51
|
Cooke PS, Nanjappa MK, Ko C, Prins GS, Hess RA. Estrogens in Male Physiology. Physiol Rev 2017; 97:995-1043. [PMID: 28539434 PMCID: PMC6151497 DOI: 10.1152/physrev.00018.2016] [Citation(s) in RCA: 283] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 01/06/2017] [Accepted: 01/17/2017] [Indexed: 02/06/2023] Open
Abstract
Estrogens have historically been associated with female reproduction, but work over the last two decades established that estrogens and their main nuclear receptors (ESR1 and ESR2) and G protein-coupled estrogen receptor (GPER) also regulate male reproductive and nonreproductive organs. 17β-Estradiol (E2) is measureable in blood of men and males of other species, but in rete testis fluids, E2 reaches concentrations normally found only in females and in some species nanomolar concentrations of estrone sulfate are found in semen. Aromatase, which converts androgens to estrogens, is expressed in Leydig cells, seminiferous epithelium, and other male organs. Early studies showed E2 binding in numerous male tissues, and ESR1 and ESR2 each show unique distributions and actions in males. Exogenous estrogen treatment produced male reproductive pathologies in laboratory animals and men, especially during development, and studies with transgenic mice with compromised estrogen signaling demonstrated an E2 role in normal male physiology. Efferent ductules and epididymal functions are dependent on estrogen signaling through ESR1, whose loss impaired ion transport and water reabsorption, resulting in abnormal sperm. Loss of ESR1 or aromatase also produces effects on nonreproductive targets such as brain, adipose, skeletal muscle, bone, cardiovascular, and immune tissues. Expression of GPER is extensive in male tracts, suggesting a possible role for E2 signaling through this receptor in male reproduction. Recent evidence also indicates that membrane ESR1 has critical roles in male reproduction. Thus estrogens are important physiological regulators in males, and future studies may reveal additional roles for estrogen signaling in various target tissues.
Collapse
Affiliation(s)
- Paul S Cooke
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Manjunatha K Nanjappa
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - CheMyong Ko
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Gail S Prins
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Rex A Hess
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
52
|
Fan L, Hong J, Huang H, Fu D, Wu S, Wang Q, Ye Y, Liu Y. High Expression of Phosphorylated Extracellular Signal-Regulated Kinase (ERK1/2) is Associated with Poor Prognosis in Newly Diagnosed Patients with Multiple Myeloma. Med Sci Monit 2017; 23:2636-2643. [PMID: 28557972 PMCID: PMC5461889 DOI: 10.12659/msm.901850] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background Previous research has demonstrated that the extracellular signal-regulated kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling pathway is commonly activated in multiple myeloma (MM) patients. However, the prognostic value of activation of the MEK/ERK signaling pathway in newly diagnosed patients with MM has not been reported. Material/Methods Expression levels of p-ERK1/2 protein in bone marrow biopsy specimens obtained from 60 newly diagnosed patients with MM were analyzed using immunohistochemistry, and classified into 3 groups: high p-ERK1/2 expression, low p-ERK1/2 expression, and negative group. Correlations between clinicopathological characteristics, including expression levels of p-ERK1/2 protein, progression-free survival (PFS), and overall survival (OS), were analyzed using univariate and multivariate analysis. Results Phosphorylated-ERK1/2 protein was positive in 47 bone marrow specimens, including 19 specimens with high p-ERK1/2 expression and 28 specimens with low p-ERK1/2 expression. Univariate Kaplan-Meier analysis showed that in newly diagnosed patients with MM, high p-ERK1/2 expression, high ISS staging, serum creatinine (Scr) ≥177 μmol/l, serum β2-microglobulin (β2-MG) ≥5.5 μmol/l, and serum calcium (Ca) ≥2.75 mmol/l were significantly associated with shorter OS and PFS. Additionally, high ECOG scores (score 2–4) were associated with shorter PFS in newly diagnosed patients with MM. Multivariate Cox regression analysis showed that in newly diagnosed patients with MM, high p-ERK1/2 expression was significantly associated with shorter OS and PFS. Additionally, in newly diagnosed patients with MM, serum Ca ≥2.75 mmol/l was significantly associated with shorter PFS, and serum β2-MG ≥5.5 μmol/l was significantly associated with shorter OS. Conclusions High p-ERK1/2 expression is an independent factor for poor prognosis in newly diagnosed patients with MM.
Collapse
Affiliation(s)
- Liping Fan
- Department of Blood Transfusion, Fujian Medical University Union Hospital, Fuzhou, Fujian, China (mainland)
| | - Jinquan Hong
- Department of Anesthesia, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China (mainland)
| | - Haobo Huang
- Department of Blood Transfusion, Fujian Medical University Union Hospital, Fuzhou, Fujian, China (mainland)
| | - Danhui Fu
- Department of Blood Transfusion, Fujian Medical University Union Hospital, Fuzhou, Fujian, China (mainland).,Department of Hematology, Fujian Medical University Union Hospital and Fujian Institute of Hematology, Fuzhou, Fujian, China (mainland)
| | - Shunquan Wu
- Department of Hematology, Fujian Medical University Union Hospital and Fujian Institute of Hematology, Fuzhou, Fujian, China (mainland)
| | - Qingqing Wang
- Department of Hematology, Fujian Medical University Union Hospital and Fujian Institute of Hematology, Fuzhou, Fujian, China (mainland)
| | - Yamei Ye
- Department of Hematology, Fujian Medical University Union Hospital and Fujian Institute of Hematology, Fuzhou, Fujian, China (mainland)
| | - Yun Liu
- Department of Hematology, Fujian Medical University Union Hospital and Fujian Institute of Hematology, Fuzhou, Fujian, China (mainland)
| |
Collapse
|
53
|
Wang Y, Guo G, Yang BR, Xin QQ, Liao QW, Lee SMY, Hu YJ, Chen KJ, Cong WH. Synergistic effects of Chuanxiong-Chishao herb-pair on promoting angiogenesis at network pharmacological and pharmacodynamic levels. Chin J Integr Med 2017; 23:654-662. [PMID: 28551771 DOI: 10.1007/s11655-017-2408-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To investigate the synergistic effects of Chuanxiong-Chishao herb-pair (CCHP) on promoting angiogenesis in silico and in vivo. METHODS The mechanisms of action of an herb-pair, Chuanxiong-Chishao, were investigated using the network pharmacological and pharmacodynamic strategies involving computational drug target prediction and network analysis, and experimental validation. A set of network pharmacology methods were created to study the herbs in the context of targets and diseases networks, including prediction of target profiles and pharmacological actions of main active compounds in Chuanxiong and Chishao. Furthermore, the therapeutic effects and putative molecular mechanisms of Chuanxiong-Chishao actions were experimentally validated in a chemical-induced vascular insuffificiency model of transgenic zebrafifish in vivo. The mRNA expression of the predicted targets were further analyzed by real-time polymerase chain reaction (RT-PCR). RESULTS The computational prediction results found that the compounds in Chuanxiong have antithrombotic, antihypertensive, antiarrhythmic, and antiatherosclerotic activities, which were closely related to protecting against hypoxic-ischemic encephalopathy, ischemic stroke, myocardial infarction and heart failure. In addition, compounds in Chishao were found to participate in anti-inflflammatory effect and analgesics. Particularly, estrogen receptor α (ESRα) and hypoxia-inducible factor 1-α (HIF-1α) were the most important potential protein targets in the predicted results. In vivo experimental validation showed that post-treatment of tetramethylpyrazine hydrochloride (TMP•HCl) and paeoniflorin (PF) promoted the regeneration of new blood vessels in zebrafifish involving up-regulating ESRα mRNA expression. Co-treatment of TMP•HCl and PF could enhance the vessel sprouting in chemical-induced vascular insuffificiency zebrafifish at the optimal compatibility proportion of PF 10 μmol/L with TMP•HCl 1 μmol/L. CONCLUSIONS The network pharmacological strategies combining drug target prediction and network analysis identified some putative targets of CCHP. Moreover, the transgenic zebrafifish experiments demonstrated that the Chuanxiong-Chishao combination synergistically promoted angiogenic activity, probably involving ESRα signaling pathway.
Collapse
Affiliation(s)
- Yan Wang
- Clinical Medical College, Beijing University of Chinese Medicine, Beijing, 100029, China.,Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.,State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, China
| | - Gang Guo
- Department of Acupuncture and Moxibustion, Qilu Hospital Affiliated to Shandong University, Jinan, 250012, China
| | - Bin-Rui Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, China
| | - Qi-Qi Xin
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Qi-Wen Liao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, China
| | - Yuan-Jia Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, China
| | - Ke-Ji Chen
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Wei-Hong Cong
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| |
Collapse
|
54
|
Zhu H, Ding Y, Xu X, Li M, Fang Y, Gao B, Mao H, Tong G, Zhou L, Huang J. Prostaglandin E1 protects coronary microvascular function via the glycogen synthase kinase 3β-mitochondrial permeability transition pore pathway in rat hearts subjected to sodium laurate-induced coronary microembolization. Am J Transl Res 2017; 9:2520-2534. [PMID: 28560002 PMCID: PMC5446534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/02/2017] [Indexed: 06/07/2023]
Abstract
Prostaglandin E1 (PGE1) is used as a pretreatment for ischemia reperfusion injury in many biological systems. However, its value as a pretreatment for coronary microembolization (CME) is unknown. The goal of this study was to determine whether PGE1 would protect against CME. In a CME rat model, we observed microthrombi and early myocardial ischemia, with endothelium appearing exfoliated and mitochondria having irregular morphology and decreased internal complexity. The level of fibrinogen-like protein 2 prothrombinase was increased and superoxide dismutase and catalase levels were decreased. Moreover, mitochondria copy number and mitochondrial permeability transition pore (mPTP) opening were increased. Pretreatment with PGE1 (1 or 2 μg/kg) significantly improved these cardiological deficits, acting via the glycogen synthase kinase 3β (GSK-3β)-mPTP pathway. Unexpectedly, the phosphorylation of Akt at Ser473 decreased in the PGE1 at high dose. Overall, our findings suggested an important role for PGE1 in pretreatment of coronary microvascular dysfunction.
Collapse
Affiliation(s)
| | - Yu Ding
- Department of Cardiology, Hangzhou First People’s Hospital, Nanjing Medical UniversityHangzhou, China
| | - Xiaoqun Xu
- Zhejiang Chinese Medical UniversityChina
| | - Meiya Li
- Zhejiang Chinese Medical UniversityChina
| | | | - Beibei Gao
- Department of Cardiology, Hangzhou First People’s Hospital, Nanjing Medical UniversityHangzhou, China
| | | | - Guoxin Tong
- Department of Cardiology, Hangzhou First People’s Hospital, Nanjing Medical UniversityHangzhou, China
| | - Liang Zhou
- Department of Cardiology, Hangzhou First People’s Hospital, Nanjing Medical UniversityHangzhou, China
| | - Jinyu Huang
- Department of Cardiology, Hangzhou First People’s Hospital, Nanjing Medical UniversityHangzhou, China
| |
Collapse
|
55
|
Datta T, Przyklenk K, Datta NS. Parathyroid Hormone-Related Peptide: A Novel Endocrine Cardioprotective "Conditioning Mimetic". J Cardiovasc Pharmacol Ther 2017; 22:529-537. [PMID: 28403647 DOI: 10.1177/1074248417702976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An as-yet limited body of evidence suggests that calcium-regulating endocrine hormones-in particular, parathyroid hormone-related peptide (PTHrP)-may have unappreciated cardioprotective effects. The current review focuses on the concept that PTHrP may, via modulation of classic cardioprotective signaling pathways, provide a novel strategy to attenuate myocardial ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Tanuka Datta
- 1 Department of Internal Medicine, George Washington University, Washington, DC, USA
| | - Karin Przyklenk
- 2 Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI, USA.,3 Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA.,4 Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI, USA
| | - Nabanita S Datta
- 2 Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI, USA.,5 Department of Internal Medicine, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
56
|
Wang S, Zhang F, Zhao G, Cheng Y, Wu T, Wu B, Zhang YE. Mitochondrial PKC-ε deficiency promotes I/R-mediated myocardial injury via GSK3β-dependent mitochondrial permeability transition pore opening. J Cell Mol Med 2017; 21:2009-2021. [PMID: 28266127 PMCID: PMC5571523 DOI: 10.1111/jcmm.13121] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 01/05/2017] [Indexed: 11/29/2022] Open
Abstract
Mitochondrial fission is critically involved in cardiomyocyte apoptosis, which has been considered as one of the leading causes of ischaemia/reperfusion (I/R)‐induced myocardial injury. In our previous works, we demonstrate that aldehyde dehydrogenase‐2 (ALDH2) deficiency aggravates cardiomyocyte apoptosis and cardiac dysfunction. The aim of this study was to elucidate whether ALDH2 deficiency promotes mitochondrial injury and cardiomyocyte death in response to I/R stress and the underlying mechanism. I/R injury was induced by aortic cross‐clamping for 45 min. followed by unclamping for 24 hrs in ALDH2 knockout (ALDH2−/−) and wild‐type (WT) mice. Then myocardial infarct size, cell apoptosis and cardiac function were examined. The protein kinase C (PKC) isoform expressions and their mitochondrial translocation, the activity of dynamin‐related protein 1 (Drp1), caspase9 and caspase3 were determined by Western blot. The effects of N‐acetylcysteine (NAC) or PKC‐δ shRNA treatment on glycogen synthase kinase‐3β (GSK‐3β) activity and mitochondrial permeability transition pore (mPTP) opening were also detected. The results showed that ALDH2−/− mice exhibited increased myocardial infarct size and cardiomyocyte apoptosis, enhanced levels of cleaved caspase9, caspase3 and phosphorylated Drp1. Mitochondrial PKC‐ε translocation was lower in ALDH2−/− mice than in WT mice, and PKC‐δ was the opposite. Further data showed that mitochondrial PKC isoform ratio was regulated by cellular reactive oxygen species (ROS) level, which could be reversed by NAC pre‐treatment under I/R injury. In addition, PKC‐ε inhibition caused activation of caspase9, caspase3 and Drp1Ser616 in response to I/R stress. Importantly, expression of phosphorylated GSK‐3β (inactive form) was lower in ALDH2−/− mice than in WT mice, and both were increased by NAC pre‐treatment. I/R‐induced mitochondrial translocation of GSK‐3β was inhibited by PKC‐δ shRNA or NAC pre‐treatment. In addition, mitochondrial membrane potential (∆Ψm) was reduced in ALDH2−/− mice after I/R, which was partly reversed by the GSK‐3β inhibitor (SB216763) or PKC‐δ shRNA. Collectively, our data provide the evidence that abnormal PKC‐ε/PKC‐δ ratio promotes the activation of Drp1 signalling, caspase cascades and GSK‐3β‐dependent mPTP opening, which results in mitochondrial injury‐triggered cardiomyocyte apoptosis and myocardial dysfuction in ALDH2−/− mice following I/R stress.
Collapse
Affiliation(s)
- Shijun Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Feng Zhang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Gang Zhao
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yong Cheng
- Heart Centre of Zhengzhou Ninth People's Hospital, Zhengzhou, Henan, China
| | - Ting Wu
- Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Bing Wu
- Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - You-En Zhang
- Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
57
|
He X, Jiang L, Dan QQ, Lv Q, Hu Y, Liu J, Wang SF, Wang TH. Bone marrow stromal cells promote neuroplasticity of cerebral ischemic rats via a phosphorylated CRMP2-mediated mechanism. Behav Brain Res 2017; 320:494-503. [DOI: 10.1016/j.bbr.2016.10.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/14/2016] [Accepted: 10/15/2016] [Indexed: 11/30/2022]
|
58
|
De Francesco EM, Rocca C, Scavello F, Amelio D, Pasqua T, Rigiracciolo DC, Scarpelli A, Avino S, Cirillo F, Amodio N, Cerra MC, Maggiolini M, Angelone T. Protective Role of GPER Agonist G-1 on Cardiotoxicity Induced by Doxorubicin. J Cell Physiol 2017; 232:1640-1649. [DOI: 10.1002/jcp.25585] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 09/06/2016] [Indexed: 01/26/2023]
Affiliation(s)
| | - Carmine Rocca
- Department of Biology, Ecology, and E.S.; University of Calabria; Rende (CS) Italy
| | - Francesco Scavello
- Department of Biology, Ecology, and E.S.; University of Calabria; Rende (CS) Italy
| | - Daniela Amelio
- Department of Biology, Ecology, and E.S.; University of Calabria; Rende (CS) Italy
| | - Teresa Pasqua
- Department of Biology, Ecology, and E.S.; University of Calabria; Rende (CS) Italy
| | - Damiano C. Rigiracciolo
- Department of Pharmacy; Health and Nutritional Sciences; University of Calabria; Rende (CS) Italy
| | - Andrea Scarpelli
- Department of Pharmacy; Health and Nutritional Sciences; University of Calabria; Rende (CS) Italy
| | - Silvia Avino
- Department of Pharmacy; Health and Nutritional Sciences; University of Calabria; Rende (CS) Italy
| | - Francesca Cirillo
- Department of Pharmacy; Health and Nutritional Sciences; University of Calabria; Rende (CS) Italy
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine; University of Catanzaro Magna Graecia; Catanzaro Italy
| | - Maria C. Cerra
- Department of Biology, Ecology, and E.S.; University of Calabria; Rende (CS) Italy
- National Institute of Cardiovascular Research; Bologna Italy
| | - Marcello Maggiolini
- Department of Pharmacy; Health and Nutritional Sciences; University of Calabria; Rende (CS) Italy
| | - Tommaso Angelone
- Department of Biology, Ecology, and E.S.; University of Calabria; Rende (CS) Italy
- National Institute of Cardiovascular Research; Bologna Italy
| |
Collapse
|
59
|
Sepuri NBV, Tammineni P, Mohammed F, Paripati A. Nuclear Transcription Factors in the Mitochondria: A New Paradigm in Fine-Tuning Mitochondrial Metabolism. Handb Exp Pharmacol 2017; 240:3-20. [PMID: 27417432 DOI: 10.1007/164_2016_3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Noncanonical functions of several nuclear transcription factors in the mitochondria have been gaining exceptional traction over the years. These transcription factors include nuclear hormone receptors like estrogen, glucocorticoid, and thyroid hormone receptors: p53, IRF3, STAT3, STAT5, CREB, NF-kB, and MEF-2D. Mitochondria-localized nuclear transcription factors regulate mitochondrial processes like apoptosis, respiration and mitochondrial transcription albeit being nuclear in origin and having nuclear functions. Hence, the cell permits these multi-stationed transcription factors to orchestrate and fine-tune cellular metabolism at various levels of operation. Despite their ubiquitous distribution in different subcompartments of mitochondria, their targeting mechanism is poorly understood. Here, we review the current status of mitochondria-localized transcription factors and discuss the possible targeting mechanism besides the functional interplay between these factors.
Collapse
Affiliation(s)
- Naresh Babu V Sepuri
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Telangana, 500046, India.
| | - Prasad Tammineni
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Telangana, 500046, India
| | - Fareed Mohammed
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Telangana, 500046, India
| | - Arunkumar Paripati
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Telangana, 500046, India
| |
Collapse
|
60
|
Li X, Jie Q, Zhang H, Zhao Y, Lin Y, Du J, Shi J, Wang L, Guo K, Li Y, Wang C, Gao B, Huang Q, Liu J, Yang L, Luo Z. Disturbed MEK/ERK signaling increases osteoclast activity via the Hedgehog-Gli pathway in postmenopausal osteoporosis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 122:101-111. [DOI: 10.1016/j.pbiomolbio.2016.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 04/28/2016] [Accepted: 05/02/2016] [Indexed: 10/21/2022]
|
61
|
Madungwe NB, Zilberstein NF, Feng Y, Bopassa JC. Critical role of mitochondrial ROS is dependent on their site of production on the electron transport chain in ischemic heart. AMERICAN JOURNAL OF CARDIOVASCULAR DISEASE 2016; 6:93-108. [PMID: 27679744 PMCID: PMC5030389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/21/2016] [Indexed: 06/06/2023]
Abstract
Reactive oxygen species (ROS) generation has been implicated in many pathologies including ischemia/reperfusion (I/R) injury. This led to multiple studies on antioxidant therapies to treat cardiovascular diseases but paradoxically, results have so far been mixed as ROS production can be beneficial as a signaling mechanism and in cardiac protection via preconditioning interventions. We investigated whether the differential impact of increased ROS in injury as well as in protection could be explained by their site of production on the mitochondrial electron transport chain. Using amplex red to measure ROS production, we found that mitochondria isolated from hearts after I/R produced more ROS than non-ischemic when complex I substrate (glutamate/malate) was used. Interestingly, the substrates of complex II (succinate) and ubiquinone (sn-glycerol 3-phosphate, G3P) produced less ROS in mitochondria from I/R hearts compared to normal healthy hearts. The inhibitors of complex I (rotenone) and complex III (antimycin A) increased ROS production when glutamate/malate and G3P were used; in contrast, they reduced ROS production when the complex II substrate was used. Mitochondrial calcium retention capacity required to induce mitochondrial permeability transition pore (mPTP) opening was measured using calcium green fluorescence and was found to be higher when mitochondria were treated with G3P and succinate compared to glutamate/malate. Furthermore, Langendorff hearts treated with glutamate/malate exhibited reduced cardiac functional recovery and increased myocardial infarct size compared to hearts treated with G3P. Thus, ROS production by the stimulated respiratory chain complexes I and III has opposite roles: cardio-deleterious when produced in complex I and cardio-protective when produced in complex III. The mechanism of these ROS involves the inhibition of the mPTP opening, a key event in cell death following ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Ngonidzashe B Madungwe
- Department of Physiology, School of Medicine, University of Texas Health Science Center at San AntonioTX, USA
- Department of Biomedical Engineering, University of Texas at San AntonioTX, USA
| | | | - Yansheng Feng
- Department of Physiology, School of Medicine, University of Texas Health Science Center at San AntonioTX, USA
| | - Jean C Bopassa
- Department of Physiology, School of Medicine, University of Texas Health Science Center at San AntonioTX, USA
| |
Collapse
|
62
|
Meyer MR, Fredette NC, Sharma G, Barton M, Prossnitz ER. GPER is required for the age-dependent upregulation of the myocardial endothelin system. Life Sci 2016; 159:61-65. [PMID: 26880534 PMCID: PMC4983270 DOI: 10.1016/j.lfs.2016.02.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/31/2016] [Accepted: 02/10/2016] [Indexed: 02/07/2023]
Abstract
AIMS Cardiac aging is associated with progressive structural changes and functional impairment, such as left ventricular hypertrophy, fibrosis and diastolic dysfunction. Aging also increases myocardial activity of endothelin-1 (ET-1), a multifunctional peptide with growth-promoting and pro-fibrotic activity. Because the G protein-coupled estrogen receptor (GPER) regulates vascular responsiveness to ET-1, we investigated whether GPER also plays a role in the regulation of the myocardial endothelin system with aging. MAIN METHODS Young (4month-old) and aged (24month-old) wild-type and Gper-deficient (Gper(-/-)) mice were studied. Gene expression levels of prepro-ET-1, endothelin converting enzymes ECE-1 and ECE-2, and endothelin ETA and ETB receptors were determined by qPCR in left ventricular myocardium. KEY FINDINGS Aging markedly increased steady-state mRNA expression levels of ECE-1, ECE-2, ETA and ETB receptors (each p<0.001 vs. young mice). Deletion of Gper inhibited the age-dependent increase in ECE-2 and ETB receptor mRNA levels (57% and 40% reduction, respectively, each p<0.01 vs. wild-type mice), whereas gene expression of prepro-ET-1, ECE-1, and the ETA receptor was unaffected in Gper(-/-) mice. SIGNIFICANCE We identified a novel regulatory mechanism through which the endogenous Gper facilitates the age-dependent increase in myocardial expression of ECE-2 and the ETB receptor, which is compatible with an activating role of GPER for the local endothelin system with aging. Targeting GPER signaling by selective antagonists may therefore be considered a new therapeutic approach to reduce age-dependent increased ET-1 activity and the associated development of left ventricular hypertrophy, fibrosis and heart failure.
Collapse
Affiliation(s)
- Matthias R Meyer
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, United States.
| | - Natalie C Fredette
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Geetanjali Sharma
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Matthias Barton
- Molecular Internal Medicine, University of Zürich, Zürich, Switzerland
| | - Eric R Prossnitz
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, United States.
| |
Collapse
|
63
|
Zhao TZ, Shi F, Hu J, He SM, Ding Q, Ma LT. GPER1 mediates estrogen-induced neuroprotection against oxygen-glucose deprivation in the primary hippocampal neurons. Neuroscience 2016; 328:117-26. [DOI: 10.1016/j.neuroscience.2016.04.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 04/10/2016] [Accepted: 04/17/2016] [Indexed: 10/21/2022]
|
64
|
Meyer MR, Barton M. Estrogens and Coronary Artery Disease: New Clinical Perspectives. ADVANCES IN PHARMACOLOGY 2016; 77:307-60. [PMID: 27451102 DOI: 10.1016/bs.apha.2016.05.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In premenopausal women, endogenous estrogens are associated with reduced prevalence of arterial hypertension, coronary artery disease, myocardial infarction, and stroke. Clinical trials conducted in the 1990s such as HERS, WHI, and WISDOM have shown that postmenopausal treatment with horse hormone mixtures (so-called conjugated equine estrogens) and synthetic progestins adversely affects female cardiovascular health. Our understanding of rapid (nongenomic) and chronic (genomic) estrogen signaling has since advanced considerably, including identification of a new G protein-coupled estrogen receptor (GPER), which like the "classical" receptors ERα and ERβ is highly abundant in the cardiovascular system. Here, we discuss the role of estrogen receptors in the pathogenesis of coronary artery disease and review natural and synthetic ligands of estrogen receptors as well as their effects in physiology, on cardiovascular risk factors, and atherosclerotic vascular disease. Data from preclinical and clinical studies using nonselective compounds activating GPER, which include selective estrogen receptor modulators such as tamoxifen or raloxifene, selective estrogen receptor downregulators such as Faslodex™ (fulvestrant/ICI 182,780), vitamin B3 (niacin), green tea catechins, and soy flavonoids such as genistein or resveratrol, strongly suggest that activation of GPER may afford therapeutic benefit for primary and secondary prevention in patients with or at risk for coronary artery disease. Evidence from preclinical studies suggest similar efficacy profiles for selective small molecule GPER agonists such as G-1 which are devoid of uterotrophic activity. Further clinical research in this area is warranted to provide opportunities for future cardiovascular drug development.
Collapse
Affiliation(s)
- M R Meyer
- Triemli City Hospital, Zürich, Switzerland.
| | - M Barton
- Molecular Internal Medicine, University of Zürich, Zürich, Switzerland.
| |
Collapse
|