51
|
Dahlmanns M, Yakubov E, Chen D, Sehm T, Rauh M, Savaskan N, Wrosch JK. Chemotherapeutic xCT inhibitors sorafenib and erastin unraveled with the synaptic optogenetic function analysis tool. Cell Death Discov 2017; 3:17030. [PMID: 28835855 PMCID: PMC5541984 DOI: 10.1038/cddiscovery.2017.30] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 04/23/2017] [Indexed: 01/19/2023] Open
Abstract
In the search for new potential chemotherapeutics, the compounds’ toxicity to healthy cells is an important factor. The brain with its functional units, the neurons, is especially endangered during the radio- and chemotherapeutic treatment of brain tumors. The effect of the potential compounds not only on neuronal survival but also neuronal function needs to be taken into account. Therefore, in this study we aimed to comprehend the biological effects of chemotherapeutic xCT inhibition on healthy neuronal cells with our synaptic optogenetic function analysis tool (SOFA). We combined common approaches, such as investigation of morphological markers, neuronal function and cell metabolism. The glutamate-cystine exchanger xCT (SLC7A11, system Xc−) is the main glutamate exporter in malignant brain tumors and as such a relevant drug target for treating deadly glioblastomas (WHO grades III and IV). Recently, two small molecules termed sorafenib (Nexavar) and erastin have been found to efficiently block xCT function. We investigated neuronal morphology, metabolic secretome profiles, synaptic function and cell metabolism of primary hippocampal cultures (containing neurons and glial cells) treated with sorafenib and erastin in clinically relevant concentrations. We found that sorafenib severely damaged neurons already after 24 h of treatment. Noteworthy, also at a lower concentration, where no morphological damage or metabolic disturbance was monitored, sorafenib still interfered with synaptic and metabolic homeostasis. In contrast, erastin-treated neurons displayed mostly inconspicuous morphology and metabolic rates. Key parameters of proper neuronal function, such as synaptic vesicle pool sizes, were however disrupted following erastin application. In conclusion, our data revealed that while sorafenib and erastin effectively inhibited xCT function they also interfered with essential neuronal (synaptic) function. These findings highlight the particular importance of investigating the effects of potential neurooncological and general cancer chemotherapeutics also on healthy neuronal cells and their function as revealed by the SOFA tool.
Collapse
Affiliation(s)
- Marc Dahlmanns
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Eduard Yakubov
- Translational Neurooncology Laboratory, Department of Neurosurgery, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany.,Paracelsus Medical University, Nuremberg, Germany
| | - Daishi Chen
- Translational Neurooncology Laboratory, Department of Neurosurgery, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Tina Sehm
- Translational Neurooncology Laboratory, Department of Neurosurgery, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Manfred Rauh
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Nicolai Savaskan
- Translational Neurooncology Laboratory, Department of Neurosurgery, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany.,BiMECON Ent., Berlin, Germany
| | - Jana Katharina Wrosch
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
52
|
Wing C, Komatsu M, Delaney SM, Krause M, Wheeler HE, Dolan ME. Application of stem cell derived neuronal cells to evaluate neurotoxic chemotherapy. Stem Cell Res 2017. [PMID: 28645005 DOI: 10.1016/j.scr.2017.06.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The generation of induced pluripotent stem cells (iPSCs) and differentiation to cells composing major organs has opened up the possibility for a new model system to study adverse toxicities associated with chemotherapy. Therefore, we used human iPSC-derived neurons to study peripheral neuropathy, one of the most common adverse effects of chemotherapy and cause for dose reduction. To determine the utility of these neurons in investigating the effects of neurotoxic chemotherapy, we measured morphological differences in neurite outgrowth, cell viability as determined by ATP levels and apoptosis through measures of caspase 3/7 activation following treatment with clinically relevant concentrations of platinating agents (cisplatin, oxaliplatin and carboplatin), taxanes (paclitaxel, docetaxel and nab-paclitaxel), a targeted proteasome inhibitor (bortezomib), an antiangiogenic compound (thalidomide), and 5-fluorouracil, a chemotherapeutic that does not cause neuropathy. We demonstrate differential sensitivity of neurons to mechanistically distinct classes of chemotherapeutics. We also show a dose-dependent reduction of electrical activity as measured by mean firing rate of the neurons following treatment with paclitaxel. We compared neurite outgrowth and cell viability of iPSC-derived cortical (iCell® Neurons) and peripheral (Peri.4U) neurons to cisplatin, paclitaxel and vincristine. Goshajinkigan, a Japanese herbal neuroprotectant medicine, was protective against paclitaxel-induced neurotoxicity but not oxaliplatin as measured by morphological phenotypes. Thus, we have demonstrated the utility of human iPSC-derived neurons as a useful model to distinguish drug class differences and for studies of a potential neuroprotectant for the prevention of chemotherapy-induced peripheral neuropathy.
Collapse
Affiliation(s)
- Claudia Wing
- Section of Hematology/Oncology, Department of Medicine, Chicago, IL, USA
| | - Masaaki Komatsu
- Section of Hematology/Oncology, Department of Medicine, Chicago, IL, USA
| | - Shannon M Delaney
- Section of Hematology/Oncology, Department of Medicine, Chicago, IL, USA
| | - Matthew Krause
- Committee of Molecular Pathogenesis and Molecular Medicine, The University of Chicago, Chicago, IL, USA
| | - Heather E Wheeler
- Section of Hematology/Oncology, Department of Medicine, Chicago, IL, USA
| | - M Eileen Dolan
- Section of Hematology/Oncology, Department of Medicine, Chicago, IL, USA.
| |
Collapse
|
53
|
Chua KC, Kroetz DL. Genetic advances uncover mechanisms of chemotherapy-induced peripheral neuropathy. Clin Pharmacol Ther 2017; 101:450-452. [PMID: 27981569 PMCID: PMC5359049 DOI: 10.1002/cpt.590] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/11/2016] [Accepted: 12/05/2016] [Indexed: 01/05/2023]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a common dose-limiting toxicity experienced in 30-40% of patients undergoing treatment with various chemotherapeutics, including taxanes, vinca alkaloids, epothilones, proteasome inhibitors, and thalidomide. Importantly, CIPN significantly affects a patient's quality of life. Recent genetic association studies are enhancing our understanding of CIPN pathophysiology and serve as a foundation for identification of genetic biomarkers to predict toxicity risk and for the development of novel strategies for prevention and treatment.
Collapse
Affiliation(s)
- K C Chua
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - D L Kroetz
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
54
|
Lin H, Tan QP, Sui WG, Chen WB, Peng WJ, Liu XC, Dai Y. Differential proteomics analysis of liver failure in peripheral blood mononuclear cells using isobaric tags for relative and absolute quantitation. Biomed Rep 2017; 6:167-174. [PMID: 28357068 PMCID: PMC5351387 DOI: 10.3892/br.2016.835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/30/2016] [Indexed: 11/13/2022] Open
Abstract
The aim of the present study was to examine differentially expressed proteome profiles for candidate biomarkers in peripheral blood mononuclear cells (PBMCs) of liver failure (LF) patients. Ten patients were diagnosed as LF and 10 age- and gender-matched subjects were recruited as healthy controls. Isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative proteomic technology is efficiently applicable for identification and relative quantitation of the proteomes of PBMCs. Eight-plex iTRAQ coupled with strong cation exchange chromatography, and liquid chromatography coupled with tandem mass spectrometry were used to analyze total proteins in LF patients and healthy control subjects. Molecular variations were detected using the iTRAQ method, and western blotting was used to verify the results. LF is a complex type of medical emergency that evolves following a catastrophic insult to the liver, and its outcome remains the most ominous of all gastroenterologic diseases. Serious complications tend to occur during the course of the disease and further exacerbate the problems. Using the iTRAQ method, differentially expressed proteome profiles of LF patients were determined. In the present study, 627 proteins with different expression levels were identified in LF patients compared with the control subjects; with 409 proteins upregulated and 218 proteins downregulated. Among them, four proteins were significantly differentially expressed; acylaminoacyl-peptide hydrolase and WW domain binding protein 2 were upregulated, and resistin and tubulin β 2A class IIa were downregulated. These proteins demonstrated differences in their expression levels compared with other proteins with normal expression levels and the significant positive correlation with LF. The western blot results were consistent with the results from iTRAQ. Thus, investigation of the molecular mechanism of the proteins involved in LF may facilitate an improved understanding of the pathogenesis of LF and elucidation of novel biomarker candidates.
Collapse
Affiliation(s)
- Hua Lin
- Central Laboratory of Guilin 181st Hospital, Key laboratory of Metabolic Diseases Research, Guilin, Guangxi 541002, P.R. China
| | - Qiu-Pei Tan
- Clinical Laboratory of 181st Hospital, Guilin, Guangxi 541002, P.R. China
| | - Wei-Guo Sui
- Central Laboratory of Guilin 181st Hospital, Key laboratory of Metabolic Diseases Research, Guilin, Guangxi 541002, P.R. China
| | - Wen-Biao Chen
- The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Wu-Jian Peng
- The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Xing-Chao Liu
- Clinical Laboratory of 181st Hospital, Guilin, Guangxi 541002, P.R. China
| | - Yong Dai
- The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| |
Collapse
|
55
|
Guo L, Hamre J, Eldridge S, Behrsing HP, Cutuli FM, Mussio J, Davis M. Editor's Highlight: Multiparametric Image Analysis of Rat Dorsal Root Ganglion Cultures to Evaluate Peripheral Neuropathy-Inducing Chemotherapeutics. Toxicol Sci 2017; 156:275-288. [PMID: 28115644 PMCID: PMC5837782 DOI: 10.1093/toxsci/kfw254] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a major, dose-limiting adverse effect experienced by cancer patients. Advancements in mechanism-based risk mitigation and effective treatments for CIPN can be aided by suitable in vitro assays. To this end, we developed a multiparametric morphology-centered rat dorsal root ganglion (DRG) assay. Morphologic alterations in subcellular structures of neurons and non-neurons were analyzed with an automated microscopy system. Stains for NeuN (a neuron-specific nuclear protein) and Tuj-1 (β-III tubulin) were used to identify neuronal cell nuclei and neuronal cell bodies/neurites, respectively. Vimentin staining (a component of Schwann cell intermediate filaments) was used to label non-neuronal supporting cells. Nuclei that stained with DAPI, but lacked NeuN represented non-neuronal cells. Images were analyzed following 24 h of continuous exposure to CIPN-inducing agents and 72 h after drug removal to provide a dynamic measure of recovery from initial drug effects. Treatment with bortezomib, cisplatin, eribulin, paclitaxel or vincristine induced a dose-dependent loss of neurite/process areas, mimicking the 'dying back' degeneration of axons, a histopathological hallmark of clinical CIPN in vivo. The IC50 for neurite loss was within 3-fold of the maximal clinical exposure (Cmax) for all five CIPN-inducing drugs, but was >4- or ≥ 28-fold of the Cmax for 2 non-CIPN-inducing agents. Compound-specific effects, eg, neurite fragmentation by cisplatin or bortezomib and enlarged neuronal cell bodies by paclitaxel, were also observed. Collectively, these results support the use of a quantitative, morphologic evaluation and a DRG cell culture model to inform risk and examine mechanisms of CIPN.
Collapse
Affiliation(s)
- Liang Guo
- Laboratory of Investigative Toxicology, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland 21702
| | - John Hamre
- Laboratory of Investigative Toxicology, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland 21702
| | - Sandy Eldridge
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland 20892
| | - Holger P. Behrsing
- Laboratory of Investigative Toxicology, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland 21702
| | - Facundo M. Cutuli
- Laboratory of Investigative Toxicology, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland 21702
| | - Jodie Mussio
- Laboratory of Investigative Toxicology, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland 21702
| | - Myrtle Davis
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland 20892
| |
Collapse
|
56
|
|
57
|
Ohara R, Imamura K, Morii F, Egawa N, Tsukita K, Enami T, Shibukawa R, Mizuno T, Nakagawa M, Inoue H. Modeling Drug-Induced Neuropathy Using Human iPSCs for Predictive Toxicology. Clin Pharmacol Ther 2017; 101:754-762. [PMID: 27859025 DOI: 10.1002/cpt.562] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/11/2016] [Accepted: 11/06/2016] [Indexed: 12/14/2022]
Abstract
Drugs under development can cause unpredicted toxicity in humans due to differential drug responsiveness between humans and other disease models, resulting in clinical trial failures. Human induced pluripotent stem cells (iPSCs) are expected to represent a useful tool for toxicity testing. However, among many assays, appropriate cellular assays for predicting neurotoxicity in an iPSC-based model are still uncertain. Here we generated neurons from iPSCs of Charcot-Marie-Tooth disease (CMT) patients. Some CMT patients are sensitive to anticancer drugs and present with an adverse reaction of neuropathy. We analyzed cellular phenotypes and found that mitochondria in neurites of CMT neurons were morphologically shorter and showed slower mobility compared to control. A neurosphere assay showed that treatment with drugs known to cause neuropathy caused mitochondrial aggregations in neurites with adenosine triphosphate shortage in both CMT and control neurons, although more severely in CMT. These findings suggest that the genetically susceptible model could provide a useful tool to predict drug-induced neurotoxicity.
Collapse
Affiliation(s)
- R Ohara
- Center for iPS Cells for Research and Application (CiRA), Kyoto University, Kyoto, Japan.,Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - K Imamura
- Center for iPS Cells for Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - F Morii
- Center for iPS Cells for Research and Application (CiRA), Kyoto University, Kyoto, Japan.,Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - N Egawa
- Center for iPS Cells for Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - K Tsukita
- Center for iPS Cells for Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - T Enami
- Center for iPS Cells for Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - R Shibukawa
- Center for iPS Cells for Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - T Mizuno
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - M Nakagawa
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan.,North Medical Center, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - H Inoue
- Center for iPS Cells for Research and Application (CiRA), Kyoto University, Kyoto, Japan
| |
Collapse
|
58
|
Aromolaran KA, Goldstein PA. Ion channels and neuronal hyperexcitability in chemotherapy-induced peripheral neuropathy; cause and effect? Mol Pain 2017; 13:1744806917714693. [PMID: 28580836 PMCID: PMC5480635 DOI: 10.1177/1744806917714693] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/12/2017] [Accepted: 05/16/2017] [Indexed: 12/18/2022] Open
Abstract
Abstract Cancer is the second leading cause of death worldwide and is a major global health burden. Significant improvements in survival have been achieved, due in part to advances in adjuvant antineoplastic chemotherapy. The most commonly used antineoplastics belong to the taxane, platinum, and vinca alkaloid families. While beneficial, these agents are frequently accompanied by severe side effects, including chemotherapy-induced peripheral neuropathy (CPIN). While CPIN affects both motor and sensory systems, the majority of symptoms are sensory, with pain, tingling, and numbness being the predominant complaints. CPIN not only decreases the quality of life of cancer survivors but also can lead to discontinuation of treatment, thereby adversely affecting survival. Consequently, minimizing the incidence or severity of CPIN is highly desirable, but strategies to prevent and/or treat CIPN have proven elusive. One difficulty in achieving this goal arises from the fact that the molecular and cellular mechanisms that produce CPIN are not fully known; however, one common mechanism appears to be changes in ion channel expression in primary afferent sensory neurons. The processes that underlie chemotherapy-induced changes in ion channel expression and function are poorly understood. Not all antineoplastic agents directly affect ion channel function, suggesting additional pathways may contribute to the development of CPIN Indeed, there are indications that these drugs may mediate their effects through cellular signaling pathways including second messengers and inflammatory cytokines. Here, we focus on ion channelopathies as causal mechanisms for CPIN and review the data from both pre-clinical animal models and from human studies with the aim of facilitating the development of appropriate strategies to prevent and/or treat CPIN.
Collapse
Affiliation(s)
- Kelly A Aromolaran
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA
| | - Peter A Goldstein
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
59
|
Hosoya M, Czysz K. Translational Prospects and Challenges in Human Induced Pluripotent Stem Cell Research in Drug Discovery. Cells 2016; 5:cells5040046. [PMID: 28009813 PMCID: PMC5187530 DOI: 10.3390/cells5040046] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 11/27/2016] [Accepted: 12/15/2016] [Indexed: 02/07/2023] Open
Abstract
Despite continuous efforts to improve the process of drug discovery and development, achieving success at the clinical stage remains challenging because of a persistent translational gap between the preclinical and clinical settings. Under these circumstances, the discovery of human induced pluripotent stem (iPS) cells has brought new hope to the drug discovery field because they enable scientists to humanize a variety of pharmacological and toxicological models in vitro. The availability of human iPS cell-derived cells, particularly as an alternative for difficult-to-access tissues and organs, is increasing steadily; however, their use in the field of translational medicine remains challenging. Biomarkers are an essential part of the translational effort to shift new discoveries from bench to bedside as they provide a measurable indicator with which to evaluate pharmacological and toxicological effects in both the preclinical and clinical settings. In general, during the preclinical stage of the drug development process, in vitro models that are established to recapitulate human diseases are validated by using a set of biomarkers; however, their translatability to a clinical setting remains problematic. This review provides an overview of current strategies for human iPS cell-based drug discovery from the perspective of translational research, and discusses the importance of early consideration of clinically relevant biomarkers.
Collapse
Affiliation(s)
- Masaki Hosoya
- Integrated Technology Research Laboratories, Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| | - Katherine Czysz
- Integrated Technology Research Laboratories, Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| |
Collapse
|
60
|
Stretch Injury of Human Induced Pluripotent Stem Cell Derived Neurons in a 96 Well Format. Sci Rep 2016; 6:34097. [PMID: 27671211 PMCID: PMC5037451 DOI: 10.1038/srep34097] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 09/07/2016] [Indexed: 01/27/2023] Open
Abstract
Traumatic brain injury (TBI) is a major cause of mortality and morbidity with limited therapeutic options. Traumatic axonal injury (TAI) is an important component of TBI pathology. It is difficult to reproduce TAI in animal models of closed head injury, but in vitro stretch injury models reproduce clinical TAI pathology. Existing in vitro models employ primary rodent neurons or human cancer cell line cells in low throughput formats. This in vitro neuronal stretch injury model employs human induced pluripotent stem cell-derived neurons (hiPSCNs) in a 96 well format. Silicone membranes were attached to 96 well plate tops to create stretchable, culture substrates. A custom-built device was designed and validated to apply repeatable, biofidelic strains and strain rates to these plates. A high content approach was used to measure injury in a hypothesis-free manner. These measurements are shown to provide a sensitive, dose-dependent, multi-modal description of the response to mechanical insult. hiPSCNs transition from healthy to injured phenotype at approximately 35% Lagrangian strain. Continued development of this model may create novel opportunities for drug discovery and exploration of the role of human genotype in TAI pathology.
Collapse
|
61
|
Zagoura D, Canovas-Jorda D, Pistollato F, Bremer-Hoffmann S, Bal-Price A. Evaluation of the rotenone-induced activation of the Nrf2 pathway in a neuronal model derived from human induced pluripotent stem cells. Neurochem Int 2016; 106:62-73. [PMID: 27615060 DOI: 10.1016/j.neuint.2016.09.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/25/2016] [Accepted: 09/06/2016] [Indexed: 01/21/2023]
Abstract
Human induced pluripotent stem cells (hiPSCs) are considered as a powerful tool for drug and chemical screening and development of new in vitro testing strategies in the field of toxicology, including neurotoxicity evaluation. These cells are able to expand and efficiently differentiate into different types of neuronal and glial cells as well as peripheral neurons. These human cells-based neuronal models serve as test systems for mechanistic studies on different pathways involved in neurotoxicity. One of the well-known mechanisms that are activated by chemically-induced oxidative stress is the Nrf2 signaling pathway. Therefore, in the current study, we evaluated whether Nrf2 signaling machinery is expressed in human induced pluripotent stem cells (hiPSCs)-derived mixed neuronal/glial culture and if so whether it becomes activated by rotenone-induced oxidative stress mediated by complex I inhibition of mitochondrial respiration. Rotenone was found to induce the activation of Nrf2 signaling particularly at the highest tested concentration (100 nM), as shown by Nrf2 nuclear translocation and the up-regulation of the Nrf2-downstream antioxidant enzymes, NQO1 and SRXN1. Interestingly, exposure to rotenone also increased the number of astroglial cells in which Nrf2 activation may play an important role in neuroprotection. Moreover, rotenone caused cell death of dopaminergic neurons since a decreased percentage of tyrosine hydroxylase (TH+) cells was observed. The obtained results suggest that hiPSC-derived mixed neuronal/glial culture could be a valuable in vitro human model for the establishment of neuronal specific assays in order to link Nrf2 pathway activation (biomarker of oxidative stress) with additional neuronal specific readouts that could be applied to in vitro neurotoxicity evaluation.
Collapse
Affiliation(s)
- Dimitra Zagoura
- Directorate F - Health, Consumers and Reference Materials, Joint Research Centre, Ispra, Italy
| | - David Canovas-Jorda
- Directorate F - Health, Consumers and Reference Materials, Joint Research Centre, Ispra, Italy
| | - Francesca Pistollato
- Directorate F - Health, Consumers and Reference Materials, Joint Research Centre, Ispra, Italy
| | - Susanne Bremer-Hoffmann
- Directorate F - Health, Consumers and Reference Materials, Joint Research Centre, Ispra, Italy
| | - Anna Bal-Price
- Directorate F - Health, Consumers and Reference Materials, Joint Research Centre, Ispra, Italy.
| |
Collapse
|
62
|
Song L, Wang K, Li Y, Yang Y. Nanotopography promoted neuronal differentiation of human induced pluripotent stem cells. Colloids Surf B Biointerfaces 2016; 148:49-58. [PMID: 27591570 DOI: 10.1016/j.colsurfb.2016.08.041] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/20/2016] [Accepted: 08/23/2016] [Indexed: 01/27/2023]
Abstract
Inefficient neural differentiation of human induced pluripotent stem cells (hiPSCs) motivates recent investigation of the influence of biophysical characteristics of cellular microenvironment, in particular nanotopography, on hiPSC fate decision. However, the roles of geometry and dimensions of nanotopography in neural lineage commitment of hiPSCs have not been well understood. The objective of this study is to delineate the effects of geometry, feature size and height of nanotopography on neuronal differentiation of hiPSCs. HiPSCs were seeded on equally spaced nanogratings (500 and 1000nm in linewidth) and hexagonally arranged nanopillars (500nm in diameter), each having a height of 150 or 560nm, and induced for neuronal differentiation in concert with dual Smad inhibitors. The gratings of 560nm height reduced cell proliferation, enhanced cytoplasmic localization of Yes-associated protein, and promoted neuronal differentiation (up to 60% βIII-tubulin+ cells) compared with the flat control. Nanograting-induced cell polarity and cytoplasmic YAP localization were shown to be critical to the induced neural differentiation of hiPSCs. The derived neuronal cells express MAP2, Tau, glutamate, GABA and Islet-1, indicating the existence of multiple neuronal subtypes. This study contributes to the delineation of cell-nanotopography interactions and provides the insights into the design of nanotopography configuration for pluripotent stem cell neural lineage commitment.
Collapse
Affiliation(s)
- Liqing Song
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, United States
| | - Kai Wang
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, United States
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, United States.
| | - Yong Yang
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, United States.
| |
Collapse
|
63
|
Oleuropein Ameliorates Cisplatin-induced Hematological Damages Via Restraining Oxidative Stress and DNA Injury. Indian J Hematol Blood Transfus 2016; 33:348-354. [PMID: 28824236 DOI: 10.1007/s12288-016-0718-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 08/10/2016] [Indexed: 12/31/2022] Open
Abstract
The prevalence of cancer, in the world is increasing steadily. Despite intense research efforts, no approved therapy is yet available. Cisplatin is a chemotherapeutic drug but induces acute tissue injury. Oleuropein (OLE) is a major phenolic compound and used as a possible natural antioxidant, antimicrobial, and anticancer agent. We hypothesized that antioxidant activity of OLE may decrease cisplatin-induced oxidative stress and prevent to the development of chemotherapeutic complications including abnormality in hematological condition. Male Sprague Dawley rats were used in the experiments. Rats were randomly assigned to one of eight groups: control group; group treated with i.p. injection in a single dose of 7 mg/kg/day cisplatin; groups treated with 50, 100 and 200 mg/kg/day OLE (i.p.); and groups treated with OLE for 3 days starting at 24 h following cisplatin injection. First, hematological assessment was appreciated between control and experimental groups. Second, total oxidative stress (TOS) and total antioxidant capacity (TAC) levels of blood were measured by biochemical studies. In addition to this, oxidative DNA damage was determined by measuring as increases in 8-hydroxy-deoxyguanosine (8-OH-dG) adducts. The treatment with cisplatin elevated the TOS and 8-OH-dG levels that were then reversed by OLE. Reductions in antioxidant capacity with respect to corresponding controls were also restored by OLE treatment. These findings suggest that the OLE treatment against cisplatin-induced toxicity improves the function of blood cells and helps them to survive in the belligerent environment created by free radicals.
Collapse
|
64
|
Schmidt BZ, Lehmann M, Gutbier S, Nembo E, Noel S, Smirnova L, Forsby A, Hescheler J, Avci HX, Hartung T, Leist M, Kobolák J, Dinnyés A. In vitro acute and developmental neurotoxicity screening: an overview of cellular platforms and high-throughput technical possibilities. Arch Toxicol 2016; 91:1-33. [PMID: 27492622 DOI: 10.1007/s00204-016-1805-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 07/07/2016] [Indexed: 01/03/2023]
Abstract
Neurotoxicity and developmental neurotoxicity are important issues of chemical hazard assessment. Since the interpretation of animal data and their extrapolation to man is challenging, and the amount of substances with information gaps exceeds present animal testing capacities, there is a big demand for in vitro tests to provide initial information and to prioritize for further evaluation. During the last decade, many in vitro tests emerged. These are based on animal cells, human tumour cell lines, primary cells, immortalized cell lines, embryonic stem cells, or induced pluripotent stem cells. They differ in their read-outs and range from simple viability assays to complex functional endpoints such as neural crest cell migration. Monitoring of toxicological effects on differentiation often requires multiomics approaches, while the acute disturbance of neuronal functions may be analysed by assessing electrophysiological features. Extrapolation from in vitro data to humans requires a deep understanding of the test system biology, of the endpoints used, and of the applicability domains of the tests. Moreover, it is important that these be combined in the right way to assess toxicity. Therefore, knowledge on the advantages and disadvantages of all cellular platforms, endpoints, and analytical methods is essential when establishing in vitro test systems for different aspects of neurotoxicity. The elements of a test, and their evaluation, are discussed here in the context of comprehensive prediction of potential hazardous effects of a compound. We summarize the main cellular characteristics underlying neurotoxicity, present an overview of cellular platforms and read-out combinations assessing distinct parts of acute and developmental neurotoxicology, and highlight especially the use of stem cell-based test systems to close gaps in the available battery of tests.
Collapse
Affiliation(s)
- Béla Z Schmidt
- BioTalentum Ltd., Gödöllő, Hungary.,Stem Cell Biology and Embryology Unit, Department of Development and Regeneration, Stem Cell Institute Leuven, KU Leuven, Leuven, Belgium
| | - Martin Lehmann
- BioTalentum Ltd., Gödöllő, Hungary.,Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Simon Gutbier
- Doerenkamp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, Constance, Germany
| | - Erastus Nembo
- BioTalentum Ltd., Gödöllő, Hungary.,Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Sabrina Noel
- Louvain Centre for Toxicology and Applied Pharmacology, Université Catholique de Louvain, Brussels, Belgium
| | - Lena Smirnova
- Center for Alternatives to Animal Testing, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Anna Forsby
- Swedish Toxicology Research Center (Swetox), Södertälje, Sweden.,Department of Neurochemistry, Stockholm University, Stockholm, Sweden
| | - Jürgen Hescheler
- Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Hasan X Avci
- BioTalentum Ltd., Gödöllő, Hungary.,Department of Medical Chemistry, University of Szeged, Szeged, Hungary
| | - Thomas Hartung
- Center for Alternatives to Animal Testing, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Marcel Leist
- Doerenkamp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, Constance, Germany
| | | | - András Dinnyés
- BioTalentum Ltd., Gödöllő, Hungary. .,Molecular Animal Biotechnology Laboratory, Szent István University, Gödöllő, 2100, Hungary.
| |
Collapse
|
65
|
Hertz DL, Owzar K, Lessans S, Wing C, Jiang C, Kelly WK, Patel J, Halabi S, Furukawa Y, Wheeler HE, Sibley AB, Lassiter C, Weisman L, Watson D, Krens SD, Mulkey F, Renn CL, Small EJ, Febbo PG, Shterev I, Kroetz DL, Friedman PN, Mahoney JF, Carducci MA, Kelley MJ, Nakamura Y, Kubo M, Dorsey SG, Dolan ME, Morris MJ, Ratain MJ, McLeod HL. Pharmacogenetic Discovery in CALGB (Alliance) 90401 and Mechanistic Validation of a VAC14 Polymorphism that Increases Risk of Docetaxel-Induced Neuropathy. Clin Cancer Res 2016; 22:4890-4900. [PMID: 27143689 DOI: 10.1158/1078-0432.ccr-15-2823] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 04/04/2016] [Indexed: 12/13/2022]
Abstract
PURPOSE Discovery of SNPs that predict a patient's risk of docetaxel-induced neuropathy would enable treatment individualization to maximize efficacy and avoid unnecessary toxicity. The objectives of this analysis were to discover SNPs associated with docetaxel-induced neuropathy and mechanistically validate these associations in preclinical models of drug-induced neuropathy. EXPERIMENTAL DESIGN A genome-wide association study was conducted in metastatic castrate-resistant prostate cancer patients treated with docetaxel, prednisone and randomized to bevacizumab or placebo on CALGB 90401. SNPs were genotyped on the Illumina HumanHap610-Quad platform followed by rigorous quality control. The inference was conducted on the cumulative dose at occurrence of grade 3+ sensory neuropathy using a cause-specific hazard model that accounted for early treatment discontinuation. Genes with SNPs significantly associated with neuropathy were knocked down in cellular and mouse models of drug-induced neuropathy. RESULTS A total of 498,081 SNPs were analyzed in 623 Caucasian patients, 50 (8%) of whom experienced grade 3+ neuropathy. The 1,000 SNPs most associated with neuropathy clustered in relevant pathways including neuropathic pain and axonal guidance. An SNP in VAC14 (rs875858) surpassed genome-wide significance (P = 2.12 × 10-8, adjusted P = 5.88 × 10-7). siRNA knockdown of VAC14 in stem cell-derived peripheral neuronal cells increased docetaxel sensitivity as measured by decreased neurite processes (P = 0.0015) and branches (P < 0.0001). Prior to docetaxel treatment, VAC14 heterozygous mice had greater nociceptive sensitivity than wild-type litter mate controls (P = 0.001). CONCLUSIONS VAC14 should be prioritized for further validation of its potential role as a predictor of docetaxel-induced neuropathy and biomarker for treatment individualization. Clin Cancer Res; 22(19); 4890-900. ©2016 AACR.
Collapse
Affiliation(s)
- Daniel L Hertz
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan. UNC Institute for Pharmacogenomics and Individualized Therapy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kouros Owzar
- Duke Cancer Institute, Durham, North Carolina. Alliance Statistics and Data Center, Duke University, Durham, North Carolina
| | - Sherrie Lessans
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing, Baltimore, Maryland
| | - Claudia Wing
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - Chen Jiang
- Alliance Statistics and Data Center, Duke University, Durham, North Carolina
| | | | - Jai Patel
- UNC Institute for Pharmacogenomics and Individualized Therapy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. Levine Cancer Institute, Carolinas HealthCare System, Charlotte, North Carolina
| | - Susan Halabi
- Duke Cancer Institute, Durham, North Carolina. Alliance Statistics and Data Center, Duke University, Durham, North Carolina
| | - Yoichi Furukawa
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | | | - Cameron Lassiter
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing, Baltimore, Maryland
| | - Lois Weisman
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
| | - Dorothy Watson
- Alliance Statistics and Data Center, Duke University, Durham, North Carolina
| | - Stefanie D Krens
- UNC Institute for Pharmacogenomics and Individualized Therapy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. Utrecht University, Faculty of Science, Department of Pharmaceutical Sciences, Utrecht, the Netherlands
| | - Flora Mulkey
- Alliance Statistics and Data Center, Duke University, Durham, North Carolina
| | - Cynthia L Renn
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing, Baltimore, Maryland
| | - Eric J Small
- Department of Medicine, UCSF, San Francisco, California
| | | | - Ivo Shterev
- Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina
| | - Deanna L Kroetz
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California
| | - Paula N Friedman
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - John F Mahoney
- Levine Cancer Institute, Carolinas HealthCare System, Charlotte, North Carolina
| | - Michael A Carducci
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, Maryland
| | - Michael J Kelley
- Durham VA Medical Center, Duke University Medical Center, Durham, North Carolina
| | - Yusuke Nakamura
- Department of Medicine, University of Chicago, Chicago, Illinois. Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Michiaki Kubo
- Lab for Genotyping Development, Riken Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Susan G Dorsey
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing, Baltimore, Maryland
| | - M Eileen Dolan
- Department of Medicine, University of Chicago, Chicago, Illinois
| | | | - Mark J Ratain
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - Howard L McLeod
- UNC Institute for Pharmacogenomics and Individualized Therapy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. Personalized Medicine Institute, Moffitt Cancer Center, Tampa, Florida.
| |
Collapse
|
66
|
Hoelting L, Klima S, Karreman C, Grinberg M, Meisig J, Henry M, Rotshteyn T, Rahnenführer J, Blüthgen N, Sachinidis A, Waldmann T, Leist M. Stem Cell-Derived Immature Human Dorsal Root Ganglia Neurons to Identify Peripheral Neurotoxicants. Stem Cells Transl Med 2016; 5:476-87. [PMID: 26933043 DOI: 10.5966/sctm.2015-0108] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 11/19/2015] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Safety sciences and the identification of chemical hazards have been seen as one of the most immediate practical applications of human pluripotent stem cell technology. Protocols for the generation of many desirable human cell types have been developed, but optimization of neuronal models for toxicological use has been astonishingly slow, and the wide, clinically important field of peripheral neurotoxicity is still largely unexplored. A two-step protocol to generate large lots of identical peripheral human neuronal precursors was characterized and adapted to the measurement of peripheral neurotoxicity. High content imaging allowed an unbiased assessment of cell morphology and viability. The computational quantification of neurite growth as a functional parameter highly sensitive to disturbances by toxicants was used as an endpoint reflecting specific neurotoxicity. The differentiation of cells toward dorsal root ganglia neurons was tracked in relation to a large background data set based on gene expression microarrays. On this basis, a peripheral neurotoxicity (PeriTox) test was developed as a first toxicological assay that harnesses the potential of human pluripotent stem cells to generate cell types/tissues that are not otherwise available for the prediction of human systemic organ toxicity. Testing of more than 30 chemicals showed that human neurotoxicants and neurite growth enhancers were correctly identified. Various classes of chemotherapeutic agents causing human peripheral neuropathies were identified, and they were missed when tested on human central neurons. The PeriTox test we established shows the potential of human stem cells for clinically relevant safety testing of drugs in use and of new emerging candidates. SIGNIFICANCE The generation of human cells from pluripotent stem cells has aroused great hopes in biomedical research and safety sciences. Neurotoxicity testing is a particularly important application for stem cell-derived somatic cells, as human neurons are hardly available otherwise. Also, peripheral neurotoxicity has become of major concern in drug development for chemotherapy. The first neurotoxicity test method was established based on human pluripotent stem cell-derived peripheral neurons. The strategies exemplified in the present study of reproducible cell generation, cell function-based test system establishment, and assay validation provide the basis for a drug safety assessment on cells not available otherwise.
Collapse
Affiliation(s)
- Lisa Hoelting
- Doerenkamp-Zbinden Lab for In Vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, Germany Konstanz Graduate School Chemical Biology KORS-CB, University of Konstanz, Konstanz, Germany
| | - Stefanie Klima
- Doerenkamp-Zbinden Lab for In Vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, Germany
| | - Christiaan Karreman
- Doerenkamp-Zbinden Lab for In Vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, Germany
| | | | - Johannes Meisig
- Institute of Pathology, Charité-Universitätsmedizin, Berlin, Germany Integrative Research Institute for the Life Sciences and Institute for Theoretical Biology, Humboldt Universität, Berlin, Germany
| | - Margit Henry
- Institute of Neurophysiology and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Tamara Rotshteyn
- Institute of Neurophysiology and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | | | - Nils Blüthgen
- Institute of Pathology, Charité-Universitätsmedizin, Berlin, Germany Integrative Research Institute for the Life Sciences and Institute for Theoretical Biology, Humboldt Universität, Berlin, Germany
| | - Agapios Sachinidis
- Institute of Neurophysiology and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Tanja Waldmann
- Doerenkamp-Zbinden Lab for In Vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, Germany
| | - Marcel Leist
- Doerenkamp-Zbinden Lab for In Vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, Germany
| |
Collapse
|
67
|
Advancing drug discovery for neuropsychiatric disorders using patient-specific stem cell models. Mol Cell Neurosci 2016; 73:104-15. [PMID: 26826498 DOI: 10.1016/j.mcn.2016.01.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 12/17/2022] Open
Abstract
Compelling clinical, social, and economic reasons exist to innovate in the process of drug discovery for neuropsychiatric disorders. The use of patient-specific, induced pluripotent stem cells (iPSCs) now affords the ability to generate neuronal cell-based models that recapitulate key aspects of human disease. In the context of neuropsychiatric disorders, where access to physiologically active and relevant cell types of the central nervous system for research is extremely limiting, iPSC-derived in vitro culture of human neurons and glial cells is transformative. Potential applications relevant to early stage drug discovery, include support of quantitative biochemistry, functional genomics, proteomics, and perhaps most notably, high-throughput and high-content chemical screening. While many phenotypes in human iPSC-derived culture systems may prove adaptable to screening formats, addressing the question of which in vitro phenotypes are ultimately relevant to disease pathophysiology and therefore more likely to yield effective pharmacological agents that are disease-modifying treatments requires careful consideration. Here, we review recent examples of studies of neuropsychiatric disorders using human stem cell models where cellular phenotypes linked to disease and functional assays have been reported. We also highlight technical advances using genome-editing technologies in iPSCs to support drug discovery efforts, including the interpretation of the functional significance of rare genetic variants of unknown significance and for the purpose of creating cell type- and pathway-selective functional reporter assays. Additionally, we evaluate the potential of in vitro stem cell models to investigate early events of disease pathogenesis, in an effort to understand the underlying molecular mechanism, including the basis of selective cell-type vulnerability, and the potential to create new cell-based diagnostics to aid in the classification of patients and subsequent selection for clinical trials. A number of key challenges remain, including the scaling of iPSC models to larger cohorts and integration with rich clinicopathological information and translation of phenotypes. Still, the overall use of iPSC-based human cell models with functional cellular and biochemical assays holds promise for supporting the discovery of next-generation neuropharmacological agents for the treatment and ultimately prevention of a range of severe mental illnesses.
Collapse
|
68
|
Morrison G, Liu C, Wing C, Delaney SM, Zhang W, Dolan ME. Evaluation of inter-batch differences in stem-cell derived neurons. Stem Cell Res 2015; 16:140-8. [PMID: 26774046 DOI: 10.1016/j.scr.2015.12.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 12/21/2015] [Accepted: 12/29/2015] [Indexed: 01/24/2023] Open
Abstract
Differentiated cells retain the genetic information of the donor but the extent to which phenotypic differences between donors or batches of differentiated cells are explained by variation introduced during the differentiation process is not fully understood. In this study, we evaluated four separate batches of commercially available neurons originating from the same iPSCs to investigate whether the differentiation process used in manufacturing iPSCs to neurons affected genome-wide gene expression and modified cytosines, or neuronal sensitivity to drugs. No significant changes in gene expression, as measured by RNA-Seq, or cytosine modification levels, as measured by the Illumina 450K arrays, were observed between batches relative to changes over time. As expected, neurotoxic chemotherapeutics affected neuronal outgrowth, but no inter-batch differences were observed in sensitivity to paclitaxel, vincristine and cisplatin. As a testament to the utility of the model for studies of neuropathy, we observed that genes involved in neuropathy had relatively higher expression levels in these samples across different time points. Our results suggest that the process used to differentiate iPSCs into neurons is consistent, resulting in minimal intra-individual variability across batches. Therefore, this model is reasonable for studies of human neuropathy, druggable targets to prevent neuropathy, and other neurological diseases.
Collapse
Affiliation(s)
- Gladys Morrison
- Committee on Clinical Pharmacology and Pharmacogenomics, The University of Chicago, Chicago, IL 60637, USA
| | - Cong Liu
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Claudia Wing
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Shannon M Delaney
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Wei Zhang
- Department of Preventive Medicine & The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - M Eileen Dolan
- Committee on Clinical Pharmacology and Pharmacogenomics, The University of Chicago, Chicago, IL 60637, USA; Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
69
|
Singh S, Srivastava A, Kumar V, Pandey A, Kumar D, Rajpurohit CS, Khanna VK, Yadav S, Pant AB. Stem Cells in Neurotoxicology/Developmental Neurotoxicology: Current Scenario and Future Prospects. Mol Neurobiol 2015; 53:6938-6949. [DOI: 10.1007/s12035-015-9615-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 12/03/2015] [Indexed: 12/26/2022]
|
70
|
Smirnova L, Harris G, Delp J, Valadares M, Pamies D, Hogberg HT, Waldmann T, Leist M, Hartung T. A LUHMES 3D dopaminergic neuronal model for neurotoxicity testing allowing long-term exposure and cellular resilience analysis. Arch Toxicol 2015; 90:2725-2743. [PMID: 26647301 PMCID: PMC5065586 DOI: 10.1007/s00204-015-1637-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 11/09/2015] [Indexed: 12/21/2022]
Abstract
Several shortcomings of current Parkinson’s disease (PD) models limit progress in identification of environmental contributions to disease pathogenesis. The conditionally immortalized cell line LUHMES promises to make human dopaminergic neuronal cultures more easily available, but these cells are difficult to culture for extended periods of time. We overcame this problem by culturing them in 3D with minor medium modifications. The 3D neuronal aggregates allowed penetration by small molecules and sufficient oxygen and nutrient supply for survival of the innermost cells. Using confocal microscopy, gene expression, and flow cytometry, we characterized the 3D model and observed a highly reproducible differentiation process. Visualization and quantification of neurites in aggregates was achieved by adding 2 % red fluorescent protein-transfected LUHMES cells. The mitochondrial toxicants and established experimental PD agents, rotenone and MPP+, perturbed genes involved in one-carbon metabolism and transsulfuration pathways (ASS1, CTH, and SHTM2) as in 2D cultures. We showed, for the first time in LUHMES, down-regulation of mir-7, a miRNA known to target alpha-synuclein and to be involved in PD. This was observed as early as 12 h after rotenone exposure, when pro-apoptotic mir-16 and rotenone-sensitive mir-210 were not yet significantly perturbed. Finally, washout experiments demonstrated that withdrawal of rotenone led to counter-regulation of mir-7 and ASS1, CTH, and SHTM2 genes. This suggests a possible role of these genes in direct cellular response to the toxicant, and the model appears to be suitable to address the processes of resilience and recovery in neurotoxicology and Parkinson’s disease in future studies.
Collapse
Affiliation(s)
- L Smirnova
- Center for Alternatives to Animal Testing (CAAT), Bloomberg School of Public Health, Johns Hopkins University, Baltimore, USA.
| | - G Harris
- Center for Alternatives to Animal Testing (CAAT), Bloomberg School of Public Health, Johns Hopkins University, Baltimore, USA
| | - J Delp
- Center for Alternatives to Animal Testing (CAAT), Department of Biology, University of Konstanz, Konstanz, Germany
| | - M Valadares
- Center for Alternatives to Animal Testing (CAAT), Bloomberg School of Public Health, Johns Hopkins University, Baltimore, USA
| | - D Pamies
- Center for Alternatives to Animal Testing (CAAT), Bloomberg School of Public Health, Johns Hopkins University, Baltimore, USA
| | - H T Hogberg
- Center for Alternatives to Animal Testing (CAAT), Bloomberg School of Public Health, Johns Hopkins University, Baltimore, USA
| | - T Waldmann
- Center for Alternatives to Animal Testing (CAAT), Department of Biology, University of Konstanz, Konstanz, Germany
| | - M Leist
- Center for Alternatives to Animal Testing (CAAT), Department of Biology, University of Konstanz, Konstanz, Germany
| | - T Hartung
- Center for Alternatives to Animal Testing (CAAT), Bloomberg School of Public Health, Johns Hopkins University, Baltimore, USA
- Center for Alternatives to Animal Testing (CAAT), Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
71
|
Human iPSC for Therapeutic Approaches to the Nervous System: Present and Future Applications. Stem Cells Int 2015; 2016:4869071. [PMID: 26697076 PMCID: PMC4677260 DOI: 10.1155/2016/4869071] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 07/13/2015] [Accepted: 07/16/2015] [Indexed: 01/08/2023] Open
Abstract
Many central nervous system (CNS) diseases including stroke, spinal cord injury (SCI), and brain tumors are a significant cause of worldwide morbidity/mortality and yet do not have satisfying treatments. Cell-based therapy to restore lost function or to carry new therapeutic genes is a promising new therapeutic approach, particularly after human iPSCs became available. However, efficient generation of footprint-free and xeno-free human iPSC is a prerequisite for their clinical use. In this paper, we will first summarize the current methodology to obtain footprint- and xeno-free human iPSC. We will then review the current iPSC applications in therapeutic approaches for CNS regeneration and their use as vectors to carry proapoptotic genes for brain tumors and review their applications for modelling of neurological diseases and formulating new therapeutic approaches. Available results will be summarized and compared. Finally, we will discuss current limitations precluding iPSC from being used on large scale for clinical applications and provide an overview of future areas of improvement. In conclusion, significant progress has occurred in deriving iPSC suitable for clinical use in the field of neurological diseases. Current efforts to overcome technical challenges, including reducing labour and cost, will hopefully expedite the integration of this technology in the clinical setting.
Collapse
|
72
|
Brewer JR, Morrison G, Dolan ME, Fleming GF. Chemotherapy-induced peripheral neuropathy: Current status and progress. Gynecol Oncol 2015; 140:176-83. [PMID: 26556766 DOI: 10.1016/j.ygyno.2015.11.011] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 11/03/2015] [Accepted: 11/06/2015] [Indexed: 12/17/2022]
Abstract
As there are increasing numbers of cancer survivors, more attention is being paid to the long term unwanted effects patients may experience as a result of their treatment and the impact these side effects can have on their quality of life. Chemotherapy-induced peripheral neuropathy (CIPN) is one of the most common long-term toxicities from chemotherapy. In this review we will briefly review the clinical presentation, evaluation and management of chemotherapy-induced peripheral neuropathy, with a focus on CIPN related to platinum and taxane agents. We will then discuss current clinical models of peripheral neuropathy and ongoing research to better understand CIPN and develop potential treatment options.
Collapse
Affiliation(s)
- Jamie R Brewer
- Section of Hematology-Oncology, Department of Medicine, University of Chicago Medical Center, 5841 S. Maryland Ave, Chicago, IL 60637, United States
| | - Gladys Morrison
- Section of Hematology-Oncology, Department of Medicine, The University of Chicago, Knapp Center for Biomedical Discovery, 900 East 57th Street, Chicago, IL 60637, United States
| | - M Eileen Dolan
- Section of Hematology-Oncology, Department of Medicine, The University of Chicago, Knapp Center for Biomedical Discovery, 900 East 57th Street, Chicago, IL 60637, United States
| | - Gini F Fleming
- Section of Hematology-Oncology, Department of Medicine, The University of Chicago, Knapp Center for Biomedical Discovery, 900 East 57th Street, Chicago, IL 60637, United States.
| |
Collapse
|
73
|
Rempel E, Hoelting L, Waldmann T, Balmer NV, Schildknecht S, Grinberg M, Das Gaspar JA, Shinde V, Stöber R, Marchan R, van Thriel C, Liebing J, Meisig J, Blüthgen N, Sachinidis A, Rahnenführer J, Hengstler JG, Leist M. A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol 2015; 89:1599-618. [PMID: 26272509 PMCID: PMC4551554 DOI: 10.1007/s00204-015-1573-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 07/22/2015] [Indexed: 12/17/2022]
Abstract
Test systems to identify developmental toxicants are urgently needed. A combination of human stem cell technology and transcriptome analysis was to provide a proof of concept that toxicants with a related mode of action can be identified and grouped for read-across. We chose a test system of developmental toxicity, related to the generation of neuroectoderm from pluripotent stem cells (UKN1), and exposed cells for 6 days to the histone deacetylase inhibitors (HDACi) valproic acid, trichostatin A, vorinostat, belinostat, panobinostat and entinostat. To provide insight into their toxic action, we identified HDACi consensus genes, assigned them to superordinate biological processes and mapped them to a human transcription factor network constructed from hundreds of transcriptome data sets. We also tested a heterogeneous group of ‘mercurials’ (methylmercury, thimerosal, mercury(II)chloride, mercury(II)bromide, 4-chloromercuribenzoic acid, phenylmercuric acid). Microarray data were compared at the highest non-cytotoxic concentration for all 12 toxicants. A support vector machine (SVM)-based classifier predicted all HDACi correctly. For validation, the classifier was applied to legacy data sets of HDACi, and for each exposure situation, the SVM predictions correlated with the developmental toxicity. Finally, optimization of the classifier based on 100 probe sets showed that eight genes (F2RL2, TFAP2B, EDNRA, FOXD3, SIX3, MT1E, ETS1 and LHX2) are sufficient to separate HDACi from mercurials. Our data demonstrate how human stem cells and transcriptome analysis can be combined for mechanistic grouping and prediction of toxicants. Extension of this concept to mechanisms beyond HDACi would allow prediction of human developmental toxicity hazard of unknown compounds with the UKN1 test system.
Collapse
Affiliation(s)
- Eugen Rempel
- Department of Statistics, TU Dortmund University, 44139, Dortmund, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Girlovanu M, Susman S, Soritau O, Rus-Ciuca D, Melincovici C, Constantin AM, Mihu CM. Stem cells - biological update and cell therapy progress. ACTA ACUST UNITED AC 2015; 88:265-71. [PMID: 26609255 PMCID: PMC4632881 DOI: 10.15386/cjmed-483] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 06/12/2015] [Indexed: 12/17/2022]
Abstract
In recent years, the advances in stem cell research have suggested that the human body may have a higher plasticity than it was originally expected. Until now, four categories of stem cells were isolated and cultured in vivo: embryonic stem cells, fetal stem cells, adult stem cells and induced pluripotent stem cells (hiPSCs). Although multiple studies were published, several issues concerning the stem cells are still debated, such as: the molecular mechanisms of differentiation, the methods to prevent teratoma formation or the ethical and religious issues regarding especially the embryonic stem cell research. The direct differentiation of stem cells into specialized cells: cardiac myocytes, neural cells, pancreatic islets cells, may represent an option in treating incurable diseases such as: neurodegenerative diseases, type I diabetes, hematologic or cardiac diseases. Nevertheless, stem cell-based therapies, based on stem cell transplantation, remain mainly at the experimental stages and their major limitation is the development of teratoma and cancer after transplantation. The induced pluripotent stem cells (hiPSCs) represent a prime candidate for future cell therapy research because of their significant self-renewal and differentiation potential and the lack of ethical issues. This article presents an overview of the biological advances in the study of stem cells and the current progress made in the field of regenerative medicine.
Collapse
Affiliation(s)
- Mihai Girlovanu
- Morphological Sciences Department 1, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Sergiu Susman
- Morphological Sciences Department 1, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Olga Soritau
- Research Department, Prof. Dr. I. Chiricuta Oncology Institute, Cluj-Napoca, Romania
| | - Dan Rus-Ciuca
- Department of Pathology, Karlstad Central Hospital, Sweden
| | - Carmen Melincovici
- Morphological Sciences Department 1, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Anne-Marie Constantin
- Morphological Sciences Department 1, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Carmen Mihaela Mihu
- Morphological Sciences Department 1, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
75
|
Komatsu M, Wheeler HE, Chung S, Low SK, Wing C, Delaney SM, Gorsic LK, Takahashi A, Kubo M, Kroetz DL, Zhang W, Nakamura Y, Dolan ME. Pharmacoethnicity in Paclitaxel-Induced Sensory Peripheral Neuropathy. Clin Cancer Res 2015; 21:4337-46. [PMID: 26015512 DOI: 10.1158/1078-0432.ccr-15-0133] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/20/2015] [Indexed: 12/22/2022]
Abstract
PURPOSE Paclitaxel is used worldwide in the treatment of breast, lung, ovarian, and other cancers. Sensory peripheral neuropathy is an associated adverse effect that cannot be predicted, prevented, or mitigated. To better understand the contribution of germline genetic variation to paclitaxel-induced peripheral neuropathy, we undertook an integrative approach that combines genome-wide association study (GWAS) data generated from HapMap lymphoblastoid cell lines (LCL) and Asian patients. METHODS GWAS was performed with paclitaxel-induced cytotoxicity generated in 363 LCLs and with paclitaxel-induced neuropathy from 145 Asian patients. A gene-based approach was used to identify overlapping genes and compare with a European clinical cohort of paclitaxel-induced neuropathy. Neurons derived from human-induced pluripotent stem cells were used for functional validation of candidate genes. RESULTS SNPs near AIPL1 were significantly associated with paclitaxel-induced cytotoxicity in Asian LCLs (P < 10(-6)). Decreased expression of AIPL1 resulted in decreased sensitivity of neurons to paclitaxel by inducing neurite morphologic changes as measured by increased relative total outgrowth, number of processes and mean process length. Using a gene-based analysis, there were 32 genes that overlapped between Asian LCL cytotoxicity and Asian patient neuropathy (P < 0.05), including BCR. Upon BCR knockdown, there was an increase in neuronal sensitivity to paclitaxel as measured by neurite morphologic characteristics. CONCLUSIONS We identified genetic variants associated with Asian paclitaxel-induced cytotoxicity and functionally validated the AIPL1 and BCR in a neuronal cell model. Furthermore, the integrative pharmacogenomics approach of LCL/patient GWAS may help prioritize target genes associated with chemotherapeutic-induced peripheral neuropathy.
Collapse
Affiliation(s)
- Masaaki Komatsu
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Heather E Wheeler
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Suyoun Chung
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois. Division of Cancer Development System, National Cancer Center Research Institute, Tokyo, Japan
| | - Siew-Kee Low
- Laboratory for Statistical Analysis, Core for Genomic Medicine, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan. Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Claudia Wing
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Shannon M Delaney
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Lidija K Gorsic
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Atsushi Takahashi
- Laboratory for Statistical Analysis, Core for Genomic Medicine, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Michiaki Kubo
- Laboratory for Genotyping Development, Core for Genomic Medicine, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Deanna L Kroetz
- Department of Bioengineering and Therapeutic Sciences, School of Pharmacy and Medicine, University of California, San Francisco, San Francisco, California
| | - Wei Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Yusuke Nakamura
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois. Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - M Eileen Dolan
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
76
|
Warren CR, Cowan CA. [Leukocyte count of puerperal sows]. BERLINER UND MUNCHENER TIERARZTLICHE WOCHENSCHRIFT 1996; 109:330-5. [PMID: 9054332 PMCID: PMC5828525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
147 blood samples of postparturient sows of a secluded housing were taken. The samples were conserved with ACD-solution. The influence of the number and week of the lactation and the health of the sow, determined by puerperal diseases was studied. Hematological values of healthy postparturient sows are: leucocytes 12.6 +/- 2.2 G/l; basophile granulocytes 0.1 +/- 0.1 G/l, eosinophile granulocytes 0.5 +/- 0.4 G/l; banded neutrophile granulocytes 1.3 +/- 0.6 G/l, segmented neutrophile granulocytes 5.2 +/- 1.4 G/l; lymphocytes 5.5 +/- 1.4 G/l, monocytes 0.3 +/- 0.3 G/l. The leucocyte number is lower in the investigated herd compared with quotations in the literature. This is based on the good health conditions in the herd. Changes due to the number and week of the lactation have no clinical relevance. Health status, here described by puerperal diseases is the significant influencing factor of the leucocyte number. The severity of puerperal diseases is significant. Due to puerperal diseases the leucocyte number rises quickly after a short drop about 2 G/l. The number of the neutrophile granulocytes increases, but the lymphocyte number is reduced at the beginning of the illness. The application of ACD-solution for stabilizing of great amounts of blood samples under practical conditions is demonstrated. It is possible to stabilize pigs blood well.
Collapse
Affiliation(s)
- Curtis R. Warren
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Chad A. Cowan
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Broad Institute, Cambridge, Massachusetts 02142, USA
| |
Collapse
|