51
|
Meng S, Su H, Guo J, Wang L, Li T. Noninvasive optical monitoring of pulmonary embolism: a Monte Carlo study on visible Chinese human thoracic tissues. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:015001. [PMID: 36688229 PMCID: PMC9847892 DOI: 10.1117/1.jbo.28.1.015001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
SIGNIFICANCE In recent years, the incidence rate of pulmonary embolism (PE) has increased dramatically. Currently, the correct diagnosis rate of PE in China is relatively low, and the diagnosis error rate and missed diagnosis rate were as high as about 80%. The most standard method of PE detection is pulmonary artery digital subtraction angiography (DSA), but pulmonary artery DSA is an invasive examination, and patients can have certain risks and discomfort. Noninvasive monitoring of PE remains challenging in cardiovascular medicine. AIM We attempt to study the light propagation in human thoracic tissues and explore the possibility of near-infrared spectroscopy (NIRS) in noninvasive detection of PE. APPROACH In this study, by utilizing the Monte Carlo simulation method for voxelized media and the Visible Chinese Human dataset, we quantified and visualized the photon migration in human thoracic region. The influence of the development (three levels) of PE on the light migration was observed. RESULTS Results showed that around 4.6% light fluence was absorbed by the pulmonary tissue. The maximum signal sensitivity distribution reached 0.073% at the 2.8- to 3.1-cm light source-detector separation. The normalized light intensity was significantly different among different PE levels and formed a linear relationship (r 2 = 0.998 , p < 10 - 5 ). CONCLUSIONS The study found that photons could reach the pulmonary artery tissue, the light intensity was linearly related to the degrees of embolism, PE could be quantitatively diagnosed by NIRS. Meanwhile, the optimized distance in between the light source and detector, 2.8 to 3.1 cm, was recommended to be used in future potential noninvasive optical diagnosis of PE.
Collapse
Affiliation(s)
- Shuo Meng
- Chinese Academy of Medical Sciences, Institute of Biomedical Engineering, Peking Union Medical College, Tianjin, China
- Tiangong University, Tianjin, China
| | - Hengjie Su
- Chinese Academy of Medical Sciences, Institute of Biomedical Engineering, Peking Union Medical College, Tianjin, China
| | - Jianghui Guo
- Chinese Academy of Medical Sciences, Institute of Biomedical Engineering, Peking Union Medical College, Tianjin, China
- University of Electronic Science and Technology of China, Chengdu, China
| | - Lingxiao Wang
- Chinese Academy of Medical Sciences, Institute of Biomedical Engineering, Peking Union Medical College, Tianjin, China
| | - Ting Li
- Chinese Academy of Medical Sciences, Institute of Biomedical Engineering, Peking Union Medical College, Tianjin, China
- Chinese Institute for Brain Research, Beijing, China
| |
Collapse
|
52
|
Bonilauri A, Sangiuliano Intra F, Rossetto F, Borgnis F, Baselli G, Baglio F. Whole-Head Functional Near-Infrared Spectroscopy as an Ecological Monitoring Tool for Assessing Cortical Activity in Parkinson's Disease Patients at Different Stages. Int J Mol Sci 2022; 23:14897. [PMID: 36499223 PMCID: PMC9736501 DOI: 10.3390/ijms232314897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Functional near-infrared spectroscopy (fNIRS) is increasingly employed as an ecological neuroimaging technique in assessing age-related chronic neurological disorders, such as Parkinson's disease (PD), mainly providing a cross-sectional characterization of clinical phenotypes in ecological settings. Current fNIRS studies in PD have investigated the effects of motor and non-motor impairment on cortical activity during gait and postural stability tasks, but no study has employed fNIRS as an ecological neuroimaging tool to assess PD at different stages. Therefore, in this work, we sought to investigate the cortical activity of PD patients during a motor grasping task and its relationship with both the staging of the pathology and its clinical variables. This study considered 39 PD patients (age 69.0 ± 7.64, 38 right-handed), subdivided into two groups at different stages by the Hoehn and Yahr (HY) scale: early PD (ePD; N = 13, HY = [1; 1.5]) and moderate PD (mPD; N = 26, HY = [2; 2.5; 3]). We employed a whole-head fNIRS system with 102 measurement channels to monitor brain activity. Group-level activation maps and region of interest (ROI) analysis were computed for ePD, mPD, and ePD vs. mPD contrasts. A ROI-based correlation analysis was also performed with respect to contrasted subject-level fNIRS data, focusing on age, a Cognitive Reserve Index questionnaire (CRIQ), disease duration, the Unified Parkinson's Disease Rating Scale (UPDRS), and performances in the Stroop Color and Word (SCW) test. We observed group differences in age, disease duration, and the UPDRS, while no significant differences were found for CRIQ or SCW scores. Group-level activation maps revealed that the ePD group presented higher activation in motor and occipital areas than the mPD group, while the inverse trend was found in frontal areas. Significant correlations with CRIQ, disease duration, the UPDRS, and the SCW were mostly found in non-motor areas. The results are in line with current fNIRS and functional and anatomical MRI scientific literature suggesting that non-motor areas-primarily the prefrontal cortex area-provide a compensation mechanism for PD motor impairment. fNIRS may serve as a viable support for the longitudinal assessment of therapeutic and rehabilitation procedures, and define new prodromal, low-cost, and ecological biomarkers of disease progression.
Collapse
Affiliation(s)
- Augusto Bonilauri
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy
| | - Francesca Sangiuliano Intra
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, CADITER, 20148 Milan, Italy
- Faculty of Education, Free University of Bolzano-Bozen, 39042 Brixen, Italy
| | - Federica Rossetto
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, CADITER, 20148 Milan, Italy
| | - Francesca Borgnis
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, CADITER, 20148 Milan, Italy
| | - Giuseppe Baselli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy
| | - Francesca Baglio
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, CADITER, 20148 Milan, Italy
| |
Collapse
|
53
|
Zhang N, Zhang Q, Nurmikko A. Sub-mm resolution tomographic imaging in turbid media by an ultra-high density multichannel approach. BIOMEDICAL OPTICS EXPRESS 2022; 13:5926-5936. [PMID: 36733739 PMCID: PMC9872878 DOI: 10.1364/boe.470724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 05/09/2023]
Abstract
We demonstrate an ultra-high-density source-detector (SD) diffuse optical tomography system scalable to thousands of combinatorial SD pairs per cm3 of total voxel volume. We demonstrate the imaging of dynamic targets (including phantom arteries) with 100 um resolution at over 10 Hz frame rate within turbid media (> 60 MFP). Further, as a step toward a wearable mobile imager, we introduce monolithic mm-size dense semiconductor laser array chips as sources for potential unobtrusive epidermal tomographic use.
Collapse
Affiliation(s)
- Ning Zhang
- School of Engineering, Brown University, 184 Hope St, Providence, RI, 02912, USA
| | - Quan Zhang
- Massachusetts General Hospital, Harvard Medical School, 13th Street, Charlestown, MA, 02129, USA
| | - Arto Nurmikko
- School of Engineering, Brown University, 184 Hope St, Providence, RI, 02912, USA
| |
Collapse
|
54
|
Ji H, Xu Z, Wang M, Zou H, Chen Y, Ai J. A Flexible Optoelectronic Device for Continuous Cerebral Blood Flow Monitoring. BIOSENSORS 2022; 12:944. [PMID: 36354453 PMCID: PMC9688213 DOI: 10.3390/bios12110944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Human cerebral oxygenation and hemodynamics can be estimated by cerebral oxygenation parameters. Functional near-infrared spectroscopy (fNIRS) can be used to measure the hemoglobin concentration index of brain tissue noninvasively and in real time. However, limited by cumbersome equipment, high price and uncomfortable wear, conventional fNIRS monitoring systems still cannot achieve continuous and long-term monitoring. In this work, a flexible and wearable long-term monitoring system is developed featured with cost efficiency, simple preparation and light weight (only 1.6 g), which consists of a pair of light-emitting diodes (LEDs) and a photodetector (PD). Triangular serpentine interconnectors are introduced to connect the functional elements, enabling the device to be stretched in multiple directions. The device can continuously work for 7 h and be subjected to 2000 cycles of bending loading, with less than 3% change in voltage value, 1.89% and 1.9% change in LED luminous power and 0.9% change in voltage value. Furthermore, the hand-gripping and breath-holding experiments show that the system can accurately measure the changes in hemoglobin concentration in accordance with the commercial device. The flexible fNIRS system presented here not only provides a simple preparation process but also offers new ideas for daily cerebral state monitoring and prolonged clinical monitoring.
Collapse
Affiliation(s)
- Huawei Ji
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Ze Xu
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Mingyu Wang
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Hong Zou
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Ying Chen
- Jiaxing Key Laboratory of Flexible Electronics Based Intelligent Sensing and Advanced Manufacturing Technology, Institute of Flexible Electronics Technology of Tsinghua University, Jiaxing 314000, China
| | - Jun Ai
- Jiaxing Key Laboratory of Flexible Electronics Based Intelligent Sensing and Advanced Manufacturing Technology, Institute of Flexible Electronics Technology of Tsinghua University, Jiaxing 314000, China
| |
Collapse
|
55
|
Kamat A, Makled B, Norfleet J, Schwaitzberg SD, Intes X, De S, Dutta A. Directed information flow during laparoscopic surgical skill acquisition dissociated skill level and medical simulation technology. NPJ SCIENCE OF LEARNING 2022; 7:19. [PMID: 36008451 PMCID: PMC9411170 DOI: 10.1038/s41539-022-00138-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 08/04/2022] [Indexed: 05/11/2023]
Abstract
Virtual reality (VR) simulator has emerged as a laparoscopic surgical skill training tool that needs validation using brain-behavior analysis. Therefore, brain network and skilled behavior relationship were evaluated using functional near-infrared spectroscopy (fNIRS) from seven experienced right-handed surgeons and six right-handed medical students during the performance of Fundamentals of Laparoscopic Surgery (FLS) pattern of cutting tasks in a physical and a VR simulator. Multiple regression and path analysis (MRPA) found that the FLS performance score was statistically significantly related to the interregional directed functional connectivity from the right prefrontal cortex to the supplementary motor area with F (2, 114) = 9, p < 0.001, and R2 = 0.136. Additionally, a two-way multivariate analysis of variance (MANOVA) found a statistically significant effect of the simulator technology on the interregional directed functional connectivity from the right prefrontal cortex to the left primary motor cortex (F (1, 15) = 6.002, p = 0.027; partial η2 = 0.286) that can be related to differential right-lateralized executive control of attention. Then, MRPA found that the coefficient of variation (CoV) of the FLS performance score was statistically significantly associated with the CoV of the interregionally directed functional connectivity from the right primary motor cortex to the left primary motor cortex and the left primary motor cortex to the left prefrontal cortex with F (2, 22) = 3.912, p = 0.035, and R2 = 0.262. This highlighted the importance of the efference copy information from the motor cortices to the prefrontal cortex for postulated left-lateralized perceptual decision-making to reduce behavioral variability.
Collapse
Affiliation(s)
- Anil Kamat
- Center for Modeling, Simulation and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Basiel Makled
- US Army Futures Command, Combat Capabilities Development Command Soldier Center STTC, Orlando, FL, USA
| | - Jack Norfleet
- US Army Futures Command, Combat Capabilities Development Command Soldier Center STTC, Orlando, FL, USA
| | | | - Xavier Intes
- Center for Modeling, Simulation and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY, USA
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Suvranu De
- Center for Modeling, Simulation and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY, USA
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Anirban Dutta
- Neuroengineering and Informatics for Rehabilitation Laboratory, Department of Biomedical Engineering, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
56
|
Fu X, Richards JE. Age-related changes in diffuse optical tomography sensitivity profiles from childhood to adulthood. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:083004. [PMID: 35810323 PMCID: PMC9270691 DOI: 10.1117/1.jbo.27.8.083004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
SIGNIFICANCE Diffuse optical tomography (DOT) uses near-infrared light spectroscopy to measure changes in cerebral hemoglobin concentration. Anatomical interpretations of the brain location that generates the hemodynamic signal require accurate descriptions of the DOT sensitivity to the underlying cortex. DOT sensitivity profiles are different in infants compared with adults. However, the descriptions of DOT sensitivity profiles from early childhood to adulthood are lacking despite the continuous head and brain development. AIM We aim to investigate age-related differences in DOT sensitivity profiles in individuals aged from 2 to 34 years with narrow age ranges of 0.5 or 1 year. APPROACH We implemented existing photon migration simulation methods and computed source-detector channel DOT sensitivity using age-appropriate, realistic head models. RESULTS DOT sensitivity profiles change systematically as a function of source-detector separation distance for all age groups. Children displayed distinctive DOT sensitivity profiles compared to older individuals, and the differences were enhanced at larger separation distances. CONCLUSIONS The findings have important implications for the design of source-detector placement and image reconstruction. Age-appropriate realistic head models should be used to provide anatomical guidance for standalone DOT data. Using age-inappropriate head models will have more negative impacts on estimation accuracy in younger children.
Collapse
Affiliation(s)
- Xiaoxue Fu
- University of South Carolina, Department of Psychology, Columbia, South Carolina, United States
| | - John E. Richards
- University of South Carolina, Department of Psychology, Columbia, South Carolina, United States
| |
Collapse
|
57
|
Joshi S, Weedon BD, Esser P, Liu YC, Springett DN, Meaney A, Inacio M, Delextrat A, Kemp S, Ward T, Izadi H, Dawes H, Ayaz H. Neuroergonomic assessment of developmental coordination disorder. Sci Rep 2022; 12:10239. [PMID: 35715433 PMCID: PMC9206023 DOI: 10.1038/s41598-022-13966-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 05/31/2022] [Indexed: 12/29/2022] Open
Abstract
Until recently, neural assessments of gross motor coordination could not reliably handle active tasks, particularly in realistic environments, and offered a narrow understanding of motor-cognition. By applying a comprehensive neuroergonomic approach using optical mobile neuroimaging, we probed the neural correlates of motor functioning in young people with Developmental Coordination Disorder (DCD), a motor-learning deficit affecting 5-6% of children with lifelong complications. Neural recordings using fNIRS were collected during active ambulatory behavioral task execution from 37 Typically Developed and 48 DCD Children who performed cognitive and physical tasks in both single and dual conditions. This is the first of its kind study targeting regions of prefrontal cortical dysfunction for identification of neuropathophysiology for DCD during realistic motor tasks and is one of the largest neuroimaging study (across all modalities) involving DCD. We demonstrated that DCD is a motor-cognitive disability, as gross motor /complex tasks revealed neuro-hemodynamic deficits and dysfunction within the right middle and superior frontal gyri of the prefrontal cortex through functional near infrared spectroscopy. Furthermore, by incorporating behavioral performance, decreased neural efficiency in these regions were revealed in children with DCD, specifically during motor tasks. Lastly, we provide a framework, evaluating disorder impact in ecologically valid contexts to identify when and for whom interventional approaches are most needed and open the door for precision therapies.
Collapse
Affiliation(s)
- Shawn Joshi
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
- College of Medicine, Drexel University, Philadelphia, PA, USA.
- Centre for Movement, Occupation and Rehabilitation Services, Oxford Brookes University, Oxford, UK.
- Nuffield Department of Clinical Neurology, University of Oxford, Oxford, UK.
| | - Benjamin D Weedon
- Centre for Movement, Occupation and Rehabilitation Services, Oxford Brookes University, Oxford, UK
- Nuffield Department of Clinical Neurology, University of Oxford, Oxford, UK
| | - Patrick Esser
- Centre for Movement, Occupation and Rehabilitation Services, Oxford Brookes University, Oxford, UK
- Nuffield Department of Clinical Neurology, University of Oxford, Oxford, UK
| | - Yan-Ci Liu
- Centre for Movement, Occupation and Rehabilitation Services, Oxford Brookes University, Oxford, UK
- Nuffield Department of Clinical Neurology, University of Oxford, Oxford, UK
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan
- Physical Therapy Center, National Taiwan University Hospita, Taipei, Taiwan
| | - Daniella N Springett
- Centre for Movement, Occupation and Rehabilitation Services, Oxford Brookes University, Oxford, UK
- Nuffield Department of Clinical Neurology, University of Oxford, Oxford, UK
- Department for Health, University of Bath, Bath, UK
| | - Andy Meaney
- Centre for Movement, Occupation and Rehabilitation Services, Oxford Brookes University, Oxford, UK
- NHS Foundation Trust, Oxford University Hospitals, Oxford, UK
| | - Mario Inacio
- Centre for Movement, Occupation and Rehabilitation Services, Oxford Brookes University, Oxford, UK
- Research Center in Sports Sciences, Health Sciences and Human Development, University of Maia, Porto, Portugal
| | - Anne Delextrat
- Centre for Movement, Occupation and Rehabilitation Services, Oxford Brookes University, Oxford, UK
| | - Steve Kemp
- Centre for Movement, Occupation and Rehabilitation Services, Oxford Brookes University, Oxford, UK
| | - Tomás Ward
- Insight SFI Research Centre for Data Analytics, Dublin City University, Dublin, Ireland
| | - Hooshang Izadi
- School of Engineering, Computing and Mathematics, School of Technology, Design and Environment, Oxford Brookes University, Oxford, UK
| | - Helen Dawes
- Nuffield Department of Clinical Neurology, University of Oxford, Oxford, UK
- Intersect@Exeter, College of Medicine and Health, University of Exeter, Exeter, UK
- Oxford Health BRC, University of Oxford, Oxford, UK
| | - Hasan Ayaz
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
- Department of Psychological and Brain Sciences, College of Arts and Sciences, Drexel University, Philadelphia, PA, USA
- Drexel Solution Institute, Drexel University, Philadelphia, PA, USA
- Department of Family and Community Health, University of Pennsylvania, Philadelphia, PA, USA
- Center for Injury Research and Prevention, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
58
|
Ivich F, Pace J, Williams AL, Shumel M, Fang Q, Niedre M. Signal and measurement considerations for human translation of diffuse in vivo flow cytometry. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-220066R. [PMID: 35726129 PMCID: PMC9207655 DOI: 10.1117/1.jbo.27.6.067001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
SIGNIFICANCE "Diffuse in vivo flow cytometry" (DiFC) is an emerging technology for fluorescence detection of rare circulating cells directly in large deep-seated blood vessels in mice. Because DiFC uses highly scattered light, in principle, it could be translated to human use. However, an open question is whether fluorescent signals from single cells would be detectable in human-scale anatomies. AIM Suitable blood vessels in a human wrist or forearm are at a depth of ∼2 to 4 mm. The aim of this work was to study the impact of DiFC instrument geometry and wavelength on the detected DiFC signal and on the maximum depth of detection of a moving cell. APPROACH We used Monte Carlo simulations to compute fluorescence Jacobian (sensitivity) matrices for a range of source and detector separations (SDS) and tissue optical properties over the visible and near infrared spectrum. We performed experimental measurements with three available versions of DiFC (488, 640, and 780 nm), fluorescent microspheres, and tissue mimicking optical flow phantoms. We used both computational and experimental data to estimate the maximum depth of detection at each combination of settings. RESULTS For the DiFC detection problem, our analysis showed that for deep-seated blood vessels, the maximum sensitivity was obtained with NIR light (780 nm) and 3-mm SDS. CONCLUSIONS These results suggest that-in combination with a suitable molecularly targeted fluorescent probes-circulating cells and nanosensors could, in principle, be detectable in circulation in humans.
Collapse
Affiliation(s)
- Fernando Ivich
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| | - Joshua Pace
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| | - Amber L. Williams
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| | - Malcolm Shumel
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| | - Qianqian Fang
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| | - Mark Niedre
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| |
Collapse
|
59
|
Koman VB, Bakh NA, Jin X, Nguyen FT, Son M, Kozawa D, Lee MA, Bisker G, Dong J, Strano MS. A wavelength-induced frequency filtering method for fluorescent nanosensors in vivo. NATURE NANOTECHNOLOGY 2022; 17:643-652. [PMID: 35637357 DOI: 10.1038/s41565-022-01136-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 04/07/2022] [Indexed: 06/15/2023]
Abstract
Fluorescent nanosensors hold the potential to revolutionize life sciences and medicine. However, their adaptation and translation into the in vivo environment is fundamentally hampered by unfavourable tissue scattering and intrinsic autofluorescence. Here we develop wavelength-induced frequency filtering (WIFF) whereby the fluorescence excitation wavelength is modulated across the absorption peak of a nanosensor, allowing the emission signal to be separated from the autofluorescence background, increasing the desired signal relative to noise, and internally referencing it to protect against artefacts. Using highly scattering phantom tissues, an SKH1-E mouse model and other complex tissue types, we show that WIFF improves the nanosensor signal-to-noise ratio across the visible and near-infrared spectra up to 52-fold. This improvement enables the ability to track fluorescent carbon nanotube sensor responses to riboflavin, ascorbic acid, hydrogen peroxide and a chemotherapeutic drug metabolite for depths up to 5.5 ± 0.1 cm when excited at 730 nm and emitting between 1,100 and 1,300 nm, even allowing the monitoring of riboflavin diffusion in thick tissue. As an application, nanosensors aided by WIFF detect the chemotherapeutic activity of temozolomide transcranially at 2.4 ± 0.1 cm through the porcine brain without the use of fibre optic or cranial window insertion. The ability of nanosensors to monitor previously inaccessible in vivo environments will be important for life-sciences research, therapeutics and medical diagnostics.
Collapse
Affiliation(s)
- Volodymyr B Koman
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Naveed A Bakh
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Xiaojia Jin
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Freddy T Nguyen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Manki Son
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Daichi Kozawa
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Quantum Optoelectronics Research Team, RIKEN Center for Advanced Photonics, Saitama, Japan
| | - Michael A Lee
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Gili Bisker
- Department of Biomedical Engineering, Faculty of Engineering, Center for Physics and Chemistry of Living Systems, Center for Nanoscience and Nanotechnology, Center for Light-Matter Interaction, Tel Aviv University, Tel Aviv, Israel
| | - Juyao Dong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
60
|
Voulgarelis S, Fathi F, Yu B, Palkovic B, Chatzizacharias NA, Allen KP, Stucke AG. Hepatic artery flow, inspired oxygen, and hemoglobin determine liver tissue saturation measured with visible diffuse reflectance spectroscopy (vis-DRS) in an in vivo swine model. Pediatr Transplant 2022; 26:e14230. [PMID: 35064720 DOI: 10.1111/petr.14230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/19/2021] [Accepted: 01/03/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Prompt diagnosis of vascular compromise following pediatric liver transplantation and restoration of oxygen delivery to the liver improves organ survival. vis-DRS allows for real-time measurement of liver tissue saturation. METHODS The current study used vis-DRS to determine changes in liver saturation during clinically relevant conditions of reduced oxygen delivery. In an in vivo swine model (n = 15), we determined liver tissue saturation (St O2 ) during stepwise reduction in hepatic artery flow, different inspiratory oxygen fraction (FiO2 ), and increasing hemodilution. A custom vis-DRS probe was placed directly on the organ. RESULTS Liver tissue saturation decreased significantly with a decrease in hepatic artery flow. A reduction in hepatic artery flow to 25% of baseline reduced the St O2 by 15.3 ± 1.4% at FiO2 0.3 (mean ± SE, p < .0013), and by 8.3 ± 1.9% at FiO2 1.0 (p = .0013). After hemodilution to 7-8 g/dl, St O2 was reduced by 31.8% ± 2.7%, p < .001 (FiO2 0.3) and 26.6 ± 2.7%, p < .001 (FiO2 : 1.0) respectively. Portal venous saturation during low hepatic artery flow was consistently higher at FiO2 1.0. The gradient between portal venous saturation and liver tissue saturation was consistently greater at lower hemoglobin levels (7.0 ± 1.6% per g/dl hemoglobin, p < .001). CONCLUSIONS Vis-DRS showed prompt changes in liver tissue saturation with decreases in hepatic artery blood flow. At hepatic artery flows below 50% of baseline, liver saturation depended on FiO2 and hemoglobin concentration suggesting that during hepatic artery occlusion, packed red blood cell transfusion and increased FiO2 may be useful measures to reduce hypoxic damage until surgical revascularization.
Collapse
Affiliation(s)
- Stylianos Voulgarelis
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Division of Pediatric Anesthesia, Children's Wisconsin, Milwaukee, Wisconsin, USA
| | - Faraneh Fathi
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Bing Yu
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Barbara Palkovic
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Faculty of Medicine, University of Osijek, Osijek, Croatia
| | | | - Kenneth P Allen
- Department of Microbiology and Immunology, Biomedical Resource Center (BRC), Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Astrid G Stucke
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Division of Pediatric Anesthesia, Children's Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
61
|
Ong J, Tavakkoli A, Strangman G, Zaman N, Kamran SA, Zhang Q, Ivkovic V, Lee AG. Neuro-ophthalmic Imaging and Visual Assessment Technology for Spaceflight Associated Neuro-ocular Syndrome (SANS). Surv Ophthalmol 2022; 67:1443-1466. [DOI: 10.1016/j.survophthal.2022.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 12/11/2022]
|
62
|
Lehmann N, Kuhn YA, Keller M, Aye N, Herold F, Draganski B, Taube W, Taubert M. Brain Activation During Active Balancing and Its Behavioral Relevance in Younger and Older Adults: A Functional Near-Infrared Spectroscopy (fNIRS) Study. Front Aging Neurosci 2022; 14:828474. [PMID: 35418854 PMCID: PMC8997341 DOI: 10.3389/fnagi.2022.828474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/28/2022] [Indexed: 12/26/2022] Open
Abstract
Age-related deterioration of balance control is widely regarded as an important phenomenon influencing quality of life and longevity, such that a more comprehensive understanding of the neural mechanisms underlying this process is warranted. Specifically, previous studies have reported that older adults typically show higher neural activity during balancing as compared to younger counterparts, but the implications of this finding on balance performance remain largely unclear. Using functional near-infrared spectroscopy (fNIRS), differences in the cortical control of balance between healthy younger (n = 27) and older (n = 35) adults were explored. More specifically, the association between cortical functional activity and balance performance across and within age groups was investigated. To this end, we measured hemodynamic responses (i.e., changes in oxygenated and deoxygenated hemoglobin) while participants balanced on an unstable device. As criterion variables for brain-behavior-correlations, we also assessed postural sway while standing on a free-swinging platform and while balancing on wobble boards with different levels of difficulty. We found that older compared to younger participants had higher activity in prefrontal and lower activity in postcentral regions. Subsequent robust regression analyses revealed that lower prefrontal brain activity was related to improved balance performance across age groups, indicating that higher activity of the prefrontal cortex during balancing reflects neural inefficiency. We also present evidence supporting that age serves as a moderator in the relationship between brain activity and balance, i.e., cortical hemodynamics generally appears to be a more important predictor of balance performance in the older than in the younger. Strikingly, we found that age differences in balance performance are mediated by balancing-induced activation of the superior frontal gyrus, thus suggesting that differential activation of this region reflects a mechanism involved in the aging process of the neural control of balance. Our study suggests that differences in functional brain activity between age groups are not a mere by-product of aging, but instead of direct behavioral relevance for balance performance. Potential implications of these findings in terms of early detection of fall-prone individuals and intervention strategies targeting balance and healthy aging are discussed.
Collapse
Affiliation(s)
- Nico Lehmann
- Department of Sport Science, Institute III, Faculty of Humanities, Otto von Guericke University, Magdeburg, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- *Correspondence: Nico Lehmann,
| | - Yves-Alain Kuhn
- Department of Neurosciences and Movement Science, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Martin Keller
- Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Norman Aye
- Department of Sport Science, Institute III, Faculty of Humanities, Otto von Guericke University, Magdeburg, Germany
| | - Fabian Herold
- Research Group Degenerative and Chronic Diseases, Movement, Faculty of Health Sciences Brandenburg, University of Potsdam, Potsdam, Germany
| | - Bogdan Draganski
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Laboratory for Research in Neuroimaging, Department of Clinical Neuroscience, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Wolfgang Taube
- Department of Neurosciences and Movement Science, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Marco Taubert
- Department of Sport Science, Institute III, Faculty of Humanities, Otto von Guericke University, Magdeburg, Germany
- Center for Behavioral Brain Science, Otto von Guericke University, Magdeburg, Germany
| |
Collapse
|
63
|
Wu MM, Perdue K, Chan ST, Stephens KA, Deng B, Franceschini MA, Carp SA. Complete head cerebral sensitivity mapping for diffuse correlation spectroscopy using subject-specific magnetic resonance imaging models. BIOMEDICAL OPTICS EXPRESS 2022; 13:1131-1151. [PMID: 35414976 PMCID: PMC8973189 DOI: 10.1364/boe.449046] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 05/11/2023]
Abstract
We characterize cerebral sensitivity across the entire adult human head for diffuse correlation spectroscopy, an optical technique increasingly used for bedside cerebral perfusion monitoring. Sixteen subject-specific magnetic resonance imaging-derived head models were used to identify high sensitivity regions by running Monte Carlo light propagation simulations at over eight hundred uniformly distributed locations on the head. Significant spatial variations in cerebral sensitivity, consistent across subjects, were found. We also identified correlates of such differences suitable for real-time assessment. These variations can be largely attributed to changes in extracerebral thickness and should be taken into account to optimize probe placement in experimental settings.
Collapse
Affiliation(s)
- Melissa M. Wu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, USA
| | | | - Suk-Tak Chan
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, USA
| | - Kimberly A. Stephens
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, USA
| | - Bin Deng
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, USA
| | | | - Stefan A. Carp
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, USA
| |
Collapse
|
64
|
Cai Z, Machado A, Chowdhury RA, Spilkin A, Vincent T, Aydin Ü, Pellegrino G, Lina JM, Grova C. Diffuse optical reconstructions of functional near infrared spectroscopy data using maximum entropy on the mean. Sci Rep 2022; 12:2316. [PMID: 35145148 PMCID: PMC8831678 DOI: 10.1038/s41598-022-06082-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 01/24/2022] [Indexed: 02/07/2023] Open
Abstract
Functional near-infrared spectroscopy (fNIRS) measures the hemoglobin concentration changes associated with neuronal activity. Diffuse optical tomography (DOT) consists of reconstructing the optical density changes measured from scalp channels to the oxy-/deoxy-hemoglobin concentration changes within the cortical regions. In the present study, we adapted a nonlinear source localization method developed and validated in the context of Electro- and Magneto-Encephalography (EEG/MEG): the Maximum Entropy on the Mean (MEM), to solve the inverse problem of DOT reconstruction. We first introduced depth weighting strategy within the MEM framework for DOT reconstruction to avoid biasing the reconstruction results of DOT towards superficial regions. We also proposed a new initialization of the MEM model improving the temporal accuracy of the original MEM framework. To evaluate MEM performance and compare with widely used depth weighted Minimum Norm Estimate (MNE) inverse solution, we applied a realistic simulation scheme which contained 4000 simulations generated by 250 different seeds at different locations and 4 spatial extents ranging from 3 to 40[Formula: see text] along the cortical surface. Our results showed that overall MEM provided more accurate DOT reconstructions than MNE. Moreover, we found that MEM was remained particularly robust in low signal-to-noise ratio (SNR) conditions. The proposed method was further illustrated by comparing to functional Magnetic Resonance Imaging (fMRI) activation maps, on real data involving finger tapping tasks with two different montages. The results showed that MEM provided more accurate HbO and HbR reconstructions in spatial agreement with the main fMRI cluster, when compared to MNE.
Collapse
Affiliation(s)
- Zhengchen Cai
- Department of Physics and PERFORM Centre, Concordia University, Montreal, Canada.
| | - Alexis Machado
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montreal, Canada
| | - Rasheda Arman Chowdhury
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montreal, Canada
| | - Amanda Spilkin
- Department of Physics and PERFORM Centre, Concordia University, Montreal, Canada
| | - Thomas Vincent
- Department of Physics and PERFORM Centre, Concordia University, Montreal, Canada
- Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, Montreal, Canada
- Centre de médecine préventive et d'activité physique, Montréal Heart Institute, Montréal, Canada
| | - Ümit Aydin
- Department of Physics and PERFORM Centre, Concordia University, Montreal, Canada
- MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Giovanni Pellegrino
- Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Jean-Marc Lina
- École de technologie supérieure de l'Université du Québec, Montréal, Canada
- Centre de Recherches Mathématiques, Université de Montréal, Montréal, Canada
| | - Christophe Grova
- Department of Physics and PERFORM Centre, Concordia University, Montreal, Canada
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montreal, Canada
- Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, Montreal, Canada
- Centre de Recherches Mathématiques, Université de Montréal, Montréal, Canada
| |
Collapse
|
65
|
Vanegas M, Mireles M, Fang Q. MOCA: a systematic toolbox for designing and assessing modular functional near-infrared brain imaging probes. NEUROPHOTONICS 2022; 9:017801. [PMID: 36278785 PMCID: PMC8823693 DOI: 10.1117/1.nph.9.1.017801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 01/11/2022] [Indexed: 05/20/2023]
Abstract
Significance The expansion of functional near-infrared spectroscopy (fNIRS) systems toward broader utilities has led to the emergence of modular fNIRS systems composed of repeating optical source/detector modules. Compared to conventional fNIRS systems, modular fNIRS systems are more compact and flexible, making wearable and long-term monitoring possible. However, the large number of design parameters makes understanding their impact on a probe's performance a daunting task. Aim We aim to create a systematic software platform to facilitate the design, characterization, and comparison of modular fNIRS probes. Approach Our software-modular optode configuration analyzer (MOCA)-implements semi-automatic algorithms that assist in tessellating user-specified regions-of-interest, in interconnecting modules of various shapes, and in quantitatively comparing probe performance using metrics, such as spatial channel distributions and average brain sensitivity of the resulting probes. There is also support for limited parameter sweeping capabilities. Results Through several examples, we show that users can use MOCA to design and optimize modular fNIRS probes, study trade-offs between several module shapes, improve brain sensitivity in probes via module re-orientation, and enhance probe performance via adjusting module spatial layouts. Conclusion Despite its simplicity, our modular probe design platform offers a framework to describe and quantitatively assess probes made by modules, opening a new door for the growing fNIRS user community to approach the challenging problem of module- and probe-parameter selection and fine-tuning.
Collapse
Affiliation(s)
- Morris Vanegas
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| | - Miguel Mireles
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| | - Qianqian Fang
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| |
Collapse
|
66
|
Effects of Different Optical Properties of Head Tissues on Near-Infrared Spectroscopy Using Monte Carlo Simulations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1395:39-43. [PMID: 36527611 DOI: 10.1007/978-3-031-14190-4_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In near-infrared spectroscopy (NIRS), it is crucial to have an accurate and realistic model of photon transport in the adult head for obtaining accurate brain oxygenation values. There are several studies on the influence of thickness, the morphology of extracerebral layers, and source-detector distance on the sensitivity of NIRS to the brain. However, the optical properties of the different layers vary between different publications. How is the performance of NIRS affected when the real optical properties differ from the assumed ones?We aim to investigate the influence of variation in scattering and absorption in a five-layered head model (scalp, skull, CSF, grey and white matter). We performed Monte Carlo simulations focusing on a five-layered slab mesh. The range of optical properties is based on a review of the published literature. We assessed the effect on light propagation by measuring the difference in the mean partial path lengths, attenuation, and the number of the detected photons between the different optical properties performing Monte Carlo simulations. For changes in the reduced scattering, we found that the upper layers tend to have a negative impact. In contrast, changes in lower layers tend to impact the brain's influence metrics positively. Furthermore, for small source-detector distances, the relative percentage difference between lower and higher values is greater than larger distances. Conclusions: We conclude that the assumption of different optical properties has a substantial effect on the sensitivity to the brain. This means that it is important to determine the correct optical properties for NIRS measurements in vitro and in vivo.
Collapse
|
67
|
Hu XS, Nascimento TD, DaSilva AF. Shedding light on pain for the clinic: a comprehensive review of using functional near-infrared spectroscopy to monitor its process in the brain. Pain 2021; 162:2805-2820. [PMID: 33990114 PMCID: PMC8490487 DOI: 10.1097/j.pain.0000000000002293] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/29/2021] [Indexed: 11/27/2022]
Abstract
ABSTRACT Pain is a complex experience that involves sensation, emotion, and cognition. The subjectivity of the traditional pain measurement tools has expedited the interest in developing neuroimaging techniques to monitor pain objectively. Among noninvasive neuroimaging techniques, functional near-infrared spectroscopy (fNIRS) has balanced spatial and temporal resolution; yet, it is portable, quiet, and cost-effective. These features enable fNIRS to image the cortical mechanisms of pain in a clinical environment. In this article, we evaluated pain neuroimaging studies that used the fNIRS technique in the past decade. Starting from the experimental design, we reviewed the regions of interest, probe localization, data processing, and primary findings of these existing fNIRS studies. We also discussed the fNIRS imaging's potential as a brain surveillance technique for pain, in combination with artificial intelligence and extended reality techniques. We concluded that fNIRS is a brain imaging technique with great potential for objective pain assessment in the clinical environment.
Collapse
Affiliation(s)
- Xiao-Su Hu
- University of Michigan, School of Dentistry, Biologic & Materials Sciences Department, Hedache & Orofacial Pain Effort Lab
| | - Thiago D. Nascimento
- University of Michigan, School of Dentistry, Biologic & Materials Sciences Department, Hedache & Orofacial Pain Effort Lab
| | - Alexandre F. DaSilva
- University of Michigan, School of Dentistry, Biologic & Materials Sciences Department, Hedache & Orofacial Pain Effort Lab
| |
Collapse
|
68
|
Ye X, Doi T, Arakawa O, Zhang S. A novel spatially resolved interactance spectroscopy system to estimate degree of red coloration in red-fleshed apple. Sci Rep 2021; 11:21982. [PMID: 34754021 PMCID: PMC8578623 DOI: 10.1038/s41598-021-01468-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/29/2021] [Indexed: 11/21/2022] Open
Abstract
Reliable information about degree of red coloration in fruit flesh is essential for grading and sorting of red-fleshed apples. We propose a spatially resolved interactance spectroscopy approach as a new rapid and non-destructive technique to estimate degree of red coloration in the flesh of a red-fleshed apple cultivar 'Kurenainoyume'. A novel measurement system was developed to obtain spatially resolved interactance spectra (190-1070 nm) for apple fruits at eight different light source-detector separation (SDS) distances on fruit surface. Anthocyanins in apple were extracted using a solvent extraction technique, and their contents were quantified with a spectrophotometer. Partial least squares (PLS) regression analyses were performed to develop estimation models for anthocyanin content from spatially resolved interactance spectra. Results showed that the PLS models based on interactance spectra obtained at different SDS distances achieved different predictive accuracy. Further, the system demonstrated the possibility to detect the degree of red coloration in the flesh at specific depths by identifying an optimal SDS distance. This might contribute to provide a detailed profile of the red coloration (anthocyanins) that is unevenly distributed among different depths of the flesh. This new approach may be potentially applied to grading and sorting systems for red-fleshed apples in fruit industry.
Collapse
Affiliation(s)
- Xujun Ye
- Faculty of Agriculture and Life Science, Hirosaki University, Aomori, 036-8561, Japan.
| | - Tamaki Doi
- Faculty of Agriculture and Life Science, Hirosaki University, Aomori, 036-8561, Japan
| | - Osamu Arakawa
- Faculty of Agriculture and Life Science, Hirosaki University, Aomori, 036-8561, Japan
| | - Shuhuai Zhang
- Faculty of Agriculture and Life Science, Hirosaki University, Aomori, 036-8561, Japan
| |
Collapse
|
69
|
Valenzuela F, Rana M, Sitaram R, Uribe S, Eblen-Zajjur A. Non-Invasive Functional Evaluation of the Human Spinal Cord by Assessing the Peri-Spinal Neurovascular Network With Near Infrared Spectroscopy. IEEE Trans Neural Syst Rehabil Eng 2021; 29:2312-2321. [PMID: 34705650 DOI: 10.1109/tnsre.2021.3123587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Current medical care lacks an effective functional evaluation for the spinal cord. Magnetic resonance imaging and computed tomography mainly provide structural information of the spinal cord, while spinal somatosensory evoked potentials are limited by a low signal to noise ratio. We developed a non-invasive approach based on near-infrared spectroscopy in dual-wavelength (760 and 850 nm for deoxy- or oxyhemoglobin respectively) to record the neurovascular response (NVR) of the peri-spinal vascular network at the 7th cervical and 10th thoracic vertebral levels of the spinal cord, triggered by unilateral median nerve electrical stimulation (square pulse, 5-10 mA, 5 ms, 1 pulse every 4 minutes) at the wrist. Amplitude, rise-time, and duration of NVR were characterized in 20 healthy participants. A single, painless stimulus was able to elicit a high signal-to-noise ratio and multi-segmental NVR (mainly from Oxyhemoglobin) with a fast rise time of 6.18 [4.4-10.4] seconds (median [Percentile 25-75]) followed by a slow decay phase for about 30 seconds toward the baseline. Cervical NVR was earlier and larger than thoracic and no left/right asymmetry was detected. Stimulus intensity/NVR amplitude fitted to a 2nd order function. The characterization and feasibility of the peri-spinal NVR strongly support the potential clinical applications for a functional assessment of spinal cord lesions.
Collapse
|
70
|
Tsow F, Kumar A, Hosseini SMH, Bowden A. A low-cost, wearable, do-it-yourself functional near-infrared spectroscopy (DIY-fNIRS) headband. HARDWAREX 2021; 10:e00204. [PMID: 34734152 PMCID: PMC8562714 DOI: 10.1016/j.ohx.2021.e00204] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 05/27/2023]
Abstract
Neuromonitoring in naturalistic environments is of increasing interest for a variety of research fields including psychology, economics, and productivity. Among functional neuromonitoring modalities, functional near-infrared spectroscopy (fNIRS) is well regarded for its potential for miniaturization, good spatial and temporal resolutions, and resilience to motion artifacts. Historically, the large size and high cost of fNIRS systems have precluded widespread adoption of the technology. In this article, we describe the first open source, fully integrated wireless fNIRS headband system with a single LED-pair source and four detectors. With ease of operation and comfort in mind, the system is encased in a soft, lightweight cloth and silicone enclosure. Accompanying computer and smartphone data collection software have also been provided, and the hardware has been validated using classic fNIRS tasks. This wear-and-go design can easily be scaled to accommodate a larger number of fNIRS channels and opens the door to easily collecting fNIRS data during routine activities in naturalistic conditions.
Collapse
Affiliation(s)
- Francis Tsow
- Biophotonics Center, Vanderbilt University, Nashville, TN 37232, United States
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, United States
| | - Anupam Kumar
- Biophotonics Center, Vanderbilt University, Nashville, TN 37232, United States
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, United States
| | - SM Hadi Hosseini
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Audrey Bowden
- Biophotonics Center, Vanderbilt University, Nashville, TN 37232, United States
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, United States
- Department of Electrical Engineering, Vanderbilt University, Nashville, TN 37232, United States
| |
Collapse
|
71
|
Fu X, Richards JE. devfOLD: a toolbox for designing age-specific fNIRS channel placement. NEUROPHOTONICS 2021; 8:045003. [PMID: 34881349 PMCID: PMC8647945 DOI: 10.1117/1.nph.8.4.045003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 11/09/2021] [Indexed: 05/20/2023]
Abstract
Significance: Near-infrared spectroscopy (NIRS) is a noninvasive technique that uses scalp-placed sensors to measure cerebral hemoglobin concentration. Commercial NIRS instruments do not allow for whole-head coverage and do not intrinsically indicate which brain areas generate the NIRS signal. Hence, the challenge is to design source-detector channel arrangement that maximizes sensitivity to a given brain region of interest (ROI). Existing methods for optimizing channel placement design have been developed using adult head models. Thus, they have limited utility for developmental research. Aim: We aim to build an application from an existing toolbox (fOLD) that guides NIRS channel configuration based on age group, stereotaxic atlas, and ROI (devfOLD). Approach: The devfOLD provides NIRS channel-to-ROI specificity computed using photon propagation simulation with realistic head models from infant, child, and adult age groups. Results: Cortical locations and user-specified specificity cut-off values influence the between-age consistency and differences in the ROI-to-channel correspondence among the example infant and adult age groups. Conclusions: The study highlights the importance of incorporating age-specific head models for optimizing NIRS channel configurations. The devfOLD toolbox is publicly shared and compatible with multiple operating systems.
Collapse
Affiliation(s)
- Xiaoxue Fu
- University of South Carolina, Department of Psychology, Columbia, South Carolina, United States
| | - John E. Richards
- University of South Carolina, Department of Psychology, Columbia, South Carolina, United States
| |
Collapse
|
72
|
Chen J, Li G, Liang H, Zhao S, Sun J, Qin M. An amplitude-based characteristic parameter extraction algorithm for cerebral edema detection based on electromagnetic induction. Biomed Eng Online 2021; 20:74. [PMID: 34344370 PMCID: PMC8335876 DOI: 10.1186/s12938-021-00913-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 07/26/2021] [Indexed: 11/10/2022] Open
Abstract
Background Cerebral edema is a common condition secondary to any type of neurological injury. The early diagnosis and monitoring of cerebral edema is of great importance to improve the prognosis. In this article, a flexible conformal electromagnetic two-coil sensor was employed as the electromagnetic induction sensor, associated with a vector network analyzer (VNA) for signal generation and receiving. Measurement of amplitude data over the frequency range of 1–100 MHz is conducted to evaluate the changes in cerebral edema. We proposed an Amplitude-based Characteristic Parameter Extraction (Ab-CPE) algorithm for multi-frequency characteristic analysis over the frequency range of 1–100 MHz and investigated its performance in electromagnetic induction-based cerebral edema detection and distinction of its acute/chronic phase. Fourteen rabbits were enrolled to establish cerebral edema model and the 24 h real-time monitoring experiments were carried out for algorithm verification. Results The proposed Ab-CPE algorithm was able to detect cerebral edema with a sensitivity of 94.1% and specificity of 95.4%. Also, in the early stage, it can detect cerebral edema with a sensitivity of 85.0% and specificity of 87.5%. Moreover, the Ab-CPE algorithm was able to distinguish between acute and chronic phase of cerebral edema with a sensitivity of 85.0% and specificity of 91.0%. Conclusion The proposed Ab-CPE algorithm is suitable for multi-frequency characteristic analysis. Combined with this algorithm, the electromagnetic induction method has an excellent performance on the detection and monitoring of cerebral edema.
Collapse
Affiliation(s)
- Jingbo Chen
- College of Biomedical Engineering, Third Military Medical University (Army Medical University), Chongqing, China
| | - Gen Li
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China.
| | - Huayou Liang
- China Aerodynamics Research and Development Center Low Speed Aerodynamic Institute, Mianyang, Sichuan, China
| | - Shuanglin Zhao
- College of Biomedical Engineering, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jian Sun
- College of Biomedical Engineering, Third Military Medical University (Army Medical University), Chongqing, China
| | - Mingxin Qin
- College of Biomedical Engineering, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
73
|
Abdalmalak A, Milej D, Norton L, Debicki DB, Owen AM, Lawrence KS. The Potential Role of fNIRS in Evaluating Levels of Consciousness. Front Hum Neurosci 2021; 15:703405. [PMID: 34305558 PMCID: PMC8296905 DOI: 10.3389/fnhum.2021.703405] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/31/2021] [Indexed: 12/13/2022] Open
Abstract
Over the last few decades, neuroimaging techniques have transformed our understanding of the brain and the effect of neurological conditions on brain function. More recently, light-based modalities such as functional near-infrared spectroscopy have gained popularity as tools to study brain function at the bedside. A recent application is to assess residual awareness in patients with disorders of consciousness, as some patients retain awareness albeit lacking all behavioural response to commands. Functional near-infrared spectroscopy can play a vital role in identifying these patients by assessing command-driven brain activity. The goal of this review is to summarise the studies reported on this topic, to discuss the technical and ethical challenges of working with patients with disorders of consciousness, and to outline promising future directions in this field.
Collapse
Affiliation(s)
- Androu Abdalmalak
- Department of Physiology and Pharmacology, Western University, London, ON, Canada.,Brain and Mind Institute, Western University, London, ON, Canada
| | - Daniel Milej
- Imaging Program, Lawson Health Research Institute, London, ON, Canada.,Department of Medical Biophysics, Western University, London, ON, Canada
| | - Loretta Norton
- Department of Psychology, King's College, Western University, London, ON, Canada
| | - Derek B Debicki
- Brain and Mind Institute, Western University, London, ON, Canada.,Clinical Neurological Sciences, Western University, London, ON, Canada
| | - Adrian M Owen
- Department of Physiology and Pharmacology, Western University, London, ON, Canada.,Brain and Mind Institute, Western University, London, ON, Canada.,Department of Psychology, Western University, London, ON, Canada
| | - Keith St Lawrence
- Imaging Program, Lawson Health Research Institute, London, ON, Canada.,Department of Medical Biophysics, Western University, London, ON, Canada
| |
Collapse
|
74
|
Fu X, Richards JE. Investigating developmental changes in scalp-to-cortex correspondence using diffuse optical tomography sensitivity in infancy. NEUROPHOTONICS 2021; 8:035003. [PMID: 34322572 PMCID: PMC8305752 DOI: 10.1117/1.nph.8.3.035003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 07/09/2021] [Indexed: 05/25/2023]
Abstract
Significance: Diffuse optical tomography (DOT) uses near-infrared light spectroscopy (NIRS) to measure changes in cerebral hemoglobin concentration. Anatomical interpretations of NIRS data require accurate descriptions of the cranio-cerebral relations and DOT sensitivity to the underlying cortical structures. Such information is limited for pediatric populations because they undergo rapid head and brain development. Aim: We aim to investigate age-related differences in scalp-to-cortex distance and mapping between scalp locations and cortical regions of interest (ROIs) among infants (2 weeks to 24 months with narrow age bins), children (4 and 12 years), and adults (20 to 24 years). Approach: We used spatial scalp projection and photon propagation simulation methods with age-matched realistic head models based on MRIs. Results: There were age-group differences in the scalp-to-cortex distances in infancy. The developmental increase was magnified in children and adults. There were systematic age-related differences in the probabilistic mappings between scalp locations and cortical ROIs. Conclusions: Our findings have important implications in the design of sensor placement and making anatomical interpretations in NIRS and fNIRS research. Age-appropriate, realistic head models should be used to provide anatomical guidance for standalone DOT data in infants.
Collapse
Affiliation(s)
- Xiaoxue Fu
- University of South Carolina, Department of Psychology, Columbia, South Carolina, United States
| | - John E. Richards
- University of South Carolina, Department of Psychology, Columbia, South Carolina, United States
| |
Collapse
|
75
|
Fu X, Richards JE. Age-related changes in diffuse optical tomography sensitivity profiles in infancy. PLoS One 2021; 16:e0252036. [PMID: 34101747 PMCID: PMC8186805 DOI: 10.1371/journal.pone.0252036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/08/2021] [Indexed: 02/06/2023] Open
Abstract
Diffuse optical tomography uses near-infrared light spectroscopy to measure changes in cerebral hemoglobin concentration. Anatomical interpretations of the location that generates the hemodynamic signal requires accurate descriptions of diffuse optical tomography sensitivity to the underlying cortical structures. Such information is limited for pediatric populations because they undergo rapid head and brain development. The present study used photon propagation simulation methods to examine diffuse optical tomography sensitivity profiles in realistic head models among infants ranging from 2 weeks to 24 months with narrow age bins, children (4 and 12 years) and adults (20 to 24 years). The sensitivity profiles changed systematically with the source-detector separation distance. The peak of the sensitivity function in the head was largest at the smallest separation distance and decreased as separation distance increased. The fluence value dissipated more quickly with sampling depth at the shorter source-detector separations than the longer separation distances. There were age-related differences in the shape and variance of sensitivity profiles across a wide range of source-detector separation distances. Our findings have important implications in the design of sensor placement and diffuse optical tomography image reconstruction in (functional) near-infrared light spectroscopy research. Age-appropriate realistic head models should be used to provide anatomical guidance for standalone near-infrared light spectroscopy data in infants.
Collapse
Affiliation(s)
- Xiaoxue Fu
- Department of Psychology, University of South Carolina, Columbia, United States of America
| | - John E. Richards
- Department of Psychology, University of South Carolina, Columbia, United States of America
| |
Collapse
|
76
|
Zhou W, Kholiqov O, Zhu J, Zhao M, Zimmermann LL, Martin RM, Lyeth BG, Srinivasan VJ. Functional interferometric diffusing wave spectroscopy of the human brain. SCIENCE ADVANCES 2021; 7:eabe0150. [PMID: 33980479 PMCID: PMC8115931 DOI: 10.1126/sciadv.abe0150] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 03/23/2021] [Indexed: 05/18/2023]
Abstract
Cerebral blood flow (CBF) is essential for brain function, and CBF-related signals can inform us about brain activity. Yet currently, high-end medical instrumentation is needed to perform a CBF measurement in adult humans. Here, we describe functional interferometric diffusing wave spectroscopy (fiDWS), which introduces and collects near-infrared light via the scalp, using inexpensive detector arrays to rapidly monitor coherent light fluctuations that encode brain blood flow index (BFI), a surrogate for CBF. Compared to other functional optical approaches, fiDWS measures BFI faster and deeper while also providing continuous wave absorption signals. Achieving clear pulsatile BFI waveforms at source-collector separations of 3.5 cm, we confirm that optical BFI, not absorption, shows a graded hypercapnic response consistent with human cerebrovascular physiology, and that BFI has a better contrast-to-noise ratio than absorption during brain activation. By providing high-throughput measurements of optical BFI at low cost, fiDWS will expand access to CBF.
Collapse
Affiliation(s)
- Wenjun Zhou
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
| | - Oybek Kholiqov
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
| | - Jun Zhu
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
| | - Mingjun Zhao
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
| | - Lara L Zimmermann
- Department of Neurological Surgery, University of California, Davis, Sacramento, CA, USA
| | - Ryan M Martin
- Department of Neurological Surgery, University of California, Davis, Sacramento, CA, USA
| | - Bruce G Lyeth
- Department of Neurological Surgery, University of California, Davis, Sacramento, CA, USA
| | - Vivek J Srinivasan
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA.
- Department of Ophthalmology and Vision Science, University of California, Davis, Sacramento, CA, USA
- Department of Ophthalmology, NYU Langone Health, New York, NY, USA
- Department of Radiology, NYU Langone Health, New York, NY, USA
- Tech4Health Institute, NYU Langone Health, New York, NY, USA
| |
Collapse
|
77
|
Shader MJ, Luke R, Gouailhardou N, McKay CM. The use of broad vs restricted regions of interest in functional near-infrared spectroscopy for measuring cortical activation to auditory-only and visual-only speech. Hear Res 2021; 406:108256. [PMID: 34051607 DOI: 10.1016/j.heares.2021.108256] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/31/2021] [Accepted: 04/19/2021] [Indexed: 12/24/2022]
Abstract
As an alternative to fMRI, functional near-infrared spectroscopy (fNIRS) is a relatively new tool for observing cortical activation. However, spatial resolution is reduced compared to fMRI and often the exact locations of fNIRS optodes and specific anatomical information is not known. The aim of this study was to explore the location and range of specific regions of interest that are sensitive to detecting cortical activation using fNIRS in response to auditory- and visual-only connected speech. Two approaches to a priori region-of-interest selection were explored. First, broad regions corresponding to the auditory cortex and occipital lobe were analysed. Next, the fNIRS Optode Location Decider (fOLD) tool was used to divide the auditory and visual regions into two subregions corresponding to distinct anatomical structures. The Auditory-A and -B regions corresponded to Heschl's gyrus and planum temporale, respectively. The Visual-A region corresponded to the superior occipital gyrus and the cuneus, and the Visual-B region corresponded to the middle occipital gyrus. The experimental stimulus consisted of a connected speech signal segmented into 12.5-sec blocks and was presented in either an auditory-only or visual-only condition. Group-level results for eight normal-hearing adult participants averaged over the broad regions of interest revealed significant auditory-evoked activation for both the left and right broad auditory regions of interest. No significant activity was observed for any other broad region of interest in response to any stimulus condition. When divided into subregions, there was a significant positive auditory-evoked response in the left and right Auditory-A regions, suggesting activation near the primary auditory cortex in response to auditory-only speech. There was a significant positive visual-evoked response in the Visual-B region, suggesting middle occipital gyrus activation in response to visual-only speech. In the Visual-A region, however, there was a significant negative visual-evoked response. This result suggests a significant decrease in oxygenated hemoglobin in the superior occipital gyrus as well as the cuneus in response to visual-only speech. Distinct response characteristics, either positive or negative, in adjacent subregions within the temporal and occipital lobes were fairly consistent on the individual level. Results suggest that temporal regions near Heschl's gyrus may be the most advantageous location in adults for identifying hemodynamic responses to complex auditory speech signals using fNIRS. In the occipital lobe, regions corresponding to the facial processing pathway may prove advantageous for measuring positive responses to visual speech using fNIRS.
Collapse
Affiliation(s)
- Maureen J Shader
- Bionics Institute, 384-388 Albert Street, East Melbourne, Victoria 3002, Australia; Department of Medical Bionics, The University of Melbourne, Grattan Street, Parkville, Victoria 3010, Australia.
| | - Robert Luke
- Bionics Institute, 384-388 Albert Street, East Melbourne, Victoria 3002, Australia; Department of Linguistics, Faculty of Medicine, Health and Human Sciences, Macquarie Hearing, Macquarie University, 16 University Avenue, New South Wales 2109, Australia
| | | | - Colette M McKay
- Bionics Institute, 384-388 Albert Street, East Melbourne, Victoria 3002, Australia; Department of Medical Bionics, The University of Melbourne, Grattan Street, Parkville, Victoria 3010, Australia
| |
Collapse
|
78
|
The slope of cerebral oxyhemoglobin oscillation is associated with vascular reserve capacity in large artery steno-occlusion. Sci Rep 2021; 11:8568. [PMID: 33883666 PMCID: PMC8060335 DOI: 10.1038/s41598-021-88198-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/05/2021] [Indexed: 11/08/2022] Open
Abstract
Inadequate cerebral perfusion is a risk factor for cerebral ischemia in patients with large artery steno-occlusion. We investigated whether prefrontal oxyhemoglobin oscillation (ΔHbO2, 0.6-2 Hz) was associated with decreased vascular reserve in patients with steno-occlusion in the large anterior circulation arteries. Thirty-six patients with steno-occlusion in the anterior circulation arteries (anterior cerebral artery, middle cerebral artery, and internal carotid artery) were included and compared to thirty-six control subjects. Patients were categorized into two groups (deteriorated vascular reserve vs. preserved vascular reserve) based on the results of Diamox single- photon emission computed tomography imaging. HbO2 data were collected using functional near-infrared spectroscopy. The slope of ΔHbO2 and the ipsilateral/contralateral slope ratio of ΔHbO2 were analyzed. Among the included patients (n = 36), 25 (69.4%) had deteriorated vascular reserve. Patients with deteriorated vascular reserve had a significantly higher average slope of ΔHbO2 on the ipsilateral side (5.01 ± 2.14) and a higher ipsilateral/contralateral ratio (1.44 ± 0.62) compared to those with preserved vascular reserve (3.17 ± 1.36, P = 0.014; 0.93 ± 0.33, P = 0.016, respectively) or the controls (3.82 ± 1.69, P = 0.019; 0.94 ± 0.29, P = 0.001). The ipsilateral/contralateral ΔHbO2 ratio could be used as a surrogate for vascular reserve in patients with severe steno-occlusion in the anterior circulation arteries.
Collapse
|
79
|
Benitez-Andonegui A, Lührs M, Nagels-Coune L, Ivanov D, Goebel R, Sorger B. Guiding functional near-infrared spectroscopy optode-layout design using individual (f)MRI data: effects on signal strength. NEUROPHOTONICS 2021; 8:025012. [PMID: 34155480 PMCID: PMC8211086 DOI: 10.1117/1.nph.8.2.025012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 05/11/2021] [Indexed: 05/20/2023]
Abstract
Significance: Designing optode layouts is an essential step for functional near-infrared spectroscopy (fNIRS) experiments as the quality of the measured signal and the sensitivity to cortical regions-of-interest depend on how optodes are arranged on the scalp. This becomes particularly relevant for fNIRS-based brain-computer interfaces (BCIs), where developing robust systems with few optodes is crucial for clinical applications. Aim: Available resources often dictate the approach researchers use for optode-layout design. We investigated whether guiding optode layout design using different amounts of subject-specific magnetic resonance imaging (MRI) data affects the fNIRS signal quality and sensitivity to brain activation when healthy participants perform mental-imagery tasks typically used in fNIRS-BCI experiments. Approach: We compared four approaches that incrementally incorporated subject-specific MRI information while participants performed mental-calculation, mental-rotation, and inner-speech tasks. The literature-based approach (LIT) used a literature review to guide the optode layout design. The probabilistic approach (PROB) employed individual anatomical data and probabilistic maps of functional MRI (fMRI)-activation from an independent dataset. The individual fMRI (iFMRI) approach used individual anatomical and fMRI data, and the fourth approach used individual anatomical, functional, and vascular information of the same subject (fVASC). Results: The four approaches resulted in different optode layouts and the more informed approaches outperformed the minimally informed approach (LIT) in terms of signal quality and sensitivity. Further, PROB, iFMRI, and fVASC approaches resulted in a similar outcome. Conclusions: We conclude that additional individual MRI data lead to a better outcome, but that not all the modalities tested here are required to achieve a robust setup. Finally, we give preliminary advice to efficiently using resources for developing robust optode layouts for BCI and neurofeedback applications.
Collapse
Affiliation(s)
- Amaia Benitez-Andonegui
- Maastricht University, Maastricht Brain Imaging Center, Department of Cognitive Neuroscience, Maastricht, The Netherlands
- Maastricht University, Laboratory for Cognitive Robotics and Complex Self-Organizing Systems, Department of Data Science and Knowledge Engineering, Maastricht, The Netherlands
| | - Michael Lührs
- Maastricht University, Maastricht Brain Imaging Center, Department of Cognitive Neuroscience, Maastricht, The Netherlands
- Brain Innovation B.V., Research Department, Maastricht, The Netherlands
| | - Laurien Nagels-Coune
- Maastricht University, Maastricht Brain Imaging Center, Department of Cognitive Neuroscience, Maastricht, The Netherlands
| | - Dimo Ivanov
- Maastricht University, Maastricht Brain Imaging Center, Department of Cognitive Neuroscience, Maastricht, The Netherlands
| | - Rainer Goebel
- Maastricht University, Maastricht Brain Imaging Center, Department of Cognitive Neuroscience, Maastricht, The Netherlands
- Brain Innovation B.V., Research Department, Maastricht, The Netherlands
| | - Bettina Sorger
- Maastricht University, Maastricht Brain Imaging Center, Department of Cognitive Neuroscience, Maastricht, The Netherlands
| |
Collapse
|
80
|
Vidal-Rosas EE, Zhao H, Nixon-Hill RW, Smith G, Dunne L, Powell S, Cooper RJ, Everdell NL. Evaluating a new generation of wearable high-density diffuse optical tomography technology via retinotopic mapping of the adult visual cortex. NEUROPHOTONICS 2021; 8:025002. [PMID: 33842667 PMCID: PMC8033536 DOI: 10.1117/1.nph.8.2.025002] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/17/2021] [Indexed: 05/06/2023]
Abstract
Significance: High-density diffuse optical tomography (HD-DOT) has been shown to approach the resolution and localization accuracy of blood oxygen level dependent-functional magnetic resonance imaging in the adult brain by exploiting densely spaced, overlapping samples of the probed tissue volume, but the technique has to date required large and cumbersome optical fiber arrays. Aim: To evaluate a wearable HD-DOT system that provides a comparable sampling density to large, fiber-based HD-DOT systems, but with vastly improved ergonomics. Approach: We investigated the performance of this system by replicating a series of classic visual stimulation paradigms, carried out in one highly sampled participant during 15 sessions to assess imaging performance and repeatability. Results: Hemodynamic response functions and cortical activation maps replicate the results obtained with larger fiber-based systems. Our results demonstrate focal activations in both oxyhemoglobin and deoxyhemoglobin with a high degree of repeatability observed across all sessions. A comparison with a simulated low-density array explicitly demonstrates the improvements in spatial localization, resolution, repeatability, and image contrast that can be obtained with this high-density technology. Conclusions: The system offers the possibility for minimally constrained, spatially resolved functional imaging of the human brain in almost any environment and holds particular promise in enabling neuroscience applications outside of the laboratory setting. It also opens up new opportunities to investigate populations unsuited to traditional imaging technologies.
Collapse
Affiliation(s)
- Ernesto E. Vidal-Rosas
- University College London, Diffuse Optical Tomography of the Human Brain Research Group, Biomedical Optics Research Laboratory, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
- Address all correspondence to Ernesto E. Vidal-Rosas,
| | - Hubin Zhao
- University College London, Diffuse Optical Tomography of the Human Brain Research Group, Biomedical Optics Research Laboratory, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
- University of Glasgow, James Watt School of Engineering, Glasgow, United Kingdom
| | - Reuben W. Nixon-Hill
- Imperial College London, Department of Mathematics, London, United Kingdom
- Gowerlabs Ltd., London, United Kingdom
| | | | | | - Samuel Powell
- Gowerlabs Ltd., London, United Kingdom
- Nottingham University, Department of Electrical and Electronic Engineering, Nottingham, United Kingdom
| | - Robert J. Cooper
- University College London, Diffuse Optical Tomography of the Human Brain Research Group, Biomedical Optics Research Laboratory, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Nicholas L. Everdell
- University College London, Diffuse Optical Tomography of the Human Brain Research Group, Biomedical Optics Research Laboratory, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
- Gowerlabs Ltd., London, United Kingdom
| |
Collapse
|
81
|
Cai L, Okada E, Minagawa Y, Kawaguchi H. Correlating functional near-infrared spectroscopy with underlying cortical regions of 0-, 1-, and 2-year-olds using theoretical light propagation analysis. NEUROPHOTONICS 2021; 8:025009. [PMID: 34079846 PMCID: PMC8166262 DOI: 10.1117/1.nph.8.2.025009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/18/2021] [Indexed: 05/03/2023]
Abstract
Significance: The establishment of a light propagation analysis-based scalp-cortex correlation (SCC) between the scalp location of the source-detector (SD) pair and brain regions is essential for measuring functional brain development in the first 2 years of life using functional near-infrared spectroscopy (fNIRS). Aim: We aimed to reveal the optics-based SCC of 0-, 1-, and 2-year-olds (yo) and the suitable SD distance for this age period. Approach: Light propagation analyses using age-appropriate head models were conducted on SD pairs at 10-10 fiducial points on the scalp to obtain optics-based SCC and its metrics: the number of corresponding brain regions ( N C B R ), selectivity and sensitivity of the most likely corresponding brain region (MLCBR), and consistency of the MLCBR across developmental ages. Moreover, we assessed the suitable SD distances for 0-, 1-, and 2-yo by simultaneously considering the selectivity and sensitivity of the MLCBR. Results: Age-related changes in the SCC metrics were observed. For instance, the N C B R of 0-yo was larger than that of 1- and 2-yo. Conversely, the selectivity of 0-yo was lower than that of 1- and 2-yo. The sensitivity of 1-yo was higher than that of 0-yo at 15- to 30-mm SD distances and higher than that of 2-yo at 10-mm SD distance. Notably, the MLCBR of the fiducial points around the longitudinal fissure was inconsistent across age groups. An SD distance between 15 and 25 mm was found to be appropriate for satisfying both sensitivity and selectivity requirements. In addition, this work provides reference tables of optics-based SCC for 0-, 1-, and 2-yo. Conclusions: Optics-based SCC will be informative in designing and explaining child developmental studies using fNIRS. The suitable SD distances were between 15 and 25 mm for the first 2 years of life.
Collapse
Affiliation(s)
- Lin Cai
- Keio University, Department of Electronics and Electrical Engineering, Yokohama, Japan
| | - Eiji Okada
- Keio University, Department of Electronics and Electrical Engineering, Yokohama, Japan
| | | | - Hiroshi Kawaguchi
- Keio University, Department of Electronics and Electrical Engineering, Yokohama, Japan
- National Institute of Advanced Industrial Science and Technology, Human Informatics and Interaction Research Institute, Tsukuba, Japan
- Address all correspondence to Hiroshi Kawaguchi,
| |
Collapse
|
82
|
Jang JH, Solarana K, Hammer DX, Fisher JAN. Dissecting the microvascular contributions to diffuse correlation spectroscopy measurements of cerebral hemodynamics using optical coherence tomography angiography. NEUROPHOTONICS 2021; 8:025006. [PMID: 33912621 PMCID: PMC8071783 DOI: 10.1117/1.nph.8.2.025006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Significance: Diffuse correlation spectroscopy (DCS) is an emerging noninvasive, diffuse optical modality that purportedly enables direct measurements of microvasculature blood flow. Functional optical coherence tomography angiography (OCT-A) can resolve blood flow in vessels as fine as capillaries and thus has the capability to validate key attributes of the DCS signal. Aim: To characterize activity in cortical vasculature within the spatial volume that is probed by DCS and to identify populations of blood vessels that are most representative of the DCS signals. Approach: We performed simultaneous measurements of somatosensory-evoked cerebral blood flow in mice in vivo using both DCS and OCT-A. Results: We resolved sensory-evoked blood flow in the somatosensory cortex with both modalities. Vessels with diameters smaller than 10 μ m featured higher peak flow rates during the initial poststimulus positive increase in flow, whereas larger vessels exhibited considerably larger magnitude of the subsequent undershoot. The simultaneously recorded DCS waveforms correlated most highly with flow in the smallest vessels, yet featured a more prominent undershoot. Conclusions: Our direct, multiscale, multimodal cross-validation measurements of functional blood flow support the assertion that the DCS signal preferentially represents flow in microvasculature. The significantly greater undershoot in DCS, however, suggests a more spatially complex relationship to flow in cortical vasculature during functional activation.
Collapse
Affiliation(s)
- James H. Jang
- Center for Devices and Radiological Health, U. S. Food and Drug Administration, Silver Spring, Maryland, United States
| | - Krystyna Solarana
- Center for Devices and Radiological Health, U. S. Food and Drug Administration, Silver Spring, Maryland, United States
| | - Daniel X. Hammer
- Center for Devices and Radiological Health, U. S. Food and Drug Administration, Silver Spring, Maryland, United States
| | - Jonathan A. N. Fisher
- New York Medical College, Department of Physiology, Valhalla, New York, United States
| |
Collapse
|
83
|
Wood MD, Boyd JG, Wood N, Frank J, Girard TD, Ross-White A, Chopra A, Foster D, Griesdale DEG. The Use of Near-Infrared Spectroscopy and/or Transcranial Doppler as Non-Invasive Markers of Cerebral Perfusion in Adult Sepsis Patients With Delirium: A Systematic Review. J Intensive Care Med 2021; 37:408-422. [PMID: 33685273 PMCID: PMC8772019 DOI: 10.1177/0885066621997090] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background: Several studies have previously reported the presence of altered cerebral perfusion during sepsis. However, the role of non-invasive neuromonitoring, and the impact of altered cerebral perfusion, in sepsis patients with delirium remains unclear. Methods: We performed a systematic review of studies that used near-infrared spectroscopy (NIRS) and/or transcranial Doppler (TCD) to assess adults (≥18 years) with sepsis and delirium. From study inception to July 28, 2020, we searched the following databases: Ovid MedLine, Embase, Cochrane Library, and Web of Science. Results: Of 1546 articles identified, 10 met our inclusion criteria. Although NIRS-derived regional cerebral oxygenation was consistently lower, this difference was only statistically significant in one study. TCD-derived cerebral blood flow velocity was inconsistent across studies. Importantly, both impaired cerebral autoregulation during sepsis and increased cerebrovascular resistance were associated with delirium during sepsis. However, the heterogeneity in NIRS and TCD devices, duration of recording (from 10 seconds to 72 hours), and delirium assessment methods (e.g., electronic medical records, confusion assessment method for the intensive care unit), precluded meta-analysis. Conclusion: The available literature demonstrates that cerebral perfusion disturbances may be associated with delirium in sepsis. However, future investigations will require consistent definitions of delirium, delirium assessment training, harmonized NIRS and TCD assessments (e.g., consistent measurement site and length of recording), as well as the quantification of secondary and tertiary variables (i.e., Cox, Mxa, MAPOPT), in order to fully assess the relationship between cerebral perfusion and delirium in patients with sepsis.
Collapse
Affiliation(s)
- Michael D Wood
- Department of Anesthesiology, Pharmacology and Therapeutics, 8166University of British Columbia, Vancouver, British Columbia, Canada
| | - J Gordon Boyd
- Department of Critical Care Medicine, 4257Queen's University, Kingston, Ontario, Canada
| | - Nicole Wood
- Department of Physics, 8430University of Waterloo, Waterloo, Ontario, Canada
| | - James Frank
- Department of Physics, 7497Brock University, St. Catharines, Ontario, Canada
| | - Timothy D Girard
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Akash Chopra
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Denise Foster
- Division of Critical Care Medicine, Department of Medicine, 8166University of British Columbia, Vancouver, British Columbia, Canada
| | - Donald E G Griesdale
- Department of Anesthesiology, Pharmacology and Therapeutics, 8166University of British Columbia, Vancouver, British Columbia, Canada.,Division of Critical Care Medicine, Department of Medicine, 8166University of British Columbia, Vancouver, British Columbia, Canada.,Center for Clinical Epidemiology & Evaluation, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
84
|
Wu ST, Rubianes Silva JAI, Novi SL, de Souza NGSR, Forero EJ, Mesquita RC. Accurate Image-guided (Re)Placement of NIRS Probes. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 200:105844. [PMID: 33267972 DOI: 10.1016/j.cmpb.2020.105844] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 11/11/2020] [Indexed: 05/27/2023]
Abstract
BACKGROUND AND OBJECTIVE Functional near-infrared spectroscopy (fNIRS) has become an attractive choice to neuroscience because of its high temporal resolution, ease of use, non-invasiveness, and affordability. With the advent of wearable fNIRS technology, on-the-spot studies of brain function have become viable. However, the lack of within-subject reproducibility is one of the barriers to the full acceptability of fNIRS. To support the validation of the claim that within-subject reproducibility of fNIRS could benefit from accurate anatomical information, we present in this paper a method to develop an image-based system that improves the placement of the sensors on the scalp at interactive rates. METHODS The proposed solution consists of an electromagnetic digitizer and an interactive visualization system that allows monitoring the movements of the digitizer on a real head with respect to the underlying cerebral cortical structures. GPU-based volume raycasting rendering is applied to unveil these structures from the corresponding magnetic resonance imaging volume. Scalp and cortical surface are estimated from the scanned volume to improve depth perception. An alignment algorithm between the real and scanned heads is devised to visually feedback the position of the stylus of the digitizer. Off-screen rendering of the depthmaps of the visible surfaces makes spatial positioning of a 2D interaction pointer possible. RESULTS We evaluated the alignment accuracy using four to eight anatomical landmarks and found seven to be a good compromise between precision and efficiency. Next, we evaluated reproducibility in positioning five arbitrarily chosen points on three volunteers by four operators over five sessions. In every session, seven anatomical landmarks were applied in the alignment of the real and the scanned head. For the same volunteer, one-way analysis of variance (ANOVA) revealed no significant differences within the five points digitized by the same operator over five sessions (α = 0.05). In addition, preliminary study of motor cortex activation by right-hand finger tapping showed the potential of our approach to increase functional fNIRS reproducibility. CONCLUSIONS Results of experiments suggest that the enhancement of the visualization of the location of the probes on the scalp, relative to the underlying cortical structures, improves reproducibility of fNIRS measurements. As further work, we plan to study the fNIRS reproducibility in other cortical regions and in clinical settings using the proposed system.
Collapse
Affiliation(s)
- Shin-Ting Wu
- School of Computer and Electrical Engineering, University of Campinas, Av. Albert Einstein 400, Campinas, SP 13083-852, Brazil.
| | - José Angel Iván Rubianes Silva
- School of Computer and Electrical Engineering, University of Campinas, Av. Albert Einstein 400, Campinas, SP 13083-852, Brazil
| | - Sergio Luiz Novi
- Institute of Physics, University of Campinas, R. Sérgio Buarque de Holanda 777, Campinas, SP 13083-859, Brazil
| | | | - Edwin Johan Forero
- Institute of Physics, University of Campinas, R. Sérgio Buarque de Holanda 777, Campinas, SP 13083-859, Brazil
| | - Rickson C Mesquita
- Institute of Physics, University of Campinas, R. Sérgio Buarque de Holanda 777, Campinas, SP 13083-859, Brazil
| |
Collapse
|
85
|
Cai L, Nitta T, Yokota S, Obata T, Okada E, Kawaguchi H. Targeting brain regions of interest in functional near-infrared spectroscopy-Scalp-cortex correlation using subject-specific light propagation models. Hum Brain Mapp 2021; 42:1969-1986. [PMID: 33621388 PMCID: PMC8046049 DOI: 10.1002/hbm.25367] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/05/2020] [Accepted: 01/31/2021] [Indexed: 11/11/2022] Open
Abstract
Targeting specific brain regions of interest by the accurate positioning of optodes (emission and detection probes) on the scalp remains a challenge for functional near‐infrared spectroscopy (fNIRS). Since fNIRS data does not provide any anatomical information on the brain cortex, establishing the scalp‐cortex correlation (SCC) between emission‐detection probe pairs on the scalp and the underlying brain regions in fNIRS measurements is extremely important. A conventional SCC is obtained by a geometrical point‐to‐point manner and ignores the effect of light scattering in the head tissue that occurs in actual fNIRS measurements. Here, we developed a sensitivity‐based matching (SBM) method that incorporated the broad spatial sensitivity of the probe pair due to light scattering into the SCC for fNIRS. The SCC was analyzed between head surface fiducial points determined by the international 10–10 system and automated anatomical labeling brain regions for 45 subject‐specific head models. The performance of the SBM method was compared with that of three conventional geometrical matching (GM) methods. We reveal that the light scattering and individual anatomical differences in the head affect the SCC, which indicates that the SBM method is compulsory to obtain the precise SCC. The SBM method enables us to evaluate the activity of cortical regions that are overlooked in the SCC obtained by conventional GM methods. Together, the SBM method could be a promising approach to guide fNIRS users in designing their probe arrangements and in explaining their measurement data.
Collapse
Affiliation(s)
- Lin Cai
- Department of Electronics and Electrical Engineering, Keio University, Yokohama, Japan
| | - Tomonori Nitta
- Department of Electronics and Electrical Engineering, Keio University, Yokohama, Japan
| | - Sho Yokota
- Department of Electronics and Electrical Engineering, Keio University, Yokohama, Japan
| | - Takayuki Obata
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Eiji Okada
- Department of Electronics and Electrical Engineering, Keio University, Yokohama, Japan
| | - Hiroshi Kawaguchi
- Department of Electronics and Electrical Engineering, Keio University, Yokohama, Japan.,Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan.,Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan
| |
Collapse
|
86
|
Keles HO, Cengiz C, Demiral I, Ozmen MM, Omurtag A. High density optical neuroimaging predicts surgeons's subjective experience and skill levels. PLoS One 2021; 16:e0247117. [PMID: 33600502 PMCID: PMC7891714 DOI: 10.1371/journal.pone.0247117] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/01/2021] [Indexed: 01/04/2023] Open
Abstract
Measuring cognitive load is important for surgical education and patient safety. Traditional approaches of measuring cognitive load of surgeons utilise behavioural metrics to measure performance and surveys and questionnaires to collect reports of subjective experience. These have disadvantages such as sporadic data, occasionally intrusive methodologies, subjective or misleading self-reporting. In addition, traditional approaches use subjective metrics that cannot distinguish between skill levels. Functional neuroimaging data was collected using a high density, wireless NIRS device from sixteen surgeons (11 attending surgeons and 5 surgery resident) and 17 students while they performed two laparoscopic tasks (Peg transfer and String pass). Participant’s subjective mental load was assessed using the NASA-TLX survey. Machine learning approaches were used for predicting the subjective experience and skill levels. The Prefrontal cortex (PFC) activations were greater in students who reported higher-than-median task load, as measured by the NASA-TLX survey. However in the case of attending surgeons the opposite tendency was observed, namely higher activations in the lower v higher task loaded subjects. We found that response was greater in the left PFC of students particularly near the dorso- and ventrolateral areas. We quantified the ability of PFC activation to predict the differences in skill and task load using machine learning while focussing on the effects of NIRS channel separation distance on the results. Our results showed that the classification of skill level and subjective task load could be predicted based on PFC activation with an accuracy of nearly 90%. Our finding shows that there is sufficient information available in the optical signals to make accurate predictions about the surgeons’ subjective experiences and skill levels. The high accuracy of results is encouraging and suggest the integration of the strategy developed in this study as a promising approach to design automated, more accurate and objective evaluation methods.
Collapse
Affiliation(s)
- Hasan Onur Keles
- Department of Biomedical Engineering, Ankara University, Ankara, Turkey
- * E-mail:
| | - Canberk Cengiz
- Department of Electroneurophysiology, Istinye University, Istanbul, Turkey
| | - Irem Demiral
- Department of OB&GYN, 29 May State Hospital, Ankara, Turkey
| | | | - Ahmet Omurtag
- Department of Engineering, Nottingham Trent University, Nottingham, United Kingdom
| |
Collapse
|
87
|
Schommartz I, Dix A, Passow S, Li SC. Functional Effects of Bilateral Dorsolateral Prefrontal Cortex Modulation During Sequential Decision-Making: A Functional Near-Infrared Spectroscopy Study With Offline Transcranial Direct Current Stimulation. Front Hum Neurosci 2021; 14:605190. [PMID: 33613203 PMCID: PMC7886709 DOI: 10.3389/fnhum.2020.605190] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/21/2020] [Indexed: 11/13/2022] Open
Abstract
The ability to learn sequential contingencies of actions for predicting future outcomes is indispensable for flexible behavior in many daily decision-making contexts. It remains open whether such ability may be enhanced by transcranial direct current stimulation (tDCS). The present study combined tDCS with functional near-infrared spectroscopy (fNIRS) to investigate potential tDCS-induced effects on sequential decision-making and the neural mechanisms underlying such modulations. Offline tDCS and sham stimulation were applied over the left and right dorsolateral prefrontal cortex (dlPFC) in young male adults (N = 29, mean age = 23.4 years, SD = 3.2) in a double-blind between-subject design using a three-state Markov decision task. The results showed (i) an enhanced dlPFC hemodynamic response during the acquisition of sequential state transitions that is consistent with the findings from a previous functional magnetic resonance imaging (fMRI) study; (ii) a tDCS-induced increase of the hemodynamic response in the dlPFC, but without accompanying performance-enhancing effects at the behavioral level; and (iii) a greater tDCS-induced upregulation of hemodynamic responses in the delayed reward condition that seems to be associated with faster decision speed. Taken together, these findings provide empirical evidence for fNIRS as a suitable method for investigating hemodynamic correlates of sequential decision-making as well as functional brain correlates underlying tDCS-induced modulation. Future research with larger sample sizes for carrying out subgroup analysis is necessary in order to decipher interindividual differences in tDCS-induced effects on sequential decision-making process at the behavioral and brain levels.
Collapse
Affiliation(s)
- Iryna Schommartz
- Chair of Lifespan Developmental Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
- Department of Developmental Psychology, Institute of Psychology, Goethe University Frankfurt, Frankfurt, Germany
| | - Annika Dix
- Chair of Lifespan Developmental Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
- Centre for Tactile Internet With Human-in-the-Loop, Technische Universität Dresden, Dresden, Germany
| | - Susanne Passow
- Chair of Lifespan Developmental Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Shu-Chen Li
- Chair of Lifespan Developmental Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
- Centre for Tactile Internet With Human-in-the-Loop, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
88
|
Kuschner ES, Kim M, Bloy L, Dipiero M, Edgar JC, Roberts TPL. MEG-PLAN: a clinical and technical protocol for obtaining magnetoencephalography data in minimally verbal or nonverbal children who have autism spectrum disorder. J Neurodev Disord 2021; 13:8. [PMID: 33485311 PMCID: PMC7827989 DOI: 10.1186/s11689-020-09350-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 12/10/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Neuroimaging research on individuals who have autism spectrum disorder (ASD) has historically been limited primarily to those with age-appropriate cognitive and language performance. Children with limited abilities are frequently excluded from such neuroscience research given anticipated barriers like tolerating the loud sounds associated with magnetic resonance imaging and remaining still during data collection. To better understand brain function across the full range of ASD there is a need to (1) include individuals with limited cognitive and language performance in neuroimaging research (non-sedated, awake) and (2) improve data quality across the performance range. The purpose of this study was to develop, implement, and test the feasibility of a clinical/behavioral and technical protocol for obtaining magnetoencephalography (MEG) data. Participants were 38 children with ASD (8-12 years) meeting the study definition of minimally verbal/nonverbal language. MEG data were obtained during a passive pure-tone auditory task. RESULTS Based on stakeholder feedback, the MEG Protocol for Low-language/cognitive Ability Neuroimaging (MEG-PLAN) was developed, integrating clinical/behavioral and technical components to be implemented by an interdisciplinary team (clinicians, behavior specialists, scientists, and technologists). Using MEG-PLAN, a 74% success rate was achieved for acquiring MEG data, with a 71% success rate for evaluable and analyzable data. Exploratory analyses suggested nonverbal IQ and adaptive skills were related to reaching the point of acquirable data. No differences in group characteristics were observed between those with acquirable versus evaluable/analyzable data. Examination of data quality (evaluable trial count) was acceptable. Moreover, results were reproducible, with high intraclass correlation coefficients for pure-tone auditory latency. CONCLUSIONS Children who have ASD who are minimally verbal/nonverbal, and often have co-occurring cognitive impairments, can be effectively and comfortably supported to complete an electrophysiological exam that yields valid and reproducible results. MEG-PLAN is a protocol that can be disseminated and implemented across research teams and adapted across technologies and neurodevelopmental disorders to collect electrophysiology and neuroimaging data in previously understudied groups of individuals.
Collapse
Affiliation(s)
- Emily S Kuschner
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, 2716 South Street, 5th Floor, Room 5251, Philadelphia, PA, 19146, USA. .,Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Mina Kim
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, 2716 South Street, 5th Floor, Room 5251, Philadelphia, PA, 19146, USA
| | - Luke Bloy
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, 2716 South Street, 5th Floor, Room 5251, Philadelphia, PA, 19146, USA
| | - Marissa Dipiero
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, 2716 South Street, 5th Floor, Room 5251, Philadelphia, PA, 19146, USA
| | - J Christopher Edgar
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, 2716 South Street, 5th Floor, Room 5251, Philadelphia, PA, 19146, USA
| | - Timothy P L Roberts
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, 2716 South Street, 5th Floor, Room 5251, Philadelphia, PA, 19146, USA
| |
Collapse
|
89
|
Zheng X, Luo J, Deng L, Li B, Li L, Huang DF, Song R. Detection of functional connectivity in the brain during visuo-guided grip force tracking tasks: A functional near-infrared spectroscopy study. J Neurosci Res 2020; 99:1108-1119. [PMID: 33368535 DOI: 10.1002/jnr.24769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 11/10/2022]
Abstract
The functional connectivity (FC) between multiple brain regions during tasks is currently gradually being explored with functional near-infrared spectroscopy (fNIRS). However, the FC present during grip force tracking tasks performed under visual feedback remains unclear. In the present study, we used fNIRS to measure brain activity during resting states and grip force tracking tasks at 25%, 50%, and 75% of maximum voluntary contraction (MVC) in 11 healthy subjects, and the activity was measured from four target brain regions: the left prefrontal cortex (lPFC), right prefrontal cortex (rPFC), left sensorimotor cortex (lSMC), and right sensorimotor cortex (rSMC). We determined the FC between these regions utilizing three different methods: Pearson's correlation method, partial correlation method, and a pairwise maximum entropy model (MEM). The results showed that the FC of lSMC-rSMC and lPFC-rPFC (interhemispheric homologous pairs) were significantly stronger than those of other brain region pairs. Moreover, FC of lPFC-rPFC was strengthened during the 75% MVC task compared to the other task states and the resting states. The FC of lSMC-lPFC and rSMC-rPFC (intrahemispheric region pairs) strengthened with a higher task load. The results provided new insights into the FC between brain regions during visuo-guided grip force tracking tasks.
Collapse
Affiliation(s)
- Xinyi Zheng
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Jie Luo
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Lingyun Deng
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Bing Li
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Le Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Engineering Technology Research Center for Rehabilitation Medicine and Clinical Translation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dong Feng Huang
- Guangdong Engineering Technology Research Center for Rehabilitation Medicine and Clinical Translation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Xinhua College, Sun Yat-sen University, Guangzhou, China
| | - Rong Song
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
90
|
Stute K, Hudl N, Stojan R, Voelcker-Rehage C. Shedding Light on the Effects of Moderate Acute Exercise on Working Memory Performance in Healthy Older Adults: An fNIRS Study. Brain Sci 2020; 10:E813. [PMID: 33153013 PMCID: PMC7693615 DOI: 10.3390/brainsci10110813] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 12/18/2022] Open
Abstract
Numerous studies have reported the beneficial effects of acute exercise on executive functions. Less is known, however, about the effects of exercise on working memory as one subcomponent of executive functions and about its effects on older adults. We investigated the effects of acute moderate-intensity exercise on working memory performance, the respective cortical hemodynamic activation patterns, and the development and persistence of such effects in healthy older adults. Forty-four participants (M: 69.18 years ± 3.92; 21 females) performed a letter 2-back task before and at three time points after (post 15 min, post 30 min, and post 45 min) either listening to an audiobook or exercising (15 min; 50% VO2-peak). Functional near-infrared spectroscopy (fNIRS) was used to assess cortical hemodynamic activation and brain-behavior correlations in the fronto-parietal working memory network. Overall, we found no group differences for working memory performance. However, only within the experimental group, 2-back performance was enhanced 15 min and 45 min post-exercise. Furthermore, 15 min post-exercise frontal activation predicted working memory performance, regardless of group. In sum, our results indicate slight beneficial effects of acute moderate-intensity exercise on working memory performance in healthy older adults. Findings are discussed in light of the cognitive aging process and moderators affecting the exercise-cognition relationship.
Collapse
Affiliation(s)
- Katharina Stute
- Institute of Human Movement Science and Health, Chemnitz University of Technology, 09126 Chemnitz, Germany; (K.S.); (N.H.); (R.S.)
| | - Nicole Hudl
- Institute of Human Movement Science and Health, Chemnitz University of Technology, 09126 Chemnitz, Germany; (K.S.); (N.H.); (R.S.)
| | - Robert Stojan
- Institute of Human Movement Science and Health, Chemnitz University of Technology, 09126 Chemnitz, Germany; (K.S.); (N.H.); (R.S.)
- Department of Neuromotor Behavior and Exercise, Institute of Sport and Exercise Sciences, University of Muenster, 48149 Muenster, Germany
| | - Claudia Voelcker-Rehage
- Institute of Human Movement Science and Health, Chemnitz University of Technology, 09126 Chemnitz, Germany; (K.S.); (N.H.); (R.S.)
- Department of Neuromotor Behavior and Exercise, Institute of Sport and Exercise Sciences, University of Muenster, 48149 Muenster, Germany
| |
Collapse
|
91
|
Phillips Z, Kim JB, Paik SH, Kang SY, Jeon NJ, Kim BM, Kim BJ. Regional analysis of cerebral hemodynamic changes during the head-up tilt test in Parkinson's disease patients with orthostatic intolerance. NEUROPHOTONICS 2020; 7:045006. [PMID: 33163544 PMCID: PMC7595744 DOI: 10.1117/1.nph.7.4.045006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
Significance: Cerebral oxygenation changes in the superior, middle, and medial gyri were used to elucidate spatial impairments of autonomic hemodynamic recovery during the head-up tilt table test (HUTT) in Parkinson's disease (PD) patients with orthostatic intolerance (OI) symptoms. Aim: To analyze dynamic oxygenation changes during the HUTT and classify PD patients with OI symptoms using clinical and oxygenation features. Approach: Thirty-nine PD patients with OI symptoms [10: orthostatic hypotension (PD-OH); 29: normal HUTT results (PD-NOR)] and seven healthy controls (HCs) were recruited. Prefrontal oxyhemoglobin (HbO) changes during the HUTT were reconstructed with diffuse optical tomography and segmented using the automated anatomical labeling system. Decision trees were used for classification. Results: HCs and PD-NOR patients with positive rates of HbO change (PD-POS) showed the greatest HbO recovery in the superior frontal gyrus (SFG) during tilt. PD-OH and PD-NOR patients with negative rates of HbO change (PD-NEG) showed asymmetric reoxygenation. The classification accuracy was 89.4% for PD-POS versus PD-NEG, 71% for PD-NOR versus PD-OH, and 55.8% for PD-POS versus PD-NEG versus PD-OH. The oxygenation features were more discriminative than the clinical features. Conclusions: PD-OH showed decreased right SFG function, which may be associated with impaired compensatory autonomic responses to orthostatic stress.
Collapse
Affiliation(s)
- Zephaniah Phillips
- Korea University, Department of Bio-Convergence Engineering, Seoul, Republic of Korea
| | - Jung Bin Kim
- Korea University Anam Hospital, Department of Neurology, Seoul, Republic of Korea
| | - Seung-Ho Paik
- Korea University, Department of Bio-Convergence Engineering, Seoul, Republic of Korea
- KLIEN Inc., Seoul Biohub, Seoul, Republic of Korea
| | - Shin-Young Kang
- Korea University, Department of Bio-Convergence Engineering, Seoul, Republic of Korea
| | - Nam-Joon Jeon
- Korea University Anam Hospital, Neurophysiology Laboratory, Seoul, Republic of Korea
| | - Beop-Min Kim
- Korea University, Department of Bio-Convergence Engineering, Seoul, Republic of Korea
| | - Byung-Jo Kim
- Korea University Anam Hospital, Department of Neurology, Seoul, Republic of Korea
- Korea University Anam Hospital, Brain Convergence Research Center, Seoul, Republic of Korea
- Korea University, BK21 FOUR Program in Learning Health Systems, Seoul, Republic of Korea
| |
Collapse
|
92
|
Recent Developments in Instrumentation of Functional Near-Infrared Spectroscopy Systems. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10186522] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In the last three decades, the development and steady improvement of various optical technologies at the near-infrared region of the electromagnetic spectrum has inspired a large number of scientists around the world to design and develop functional near-infrared spectroscopy (fNIRS) systems for various medical applications. This has been driven further by the availability of new sources and detectors that support very compact and wearable system designs. In this article, we review fNIRS systems from the instrumentation point of view, discussing the associated challenges and state-of-the-art approaches. In the beginning, the fundamentals of fNIRS systems as well as light-tissue interaction at NIR are briefly introduced. After that, we present the basics of NIR systems instrumentation. Next, the recent development of continuous-wave, frequency-domain, and time-domain fNIRS systems are discussed. Finally, we provide a summary of these three modalities and an outlook into the future of fNIRS technology.
Collapse
|
93
|
Vera DA, Baez GR, García HA, Iriarte DI, Pomarico JA. A comparison between plausible models in layered turbid media with geometrical variations applying a Bayesian selection criterion. Biomed Phys Eng Express 2020; 6:055020. [PMID: 33444251 DOI: 10.1088/2057-1976/abae48] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
One possible application of Near Infrared techniques is to analyze human brain metabolic activity. Currently used models take into account the layered structure of the human head but, usually, they do not consider the non-planar surface of some of the boundaries, i.e. gray matter, which results in a much more complex structure, thus leading to more sophisticated models and longer calculation times. The main objective of this work is to determine if it is worth to replace a planar layered structure by a non-planar one. To this end we implement a Bayesian-based quantitative methodology for choosing between two competitive models describing light propagation in layered turbid media. Experiments of time-resolved diffuse reflectance measurements are performed in layered phantoms and complemented with numerical calculations. The resulting Distributions of Time of Flight of both models are compared using Bayesian model selection analysis. The non-planar interface was introduced in the simulations by a simple surface parametrization. Results suggest that, under certain conditions, a multilayer model with planar boundaries is good enough.
Collapse
Affiliation(s)
- Demián A Vera
- Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires (CIFICEN, UNCPBA-CICPBA - CONICET) Pinto 399, B7000GHG-Tandil, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
94
|
Bonilauri A, Sangiuliano Intra F, Pugnetti L, Baselli G, Baglio F. A Systematic Review of Cerebral Functional Near-Infrared Spectroscopy in Chronic Neurological Diseases-Actual Applications and Future Perspectives. Diagnostics (Basel) 2020; 10:E581. [PMID: 32806516 PMCID: PMC7459924 DOI: 10.3390/diagnostics10080581] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The management of people affected by age-related neurological disorders requires the adoption of targeted and cost-effective interventions to cope with chronicity. Therapy adaptation and rehabilitation represent major targets requiring long-term follow-up of neurodegeneration or, conversely, the promotion of neuroplasticity mechanisms. However, affordable and reliable neurophysiological correlates of cerebral activity to be used throughout treatment stages are often lacking. The aim of this systematic review is to highlight actual applications of functional Near-Infrared Spectroscopy (fNIRS) as a versatile optical neuroimaging technology for investigating cortical hemodynamic activity in the most common chronic neurological conditions. METHODS We reviewed studies investigating fNIRS applications in Parkinson's Disease (PD), Alzheimer's Disease (AD) and Mild Cognitive Impairment (MCI) as those focusing on motor and cognitive impairment in ageing and Multiple Sclerosis (MS) as the most common chronic neurological disease in young adults. The literature search was conducted on NCBI PubMed and Web of Science databases by PRISMA guidelines. RESULTS We identified a total of 63 peer-reviewed articles. The AD spectrum is the most investigated pathology with 40 articles ranging from the traditional monitoring of tissue oxygenation to the analysis of functional resting-state conditions or cognitive functions by means of memory and verbal fluency tasks. Conversely, applications in PD (12 articles) and MS (11 articles) are mainly focused on the characterization of motor functions and their association with dual-task conditions. The most investigated cortical area is the prefrontal cortex, since reported to play an important role in age-related compensatory mechanism and neurofunctional changes associated to these chronic neurological conditions. Interestingly, only 9 articles applied a longitudinal approach. CONCLUSION The results indicate that fNIRS is mainly employed for the cross-sectional characterization of the clinical phenotypes of these pathologies, whereas data on its utility for longitudinal monitoring as surrogate biomarkers of disease progression and rehabilitation effects are promising but still lacking.
Collapse
Affiliation(s)
- Augusto Bonilauri
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy; (A.B.); (G.B.)
| | - Francesca Sangiuliano Intra
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, CADITER, 20148 Milan, Italy; (L.P.); (F.B.)
- Faculty of Education, Free University of Bozen-Bolzano, 39100 Bolzano, Italy
| | - Luigi Pugnetti
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, CADITER, 20148 Milan, Italy; (L.P.); (F.B.)
| | - Giuseppe Baselli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy; (A.B.); (G.B.)
| | - Francesca Baglio
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, CADITER, 20148 Milan, Italy; (L.P.); (F.B.)
| |
Collapse
|
95
|
Lutz Y, Meiner T, Krames L, Cattaneo G, Meckel S, Dossel O, Loewe A. Selective Brain Hypothermia for Ischemic MCA-M1 Stroke: Influence of Cerebral Arterial Circulation in a 3D Brain Temperature Model. IEEE Trans Biomed Eng 2020; 68:404-415. [PMID: 32746020 DOI: 10.1109/tbme.2020.3000521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Acute ischemic stroke is a major health problem with a high mortality rate and a high risk for permanent disabilities. Selective brain hypothermia has the neuroprotective potential to possibly lower cerebral harm. A recently developed catheter system enables to combine endovascular blood cooling and thrombectomy using the same endovascular access. By using the penumbral perfusion via leptomeningeal collaterals, the catheter aims at enabling a cold reperfusion, which mitigates the risk of a reperfusion injury. However, cerebral circulation is highly patient-specific and can vary greatly. Since direct measurement of remaining perfusion and temperature decrease induced by the catheter is not possible without additional harm to the patient, computational modeling provides an alternative to gain knowledge about resulting cerebral temperature decrease. In this work, we present a brain temperature model with a realistic division into gray and white matter and consideration of spatially resolved perfusion. Furthermore, it includes detailed anatomy of cerebral circulation with possibility of personalizing on base of real patient anatomy. For evaluation of catheter performance in terms of cold reperfusion and to analyze its general performance, we calculated the decrease in brain temperature in case of a large vessel occlusion in the middle cerebral artery (MCA) for different scenarios of cerebral arterial anatomy. Congenital arterial variations in the circle of Willis had a distinct influence on the cooling effect and the resulting spatial temperature distribution before vessel recanalization. Independent of the branching configurations, the model predicted a cold reperfusion due to a strong temperature decrease after recanalization (1.4-2.2 °C after 25 min of cooling, recanalization after 20 min of cooling). Our model illustrates the effectiveness of endovascular cooling in combination with mechanical thrombectomy and its results serve as an adequate substitute for temperature measurement in a clinical setting in the absence of direct intraparenchymal temperature probes.
Collapse
|
96
|
Kawaguchi H, Tanikawa Y, Yamada T. Exclusive detection of cerebral hemodynamics in functional near-infrared spectroscopy by reflectance modulation of the scalp surface. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:1-16. [PMID: 32762174 PMCID: PMC7403450 DOI: 10.1117/1.jbo.25.8.087001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
SIGNIFICANCE Functional near-infrared spectroscopy (fNIRS) is a technique for detecting regional hemodynamic responses associated with neural activation in the cerebral cortex. The absorption changes due to hemodynamic changes in the scalp cause considerable signal contamination in the fNIRS measurement. A method for extracting hemodynamic changes in the cerebral tissue is required for reliable fNIRS measurement. AIM To exclusively detect cerebral functional hemodynamic changes, we developed an fNIRS technique using reflectance modulation of the scalp surface. APPROACH The theoretical feasibility of the proposed method was proven by a simulation calculation of light propagation. Its practical feasibility was evaluated by a phantom experiment and brain activation simulation mimicking human fNIRS experiments. RESULTS The simulation calculation revealed that the partial path length of the scalp was changed by reflectance modulation of the scalp surface. The influence of absorption change in the superficial layer was successfully reduced by the proposed method, using only measurement data, in the phantom experiment. The proposed method was applicable to human experiments of standard designs, achieving statistical significance within an acceptable experimental time-frame. CONCLUSIONS Removal of the scalp hemodynamic effect by the proposed technique will increase the quality of fNIRS data, particularly in measurements in neonates and infants that typically would require a dense optode arrangement.
Collapse
Affiliation(s)
- Hiroshi Kawaguchi
- National Institute of Advanced Industrial Science and Technology (AIST), Human Informatics and Interaction Research Institute, Tsukuba, Japan
| | - Yukari Tanikawa
- National Institute of Advanced Industrial Science and Technology (AIST), Human Informatics and Interaction Research Institute, Tsukuba, Japan
| | - Toru Yamada
- National Institute of Advanced Industrial Science and Technology (AIST), Human Informatics and Interaction Research Institute, Tsukuba, Japan
| |
Collapse
|
97
|
Wyser D, Mattille M, Wolf M, Lambercy O, Scholkmann F, Gassert R. Short-channel regression in functional near-infrared spectroscopy is more effective when considering heterogeneous scalp hemodynamics. NEUROPHOTONICS 2020; 7:035011. [PMID: 33029548 PMCID: PMC7523733 DOI: 10.1117/1.nph.7.3.035011] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 09/04/2020] [Indexed: 05/20/2023]
Abstract
Significance: The reliability of functional near-infrared spectroscopy (fNIRS) measurements is reduced by systemic physiology. Short-channel regression algorithms aim at removing systemic "noise" by subtracting the signal measured at a short source-detector separation (mainly scalp hemodynamics) from the one of a long separation (brain and scalp hemodynamics). In literature, incongruent approaches on the selection of the optimal regressor signal are reported based on different assumptions on scalp hemodynamics properties. Aim: We investigated the spatial and temporal distribution of scalp hemodynamics over the sensorimotor cortex and evaluated its influence on the effectiveness of short-channel regressions. Approach: We performed hand-grasping and resting-state experiments with five subjects, measuring with 16 optodes over sensorimotor areas, including eight 8-mm channels. We performed detailed correlation analyses of scalp hemodynamics and evaluated 180 hand-grasping and 270 simulated (overlaid on resting-state measurements) trials. Five short-channel regressor combinations were implemented with general linear models. Three were chosen according to literature, and two were proposed based on additional physiological assumptions [considering multiple short channels and their Mayer wave (MW) oscillations]. Results: We found heterogeneous hemodynamics in the scalp, coming on top of a global close-to-homogeneous behavior (correlation 0.69 to 0.92). The results further demonstrate that short-channel regression always improves brain activity estimates but that better results are obtained when heterogeneity is assumed. In particular, we highlight that short-channel regression is more effective when combining multiple scalp regressors and when MWs are additionally included. Conclusion: We shed light on the selection of optimal regressor signals for improving the removal of systemic physiological artifacts in fNIRS. We conclude that short-channel regression is most effective when assuming heterogeneous hemodynamics, in particular when combining spatial- and frequency-specific information. A better understanding of scalp hemodynamics and more effective short-channel regression will promote more accurate assessments of functional brain activity in clinical and research settings.
Collapse
Affiliation(s)
- Dominik Wyser
- ETH Zurich, Department of Health Sciences and Technology, Rehabilitation Engineering Laboratory, Zurich, Switzerland
- University Hospital Zurich, University of Zurich, Department of Neonatology, Biomedical Optics Research Laboratory, Zurich, Switzerland
| | - Michelle Mattille
- ETH Zurich, Department of Health Sciences and Technology, Rehabilitation Engineering Laboratory, Zurich, Switzerland
| | - Martin Wolf
- University Hospital Zurich, University of Zurich, Department of Neonatology, Biomedical Optics Research Laboratory, Zurich, Switzerland
| | - Olivier Lambercy
- ETH Zurich, Department of Health Sciences and Technology, Rehabilitation Engineering Laboratory, Zurich, Switzerland
| | - Felix Scholkmann
- University Hospital Zurich, University of Zurich, Department of Neonatology, Biomedical Optics Research Laboratory, Zurich, Switzerland
- University of Bern, Institute of Complementary and Integrative Medicine, Bern, Switzerland
| | - Roger Gassert
- ETH Zurich, Department of Health Sciences and Technology, Rehabilitation Engineering Laboratory, Zurich, Switzerland
| |
Collapse
|
98
|
Gorniak SL, Wagner VE, Vaughn K, Perry J, Cox LG, Hernandez AE, Pollonini L. Functional neuroimaging of sensorimotor cortices in postmenopausal women with type II diabetes. NEUROPHOTONICS 2020; 7:035007. [PMID: 32905073 PMCID: PMC7467056 DOI: 10.1117/1.nph.7.3.035007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/14/2020] [Indexed: 05/19/2023]
Abstract
Significance: Deficits in sensorimotor function in persons with type II diabetes mellitus (PwDM) have traditionally been considered a result of peripheral nerve damage. Emerging evidence has suggested that factors outside of nerve damage due to type II diabetes mellitus, such as impaired hemodynamic function, contribute significantly to both sensory and motor deficits in PwDM. Aim: The focus of the current study was to evaluate functional cortical hemodynamic activity during sensory and motor tasks in PwDM. Approach: Functional near-infrared spectroscopy was used to monitor oxyhemoglobin (HbO) and deoxyhemoglobin (HbR) across the cortex during sensory and motor tasks involving the hands. Results: Decline in HbO across sensory and motor regions of interest was found in PwDM with simultaneous deficits in manual motor tasks, providing the first evidence of functional cortical hemodynamic activity deficits relating to motor dysfunction in PwDM. Similar deficits were neither specifically noted in HbR nor during evaluation of sensory function. Health state indices, such asA 1 c , blood pressure, body mass index, and cholesterol, were found to clarify group effects. Conclusions: Further work is needed to clarify potential sex-based differences in PwDM during motor tasks as well as the root of reduced cortical HbO indices but unchanged HbR indices in PwDM.
Collapse
Affiliation(s)
- Stacey L. Gorniak
- University of Houston, Department of Health and Human Performance, Houston, Texas, United States
| | - Victoria E. Wagner
- University of Houston, Department of Psychology, Houston, Texas, United States
| | - Kelly Vaughn
- University of Houston, Department of Psychology, Houston, Texas, United States
| | - Jonathan Perry
- University of Houston, Department of Engineering Technology, Houston, Texas, United States
| | - Lauren Gulley Cox
- University of Houston, Department of Health and Human Performance, Houston, Texas, United States
| | - Arturo E. Hernandez
- University of Houston, Department of Psychology, Houston, Texas, United States
| | - Luca Pollonini
- University of Houston, Department of Engineering Technology, Houston, Texas, United States
| |
Collapse
|
99
|
Sie EJ, Chen H, Saung EF, Catoen R, Tiecke T, Chevillet MA, Marsili F. High-sensitivity multispeckle diffuse correlation spectroscopy. NEUROPHOTONICS 2020; 7:035010. [PMID: 32995362 PMCID: PMC7519351 DOI: 10.1117/1.nph.7.3.035010] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/04/2020] [Indexed: 05/04/2023]
Abstract
Significance: Cerebral blood flow is an important biomarker of brain health and function as it regulates the delivery of oxygen and substrates to tissue and the removal of metabolic waste products. Moreover, blood flow changes in specific areas of the brain are correlated with neuronal activity in those areas. Diffuse correlation spectroscopy (DCS) is a promising noninvasive optical technique for monitoring cerebral blood flow and for measuring cortex functional activation tasks. However, the current state-of-the-art DCS adoption is hindered by a trade-off between sensitivity to the cortex and signal-to-noise ratio (SNR). Aim: We aim to develop a scalable method that increases the sensitivity of DCS instruments. Approach: We report on a multispeckle DCS (mDCS) approach that is based on a 1024-pixel single-photon avalanche diode (SPAD) camera. Our approach is scalable to > 100,000 independent speckle measurements since large-pixel-count SPAD cameras are becoming available, owing to the investments in LiDAR technology for automotive and augmented reality applications. Results: We demonstrated a 32-fold increase in SNR with respect to traditional single-speckle DCS. Conclusion: A mDCS system that is based on a SPAD camera serves as a scalable method toward high-sensitivity DCS measurements, thus enabling both high sensitivity to the cortex and high SNR.
Collapse
Affiliation(s)
- Edbert J. Sie
- Facebook Reality Labs Research, Menlo Park, California, United States
- Address all correspondence to Edbert J. Sie, ; Francesco Marsili,
| | - Hui Chen
- Facebook Reality Labs Research, Menlo Park, California, United States
| | - E-Fann Saung
- Facebook Reality Labs Research, Menlo Park, California, United States
| | - Ryan Catoen
- Facebook Reality Labs Research, Menlo Park, California, United States
| | - Tobias Tiecke
- Facebook Reality Labs Research, Menlo Park, California, United States
| | - Mark A. Chevillet
- Facebook Reality Labs Research, Menlo Park, California, United States
| | - Francesco Marsili
- Facebook Reality Labs Research, Menlo Park, California, United States
- Address all correspondence to Edbert J. Sie, ; Francesco Marsili,
| |
Collapse
|
100
|
Abnormal Cortical Activation in Visual Attention Processing in Sub-Clinical Psychopathic Traits and Traumatic Brain Injury: Evidence from an fNIRS Study. JOURNAL OF PSYCHOPATHOLOGY AND BEHAVIORAL ASSESSMENT 2020. [DOI: 10.1007/s10862-020-09808-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|