51
|
Prakash R, Izraely S, Thareja NS, Lee RH, Rappaport M, Kawaguchi R, Sagi-Assif O, Ben-Menachem S, Meshel T, Machnicki M, Ohe S, Hoon DS, Coppola G, Witz IP, Carmichael ST. Regeneration Enhances Metastasis: A Novel Role for Neurovascular Signaling in Promoting Melanoma Brain Metastasis. Front Neurosci 2019; 13:297. [PMID: 31024232 PMCID: PMC6465799 DOI: 10.3389/fnins.2019.00297] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 03/15/2019] [Indexed: 12/12/2022] Open
Abstract
Neural repair after stroke involves initiation of a cellular proliferative program in the form of angiogenesis, neurogenesis, and molecular growth signals in the surrounding tissue elements. This cellular environment constitutes a niche in which regeneration of new blood vessels and new neurons leads to partial tissue repair after stroke. Cancer metastasis has similar proliferative cellular events in the brain and other organs. Do cancer and CNS tissue repair share similar cellular processes? In this study, we identify a novel role of the regenerative neurovascular niche induced by stroke in promoting brain melanoma metastasis through enhancing cellular interactions with surrounding niche components. Repair-mediated neurovascular signaling induces metastatic cells to express genes crucial to metastasis. Mimicking stroke-like conditions in vitro displays an enhancement of metastatic migration potential and allows for the determination of cell-specific signals produced by the regenerative neurovascular niche. Comparative analysis of both in vitro and in vivo expression profiles reveals a major contribution of endothelial cells in mediating melanoma metastasis. These results point to a previously undiscovered role of the regenerative neurovascular niche in shaping the tumor microenvironment and brain metastatic landscape.
Collapse
Affiliation(s)
- Roshini Prakash
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Sivan Izraely
- Department of Cell Research and Immunology, School of Molecular Cell Biology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Nikita S Thareja
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Rex H Lee
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Maya Rappaport
- Department of Cell Research and Immunology, School of Molecular Cell Biology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Riki Kawaguchi
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| | - Orit Sagi-Assif
- Department of Cell Research and Immunology, School of Molecular Cell Biology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shlomit Ben-Menachem
- Department of Cell Research and Immunology, School of Molecular Cell Biology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Tsipi Meshel
- Department of Cell Research and Immunology, School of Molecular Cell Biology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Michal Machnicki
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Shuichi Ohe
- Department of Translational Molecular Medicine, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, United States
| | - Dave S Hoon
- Department of Translational Molecular Medicine, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, United States
| | - Giovanni Coppola
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| | - Isaac P Witz
- Department of Cell Research and Immunology, School of Molecular Cell Biology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - S Thomas Carmichael
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
52
|
Ngo O, Niemann E, Gunasekaran V, Sankar P, Putterman M, Lafontant A, Nadkarni S, DiMaria-Ghalili RA, Neidrauer M, Zubkov L, Weingarten M, Margolis DJ, Lewin PA. Development of Low Frequency (20-100 kHz) Clinically Viable Ultrasound Applicator for Chronic Wound Treatment. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:572-580. [PMID: 29993739 PMCID: PMC6542367 DOI: 10.1109/tuffc.2018.2836311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
This paper details the systematic approach used to develop a viable clinical prototype of a therapeutic ultrasound applicator and discusses the rationale and deliberations that led to the design strategy. The applicator was specifically devised to treat chronic wounds and-to the best of the author's knowledge-is the first truly wearable device with a proven record of reducing healing time, directly translating to a reduction of healthcare costs. The prototype operates in the kHz (20-100) range of frequencies and uses noncavitational and nonthermal levels of ultrasound energy. Hence, in the absence of inertial cavitation and temperature elevation, the tissue-ultrasound interaction is considered to be dependent on stable cavitation (if any) and radiation force. The peak acoustic output pressure amplitude is limited to 55 kPa, corresponding to a spatial peak-temporal peak intensity of 100 mW/cm2. This level of intensity is considered to be safe to apply for extended (up to 4 h) periods of time. The patch-like applicator design is suitable to be embedded in wound dressing. With its lightweight (<20 g) and circular (40 mm dia) disk-shape architecture, the applicator is well suited for chronic wound treatment. A small ( n = 8 ) pilot study on the effects of the applicator on diabetic ulcers (DUs) healing time is presented. The average time to wound closure was 4.7 weeks for subjects treated with the active ultrasound applicator, compared to 12 weeks for subjects treated with a sham applicator, suggesting that patients with DUs may benefit from the proposed treatment.
Collapse
|
53
|
Gomig THB, Cavalli IJ, Souza RLRD, Vieira E, Lucena ACR, Batista M, Machado KC, Marchini FK, Marchi FA, Lima RS, de Andrade Urban C, Cavalli LR, Ribeiro EMDSF. Quantitative label-free mass spectrometry using contralateral and adjacent breast tissues reveal differentially expressed proteins and their predicted impacts on pathways and cellular functions in breast cancer. J Proteomics 2019; 199:1-14. [PMID: 30772490 DOI: 10.1016/j.jprot.2019.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 01/27/2019] [Accepted: 02/11/2019] [Indexed: 02/08/2023]
Abstract
Proteins play an essential role in the biological processes associated with cancer. Their altered expression levels can deregulate critical cellular pathways and interactive networks. In this study, the mass spectrometry-based label-free quantification followed by functional annotation was performed to investigate the most significant deregulated proteins among tissues of primary breast tumor (PT) and axillary metastatic lymph node (LN) and corresponding non-tumor tissues contralateral (NCT) and adjacent (ANT) from patients diagnosed with invasive ductal carcinoma. A total of 462 proteins was observed as differentially expressed (DEPs) among the groups analyzed. A high level of similarity was observed in the proteome profile of both non-tumor breast tissues and DEPs (n = 12) were mainly predicted in the RNA metabolism. The DEPs among the malignant and non-tumor breast tissues [n = 396 (PTxNCT) and n = 410 (LNxNCT)] were related to pathways of the LXR/RXR, NO, eNOS, eIF2 and sirtuins, tumor-related functions, fatty acid metabolism and oxidative stress. Remarkable similarity was observed between both malignant tissues, which the DEPs were related to metastatic capabilities. Altogether, our findings revealed differential proteomic profiles that affected cancer associated and interconnected signaling processes. Validation studies are recommended to demonstrate the potential of individual proteins and/or pathways as biological markers in breast cancer. SIGNIFICANCE: The proteomic analysis of this study revealed high similarity in the proteomic profile of the contralateral and adjacent non-tumor breast tissues. Significant differences were identified among the proteome of the malignant and non-tumor tissue groups of the same patients, providing relevant insights into the hallmarks, signaling pathways, biological functions, and interactive protein networks that act during tumorigenesis and breast cancer progression. These proteins are suggested as targets of relevant interest to be explored as potential biological markers related to tumor development and metastatic progression in the breast cancer disease.
Collapse
Affiliation(s)
| | | | | | - Evelyn Vieira
- Genetics Department, Federal University of Parana, Curitiba, Brazil
| | | | - Michel Batista
- Functional Genomics Laboratory, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil; Mass Spectrometry Facility - RPT02H, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil
| | | | - Fabricio Klerynton Marchini
- Functional Genomics Laboratory, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil; Mass Spectrometry Facility - RPT02H, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil
| | | | | | | | - Luciane Regina Cavalli
- Research Institute Pele Pequeno Principe, Curitiba, Brazil; Lombardi Comprehensive Cancer Center, Georgetown University, USA
| | | |
Collapse
|
54
|
Joshi S, Durden DL. Combinatorial Approach to Improve Cancer Immunotherapy: Rational Drug Design Strategy to Simultaneously Hit Multiple Targets to Kill Tumor Cells and to Activate the Immune System. JOURNAL OF ONCOLOGY 2019; 2019:5245034. [PMID: 30853982 PMCID: PMC6377965 DOI: 10.1155/2019/5245034] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/15/2018] [Accepted: 01/01/2019] [Indexed: 02/07/2023]
Abstract
Cancer immunotherapy, including immune checkpoint blockade and adoptive CAR T-cell therapy, has clearly established itself as an important modality to treat melanoma and other malignancies. Despite the tremendous clinical success of immunotherapy over other cancer treatments, this approach has shown substantial benefit to only some of the patients while the rest of the patients have not responded due to immune evasion. In recent years, a combination of cancer immunotherapy together with existing anticancer treatments has gained significant attention and has been extensively investigated in preclinical or clinical studies. In this review, we discuss the therapeutic potential of novel regimens combining immune checkpoint inhibitors with therapeutic interventions that (1) increase tumor immunogenicity such as chemotherapy, radiotherapy, and epigenetic therapy; (2) reverse tumor immunosuppression such as TAMs, MDSCs, and Tregs targeted therapy; and (3) reduce tumor burden and increase the immune effector response with rationally designed dual or triple inhibitory chemotypes.
Collapse
Affiliation(s)
- Shweta Joshi
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Moores Cancer Center, University of California, San Diego, CA, USA
| | - Donald L. Durden
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Moores Cancer Center, University of California, San Diego, CA, USA
- SignalRx Pharmaceuticals, Inc., San Diego, CA, USA
| |
Collapse
|
55
|
Tsitsilashvili E, Sepashvili M, Chikviladze M, Shanshiashvili L, Mikeladze D. Myelin basic protein charge isomers change macrophage polarization. J Inflamm Res 2019; 12:25-33. [PMID: 30774410 PMCID: PMC6350649 DOI: 10.2147/jir.s189570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Purpose During a neuronal injury, a variety of immune cells infiltrate into the local microenvironment at the demyelination site. After the destruction of the intact myelin sheath, its major constituent myelin basic protein (MBP) dissociates from the plasma membrane and acts as a free ligand on the infiltrated immune cells. MBP exhibits charge microheterogeneity as a result of post-translational modifications, but the effect of various isomers of MBP on the activity of macrophages is not known. Materials and methods MBP was isolated and purified from bovine brain white matter. RAW 264.7 macrophages were cultured in DMEM supplemented with heat-inactivated fetal bovine serum. For evaluation of macrophage polarization following treatment of RAW 264.7 cells with MBP charge isomers, inducible nitric oxide synthase (iNOS) expression (M1 phenotype marker) and arginase-1 expression (M2 phenotype marker) were determined in cell lysates by ELISA. To assess Rac activity, G-LISA Rac Activation Assay system was used. The expression of receptor for advanced glycation end-products (RAGE) and high mobility group box 1 (HMGB1) protein were assayed by Western blot analysis. Results Our results have shown that minimally modified C1 component of MBP increases the expression of arginase-1 in cells, decreases the expression of iNOS, does not change the secretion of HMGB1 protein, but significantly elevates surface expression of RAGE, and in parallel, increases the activity of small GTPase Rac. On the other hand, highly modified deiminated isomer C8-MBP increases the secretion of HMGB1 protein but does not change the expression of arginase-1 or the content of RAGE. Conclusion These data indicate that deiminated C8 isomer of MBP tends to polarize RAW macrophages into M1 phenotypes, whereas C1 enhances the activity of M2 phenotype markers.
Collapse
Affiliation(s)
| | - Maia Sepashvili
- Institute of Chemical Biology, Ilia State University, Tbilisi, Georgia, .,Department of Biochemistry, I. Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia,
| | | | - Lali Shanshiashvili
- Institute of Chemical Biology, Ilia State University, Tbilisi, Georgia, .,Department of Biochemistry, I. Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia,
| | - David Mikeladze
- Institute of Chemical Biology, Ilia State University, Tbilisi, Georgia, .,Department of Biochemistry, I. Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia,
| |
Collapse
|
56
|
Wang J, Wang X, Wang Y, Li S, Wang X. Krüppel like factor 6 splice variant 1 (KLF6-SV1) overexpression recruits macrophages to participate in lung cancer metastasis by up-regulating TWIST1. Cancer Biol Ther 2018; 20:680-691. [PMID: 30590988 PMCID: PMC6605981 DOI: 10.1080/15384047.2018.1550570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/07/2018] [Accepted: 11/15/2018] [Indexed: 01/10/2023] Open
Abstract
The aim of this study was to investigate the mechanism by which KLF6-SV1 promoted lung cancer metastasis through tumor-associated macrophages (TAMs). Plasmid transfection was used to construct cells that upregulated or silenced gene. Tumor-bearing mouse model was established using A549 cells. SP staining was performed to detect the CD163 and CD68. Six-well plates and Transwell chamber were used for co-culture of lung cancer A549 cells and macrophages. CCK-8 and Transwell assay were applied to detected the cell viability and migration respectively. Protein and mRNA were tested by Western blot and quantitative real-time polymerase chain reaction (qRT-PCR).KLF6-SV1 overexpression promoted the expression levels of TWIST1 and CCL2, and also induce macrophage polarization to M2 and epithelial-mesenchymal transition (EMT). In vitro experiments showed that KLF6-SV1 might regulate the migration of lung cancer cells by regulating the expression of TWIST1 and CCL-2. M2 macrophages did not affect the expression of KLF6-SV1, TWIST1 and CCL-2. The co-culture system could up-regulate the EMT of A549 cells.Overexpression of KLF6-SV1 promoted the expression of TWIST1 and CCL2, and up-regulation of TWIST1 expression might promote the infiltration of M2 macrophages, which promoted the involvement of EMT in the metastasis of lung cancer cells.
Collapse
Affiliation(s)
- Jian Wang
- Department of Medical oncology, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Xiao Wang
- Department of Rheumatology, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Yawei Wang
- Department of Medical oncology, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Shuguang Li
- Department of Medical oncology, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Xiuwen Wang
- Department of Medical oncology, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
57
|
Durand-Onaylı V, Haslauer T, Härzschel A, Hartmann TN. Rac GTPases in Hematological Malignancies. Int J Mol Sci 2018; 19:ijms19124041. [PMID: 30558116 PMCID: PMC6321480 DOI: 10.3390/ijms19124041] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 12/22/2022] Open
Abstract
Emerging evidence suggests that crosstalk between hematologic tumor cells and the tumor microenvironment contributes to leukemia and lymphoma cell migration, survival, and proliferation. The supportive tumor cell-microenvironment interactions and the resulting cellular processes require adaptations and modulations of the cytoskeleton. The Rac subfamily of the Rho family GTPases includes key regulators of the cytoskeleton, with essential functions in both normal and transformed leukocytes. Rac proteins function downstream of receptor tyrosine kinases, chemokine receptors, and integrins, orchestrating a multitude of signals arising from the microenvironment. As such, it is not surprising that deregulation of Rac expression and activation plays a role in the development and progression of hematological malignancies. In this review, we will give an overview of the specific contribution of the deregulation of Rac GTPases in hematologic malignancies.
Collapse
Affiliation(s)
- Valerie Durand-Onaylı
- Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectious Disease, Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, 5020 Salzburg, Austria.
| | - Theresa Haslauer
- Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectious Disease, Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, 5020 Salzburg, Austria.
| | - Andrea Härzschel
- Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectious Disease, Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, 5020 Salzburg, Austria.
| | - Tanja Nicole Hartmann
- Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectious Disease, Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, 5020 Salzburg, Austria.
- Department of Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine and Medical Center, University of Freiburg, 79106 Freiburg, Germany.
| |
Collapse
|
58
|
Shin Y, Kim YW, Kim H, Shin N, Kim TS, Kwon TK, Choi JH, Chang JS. RASAL3 preferentially stimulates GTP hydrolysis of the Rho family small GTPase Rac2. Biomed Rep 2018; 9:241-246. [PMID: 30271600 DOI: 10.3892/br.2018.1119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 06/28/2018] [Indexed: 11/05/2022] Open
Abstract
Members of the Ras superfamily of small G-proteins serve as molecular switches of intracellular signaling pathways. Rac2 is a Rho subfamily GTPase switch that is specifically expressed in hematopoietic cells and regulates AKT activation in cell signaling. Ras activating protein-like 3 (RASAL3) is the recently identified Ras GTPase activating protein (GAP) that is also specifically expressed in hematopoietic cells and stimulates p21ras GTPase activity. The restricted expression of both Rac2 and RASAL3 suggests that they may serve critical roles in hematopoietic cell signaling. Here in the present study demonstrates that the catalytic domain of RASAL3 may also be able to interact with Rac2 and stimulate its GTPase activity in vitro. By contrast, p50 rhoGAP molecules did not markedly affect Rac2 GTPase activity, but did accelerate the activity of other Rho GTPases, including Rac1, RhoA and Cdc42. Collectively, the present results indicate, seemingly for the first time, that GAP activity for Rac2 is regulated by the RasGAP family protein, RASAL3.
Collapse
Affiliation(s)
- Yoonjae Shin
- Department of Life Science, College of Science and Technology, Daejin University, Pocheon-Si, Gyeonggi-Do 11159, South Korea
| | - Yong Woo Kim
- Department of Life Science, College of Science and Technology, Daejin University, Pocheon-Si, Gyeonggi-Do 11159, South Korea
| | - Hyemin Kim
- Department of Life Science, College of Science and Technology, Daejin University, Pocheon-Si, Gyeonggi-Do 11159, South Korea
| | - Nakyoung Shin
- Department of Life Science, College of Science and Technology, Daejin University, Pocheon-Si, Gyeonggi-Do 11159, South Korea
| | - Tae Sung Kim
- Department of Life Science, College of Science and Technology, Daejin University, Pocheon-Si, Gyeonggi-Do 11159, South Korea
| | - Taeg Kyu Kwon
- Department of Immunology and Physiology, School of Medicine, Keimyung University, Daegu 42601, South Korea
| | - Jang Hyun Choi
- Department of Biological Sciences, Division of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| | - Jong-Soo Chang
- Department of Life Science, College of Science and Technology, Daejin University, Pocheon-Si, Gyeonggi-Do 11159, South Korea
| |
Collapse
|
59
|
Kosoff D, Yu J, Suresh V, Beebe DJ, Lang JM. Surface topography and hydrophilicity regulate macrophage phenotype in milled microfluidic systems. LAB ON A CHIP 2018; 18:3011-3017. [PMID: 30131982 PMCID: PMC6178814 DOI: 10.1039/c8lc00431e] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Micromilling is an underutilized technique for fabricating microfluidic platforms that is well-suited for the diverse needs of the biologic community. This technique, however, produces culture surfaces that are considerably rougher than in commercially available culture platforms and the hydrophilicity of these surfaces can vary considerably depending on the choice of material. In this study, we evaluated the impact of surface topography and hydrophilicity in milled microfluidic devices on the cellular phenotype and function of primary human macrophages. We found that the rough culture surface within micromilled systems affected the phenotype of macrophages cultured in these devices. However, the presence, type, and magnitude of this effect was dependent on the surface hydrophilicity as well as exposure to chemical polarization signals. These findings confirm that while milled microfluidic systems are an effective platform for culture and analysis of primary macrophages, the topography and hydrophilicity of the culture surface within these systems should be considered in the planning and analysis of any macrophage experiments in which phenotype is relevant.
Collapse
Affiliation(s)
- David Kosoff
- Department of Medicine, Carbone Cancer Center, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA.
| | | | | | | | | |
Collapse
|
60
|
Thomas DC. How the phagocyte NADPH oxidase regulates innate immunity. Free Radic Biol Med 2018; 125:44-52. [PMID: 29953922 DOI: 10.1016/j.freeradbiomed.2018.06.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 06/05/2018] [Accepted: 06/11/2018] [Indexed: 11/16/2022]
Abstract
The phagocyte NADPH oxidase is a multi subunit protein complex that generates reactive oxygen species at cell membranes and within phagosomes. It is essential for host defence as evidenced by the severe immunodeficiency syndrome caused by a loss of one of the subunits. This is known as chronic granulomatous disease (CGD). However, the phagocyte NADPH oxidase also has a key role to play in regulating immunity and it is notable that chronic granulomatous disease is also characterised by autoimmune and autoinflammatory manifestations. This is because reactive oxygen species play a role in regulating signalling through their ability to post-translationally modify amino acid residues such as cysteine and methionine. In this review, I will outline the major aspects of innate immunity that are regulated by the phagocyte NADPH oxidase, including control of transcription, autophagy, the inflammasome and type 1 interferon signalling.
Collapse
Affiliation(s)
- David C Thomas
- Department of Medicine, University of Cambridge School of Clinical Medicine, Box 157 Cambridge Biomedical Campus, Cambridge CB2 0QQ, United Kingdom.
| |
Collapse
|
61
|
Pei H, Guo Z, Wang Z, Dai Y, Zheng L, Zhu L, Zhang J, Hu W, Nie J, Mao W, Jia X, Li B, Hei TK, Zhou G. RAC2 promotes abnormal proliferation of quiescent cells by enhanced JUNB expression via the MAL-SRF pathway. Cell Cycle 2018; 17:1115-1123. [PMID: 29895215 PMCID: PMC6110603 DOI: 10.1080/15384101.2018.1480217] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/11/2018] [Indexed: 12/28/2022] Open
Abstract
Radiation-induced lung injury (RILI) occurs most often in radiotherapy of lung cancer, esophageal cancer, and other thoracic cancers. The occurrence of RILI is a complex process that includes a variety of cellular and molecular interactions, which ultimately result in carcinogenesis. However, the underlying mechanism is unknown. Here we show that Ras-related C3 botulinum toxin substrate 2 (RAC2) and transcription factor jun-B (JUNB) were upregulated in non-small cell carcinoma (NSCLC) tissues and were associated with poor prognoses for NSCLC patients. Ionizing radiation also caused increased expression of RAC2 in quiescent stage cells, and the reentry of quiescent cells into a new cell cycle. The activity of the serum response factor (SRF) was activated by RAC2 and other Rho family genes (RhoA, ROCK, and LIM kinase). Consequently, JUNB acted as an oncogene and induced abnormal proliferation of quiescent cells. Together, the results showed that RAC2 can be used as a target gene for radiation protection. A better understanding of the RAC2 and JUNB mechanisms in the molecular etiology of lung cancer will be helpful in reducing cancer risks and side effects during treatment of this disorder. Our study therefore provides a new perspective on the involvement of RAC2 and JUNB as oncogenes in the tumorigenesis of NSCLC.
Collapse
Affiliation(s)
- Hailong Pei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Ziyang Guo
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
| | - Ziyang Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
| | - Yingchu Dai
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Lijun Zheng
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Lin Zhu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Jian Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Wentao Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Jing Nie
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Weidong Mao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
- Radiotherapy Department, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xianghong Jia
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Bingyan Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- Medical College of Soochow University, Suzhou, China
| | - Tom K. Hei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- Center for Radiological Research, College of Physician and Surgeons, Columbia University, NY, New York, USA
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| |
Collapse
|
62
|
He J, Gao Y, Wu G, Lei X, Zhang Y, Pan W, Yu H. Bioinformatics analysis of microarray data to reveal the pathogenesis of brain ischemia. Mol Med Rep 2018; 18:333-341. [PMID: 29749511 PMCID: PMC6059688 DOI: 10.3892/mmr.2018.9000] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 04/17/2018] [Indexed: 12/29/2022] Open
Abstract
Brain ischemia leads to energy depletion, mitochondrial dysfunction and neuronal cell death. The present study was designed to identify key genes and pathways associated with brain ischemia. The gene expression profile GSE52001, including 3 normal brain samples and 3 cerebral ischemia samples, was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were identified using the limma package. Then functional and pathway enrichment analyses were performed by the MATHT tool. Protein‑protein interaction (PPI) network, module selection and microRNA (miRNA)‑target gene network were constructed utilizing Cytoscape software. A total of 488 DEGs were identified (including 281 upregulated and 207 downregulated genes). In the PPI network, Rac family small GTPase 2 (RAC2) had higher degrees. RAC2 was significantly enriched in the FcγR‑mediated phagocytosis pathway. miR‑29A/B/C had a higher degree in the miRNA‑target gene network. Insulin like growth factor 1 (Igf1) was identified as the target gene for miR‑29A/B/C. RAC2 may function in brain ischemia through mediating the FcγR‑mediated phagocytosis pathway. Meanwhile, miR‑29A/B/C and their targets gene Igf1 may serve important roles in the development and progression of brain ischemia.
Collapse
Affiliation(s)
- Jiaxuan He
- Department of Anesthesia, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Ya Gao
- Department of Pediatric Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Gang Wu
- Department of Anesthesia, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Xiaoming Lei
- Department of Anesthesia, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Yong Zhang
- Department of Anesthesia, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Weikang Pan
- Department of Pediatric Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Hui Yu
- Department of Pediatric Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
63
|
Funes SC, Rios M, Escobar‐Vera J, Kalergis AM. Implications of macrophage polarization in autoimmunity. Immunology 2018; 154:186-195. [PMID: 29455468 PMCID: PMC5980179 DOI: 10.1111/imm.12910] [Citation(s) in RCA: 611] [Impact Index Per Article: 101.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/31/2018] [Accepted: 02/09/2018] [Indexed: 12/12/2022] Open
Abstract
Macrophages are extremely heterogeneous and plastic cells with an important role not only in physiological conditions, but also during inflammation (both for initiation and resolution). In the early 1990s, two different phenotypes of macrophages were described: one of them called classically activated (or inflammatory) macrophages (M1) and the other alternatively activated (or wound-healing) macrophages (M2). Currently, it is known that functional polarization of macrophages into only two groups is an over-simplified description of macrophage heterogeneity and plasticity; indeed, it is necessary to consider a continuum of functional states. Overall, the current available data indicate that macrophage polarization is a multifactorial process in which a huge number of factors can be involved producing different activation scenarios. Once a macrophage adopts a phenotype, it still retains the ability to continue changing in response to new environmental influences. The reversibility of polarization has a critical therapeutic value, especially in diseases in which an M1/M2 imbalance plays a pathogenic role. In this review, we assess the high plasticity of macrophages and their potential to be exploited to reduce chronic/detrimental inflammation. On the whole, the evidence detailed in this review underscores macrophage polarization as a target of interest for immunotherapy.
Collapse
Affiliation(s)
- Samanta C. Funes
- Facultad de Ciencias BiológicasDepartamento de Genética Molecular y MicrobiologíaMillennium Institute on Immunology and ImmunotherapyPontificia Universidad Católica de ChileSantiagoChile
| | - Mariana Rios
- Facultad de Ciencias BiológicasDepartamento de Genética Molecular y MicrobiologíaMillennium Institute on Immunology and ImmunotherapyPontificia Universidad Católica de ChileSantiagoChile
| | - Jorge Escobar‐Vera
- Facultad de Ciencias de la SaludDepartamento BiomédicoLaboratorio de GenéticaUniversidad de AntofagastaAntofagastaChile
| | - Alexis M. Kalergis
- Facultad de Ciencias BiológicasDepartamento de Genética Molecular y MicrobiologíaMillennium Institute on Immunology and ImmunotherapyPontificia Universidad Católica de ChileSantiagoChile
- Facultad de MedicinaDepartamento de EndocrinologíaEscuela de MedicinaPontificia Universidad Católica de ChileSantiagoChile
| |
Collapse
|
64
|
Cooke EJ, Zhou JY, Wyseure T, Joshi S, Bhat V, Durden DL, Mosnier LO, von Drygalski A. Vascular Permeability and Remodelling Coincide with Inflammatory and Reparative Processes after Joint Bleeding in Factor VIII-Deficient Mice. Thromb Haemost 2018; 118:1036-1047. [PMID: 29847841 PMCID: PMC6191040 DOI: 10.1055/s-0038-1641755] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Vascular remodelling is a prominent feature of haemophilic arthropathy (HA) that may underlie re-bleeding, yet the nature of vascular changes and underlying mechanisms remain largely unknown. Here, we aimed to characterize synovial vascular remodelling and vessel integrity after haemarthrosis, as well as temporal changes in inflammatory and tissue-reparative pathways. Thirty acutely painful joints in patients with haemophilia (PWH) were imaged by musculoskeletal ultrasound with Power Doppler (MSKUS/PD) to detect vascular abnormalities and bloody effusions. Nineteen out of 30 painful joint episodes in PWH were associated with haemarthrosis, and abnormal vascular perfusion was unique to bleeding joints. A model of induced haemarthrosis in factor VIII (FVIII)-deficient mice was used for histological assessment of vascular remodelling (α-smooth muscle actin [αSMA] expression), and monitoring of in vivo vascular perfusion and permeability by MSKUS/PD and albumin extravasation, respectively. Inflammatory (M1) and reparative (M2) macrophage markers were quantified in murine synovium over a 10-week time course by real-time polymerase chain reaction. The abnormal vascular perfusion observed in PWH was recapitulated in FVIII-deficient mice after induced haemarthrosis. Neovascularization and increased vessel permeability were apparent 2 weeks post-bleed in FVIII-deficient mice, after a transient elevation of inflammatory macrophage M1 markers. These vascular changes subsided by week 4, while vascular remodelling, evidenced by architectural changes and pronounced αSMA expression, persisted alongside a reparative macrophage M2 response. In conclusion, haemarthrosis leads to transient inflammation coupled with neovascularization and associated vascular permeability, while subsequent tissue repair mechanisms coincide with vascular remodelling. Together, these vascular changes may promote re-bleeding and HA progression.
Collapse
Affiliation(s)
- Esther J Cooke
- University of California San Diego, Department of Medicine, Division of Hematology/Oncology, La Jolla, CA, USA
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
| | - Jenny Y Zhou
- University of California San Diego, Department of Medicine, Division of Hematology/Oncology, La Jolla, CA, USA
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
| | - Tine Wyseure
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
| | - Shweta Joshi
- University of California San Diego, Department of Pediatrics, Moores UCSD Cancer Center, La Jolla, CA, USA
| | - Vikas Bhat
- University of California San Diego, Department of Medicine, Division of Hematology/Oncology, La Jolla, CA, USA
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
| | - Donald L Durden
- University of California San Diego, Department of Pediatrics, Moores UCSD Cancer Center, La Jolla, CA, USA
| | - Laurent O Mosnier
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
| | - Annette von Drygalski
- University of California San Diego, Department of Medicine, Division of Hematology/Oncology, La Jolla, CA, USA
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
| |
Collapse
|
65
|
Eljaszewicz A, Jankowski M, Wiese-Szadkowska M, Gackowska L, Michalkiewicz J, Zegarski W, Moniuszko M. Gastric cancer increases transmigratory potential of peripheral blood monocytes by upregulation of β1- and β2-integrins. Contemp Oncol (Pozn) 2018; 22:33-37. [PMID: 29628791 PMCID: PMC5885073 DOI: 10.5114/wo.2018.73881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Immune responses within the tumor depend on the ability of leukocytes to migrate from peripheral circulation into the local microenvironment. This process is controlled by mechanisms that guide leukocytes to the side of inflammation, allowing them to cross vascular endothelial barrier. Monocytes/macrophages are the predominant population of leukocyte infiltrate of many tumors, including, gastric cancer. However, to date mechanisms that control monocyte trafficking to the side of tumor growth are not fully elucidated. AIM OF THE STUDY It this study we aimed to evaluate transmigratory potential of peripheral blood monocytes from gastric cancer patients. MATERIAL AND METHODS By using multicolor flow cytometry we assessed expression of β1- and β2-integrins on peripheral blood monocytes from gastric cancer patients. RESULTS We found increased frequencies of VLA-4 and VLA-6 expressing monocytes and increased expression of analyzed β2-integrins in gastric cancer patients when compared to age matched controls. CONCLUSIONS In summary, this study revealed that gastric cancer increases transmigratory potential of peripheral blood monocytes.
Collapse
Affiliation(s)
- Andrzej Eljaszewicz
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Poland
| | - Michal Jankowski
- Department of Surgical Oncology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University of Torun, Poland
- Oncology Centre – Prof Franciszek Lukaszczyk Memorial Hospital, Bydgoszcz, Poland
| | - Malgorzata Wiese-Szadkowska
- Department of Immunology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Lidia Gackowska
- Department of Immunology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Jacek Michalkiewicz
- Department of Immunology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Wojciech Zegarski
- Department of Surgical Oncology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University of Torun, Poland
- Oncology Centre – Prof Franciszek Lukaszczyk Memorial Hospital, Bydgoszcz, Poland
| | - Marcin Moniuszko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Poland
| |
Collapse
|
66
|
Chen G, Wang Y, Wang L, Xu W. Identifying prognostic biomarkers based on aberrant DNA methylation in kidney renal clear cell carcinoma. Oncotarget 2018; 8:5268-5280. [PMID: 28029655 PMCID: PMC5354907 DOI: 10.18632/oncotarget.14134] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 11/22/2016] [Indexed: 01/09/2023] Open
Abstract
The outcome of kidney renal clear cell carcinoma (KIRC) differs even among individuals with similar clinical characteristics. DNA methylation is regarded as a regulator of gene expression in cancers, which may be a molecular marker of prognosis. In this study, we aimed to mine novel methylation markers of the prognosis of KIRC. We revealed a total of 2793 genes differentially methylated in their promoter regions (DMGs) and 2979 differentially expressed genes (DEGs) in KIRC tissues compared with normal tissues using The Cancer Genome Atlas datasets. Then, we detected 57 and 34 subpathways enriched among the DMGs and DEGs, respectively, using the R package iSubpathwayMiner. We retained 56 subpathways related to both aberrant methylation and expression based on a hypergeometric test for further analysis. An integrated gene regulatory network was constructed using the regulatory relationships between genes in the subpathways. Using the top 15% of the nodes from the network ranked by degree, survival analysis was performed. We validated four DNA methylation signatures (RAC2, PLCB2, VAV1, and PARVG) as being highly correlated with prognosis in KIRC. These findings suggest that DNA methylation might become a prognostic predictor in KIRC and could supplement histological prognostic prediction.
Collapse
Affiliation(s)
- Guang Chen
- Department of Urology, The 4th Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Yihan Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Lu Wang
- Department of Urology, The 4th Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Wanhai Xu
- Department of Urology, The 4th Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| |
Collapse
|
67
|
Long KB, Collier AI, Beatty GL. Macrophages: Key orchestrators of a tumor microenvironment defined by therapeutic resistance. Mol Immunol 2017; 110:3-12. [PMID: 29273393 DOI: 10.1016/j.molimm.2017.12.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/22/2017] [Accepted: 12/02/2017] [Indexed: 12/12/2022]
Abstract
Macrophages have emerged as promising therapeutic targets in cancer. Within tumor tissue, macrophages foster tumor development, invasion, and metastasis. As the phenotype of macrophages is inherently pliable and dependent on cues received from the surrounding microenvironment, macrophages co-evolve with malignant and other non-malignant cells during cancer progression. In doing so, they establish a microenvironment that is therapeutically resistant and thwarts the productivity of T cell immunosuveillance. Strategies designed to deplete, inhibit, or redirect macrophages with anti-tumor activity are being explored to reverse the pro-tumor properties of macrophages that are commonly observed in cancer. In this review, we discuss our current understanding of the mechanisms that regulate macrophage recruitment to tumors, their impact on the tumor microenvironment, and their promise as therapeutic targets for improving the efficacy of cytotoxic- and immune-based therapies.
Collapse
Affiliation(s)
- Kristen B Long
- Department of Biology, Mansfield University, Mansfield, PA 16933, USA
| | - Arthur I Collier
- Department of Biology, Mansfield University, Mansfield, PA 16933, USA
| | - Gregory L Beatty
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
68
|
Thomas DC. The phagocyte respiratory burst: Historical perspectives and recent advances. Immunol Lett 2017; 192:88-96. [PMID: 28864335 DOI: 10.1016/j.imlet.2017.08.016] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 08/14/2017] [Accepted: 08/15/2017] [Indexed: 11/18/2022]
Abstract
When exposed to certain stimuli, phagocytes (including neutrophils, macrophages and eosinophils) undergo marked changes in the way they handle oxygen. Firstly, their rate of oxygen uptake increases greatly. This is accompanied by (i) the production of large amounts of superoxide and hydrogen peroxide and (ii) the metabolism of large quantities of glucose through the hexose monophosphate shunt. We now know that the oxygen used is not for respiration but for the production of powerful microbiocidal agents downstream of the initial production of superoxide. Concomitantly, glucose is oxidised through the hexose monophosphate shunt to re-generate the NADPH that has been consumed through the reduction of molecular oxygen to generate superoxide. This phagocyte respiratory burst is generated by an NADPH oxidase multi-protein complex that has a catalytic core consisting of membrane-bound gp91phox (CYBB) and p22phox (CYBA) sub-units and cytosolic components p47phox (NCF1), p67phox (NCF2) and p40phox (NCF4). Finally, another cytosolic component, the small G-protein Rac (Rac2 in neutrophils and Rac1 in macrophages) is also required for full activation. The importance of the complex in host defence is underlined by chronic granulomatous disease, a severe life-limiting immunodeficiency caused by mutations in the genes encoding the individual subunits. In this review, I will discuss the experimental evidence that underlies our knowledge of the respiratory burst, outlining how elegant biochemical analysis, coupled with study of patients deficient in the various subunits has helped elucidate the function of this essential part of innate immunity. I will also discuss some exciting recent studies that shed new light on how the abundance of the various components is controlled. Finally, I will explore the emerging role of reactive oxygen species such as superoxide and hydrogen peroxide in the pathogenesis of major human diseases including auto-inflammatory diseases.
Collapse
Affiliation(s)
- David C Thomas
- Department of Medicine, University of Cambridge, University of Cambridge School of Clinical Medicine, Box 157, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, United Kingdom.
| |
Collapse
|
69
|
Aris M, Mordoh J, Barrio MM. Immunomodulatory Monoclonal Antibodies in Combined Immunotherapy Trials for Cutaneous Melanoma. Front Immunol 2017; 8:1024. [PMID: 28970830 PMCID: PMC5609554 DOI: 10.3389/fimmu.2017.01024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/08/2017] [Indexed: 12/22/2022] Open
Abstract
In the last few years, there has been a twist in cancer treatment toward immunotherapy thanks to the impressive results seen in advanced patients from several tumor pathologies. Cutaneous melanoma is a highly mutated and immunogenic tumor that has been a test field for the development of immunotherapy. However, there is still a way on the road to achieving complete and long-lasting responses in most patients. It is desirable that immunotherapeutic strategies induce diverse immune reactivity specific to tumor antigens, including the so-called neoantigens, as well as the blockade of immunosuppressive mechanisms. In this review, we will go through the role of promising monoclonal antibodies in cancer immunotherapy with immunomodulatory function, especially blocking of the inhibitory immune checkpoints CTLA-4 and PD-1, in combination with different immunotherapeutic strategies such as vaccines. We will discuss the rational basis for these combinatorial approaches as well as different schemes currently under study for cutaneous melanoma in the clinical trials arena. In this way, the combination of "push and release" immunomodulatory therapies can contribute to achieving a more robust and durable antitumor immune response in patients.
Collapse
Affiliation(s)
- Mariana Aris
- Centro de Investigaciones Oncológicas - Fundación Cáncer, Buenos Aires, Argentina
| | - José Mordoh
- Centro de Investigaciones Oncológicas - Fundación Cáncer, Buenos Aires, Argentina.,Instituto Médico Especializado Alexander Fleming, Buenos Aires, Argentina.,Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
| | - María Marcela Barrio
- Centro de Investigaciones Oncológicas - Fundación Cáncer, Buenos Aires, Argentina
| |
Collapse
|
70
|
Joshi S, Singh AR, Wong SS, Zulcic M, Jiang M, Pardo A, Selman M, Hagood JS, Durden DL. Rac2 is required for alternative macrophage activation and bleomycin induced pulmonary fibrosis; a macrophage autonomous phenotype. PLoS One 2017; 12:e0182851. [PMID: 28817691 PMCID: PMC5560537 DOI: 10.1371/journal.pone.0182851] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 07/25/2017] [Indexed: 12/23/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease characterized by cellular phenotype alterations and deposition of extracellular matrix proteins. The alternative activation of macrophages in the lungs has been associated as a major factor promoting pulmonary fibrosis, however the mechanisms underlying this phenomenon are poorly understood. In the present study, we have defined a molecular mechanism by which signals transmitted from the extracellular matrix via the α4β1 integrin lead to the activation of Rac2 which regulates alternative macrophage differentiation, a signaling axis within the pulmonary macrophage compartment required for bleomycin induced pulmonary fibrosis. Mice deficient in Rac2 were protected against bleomycin-induced fibrosis and displayed diminished collagen deposition in association with lower expression of alternatively activated profibrotic macrophage markers. We have demonstrated a macrophage autonomous process by which the injection of M2 and not M1 macrophages restored the bleomycin induced pulmonary fibrosis susceptibility in Rac2-/- mice, establishing a critical role for a macrophage Rac2 signaling axis in the regulation of macrophage differentiation and lung fibrosis in vivo. We also demonstrate that markers of alternative macrophage activation are increased in patients with IPF. Taken together, these studies define an important role for an integrin-driven Rac2 signaling axis in macrophages, and reveal that Rac2 activation is required for polarization of macrophages towards a profibrotic phenotype and progression of pulmonary fibrosis in vivo.
Collapse
Affiliation(s)
- Shweta Joshi
- UCSD Department of Pediatrics, Moores UCSD Cancer Center, University of California, San Diego, United States of America
| | - Alok R. Singh
- UCSD Department of Pediatrics, Moores UCSD Cancer Center, University of California, San Diego, United States of America
| | - Simon S. Wong
- Division of Respiratory Medicine, Department of Pediatrics, University of California, Rady Children's Hospital, San Diego, United States of America
| | - Muamera Zulcic
- UCSD Department of Pediatrics, Moores UCSD Cancer Center, University of California, San Diego, United States of America
| | - Min Jiang
- Division of Respiratory Medicine, Department of Pediatrics, University of California, Rady Children's Hospital, San Diego, United States of America
| | - Annie Pardo
- Facultad de Ciencias Universidad Nacional Autónoma de México Mexico City, Mexico
| | - Moises Selman
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas México Mexico City, Mexico
| | - James S. Hagood
- Division of Respiratory Medicine, Department of Pediatrics, University of California, Rady Children's Hospital, San Diego, United States of America
| | - Donald L. Durden
- UCSD Department of Pediatrics, Moores UCSD Cancer Center, University of California, San Diego, United States of America
- Division of Pediatric Hematology-Oncology, UCSD Rady Children’s Hospital, San Diego, United States of America
| |
Collapse
|
71
|
Bone marrow-derived mesenchymal stem cells propagate immunosuppressive/anti-inflammatory macrophages in cell-to-cell contact-independent and -dependent manners under hypoxic culture. Exp Cell Res 2017; 358:411-420. [PMID: 28712928 DOI: 10.1016/j.yexcr.2017.07.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 01/08/2023]
Abstract
Immunosuppressive/anti-inflammatory macrophage (Mφ), M2-Mφ that expressed the typical M2-Mφs marker, CD206, and anti-inflammatory cytokine, interleukin (IL)-10, is beneficial and expected tool for the cytotherapy against inflammatory diseases. Here, we demonstrated that bone marrow-derived lineage-positive (Lin+) blood cells proliferated and differentiated into M2-Mφs by cooperation with the bone marrow-derived mesenchymal stem cells (MSCs) under hypoxic condition: MSCs not only promoted proliferation of undifferentiated M2-Mφs, pre-M2-Mφs, in the Lin+ fraction via a proliferative effect of the MSCs-secreted macrophage colony-stimulating factor, but also promoted M2-Mφ polarization of the pre-M2-Mφs through cell-to-cell contact with the pre-M2-Mφs. Intriguingly, an inhibitor for intercellular adhesion molecule (ICAM)-1 receptor/lymphocyte function-associated antigen (LFA)-1, Rwj50271, partially suppressed expression of CD206 in the Lin+ blood cells but an inhibitor for VCAM-1 receptor/VLA-4, BIO5192, did not, suggesting that the cell-to-cell adhesion through LFA-1 on pre-M2-Mφs and ICAM-1 on MSCs was supposed to promoted the M2-Mφ polarization. Thus, the co-culture system consisting of bone marrow-derived Lin+ blood cells and MSCs under hypoxic condition was a beneficial supplier of a number of M2-Mφs, which could be clinically applicable to inflammatory diseases.
Collapse
|
72
|
Ao JY, Zhu XD, Chai ZT, Cai H, Zhang YY, Zhang KZ, Kong LQ, Zhang N, Ye BG, Ma DN, Sun HC. Colony-Stimulating Factor 1 Receptor Blockade Inhibits Tumor Growth by Altering the Polarization of Tumor-Associated Macrophages in Hepatocellular Carcinoma. Mol Cancer Ther 2017; 16:1544-1554. [PMID: 28572167 DOI: 10.1158/1535-7163.mct-16-0866] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/23/2017] [Accepted: 05/19/2017] [Indexed: 11/16/2022]
Abstract
Colony-stimulating factor-1 (CSF-1) and its receptor, CSF-1R, regulate the differentiation and function of macrophages and play an important role in macrophage infiltration in the context of hepatocellular carcinoma. The therapeutic effects of CSF-1R blockade in hepatocellular carcinoma remain unclear. In this study, we found that CSF-1R blockade by PLX3397, a competitive inhibitor with high specificity for CSF-1R tyrosine kinase, significantly delayed tumor growth in mouse models. PLX3397 inhibited the proliferation of macrophages in vitro, but intratumoral macrophage infiltration was not decreased by PLX3397 in vivo Gene expression profiling of tumor-associated macrophages (TAM) showed that TAMs from the PLX3397-treated tumors were polarized toward an M1-like phenotype compared with those from vehicle-treated tumors. In addition, PLX3397 treatment increased CD8+ T-cell infiltration, whereas CD4+ T-cell infiltration was decreased. Further study revealed that tumor cell-derived CSF-2 protected TAMs from being depleted by PLX3397. In conclusion, CSF-1R blockade delayed tumor growth by shifting the polarization rather than the depletion of TAMs. CSF-1R blockade warrants further investigation in the treatment of hepatocellular carcinoma. Mol Cancer Ther; 16(8); 1544-54. ©2017 AACR.
Collapse
Affiliation(s)
- Jian-Yang Ao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China.,Department of Hepatobiliary Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiao-Dong Zhu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Zong-Tao Chai
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Hao Cai
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Yuan-Yuan Zhang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Ke-Zhi Zhang
- Department of Hepatobiliary Surgery, Taizhou People's Hospital, Taizhou, Jiangsu, China
| | - Ling-Qun Kong
- Department of Hepatobiliary Surgery, Binzhou Medical College Affiliated Hospital, Binzhou, Shandong, China
| | - Ning Zhang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Bo-Gen Ye
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - De-Ning Ma
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Hui-Chuan Sun
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| |
Collapse
|
73
|
Cai H, Zhu XD, Ao JY, Ye BG, Zhang YY, Chai ZT, Wang CH, Shi WK, Cao MQ, Li XL, Sun HC. Colony-stimulating factor-1-induced AIF1 expression in tumor-associated macrophages enhances the progression of hepatocellular carcinoma. Oncoimmunology 2017; 6:e1333213. [PMID: 28932635 DOI: 10.1080/2162402x.2017.1333213] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 02/07/2023] Open
Abstract
M2-polarized (alternatively activated) macrophages play an important role in the progression of hepatocellular carcinoma (HCC). Allograft inflammatory factor 1 (AIF1) is overexpressed in M2-polarized macrophages. This study explored the role of AIF1 in tumor-associated macrophages in HCC. Macrophages were stimulated with colony-stimulating factor 1 (CSF1) to characterize the regulatory pathway of AIF1 in macrophages. The chromatin immunoprecipitation and luciferase reporter gene assay were conducted to examine transcription factors associated with AIF1 expression. AIF1 was down or upregulated, and the effects on tumor progression were evaluated by using in vitro and in vivo co-culture systems. A cytokine array was performed to screen the downstream functional components of AIF1. Tumor tissue from 206 patients with HCC were used to explore the clinical significance of AIF1. AIF1 induced a M2-like phenotype of macrophages. By facilitating the binding of c-Jun to the promoter of AIF1, CSF1 secreted from hepatoma cells increased AIF1 expression through the CSF1R-MEK1/2-Erk1/2-c-Jun axis. AIF1 expressed in macrophages promoted the migration of hepatoma cells in co-culture system of RAW264.7 and Hepa1-6 and tumor growth in an animal model. The cytokine array showed that CXCL16 was increased in RAW264.7 cells with overexpressed AIF1, leading to enhanced tumor cell migration. In human HCC tissue, AIF1-positive macrophages in the adjacent microenvironment was associated with microvascular invasion and advanced TNM stages and with patients' overall and disease-free survival (p = 0.002 for both). AIF1 expression in macrophages plays a pivotal role in the interaction between macrophages and hepatoma cells.
Collapse
Affiliation(s)
- Hao Cai
- Department of Liver Surgery, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Xiao-Dong Zhu
- Department of Liver Surgery, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Jian-Yang Ao
- Department of Liver Surgery, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China.,Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Bo-Gen Ye
- Department of Liver Surgery, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China.,Department of Organ Transplantation, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yuan-Yuan Zhang
- Department of Liver Surgery, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Zong-Tao Chai
- Department of Liver Surgery, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Cheng-Hao Wang
- Department of Liver Surgery, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Wen-Kai Shi
- Department of Liver Surgery, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Man-Qing Cao
- Department of Liver Surgery, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Xiao-Long Li
- Department of Liver Surgery, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Hui-Chuan Sun
- Department of Liver Surgery, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| |
Collapse
|
74
|
Thomas DC, Clare S, Sowerby JM, Pardo M, Juss JK, Goulding DA, van der Weyden L, Storisteanu D, Prakash A, Espéli M, Flint S, Lee JC, Hoenderdos K, Kane L, Harcourt K, Mukhopadhyay S, Umrania Y, Antrobus R, Nathan JA, Adams DJ, Bateman A, Choudhary JS, Lyons PA, Condliffe AM, Chilvers ER, Dougan G, Smith KG. Eros is a novel transmembrane protein that controls the phagocyte respiratory burst and is essential for innate immunity. J Exp Med 2017; 214:1111-1128. [PMID: 28351984 PMCID: PMC5379978 DOI: 10.1084/jem.20161382] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/20/2016] [Accepted: 01/20/2017] [Indexed: 02/02/2023] Open
Abstract
The phagocyte respiratory burst is crucial for innate immunity. The transfer of electrons to oxygen is mediated by a membrane-bound heterodimer, comprising gp91phox and p22phox subunits. Deficiency of either subunit leads to severe immunodeficiency. We describe Eros (essential for reactive oxygen species), a protein encoded by the previously undefined mouse gene bc017643, and show that it is essential for host defense via the phagocyte NAPDH oxidase. Eros is required for expression of the NADPH oxidase components, gp91phox and p22phox Consequently, Eros-deficient mice quickly succumb to infection. Eros also contributes to the formation of neutrophil extracellular traps (NETS) and impacts on the immune response to melanoma metastases. Eros is an ortholog of the plant protein Ycf4, which is necessary for expression of proteins of the photosynthetic photosystem 1 complex, itself also an NADPH oxio-reductase. We thus describe the key role of the previously uncharacterized protein Eros in host defense.
Collapse
Affiliation(s)
- David C. Thomas
- Department of Medicine, University of Cambridge, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, England, UK
| | - Simon Clare
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, England, UK
| | - John M. Sowerby
- Department of Medicine, University of Cambridge, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, England, UK
| | - Mercedes Pardo
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, England, UK
| | - Jatinder K. Juss
- Department of Medicine, University of Cambridge, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, England, UK
| | - David A. Goulding
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, England, UK
| | - Louise van der Weyden
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, England, UK
| | - Daniel Storisteanu
- Department of Medicine, University of Cambridge, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, England, UK
| | - Ananth Prakash
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, England, UK
| | - Marion Espéli
- Department of Medicine, University of Cambridge, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, England, UK
| | - Shaun Flint
- Department of Medicine, University of Cambridge, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, England, UK
| | - James C. Lee
- Department of Medicine, University of Cambridge, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, England, UK
| | - Kim Hoenderdos
- Cambridge Institute for Medical Research, University of Cambridge School of Clinical Medicine, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, England, UK
| | - Leanne Kane
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, England, UK
| | - Katherine Harcourt
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, England, UK
| | - Subhankar Mukhopadhyay
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, England, UK
| | - Yagnesh Umrania
- Cambridge Institute for Medical Research, University of Cambridge School of Clinical Medicine, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, England, UK
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge School of Clinical Medicine, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, England, UK
| | - James A. Nathan
- Cambridge Institute for Medical Research, University of Cambridge School of Clinical Medicine, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, England, UK
| | - David J. Adams
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, England, UK
| | - Alex Bateman
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, England, UK
| | - Jyoti S. Choudhary
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, England, UK
| | - Paul A. Lyons
- Department of Medicine, University of Cambridge, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, England, UK
| | - Alison M. Condliffe
- Department of Medicine, University of Cambridge, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, England, UK
| | - Edwin R. Chilvers
- Department of Medicine, University of Cambridge, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, England, UK
| | - Gordon Dougan
- Department of Medicine, University of Cambridge, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, England, UK
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, England, UK
| | - Kenneth G.C. Smith
- Department of Medicine, University of Cambridge, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, England, UK
| |
Collapse
|
75
|
Dual-activity PI3K-BRD4 inhibitor for the orthogonal inhibition of MYC to block tumor growth and metastasis. Proc Natl Acad Sci U S A 2017; 114:E1072-E1080. [PMID: 28137841 DOI: 10.1073/pnas.1613091114] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
MYC is a major cancer driver but is documented to be a difficult therapeutic target itself. Here, we report on the biological activity, the structural basis, and therapeutic effects of the family of multitargeted compounds that simultaneously disrupt functions of two critical MYC-mediating factors through inhibiting the acetyllysine binding of BRD4 and the kinase activity of PI3K. We show that the dual-action inhibitor impairs PI3K/BRD4 signaling in vitro and in vivo and affords maximal MYC down-regulation. The concomitant inhibition of PI3K and BRD4 blocks MYC expression and activation, promotes MYC degradation, and markedly inhibits cancer cell growth and metastasis. Collectively, our findings suggest that the dual-activity inhibitor represents a highly promising lead compound for the development of novel anticancer therapeutics.
Collapse
|
76
|
Cui J, Yang G, Pan Z, Zhao Y, Liang X, Li W, Cai L. Hormetic Response to Low-Dose Radiation: Focus on the Immune System and Its Clinical Implications. Int J Mol Sci 2017; 18:ijms18020280. [PMID: 28134809 PMCID: PMC5343816 DOI: 10.3390/ijms18020280] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 01/17/2017] [Indexed: 12/12/2022] Open
Abstract
The interrelationship between ionizing radiation and the immune system is complex, multifactorial, and dependent on radiation dose/quality and immune cell type. High-dose radiation usually results in immune suppression. On the contrary, low-dose radiation (LDR) modulates a variety of immune responses that have exhibited the properties of immune hormesis. Although the underlying molecular mechanism is not fully understood yet, LDR has been used clinically for the treatment of autoimmune diseases and malignant tumors. These advancements in preclinical and clinical studies suggest that LDR-mediated immune modulation is a well-orchestrated phenomenon with clinical potential. We summarize recent developments in the understanding of LDR-mediated immune modulation, with an emphasis on its potential clinical applications.
Collapse
Affiliation(s)
- Jiuwei Cui
- Cancer Center, the First Hospital of Jilin University, Changchun 130021, China.
| | - Guozi Yang
- Cancer Center, the First Hospital of Jilin University, Changchun 130021, China.
- Department of Radiation-Oncology, the First Hospital of Jilin University, Changchun 130021, China.
| | - Zhenyu Pan
- Department of Radiation-Oncology, the First Hospital of Jilin University, Changchun 130021, China.
| | - Yuguang Zhao
- Cancer Center, the First Hospital of Jilin University, Changchun 130021, China.
| | - Xinyue Liang
- Cancer Center, the First Hospital of Jilin University, Changchun 130021, China.
| | - Wei Li
- Cancer Center, the First Hospital of Jilin University, Changchun 130021, China.
| | - Lu Cai
- Cancer Center, the First Hospital of Jilin University, Changchun 130021, China.
- The Pediatric Research Institute, the Departments of Pediatrics, Radiation Oncology, Pharmacology and Toxicology of the University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
77
|
Gallud A, Bondarenko O, Feliu N, Kupferschmidt N, Atluri R, Garcia-Bennett A, Fadeel B. Macrophage activation status determines the internalization of mesoporous silica particles of different sizes: Exploring the role of different pattern recognition receptors. Biomaterials 2016; 121:28-40. [PMID: 28063981 DOI: 10.1016/j.biomaterials.2016.12.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/22/2016] [Accepted: 12/26/2016] [Indexed: 12/23/2022]
Abstract
Mesoporous silica-based particles are promising candidates for biomedical applications. Here, we address the importance of macrophage activation status for internalization of AMS6 (approx. 200 nm in diameter) versus AMS8 (approx. 2 μm) mesoporous silica particles and the role of different phagocytosis receptors for particle uptake. To this end, FITC-conjugated silica particles were used. AMS8 were found to be non-cytotoxic both for M-CSF-stimulated (anti-inflammatory) and GM-CSF-stimulated (pro-inflammatory) macrophages, whereas AMS6 exhibited cytotoxicity towards M-CSF-stimulated, but not GM-CSF-stimulated macrophages; this toxicity was, however, mitigated in the presence of serum. AMS8 triggered the secretion of pro-inflammatory cytokines in M-CSF-activated cells. Class A scavenger receptor (SR-A) expression was noted in both M-CSF and GM-CSF-stimulated macrophages, although the expression was higher in the former case, and gene silencing of SR-A resulted in a decreased uptake of AMS6 in the absence of serum. GM-CSF-stimulated macrophages expressed higher levels of the mannose receptor CD206 compared to M-CSF-stimulated cells, and uptake of AMS6, but not AMS8, was reduced following the downregulation of CD206 in GM-CSF-stimulated cells; particle uptake was also suppressed by mannan, a competitive ligand. These studies demonstrate that macrophage activation status is an important determinant of particle uptake and provide evidence for a role of different macrophage receptors for cell uptake of silica particles.
Collapse
Affiliation(s)
- Audrey Gallud
- Nanosafety & Nanomedicine Laboratory, Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Olesja Bondarenko
- Nanosafety & Nanomedicine Laboratory, Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Neus Feliu
- Nanosafety & Nanomedicine Laboratory, Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Natalia Kupferschmidt
- Department of Materials and Environmental Chemistry, Stockholm University, 106 91, Stockholm, Sweden
| | | | - Alfonso Garcia-Bennett
- Department of Chemistry and Biomolecular Science, Macquarie University, Sydney, NSW, 2109, Australia
| | - Bengt Fadeel
- Nanosafety & Nanomedicine Laboratory, Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden.
| |
Collapse
|
78
|
Rosowski EE, Deng Q, Keller NP, Huttenlocher A. Rac2 Functions in Both Neutrophils and Macrophages To Mediate Motility and Host Defense in Larval Zebrafish. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 197:4780-4790. [PMID: 27837107 PMCID: PMC5367389 DOI: 10.4049/jimmunol.1600928] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 10/09/2016] [Indexed: 11/19/2022]
Abstract
Leukocyte motility is required for host defense responses. Rac-family Rho GTPases are implicated in leukocyte function; however, the distinct roles of different Rac isoforms in host defense in vivo have remained unclear. In this study, we generated Rac2-deficient zebrafish using transcription activator-like effector nucleases to directly compare the role of Rac2 in vivo in neutrophils and macrophages in motility and the response to infection. This zebrafish larval model is highly amenable to live imaging of leukocyte behavior, and we report that in rac2-/- larvae both neutrophils and macrophages are defective in basic motility, leading to impaired responses to localized wounds or infections. rac2-/- larvae are highly susceptible to infection with Pseudomonas aeruginosa, which can be almost fully rescued by ectopic expression of either Rac2 or Rac1 specifically in neutrophils, indicating that these isoforms have partially overlapping functions in vivo. Rescue of Rac2 expression specifically in macrophages also confers resistance to Pseudomonas infection, highlighting an important role for Rac2 in this leukocyte population as well. Surprisingly, in contrast to neutrophils expressing a Rac2 dominant inhibitory human disease mutation, rac2-/- neutrophils do not have altered polarity or mobilization from hematopoietic tissue, suggesting that a different Rac isoform, such as Rac1, also contributes to these phenotypes in vivo.
Collapse
Affiliation(s)
- Emily E Rosowski
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706
| | - Qing Deng
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706; and
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706;
- Department of Pediatrics, University of Wisconsin, Madison, WI 53706
| |
Collapse
|
79
|
Erdreich-Epstein A, Singh AR, Joshi S, Vega FM, Guo P, Xu J, Groshen S, Ye W, Millard M, Campan M, Morales G, Garlich JR, Laird PW, Seeger RC, Shimada H, Durden DL. Association of high microvessel α vβ 3 and low PTEN with poor outcome in stage 3 neuroblastoma: rationale for using first in class dual PI3K/BRD4 inhibitor, SF1126. Oncotarget 2016; 8:52193-52210. [PMID: 28881723 PMCID: PMC5581022 DOI: 10.18632/oncotarget.13386] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 10/26/2016] [Indexed: 11/25/2022] Open
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor in children. Our previous studies showed that the angiogenic integrin αvβ3 was increased in high-risk metastatic (stage 4) NB compared with localized neuroblastomas. Herein, we show that integrin αvβ3 was expressed on 68% of microvessels in MYCN-amplified stage 3 neuroblastomas, but only on 34% (means) in MYCN-non-amplified tumors (p < 0.001; n = 54). PTEN, a tumor suppressor involved in αvβ3 signaling, was expressed in neuroblastomas either diffusely, focally or not at all (immunohistochemistry). Integrin αvβ3 was expressed on 60% of tumor microvessels when PTEN was negative or focal, as compared to 32% of microvessels in tumors with diffuse PTEN expression (p < 0.001). In a MYCN transgenic mouse model, loss of one allele of PTEN promoted tumor growth, illustrating the potential role of PTEN in neuroblastoma pathogenesis. Interestingly, we report the novel dual PI-3K/BRD4 activity of SF1126 (originally developed as an RGD-conjugated pan PI3K inhibitor). SF1126 inhibits BRD4 bromodomain binding to acetylated lysine residues with histone H3 as well as PI3K activity in the MYCN amplified neuroblastoma cell line IMR-32. Moreover, SF1126 suppressed MYCN expression and MYCN associated transcriptional activity in IMR-32 and CHLA136, resulting in overall decrease in neuroblastoma cell viability. Finally, treatment of neuroblastoma tumors with SF1126 inhibited neuroblastoma growth in vivo. These data suggest integrin αvβ3, MYCN/BRD4 and PTEN/PI3K/AKT signaling as biomarkers and hence therapeutic targets in neuroblastoma and support testing of the RGD integrin αvβ3-targeted PI-3K/BRD4 inhibitor, SF1126 as a therapeutic strategy in this specific subgroup of high risk neuroblastoma.
Collapse
Affiliation(s)
- Anat Erdreich-Epstein
- Department of Pediatrics, Children's Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles, California, USA.,Department of Pathology, Children's Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Alok R Singh
- Department of Pediatrics, Moores Cancer Center, University of California San Diego, California, USA
| | - Shweta Joshi
- Department of Pediatrics, Moores Cancer Center, University of California San Diego, California, USA
| | - Francisco M Vega
- Department of Pediatrics, Moores Cancer Center, University of California San Diego, California, USA.,Instituto de Biomedicina de Sevilla, IBiS/HUVR/CSIC/Universidad de Sevilla and Department of Medical Physiology and Biophysics, Universidad de Sevilla, Spain
| | - Pinzheng Guo
- Department of Pediatrics, Children's Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Jingying Xu
- Department of Pediatrics, Children's Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Susan Groshen
- Department of Preventive Medicine, Keck School of Medicine, Los Angeles, California, USA
| | - Wei Ye
- Department of Preventive Medicine, Keck School of Medicine, Los Angeles, California, USA
| | - Melissa Millard
- Department of Pediatrics, Children's Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Mihaela Campan
- Department of Surgery University of Southern California, Keck School of Medicine, Los Angeles, California, USA
| | | | | | - Peter W Laird
- Department of Surgery University of Southern California, Keck School of Medicine, Los Angeles, California, USA.,USC Epigenome Center, University of Southern California, Keck School of Medicine, Los Angeles, California, USA.,Current Address: Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Robert C Seeger
- Department of Pediatrics, Children's Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Hiroyuki Shimada
- Department of Pathology, Children's Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Donald L Durden
- Department of Pediatrics, Moores Cancer Center, University of California San Diego, California, USA.,SignalRx Pharmaceuticals, San Diego, California, USA.,Department of Pediatrics, UCSD School of Medicine and Rady Children's Hospital San Diego, California, USA
| |
Collapse
|
80
|
Diverse macrophages polarization in tumor microenvironment. Arch Pharm Res 2016; 39:1588-1596. [PMID: 27562774 DOI: 10.1007/s12272-016-0820-y] [Citation(s) in RCA: 189] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/18/2016] [Indexed: 12/22/2022]
Abstract
Macrophages are traditional innate immune cells that play critical roles in the clearance of pathogens and the maintenance of tissue homeostasis. Accumulating evidence proves that macrophages affect cancer initiation and malignancy. Macrophages can be categorized into two extreme subsets, classically activated (M1) and alternatively activated (M2) macrophages based on their distinct functional abilities in response to microenvironmental stimuli. In a tumor microenvironment, tumor associated macrophages (TAMs) are considered to be of the polarized M2 phenotype that enhances tumor progression and represent a poor prognosis. Furthermore, TAMs enhance tumor angiogenesis, growth, metastasis, and immunosuppression by secreting a series of cytokines, chemokines, and proteases. The regulation of macrophage polarization is considered to be a potential future therapy for cancer management.
Collapse
|
81
|
Ushach I, Zlotnik A. Biological role of granulocyte macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) on cells of the myeloid lineage. J Leukoc Biol 2016; 100:481-9. [PMID: 27354413 DOI: 10.1189/jlb.3ru0316-144r] [Citation(s) in RCA: 324] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/07/2016] [Indexed: 12/14/2022] Open
Abstract
M-CSF and GM-CSF are 2 important cytokines that regulate macrophage numbers and function. Here, we review their known effects on cells of the macrophage-monocyte lineage. Important clues to their function come from their expression patterns. M-CSF exhibits a mostly homeostatic expression pattern, whereas GM-CSF is a product of cells activated during inflammatory or pathologic conditions. Accordingly, M-CSF regulates the numbers of various tissue macrophage and monocyte populations without altering their "activation" status. Conversely, GM-CSF induces activation of monocytes/macrophages and also mediates differentiation to other states that participate in immune responses [i.e., dendritic cells (DCs)]. Further insights into their function have come from analyses of mice deficient in either cytokine. M-CSF signals through its receptor (CSF-1R). Interestingly, mice deficient in CSF-1R expression exhibit a more significant phenotype than mice deficient in M-CSF. This observation was explained by the discovery of a novel cytokine (IL-34) that represents a second ligand of CSF-1R. Information about the function of these ligands/receptor system is still developing, but its complexity is intriguing and strongly suggests that more interesting biology remains to be elucidated. Based on our current knowledge, several therapeutic molecules targeting either the M-CSF or the GM-CSF pathways have been developed and are currently being tested in clinical trials targeting either autoimmune diseases or cancer. It is intriguing to consider how evolution has directed these pathways to develop; their complexity likely mirrors the multiple functions in which cells of the monocyte/macrophage system are involved.
Collapse
Affiliation(s)
- Irina Ushach
- Department of Physiology and Biophysics, Institute for Immunology, University of California, Irvine, California, USA
| | - Albert Zlotnik
- Department of Physiology and Biophysics, Institute for Immunology, University of California, Irvine, California, USA
| |
Collapse
|
82
|
Hou J, Diao Y, Li W, Yang Z, Zhang L, Chen Z, Wu Y. RGD peptide conjugation results in enhanced antitumor activity of PD0325901 against glioblastoma by both tumor-targeting delivery and combination therapy. Int J Pharm 2016; 505:329-40. [PMID: 27085642 DOI: 10.1016/j.ijpharm.2016.04.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/28/2016] [Accepted: 04/11/2016] [Indexed: 11/16/2022]
Abstract
Glioblastoma (GBM) is the most aggressive tumor type in the central nervous system. Both tumor-targeting drug delivery and combination therapy of multiple therapeutic agents with distinct mechanisms are important for GBM treatment. We combined these two strategies and developed a new platform of peptide-drug conjugate (RGD-PEG-Suc-PD0325901, W22) for tumor-targeting delivery using a combination of PD0325901 (a MEK1/2 inhibitor) and RGD peptide. In the present study, the combination of PD0325901 and RGD peptide strongly inhibited U87MG model in vitro and in vivo. This inhibition contributed to synergistic suppression of cell proliferation by blocking ERK pathway activity and cell migration. Modified by conjugation strategy, their conjugate W22 enhanced PD0325901 delivery to GBM cells by receptor mediated cellular internalization. W22 showed great superiority in targeting to U87MG xenografted tumors and strong anti-tumor efficacy based on ERK pathway inhibition and tumor-targeted delivery in vitro and in vivo. Moreover, W22 was stable in serum and able to release PD0325901 in the enzymatic environment. These data indicated that the RGD-PEG-Suc-PD0325901 conjugate provided a strategy for effective delivery of PD0325901 and RGD peptide into the GBM cells and inhibition of tumor growth in a synergistic manner.
Collapse
Affiliation(s)
- Jianjun Hou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Yiping Diao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Wei Li
- Department of Chemistry, Renmin University of China, Beijing 100872, PR China
| | - Zhenjun Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Zili Chen
- Department of Chemistry, Renmin University of China, Beijing 100872, PR China.
| | - Yun Wu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China.
| |
Collapse
|
83
|
Analysis of the potential pathways and target genes in spinal cord injury using bioinformatics methods. Genes Genomics 2016. [DOI: 10.1007/s13258-016-0385-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
84
|
Malheiro V, Lehner F, Dinca V, Hoffmann P, Maniura-Weber K. Convex and concave micro-structured silicone controls the shape, but not the polarization state of human macrophages. Biomater Sci 2016; 4:1562-1573. [DOI: 10.1039/c6bm00425c] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The typical foreign body response (FBR) to synthetic implants is characterized by local inflammation and tissue fibrosis.
Collapse
Affiliation(s)
- V. Malheiro
- Biointerfaces
- Empa
- Swiss Federal Laboratories for Materials Science and Technology
- St. Gallen
- Switzerland
| | - F. Lehner
- Biointerfaces
- Empa
- Swiss Federal Laboratories for Materials Science and Technology
- St. Gallen
- Switzerland
| | - V. Dinca
- Advanced Materials Processing
- Empa
- Swiss Federal Laboratories for Materials Science and Technology
- Thun
- Switzerland
| | - P. Hoffmann
- Advanced Materials Processing
- Empa
- Swiss Federal Laboratories for Materials Science and Technology
- Thun
- Switzerland
| | - K. Maniura-Weber
- Biointerfaces
- Empa
- Swiss Federal Laboratories for Materials Science and Technology
- St. Gallen
- Switzerland
| |
Collapse
|
85
|
Abstract
Granulocyte-macrophage colony stimulating factor (GM-CSF) is a growth factor first identified as an inducer of differentiation and proliferation of granulocytes and macrophages derived from haematopoietic progenitor cells. Later studies have shown that GM-CSF is involved in a wide range of biological processes in both innate and adaptive immunity, with its production being tightly linked to the response to danger signals. Given that the functions of GM-CSF span multiple tissues and biological processes, this cytokine has shown potential as a new and important therapeutic target in several autoimmune and inflammatory disorders - particularly in rheumatoid arthritis. Indeed, GM-CSF was one of the first cytokines detected in human synovial fluid from inflamed joints. Therapies that target GM-CSF or its receptor have been tested in preclinical studies with promising results, further supporting the potential of targeting the GM-CSF pathway. In this Review, we discuss our expanding view of the biology of GM-CSF, outline what has been learnt about GM-CSF from studies of animal models and human diseases, and summarize the results of early phase clinical trials evaluating GM-CSF antagonism in inflammatory disorders.
Collapse
|
86
|
Van Overmeire E, Stijlemans B, Heymann F, Keirsse J, Morias Y, Elkrim Y, Brys L, Abels C, Lahmar Q, Ergen C, Vereecke L, Tacke F, De Baetselier P, Van Ginderachter JA, Laoui D. M-CSF and GM-CSF Receptor Signaling Differentially Regulate Monocyte Maturation and Macrophage Polarization in the Tumor Microenvironment. Cancer Res 2015; 76:35-42. [PMID: 26573801 DOI: 10.1158/0008-5472.can-15-0869] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 10/10/2015] [Indexed: 11/16/2022]
Abstract
Tumors contain a heterogeneous myeloid fraction comprised of discrete MHC-II(hi) and MHC-II(lo) tumor-associated macrophage (TAM) subpopulations that originate from Ly6C(hi) monocytes. However, the mechanisms regulating the abundance and phenotype of distinct TAM subsets remain unknown. Here, we investigated the role of macrophage colony-stimulating factor (M-CSF) in TAM differentiation and polarization in different mouse tumor models. We demonstrate that treatment of tumor-bearing mice with a blocking anti-M-CSFR monoclonal antibody resulted in a reduction of mature TAMs due to impaired recruitment, extravasation, proliferation, and maturation of their Ly6C(hi) monocytic precursors. M-CSFR signaling blockade shifted the MHC-II(lo)/MHC-II(hi) TAM balance in favor of the latter as observed by the preferential differentiation of Ly6C(hi) monocytes into MHC-II(hi) TAMs. In addition, the genetic and functional signatures of MHC-II(lo) TAMs were downregulated upon M-CSFR blockade, indicating that M-CSFR signaling shapes the MHC-II(lo) TAM phenotype. Conversely, granulocyte macrophage (GM)-CSFR had no effect on the mononuclear tumor infiltrate or relative abundance of TAM subsets. However, GM-CSFR signaling played an important role in fine-tuning the MHC-II(hi) phenotype. Overall, our data uncover the multifaceted and opposing roles of M-CSFR and GM-CSFR signaling in governing the phenotype of macrophage subsets in tumors, and provide new insight into the mechanism of action underlying M-CSFR blockade.
Collapse
Affiliation(s)
- Eva Van Overmeire
- Laboratory of Myeloid Cell Immunology, VIB, Brussels, Belgium. Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Benoît Stijlemans
- Laboratory of Myeloid Cell Immunology, VIB, Brussels, Belgium. Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Felix Heymann
- Department of Medicine III, RWTH University-Hospital Aachen, Aachen, Germany
| | - Jiri Keirsse
- Laboratory of Myeloid Cell Immunology, VIB, Brussels, Belgium. Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Yannick Morias
- Laboratory of Myeloid Cell Immunology, VIB, Brussels, Belgium. Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Yvon Elkrim
- Laboratory of Myeloid Cell Immunology, VIB, Brussels, Belgium. Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Lea Brys
- Laboratory of Myeloid Cell Immunology, VIB, Brussels, Belgium. Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Chloé Abels
- Laboratory of Myeloid Cell Immunology, VIB, Brussels, Belgium. Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Qods Lahmar
- Laboratory of Myeloid Cell Immunology, VIB, Brussels, Belgium. Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Can Ergen
- Department of Medicine III, RWTH University-Hospital Aachen, Aachen, Germany
| | - Lars Vereecke
- Unit of Molecular Signal Transduction in Inflammation, Inflammation Research Center, VIB, Ghent, Belgium. Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Frank Tacke
- Department of Medicine III, RWTH University-Hospital Aachen, Aachen, Germany
| | - Patrick De Baetselier
- Laboratory of Myeloid Cell Immunology, VIB, Brussels, Belgium. Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jo A Van Ginderachter
- Laboratory of Myeloid Cell Immunology, VIB, Brussels, Belgium. Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Damya Laoui
- Laboratory of Myeloid Cell Immunology, VIB, Brussels, Belgium. Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
87
|
Sachdeva M, Whitley MJ, Mito JK, Ma Y, Lev DC, Cardona DM, Kirsch DG. MicroRNA-16 suppresses metastasis in an orthotopic, but not autochthonous, mouse model of soft tissue sarcoma. Dis Model Mech 2015; 8:867-75. [PMID: 26044957 PMCID: PMC4527278 DOI: 10.1242/dmm.017897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 05/28/2015] [Indexed: 12/28/2022] Open
Abstract
MicroRNAs (miRNAs) can regulate tumor cell invasion and metastasis in a tumor-specific manner. We recently demonstrated that global downregulation of miRNAs after deleting dicer can promote development of distant metastases in a mouse model of primary soft tissue sarcoma (STS). In this study, we identified miRNAs that are differentially downregulated in metastatic STS in both human and mouse, and investigated the role of these miRNAs in metastasis. miRNA- TaqMan PCR arrays showed a global downregulation of miRNAs in metastatic human sarcomas. Similar analysis in mouse metastatic sarcomas revealed overlap for several downregulated miRNAs including miR-16, miR-103, miR-146a, miR-223, miR-342 and miR-511. Restoration of these downregulated miRNAs in mouse primary sarcoma cell lines showed that miR-16, but not other downregulated miRNAs, was able to significantly suppress both migration and invasion in vitro, without altering cell proliferation. In addition, orthotopic transplantation of a sarcoma cell line stably expressing miR-16 into the muscle of immunocompromised mice revealed that restoration of miR-16 can significantly decrease lung metastasis in vivo. However, no change in the rate of lung metastasis was observed when miR-16 was deleted in mouse primary sarcomas at sarcoma initiation. Taken together, these results indicate that miR-16 can have metastasis-suppressing properties both in vitro and in vivo. However, the loss-of-function experiments in autochthonous tumors indicate that loss of miR-16 is not sufficient to promote metastasis in vivo.
Collapse
Affiliation(s)
- Mohit Sachdeva
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC NC27708, USA
| | - Melody J Whitley
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27708, USA
| | - Jeffrey K Mito
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27708, USA
| | - Yan Ma
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC NC27708, USA
| | - Dina C Lev
- Department of Cancer Biology, University of Texas, MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Diana M Cardona
- Department of Pathology, Duke University Medical Center, Durham, NC 27708, USA
| | - David G Kirsch
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC NC27708, USA Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27708, USA
| |
Collapse
|
88
|
New therapeutic targets for cancer bone metastasis. Trends Pharmacol Sci 2015; 36:360-73. [PMID: 25962679 DOI: 10.1016/j.tips.2015.04.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 04/10/2015] [Accepted: 04/14/2015] [Indexed: 12/18/2022]
Abstract
Bone metastases are dejected consequences of many types of tumors including breast, prostate, lung, kidney, and thyroid cancers. This complicated process begins with the successful tumor cell epithelial-mesenchymal transition, escape from the original site, and penetration into the circulation. The homing of tumor cells to the bone depends on both tumor-intrinsic traits and various molecules supplied by the bone metastatic niche. The colonization and growth of cancer cells in the osseous environment, which awaken their dormancy to form micro- and macro-metastasis, involve an intricate interaction between the circulating tumor cells and local bone cells including osteoclasts, osteoblasts, adipocytes, and macrophages. We discuss the most recent advances in the identification of new molecules and novel mechanisms during each step of bone metastasis that may serve as promising therapeutic targets.
Collapse
|
89
|
McWhorter FY, Davis CT, Liu WF. Physical and mechanical regulation of macrophage phenotype and function. Cell Mol Life Sci 2015; 72:1303-16. [PMID: 25504084 PMCID: PMC4795453 DOI: 10.1007/s00018-014-1796-8] [Citation(s) in RCA: 308] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/11/2014] [Accepted: 11/27/2014] [Indexed: 12/12/2022]
Abstract
Macrophages are tissue-resident immune cells that play a critical role in maintaining homeostasis and fighting infection. In addition, these cells are involved in the progression of many pathologies including cancer and atherosclerosis. In response to a variety of microenvironmental stimuli, macrophages can be polarized to achieve a spectrum of functional phenotypes. This review will discuss some emerging evidence in support of macrophage phenotypic regulation by physical and mechanical cues. As alterations in the physical microenvironment often underlie pathophysiological states, an understanding of their effects on macrophage phenotype and function may help provide mechanistic insights into disease pathogenesis.
Collapse
Affiliation(s)
- Frances Y. McWhorter
- Department of Biomedical Engineering, University of California Irvine, 3120 Natural Sciences II, Irvine, CA 92697 USA
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California Irvine, 2400 Engineering Hall, Irvine, CA 92697 USA
| | - Chase T. Davis
- Department of Biomedical Engineering, University of California Irvine, 3120 Natural Sciences II, Irvine, CA 92697 USA
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California Irvine, 2400 Engineering Hall, Irvine, CA 92697 USA
| | - Wendy F. Liu
- Department of Biomedical Engineering, University of California Irvine, 3120 Natural Sciences II, Irvine, CA 92697 USA
- Department of Chemical Engineering and Materials Science, University of California Irvine, 916 Engineering Tower, Irvine, CA 92697 USA
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California Irvine, 2400 Engineering Hall, Irvine, CA 92697 USA
| |
Collapse
|
90
|
McWhorter FY, Davis CT, Liu WF. Physical and mechanical regulation of macrophage phenotype and function. Cell Mol Life Sci 2015. [PMID: 25504084 DOI: 10.1007/s00018-014-1796-8/figures/4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Macrophages are tissue-resident immune cells that play a critical role in maintaining homeostasis and fighting infection. In addition, these cells are involved in the progression of many pathologies including cancer and atherosclerosis. In response to a variety of microenvironmental stimuli, macrophages can be polarized to achieve a spectrum of functional phenotypes. This review will discuss some emerging evidence in support of macrophage phenotypic regulation by physical and mechanical cues. As alterations in the physical microenvironment often underlie pathophysiological states, an understanding of their effects on macrophage phenotype and function may help provide mechanistic insights into disease pathogenesis.
Collapse
Affiliation(s)
- Frances Y McWhorter
- Department of Biomedical Engineering, University of California Irvine, 3120 Natural Sciences II, Irvine, CA, 92697, USA
| | | | | |
Collapse
|
91
|
Immunotherapy for lung cancer: for whom the bell tolls? Tumour Biol 2015; 36:1411-22. [PMID: 25736929 DOI: 10.1007/s13277-015-3285-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 02/18/2015] [Indexed: 12/14/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related death and accounts for approximately 30% of all cancer deaths. Despite the recent developments in personalized therapy, the prognosis in lung cancer is still very poor. Immunotherapy is now emerging as a new hope for patients with lung cancer. It is well known that standard chemotherapeutic regimens have devastating effects for the patient's immune system. Therefore, the aim of immunotherapy is to specifically enhance the immune response against the tumour. Recently, many trials addressed the role of such therapies for metastatic non-small cell lung cancer (NSCLC) treatment: ipilimumab, tremelimumab, nivolumab and pembrolizumab are immunotherapeutic agents of high relevance in this field. Anti-tumour vaccines, as well as dendritic cell-based therapies, have emerged as potent inducers of immune response against the tumour. Herein, we will review some of the most promising cancer immunotherapies, highlighting their advantages and try to understand, in an immunological perspective, the missteps associated with the current treatments for cancer.
Collapse
|
92
|
Pan-PI-3 kinase inhibitor SF1126 shows antitumor and antiangiogenic activity in renal cell carcinoma. Cancer Chemother Pharmacol 2015; 75:595-608. [DOI: 10.1007/s00280-014-2639-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 11/17/2014] [Indexed: 01/05/2023]
|
93
|
Schlesinger M, Bendas G. Contribution of very late antigen-4 (VLA-4) integrin to cancer progression and metastasis. Cancer Metastasis Rev 2015; 34:575-91. [DOI: 10.1007/s10555-014-9545-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
94
|
Singh AR, Joshi S, George E, Durden DL. Anti-tumor effect of a novel PI3-kinase inhibitor, SF1126, in (12) V-Ha-Ras transgenic mouse glioma model. Cancer Cell Int 2014; 14:105. [PMID: 25425962 PMCID: PMC4243316 DOI: 10.1186/s12935-014-0105-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 10/07/2014] [Indexed: 11/29/2022] Open
Abstract
Background Growth factor mediated activation of RAS-MAP-kinase and PI3-kinase-AKT pathways are critical for the pathogenesis of glioblastoma. The attenuation of PI3-kinase/AKT signaling will be effective in regulating the tumorigenic phenotypes of the glioma cells. Methods Glioma cells derived from the brain of the 12 V-Ha-Ras transgenic mice were used to study the effect of PI-3 kinase inhibitor SF1126 on activation of AKT and ERK signaling, proliferation, vitronectin mediated migration and changes in the distribution of cortical actin on vitronectin in the glioma cells in vitro. The anti-tumor effects of SF1126 were also tested in vivo using pre-established tumors (subcutaneous injection of the glioma cells from 12 V-Ha-Ras transgenic mice) in a mouse xenograft model. Results Our results demonstrate that treatment of LacZ+, GFAP + and PCNA + 12 V-Ras Tg transformed astrocytes with SF1126 and LY294002 blocked the activation of AKT as well as EGF-induced phospho-ERK. Most notably, treatment of SF1126 blocked integrin-dependent migration in transwell and scratch assays and caused a significant change in the organization and distribution of cortical actin on vitronectin in the glioma cells. Moreover, SF1126 treatment inhibited in vitro proliferation of these cells and in vivo growth of pre-established subcutaneous tumors in a xenograft model. Conclusion The present study validate the potent anti-proliferative and anti-migratory activity of SF1126, in a V12 Ras oncogene driven glioma model and suggest that this effect is mediated potentially through a combined attenuation of PI3-kinase and MAP-kinase signaling pathways.
Collapse
Affiliation(s)
- Alok R Singh
- UCSD Department of Pediatrics, Moores UCSD Cancer Center, University of California School of Medicine, San Diego, CA 92093 USA
| | - Shweta Joshi
- UCSD Department of Pediatrics, Moores UCSD Cancer Center, University of California School of Medicine, San Diego, CA 92093 USA
| | | | - Donald L Durden
- UCSD Department of Pediatrics, Moores UCSD Cancer Center, University of California School of Medicine, San Diego, CA 92093 USA ; Division of Pediatric Hematology-Oncology, UCSD Rady Children's Hospital, La Jolla, CA USA
| |
Collapse
|
95
|
Joshi S, Singh AR, Zulcic M, Durden DL. A macrophage-dominant PI3K isoform controls hypoxia-induced HIF1α and HIF2α stability and tumor growth, angiogenesis, and metastasis. Mol Cancer Res 2014; 12:1520-31. [PMID: 25103499 DOI: 10.1158/1541-7786.mcr-13-0682] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Tumor growth, progression, and response to the hypoxic tumor microenvironment involve the action of hypoxia-inducible transcription factors, HIF1 and HIF2. HIF is a heterodimeric transcription factor containing an inducible HIFα subunit and a constitutively expressed HIFβ subunit. The signaling pathways operational in macrophages regulating hypoxia-induced HIFα stabilization remain the subject of intense investigation. Here, it was discovered that the PTEN/PI3K/AKT signaling axis controls hypoxia-induced HIF1α (HIF1A) and HIF2α (EPAS1) stability in macrophages. Using genetic mouse models and pan-PI3K as well as isoform-specific inhibitors, inhibition of the PI3K/AKT pathway blocked the accumulation of HIFα protein and its primary transcriptional target VEGF in response to hypoxia. Moreover, blocking the PI3K/AKT signaling axis promoted the hypoxic degradation of HIFα via the 26S proteasome. Mechanistically, a macrophage-dominant PI3K isoform (p110γ) directed tumor growth, angiogenesis, metastasis, and the HIFα/VEGF axis. Moreover, a pan-PI3K inhibitor (SF1126) blocked tumor-induced angiogenesis and inhibited VEGF and other proangiogenic factors secreted by macrophages. These data define a novel molecular mechanism by which PTEN/PI3K/AKT regulates the proteasome-dependent stability of HIFα under hypoxic conditions, a signaling pathway in macrophages that controls tumor-induced angiogenesis and metastasis. IMPLICATIONS This study indicates that PI3K inhibitors are excellent candidates for the treatment of cancers where macrophages promote tumor progression.
Collapse
Affiliation(s)
- Shweta Joshi
- UCSD Department of Pediatrics, Moores Cancer Center, University of California, La Jolla, California
| | - Alok R Singh
- UCSD Department of Pediatrics, Moores Cancer Center, University of California, La Jolla, California
| | - Muamera Zulcic
- UCSD Department of Pediatrics, Moores Cancer Center, University of California, La Jolla, California
| | - Donald L Durden
- UCSD Department of Pediatrics, Moores Cancer Center, University of California, La Jolla, California. Division of Pediatric Hematology-Oncology, UCSD Rady Children's Hospital, San Diego, California. SignalRx Pharmaceuticals, San Diego, California.
| |
Collapse
|
96
|
Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, Gordon S, Hamilton JA, Ivashkiv LB, Lawrence T, Locati M, Mantovani A, Martinez FO, Mege JL, Mosser DM, Natoli G, Saeij JP, Schultze JL, Shirey KA, Sica A, Suttles J, Udalova I, van Ginderachter JA, Vogel SN, Wynn TA. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 2014; 41:14-20. [PMID: 25035950 PMCID: PMC4123412 DOI: 10.1016/j.immuni.2014.06.008] [Citation(s) in RCA: 4214] [Impact Index Per Article: 421.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Description of macrophage activation is currently contentious and confusing. Like the biblical Tower of Babel, macrophage activation encompasses a panoply of descriptors used in different ways. The lack of consensus on how to define macrophage activation in experiments in vitro and in vivo impedes progress in multiple ways, including the fact that many researchers still consider there to be only two types of activated macrophages, often termed M1 and M2. Here, we describe a set of standards encompassing three principles-the source of macrophages, definition of the activators, and a consensus collection of markers to describe macrophage activation-with the goal of unifying experimental standards for diverse experimental scenarios. Collectively, we propose a common framework for macrophage-activation nomenclature.
Collapse
Affiliation(s)
- Peter J Murray
- Departments of Infectious Diseases and Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Judith E Allen
- Centre for Immunity, Infection, and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, UK
| | - Subhra K Biswas
- Singapore Immunology Network, A(∗)STAR, 8A Biomedical Grove, Immunos Building, Level 4, Singapore138648, Singapore
| | - Edward A Fisher
- Center for the Prevention of Cardiovascular Disease, New York University School of Medicine, Smilow 7, 522 First Avenue, New York, NY, USA
| | - Derek W Gilroy
- Division of Medicine, Rayne Institute, University College London, 5 University Street, London WC1 6JJ, UK
| | - Sergij Goerdt
- Department Dermatology, University Medical Center Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Siamon Gordon
- Sir William Dunn School of Pathology, University of Oxford, Headington, Oxford, OX1 3RE, UK
| | - John A Hamilton
- Department of Medicine, University of Melbourne and Royal Melbourne Hospital, Parkville, VIC 3050, Australia
| | - Lionel B Ivashkiv
- Hospital for Special Surgery and Weill Medical College, Cornell University, 535 East 70(th) Street, New York, NY 10021, USA
| | - Toby Lawrence
- Centre d'Immunologie de Marseille-Luminy, 13009 Marseille, France
| | - Massimo Locati
- University of Milan School of Medicine, Istituto Clinico Humanitas, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Alberto Mantovani
- University of Milan School of Medicine, Istituto Clinico Humanitas, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Fernando O Martinez
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Headington, Oxford OX3 7LD, UK
| | - Jean-Louis Mege
- Infectious Diseases, Aix Marseille University, 27 Boulevard Jean Moulin, 13285 Marseille, France
| | - David M Mosser
- Department of Cell Biology, University of Maryland, College Park, MD 20742, USA
| | - Gioacchino Natoli
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20146 Milan, Italy
| | - Jeroen P Saeij
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Joachim L Schultze
- Genomics & Immunoregulation, LIMES-Institute, University of Bonn, 32115 Bonn, Germany
| | - Kari Ann Shirey
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Antonio Sica
- Istituto Clinico Humanitas, Via Manzoni 56, 20089 Rozzano, Milan, Italy; Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale "Amedeo Avogadro," Via Bovio 6, 28100 Novara, Italy
| | - Jill Suttles
- Microbiology & Immunology, University of Louisville School of Medicine, 319 Abraham Flexner Way, Louisville, KY 40292, USA
| | - Irina Udalova
- Kennedy Institute of Rheumatology, University of Oxford, Headington, Oxford, OX3 7FY, UK
| | - Jo A van Ginderachter
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; Laboratory of Myeloid Cell Immunology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Stefanie N Vogel
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Thomas A Wynn
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|