Parikh C, Wong S. Moving toward rapid and low-cost point-of-care molecular diagnostics with a repurposed 3D printer and RPA. Anal Biochem 2018; 545:4-12. [PMID: 29339059 DOI: 10.1016/j.ab.2018.01.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 10/18/2022]
Abstract
Traditionally, the majority of nucleic acid amplification-based molecular diagnostic tests are done in centralized settings. In recent years, point-of-care tests have been developed for use in low-resource settings away from central laboratories. While most experts agree that point-of-care molecular tests are greatly needed, their availability as cost-effective and easy-to-operate tests remains an unmet goal. In this article, we discuss our efforts to develop a recombinase polymerase amplification reaction-based test that will meet these criteria. First, we describe our efforts in repurposing a low-cost 3D printer as a platform that can carry out medium-throughput, rapid, and high-performing nucleic acid extraction. Next, we address how these purified templates can be rapidly amplified and analyzed using the 3D printer's heated bed or the deconstructed, low-cost thermal cycler we have developed. In both approaches, real-time isothermal amplification and detection of template DNA or RNA can be accomplished using a low-cost portable detector or smartphone camera. Last, we demonstrate the capability of our technologies using foodborne pathogens and the Zika virus. Our low-cost approach does not employ complicated and high-cost components, making it suitable for resource-limited settings. When integrated and commercialized, it will offer simple sample-to-answer molecular diagnostics.
Collapse
Affiliation(s)
- Kamfai Chan
- AI Biosciences, Inc., College Station, TX 77845, USA
| | - Pui-Yan Wong
- AI Biosciences, Inc., College Station, TX 77845, USA
| | | | - Season Wong
- AI Biosciences, Inc., College Station, TX 77845, USA.
| |
Collapse
|
65
|
Banerjee R, Jaiswal A. Recent advances in nanoparticle-based lateral flow immunoassay as a point-of-care diagnostic tool for infectious agents and diseases. Analyst 2018; 143:1970-1996. [DOI: 10.1039/c8an00307f] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent advances in lateral flow immunoassay-based devices as a point-of-care analytical tool for the detection of infectious diseases are reviewed.
Collapse
Affiliation(s)
- Ruptanu Banerjee
- School of Basic Sciences
- Indian Institute of Technology Mandi
- Mandi-175005
- India
| | - Amit Jaiswal
- School of Basic Sciences
- Indian Institute of Technology Mandi
- Mandi-175005
- India
| |
Collapse
|
66
|
Kim J, Mohamed MAA, Zagorovsky K, Chan WCW. State of diagnosing infectious pathogens using colloidal nanomaterials. Biomaterials 2017; 146:97-114. [PMID: 28898761 PMCID: PMC7124370 DOI: 10.1016/j.biomaterials.2017.08.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 08/07/2017] [Accepted: 08/13/2017] [Indexed: 01/08/2023]
Abstract
Infectious diseases are a major global threat that accounts for one of the leading causes of global mortality and morbidity. Prompt diagnosis is a crucial first step in the management of infectious threats, which aims to quarantine infected patients to avoid contacts with healthy individuals and deliver effective treatments prior to further spread of diseases. This review article discusses current advances of diagnostic systems using colloidal nanomaterials (e.g., gold nanoparticles, quantum dots, magnetic nanoparticles) for identifying and differentiating infectious pathogens. The challenges involved in the clinical translation of these emerging nanotechnology based diagnostic devices will also be discussed.
Collapse
Affiliation(s)
- Jisung Kim
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada; Terrence Donnelly Centre for Cellular and Bimolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada; Centre for Global Engineering, University of Toronto, Toronto, Ontario M5S 1A4, Canada
| | - Mohamed A Abdou Mohamed
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada; Terrence Donnelly Centre for Cellular and Bimolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada; Botany and Microbiology Department, Faculty of Science, Zagazig University, Egypt
| | - Kyryl Zagorovsky
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada; Terrence Donnelly Centre for Cellular and Bimolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Warren C W Chan
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada; Terrence Donnelly Centre for Cellular and Bimolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada; Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada; Department of Chemical Engineering, University of Toronto, Toronto, Ontario M5S 3E5, Canada; Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4, Canada.
| |
Collapse
|
67
|
Majors CE, Smith CA, Natoli ME, Kundrod KA, Richards-Kortum R. Point-of-care diagnostics to improve maternal and neonatal health in low-resource settings. LAB ON A CHIP 2017; 17:3351-3387. [PMID: 28832061 PMCID: PMC5636680 DOI: 10.1039/c7lc00374a] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Each day, approximately 830 women and 7400 newborns die from complications during pregnancy and childbirth. Improving maternal and neonatal health will require bringing rapid diagnosis and treatment to the point of care in low-resource settings. However, to date there are few diagnostic tools available that can be used at the point of care to detect the leading causes of maternal and neonatal mortality in low-resource settings. Here we review both commercially available diagnostics and technologies that are currently in development to detect the leading causes of maternal and neonatal mortality, highlighting key gaps in development where innovative design could increase access to technology and enable rapid diagnosis at the bedside.
Collapse
Affiliation(s)
- Catherine E Majors
- Department of Bioengineering, Rice University, 6100 Main Street, MS-142, Houston, TX 77005, USA.
| | | | | | | | | |
Collapse
|
68
|
Javani A, Javadi-Zarnaghi F, Rasaee MJ. A multiplex protein-free lateral flow assay for detection of microRNAs based on unmodified molecular beacons. Anal Biochem 2017; 537:99-105. [PMID: 28911984 DOI: 10.1016/j.ab.2017.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/03/2017] [Accepted: 09/09/2017] [Indexed: 12/11/2022]
Abstract
Lateral flow assays (LFAs) have promising potentials for point-of-care applications. Recently, many LFAs have been reported that are based on hybridization of oligonucleotide strands. Mostly, biotinylated capture DNAs are immobilized on the surface of a nitrocellulose membrane via streptavidin interactions. During the assay, stable colorful complexes get formed that are visible by naked eyes. Here, we present an inexpensive and unique design of LFA that applies unmodified oligonucleotides at capture lines. The presented LFA do not utilize streptavidin or any other affinity protein. We employ structural switch of molecular beacons (MB) in combination with base stacking hybridization (BSH) phenomenon. The unique design of the reported LFA provided high selectivity for target oligonucleotides. We validated potential applications of the system for detection of DNA mimics of two microRNAs in multiplex assays.
Collapse
Affiliation(s)
- Atefeh Javani
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| | | | - Mohammad Javad Rasaee
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
69
|
Advances and challenges of fully integrated paper-based point-of-care nucleic acid testing. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.05.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
70
|
Magro L, Escadafal C, Garneret P, Jacquelin B, Kwasiborski A, Manuguerra JC, Monti F, Sakuntabhai A, Vanhomwegen J, Lafaye P, Tabeling P. Paper microfluidics for nucleic acid amplification testing (NAAT) of infectious diseases. LAB ON A CHIP 2017. [PMID: 28632278 DOI: 10.1039/c7lc00013h] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The diagnosis of infectious diseases is entering a new and interesting phase. Technologies based on paper microfluidics, coupled to developments in isothermal amplification of Nucleic Acids (NAs) raise opportunities for bringing the methods of molecular biology in the field, in a low setting environment. A lot of work has been performed in the domain over the last few years and the landscape of contributions is rich and diverse. Most often, the level of sample preparation differs, along with the sample nature, the amplification and detection methods, and the design of the device, among other features. In this review, we attempt to offer a structured description of the state of the art. The domain is not mature and there exist bottlenecks that hamper the realization of Nucleic Acid Amplification Tests (NAATs) complying with the constraints of the field in low and middle income countries. In this domain however, the pace of progress is impressively fast. This review is written for a broad Lab on a Chip audience.
Collapse
Affiliation(s)
- Laura Magro
- MMN, Gulliver Laboratory, UMR CNRS 7083, ESPCI Paris, PSL Research University, Paris, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Kim C, Yoo YK, Han SI, Lee J, Lee D, Lee K, Hwang KS, Lee KH, Chung S, Lee JH. Battery operated preconcentration-assisted lateral flow assay. LAB ON A CHIP 2017; 17:2451-2458. [PMID: 28613296 DOI: 10.1039/c7lc00036g] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Paper-based analytical devices (e.g. lateral flow assays) are highly advantageous as portable diagnostic systems owing to their low costs and ease of use. Because of their low sensitivity and detection limits for biomolecules, these devices have several limitations in applications for real-field diagnosis. Here, we demonstrate a paper-based preconcentration enhanced lateral flow assay using a commercial β-hCG-based test. Utilizing a simple 9 V battery operation with a low power consumption of approximately 81 μW, we acquire a 25-fold preconcentration factor, demonstrating a clear sensitivity enhancement in the colorimetric lateral flow assay; consequently, clear colors are observed in a rapid kit test line, which cannot be monitored without preconcentration. This device can also facilitate a semi-quantitative platform using the saturation value and/or color intensity in both paper-based colorimetric assays and smartphone-based diagnostics.
Collapse
Affiliation(s)
- Cheonjung Kim
- Department of Electrical Engineering, Kwangwoon University, 20 Gwangun-ro, Nowon-gu, Seoul 01897, South Korea.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Abstract
Lateral flow assays (LFAs) are the technology behind low-cost, simple, rapid and portable detection devices popular in biomedicine, agriculture, food and environmental sciences. This review presents an overview of the principle of the method and the critical components of the assay, focusing on lateral flow immunoassays. This type of assay has recently attracted considerable interest because of its potential to provide instantaneous diagnosis directly to patients. The range and interpretation of results and parameters used for evaluation of the assay will also be discussed. The main advantages and disadvantages of LFAs will be summarized and relevant future improvements to testing devices and strategies will be proposed. Finally, the major recent advances and future diagnostic applications in the LFA field will be explored.
Collapse
|
73
|
Bauer WS, Kimmel DW, Adams NM, Gibson LE, Scherr TF, Richardson KA, Conrad JA, Matakala HK, Haselton FR, Wright DW. Magnetically-enabled biomarker extraction and delivery system: towards integrated ASSURED diagnostic tools. Analyst 2017; 142:1569-1580. [PMID: 28386613 PMCID: PMC5674985 DOI: 10.1039/c7an00278e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diagnosis of asymptomatic malaria poses a great challenge to global disease elimination efforts. Healthcare infrastructure in rural settings cannot support existing state-of-the-art tools necessary to diagnose asymptomatic malaria infections. Instead, lateral flow immunoassays (LFAs) are widely used as a diagnostic tool in malaria endemic areas. While LFAs are simple and easy to use, they are unable to detect low levels of parasite infection. We have developed a field deployable Magnetically-enabled Biomarker Extraction And Delivery System (mBEADS) that significantly improves limits of detection for several commercially available LFAs. Integration of mBEADS with leading commercial Plasmodium falciparum malaria LFAs improves detection limits to encompass an estimated 95% of the disease reservoir. This user-centered mBEADS platform makes significant improvements to a previously cumbersome malaria biomarker enrichment strategy by improving reagent stability, decreasing the processing time 10-fold, and reducing the assay cost 10-fold. The resulting mBEADS process adds just three minutes and less than $0.25 to the total cost of a single LFA, thus balancing sensitivity and practicality to align with the World Health Organization's ASSURED criteria for point-of-care (POC) testing.
Collapse
Affiliation(s)
- Westley S Bauer
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Paper based diagnostics for personalized health care: Emerging technologies and commercial aspects. Biosens Bioelectron 2017; 96:246-259. [PMID: 28501745 DOI: 10.1016/j.bios.2017.05.001] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/19/2017] [Accepted: 05/01/2017] [Indexed: 12/17/2022]
Abstract
Personalized health care (PHC) is being appreciated globally to combat clinical complexities underlying various metabolic or infectious disorders including diabetes, cardiovascular, communicable diseases etc. Effective diagnoses majorly depend on initial identification of the causes which are nowadays being practiced in disease-oriented approach, where personal health profile is often overlooked. The adoption of PHC has shown significantly improved diagnoses in various conditions including emergency, ambulatory, and remote area. PHC includes personalized health monitoring (PHM), which is its integral part and may provide valuable information's on various clinical conditions. In PHC, bio-fluids are analyzed using various diagnostic devices including lab based equipment and biosensors. Among all types of biosensing systems, paper based biosensors are commercially attracted due to its portability, easy availability, cheaper manufacturing cost, and transportability. Not only these, various intrinsic properties of paper has facilitated the development of paper based miniaturized sensors, which has recently gained ASSURED (Affordable, Sensitive, Specific, User-friendly, Rapid and Robust, Equipment free, Deliverable to all end-users) status for point of care diagnosis in miniaturized settings. In this review, importance of paper based biosensors and their compatibility for affordable and low cost diagnostics has been elaborated with various examples. Limitations and strategies to overcome the challenges of paper biosensor have also been discussed. We have provided elaborated tables which describe the types, model specifications, sensing mechanisms, target biomarkers, and analytical performance of the paper biosensors with their respective applications in real sample matrices. Different commercial aspects of paper biosensor have also been explained using SWOT (Strength, Weakness, Opportunities, Threats) analysis.
Collapse
|
75
|
Kim J, Vu B, Kourentzi K, Willson RC, Conrad JC. Increasing Binding Efficiency via Reporter Shape and Flux in a Viral Nanoparticle Lateral-Flow Assay. ACS APPLIED MATERIALS & INTERFACES 2017; 9:6878-6884. [PMID: 28150489 PMCID: PMC5334146 DOI: 10.1021/acsami.6b15728] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
To identify factors controlling the performance of reporter particles in a sensitive lateral-flow assay (LFA), we investigated the effect of the flux and shape of filamentous bacteriophage (phage) on the performance of phage LFAs. Phage of three different lengths and diameters were modified with biotin and AlexaFluor 555 as binding and read-out elements, respectively. The binding efficiencies of the functionalized phage were tested in a fibrous glass LFA membrane modified with avidin. The total binding rate, quantified using real-time particle counting and particle image velocimetry, decreased monotonically with the average bulk flux of phage through the membrane. At the pore scale, more phage bound in regions with faster local flow, confirming that both average and local flux increased binding. The number of bound phage increased with the aspect ratio of the phage and scaled with the phage surface area, consistent with a binding interaction controlled by the number of recognition elements on the surface. Together, these results indicate that increasing the likelihood that recognition elements on the surface of phage encounter the fibers enhances the assay binding efficiency and suggests one origin for the improved performance of nonspherical phage reporters.
Collapse
Affiliation(s)
- Jinsu Kim
- Department of Chemical & Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Binh Vu
- Department of Chemical & Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Katerina Kourentzi
- Department of Chemical & Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Richard C. Willson
- Department of Chemical & Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
- Department of Biology & Biochemistry, University of Houston, Houston, Texas 77204, United States
- Centro de Biotecnología FEMSA, Tecnologíco de Monterrey, Monterrey, Nuevo León, México
| | - Jacinta C. Conrad
- Department of Chemical & Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
76
|
Syedmoradi L, Daneshpour M, Alvandipour M, Gomez FA, Hajghassem H, Omidfar K. Point of care testing: The impact of nanotechnology. Biosens Bioelectron 2017; 87:373-387. [DOI: 10.1016/j.bios.2016.08.084] [Citation(s) in RCA: 235] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 08/15/2016] [Accepted: 08/25/2016] [Indexed: 11/29/2022]
|
77
|
Gao W, Huang H, Zhang Y, Zhu P, Yan X, Fan J, Chen X. Recombinase Polymerase Amplification-Based Assay for Rapid Detection of Listeria monocytogenes in Food Samples. FOOD ANAL METHOD 2016. [DOI: 10.1007/s12161-016-0775-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
78
|
Tram DTN, Wang H, Sugiarto S, Li T, Ang WH, Lee C, Pastorin G. Advances in nanomaterials and their applications in point of care (POC) devices for the diagnosis of infectious diseases. Biotechnol Adv 2016; 34:1275-1288. [PMID: 27686397 PMCID: PMC7127209 DOI: 10.1016/j.biotechadv.2016.09.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 07/13/2016] [Accepted: 09/23/2016] [Indexed: 01/17/2023]
Abstract
Nanotechnology has gained much attention over the last decades, as it offers unique opportunities for the advancement of the next generation of sensing tools. Point-of-care (POC) devices for the selective detection of biomolecules using engineered nanoparticles have become a main research thrust in the diagnostic field. This review presents an overview on how the POC-associated nanotechnology, currently applied for the identification of nucleic acids, proteins and antibodies, might be further exploited for the detection of infectious pathogens: although still premature, future integrations of nanoparticles with biological markers that target specific microorganisms will enable timely therapeutic intervention against life-threatening infectious diseases.
Collapse
Affiliation(s)
- Dai Thien Nhan Tram
- Pharmacy Department National University of Singapore, Singapore 117543, Singapore.
| | - Hao Wang
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering, Drive 3, Singapore 117576, Singapore.
| | - Sigit Sugiarto
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.
| | - Tao Li
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.
| | - Wee Han Ang
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering, Drive 3, Singapore 117576, Singapore.
| | - Giorgia Pastorin
- Pharmacy Department National University of Singapore, Singapore 117543, Singapore; NanoCore, Faculty of Engineering, National University of Singapore, Singapore 117576, Singapore; NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences (CeLS), Singapore 117456, Singapore.
| |
Collapse
|
79
|
Induced nanoparticle aggregation for short nucleic acid quantification by depletion isotachophoresis. Biosens Bioelectron 2016; 86:840-848. [DOI: 10.1016/j.bios.2016.07.093] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/31/2016] [Accepted: 07/26/2016] [Indexed: 12/21/2022]
|
80
|
Polyethersulfone improves isothermal nucleic acid amplification compared to current paper-based diagnostics. Biomed Microdevices 2016; 18:30. [PMID: 26906904 DOI: 10.1007/s10544-016-0057-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Devices based on rapid, paper-based, isothermal nucleic acid amplification techniques have recently emerged with the potential to fill a growing need for highly sensitive point-of-care diagnostics throughout the world. As this field develops, such devices will require optimized materials that promote amplification and sample preparation. Herein, we systematically investigated isothermal nucleic acid amplification in materials currently used in rapid diagnostics (cellulose paper, glass fiber, and nitrocellulose) and two additional porous membranes with upstream sample preparation capabilities (polyethersulfone and polycarbonate). We compared amplification efficiency from four separate DNA and RNA targets (Bordetella pertussis, Chlamydia trachomatis, Neisseria gonorrhoeae, and Influenza A H1N1) within these materials using two different isothermal amplification schemes, helicase dependent amplification (tHDA) and loop-mediated isothermal amplification (LAMP), and traditional PCR. We found that the current paper-based diagnostic membranes inhibited nucleic acid amplification when compared to membrane-free controls; however, polyethersulfone allowed for efficient amplification in both LAMP and tHDA reactions. Further, observing the performance of traditional PCR amplification within these membranes was not predicative of their effects on in situ LAMP and tHDA. Polyethersulfone is a new material for paper-based nucleic acid amplification, yet provides an optimal support for rapid molecular diagnostics for point-of-care applications.
Collapse
|
81
|
East-Seletsky A, O'Connell MR, Knight SC, Burstein D, Cate JHD, Tjian R, Doudna JA. Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection. Nature 2016; 538:270-273. [PMID: 27669025 PMCID: PMC5576363 DOI: 10.1038/nature19802] [Citation(s) in RCA: 717] [Impact Index Per Article: 89.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/24/2016] [Indexed: 02/06/2023]
Abstract
Bacterial adaptive immune systems use CRISPRs (clustered regularly interspaced short palindromic repeats) and CRISPR-associated (Cas) proteins for RNA-guided nucleic acid cleavage. Although most prokaryotic adaptive immune systems generally target DNA substrates, type III and VI CRISPR systems direct interference complexes against single-stranded RNA substrates. In type VI systems, the single-subunit C2c2 protein functions as an RNA-guided RNA endonuclease (RNase). How this enzyme acquires mature CRISPR RNAs (crRNAs) that are essential for immune surveillance and how it carries out crRNA-mediated RNA cleavage remain unclear. Here we show that bacterial C2c2 possesses a unique RNase activity responsible for CRISPR RNA maturation that is distinct from its RNA-activated single-stranded RNA degradation activity. These dual RNase functions are chemically and mechanistically different from each other and from the crRNA-processing behaviour of the evolutionarily unrelated CRISPR enzyme Cpf1 (ref. 11). The two RNase activities of C2c2 enable multiplexed processing and loading of guide RNAs that in turn allow sensitive detection of cellular transcripts.
Collapse
Affiliation(s)
- Alexandra East-Seletsky
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | - Mitchell R O'Connell
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | - Spencer C Knight
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - David Burstein
- Department of Earth And Planetary Sciences, University of California, Berkeley, California 94720, USA
| | - Jamie H D Cate
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Robert Tjian
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA
- Li Ka Shing Biomedical and Health Sciences Center, University of California, Berkeley, California 94720, USA
| | - Jennifer A Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA
- Innovative Genomics Initiative, University of California, Berkeley, California 94720, USA
| |
Collapse
|
82
|
Ray M, Ray A, Dash S, Mishra A, Achary KG, Nayak S, Singh S. Fungal disease detection in plants: Traditional assays, novel diagnostic techniques and biosensors. Biosens Bioelectron 2016; 87:708-723. [PMID: 27649327 DOI: 10.1016/j.bios.2016.09.032] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 08/25/2016] [Accepted: 09/10/2016] [Indexed: 11/19/2022]
Abstract
Fungal diseases in commercially important plants results in a significant reduction in both quality and yield, often leading to the loss of an entire plant. In order to minimize the losses, it is essential to detect and identify the pathogens at an early stage. Early detection and accurate identification of pathogens can control the spread of infection. The present article provides a comprehensive overview of conventional methods, current trends and advances in fungal pathogen detection with an emphasis on biosensors. Traditional techniques are the "gold standard" in fungal detection which relies on symptoms, culture-based, morphological observation and biochemical identifications. In recent times, with the advancement of biotechnology, molecular and immunological approaches have revolutionized fungal disease detection. But the drawback lies in the fact that these methods require specific and expensive equipments. Thus, there is an urgent need for rapid, reliable, sensitive, cost effective and easy to use diagnostic methods for fungal pathogen detection. Biosensors would become a promising and attractive alternative, but they still have to be subjected to some modifications, improvements and proper validation for on-field use.
Collapse
Affiliation(s)
- Monalisa Ray
- Centre of Biotechnology, Siksha O Anusandhan University, Kalinga Nagar, Ghatikia, Bhubaneswar, Odisha, India
| | - Asit Ray
- Centre of Biotechnology, Siksha O Anusandhan University, Kalinga Nagar, Ghatikia, Bhubaneswar, Odisha, India
| | - Swagatika Dash
- Centre of Biotechnology, Siksha O Anusandhan University, Kalinga Nagar, Ghatikia, Bhubaneswar, Odisha, India
| | - Abtar Mishra
- Centre of Biotechnology, Siksha O Anusandhan University, Kalinga Nagar, Ghatikia, Bhubaneswar, Odisha, India
| | | | - Sanghamitra Nayak
- Centre of Biotechnology, Siksha O Anusandhan University, Kalinga Nagar, Ghatikia, Bhubaneswar, Odisha, India
| | - Shikha Singh
- Centre of Biotechnology, Siksha O Anusandhan University, Kalinga Nagar, Ghatikia, Bhubaneswar, Odisha, India.
| |
Collapse
|
83
|
Lee DG, Yang KE, Hwang JW, Kang HS, Lee SY, Choi S, Shin J, Jang IS, An HJ, Chung H, Jung HI, Choi JS. Degradation of Kidney and Psoas Muscle Proteins as Indicators of Post-Mortem Interval in a Rat Model, with Use of Lateral Flow Technology. PLoS One 2016; 11:e0160557. [PMID: 27552165 PMCID: PMC4995019 DOI: 10.1371/journal.pone.0160557] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 07/21/2016] [Indexed: 11/29/2022] Open
Abstract
We investigated potential protein markers of post-mortem interval (PMI) using rat kidney and psoas muscle. Tissue samples were taken at 12 h intervals for up to 96 h after death by suffocation. Expression levels of eight soluble proteins were analyzed by Western blotting. Degradation patterns of selected proteins were clearly divided into three groups: short-term, mid-term, and long-term PMI markers based on the half maximum intensity of intact protein expression. In kidney, glycogen synthase (GS) and glycogen synthase kinase-3β were degraded completely within 48 h making them short-term PMI markers. AMP-activated protein kinase α, caspase 3 and GS were short-term PMI markers in psoas muscle. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was a mid-term PMI marker in both tissues. Expression levels of the typical long-term PMI markers, p53 and β-catenin, were constant for at least 96 h post-mortem in both tissues. The degradation patterns of GS and caspase-3 were verified by immunohistochemistry in both tissues. GAPDH was chosen as a test PMI protein to perform a lateral flow assay (LFA). The presence of recombinant GAPDH was clearly detected in LFA and quantified in a concentration-dependent manner. These results suggest that LFA might be used to estimate PMI at a crime scene.
Collapse
Affiliation(s)
- Dong-Gi Lee
- Biological Disaster Analysis Group, Korea Basic Science Institute, Daejeon, Republic of Korea
| | - Kyeong Eun Yang
- Biological Disaster Analysis Group, Korea Basic Science Institute, Daejeon, Republic of Korea
| | - Jeong Won Hwang
- Biological Disaster Analysis Group, Korea Basic Science Institute, Daejeon, Republic of Korea
| | - Hwan-Soo Kang
- Biological Disaster Analysis Group, Korea Basic Science Institute, Daejeon, Republic of Korea
| | - Seung-Yeul Lee
- Biological Disaster Analysis Group, Korea Basic Science Institute, Daejeon, Republic of Korea
| | - Seoyeon Choi
- National Core Research Center for Nanomedical Technology, Yonsei University, Seoul, Republic of Korea
| | - Joonchul Shin
- School of Mechanical Engineering, Yonsei University, Seoul, Republic of Korea
| | - Ik-Soon Jang
- Biological Disaster Analysis Group, Korea Basic Science Institute, Daejeon, Republic of Korea
| | - Hyun Joo An
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| | - Heesun Chung
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| | - Hyo-Il Jung
- National Core Research Center for Nanomedical Technology, Yonsei University, Seoul, Republic of Korea
- School of Mechanical Engineering, Yonsei University, Seoul, Republic of Korea
- * E-mail: (HIJ); (JSC)
| | - Jong-Soon Choi
- Biological Disaster Analysis Group, Korea Basic Science Institute, Daejeon, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
- * E-mail: (HIJ); (JSC)
| |
Collapse
|
84
|
McCracken KE, Angus SV, Reynolds KA, Yoon JY. Multimodal Imaging and Lighting Bias Correction for Improved μPAD-based Water Quality Monitoring via Smartphones. Sci Rep 2016; 6:27529. [PMID: 27283336 PMCID: PMC4901345 DOI: 10.1038/srep27529] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 05/16/2016] [Indexed: 01/06/2023] Open
Abstract
Smartphone image-based sensing of microfluidic paper analytical devices (μPADs) offers low-cost and mobile evaluation of water quality. However, consistent quantification is a challenge due to variable environmental, paper, and lighting conditions, especially across large multi-target μPADs. Compensations must be made for variations between images to achieve reproducible results without a separate lighting enclosure. We thus developed a simple method using triple-reference point normalization and a fast-Fourier transform (FFT)-based pre-processing scheme to quantify consistent reflected light intensity signals under variable lighting and channel conditions. This technique was evaluated using various light sources, lighting angles, imaging backgrounds, and imaging heights. Further testing evaluated its handle of absorbance, quenching, and relative scattering intensity measurements from assays detecting four water contaminants – Cr(VI), total chlorine, caffeine, and E. coli K12 – at similar wavelengths using the green channel of RGB images. Between assays, this algorithm reduced error from μPAD surface inconsistencies and cross-image lighting gradients. Although the algorithm could not completely remove the anomalies arising from point shadows within channels or some non-uniform background reflections, it still afforded order-of-magnitude quantification and stable assay specificity under these conditions, offering one route toward improving smartphone quantification of μPAD assays for in-field water quality monitoring.
Collapse
Affiliation(s)
- Katherine E McCracken
- Department of Agricultural &Biosystems Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - Scott V Angus
- Department of Agricultural &Biosystems Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - Kelly A Reynolds
- Mel and Enid Zuckerman College of Public Health, The University of Arizona, Tucson, Arizona 85721, United States
| | - Jeong-Yeol Yoon
- Department of Agricultural &Biosystems Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
85
|
Han KN, Choi JS, Kwon J. Three-dimensional paper-based slip device for one-step point-of-care testing. Sci Rep 2016; 6:25710. [PMID: 27174731 PMCID: PMC4865726 DOI: 10.1038/srep25710] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/21/2016] [Indexed: 12/14/2022] Open
Abstract
In this study, we developed a new type of paper-based analytical device (PAD), the three-dimensional (3D) slip-PAD, to detect infectious human norovirus for global healthcare. The 3D configuration of the papers combined with a slip design provides unique features and versatility that overcome the limitations of fluidic manipulation and sensitivity in point-of-care (POC) tests. The assay can be carried out in a single step based on a moveable slip design, making it suitable for unskilled users. The 3D fluidic network developed by layered construction of wax-patterned papers provides different fluidic paths for the sequential delivery of multiple fluids without the need for peripheral equipment. The release and mixing of enhancement reagents on the device improved the sensitivity and detection limit. The assay results could be visualized by naked eye within 10 min, with subsequent amplification of the signal over time (<60 min). The device showed a broad dynamic range of detection and high sensitivity, with a detection limit of 9.5 × 104 copies ml−1 for human norovirus. These results demonstrate that the 3D slip-PAD is a sensitive diagnostic assay for detecting human norovirus infection that is particularly suitable for POC testing in regions where resources are scarce.
Collapse
Affiliation(s)
- Kwi Nam Han
- Biological Disaster Analysis Group, Korea Basic Science Institute, Daejeon 169-148, Korea
| | - Jong-Soon Choi
- Biological Disaster Analysis Group, Korea Basic Science Institute, Daejeon 169-148, Korea
| | - Joseph Kwon
- Biological Disaster Analysis Group, Korea Basic Science Institute, Daejeon 169-148, Korea
| |
Collapse
|
86
|
Pardee K, Green AA, Takahashi MK, Braff D, Lambert G, Lee JW, Ferrante T, Ma D, Donghia N, Fan M, Daringer NM, Bosch I, Dudley DM, O'Connor DH, Gehrke L, Collins JJ. Rapid, Low-Cost Detection of Zika Virus Using Programmable Biomolecular Components. Cell 2016; 165:1255-1266. [PMID: 27160350 DOI: 10.1016/j.cell.2016.04.059] [Citation(s) in RCA: 861] [Impact Index Per Article: 107.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/19/2016] [Accepted: 04/24/2016] [Indexed: 01/22/2023]
Abstract
The recent Zika virus outbreak highlights the need for low-cost diagnostics that can be rapidly developed for distribution and use in pandemic regions. Here, we report a pipeline for the rapid design, assembly, and validation of cell-free, paper-based sensors for the detection of the Zika virus RNA genome. By linking isothermal RNA amplification to toehold switch RNA sensors, we detect clinically relevant concentrations of Zika virus sequences and demonstrate specificity against closely related Dengue virus sequences. When coupled with a novel CRISPR/Cas9-based module, our sensors can discriminate between viral strains with single-base resolution. We successfully demonstrate a simple, field-ready sample-processing workflow and detect Zika virus from the plasma of a viremic macaque. Our freeze-dried biomolecular platform resolves important practical limitations to the deployment of molecular diagnostics in the field and demonstrates how synthetic biology can be used to develop diagnostic tools for confronting global health crises. PAPERCLIP.
Collapse
Affiliation(s)
- Keith Pardee
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Alexander A Green
- Biodesign Center for Molecular Design and Biomimetics, The Biodesign Institute and the School of Molecular Sciences, Arizona State University, AZ 85287, USA
| | - Melissa K Takahashi
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dana Braff
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Guillaume Lambert
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | - Jeong Wook Lee
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Tom Ferrante
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Duo Ma
- Biodesign Center for Molecular Design and Biomimetics, The Biodesign Institute and the School of Molecular Sciences, Arizona State University, AZ 85287, USA
| | - Nina Donghia
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | | | - Nichole M Daringer
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Irene Bosch
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dawn M Dudley
- Wisconsin National Primate Research Center and Department of Pathology and Laboratory Medicine, UW-Madison, Madison, WI 53706, USA
| | - David H O'Connor
- Wisconsin National Primate Research Center and Department of Pathology and Laboratory Medicine, UW-Madison, Madison, WI 53706, USA
| | - Lee Gehrke
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA 02139, USA
| | - James J Collins
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
87
|
Tang RH, Yang H, Choi JR, Gong Y, Feng SS, Pingguan-Murphy B, Huang QS, Shi JL, Mei QB, Xu F. Advances in paper-based sample pretreatment for point-of-care testing. Crit Rev Biotechnol 2016; 37:411-428. [DOI: 10.3109/07388551.2016.1164664] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
88
|
Qu H, Zhang Y, Qu B, Kong H, Qin G, Liu S, Cheng J, Wang Q, Zhao Y. Rapid lateral-flow immunoassay for the quantum dot-based detection of puerarin. Biosens Bioelectron 2016; 81:358-362. [PMID: 26991602 DOI: 10.1016/j.bios.2016.03.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/26/2015] [Accepted: 01/26/2016] [Indexed: 01/01/2023]
Abstract
In this study, a rapid (within 10min) quantitative lateral-flow immunoassay using a quantum dots (QDs)-antibody probe was developed for the analysis of puerarin (PUE) in water and biological samples. The competitive immunoassay was based on anti-PUE monoclonal antibody conjugated with QDs (detection reagent). Secondary antibody was immobilized on one end of a nitrocellulose membrane (control line) and PUE-bovine serum albumin conjugate was immobilized on the other end (test line). In the quantitative experiment, the detection results were scanned using a membrane strip reader and a detection curve (regression equation: y=-0.11ln(x)+0.979, R(2)=0.9816) representing the averages of the scanned data was obtained. This curve was linear from 1 to 10μg/mL. The IC50 value was 75.58ng/mL and the qualitative detection limit of PUE was 5.8ng/mL. The recovery of PUE added to phosphate-buffered saline and biological samples was in the range of 97.38-116.56%. To our knowledge, this is the first report of the quantitative detection of a natural product by QDs-based immunochromatography, which represents a powerful tool for rapidly screening PUE in plant materials and other biological samples.
Collapse
Affiliation(s)
- Huihua Qu
- Center of Scientific Experiment, Beijing University of Chinese Medicine, China
| | - Yue Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, China
| | - Baoping Qu
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, China
| | - Hui Kong
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, China
| | - Gaofeng Qin
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, China
| | - Shuchen Liu
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, China
| | - Jinjun Cheng
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, China
| | - Qingguo Wang
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, China.
| | - Yan Zhao
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, China.
| |
Collapse
|
89
|
Huang X, Aguilar ZP, Xu H, Lai W, Xiong Y. Membrane-based lateral flow immunochromatographic strip with nanoparticles as reporters for detection: A review. Biosens Bioelectron 2016; 75:166-80. [DOI: 10.1016/j.bios.2015.08.032] [Citation(s) in RCA: 271] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 08/14/2015] [Accepted: 08/17/2015] [Indexed: 01/30/2023]
|
90
|
Cordray MS, Richards-Kortum RR. A paper and plastic device for the combined isothermal amplification and lateral flow detection of Plasmodium DNA. Malar J 2015; 14:472. [PMID: 26611141 PMCID: PMC4661981 DOI: 10.1186/s12936-015-0995-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 11/18/2015] [Indexed: 12/16/2022] Open
Abstract
Background Isothermal amplification techniques are emerging as a promising method for malaria diagnosis since they are capable of detecting extremely low concentrations of parasite target while mitigating the need for infrastructure and training required by other nucleic acid based tests. Recombinase polymerase amplification (RPA) is promising for further development since it operates in a short time frame (<30 min) and produces a product that can be visually detected on a lateral flow dipstick. A self-sealing paper and plastic system that performs both the amplification and detection of a malaria DNA sequence is presented. Methods Primers were designed using the NCBI nBLAST tools and screened using gel electrophoresis. Paper and plastic devices were prototyped using commercial design software and parts were cut using a laser cutter and assembled by hand. Synthetic copies of the Plasmodium 18S gene were spiked into solution and used as targets for the RPA reaction. To test the performance of the device the same samples spiked with synthetic target were run in parallel both in the paper and plastic devices and using conventional bench top methods. Results Novel RPA primers were developed that bind to sequences present in the four species of Plasmodium which infect humans. The paper and plastic devices were found to be capable of detecting as few as 5 copies/µL of synthetic Plasmodium DNA (50 copies total), comparable to the same reaction run on the bench top. The devices produce visual results in an hour, cost approximately $1, and are self-contained once the device is sealed. Conclusions The device was capable of carrying out the RPA reaction and detecting meaningful amounts of synthetic Plasmodium DNA in a self-sealing and self-contained device. This device may be a step towards making nucleic acid tests more accessible for malaria detection.
Collapse
Affiliation(s)
- Michael S Cordray
- Rice University Department of Bioengineering, 6100 Main St., Houston, TX, 77005, USA.
| | | |
Collapse
|
91
|
Quesada-González D, Merkoçi A. Nanoparticle-based lateral flow biosensors. Biosens Bioelectron 2015; 73:47-63. [DOI: 10.1016/j.bios.2015.05.050] [Citation(s) in RCA: 316] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 05/15/2015] [Accepted: 05/22/2015] [Indexed: 12/14/2022]
|
92
|
Shah KG, Guelig D, Diesburg S, Buser J, Burton R, LaBarre P, Richards-Kortum R, Weigl B. Design of a New Type of Compact Chemical Heater for Isothermal Nucleic Acid Amplification. PLoS One 2015; 10:e0139449. [PMID: 26430883 PMCID: PMC4591995 DOI: 10.1371/journal.pone.0139449] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 08/13/2015] [Indexed: 11/18/2022] Open
Abstract
Previous chemical heater designs for isothermal nucleic acid amplification have been based on solid-liquid phase transition, but using this approach, developers have identified design challenges en route to developing a low-cost, disposable device. Here, we demonstrate the feasibility of a new heater configuration suitable for isothermal amplification in which one reactant of an exothermic reaction is a liquid-gas phase-change material, thereby eliminating the need for a separate phase-change compartment. This design offers potentially enhanced performance and energy density compared to other chemical and electric heaters.
Collapse
Affiliation(s)
- Kamal G. Shah
- Department of Bioengineering, Rice University, Houston, Texas, United States of America
- PATH, Seattle, Washington, United States of America
- * E-mail:
| | - Dylan Guelig
- PATH, Seattle, Washington, United States of America
| | | | - Joshua Buser
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | | | - Paul LaBarre
- PATH, Seattle, Washington, United States of America
| | | | | |
Collapse
|
93
|
Rapid Molecular Detection of Multidrug-Resistant Tuberculosis by PCR-Nucleic Acid Lateral Flow Immunoassay. PLoS One 2015; 10:e0137791. [PMID: 26355296 PMCID: PMC4565584 DOI: 10.1371/journal.pone.0137791] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 08/21/2015] [Indexed: 01/18/2023] Open
Abstract
Several existing molecular tests for multidrug-resistant tuberculosis (MDR-TB) are limited by complexity and cost, hindering their widespread application. The objective of this proof of concept study was to develop a simple Nucleic Acid Lateral Flow (NALF) immunoassay as a potential diagnostic alternative, to complement conventional PCR, for the rapid molecular detection of MDR-TB. The NALF device was designed using antibodies for the indirect detection of labeled PCR amplification products. Multiplex PCR was optimized to permit the simultaneous detection of the drug resistant determining mutations in the 81-bp hot spot region of the rpoB gene (rifampicin resistance), while semi-nested PCR was optimized for the S315T mutation detection in the katG gene (isoniazid resistance). The amplification process additionally targeted a conserved region of the genes as Mycobacterium tuberculosis (Mtb) DNA control. The optimized conditions were validated with the H37Rv wild-type (WT) Mtb isolate and Mtb isolates with known mutations (MT) within the rpoB and katG genes. Results indicate the correct identification of WT (drug susceptible) and MT (drug resistant) Mtb isolates, with the least limit of detection (LOD) being 104 genomic copies per PCR reaction. NALF is a simple, rapid and low-cost device suitable for low resource settings where conventional PCR is already employed on a regular basis. Moreover, the use of antibody-based NALF to target primer-labels, without the requirement for DNA hybridization, renders the device generic, which could easily be adapted for the molecular diagnosis of other infectious and non-infectious diseases requiring nucleic acid detection.
Collapse
|
94
|
Point-of-Care Diagnostics in Low Resource Settings: Present Status and Future Role of Microfluidics. BIOSENSORS-BASEL 2015; 5:577-601. [PMID: 26287254 PMCID: PMC4600173 DOI: 10.3390/bios5030577] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 08/02/2015] [Accepted: 08/07/2015] [Indexed: 11/30/2022]
Abstract
The inability to diagnose numerous diseases rapidly is a significant cause of the disparity of deaths resulting from both communicable and non-communicable diseases in the developing world in comparison to the developed world. Existing diagnostic instrumentation usually requires sophisticated infrastructure, stable electrical power, expensive reagents, long assay times, and highly trained personnel which is not often available in limited resource settings. This review will critically survey and analyse the current lateral flow-based point-of-care (POC) technologies, which have made a major impact on diagnostic testing in developing countries over the last 50 years. The future of POC technologies including the applications of microfluidics, which allows miniaturisation and integration of complex functions that facilitate their usage in limited resource settings, is discussed The advantages offered by such systems, including low cost, ruggedness and the capacity to generate accurate and reliable results rapidly, are well suited to the clinical and social settings of the developing world.
Collapse
|
95
|
Aliofkhazraei M, Pedrosa P, Carlos FF, Veigas B, Baptista PV. Gold Nanoparticles for DNA/RNA-Based Diagnostics. HANDBOOK OF NANOPARTICLES 2015. [PMCID: PMC7123017 DOI: 10.1007/978-3-319-15338-4_31] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The remarkable physicochemical properties of gold nanoparticles (AuNPs) have prompted development in exploring biomolecular interactions with AuNPs-containing systems, pursuing biomedical applications in diagnostics. Among these applications, AuNPs have been remarkably useful for the development of DNA/RNA detection and characterization systems for diagnostics, including systems suitable for point of need. Here, emphasis will be on available molecular detection schemes of relevant pathogens and their molecular characterization, genomic sequences associated with medical conditions (including cancer), mutation and polymorphism identification, and the quantification of gene expression.
Collapse
|
96
|
Cheung SF, Cheng SKL, Kamei DT. Paper-Based Systems for Point-of-Care Biosensing. ACTA ACUST UNITED AC 2015; 20:316-33. [DOI: 10.1177/2211068215577197] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Indexed: 02/06/2023]
|
97
|
Choi JR, Tang R, Wang S, Wan Abas WAB, Pingguan-Murphy B, Xu F. Paper-based sample-to-answer molecular diagnostic platform for point-of-care diagnostics. Biosens Bioelectron 2015; 74:427-39. [PMID: 26164488 DOI: 10.1016/j.bios.2015.06.065] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/15/2015] [Accepted: 06/27/2015] [Indexed: 01/04/2023]
Abstract
Nucleic acid testing (NAT), as a molecular diagnostic technique, including nucleic acid extraction, amplification and detection, plays a fundamental role in medical diagnosis for timely medical treatment. However, current NAT technologies require relatively high-end instrumentation, skilled personnel, and are time-consuming. These drawbacks mean conventional NAT becomes impractical in many resource-limited disease-endemic settings, leading to an urgent need to develop a fast and portable NAT diagnostic tool. Paper-based devices are typically robust, cost-effective and user-friendly, holding a great potential for NAT at the point of care. In view of the escalating demand for the low cost diagnostic devices, we highlight the beneficial use of paper as a platform for NAT, the current state of its development, and the existing challenges preventing its widespread use. We suggest a strategy involving integrating all three steps of NAT into one single paper-based sample-to-answer diagnostic device for rapid medical diagnostics in the near future.
Collapse
Affiliation(s)
- Jane Ru Choi
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China; The Key Library of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Ruihua Tang
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China; The Key Library of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China; Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China
| | - ShuQi Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, PR China; Institute for Translational Medicine, Zhejiang University, Hangzhou, PR China
| | - Wan Abu Bakar Wan Abas
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia
| | - Belinda Pingguan-Murphy
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia.
| | - Feng Xu
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China; The Key Library of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China.
| |
Collapse
|
98
|
Byrnes SA, Bishop JD, Lafleur L, Buser JR, Lutz B, Yager P. One-step purification and concentration of DNA in porous membranes for point-of-care applications. LAB ON A CHIP 2015; 15:2647-59. [PMID: 25989457 DOI: 10.1039/c5lc00317b] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The emergence of rapid, user-friendly, point-of-care (POC) diagnostic systems is paving the way for better disease diagnosis and control. Lately, there has been a strong emphasis on developing molecular-based diagnostics due to their potential for greatly increased sensitivity and specificity. One of the most critical steps in developing practical diagnostic systems is the ability to perform sample preparation, especially the purification of nucleic acids (NA), at the POC. As such, we have developed a simple-to-use, inexpensive, and disposable sample preparation system for in-membrane purification and concentration of NAs. This system couples lateral flow in a porous membrane with chitosan, a linear polysaccharide that captures NAs via anion exchange chromatography. The system can also substantially concentrate the NAs. The combination of these capabilities can be used on a wide range of sample types, which are prepared for use in downstream processes, such as qPCR, without further purification.
Collapse
Affiliation(s)
- S A Byrnes
- University of Washington, Department of Bioengineering, 3720 15th Ave NE, Seattle, WA 98195, USA.
| | | | | | | | | | | |
Collapse
|
99
|
Chapman R, Lin Y, Burnapp M, Bentham A, Hillier D, Zabron A, Khan S, Tyreman M, Stevens MM. Multivalent nanoparticle networks enable point-of-care detection of human phospholipase-A2 in serum. ACS NANO 2015; 9:2565-2573. [PMID: 25756526 PMCID: PMC5407437 DOI: 10.1021/nn5057595] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A rapid and highly sensitive point-of-care (PoC) lateral flow assay for phospholipase A2 (PLA2) is demonstrated in serum through the enzyme-triggered release of a new class of biotinylated multiarmed polymers from a liposome substrate. Signal from the enzyme activity is generated by the adhesion of polystreptavidin-coated gold nanoparticle networks to the lateral flow device, which leads to the appearance of a red test line due to the localized surface plasmon resonance effect of the gold. The use of a liposome as the enzyme substrate and multivalent linkers to link the nanoparticles leads to amplification of the signal, as the cleavage of a small amount of lipids is able to release a large amount of polymer linker and adhesion of an even larger amount of gold nanoparticles. By optimizing the molecular weight and multivalency of these biotinylated polymer linkers, the sensitivity of the device can be tuned to enable naked-eye detection of 1 nM human PLA2 in serum within 10 min. This high sensitivity enabled the correct diagnosis of pancreatitis in diseased clinical samples against a set of healthy controls using PLA2 activity in a point-of-care device for the first time.
Collapse
Affiliation(s)
- Robert Chapman
- Department of Materials, Department of Bioengineering and Institute for Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Yiyang Lin
- Department of Materials, Department of Bioengineering and Institute for Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Mark Burnapp
- Mologic Ltd, Bedford Technology Park, Thurleigh, Bedfordshire, MK44 2YP, UK
| | - Andrew Bentham
- Mologic Ltd, Bedford Technology Park, Thurleigh, Bedfordshire, MK44 2YP, UK
| | - David Hillier
- Hepatology and Gastroenterology Section, Faculty of Medicine, St Mary's Hospital Campus, Imperial College London, London, W2 1NY, UK
| | - Abigail Zabron
- Hepatology and Gastroenterology Section, Faculty of Medicine, St Mary's Hospital Campus, Imperial College London, London, W2 1NY, UK
| | - Shahid Khan
- Hepatology and Gastroenterology Section, Faculty of Medicine, St Mary's Hospital Campus, Imperial College London, London, W2 1NY, UK
| | - Matthew Tyreman
- Mologic Ltd, Bedford Technology Park, Thurleigh, Bedfordshire, MK44 2YP, UK
| | - Molly M. Stevens
- Department of Materials, Department of Bioengineering and Institute for Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
100
|
Li J, Macdonald J. Advances in isothermal amplification: novel strategies inspired by biological processes. Biosens Bioelectron 2015; 64:196-211. [DOI: 10.1016/j.bios.2014.08.069] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/20/2014] [Accepted: 08/22/2014] [Indexed: 01/02/2023]
|