51
|
Mangino G, Arrones A, Plazas M, Pook T, Prohens J, Gramazio P, Vilanova S. Newly Developed MAGIC Population Allows Identification of Strong Associations and Candidate Genes for Anthocyanin Pigmentation in Eggplant. FRONTIERS IN PLANT SCIENCE 2022; 13:847789. [PMID: 35330873 PMCID: PMC8940277 DOI: 10.3389/fpls.2022.847789] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/20/2022] [Indexed: 05/17/2023]
Abstract
Multi-parent advanced generation inter-cross (MAGIC) populations facilitate the genetic dissection of complex quantitative traits in plants and are valuable breeding materials. We report the development of the first eggplant MAGIC population (S3 Magic EGGplant InCanum, S3MEGGIC; 8-way), constituted by the 420 S3 individuals developed from the intercrossing of seven cultivated eggplant (Solanum melongena) and one wild relative (S. incanum) parents. The S3MEGGIC recombinant population was genotyped with the eggplant 5k probes SPET platform and phenotyped for anthocyanin presence in vegetative plant tissues (PA) and fruit epidermis (FA), and for the light-insensitive anthocyanic pigmentation under the calyx (PUC). The 7,724 filtered high-confidence single-nucleotide polymorphisms (SNPs) confirmed a low residual heterozygosity (6.87%), a lack of genetic structure in the S3MEGGIC population, and no differentiation among subpopulations carrying a cultivated or wild cytoplasm. Inference of haplotype blocks of the nuclear genome revealed an unbalanced representation of the founder genomes, suggesting a cryptic selection in favour or against specific parental genomes. Genome-wide association study (GWAS) analysis for PA, FA, and PUC detected strong associations with two myeloblastosis (MYB) genes similar to MYB113 involved in the anthocyanin biosynthesis pathway, and with a COP1 gene which encodes for a photo-regulatory protein and may be responsible for the PUC trait. Evidence was found of a duplication of an ancestral MYB113 gene with a translocation from chromosome 10 to chromosome 1 compared with the tomato genome. Parental genotypes for the three genes were in agreement with the identification of the candidate genes performed in the S3MEGGIC population. Our new eggplant MAGIC population is the largest recombinant population in eggplant and is a powerful tool for eggplant genetics and breeding studies.
Collapse
Affiliation(s)
- Giulio Mangino
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Andrea Arrones
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Mariola Plazas
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia, Spain
| | - Torsten Pook
- Animal Breeding and Genetics Group, Department of Animal Sciences, Center for Integrated Breeding Research, University of Göttingen, Göttingin, Germany
| | - Jaime Prohens
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Pietro Gramazio
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia, Spain
| | - Santiago Vilanova
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
52
|
Sim SB, Corpuz RL, Simmonds TJ, Geib SM. HiFiAdapterFilt, a memory efficient read processing pipeline, prevents occurrence of adapter sequence in PacBio HiFi reads and their negative impacts on genome assembly. BMC Genomics 2022; 23:157. [PMID: 35193521 PMCID: PMC8864876 DOI: 10.1186/s12864-022-08375-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 02/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pacific Biosciences HiFi read technology is currently the industry standard for high accuracy long-read sequencing that has been widely adopted by large sequencing and assembly initiatives for generation of de novo assemblies in non-model organisms. Though adapter contamination filtering is routine in traditional short-read analysis pipelines, it has not been widely adopted for HiFi workflows. RESULTS Analysis of 55 publicly available HiFi datasets revealed that a read-sanitation step to remove sequence artifacts derived from PacBio library preparation from read pools is necessary as adapter sequences can be erroneously integrated into assemblies. CONCLUSIONS Here we describe the nature of adapter contaminated reads, their consequences in assembly, and present HiFiAdapterFilt, a simple and memory efficient solution for removing adapter contaminated reads prior to assembly.
Collapse
Affiliation(s)
- Sheina B Sim
- USDA-ARS Daniel K. Inouye US Pacific Basin Agricultural Research Center, 64 Nowelo Street, Hilo, HI, 96720, USA.
| | - Renee L Corpuz
- USDA-ARS Daniel K. Inouye US Pacific Basin Agricultural Research Center, 64 Nowelo Street, Hilo, HI, 96720, USA
| | - Tyler J Simmonds
- USDA-ARS Daniel K. Inouye US Pacific Basin Agricultural Research Center, 64 Nowelo Street, Hilo, HI, 96720, USA.,Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, TN, 37830, USA
| | - Scott M Geib
- USDA-ARS Daniel K. Inouye US Pacific Basin Agricultural Research Center, 64 Nowelo Street, Hilo, HI, 96720, USA
| |
Collapse
|
53
|
Sewe SO, Silva G, Sicat P, Seal SE, Visendi P. Trimming and Validation of Illumina Short Reads Using Trimmomatic, Trinity Assembly, and Assessment of RNA-Seq Data. Methods Mol Biol 2022; 2443:211-232. [PMID: 35037208 DOI: 10.1007/978-1-0716-2067-0_11] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Next-generation sequencing (NGS) technologies can generate billions of reads in a single sequencing run. However, with such high-throughput comes quality issues which have to be addressed before undertaking downstream analysis. Quality control on short reads is usually performed at default settings due to a lack of in-depth understanding of a particular software's parameters and their effect if changed on the output. Here we demonstrate how to optimize read trimming using Trimmomatic. We highlight the benefits of trimming by comparing the quality of transcripts assembled using trimmed and untrimmed reads.
Collapse
Affiliation(s)
- Steven O Sewe
- Natural Resources Institute, University of Greenwich, Kent, UK
| | - Gonçalo Silva
- Natural Resources Institute, University of Greenwich, Kent, UK
| | - Paulo Sicat
- Natural Resources Institute, University of Greenwich, Kent, UK
| | - Susan E Seal
- Natural Resources Institute, University of Greenwich, Kent, UK
| | - Paul Visendi
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia.
| |
Collapse
|
54
|
Deo PN, Deshmukh RS. Oral microbiome research - A Beginner's glossary. J Oral Maxillofac Pathol 2022; 26:87-92. [PMID: 35571306 PMCID: PMC9106258 DOI: 10.4103/jomfp.jomfp_455_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/02/2022] [Indexed: 11/04/2022] Open
Abstract
Oral microbiome plays a key role in the etiology of oral diseases and is linked to many diseases in other parts of the body as well. This makes the oral microbiome an area of interest for researchers globally. A meticulous planning of the research project is the first and most crucial step while conducting an oral microbiome study. For beginners in this field, it is essential to be familiar with the terminologies used in oral microbiome research for a better understanding. The purpose of this article is to familiarize new researchers to the frequently used terms for the field of oral microbiome research.
Collapse
Affiliation(s)
- Priya Nimish Deo
- Department of Oral Pathology and Microbiology, Bharati Vidyapeeth Deemed to be University, Dental College and Hospital, Pune, Maharashtra, India
| | - Revati Shailesh Deshmukh
- Department of Oral Pathology and Microbiology, Bharati Vidyapeeth Deemed to be University, Dental College and Hospital, Pune, Maharashtra, India
| |
Collapse
|
55
|
Silva JM, Pratas D, Caetano T, Matos S. Feature-Based Classification of Archaeal Sequences Using Compression-Based Methods. PATTERN RECOGNITION AND IMAGE ANALYSIS 2022. [DOI: 10.1007/978-3-031-04881-4_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
56
|
Nugroho ABD, Lee SW, Pervitasari AN, Moon H, Choi D, Kim J, Kim DH. Transcriptomic and metabolic analyses revealed the modulatory effect of vernalization on glucosinolate metabolism in radish (Raphanus sativus L.). Sci Rep 2021; 11:24023. [PMID: 34912010 PMCID: PMC8674254 DOI: 10.1038/s41598-021-03557-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/01/2021] [Indexed: 12/13/2022] Open
Abstract
Vernalization is the process by which long-term cold like winter triggers transition to flowering in plants. Many biennial and perennial plants including Brassicaceae family plants require vernalization for floral transition. Not only floral transition, but dynamic physiological and metabolic changes might also take place during vernalization. However, vernalization-mediated metabolic change is merely investigated so far. One of secondary metabolites found in Brassiceceae family plants is glucosinolates (GSLs). GSLs provides defense against pathogens and herbivores attack in plants and also exhibits inhibitory activity against human cancer cell. Profiles of GSLs are highly modulated by different environmental stresses in Brassciaceae family plants. To grasp the effect of vernalization on GSLs metabolic dynamics in radish (Raphanus sativus L.), we performed transcriptomic and metabolic analysis during vernalization in radish. Through transcriptome analysis, we found many GSLs metabolic genes were significantly down-regulated by vernalization in radish plants. Ultra-High Performance Liquid Chromatography analysis also revealed that GSLs compounds were substantially reduced in vernalized radish samples compared to non-vernalized radish samples. Furthermore, we found that repressive histone modification (i.e. H3K27me3) is involved in the modulation of GSLs metabolism via epigenetic suppression of Glucoraphasatin Synthase 1 (GRS1) during vernalization in radish. This study revealed that GSLs metabolism is modulated by vernalization, suggestive of a newly identified target of vernalization in radish.
Collapse
Affiliation(s)
- Adji Baskoro Dwi Nugroho
- Department of Plant Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Sang Woo Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | | | - Heewon Moon
- Department of Plant Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Dasom Choi
- Department of Plant Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Jongkee Kim
- Department of Plant Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Dong-Hwan Kim
- Department of Plant Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea. .,Research Center for Plant Plasticity, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
57
|
Wagner DD, Carleton HA, Trees E, Katz LS. Evaluating whole-genome sequencing quality metrics for enteric pathogen outbreaks. PeerJ 2021; 9:e12446. [PMID: 34900416 PMCID: PMC8627651 DOI: 10.7717/peerj.12446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 10/18/2021] [Indexed: 11/25/2022] Open
Abstract
Background Whole genome sequencing (WGS) has gained increasing importance in responses to enteric bacterial outbreaks. Common analysis procedures for WGS, single nucleotide polymorphisms (SNPs) and genome assembly, are highly dependent upon WGS data quality. Methods Raw, unprocessed WGS reads from Escherichia coli, Salmonella enterica, and Shigella sonnei outbreak clusters were characterized for four quality metrics: PHRED score, read length, library insert size, and ambiguous nucleotide composition. PHRED scores were strongly correlated with improved SNPs analysis results in E. coli and S. enterica clusters. Results Assembly quality showed only moderate correlations with PHRED scores and library insert size, and then only for Salmonella. To improve SNP analyses and assemblies, we compared seven read-healing pipelines to improve these four quality metrics and to see how well they improved SNP analysis and genome assembly. The most effective read healing pipelines for SNPs analysis incorporated quality-based trimming, fixed-width trimming, or both. The Lyve-SET SNPs pipeline showed a more marked improvement than the CFSAN SNP Pipeline, but the latter performed better on raw, unhealed reads. For genome assembly, SPAdes enabled significant improvements in healed E. coli reads only, while Skesa yielded no significant improvements on healed reads. Conclusions PHRED scores will continue to be a crucial quality metric albeit not of equal impact across all types of analyses for all enteric bacteria. While trimming-based read healing performed well for SNPs analyses, different read healing approaches are likely needed for genome assembly or other, emerging WGS analysis methodologies.
Collapse
Affiliation(s)
- Darlene D Wagner
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States of America.,Eagle Medical Services, LLC, Atlanta, GA, United States of America
| | - Heather A Carleton
- Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Eija Trees
- Association of Public Health Laboratories, Silver Spring, MD, United States of America
| | - Lee S Katz
- Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States of America.,Center for Food Safety, University of Georgia, Griffin, GA, United States of America
| |
Collapse
|
58
|
Extensive Genome Exploration of Clostridium botulinum Group III Field Strains. Microorganisms 2021; 9:microorganisms9112347. [PMID: 34835472 PMCID: PMC8624178 DOI: 10.3390/microorganisms9112347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/03/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
In animals, botulism is commonly sustained by botulinum neurotoxin C, D or their mosaic variants, which are produced by anaerobic bacteria included in Clostridium botulinum group III. In this study, a WGS has been applied to a large collection of C. botulinum group III field strains in order to expand the knowledge on these BoNT-producing Clostridia and to evaluate the potentiality of this method for epidemiological investigations. Sixty field strains were submitted to WGS, and the results were analyzed with respect to epidemiological information and compared to published sequences. The strains were isolated from biological or environmental samples collected in animal botulism outbreaks which occurred in Italy from 2007 to 2016. The new sequenced strains belonged to subspecific groups, some of which were already defined, while others were newly characterized, peculiar to Italian strains and contained genomic features not yet observed. This included, in particular, two new flicC types (VI and VII) and new plasmids which widen the known plasmidome of the species. The extensive genome exploration shown in this study improves the C. botulinum and related species classification scheme, enriching it with new strains of rare genotypes and permitting the highest grade of discrimination among strains for forensic and epidemiological applications.
Collapse
|
59
|
Calderón-Acevedo CA, Bagley JC, Muchhala N. Genome-wide ultraconserved elements resolve phylogenetic relationships and biogeographic history among Neotropical leaf-nosed bats in the genus Anoura (Phyllostomidae). Mol Phylogenet Evol 2021; 167:107356. [PMID: 34774763 DOI: 10.1016/j.ympev.2021.107356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/26/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Abstract
AnouraGray, 1838 are Neotropical nectarivorous bats and the most speciose genus within the phyllostomid subfamily Glossophaginae. However, Anoura species limits remain debated, and phylogenetic relationships remain poorly known, because previous studies used limited Anoura taxon sampling or focused primarily on higher-level relationships. Here, we conduct the first phylogenomic study of Anoura by analyzing 2039 genome-wide ultraconserved elements (UCEs) sequenced for 42 individuals from 8 Anoura species/lineages plus two outgroups. Overall, our results based on UCEs resolved relationships in the genus and supported (1) the monophyly of small-bodied Anoura species (previously genus Lonchoglossa); (2) monotypic status of A. caudifer; and (3) nested positions of "A. carishina", A. caudifer aequatoris, and A. geoffroyi peruana specimens within A. latidens, A. caudifer and A. geoffroyi, respectively (suggesting that these taxa are not distinct species). Additionally, (4) phylogenetic networks allowing reticulate edges did not explain gene tree discordance better than the species tree (without introgression), indicating that a coalescent model accounting for discordance solely through incomplete lineage sorting fit our data well. Sensitivity analyses indicated that our species tree results were not adversely affected by varying taxon sampling across loci. Tree calibration and Bayesian coalescent analyses dated the onset of diversification within Anoura to around ∼ 6-9 million years ago in the Miocene, with extant species diverging mainly within the past ∼ 4 million years. We inferred a historical biogeographical scenario for Anoura of parapatric speciation fragmenting the range of a wide-ranging ancestral lineage centered in the Central to Northern Andes, along with Pliocene-Pleistocene dispersal or founder event speciation in Amazonia and the Brazilian Atlantic forest during the last ∼ 2.5 million years.
Collapse
Affiliation(s)
- Camilo A Calderón-Acevedo
- Department of Biology, University of Missouri-St. Louis, One University Blvd., 223 Research Bldg., St. Louis, MO 63121, USA; Department of Earth and Environmental Science, Rutgers University, 195 University Ave., Boyden Hall 433, Newark, NJ, 07102 USA.
| | - Justin C Bagley
- Department of Biology, University of Missouri-St. Louis, One University Blvd., 223 Research Bldg., St. Louis, MO 63121, USA; Department of Biology, Jacksonville State University, 242 Martin Hall, 700 Pelham Rd North, Jacksonville, AL 36265, USA; Department of Biology, Virginia Commonwealth University, 1000 W Cary St., Suite 126, Richmond, VA 23284, USA.
| | - Nathan Muchhala
- Department of Biology, University of Missouri-St. Louis, One University Blvd., 223 Research Bldg., St. Louis, MO 63121, USA.
| |
Collapse
|
60
|
Microbial Plankton Community Structure and Function Responses to Vitamin B 12 and B 1 Amendments in an Upwelling System. Appl Environ Microbiol 2021; 87:e0152521. [PMID: 34495690 PMCID: PMC8552899 DOI: 10.1128/aem.01525-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
B vitamins are essential cofactors for practically all living organisms on Earth and are produced by a selection of microorganisms. An imbalance between high demand and limited production, in concert with abiotic processes, may explain the low availability of these vitamins in marine systems. Natural microbial communities from surface shelf water in the productive area off northwestern Spain were enclosed in mesocosms in winter, spring, and summer 2016. In order to explore the impact of B-vitamin availability on microbial community composition (16S and 18S rRNA gene sequence analysis) and bacterial function (metatranscriptomics analysis) in different seasons, enrichment experiments were conducted with seawater from the mesocosms. Our findings revealed that significant increases in phytoplankton or prokaryote biomass associated with vitamin B12 and/or B1 amendments were not accompanied by significant changes in community composition, suggesting that most of the microbial taxa benefited from the external B-vitamin supply. Metatranscriptome analysis suggested that many bacteria were potential consumers of vitamins B12 and B1, although the relative abundance of reads related to synthesis was ca. 3.6-fold higher than that related to uptake. Alteromonadales and Oceanospirillales accounted for important portions of vitamin B1 and B12 synthesis gene transcription, despite accounting for only minor portions of the bacterial community. Flavobacteriales appeared to be involved mostly in vitamin B12 and B1 uptake, and Pelagibacterales expressed genes involved in vitamin B1 uptake. Interestingly, the relative expression of vitamin B12 and B1 synthesis genes among bacteria strongly increased upon inorganic nutrient amendment. Collectively, these findings suggest that upwelling events intermittently occurring during spring and summer in productive ecosystems may ensure an adequate production of these cofactors to sustain high levels of phytoplankton growth and biomass. IMPORTANCE B vitamins are essential growth factors for practically all living organisms on Earth that are produced by a selection of microorganisms. An imbalance between high demand and limited production may explain the low concentration of these compounds in marine systems. In order to explore the impact of B-vitamin availability on bacteria and algae in the coastal waters off northwestern Spain, six experiments were conducted with natural surface water enclosed in winter, spring, and summer. Our findings revealed that increases in phytoplankton or bacterial growth associated with B12 and/or B1 amendments were not accompanied by significant changes in community composition, suggesting that most microorganisms benefited from the B-vitamin supply. Our analyses confirmed the role of many bacteria as consumers of vitamins B12 and B1, although the relative abundance of genes related to synthesis was ca. 3.6-fold higher than that related to uptake. Interestingly, prokaryote expression of B12 and B1 synthesis genes strongly increased when inorganic nutrients were added. Collectively, these findings suggest that upwelling of cold and nutrient-rich waters occurring during spring and summer in this coastal area may ensure an adequate production of B vitamins to sustain high levels of algae growth and biomass.
Collapse
|
61
|
Voshall A, Behera S, Li X, Yu XH, Kapil K, Deogun JS, Shanklin J, Cahoon EB, Moriyama EN. A consensus-based ensemble approach to improve transcriptome assembly. BMC Bioinformatics 2021; 22:513. [PMID: 34674629 PMCID: PMC8532302 DOI: 10.1186/s12859-021-04434-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 10/10/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Systems-level analyses, such as differential gene expression analysis, co-expression analysis, and metabolic pathway reconstruction, depend on the accuracy of the transcriptome. Multiple tools exist to perform transcriptome assembly from RNAseq data. However, assembling high quality transcriptomes is still not a trivial problem. This is especially the case for non-model organisms where adequate reference genomes are often not available. Different methods produce different transcriptome models and there is no easy way to determine which are more accurate. Furthermore, having alternative-splicing events exacerbates such difficult assembly problems. While benchmarking transcriptome assemblies is critical, this is also not trivial due to the general lack of true reference transcriptomes. RESULTS In this study, we first provide a pipeline to generate a set of the simulated benchmark transcriptome and corresponding RNAseq data. Using the simulated benchmarking datasets, we compared the performance of various transcriptome assembly approaches including both de novo and genome-guided methods. The results showed that the assembly performance deteriorates significantly when alternative transcripts (isoforms) exist or for genome-guided methods when the reference is not available from the same genome. To improve the transcriptome assembly performance, leveraging the overlapping predictions between different assemblies, we present a new consensus-based ensemble transcriptome assembly approach, ConSemble. CONCLUSIONS Without using a reference genome, ConSemble using four de novo assemblers achieved an accuracy up to twice as high as any de novo assemblers we compared. When a reference genome is available, ConSemble using four genome-guided assemblies removed many incorrectly assembled contigs with minimal impact on correctly assembled contigs, achieving higher precision and accuracy than individual genome-guided methods. Furthermore, ConSemble using de novo assemblers matched or exceeded the best performing genome-guided assemblers even when the transcriptomes included isoforms. We thus demonstrated that the ConSemble consensus strategy both for de novo and genome-guided assemblers can improve transcriptome assembly. The RNAseq simulation pipeline, the benchmark transcriptome datasets, and the script to perform the ConSemble assembly are all freely available from: http://bioinfolab.unl.edu/emlab/consemble/ .
Collapse
Affiliation(s)
- Adam Voshall
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.,Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.,Department of Pediatrics, Division of Genetics and Genomics, Boston Children's Hospital/Harvard Medical School, Boston, MA, 02115, USA
| | - Sairam Behera
- Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xiangjun Li
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.,Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Xiao-Hong Yu
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Kushagra Kapil
- Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Jitender S Deogun
- Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - John Shanklin
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Edgar B Cahoon
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.,Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Etsuko N Moriyama
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA. .,Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
| |
Collapse
|
62
|
Deidda F, Bozzi Cionci N, Cordovana M, Campedelli I, Fracchetti F, Di Gioia D, Ambretti S, Pane M. Bifidobacteria Strain Typing by Fourier Transform Infrared Spectroscopy. Front Microbiol 2021; 12:692975. [PMID: 34589064 PMCID: PMC8473902 DOI: 10.3389/fmicb.2021.692975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/09/2021] [Indexed: 11/13/2022] Open
Abstract
Fourier transform infrared (FTIR) spectroscopy, a technology traditionally used in chemistry to determine the molecular composition of a wide range of sample types, has gained growing interest in microbial typing. It is based on the different vibrational modes of the covalent bonds between atoms of a given sample, as bacterial cells, induced by the absorption of infrared radiation. This technique has been largely used for the study of pathogenic species, especially in the clinical field, and has been proposed also for the typing at different subspecies levels. The high throughput, speed, low cost, and simplicity make FTIR spectroscopy an attractive technique also for industrial applications, in particular, for probiotics. The aim of this study was to compare FTIR spectroscopy with established genotyping methods, pulsed-field gel electrophoresis (PFGE), whole-genome sequencing (WGS), and multilocus sequence typing (MLST), in order to highlight the FTIR spectroscopy potential discriminatory power at strain level. Our study focused on bifidobacteria, an important group of intestinal commensals generally recognized as probiotics. For their properties in promoting and maintaining health, bifidobacteria are largely marketed by the pharmaceutical, food, and dairy industries. Strains belonging to Bifidobacterium longum subsp. longum and Bifidobacterium animalis subsp. lactis were taken into consideration together with some additional type strains. For B. longum subsp. longum, it was possible to discriminate the strains with all the methods used. Although two isolates were shown to be strictly phylogenetically related, constituting a unique cluster, based on PFGE, WGS, and MLST, no clustering was observed with FTIR. For B. animalis subsp. lactis group, PFGE, WGS, and MLST were non-discriminatory, and only one strain was easily distinguished. On the other hand, FTIR discriminated all the isolates one by one, and no clustering was observed. According to these results, FTIR analysis is not only equivalent to PFGE, WGS, and MLST, but also for some strains, in particular, for B. animalis subsp. lactis group, more informative, being able to differentiate strains not discernible with the other two methods based on phenotypic variations likely deriving from certain genetic changes. Fourier transform infrared spectroscopy has highlighted the possibility of using the cell surface as a kind of barcode making tracing strains possible, representing an important aspect in probiotic applications. Furthermore, this work constitutes the first investigation on bifidobacterial strain typing using FTIR spectroscopy.
Collapse
Affiliation(s)
| | - Nicole Bozzi Cionci
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | | | | | | | - Diana Di Gioia
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Simone Ambretti
- Microbiology Unit-University Hospital of Bologna Policlinico Sant'Orsola-Malpighi, Bologna, Italy
| | - Marco Pane
- Probiotical Research S.r.L., Novara, Italy
| |
Collapse
|
63
|
Litman JR, Fateryga AV, Griswold TL, Aubert M, Proshchalykin MY, Le Divelec R, Burrows S, Praz CJ. Paraphyly and low levels of genetic divergence in morphologically distinct taxa: revision of the Pseudoanthidium scapulare complex of carder bees (Apoidea: Megachilidae: Anthidiini). Zool J Linn Soc 2021. [DOI: 10.1093/zoolinnean/zlab062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
The Palaearctic complex of anthidiine bees closely related to Pseudoanthidium scapulare has long been a source of unresolved taxonomic and systematic issues. Until now, the number of species in the complex and their geographical distributions were largely unclear, thus complicating the compilation of accurate species checklists and hindering conservation efforts. In order to address these issues, we use morphology and mitochondrial cytochrome c oxidase subunit I (COI) sequences, combined with a thorough examination of the relevant literature and type material, to delimit species within this complex, assign names to species and clarify geographical ranges. An unexpected result was that a certain number of morphologically distinct taxa exhibited low levels of genetic divergence at the COI locus, resulting in species paraphyly. A set of ultra-conserved elements (UCEs) was also sequenced in order to further investigate relationships among these taxa. One morphologically distinct species was also paraphyletic using UCE data, hinting at recent species divergences and genetic exchange at zones of contact between morphologically well-differentiated taxa. The results of our study reveal the presence of ten species in this complex, including a previously overlooked species for western continental Europe. A complete diagnosis of the males and females of these species is provided, as are maps detailing the geographic distributions of each. An illustrated identification key to the males and females of each species is presented. Two new species are described, Pseudoanthidium kaspareki sp. nov. and P. rozeni sp. nov. New synonymy is established for several species and Pseudoanthidium palestinicum and P. tropicum are raised to species level. The new combination, Icteranthidium floripetum comb. nov. is also established. Lectotypes are designated for the following species: Anthidium eversmanni, A. floripetum, A. frontale, A. karakalense, A. nanum and A. reptans. Previously unpublished lectotype designations are published here for A. sinuatum and A. tenellum.
Collapse
Affiliation(s)
- Jessica R Litman
- Muséum d’histoire naturelle de Neuchâtel, Terreaux 14, 2000 Neuchâtel, Switzerland
| | - Alexander V Fateryga
- T. I. Vyazemsky Karadag Scientific Station – Nature Reserve of RAS – Branch of A. O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Feodosiya, 298188, Crimea, Russia
| | - Terry L Griswold
- USDA-ARS Pollinating Insects Research Unit, Logan, Utah 84322, USA
| | - Matthieu Aubert
- Observatoire des Abeilles, Route de Pégairolles, 34380 Saint-Jean-de-Buèges, France
| | - Maxim Yu Proshchalykin
- Federal Scientific Centre of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Romain Le Divelec
- Observatoire des Abeilles, 87 rue de Courcelles, 75017 Paris, France
| | - Skyler Burrows
- Utah State University, Department of Biology, 5200 Old Main Hill, Logan, Utah, USA
| | - Christophe J Praz
- University of Neuchâtel, Institute of Biology, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| |
Collapse
|
64
|
Kayani MUR, Huang W, Feng R, Chen L. Genome-resolved metagenomics using environmental and clinical samples. Brief Bioinform 2021; 22:bbab030. [PMID: 33758906 PMCID: PMC8425419 DOI: 10.1093/bib/bbab030] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/29/2020] [Accepted: 01/20/2021] [Indexed: 12/25/2022] Open
Abstract
Recent advances in high-throughput sequencing technologies and computational methods have added a new dimension to metagenomic data analysis i.e. genome-resolved metagenomics. In general terms, it refers to the recovery of draft or high-quality microbial genomes and their taxonomic classification and functional annotation. In recent years, several studies have utilized the genome-resolved metagenome analysis approach and identified previously unknown microbial species from human and environmental metagenomes. In this review, we describe genome-resolved metagenome analysis as a series of four necessary steps: (i) preprocessing of the sequencing reads, (ii) de novo metagenome assembly, (iii) genome binning and (iv) taxonomic and functional analysis of the recovered genomes. For each of these four steps, we discuss the most commonly used tools and the currently available pipelines to guide the scientific community in the recovery and subsequent analyses of genomes from any metagenome sample. Furthermore, we also discuss the tools required for validation of assembly quality as well as for improving quality of the recovered genomes. We also highlight the currently available pipelines that can be used to automate the whole analysis without having advanced bioinformatics knowledge. Finally, we will highlight the most widely adapted and actively maintained tools and pipelines that can be helpful to the scientific community in decision making before they commence the analysis.
Collapse
Affiliation(s)
- Masood ur Rehman Kayani
- Center for Microbiota and Immunological Diseases, Shanghai General Hospital, Shanghai Institute of Immunology, Shanghai Jiao Tong University, School of Medicine, Shanghai 2,000,025, China
| | - Wanqiu Huang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University, School of Medicine, Shanghai 200,000, China
| | - Ru Feng
- Center for Microbiota and Immunological Diseases, Shanghai General Hospital, Shanghai Institute of Immunology, Shanghai Jiao Tong University, School of Medicine, Shanghai 2,000,025, China
| | - Lei Chen
- Center for Microbiota and Immunological Diseases, Shanghai General Hospital, Shanghai Institute of Immunology, Shanghai Jiao Tong University, School of Medicine, Shanghai 2,000,025, China
| |
Collapse
|
65
|
Schwope R, Magris G, Miculan M, Paparelli E, Celii M, Tocci A, Marroni F, Fornasiero A, De Paoli E, Morgante M. Open chromatin in grapevine marks candidate CREs and with other chromatin features correlates with gene expression. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1631-1647. [PMID: 34219317 PMCID: PMC8518642 DOI: 10.1111/tpj.15404] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 05/14/2023]
Abstract
Vitis vinifera is an economically important crop and a useful model in which to study chromatin dynamics. In contrast to the small and relatively simple genome of Arabidopsis thaliana, grapevine contains a complex genome of 487 Mb that exhibits extensive colonization by transposable elements. We used Hi-C, ChIP-seq and ATAC-seq to measure how chromatin features correlate to the expression of 31 845 grapevine genes. ATAC-seq revealed the presence of more than 16 000 open chromatin regions, of which we characterize nearly 5000 as possible distal enhancer candidates that occur in intergenic space > 2 kb from the nearest transcription start site (TSS). A motif search identified more than 480 transcription factor (TF) binding sites in these regions, with those for TCP family proteins in greatest abundance. These open chromatin regions are typically within 15 kb from their nearest promoter, and a gene ontology analysis indicated that their nearest genes are significantly enriched for TF activity. The presence of a candidate cis-regulatory element (cCRE) > 2 kb upstream of the TSS, location in the active nuclear compartment as determined by Hi-C, and the enrichment of H3K4me3, H3K4me1 and H3K27ac at the gene are correlated with gene expression. Taken together, these results suggest that regions of intergenic open chromatin identified by ATAC-seq can be considered potential candidates for cis-regulatory regions in V. vinifera. Our findings enhance the characterization of a valuable agricultural crop, and help to clarify the understanding of unique plant biology.
Collapse
Affiliation(s)
- Rachel Schwope
- Dipartimento di Scienze AgroalimentariAmbientali e Animali (DI4A)UdineI‐33100Italy
- Istituto di Genomica ApplicataUdineI‐33100Italy
| | - Gabriele Magris
- Dipartimento di Scienze AgroalimentariAmbientali e Animali (DI4A)UdineI‐33100Italy
- Istituto di Genomica ApplicataUdineI‐33100Italy
| | - Mara Miculan
- Dipartimento di Scienze AgroalimentariAmbientali e Animali (DI4A)UdineI‐33100Italy
- Istituto di Genomica ApplicataUdineI‐33100Italy
- Present address:
Institute of Life SciencesScuola Superiore Sant'Anna PisaPisa56127Italy
| | - Eleonora Paparelli
- Dipartimento di Scienze AgroalimentariAmbientali e Animali (DI4A)UdineI‐33100Italy
- Istituto di Genomica ApplicataUdineI‐33100Italy
- Present address:
IGA Technology ServicesUdineI‐33100Italy
| | - Mirko Celii
- Dipartimento di Scienze AgroalimentariAmbientali e Animali (DI4A)UdineI‐33100Italy
- Istituto di Genomica ApplicataUdineI‐33100Italy
- Present address:
Center for Desert Agriculture, Biological and Environmental Sciences & Engineering Division (BESE)KAUSTThuwalMakkahSaudi Arabia
| | - Aldo Tocci
- Dipartimento di Scienze AgroalimentariAmbientali e Animali (DI4A)UdineI‐33100Italy
- Istituto di Genomica ApplicataUdineI‐33100Italy
- Scuola Internazionale Superiore di Studi AvanzatiTriesteFriuli‐Venezia GiuliaItaly
| | - Fabio Marroni
- Dipartimento di Scienze AgroalimentariAmbientali e Animali (DI4A)UdineI‐33100Italy
- Istituto di Genomica ApplicataUdineI‐33100Italy
| | - Alice Fornasiero
- Dipartimento di Scienze AgroalimentariAmbientali e Animali (DI4A)UdineI‐33100Italy
- Istituto di Genomica ApplicataUdineI‐33100Italy
- Present address:
Center for Desert Agriculture, Biological and Environmental Sciences & Engineering Division (BESE)KAUSTThuwalMakkahSaudi Arabia
| | - Emanuele De Paoli
- Dipartimento di Scienze AgroalimentariAmbientali e Animali (DI4A)UdineI‐33100Italy
| | - Michele Morgante
- Dipartimento di Scienze AgroalimentariAmbientali e Animali (DI4A)UdineI‐33100Italy
- Istituto di Genomica ApplicataUdineI‐33100Italy
| |
Collapse
|
66
|
Di Lallo G, Falconi M, Iacovelli F, Frezza D, D'Addabbo P. Analysis of Four New Enterococcus faecalis Phages and Modeling of a Hyaluronidase Catalytic Domain from Saphexavirus. PHAGE (NEW ROCHELLE, N.Y.) 2021; 2:131-141. [PMID: 36161247 PMCID: PMC9041502 DOI: 10.1089/phage.2021.0003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Background: Phage therapy (PT), as a method to treat bacterial infections, needs identification of bacteriophages targeting specific pathogenic host. Enterococcus faecalis, a Gram-positive coccus resident in the human gastrointestinal tract, may become pathogenic in hospitalized patients showing acquired resistance to vancomycin and thus representing a possible target for PT. Materials and Methods: We isolated four phages that infect E. faecalis and characterized them by host range screening, transmission electron microscopy, and genome sequencing. We also identified and three-dimensional modeled a new hyaluronidase enzyme. Results: The four phages belong to Siphoviridae family: three Efquatrovirus (namely vB_EfaS_TV51, vB_EfaS_TV54, and vB_EfaS_TV217) and one Saphexavirus (vB_EfaS_TV16). All of them are compatible with lytic cycle. vB_EfaS_TV16 moreover presents a gene encoding for a hyaluronidase enzyme. Conclusions: The identified phages show features suggesting their useful application in PT, particularly the Saphexavirus that may be of enhanced relevance in PT because of its potential biofilm-digestion capability.
Collapse
Affiliation(s)
- Gustavo Di Lallo
- Laboratory of Microbiology, Department of Biology, University of Roma Tor Vergata, Roma, Italy
| | - Mattia Falconi
- Structural Bioinformatics Group, Department of Biology, University of Roma Tor Vergata, Roma, Italy
| | - Federico Iacovelli
- Structural Bioinformatics Group, Department of Biology, University of Roma Tor Vergata, Roma, Italy
| | - Domenico Frezza
- Laboratory of Microbiology, Department of Biology, University of Roma Tor Vergata, Roma, Italy
| | - Pietro D'Addabbo
- Computational Biology Unit, Department of Biology, University of Bari, Bari, Italy
- Address correspondence to: Pietro D'Addabbo, PhD, Computational Biology Unit, Department of Biology, University of Bari, Via E. Orabona 4, Bari 70125, Italy
| |
Collapse
|
67
|
Meger J, Ulaszewski B, Burczyk J. Genomic signatures of natural selection at phenology-related genes in a widely distributed tree species Fagus sylvatica L. BMC Genomics 2021; 22:583. [PMID: 34332553 PMCID: PMC8325806 DOI: 10.1186/s12864-021-07907-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/20/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Diversity among phenology-related genes is predicted to be a contributing factor in local adaptations seen in widely distributed plant species that grow in climatically variable geographic areas, such as forest trees. European beech (Fagus sylvatica L.) is widespread, and is one of the most important broadleaved tree species in Europe; however, its potential for adaptation to climate change is a matter of uncertainty, and little is known about the molecular basis of climate change-relevant traits like bud burst. RESULTS We explored single nucleotide polymorphisms (SNP) at candidate genes related to bud burst in beech individuals sampled across 47 populations from Europe. SNP diversity was monitored for 380 candidate genes using a sequence capture approach, providing 2909 unlinked SNP loci. We used two complementary analytical methods to find loci significantly associated with geographic variables, climatic variables (expressed as principal components), or phenotypic variables (spring and autumn phenology, height, survival). Redundancy analysis (RDA) was used to detect candidate markers across two spatial scales (entire study area and within subregions). We revealed 201 candidate SNPs at the broadest scale, 53.2% of which were associated with phenotypic variables. Additive polygenic scores, which provide a measure of the cumulative signal across significant candidate SNPs, were correlated with a climate variable (first principal component, PC1) related to temperature and precipitation availability, and spring phenology. However, different genotype-environment associations were identified within Southeastern Europe as compared to the entire geographic range of European beech. CONCLUSIONS Environmental conditions play important roles as drivers of genetic diversity of phenology-related genes that could influence local adaptation in European beech. Selection in beech favors genotypes with earlier bud burst under warmer and wetter habitats within its range; however, selection pressures may differ across spatial scales.
Collapse
Affiliation(s)
- Joanna Meger
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Chodkiewicza 30, 85-064, Bydgoszcz, Poland
| | - Bartosz Ulaszewski
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Chodkiewicza 30, 85-064, Bydgoszcz, Poland
| | - Jaroslaw Burczyk
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Chodkiewicza 30, 85-064, Bydgoszcz, Poland.
| |
Collapse
|
68
|
Allegri L, Capriglione F, Maggisano V, Damante G, Baldan F. Effects of Dihydrotanshinone I on Proliferation and Invasiveness of Paclitaxel-Resistant Anaplastic Thyroid Cancer Cells. Int J Mol Sci 2021; 22:ijms22158083. [PMID: 34360846 PMCID: PMC8347033 DOI: 10.3390/ijms22158083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 01/18/2023] Open
Abstract
ATC is a very rare, but extremely aggressive form of thyroid malignancy, responsible for the highest mortality rate registered for thyroid cancer. In patients without known genetic aberrations, the current treatment is still represented by palliative surgery and systemic mono- or combined chemotherapy, which is often not fully effective for the appearance of drug resistance. Comprehension of the mechanisms involved in the development of the resistance is therefore an urgent issue to suggest novel therapeutic approaches for this very aggressive malignancy. In this study, we created a model of anaplastic thyroid cancer (ATC) cells resistant to paclitaxel and investigated the characteristics of these cells by analyzing the profile of gene expression and comparing it with that of paclitaxel-sensitive original ATC cell lines. In addition, we evaluated the effects of Dihydrotanshinone I (DHT) on the viability and invasiveness of paclitaxel-resistant cells. ATC paclitaxel-resistant cells highlighted an overexpression of ABCB1 and a hyper-activation of the NF-κB compared to sensitive cells. DHT treatment resulted in a reduction of viability and clonogenic ability of resistant cells. Moreover, DHT induces a decrement of NF-κB activity in SW1736-PTX and 8505C-PTX cells. In conclusion, to the best of our knowledge, the results of the present study are the first to demonstrate the antitumor effects of DHT on ATC cells resistant to Paclitaxel in vitro.
Collapse
Affiliation(s)
- Lorenzo Allegri
- Institute of Medical Genetics, Academic Hospital of Udine, Azienda Sanitaria Universitaria Integrata di Udine, 33100 Udine, Italy;
| | - Francesca Capriglione
- Department of Health Sciences, University of Catanzaro ‘Magna Graecia’, 88100 Catanzaro, Italy; (F.C.); (V.M.)
| | - Valentina Maggisano
- Department of Health Sciences, University of Catanzaro ‘Magna Graecia’, 88100 Catanzaro, Italy; (F.C.); (V.M.)
| | - Giuseppe Damante
- Institute of Medical Genetics, Academic Hospital of Udine, Azienda Sanitaria Universitaria Integrata di Udine, 33100 Udine, Italy;
- Department of Medicine, University of Udine, Via Chiusaforte, 33100 Udine, Italy;
- Correspondence:
| | - Federica Baldan
- Department of Medicine, University of Udine, Via Chiusaforte, 33100 Udine, Italy;
| |
Collapse
|
69
|
Allegri L, Domenis R, Navarra M, Celano M, Russo D, Capriglione F, Damante G, Baldan F. Dihydrotanshinone exerts antitumor effects and improves the effects of cisplatin in anaplastic thyroid cancer cells. Oncol Rep 2021; 46:204. [PMID: 34318905 DOI: 10.3892/or.2021.8155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 04/08/2021] [Indexed: 11/06/2022] Open
Abstract
Anaplastic thyroid cancer (ATC) is the most aggressive type of thyroid cancer and is responsible for 20‑50% of thyroid cancer‑associated deaths. The absence of response to conventional treatments makes the search for novel therapeutics a clinical challenge. In the present study, the effects of 15,16‑dihydrotanshinone I (DHT), a tanshinone extracted from Salvia miltiorrhiza Bunge (Danshen), which has previously been shown to possess anticancer activity, were examined in two human ATC cell lines. DHT significantly reduced cell viability, which was coupled with an increase in apoptosis. DHT administration also reduced the colony‑forming ability and proliferation of these cells in soft agar and downregulated the expression of epithelial‑to‑mesenchymal transition‑related genes. In addition, DHT significantly reduced MAD2 expression, a target of HuR with a relevant role in ATC. Finally, cotreatment with cisplatin and DHT has a greater effect on cell viability than each compound alone. In conclusion, to the best of our knowledge, the present study is the first to demonstrate that DHT exerts antitumor effects on ATC cells by reducing MAD2 expression levels. Moreover, a synergistic effect of DHT with cisplatin was shown. Further in vivo studies are required to assess this phytochemical compound as a potential adjuvant for the treatment of ATC.
Collapse
Affiliation(s)
- Lorenzo Allegri
- Department of Medicine, University of Udine, I‑33100 Udine, Italy
| | - Rossana Domenis
- Department of Medicine, University of Udine, I‑33100 Udine, Italy
| | - Michele Navarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, I‑98122 Messina, Italy
| | - Marilena Celano
- Department of Health Sciences, University of Catanzaro 'Magna Graecia', I‑88100 Catanzaro, Italy
| | - Diego Russo
- Department of Health Sciences, University of Catanzaro 'Magna Graecia', I‑88100 Catanzaro, Italy
| | - Francesca Capriglione
- Department of Health Sciences, University of Catanzaro 'Magna Graecia', I‑88100 Catanzaro, Italy
| | - Giuseppe Damante
- Department of Medicine, University of Udine, I‑33100 Udine, Italy
| | - Federica Baldan
- Department of Medicine, University of Udine, I‑33100 Udine, Italy
| |
Collapse
|
70
|
Brown MGC, Bowman J, Wilson PJ. Data on the first functionally-annotated de novo transcriptome assembly for North American flying squirrels (genus Glaucomys). Data Brief 2021; 37:107267. [PMID: 34381854 PMCID: PMC8335632 DOI: 10.1016/j.dib.2021.107267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/16/2021] [Accepted: 07/22/2021] [Indexed: 11/06/2022] Open
Abstract
We report the first functionally-annotated de novo transcriptome assembly for North American flying squirrels (genus Glaucomys). RNA was extracted from tissue samples obtained from two northern flying squirrels and two southern flying squirrels sampled from Ontario, Canada, and sequenced on an Illumina paired-end sequencing platform. We reconstructed 702,228 Glaucomys transcripts using 193,323,120 sequence read pairs and captured sequence homologies, protein domains, and gene function classifications. Introgressive hybridization between northern (Glaucomys sabrinus) and southern flying squirrels (G. volans) has been observed in some areas of North America. However, existing molecular markers lack the resolution to discriminate late-generation introgressants and describe the extent to which hybridization influences the Glaucomys gene pool. These genomic resources can increase the resolution of molecular techniques used to examine the dynamics of the Glaucomys hybrid zone.
Collapse
Affiliation(s)
- Michael G C Brown
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Canada
| | - Jeff Bowman
- Wildlife Research and Monitoring Section, Ontario Ministry of Natural Resources and Forestry, Peterborough, Canada
| | - Paul J Wilson
- Biology Department, Trent University, Peterborough, Canada
| |
Collapse
|
71
|
Tomescu MS, Sooklal SA, Ntsowe T, Naicker P, Darnhofer B, Archer R, Stoychev S, Swanevelder D, Birner-Grünberger R, Rumbold K. Transcriptome and proteome of the corm, leaf and flower of Hypoxis hemerocallidea (African potato). PLoS One 2021; 16:e0253741. [PMID: 34283859 PMCID: PMC8291589 DOI: 10.1371/journal.pone.0253741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 06/11/2021] [Indexed: 11/19/2022] Open
Abstract
The corm of Hypoxis hemerocallidea, commonly known as the African potato, is used in traditional medicine to treat several medical conditions such as urinary infections, benign prostate hyperplasia, inflammatory conditions and testicular tumours. The metabolites contributing to the medicinal properties of H. hemerocallidea have been identified in several studies and, more recently, the active terpenoids of the plant were profiled. However, the biosynthetic pathways and the enzymes involved in the production of the terpene metabolites in H. hemerocallidea have not been characterised at a transcriptomic or proteomic level. In this study, total RNA extracted from the corm, leaf and flower tissues of H. hemerocallidea was sequenced on the Illumina HiSeq 2500 platform. A total of 143,549 transcripts were assembled de novo using Trinity and 107,131 transcripts were functionally annotated using the nr, GO, COG, KEGG and SWISS-PROT databases. Additionally, the proteome of the three tissues were sequenced using LC-MS/MS, revealing aspects of secondary metabolism and serving as data validation for the transcriptome. Functional annotation led to the identification of numerous terpene synthases such as nerolidol synthase, germacrene D synthase, and cycloartenol synthase amongst others. Annotations also revealed a transcript encoding the terpene synthase phytoalexin momilactone A synthase. Differential expression analysis using edgeR identified 946 transcripts differentially expressed between the three tissues and revealed that the leaf upregulates linalool synthase compared to the corm and the flower tissues. The transcriptome as well as the proteome of Hypoxis hemerocallidea presented here provide a foundation for future research.
Collapse
Affiliation(s)
- Mihai-Silviu Tomescu
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| | - Selisha Ann Sooklal
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, UNISA, Johannesburg, South Africa
| | - Thuto Ntsowe
- Biotechnology Platform, Agricultural Research Council, Onderstepoort, South Africa
| | - Previn Naicker
- Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Barbara Darnhofer
- ACIB GmbH, Graz, Austria
- Institute for Pathology, Medical University of Graz, Graz, Austria
- Omics Center Graz, BioTechMed, Graz, Austria
| | - Robert Archer
- National Herbarium, South African National Biodiversity Institute, Pretoria, South Africa
| | - Stoyan Stoychev
- Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Dirk Swanevelder
- Biotechnology Platform, Agricultural Research Council, Onderstepoort, South Africa
| | - Ruth Birner-Grünberger
- ACIB GmbH, Graz, Austria
- Institute for Pathology, Medical University of Graz, Graz, Austria
- Omics Center Graz, BioTechMed, Graz, Austria
| | - Karl Rumbold
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
- * E-mail:
| |
Collapse
|
72
|
Cerro-Gálvez E, Dachs J, Lundin D, Fernández-Pinos MC, Sebastián M, Vila-Costa M. Responses of Coastal Marine Microbiomes Exposed to Anthropogenic Dissolved Organic Carbon. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9609-9621. [PMID: 33606522 PMCID: PMC8491159 DOI: 10.1021/acs.est.0c07262] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/04/2021] [Accepted: 02/04/2021] [Indexed: 05/23/2023]
Abstract
Coastal seawaters receive thousands of organic pollutants. However, we have little understanding of the response of microbiomes to this pool of anthropogenic dissolved organic carbon (ADOC). In this study, coastal microbial communities were challenged with ADOC at environmentally relevant concentrations. Experiments were performed at two Mediterranean sites with different impact by pollutants and nutrients: off the Barcelona harbor ("BCN"), and at the Blanes Bay ("BL"). ADOC additions stimulated prokaryotic leucine incorporation rates at both sites, indicating the use of ADOC as growth substrate. The percentage of "membrane-compromised" cells increased with increasing ADOC, indicating concurrent toxic effects of ADOC. Metagenomic analysis of the BCN community challenged with ADOC showed a significant growth of Methylophaga and other gammaproteobacterial taxa belonging to the rare biosphere. Gene expression profiles showed a taxon-dependent response, with significantly enrichments of transcripts from SAR11 and Glaciecola spp. in BCN and BL, respectively. Further, the relative abundance of transposon-related genes (in BCN) and transcripts (in BL) correlated with the number of differentially abundant genes (in BCN) and transcripts (in BLA), suggesting that microbial responses to pollution may be related to pre-exposure to pollutants, with transposons playing a role in adaptation to ADOC. Our results point to a taxon-specific response to low concentrations of ADOC that impact the functionality, structure and plasticity of the communities in coastal seawaters. This work contributes to address the influence of pollutants on microbiomes and their perturbation to ecosystem services and ocean health.
Collapse
Affiliation(s)
- Elena Cerro-Gálvez
- Department
of Environmental Chemistry, IDAEA-CSIC, Barcelona, Catalunya 08034, Spain
| | - Jordi Dachs
- Department
of Environmental Chemistry, IDAEA-CSIC, Barcelona, Catalunya 08034, Spain
| | - Daniel Lundin
- Centre
for Ecology and Evolution in Microbial Model Systems, EEMiS, Linnaeus University, Kalmar 35195, Sweden
| | | | - Marta Sebastián
- Department
of Marine Biology and Oceanography, ICM-CSIC, Barcelona, Catalunya 08003, Spain
| | - Maria Vila-Costa
- Department
of Environmental Chemistry, IDAEA-CSIC, Barcelona, Catalunya 08034, Spain
| |
Collapse
|
73
|
Mrozek D, Stępień K, Grzesik P, Małysiak-Mrozek B. A Large-Scale and Serverless Computational Approach for Improving Quality of NGS Data Supporting Big Multi-Omics Data Analyses. Front Genet 2021; 12:699280. [PMID: 34326863 PMCID: PMC8314304 DOI: 10.3389/fgene.2021.699280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 05/28/2021] [Indexed: 11/13/2022] Open
Abstract
Various types of analyses performed over multi-omics data are driven today by next-generation sequencing (NGS) techniques that produce large volumes of DNA/RNA sequences. Although many tools allow for parallel processing of NGS data in a Big Data distributed environment, they do not facilitate the improvement of the quality of NGS data for a large scale in a simple declarative manner. Meanwhile, large sequencing projects and routine DNA/RNA sequencing associated with molecular profiling of diseases for personalized treatment require both good quality data and appropriate infrastructure for efficient storing and processing of the data. To solve the problems, we adapt the concept of Data Lake for storing and processing big NGS data. We also propose a dedicated library that allows cleaning the DNA/RNA sequences obtained with single-read and paired-end sequencing techniques. To accommodate the growth of NGS data, our solution is largely scalable on the Cloud and may rapidly and flexibly adjust to the amount of data that should be processed. Moreover, to simplify the utilization of the data cleaning methods and implementation of other phases of data analysis workflows, our library extends the declarative U-SQL query language providing a set of capabilities for data extraction, processing, and storing. The results of our experiments prove that the whole solution supports requirements for ample storage and highly parallel, scalable processing that accompanies NGS-based multi-omics data analyses.
Collapse
Affiliation(s)
- Dariusz Mrozek
- Department of Applied Informatics, Silesian University of Technology, Gliwice, Poland
| | - Krzysztof Stępień
- Department of Applied Informatics, Silesian University of Technology, Gliwice, Poland
| | - Piotr Grzesik
- Department of Applied Informatics, Silesian University of Technology, Gliwice, Poland
| | - Bożena Małysiak-Mrozek
- Department of Graphics, Computer Vision and Digital Systems, Silesian University of Technology, Gliwice, Poland
| |
Collapse
|
74
|
Boukail S, Macharia M, Miculan M, Masoni A, Calamai A, Palchetti E, Dell'Acqua M. Genome wide association study of agronomic and seed traits in a world collection of proso millet (Panicum miliaceum L.). BMC PLANT BIOLOGY 2021; 21:330. [PMID: 34243721 PMCID: PMC8268170 DOI: 10.1186/s12870-021-03111-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/23/2021] [Indexed: 05/28/2023]
Abstract
BACKGROUND The climate crisis threatens sustainability of crop production worldwide. Crop diversification may enhance food security while reducing the negative impacts of climate change. Proso millet (Panicum milaceum L.) is a minor cereal crop which holds potential for diversification and adaptation to different environmental conditions. In this study, we assembled a world collection of proso millet consisting of 88 varieties and landraces to investigate its genomic and phenotypic diversity for seed traits, and to identify marker-trait associations (MTA). RESULTS Sequencing of restriction-site associated DNA fragments yielded 494 million reads and 2,412 high quality single nucleotide polymorphisms (SNPs). SNPs were used to study the diversity in the collection and perform a genome wide association study (GWAS). A genotypic diversity analysis separated accessions originating in Western Europe, Eastern Asia and Americas from accessions sampled in Southern Asia, Western Asia, and Africa. A Bayesian structure analysis reported four cryptic genetic groups, showing that landraces accessions had a significant level of admixture and that most of the improved proso millet materials clustered separately from landraces. The collection was highly diverse for seed traits, with color varying from white to dark brown and width spanning from 1.8 to 2.6 mm. A GWAS study for seed morphology traits identified 10 MTAs. In addition, we identified three MTAs for agronomic traits that were previously measured on the collection. CONCLUSION Using genomics and automated seed phenotyping, we elucidated phylogenetic relationships and seed diversity in a global millet collection. Overall, we identified 13 MTAs for key agronomic and seed traits indicating the presence of alleles with potential for application in proso breeding programs.
Collapse
Affiliation(s)
- Sameh Boukail
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Mercy Macharia
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Mara Miculan
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Alberto Masoni
- School of Agriculture, University of Florence, Florence, Italy
| | | | | | - Matteo Dell'Acqua
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.
| |
Collapse
|
75
|
Gigliucci F, van Hoek AHAM, Chiani P, Knijn A, Minelli F, Scavia G, Franz E, Morabito S, Michelacci V. Genomic Characterization of hlyF-positive Shiga Toxin-Producing Escherichia coli, Italy and the Netherlands, 2000-2019. Emerg Infect Dis 2021; 27:853-861. [PMID: 33622476 PMCID: PMC7920663 DOI: 10.3201/eid2703.203110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Shiga toxin–producing Escherichia coli (STEC) O80:H2 has emerged in Europe as a cause of hemolytic uremic syndrome associated with bacteremia. STEC O80:H2 harbors the mosaic plasmid pR444_A, which combines several virulence genes, including hlyF and antimicrobial resistance genes. pR444_A is found in some extraintestinal pathogenic E. coli (ExPEC) strains. We identified and characterized 53 STEC strains with ExPEC-associated virulence genes isolated in Italy and the Netherlands during 2000–2019. The isolates belong to 2 major populations: 1 belongs to sequence type 301 and harbors diverse stx2 subtypes, the intimin variant eae-ξ, and pO157-like and pR444_A plasmids; 1 consists of strains belonging to various sequence types, some of which lack the pO157 plasmid, the locus of enterocyte effacement, and the antimicrobial resistance–encoding region. Our results showed that STEC strains harboring ExPEC-associated virulence genes can include multiple serotypes and that the pR444_A plasmid can be acquired and mobilized by STEC strains.
Collapse
|
76
|
Almeida J, Perez-Fons L, Fraser PD. A transcriptomic, metabolomic and cellular approach to the physiological adaptation of tomato fruit to high temperature. PLANT, CELL & ENVIRONMENT 2021; 44:2211-2229. [PMID: 32691430 DOI: 10.1111/pce.13854] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/02/2020] [Accepted: 07/12/2020] [Indexed: 05/21/2023]
Abstract
High temperatures can negatively influence plant growth and development. Besides yield, the effects of heat stress on fruit quality traits remain poorly characterised. In tomato, insights into how fruits regulate cellular metabolism in response to heat stress could contribute to the development of heat-tolerant varieties, without detrimental effects on quality. In the present study, the changes occurring in wild type tomato fruits after exposure to transient heat stress have been elucidated at the transcriptome, cellular and metabolite level. An impact on fruit quality was evident as nutritional attributes changed in response to heat stress. Fruit carotenogenesis was affected, predominantly at the stage of phytoene formation, although altered desaturation/isomerisation arose during the transient exposure to high temperatures. Plastidial isoprenoid compounds showed subtle alterations in their distribution within chromoplast sub-compartments. Metabolite profiling suggests limited effects on primary/intermediary metabolism but lipid remodelling was evident. The heat-induced molecular signatures included the accumulation of sucrose and triacylglycerols, and a decrease in the degree of membrane lipid unsaturation, which influenced the volatile profile. Collectively, these data provide valuable insights into the underlying biochemical and molecular adaptation of fruit to heat stress and will impact on our ability to develop future climate resilient tomato varieties.
Collapse
Affiliation(s)
- Juliana Almeida
- Department of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Laura Perez-Fons
- Department of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Paul D Fraser
- Department of Biological Sciences, Royal Holloway University of London, Egham, UK
| |
Collapse
|
77
|
Singh R, Kusalik A, Dillon JAR. Bioinformatics tools used for whole-genome sequencing analysis of Neisseria gonorrhoeae: a literature review. Brief Funct Genomics 2021; 21:78-89. [PMID: 34170311 DOI: 10.1093/bfgp/elab028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 01/02/2023] Open
Abstract
Whole-genome sequencing (WGS) data are well established for the investigation of gonococcal transmission, antimicrobial resistance prediction, population structure determination and population dynamics. A variety of bioinformatics tools, repositories, services and platforms have been applied to manage and analyze Neisseria gonorrhoeae WGS datasets. This review provides an overview of the various bioinformatics approaches and resources used in 105 published studies (as of 30 April 2021). The challenges in the analysis of N. gonorrhoeae WGS datasets, as well as future bioinformatics requirements, are also discussed.
Collapse
Affiliation(s)
- Reema Singh
- Department of Biochemistry, Microbiology and Immunology
| | - Anthony Kusalik
- Department of Computer Science at the University of Saskatchewan
| | - Jo-Anne R Dillon
- Department of Biochemistry Microbiology and Immunology, College of Medicine, c/o Vaccine and Infectious Disease Organization, University of Saskatchewan, 120 Veterinary Road, Saskatoon, Saskatchewan S7N5E3, Canada
| |
Collapse
|
78
|
The probiotic Lactobacillus rhamnosus mimics the dark-driven regulation of appetite markers and melatonin receptors' expression in zebrafish (Danio rerio) larvae: Understanding the role of the gut microbiome. Comp Biochem Physiol B Biochem Mol Biol 2021; 256:110634. [PMID: 34119649 DOI: 10.1016/j.cbpb.2021.110634] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/05/2021] [Accepted: 06/07/2021] [Indexed: 01/15/2023]
Abstract
The use of probiotics has been recently considered a novel therapeutic strategy to prevent pathologies such as obesity; however, the specific mechanisms of action by which probiotics exert their beneficial effects on metabolic health remain unclear. The aim of the present study was to investigate the short-term effects of a probiotic Lactobacillus rhamnosus supplementation (PROB) on appetite regulation, growth-related markers, and microbiota diversity in zebrafish (Danio rerio) larvae, compared to a group subjected to a constant darkness photoperiod (DARK), as well as to evaluate the effects of both treatments on melatonin receptors' expression. After a 24 h treatment, both PROB and DARK conditions caused a significant increase in leptin a expression. Moreover, mRNA abundances of leptin b and proopiomelanocortin a were elevated in the PROB group, and DARK showed a similar tendency, supporting a negative regulation of appetite markers by the treatments. Moreover, both PROB and DARK also enhanced the abundances of melatonin receptors transcript (melatonin receptor 1 ba and bb) and protein (melatonin receptor 1) suggesting a potential involvement of melatonin in mediating these effects. Nevertheless, treatments did not exhibit a significant effect on the expression of most of the growth hormone/insulin-like growth factor axis genes evaluated. Finally, only the DARK condition significantly modulated gut microbiota diversity at such short time, altogether highlighting the rapid effects of this probiotic on modulating appetite regulatory and melatonin receptors' expression, without a concomitant variation of gut microbiota.
Collapse
|
79
|
Olney KC, Gibson JD, Natri HM, Underwood A, Gadau J, Wilson MA. Lack of parent-of-origin effects in Nasonia jewel wasp: A replication and extension study. PLoS One 2021; 16:e0252457. [PMID: 34111141 PMCID: PMC8191985 DOI: 10.1371/journal.pone.0252457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/16/2021] [Indexed: 11/28/2022] Open
Abstract
In diploid cells, the paternal and maternal alleles are, on average, equally expressed. There are exceptions from this: a small number of genes express the maternal or paternal allele copy exclusively. This phenomenon, known as genomic imprinting, is common among eutherian mammals and some plant species; however, genomic imprinting in species with haplodiploid sex determination is not well characterized. Previous work reported no parent-of-origin effects in the hybrids of closely related haplodiploid Nasonia vitripennis and Nasonia giraulti jewel wasps, suggesting a lack of epigenetic reprogramming during embryogenesis in these species. Here, we replicate the gene expression dataset and observations using different individuals and sequencing technology, as well as reproduce these findings using the previously published RNA sequence data following our data analysis strategy. The major difference from the previous dataset is that they used an introgression strain as one of the parents and we found several loci that resisted introgression in that strain. Our results from both datasets demonstrate a species-of-origin effect, rather than a parent-of-origin effect. We present a reproducible workflow that others may use for replicating the results. Overall, we reproduced the original report of no parent-of-origin effects in the haplodiploid Nasonia using the original data with our new processing and analysis pipeline and replicated these results with our newly generated data.
Collapse
Affiliation(s)
- Kimberly C. Olney
- School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, United States of America
| | - Joshua D. Gibson
- Department of Biology, Georgia Southern University, Statesboro, GA, United States of America
| | - Heini M. Natri
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, United States of America
| | - Avery Underwood
- School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, United States of America
| | - Juergen Gadau
- Institut fuer Evolution and Biodiversity, University of Muenster, Muenster, Germany
| | - Melissa A. Wilson
- School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, United States of America
- Center for Mechanisms of Evolution, The Biodesign Institute, Arizona State University, Tempe, AZ, United States of America
- * E-mail:
| |
Collapse
|
80
|
Mughini-Gras L, van Hoek AHAM, Cuperus T, Dam-Deisz C, van Overbeek W, van den Beld M, Wit B, Rapallini M, Wullings B, Franz E, van der Giessen J, Dierikx C, Opsteegh M. Prevalence, risk factors and genetic traits of Salmonella Infantis in Dutch broiler flocks. Vet Microbiol 2021; 258:109120. [PMID: 34020175 DOI: 10.1016/j.vetmic.2021.109120] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/13/2021] [Indexed: 11/26/2022]
Abstract
Salmonella Infantis is a poultry-adapted Salmonella enterica serovar that is increasingly reported in broilers and is also regularly identified among human salmonellosis cases. An emerging S. Infantis mega-plasmid (pESI), carrying fitness, virulence and antimicrobial resistance genes, is also increasingly found. We investigated the prevalence, genetic characteristics and risk factors for (pESI-carrying) S. Infantis in broilers. Faecal samples from 379 broiler flocks (in 198 farms with ≥3000 birds) in the Netherlands were tested. A questionnaire about farm characteristics was also administered. Sampling was performed in July 2018-May 2019, three weeks before slaughter. Fourteen flocks (in 10 farms) were S. Infantis-positive, resulting in a 3.7 % flock-level and 5.1 % farm-level prevalence. Based on multi-locus sequence typing (MLST), all isolates belonged to sequence type 32. All but one isolate carried a pESI-like mega-plasmid. Core-genome MLST showed considerable heterogeneity among the isolates, even within the same farm, with a few small clusters detected. The typical pESI-borne multi-resistance pattern to aminoglycosides, sulphonamide and tetracycline (93 %), as well as trimethoprim (71 %), was found. Additionally, resistance to (fluoro)quinolones based on gyrA gene mutations was detected. S. Infantis was found more often in flocks using salinomycin as coccidiostat, where flock thinning was applied or litter quality was poor, whereas employing external cleaning companies, wheat in feed, and vaccination against infectious bronchitis, were protective. Suggestive evidence for vertical transmission from hatcheries was found. A heterogeneous (pESI-carrying) S. Infantis population has established itself in Dutch broiler flocks, calling for further monitoring of its spread and a comprehensive appraisal of control options.
Collapse
Affiliation(s)
- Lapo Mughini-Gras
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands.
| | - Angela H A M van Hoek
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Tryntsje Cuperus
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Cecile Dam-Deisz
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Wendy van Overbeek
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Maaike van den Beld
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Ben Wit
- Netherlands Food and Consumer Product Safety Authority (NVWA), Utrecht, the Netherlands
| | - Michel Rapallini
- Wageningen Food Safety Research (WFSR), Wageningen, the Netherlands
| | - Bart Wullings
- Wageningen Food Safety Research (WFSR), Wageningen, the Netherlands
| | - Eelco Franz
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Joke van der Giessen
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Wageningen Bioveterinary Research (WBVR), Lelystad, the Netherlands
| | - Cindy Dierikx
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Marieke Opsteegh
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| |
Collapse
|
81
|
Zanti M, Michailidou K, Loizidou MA, Machattou C, Pirpa P, Christodoulou K, Spyrou GM, Kyriacou K, Hadjisavvas A. Performance evaluation of pipelines for mapping, variant calling and interval padding, for the analysis of NGS germline panels. BMC Bioinformatics 2021; 22:218. [PMID: 33910496 PMCID: PMC8080428 DOI: 10.1186/s12859-021-04144-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/15/2021] [Indexed: 11/10/2022] Open
Abstract
Background Next-generation sequencing (NGS) represents a significant advancement in clinical genetics. However, its use creates several technical, data interpretation and management challenges. It is essential to follow a consistent data analysis pipeline to achieve the highest possible accuracy and avoid false variant calls. Herein, we aimed to compare the performance of twenty-eight combinations of NGS data analysis pipeline compartments, including short-read mapping (BWA-MEM, Bowtie2, Stampy), variant calling (GATK-HaplotypeCaller, GATK-UnifiedGenotyper, SAMtools) and interval padding (null, 50 bp, 100 bp) methods, along with a commercially available pipeline (BWA Enrichment, Illumina®). Fourteen germline DNA samples from breast cancer patients were sequenced using a targeted NGS panel approach and subjected to data analysis. Results We highlight that interval padding is required for the accurate detection of intronic variants including spliceogenic pathogenic variants (PVs). In addition, using nearly default parameters, the BWA Enrichment algorithm, failed to detect these spliceogenic PVs and a missense PV in the TP53 gene. We also recommend the BWA-MEM algorithm for sequence alignment, whereas variant calling should be performed using a combination of variant calling algorithms; GATK-HaplotypeCaller and SAMtools for the accurate detection of insertions/deletions and GATK-UnifiedGenotyper for the efficient detection of single nucleotide variant calls. Conclusions These findings have important implications towards the identification of clinically actionable variants through panel testing in a clinical laboratory setting, when dedicated bioinformatics personnel might not always be available. The results also reveal the necessity of improving the existing tools and/or at the same time developing new pipelines to generate more reliable and more consistent data. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-021-04144-1.
Collapse
Affiliation(s)
- Maria Zanti
- Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, 2371, Nicosia, Cyprus.,Cyprus School of Molecular Medicine, 2371, Nicosia, Cyprus.,Bioinformatics Department, The Cyprus Institute of Neurology and Genetics, 2371, Nicosia, Cyprus
| | - Kyriaki Michailidou
- Cyprus School of Molecular Medicine, 2371, Nicosia, Cyprus.,Biostatistics Unit, The Cyprus Institute of Neurology and Genetics, 2371, Nicosia, Cyprus
| | - Maria A Loizidou
- Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, 2371, Nicosia, Cyprus.,Cyprus School of Molecular Medicine, 2371, Nicosia, Cyprus
| | - Christina Machattou
- Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, 2371, Nicosia, Cyprus
| | - Panagiota Pirpa
- Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, 2371, Nicosia, Cyprus
| | - Kyproula Christodoulou
- Cyprus School of Molecular Medicine, 2371, Nicosia, Cyprus.,Neurogenetics Department, The Cyprus Institute of Neurology and Genetics, 2371, Nicosia, Cyprus
| | - George M Spyrou
- Cyprus School of Molecular Medicine, 2371, Nicosia, Cyprus.,Bioinformatics Department, The Cyprus Institute of Neurology and Genetics, 2371, Nicosia, Cyprus
| | - Kyriacos Kyriacou
- Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, 2371, Nicosia, Cyprus.,Cyprus School of Molecular Medicine, 2371, Nicosia, Cyprus
| | - Andreas Hadjisavvas
- Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, 2371, Nicosia, Cyprus. .,Cyprus School of Molecular Medicine, 2371, Nicosia, Cyprus.
| |
Collapse
|
82
|
Qu X, Wu S, Gao J, Qin Z, Zhou Z, Liu J. Weighted gene co expression network analysis (WGCNA) with key pathways and hub-genes related to micro RNAs in ischemic stroke. IET Syst Biol 2021; 15:93-100. [PMID: 33880887 PMCID: PMC8675812 DOI: 10.1049/syb2.12016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 02/22/2021] [Accepted: 03/08/2021] [Indexed: 11/19/2022] Open
Abstract
Ischemic stroke (IS) is one of the major causes of death and disability worldwide. However, the specific mechanism of gene interplay and the biological function in IS are not clear. Therefore, more research into IS is necessary. Dataset GSE110993 including 20 ischemic stroke (IS) and 20 control specimens are used to establish both groups and the raw RNA‐seq data were analysed. Weighted gene co‐expression network analysis (WGCNA) was used to screen the key micro‐RNA modules. The centrality of key genes were determined by module membership (mm) and gene significance (GS). The key pathways were identified by enrichment analysis with Kyoto Protocol Gene and Genome Encyclopedia (KEGG), and the key genes were validated by protein‐protein interactions network. Result: Upon investigation, 1185 up‐ and down‐regulated genes were gathered and distributed into three modules in response to their degree of correlation to clinical traits of IS, among which the turquoise module show a trait‐correlation of 0.77. The top 140 genes were further identified by GS and MM. KEGG analysis showed two pathways may evolve in the progress of IS. Discussion: CXCL12 and EIF2a may be important biomarkers for the accurate diagnosis and treatment in IS.
Collapse
Affiliation(s)
- Xiang Qu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road, Nanning, Guangxi, China
| | - Shuang Wu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road, Nanning, Guangxi, China
| | - Jinggui Gao
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road, Nanning, Guangxi, China
| | - Zhenxiu Qin
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road, Nanning, Guangxi, China
| | - Zhenhua Zhou
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road, Nanning, Guangxi, China
| | - Jingli Liu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road, Nanning, Guangxi, China
| |
Collapse
|
83
|
Kuster RD, Yencho GC, Olukolu BA. ngsComposer: an automated pipeline for empirically based NGS data quality filtering. Brief Bioinform 2021; 22:6210066. [PMID: 33822850 PMCID: PMC8425578 DOI: 10.1093/bib/bbab092] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/19/2021] [Accepted: 03/01/2021] [Indexed: 12/26/2022] Open
Abstract
Next-generation sequencing (NGS) enables massively parallel acquisition of large-scale omics data; however, objective data quality filtering parameters are lacking. Although a useful metric, evidence reveals that platform-generated Phred values overestimate per-base quality scores. We have developed novel and empirically based algorithms that streamline NGS data quality filtering. The pipeline leverages known sequence motifs to enable empirical estimation of error rates, detection of erroneous base calls and removal of contaminating adapter sequence. The performance of motif-based error detection and quality filtering were further validated with read compression rates as an unbiased metric. Elevated error rates at read ends, where known motifs lie, tracked with propagation of erroneous base calls. Barcode swapping, an inherent problem with pooled libraries, was also effectively mitigated. The ngsComposer pipeline is suitable for various NGS protocols and platforms due to the universal concepts on which the algorithms are based.
Collapse
Affiliation(s)
- Ryan D Kuster
- Department of Entomology and Plant Pathology, University of Tennessee, USA
| | - G Craig Yencho
- Department of Horticultural Science, NC State University, USA
| | - Bode A Olukolu
- Department of Entomology and Plant Pathology, University of Tennessee, USA
| |
Collapse
|
84
|
Behera S, Voshall A, Moriyama EN. Plant Transcriptome Assembly: Review and Benchmarking. Bioinformatics 2021. [DOI: 10.36255/exonpublications.bioinformatics.2021.ch7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
85
|
Theut Riis P, Loft I, Yazdanyar S, Kjærsgaard Andersen R, Pedersen O, Ring H, Huber R, Sultan M, Loesche C, Saunte D, Jemec G. Full exome sequencing of 11 families with Hidradenitis suppurativa. J Eur Acad Dermatol Venereol 2021; 35:1203-1211. [DOI: 10.1111/jdv.17095] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 12/01/2020] [Indexed: 12/25/2022]
Affiliation(s)
- P. Theut Riis
- Department of Dermatology Zealand University Hospital Roskilde Denmark
| | - I.C. Loft
- Department of Clinical Immunology Naestved Hospital Naestved Denmark
| | - S. Yazdanyar
- Department of Dermatology Zealand University Hospital Roskilde Denmark
| | | | - O.B. Pedersen
- Department of Clinical Immunology Naestved Hospital Naestved Denmark
| | - H.C. Ring
- Department of Dermatology Zealand University Hospital Roskilde Denmark
| | - R. Huber
- Novartis Institutes for BioMedical Research Basel Switzerland
| | - M. Sultan
- Novartis Institutes for BioMedical Research Basel Switzerland
| | - C. Loesche
- Novartis Institutes for BioMedical Research Basel Switzerland
| | - D.M.L. Saunte
- Department of Dermatology Zealand University Hospital Roskilde Denmark
- Department of Clinical Medicine Health Sciences Faculty University of Copenhagen Copenhagen Denmark
| | - G.B.E. Jemec
- Department of Dermatology Zealand University Hospital Roskilde Denmark
- Department of Clinical Medicine Health Sciences Faculty University of Copenhagen Copenhagen Denmark
| |
Collapse
|
86
|
de Pedro M, Riba M, González-Martínez SC, Seoane P, Bautista R, Claros MG, Mayol M. Demography, genetic diversity and expansion load in the colonizing species Leontodon longirostris (Asteraceae) throughout its native range. Mol Ecol 2021; 30:1190-1205. [PMID: 33452714 DOI: 10.1111/mec.15802] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/12/2020] [Accepted: 01/08/2021] [Indexed: 12/25/2022]
Abstract
Unravelling the evolutionary processes underlying range expansions is fundamental to understand the distribution of organisms, as well as to predict their future responses to environmental change. Predictions for range expansions include a loss of genetic diversity and an accumulation of deleterious alleles along the expansion axis, which can decrease fitness at the range-front (expansion load). In plants, empirical studies supporting expansion load are scarce, and its effects remain to be tested outside a few model species. Leontodon longirostris is a colonizing Asteraceae with a widespread distribution in the Western Mediterranean, providing a particularly interesting system to gain insight into the factors that can enhance or mitigate expansion load. In this study, we produced a first genome draft for the species, covering 418 Mbp (~53% of the genome). Although incomplete, this draft was suitable to design a targeted sequencing of ~1.5 Mbp in 238 L. longirostris plants from 21 populations distributed along putative colonization routes in the Iberian Peninsula. Inferred demographic history supports a range expansion from southern Iberia around 40,000 years ago, reaching northern Iberia around 25,000 years ago. The expansion was accompanied by a loss of genetic diversity and a significant increase in the proportion of putatively deleterious mutations. However, levels of expansion load in L. longirostris were smaller than those found in other plant species, which can be explained, at least partially, by its high dispersal ability, the self-incompatible mating system, and the fact that the expansion occurred along a strong environmental cline.
Collapse
Affiliation(s)
| | - Miquel Riba
- CREAF, Cerdanyola del Vallès, Spain.,Univ. Autònoma Barcelona, Cerdanyola del Vallès, Spain
| | | | - Pedro Seoane
- Department of Molecular Biology and Biochemistry, Universidad de Málaga, and Institute for Mediterranean and Subtropical Horticulture (IHSM-CSIC-UMA), Málaga, Spain.,CIBER de Enfermedades Raras (CIBERER), Málaga, Spain.,Institute of Biomedical Research in Malaga (IBIMA), IBIMA-RARE, Málaga, Spain
| | - Rocío Bautista
- Institute of Biomedical Research in Malaga (IBIMA), IBIMA-RARE, Málaga, Spain.,Andalusian Platform for Bioinformatics-SCBI, Universidad de Málaga, Málaga, Spain
| | - Manuel Gonzalo Claros
- Department of Molecular Biology and Biochemistry, Universidad de Málaga, and Institute for Mediterranean and Subtropical Horticulture (IHSM-CSIC-UMA), Málaga, Spain.,CIBER de Enfermedades Raras (CIBERER), Málaga, Spain.,Institute of Biomedical Research in Malaga (IBIMA), IBIMA-RARE, Málaga, Spain.,Andalusian Platform for Bioinformatics-SCBI, Universidad de Málaga, Málaga, Spain.,Institute for Mediterranean and Subtropical Horticulture "La Mayora" (IHSM-UMA-CSIC), Málaga, Spain
| | | |
Collapse
|
87
|
Petrillo M, Fabbri M, Kagkli DM, Querci M, Van den Eede G, Alm E, Aytan-Aktug D, Capella-Gutierrez S, Carrillo C, Cestaro A, Chan KG, Coque T, Endrullat C, Gut I, Hammer P, Kay GL, Madec JY, Mather AE, McHardy AC, Naas T, Paracchini V, Peter S, Pightling A, Raffael B, Rossen J, Ruppé E, Schlaberg R, Vanneste K, Weber LM, Westh H, Angers-Loustau A. A roadmap for the generation of benchmarking resources for antimicrobial resistance detection using next generation sequencing. F1000Res 2021; 10:80. [PMID: 35847383 PMCID: PMC9243550 DOI: 10.12688/f1000research.39214.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/10/2022] [Indexed: 10/31/2024] Open
Abstract
Next Generation Sequencing technologies significantly impact the field of Antimicrobial Resistance (AMR) detection and monitoring, with immediate uses in diagnosis and risk assessment. For this application and in general, considerable challenges remain in demonstrating sufficient trust to act upon the meaningful information produced from raw data, partly because of the reliance on bioinformatics pipelines, which can produce different results and therefore lead to different interpretations. With the constant evolution of the field, it is difficult to identify, harmonise and recommend specific methods for large-scale implementations over time. In this article, we propose to address this challenge through establishing a transparent, performance-based, evaluation approach to provide flexibility in the bioinformatics tools of choice, while demonstrating proficiency in meeting common performance standards. The approach is two-fold: first, a community-driven effort to establish and maintain "live" (dynamic) benchmarking platforms to provide relevant performance metrics, based on different use-cases, that would evolve together with the AMR field; second, agreed and defined datasets to allow the pipelines' implementation, validation, and quality-control over time. Following previous discussions on the main challenges linked to this approach, we provide concrete recommendations and future steps, related to different aspects of the design of benchmarks, such as the selection and the characteristics of the datasets (quality, choice of pathogens and resistances, etc.), the evaluation criteria of the pipelines, and the way these resources should be deployed in the community.
Collapse
Affiliation(s)
| | - Marco Fabbri
- European Commission Joint Research Centre, Ispra, Italy
| | | | | | - Guy Van den Eede
- European Commission Joint Research Centre, Ispra, Italy
- European Commission Joint Research Centre, Geel, Belgium
| | - Erik Alm
- The European Centre for Disease Prevention and Control, Stockholm, Sweden
| | - Derya Aytan-Aktug
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | | | - Catherine Carrillo
- Ottawa Laboratory – Carling, Canadian Food Inspection Agency, Ottawa, Ontario, Canada
| | | | - Kok-Gan Chan
- International Genome Centre, Jiangsu University, Zhenjiang, China
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Teresa Coque
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Carlos III Health Institute, Madrid, Spain
| | | | - Ivo Gut
- Centro Nacional de Análisis Genómico, Centre for Genomic Regulation (CNAG-CRG), Barcelona Institute of Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Paul Hammer
- BIOMES. NGS GmbH c/o Technische Hochschule Wildau, Wildau, Germany
| | - Gemma L. Kay
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Jean-Yves Madec
- Unité Antibiorésistance et Virulence Bactériennes, ANSES Site de Lyon, Lyon, France
| | - Alison E. Mather
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- University of East Anglia, Norwich, UK
| | | | - Thierry Naas
- French-NRC for CPEs, Service de Bactériologie-Hygiène, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France
| | | | - Silke Peter
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
| | - Arthur Pightling
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, MD, USA
| | | | - John Rossen
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Robert Schlaberg
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Kevin Vanneste
- Transversal activities in Applied Genomics, Sciensano, Brussels, Belgium
| | - Lukas M. Weber
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
- Present address: Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | | |
Collapse
|
88
|
Palma C, La Rocca C, Gigantino V, Aquino G, Piccaro G, Di Silvestre D, Brambilla F, Rossi R, Bonacina F, Lepore MT, Audano M, Mitro N, Botti G, Bruzzaniti S, Fusco C, Procaccini C, De Rosa V, Galgani M, Alviggi C, Puca A, Grassi F, Rezzonico-Jost T, Norata GD, Mauri P, Netea MG, de Candia P, Matarese G. Caloric Restriction Promotes Immunometabolic Reprogramming Leading to Protection from Tuberculosis. Cell Metab 2021; 33:300-318.e12. [PMID: 33421383 DOI: 10.1016/j.cmet.2020.12.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 11/13/2020] [Accepted: 12/16/2020] [Indexed: 12/17/2022]
Abstract
There is a strong relationship between metabolic state and susceptibility to Mycobacterium tuberculosis (MTB) infection, with energy metabolism setting the basis for an exaggerated immuno-inflammatory response, which concurs with MTB pathogenesis. Herein, we show that controlled caloric restriction (CR), not leading to malnutrition, protects susceptible DBA/2 mice against pulmonary MTB infection by reducing bacterial load, lung immunopathology, and generation of foam cells, an MTB reservoir in lung granulomas. Mechanistically, CR induced a metabolic shift toward glycolysis, and decreased both fatty acid oxidation and mTOR activity associated with induction of autophagy in immune cells. An integrated multi-omics approach revealed a specific CR-induced metabolomic, transcriptomic, and proteomic signature leading to reduced lung damage and protective remodeling of lung interstitial tightness able to limit MTB spreading. Our data propose CR as a feasible immunometabolic manipulation to control MTB infection, and this approach offers an unexpected strategy to boost immunity against MTB.
Collapse
Affiliation(s)
- Carla Palma
- Dipartimento Malattie Infettive, Istituto Superiore di Sanità, 00161 Roma, Italy.
| | - Claudia La Rocca
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131 Napoli, Italy
| | - Vincenzo Gigantino
- Pathology Unit, Istituto Nazionale Tumori, Fondazione G. Pascale, IRCCS, 80131 Naples, Italy
| | - Gabriella Aquino
- Pathology Unit, Istituto Nazionale Tumori, Fondazione G. Pascale, IRCCS, 80131 Naples, Italy
| | - Giovanni Piccaro
- Dipartimento Malattie Infettive, Istituto Superiore di Sanità, 00161 Roma, Italy
| | - Dario Di Silvestre
- Proteomics and Metabolomics Unit, Institute for Biomedical Technologies, Consiglio Nazionale delle Ricerche (ITB-CNR), 20090 Segrate, Milano, Italy
| | - Francesca Brambilla
- Proteomics and Metabolomics Unit, Institute for Biomedical Technologies, Consiglio Nazionale delle Ricerche (ITB-CNR), 20090 Segrate, Milano, Italy
| | - Rossana Rossi
- Proteomics and Metabolomics Unit, Institute for Biomedical Technologies, Consiglio Nazionale delle Ricerche (ITB-CNR), 20090 Segrate, Milano, Italy
| | - Fabrizia Bonacina
- Department of Excellence in Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milano, Italy
| | - Maria Teresa Lepore
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131 Napoli, Italy
| | - Matteo Audano
- Department of Excellence in Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milano, Italy
| | - Nico Mitro
- Department of Excellence in Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milano, Italy
| | - Gerardo Botti
- Scientific Directorate, Istituto Nazionale Tumori, Fondazione G. Pascale, IRCCS, 80131 Naples, Italy
| | - Sara Bruzzaniti
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131 Napoli, Italy; Dipartimento di Biologia, Università degli Studi di Napoli "Federico II", 80126 Napoli, Italy
| | - Clorinda Fusco
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131 Napoli, Italy
| | - Claudio Procaccini
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131 Napoli, Italy; Unità di Neuroimmunologia, IRCCS-Fondazione Santa Lucia, 00143 Roma, Italy
| | - Veronica De Rosa
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131 Napoli, Italy; Unità di Neuroimmunologia, IRCCS-Fondazione Santa Lucia, 00143 Roma, Italy
| | - Mario Galgani
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131 Napoli, Italy; Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131 Napoli, Italy
| | - Carlo Alviggi
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131 Napoli, Italy; Department of Neuroscience, Reproductive Science, and Odontostomatology, University of Naples, Federico II, Naples, Italy
| | - Annibale Puca
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi-Salerno, Italy; IRCCS MultiMedica, 20138 Milano, Italy
| | - Fabio Grassi
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland
| | - Tanja Rezzonico-Jost
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland
| | - Giuseppe Danilo Norata
- Department of Excellence in Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milano, Italy; Center for the Study of Atherosclerosis, Società Italiana Studio Aterosclerosi, Bassini Hospital, 20092 Cinisello Balsamo, Milano, Italy
| | - Pierluigi Mauri
- Proteomics and Metabolomics Unit, Institute for Biomedical Technologies, Consiglio Nazionale delle Ricerche (ITB-CNR), 20090 Segrate, Milano, Italy; Istituto di Scienze della Vita, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Mihai G Netea
- Radboud Center for Infectious Diseases and Department of Internal Medicine, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | | | - Giuseppe Matarese
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131 Napoli, Italy; Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131 Napoli, Italy.
| |
Collapse
|
89
|
Cortese IJ, Castrillo ML, Zapata PD, Laczeski ME. EFECTO DEL FILTRADO DE SECUENCIAS EN EL ENSAMBLADO DEL GENOMA DE Bacillus altitudinis AISLADO DE Ilex paraguariensis. ACTA BIOLÓGICA COLOMBIANA 2021. [DOI: 10.15446/abc.v26n2.86406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Sin importar el tipo de tecnología aplicada para la secuenciación de un genoma, el filtrado de secuencias es un paso esencial, en el cual aquellas lecturas de baja calidad o parte de estas son eliminadas. En un ensamblado la construcción de un genoma se realiza a partir de la unión de lecturas cortas en cóntigos. Algunos ensambladores miden la relación que existe entre secuencias de una longitud fija (k-mer) que puede verse afectada por la presencia de secuencias de baja calidad. Un enfoque común para evaluar los ensamblados se basa en el análisis del número de cóntigos, la longitud del cóntigo más largo y el valor de N50, definido como la longitud del cóntigo que representa el 50 % de la longitud del conjunto. En este contexto, el presente estudio tuvo como objetivo evaluar el efecto del uso de lecturas crudas y filtradas en los valores de los parámetros de calidad obtenidos en el ensamblado del genoma de la cepa de Bacillus altitudinis19RS3 aislada de Ilex paraguariensis. Se realizó el análisis de calidad de ambos archivos de partida con el softwareFastqC y se filtraron las lecturas con el softwareTrimmomatic. Para el ensamblado se utilizó el softwareSPAdes y para su evaluación la herramienta QUAST. El mejor ensamblado para B. altitudinis19RS3 se obtuvo a partir de las lecturasfiltradas con el valor dek-mer 79, que generó 16 cóntigos mayores a 500 pb con un N50 de 931 914 pb y el cóntigo más largo de 966 271 pb.
Collapse
|
90
|
Albanese D, Donati C. Genome Recovery, Functional Profiling, and Taxonomic Classification from Metagenomes. Methods Mol Biol 2021; 2242:153-172. [PMID: 33961223 DOI: 10.1007/978-1-0716-1099-2_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Recovering and annotating bacterial genomes from metagenomes involves a series of complex computational tools that are often difficult to use for researches without a specialistic bioinformatic background. In this chapter we review all the steps that lead from raw reads to a collection of quality-controlled, functionally annotated bacterial genomes and propose a working protocol using state-of-the-art, open source software tools.
Collapse
Affiliation(s)
- Davide Albanese
- Unit of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Claudio Donati
- Unit of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy.
| |
Collapse
|
91
|
Variant Calling in Next Generation Sequencing Data. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11285-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
92
|
De Mori G, Zaina G, Franco-Orozco B, Testolin R, De Paoli E, Cipriani G. Targeted Mutagenesis of the Female-Suppressor SyGI Gene in Tetraploid Kiwifruit by CRISPR/CAS9. PLANTS 2020; 10:plants10010062. [PMID: 33396671 PMCID: PMC7823651 DOI: 10.3390/plants10010062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/18/2020] [Accepted: 12/27/2020] [Indexed: 11/16/2022]
Abstract
Kiwifruit belong to the genus Actinidia with 54 species apparently all functionally dioecious. The sex-determinants of the type XX/XY, with male heterogametic, operate independently of the ploidy level. Recently, the SyGI protein has been described as the suppressor of female development. In the present study, we exploited the CRISPR/Cas9 technology by targeting two different sites in the SyGI gene in order to induce a stable gene knock-out in two tetraploid male accessions of Actinidia chinensis var. chinensis. The two genotypes showed a regenerative efficiency of 58% and 73%, respectively. Despite not yet being able to verify the phenotypic effects on the flower structure, due to the long time required by tissue-cultured kiwifruit plants to flower, we obtained two regenerated lines showing near fixation of a unique modification in their genome, resulting in both cases in the onset of a premature stop codon, which induces the putative gene knock-out. Evaluation of gRNA1 locus for both regenerated plantlets resulted in co-amplification of a minor variant differing from the target region for a single nucleotide. A genomic duplication of the region in proximity of the Y genomic region could be postulated.
Collapse
Affiliation(s)
- Gloria De Mori
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, Italy; (G.Z.); (B.F.-O.); (R.T.); (E.D.P.); (G.C.)
- Correspondence:
| | - Giusi Zaina
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, Italy; (G.Z.); (B.F.-O.); (R.T.); (E.D.P.); (G.C.)
| | - Barbara Franco-Orozco
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, Italy; (G.Z.); (B.F.-O.); (R.T.); (E.D.P.); (G.C.)
- Facultad de Ingeniería, Tecnológico de Antioquia–Institución Universitaria TdeA, Calle 78b No. 72A-220, Medellín-Antioquia 050001, Colombia
| | - Raffaele Testolin
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, Italy; (G.Z.); (B.F.-O.); (R.T.); (E.D.P.); (G.C.)
| | - Emanuele De Paoli
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, Italy; (G.Z.); (B.F.-O.); (R.T.); (E.D.P.); (G.C.)
| | - Guido Cipriani
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, Italy; (G.Z.); (B.F.-O.); (R.T.); (E.D.P.); (G.C.)
| |
Collapse
|
93
|
Abstract
Read alignment is the central step of many analytic pipelines that perform variant calling. To reduce error, it is common practice to pre-process raw sequencing reads to remove low-quality bases and residual adapter contamination, a procedure collectively known as ‘trimming’. Trimming is widely assumed to increase the accuracy of variant calling, although there are relatively few systematic evaluations of its effects and no clear consensus on its efficacy. As sequencing datasets increase both in number and size, it is worthwhile reappraising computational operations of ambiguous benefit, particularly when the scope of many analyses now routinely incorporates thousands of samples, increasing the time and cost required. Using a curated set of 17 Gram-negative bacterial genomes, this study initially evaluated the impact of four read-trimming utilities (Atropos, fastp, Trim Galore and Trimmomatic), each used with a range of stringencies, on the accuracy and completeness of three bacterial SNP-calling pipelines. It was found that read trimming made only small, and statistically insignificant, increases in SNP-calling accuracy even when using the highest-performing pre-processor in this study, fastp. To extend these findings, >6500 publicly archived sequencing datasets from Escherichia coli, Mycobacterium tuberculosis and Staphylococcus aureus were re-analysed using a common analytic pipeline. Of the approximately 125 million SNPs and 1.25 million indels called across all samples, the same bases were called in 98.8 and 91.9 % of cases, respectively, irrespective of whether raw reads or trimmed reads were used. Nevertheless, the proportion of mixed calls (i.e. calls where <100 % of the reads support the variant allele; considered a proxy of false positives) was significantly reduced after trimming, which suggests that while trimming rarely alters the set of variant bases, it can affect the proportion of reads supporting each call. It was concluded that read quality- and adapter-trimming add relatively little value to a SNP-calling pipeline and may only be necessary if small differences in the absolute number of SNP calls, or the false call rate, are critical. Broadly similar conclusions can be drawn about the utility of trimming to an indel-calling pipeline. Read trimming remains routinely performed prior to variant calling likely out of concern that doing otherwise would typically have negative consequences. While historically this may have been the case, the data in this study suggests that read trimming is not always a practical necessity.
Collapse
Affiliation(s)
- Stephen J Bush
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
94
|
Mapel XM, Gyllenhaal EF, Modak TH, DeCicco LH, Naikatini A, Utzurrum RB, Seamon JO, Cibois A, Thibault JC, Sorenson MD, Moyle RG, Barrow LN, Andersen MJ. Inter- and intra-archipelago dynamics of population structure and gene flow in a Polynesian bird. Mol Phylogenet Evol 2020; 156:107034. [PMID: 33276120 DOI: 10.1016/j.ympev.2020.107034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 12/13/2022]
Abstract
Islands are separated by natural barriers that prevent gene flow between terrestrial populations and promote allopatric diversification. Birds in the South Pacific are an excellent model to explore the interplay between isolation and gene flow due to the region's numerous archipelagos and well-characterized avian communities. The wattled honeyeater complex (Foulehaio spp.) comprises three allopatric species that are widespread and common across Fiji, Tonga, Samoa, and Wallis and Futuna. Here, we explored patterns of diversification within and among these lineages using genomic and morphometric data. We found support for three clades of Foulehaio corresponding to three recognized species. Within F. carunculatus, population genetic analyses identified nine major lineages, most of which were composed of sub-lineages that aligned nearly perfectly to individual island populations. Despite genetic structure and great geographic distance between populations, we found low levels of gene flow between populations in adjacent archipelagos. Additionally, body size of F. carunculatus varied randomly with respect to evolutionary history (as Ernst Mayr predicted), but correlated negatively with island size, consistent with the island rule. Our findings support a hypothesis that widespread taxa can show population structure between immediately adjacent islands, and likely represent many independent lineages loosely connected by gene flow.
Collapse
Affiliation(s)
- Xena M Mapel
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, USA; Animal Genomics, ETH Zürich, Lindau, Switzerland.
| | - Ethan F Gyllenhaal
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, USA
| | - Tejashree H Modak
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA; Department of Biology, Boston University, Boston, MA, USA
| | - Lucas H DeCicco
- Biodiversity Institute and Natural History Museum, Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA
| | - Alivereti Naikatini
- South Pacific Regional Herbarium, University of the South Pacific, Laucala Campus, Suva, Fiji
| | - Ruth B Utzurrum
- Department of Marine & Wildlife Resources, American Samoa Government, PO Box 3730, Pago Pago, AS 96799, USA
| | - Joshua O Seamon
- Department of Marine & Wildlife Resources, American Samoa Government, PO Box 3730, Pago Pago, AS 96799, USA
| | - Alice Cibois
- Natural History Museum of Geneva, CP 6434, CH 1211 Geneva, Switzerland
| | - Jean-Claude Thibault
- Institut Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, 57 rue Cuvier, CP50, F-75005 Paris, France
| | | | - Robert G Moyle
- Biodiversity Institute and Natural History Museum, Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA
| | - Lisa N Barrow
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, USA
| | - Michael J Andersen
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
95
|
Ferrari M, Torelli A, Marieschi M, Cozza R. Role of DNA methylation in the chromium tolerance of Scenedesmus acutus (Chlorophyceae) and its impact on the sulfate pathway regulation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 301:110680. [PMID: 33218643 DOI: 10.1016/j.plantsci.2020.110680] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/11/2020] [Accepted: 09/13/2020] [Indexed: 06/11/2023]
Abstract
DNA methylation is a very important epigenetic modification that participates in many biological functions. Although many researches on DNA methylation have been reported in various plant species, few studies have assessed the global DNA methylation pattern in algae. Even more the complex mechanisms by which DNA methylation modulates stress in algae are yet largely unresolved, mainly with respect to heavy metal stress, for which in plants, metal- and species- specific responses were instead evidenced. In this work, we performed a comparative Whole-Genome Bisulfite Sequencing (WGBS) on two strains of the green alga Scenedesmus acutus with different Cr(VI) sensitivity. The pattern of distribution of 5-mC showed significant differences between the two strains concerning both differentially methylated local contexts (CG, CHG and CHH) and Differentially Methylated Regions (DMRs) as well. We also demonstrated that DNA methylation plays an important role in modulating some genes for sulfate uptake/assimilation confirming the involvement of the sulfate pathway in the Cr-tolerance. Our results suggest that DNA methylation may be of particular importance in defining signal specificity associated with Cr-tolerance and in establishing new epigenetic marks which contribute to the adaptation to metal stress and also to transmit the epigenomic traits to the progeny.
Collapse
Affiliation(s)
- Michele Ferrari
- Department of Biology, Ecology and Earth Science, University of Calabria, Ponte P. Bucci - 87036, Arcavacata di Rende, Cosenza, Italy.
| | - Anna Torelli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Viale delle Scienze 11/A - 43124, Parma, Italy.
| | - Matteo Marieschi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Viale delle Scienze 11/A - 43124, Parma, Italy.
| | - Radiana Cozza
- Department of Biology, Ecology and Earth Science, University of Calabria, Ponte P. Bucci - 87036, Arcavacata di Rende, Cosenza, Italy.
| |
Collapse
|
96
|
Khan Y, Hammarström D, Rønnestad BR, Ellefsen S, Ahmad R. Increased biological relevance of transcriptome analyses in human skeletal muscle using a model-specific pipeline. BMC Bioinformatics 2020; 21:548. [PMID: 33256614 PMCID: PMC7708234 DOI: 10.1186/s12859-020-03866-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Background Human skeletal muscle responds to weight-bearing exercise with significant inter-individual differences. Investigation of transcriptome responses could improve our understanding of this variation. However, this requires bioinformatic pipelines to be established and evaluated in study-specific contexts. Skeletal muscle subjected to mechanical stress, such as through resistance training (RT), accumulates RNA due to increased ribosomal biogenesis. When a fixed amount of total-RNA is used for RNA-seq library preparations, mRNA counts are thus assessed in different amounts of tissue, potentially invalidating subsequent conclusions. The purpose of this study was to establish a bioinformatic pipeline specific for analysis of RNA-seq data from skeletal muscles, to explore the effects of different normalization strategies and to identify genes responding to RT in a volume-dependent manner (moderate vs. low volume). To this end, we analyzed RNA-seq data derived from a twelve-week RT intervention, wherein 25 participants performed both low- and moderate-volume leg RT, allocated to the two legs in a randomized manner. Bilateral muscle biopsies were sampled from m. vastus lateralis before and after the intervention, as well as before and after the fifth training session (Week 2). Result Bioinformatic tools were selected based on read quality, observed gene counts, methodological variation between paired observations, and correlations between mRNA abundance and protein expression of myosin heavy chain family proteins. Different normalization strategies were compared to account for global changes in RNA to tissue ratio. After accounting for the amounts of muscle tissue used in library preparation, global mRNA expression increased by 43–53%. At Week 2, this was accompanied by dose-dependent increases for 21 genes in rested-state muscle, most of which were related to the extracellular matrix. In contrast, at Week 12, no readily explainable dose-dependencies were observed. Instead, traditional normalization and non-normalized models resulted in counterintuitive reverse dose-dependency for many genes. Overall, training led to robust transcriptome changes, with the number of differentially expressed genes ranging from 603 to 5110, varying with time point and normalization strategy. Conclusion Optimized selection of bioinformatic tools increases the biological relevance of transcriptome analyses from resistance-trained skeletal muscle. Moreover, normalization procedures need to account for global changes in rRNA and mRNA abundance.
Collapse
Affiliation(s)
- Yusuf Khan
- Department of Biotechnology, Inland Norway University of Applied Sciences, Holsetgata 22, 2317, Hamar, Norway.,Section for Health and Exercise Physiology, Department of Public Health and Sport Sciences, Inland Norway University of Applied Sciences, Lillehammer, Norway
| | - Daniel Hammarström
- Section for Health and Exercise Physiology, Department of Public Health and Sport Sciences, Inland Norway University of Applied Sciences, Lillehammer, Norway.,Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Bent R Rønnestad
- Section for Health and Exercise Physiology, Department of Public Health and Sport Sciences, Inland Norway University of Applied Sciences, Lillehammer, Norway
| | - Stian Ellefsen
- Section for Health and Exercise Physiology, Department of Public Health and Sport Sciences, Inland Norway University of Applied Sciences, Lillehammer, Norway.,Innlandet Hospital Trust, Lillehammer, Norway
| | - Rafi Ahmad
- Department of Biotechnology, Inland Norway University of Applied Sciences, Holsetgata 22, 2317, Hamar, Norway. .,Faculty of Health Sciences, Institute of Clinical Medicine, UiT - The Arctic University of Norway, Hansine Hansens veg 18, 9019, Tromsø, Norway.
| |
Collapse
|
97
|
Abdel-Salam EM, Faisal M, Alatar AA, Qahtan AA, Alam P. Genome-wide transcriptome variation landscape in Ruta chalepensis organs revealed potential genes responsible for rutin biosynthesis. J Biotechnol 2020; 325:43-56. [PMID: 33271156 DOI: 10.1016/j.jbiotec.2020.11.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/15/2020] [Accepted: 11/28/2020] [Indexed: 12/17/2022]
Abstract
Ruta chalepensis L., most commonly known as 'fringed rue,' is an excellent and valuable bioactive plant that produces a range of complex flavonoids, of which rutin is the major compound present in this plant of great pharmaceutical and medicinal significance. The present study is a pioneering attempt to examine the changes in the transcriptomic landscape of leaf, stem, and root tissues and correlate this with rutin quantity in each tissue in order to identify the candidate genes responsible for rutin biosynthesis and to increase genomic resources in fringed rue. Comparative transcriptome sequencing of leaves, stems and roots were performed using the NovaSeq 6000 platform. The de novo transcriptome assembly generated 254,685 transcripts representing 154,018 genes with GC content of 42.60 % and N50 of 2280 bp. Searching assembled transcripts against UniRef90 and SwissProt databases annotated 79.7 % of them as protein coding. The leaf tissues had the highest rutin content followed by stems and roots. Several differentially expressed genes and transcripts relating to rutin biosynthesis were identified in leaves comparing with roots or stems comparing with roots. All the genes known to be involved in rutin biosynthesis showed up-regulation in leaves as compared with roots. These results were confirmed by gene ontology (GO) and pathway enrichment analyses. Up-regulated genes in leaves as compared with roots enriched GO terms with relation to rutin biosynthesis e.g. action of flavonol synthase, biosynthetic mechanism of malonyl-CoA, and action of monooxygenase. Phylogenetic analysis of the rhamnosyltransferase (RT) gene showed that it was highly homologues with RT sequence from Citrus species and all were located in the same clade. This transcriptomic dataset will serve as an important public resource for future genomics and transcriptomic studies in R. chalepensis and will act as a benchmark for the identification and genetic modification of genes involved in the biosynthesis of secondary metabolites.
Collapse
Affiliation(s)
- Eslam M Abdel-Salam
- Department of Botany & Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mohammad Faisal
- Department of Botany & Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Abdulrahman A Alatar
- Department of Botany & Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ahmed A Qahtan
- Department of Botany & Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Perwez Alam
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
98
|
Sooklal SA, Mpangase PT, Tomescu MS, Aron S, Hazelhurst S, Archer RH, Rumbold K. Functional characterisation of the transcriptome from leaf tissue of the fluoroacetate-producing plant, Dichapetalum cymosum, in response to mechanical wounding. Sci Rep 2020; 10:20539. [PMID: 33239700 PMCID: PMC7688953 DOI: 10.1038/s41598-020-77598-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/13/2020] [Indexed: 12/21/2022] Open
Abstract
Dichapetalum cymosum produces the toxic fluorinated metabolite, fluoroacetate, presumably as a defence mechanism. Given the rarity of fluorinated metabolites in nature, the biosynthetic origin and function of fluoroacetate have been of particular interest. However, the mechanism for fluorination in D. cymosum was never elucidated. More importantly, there is a severe lack in knowledge on a genetic level for fluorometabolite-producing plants, impeding research on the subject. Here, we report on the first transcriptome for D. cymosum and investigate the wound response for insights into fluorometabolite production. Mechanical wounding studies were performed and libraries of the unwounded (control) and wounded (30 and 60 min post wounding) plant were sequenced using the Illumina HiSeq platform. A combined reference assembly generated 77,845 transcripts. Using the SwissProt, TrEMBL, GO, eggNOG, KEGG, Pfam, EC and PlantTFDB databases, a 69% annotation rate was achieved. Differential expression analysis revealed the regulation of 364 genes in response to wounding. The wound responses in D. cymosum included key mechanisms relating to signalling cascades, phytohormone regulation, transcription factors and defence-related secondary metabolites. However, the role of fluoroacetate in inducible wound responses remains unclear. Bacterial fluorinases were searched against the D. cymosum transcriptome but transcripts with homology were not detected suggesting the presence of a potentially different fluorinating enzyme in plants. Nevertheless, the transcriptome produced in this study significantly increases genetic resources available for D. cymosum and will assist with future research into fluorometabolite-producing plants.
Collapse
Affiliation(s)
- Selisha A Sooklal
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, 2000, South Africa
| | - Phelelani T Mpangase
- Sydney Brenner Institute for Molecular Biosciences, University of the Witwatersrand, Johannesburg, 2000, South Africa
| | - Mihai-Silviu Tomescu
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, 2000, South Africa
| | - Shaun Aron
- Sydney Brenner Institute for Molecular Biosciences, University of the Witwatersrand, Johannesburg, 2000, South Africa
| | - Scott Hazelhurst
- Sydney Brenner Institute for Molecular Biosciences, University of the Witwatersrand, Johannesburg, 2000, South Africa
| | - Robert H Archer
- National Herbarium, South African National Biodiversity Institute, Pretoria, 0186, South Africa
| | - Karl Rumbold
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, 2000, South Africa.
| |
Collapse
|
99
|
Lee N, Park MJ, Song W, Jeon K, Jeong S. Currently Applied Molecular Assays for Identifying ESR1 Mutations in Patients with Advanced Breast Cancer. Int J Mol Sci 2020; 21:ijms21228807. [PMID: 33233830 PMCID: PMC7699999 DOI: 10.3390/ijms21228807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022] Open
Abstract
Approximately 70% of breast cancers, the leading cause of cancer-related mortality worldwide, are positive for the estrogen receptor (ER). Treatment of patients with luminal subtypes is mainly based on endocrine therapy. However, ER positivity is reduced and ESR1 mutations play an important role in resistance to endocrine therapy, leading to advanced breast cancer. Various methodologies for the detection of ESR1 mutations have been developed, and the most commonly used method is next-generation sequencing (NGS)-based assays (50.0%) followed by droplet digital PCR (ddPCR) (45.5%). Regarding the sample type, tissue (50.0%) was more frequently used than plasma (27.3%). However, plasma (46.2%) became the most used method in 2016-2019, in contrast to 2012-2015 (22.2%). In 2016-2019, ddPCR (61.5%), rather than NGS (30.8%), became a more popular method than it was in 2012-2015. The easy accessibility, non-invasiveness, and demonstrated usefulness with high sensitivity of ddPCR using plasma have changed the trends. When using these assays, there should be a comprehensive understanding of the principles, advantages, vulnerability, and precautions for interpretation. In the future, advanced NGS platforms and modified ddPCR will benefit patients by facilitating treatment decisions efficiently based on information regarding ESR1 mutations.
Collapse
Affiliation(s)
- Nuri Lee
- Department of Laboratory Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07440, Korea; (N.L.); (M.-J.P.); (W.S.)
| | - Min-Jeong Park
- Department of Laboratory Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07440, Korea; (N.L.); (M.-J.P.); (W.S.)
| | - Wonkeun Song
- Department of Laboratory Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07440, Korea; (N.L.); (M.-J.P.); (W.S.)
| | - Kibum Jeon
- Department of Laboratory Medicine, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07440, Korea;
| | - Seri Jeong
- Department of Laboratory Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07440, Korea; (N.L.); (M.-J.P.); (W.S.)
- Correspondence: ; Tel.: +82-845-5305
| |
Collapse
|
100
|
Systematic comparison and assessment of RNA-seq procedures for gene expression quantitative analysis. Sci Rep 2020; 10:19737. [PMID: 33184454 PMCID: PMC7665074 DOI: 10.1038/s41598-020-76881-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 11/03/2020] [Indexed: 01/16/2023] Open
Abstract
RNA-seq is currently considered the most powerful, robust and adaptable technique for measuring gene expression and transcription activation at genome-wide level. As the analysis of RNA-seq data is complex, it has prompted a large amount of research on algorithms and methods. This has resulted in a substantial increase in the number of options available at each step of the analysis. Consequently, there is no clear consensus about the most appropriate algorithms and pipelines that should be used to analyse RNA-seq data. In the present study, 192 pipelines using alternative methods were applied to 18 samples from two human cell lines and the performance of the results was evaluated. Raw gene expression signal was quantified by non-parametric statistics to measure precision and accuracy. Differential gene expression performance was estimated by testing 17 differential expression methods. The procedures were validated by qRT-PCR in the same samples. This study weighs up the advantages and disadvantages of the tested algorithms and pipelines providing a comprehensive guide to the different methods and procedures applied to the analysis of RNA-seq data, both for the quantification of the raw expression signal and for the differential gene expression.
Collapse
|