51
|
Islam MR, Rahman MM, Mohi-Ud-Din M, Akter M, Zaman E, Keya SS, Hasan M, Hasanuzzaman M. Cytokinin and gibberellic acid-mediated waterlogging tolerance of mungbean ( Vigna radiata L. Wilczek). PeerJ 2022; 10:e12862. [PMID: 35186468 PMCID: PMC8820211 DOI: 10.7717/peerj.12862] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/09/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Mungbean (Vigna radiata L. Wilczek) is one of the most important pulse crops, well-known for its protein-rich seeds. Growth and productivity are severely undermined by waterlogging. METHODS In this study, we aim to evaluate how two promising phytohormones, namely cytokinin (CK) and gibberellic acid (GA3), can improve waterlogging tolerance in mungbean by investigating key morphological, physiological, biochemical, and yield-related attributes. RESULTS Our results showed that foliar application of CK and GA3 under 5-day of waterlogged conditions improved mungbean growth and biomass, which was associated with increased levels of photosynthetic rate and pigments. Waterlogged-induced accumulation of reactive oxygen species and the consequently elevated levels of malondialdehyde were considerably reduced by CK and GA3 treatments. Mungbean plants sprayed with either CK or GA3 suffered less oxidative stress due to the enhancement of total phenolics and flavonoids levels. Improvement in the contents of proline and total soluble sugars indicated a better osmotic adjustment following CK and GA3 treatments in waterlogged-exposed plants. Most fundamentally, CK or GA3-sprayed waterlogged-stressed mungbean plants demonstrated better performance in the aforementioned parameters after the 15-day recovery period as compared to water-sprayed waterlogged-exposed plants. Our results also revealed that CK and GA3 treatments increased yield-associated features in the waterlogged-stressed plant. Here, both phytohormones are efficient in improving mungbean resistance to waterlogging. However, CK was found to be more effective. Overall, our findings suggested that CK or GA3 could be used for managing waterlogging-induced damage to mungbean and perhaps in other cash crops.
Collapse
Affiliation(s)
- M. Rafiqul Islam
- Department of Agronomy, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Md. Mezanur Rahman
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, United States
| | - Mohammed Mohi-Ud-Din
- Department of Crop Botany, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Munny Akter
- Department of Agronomy, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Erin Zaman
- Department of Agronomy, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Sanjida Sultana Keya
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, United States
| | - Mehfuz Hasan
- Department of Genetic and Plant Breeding, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Mirza Hasanuzzaman
- Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| |
Collapse
|
52
|
Ghani MI, Saleem S, Rather SA, Rehmani MS, Alamri S, Rajput VD, Kalaji HM, Saleem N, Sial TA, Liu M. Foliar application of zinc oxide nanoparticles: An effective strategy to mitigate drought stress in cucumber seedling by modulating antioxidant defense system and osmolytes accumulation. CHEMOSPHERE 2022; 289:133202. [PMID: 34890613 DOI: 10.1016/j.chemosphere.2021.133202] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/27/2021] [Accepted: 12/05/2021] [Indexed: 05/19/2023]
Abstract
Drought is a major environmental threat that affects plant growth and productivity. Strategies to mitigate the detrimental impacts of drought stress on plants are under scrutiny. Nanotechnology is considered an effective tool in resolving a wide range of environmental issues by offering novel and pragmatic solutions. A pot experiment was performed to determine the efficacy of zinc oxide nanoparticles (ZnO NPs) as a foliar application (25 mg L-1 and 100 mg L-1) on the growth performance of cucumber subjected to drought stress. Applied ZnO NPs under normal conditions resulted in significant growth and biomass enhancement while reducing drought-induced decline. Photosynthetic pigments, photosynthesis, and PSII activity enhanced due to ZnO NPs application, attaining maximal values at 100 mg L-1 of ZnO NPs. Drought stress restricted growth and biomass buildup in cucumber seedlings by stimulating oxidative stress, which was manifested to excessive buildup of reactive oxygen species (ROS) and peroxidation, thereby decreasing membrane functioning. Plants exposed to ZnO NPs exhibited a reduction in ROS accumulation and lipid peroxidation. The substantial reduction in oxidative damage was manifested with the enhancement of enzymatic and non-enzymatic antioxidant components. The phenol and mineral contents were reduced due to drought stress. In addition, the content of proline, glycine betaine, free amino acids, and sugars increased due to ZnO NPs under normal and drought conditions. Furthermore, the drought-induced decline in the content of phenol and mineral nutrients was mitigated by ZnO NPs foliar application. These findings reveal that exogenous ZnO NPs application may be a pragmatic option in dealing with the drought stress of cucumber seedlings.
Collapse
Affiliation(s)
- Muhammad Imran Ghani
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Sana Saleem
- College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Shabir A Rather
- StateKey Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Muhammad Saad Rehmani
- School of Environment and Ecology, Northwestern Polytechnical University, Xian, 710129, China
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344090, Russia
| | - Hazem M Kalaji
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences SGGW, Warsaw, Poland; Institute of Technology and Life Sciences - National Research Institute, Falenty, Al. Hrabska 3, 05-090, Raszyn, Poland
| | - Noor Saleem
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tanveer Ali Sial
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mengyun Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Scientific Laboratory of Heyang Agricultural Environment and Farmland Cultivation, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Heyang, Shaanxi, 714000, China.
| |
Collapse
|
53
|
Gad D, Abo Mansour HE, Saad-Allah KM, Abdallah MS, Ibrahim Elberri A, Mosalam EM. Biostimulants improve the hepatoprotection of Ammi visnaga seed yield extract against carbon tetrachloride induced acute hepatitis in mice through modulation of MAPK. Saudi J Biol Sci 2022. [DOI: 10.1016/j.sjbs.2022.01.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
54
|
Irshad A, Rehman RNU, Kareem HA, Yang P, Hu T. Addressing the challenge of cold stress resilience with the synergistic effect of Rhizobium inoculation and exogenous melatonin application in Medicago truncatula. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 226:112816. [PMID: 34597844 DOI: 10.1016/j.ecoenv.2021.112816] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 05/17/2023]
Abstract
Cold stress is an adverse environmental condition that limits the growth and yield of leguminous plants. Thus, discovering an effective way of ameliorating cold-mediated damage is important for sustainable legume production. In this study, the combined use of Rhizobium inoculation (RI) and melatonin (MT) pretreatment was investigated in Medicago truncatula plants under cold stress. Eight-week-old seedlings were divided into eight groups: (i) CK (no stress, noninoculated, no MT), (ii) RI (Rhizobium inoculated), (iii) MT (75 μM melatonin), (iv) RI+MT, (v) CS (cold stress at 4 °C without Rhizobium inoculation and melatonin), (vi) CS+RI, (vii) CS+MT, and (viii) CS+RI+MT. Plants were exposed to cold stress for 24 hrs. Cold stress decreased photosynthetic pigments and increased oxidative stress. Pretreatment with RI and MT alone or combined significantly improved root activity and plant biomass production under cold stress. Interestingly, chlorophyll contents increased by 242.81% and MDA levels dramatically decreased by 34.22% in the CS+RI+MT treatment compared to the CS treatment. Moreover, RI+MT pretreatment improved the antioxidative ability by increasing the activities of peroxidase (POD; 8.45%), superoxide dismutase (SOD; 50.36%), catalase (CAT; 140.26%), and ascorbate peroxidase (APX; 42.63%) over CS treated plants. Additionally, increased osmolyte accumulation, nutrient uptake, and nitrate reductase activity due to the combined use of RI and MT helped the plants counteract cold-mediated damage by strengthening the nonenzymatic antioxidant system. These data indicate that pretreatment with a combined application of RI and MT can attenuate cold damage by enhancing the antioxidation ability of legumes.
Collapse
Affiliation(s)
- Annie Irshad
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rana Naveed Ur Rehman
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hafiz Abdul Kareem
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Peizhi Yang
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Tianming Hu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
55
|
El-Badri AM, Batool M, Wang C, Hashem AM, Tabl KM, Nishawy E, Kuai J, Zhou G, Wang B. Selenium and zinc oxide nanoparticles modulate the molecular and morpho-physiological processes during seed germination of Brassica napus under salt stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112695. [PMID: 34478972 DOI: 10.1016/j.ecoenv.2021.112695] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/19/2021] [Accepted: 08/21/2021] [Indexed: 05/09/2023]
Abstract
The advent of the nanotechnology era offers a unique opportunity for sustainable agriculture, and the contribution of nanoparticles (NPs) to ameliorate abiotic stresses became the new area of interest for researchers due to their special physiochemical characteristics in the biological system. Salinity is a key devastating abiotic factor that hinders the development and yield of rapeseed. On the flip side, the impact of nanoparticles on plant hormones upon salt stress during seed imbibition and germination has been poorly understood. Hence, we aimed to study the influence of nanopriming on plant hormones and germination processes using selenium and zinc oxide nanoparticles (SeNPs and ZnONPs) during seed imbibition and the early seedling stage upon salinity stress. Nanopriming showed a positive effect on final germination percentage, germination rate, seed microstructure, and antioxidant enzyme activity of two rapeseed cultivars under salt stress. Moreover, nano-treatment decreased the expression of abscisic acid related genes BnCYP707A1, 3, and 4 during the priming time and after sowing, where the levels of BnCYP707A1, and 3 genes showed a slightly significant difference between the nanopriming and hydropriming, which gave an evidence that the nanopriming influenced the ABA levels then elevated the seed germination with SeNPs and ZnONPs. Likewise, nanoparticles significantly elevated the expression levels of BnGA20ox, BnGA3ox and BnCPS genes during the germination stage, especially at 24 h after being sown in salt stress. That confirms the positive role of SeNPs and ZnONPs in regulating gibberellic acid level, which increases the germination in primed seeds as compared to unprimed seeds and hydroprimed seeds. Additionally, our results demonstrated that nanopriming regulated the expression level of BnCAM and BnPER during priming time and after sowing, along with the various levels of expression remarkably in BnEXP4 and BnRAB28, especially at 24 h of being sown under salt stress, which promoted seed germination and early seedling growth. Overall, this work provides new insights into mechanisms underlying the interactions of SeNPs and ZnONPs with plant hormones during the seed imbibition and early seedling stage, consequently enhanced plant growth and development. Additionally, these findings portrayed that the application of SeNPs and ZnONPs could be a new strategy and useful approach to enhance tolerance against salinity in rapeseed plants.
Collapse
Affiliation(s)
- Ali Mahmoud El-Badri
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Field Crops Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt
| | - Maria Batool
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunyun Wang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ahmed M Hashem
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Biotechnology Department, Faculty of Agriculture, Al-Azhar University, Cairo 11651, Egypt
| | - Karim M Tabl
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, 21531 Alexandria, Egypt
| | - Elsayed Nishawy
- Desert Research Center, Genetics Resource Department, Egyptian Deserts Gene Bank, Cairo 11735, Egypt
| | - Jie Kuai
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Guangsheng Zhou
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Bo Wang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
56
|
Kosteletzkya pentacarpos: A Potential Halophyte Candidate for Phytoremediation in the Meta(loid)s Polluted Saline Soils. PLANTS 2021; 10:plants10112495. [PMID: 34834857 PMCID: PMC8624882 DOI: 10.3390/plants10112495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 11/17/2022]
Abstract
Kosteletzkya pentacarpos (L.) Ledebour is a perennial facultative halophyte species from the Malvacea family that grows in coastal areas with high amounts of salt. The tolerance of K. pentacarpos to the high concentration of salt (0.5–1.5% salinity range of coastal saline land) has been widely studied for decades. Nowadays, with the dramatic development of the economy and urbanization, in addition to the salt, the accumulation of mate(loid)s in coastal soil is increasing, which is threatening the survival of halophyte species as well as the balance of wetland ecosystems. Recently, the capacity of K. pentacarpos to cope with either single heavy metal stress or a combination of multiple meta(loid) toxicities was studied. Hence, this review focused on summarizing the physiological and biochemical behaviors of K. pentacarpos that has been simultaneously exposed to the combination of several meta(loid) toxicities. How the salt accumulated by K. pentacarpos impacts the response to meta(loid) stress was discussed. We conclude that as a potential candidate for phytoremediation, K. pentacarpos was able to cope with various environmental constrains such as multiple meta(loid) stresses due to its relative tolerance to meta(loid) toxicity.
Collapse
|
57
|
Punia H, Tokas J, Mor VS, Bhuker A, Malik A, Singh N, Satpal, Alsahli AA, Hefft DI. Deciphering Reserve Mobilization, Antioxidant Potential, and Expression Analysis of Starch Synthesis in Sorghum Seedlings under Salt Stress. PLANTS (BASEL, SWITZERLAND) 2021; 10:2463. [PMID: 34834826 PMCID: PMC8623787 DOI: 10.3390/plants10112463] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/31/2021] [Accepted: 11/03/2021] [Indexed: 02/07/2023]
Abstract
Salt stress is one of the major constraints affecting plant growth and agricultural productivity worldwide. Sorghum is a valuable food source and a potential model for studying and better understanding the salt stress mechanics in the cereals and obtaining a more comprehensive knowledge of their cellular responses. Herein, we examined the effects of salinity on reserve mobilization, antioxidant potential, and expression analysis of starch synthesis genes. Our findings show that germination percentage is adversely affected by all salinity levels, more remarkably at 120 mM (36% reduction) and 140 mM NaCl (46% reduction) than in the control. Lipid peroxidation increased in salt-susceptible genotypes (PC-5: 2.88 and CSV 44F: 2.93 nmloe/g.FW), but not in tolerant genotypes. SSG 59-3 increased activities of α-amylase, and protease enzymes corroborated decreased starch and protein content, respectively. SSG 59-3 alleviated adverse effects of salinity by suppressing oxidative stress (H2O2) and stimulating enzymatic and non-enzymatic antioxidant activities (SOD, APX, CAT, POD, GR, and GPX), as well as protecting cell membrane integrity (MDA, electrolyte leakage). A significant increase (p ≤ 0.05) was also observed in SSG 59-3 with proline, ascorbic acid, and total carbohydrates. Among inorganic cations and anions, Na+, Cl-, and SO42- increased, whereas K+, Mg2+, and Ca2+ decreased significantly. SSG 59-3 had a less pronounced effect of excess Na+ ions on the gene expression of starch synthesis. Salinity also influenced Na+ ion efflux and maintained a lower cytosolic Na+/K+ ratio via concomitant upregulation of SbNHX-1 and SbVPPase-I ion transporter genes. Thus, we have highlighted that salinity physiologically and biochemically affect sorghum seedling growth. Based on these findings, we highlighted that SSG 59-3 performed better by retaining higher plant water status, antioxidant potential, and upregulation of ion transporter genes and starch synthesis, thereby alleviating stress, which may be augmented as genetic resources to establish sorghum cultivars with improved quality in saline soils.
Collapse
Affiliation(s)
- Himani Punia
- Department of Biochemistry, College of Basic Sciences & Humanities, CCS Haryana Agricultural University, Hisar 125 004, Haryana, India;
| | - Jayanti Tokas
- Department of Biochemistry, College of Basic Sciences & Humanities, CCS Haryana Agricultural University, Hisar 125 004, Haryana, India;
| | - Virender Singh Mor
- Department of Seed Science & Technology, College of Agriculture, CCS Haryana Agricultural University, Hisar 125 004, Haryana, India; (V.S.M.); (A.B.); (N.S.)
| | - Axay Bhuker
- Department of Seed Science & Technology, College of Agriculture, CCS Haryana Agricultural University, Hisar 125 004, Haryana, India; (V.S.M.); (A.B.); (N.S.)
| | - Anurag Malik
- Department of Seed Science & Technology, College of Agriculture, CCS Haryana Agricultural University, Hisar 125 004, Haryana, India; (V.S.M.); (A.B.); (N.S.)
| | - Nirmal Singh
- Department of Seed Science & Technology, College of Agriculture, CCS Haryana Agricultural University, Hisar 125 004, Haryana, India; (V.S.M.); (A.B.); (N.S.)
| | - Satpal
- Forage Section, Department of Genetics & Plant Breeding, College of Agriculture, CCS Haryana Agricultural University, Hisar 125 004, Haryana, India;
| | - Abdulaziz Abdullah Alsahli
- Botany and Microbiology Department, Faculty of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Daniel Ingo Hefft
- Department of Food Sciences, University Centre Reaseheath, Reaseheath College, Nantwich CW5 6DF, UK;
| |
Collapse
|
58
|
Guo J, Chen Y, Lu P, Liu M, Sun P, Zhang Z. Roles of endophytic bacteria in Suaeda salsa grown in coastal wetlands: Plant growth characteristics and salt tolerance mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117641. [PMID: 34426384 DOI: 10.1016/j.envpol.2021.117641] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 05/24/2021] [Accepted: 06/20/2021] [Indexed: 05/11/2023]
Abstract
Salinity is a limiting factor in the growth of plants in coastal wetlands. The interaction of halophytes with salt-tolerant endophytes has been one of the major concerns in this area. However, the mechanism by which endophytes promote halophyte growth remains unclear. The growth and physiological responses of Suaeda salsa inoculated with endophytic bacteria (Sphingomonas prati and Sphingomonas zeicaulis) at 0 ‰ and 20 ‰ NaCl were studied. The results showed that Sphingomonas zeicaulis had stronger positive effects on the growth of Suaeda salsa under 0 ‰ NaCl, and Sphingomonas prati performed better under 20 ‰ NaCl. Sphingomonas prati inoculation increased the mean height, root length, fresh weight and dry weight by 45.43%, 9.91%, 82.00% and 102.25%, respectively, compared with the uninoculated treatment at 20 ‰ NaCl. Sphingomonas prati inoculation decreased MDA content by 23.78%, while the soluble sugar and soluble protein contents increased by 15.08% and 12.57%, respectively, compared to the control, at 20 ‰ NaCl. Increases in SOD and CAT in the Sphingomonas prati inoculation were 1.03 and 1.47-fold greater, respectively, than in the Sphingomonas zeicaulis inoculation, under 20 ‰ NaCl. Moreover, Sphingomonas prati and Sphingomonas zeicaulis had antagonistic interactions in Suaeda salsa according to the results of the "interaction equation" (most G values were negative). PCA, clustering analysis and the PLS model revealed two mechanisms for regulating plant salt tolerance by which Sphingomonas prati enhanced Suaeda salsa growth: (1) Sphingomonas prati improved intracellular osmotic metabolism and (2) Sphingomonas prati promoted the production of CAT in the antioxidant enzyme system and retained permeability. This study provides new insight into the comprehensive understanding and evaluation of endophytic bacteria as biological inoculants in plants under salt stress.
Collapse
Affiliation(s)
- Jiameng Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Youyuan Chen
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao, China.
| | - Pengzhan Lu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Ming Liu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Ping Sun
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Zhiming Zhang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
59
|
Lu QH, Wang YQ, Yang HB. Effect of exogenous calcium on physiological characteristics of salt tolerance in Tartary buckwheat. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00904-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
60
|
Punia H, Tokas J, Malik A, Sangwan S, Rani A, Yashveer S, Alansi S, Hashim MJ, El-Sheikh MA. Genome-Wide Transcriptome Profiling, Characterization, and Functional Identification of NAC Transcription Factors in Sorghum under Salt Stress. Antioxidants (Basel) 2021; 10:antiox10101605. [PMID: 34679740 PMCID: PMC8533442 DOI: 10.3390/antiox10101605] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/03/2021] [Accepted: 10/04/2021] [Indexed: 01/11/2023] Open
Abstract
Salinity stress has become a significant concern to global food security. Revealing the mechanisms that enable plants to survive under salinity has immense significance. Sorghum has increasingly attracted researchers interested in understanding the survival and adaptation strategies to high salinity. However, systematic analysis of the DEGs (differentially expressed genes) and their relative expression has not been reported in sorghum under salt stress. The de novo transcriptomic analysis of sorghum under different salinity levels from 60 to 120 mM NaCl was generated using Illumina HiSeq. Approximately 323.49 million high-quality reads, with an average contig length of 1145 bp, were assembled de novo. On average, 62% of unigenes were functionally annotated to known proteins. These DEGs were mainly involved in several important metabolic processes, such as carbohydrate and lipid metabolism, cell wall biogenesis, photosynthesis, and hormone signaling. SSG 59-3 alleviated the adverse effects of salinity by suppressing oxidative stress (H2O2) and stimulating enzymatic and non-enzymatic antioxidant activities (SOD, APX, CAT, APX, POX, GR, GSH, ASC, proline, and GB), as well as protecting cell membrane integrity (MDA and electrolyte leakage). Significant up-regulation of transcripts encoding the NAC, MYB, and WRYK families, NHX transporters, the aquaporin protein family, photosynthetic genes, antioxidants, and compatible osmolyte proteins were observed. The tolerant line (SSG 59-3) engaged highly efficient machinery in response to elevated salinity, especially during the transport and influx of K+ ions, signal transduction, and osmotic homeostasis. Our data provide insights into the evolution of the NAC TFs gene family and further support the hypothesis that these genes are essential for plant responses to salinity. The findings may provide a molecular foundation for further exploring the potential functions of NAC TFs in developing salt-resistant sorghum lines.
Collapse
Affiliation(s)
- Himani Punia
- Department of Biochemistry, College of Basic Sciences & Humanities, CCS Haryana Agricultural University, Hisar 125 004, Haryana, India;
- Correspondence: (H.P.); (J.T.)
| | - Jayanti Tokas
- Department of Biochemistry, College of Basic Sciences & Humanities, CCS Haryana Agricultural University, Hisar 125 004, Haryana, India;
- Correspondence: (H.P.); (J.T.)
| | - Anurag Malik
- Department of Seed Science & Technology, College of Agriculture, CCS Haryana Agricultural University, Hisar 125 004, Haryana, India;
| | - Sonali Sangwan
- Department of Molecular Biology, Biotechnology & Bioinformatics, College of Basic Sciences & Humanities, CCS Haryana Agricultural University, Hisar 125 004, Haryana, India; (S.S.); (S.Y.)
| | - Anju Rani
- Department of Biochemistry, College of Basic Sciences & Humanities, CCS Haryana Agricultural University, Hisar 125 004, Haryana, India;
| | - Shikha Yashveer
- Department of Molecular Biology, Biotechnology & Bioinformatics, College of Basic Sciences & Humanities, CCS Haryana Agricultural University, Hisar 125 004, Haryana, India; (S.S.); (S.Y.)
| | - Saleh Alansi
- Department of Biology, IBB University, Ibb, Yemen;
| | - Maha J. Hashim
- School of Life Sciences, Medical School (E Floor), Queens Medical Centre, Nottingham NG7 2UH, UK;
| | - Mohamed A. El-Sheikh
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
61
|
Seed Priming with Silicon as a Potential to Increase Salt Stress Tolerance in Lathyrus odoratus. PLANTS 2021; 10:plants10102140. [PMID: 34685950 PMCID: PMC8539537 DOI: 10.3390/plants10102140] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/03/2021] [Accepted: 10/06/2021] [Indexed: 01/24/2023]
Abstract
Water shortage is a major problem limiting the expansion of green areas and landscapes. Using seawater as an alternative source of potable water is not a novel idea, but the issue of salt stress needs to be resolved. Salinity has a negative impact on growth and the aesthetic value of ornamental plants. In order to overcome these challenges, Lathyrus odoratus seeds were hydro-primed and halo-primed with silicon (Si) and silicon nanoparticles (SiNPs), and exposed to seawater levels. Seawater markedly reduced seed germination and growth of Lathyrus seedlings, but halo-priming was shown to significantly alleviate its negative effects. Broadly, SiNPs increased the germination percentage, reduced photosynthetic pigments and carbohydrates decrease, and enhanced water relations, despite having a negative effect on germination speed. Halo-priming significantly increased the proline content and the activities of certain enzymatic (SOD, APX and CAT) and nonenzymatic (phenolic and flavonoids) compounds, that positively influenced oxidative stress (lower MDA and H2O2 accumulation), resulting in seedlings with more salt stress tolerance. Halo-priming with Si or SiNPs enhanced the Si and K+ contents, and K+/Na+ ratio, associated with a reduction in Na+ accumulation. Generally, halo-priming with Si or SiNPs increased Lathyrus seedlings salt stress tolerance, which was confirmed using seawater treatments via improving germination percentage, seedlings growth and activation of the antioxidant machinery, which detoxifies reactive oxygen species (ROS).
Collapse
|
62
|
Kaya C, Polat T, Ashraf M, Kaushik P, Alyemeni MN, Ahmad P. Endogenous nitric oxide and its potential sources regulate glutathione-induced cadmium stress tolerance in maize plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:723-737. [PMID: 34500197 DOI: 10.1016/j.plaphy.2021.08.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/14/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
It was aimed to assess that up to what extent endogenous nitric oxide (NO) and its sources are involved in glutathione (GSH)-mediated tolerance of maize plants to cadmium (Cd) stress. The Cd-stressed maize plants were sprayed with or without GSH (1.0 mM) once every week for two weeks. Before initiating the stress treatment, the Cd-stressed plants sprayed with GSH were supplied with or without 0.1 mM, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO; a NO scavenger) for two weeks or with 0.1 mM sodium tungstate (ST; a nitrate reductase inhibitor), or 0.1 mM NG-nitro-L-arginine methyl ester hydrochloride (L-NAME). Cadmium stress suppressed the activities of dehydroascorbate reductase, monodehydroascorbate reductase, and glyoxalase II, while increased leaf NO, Cadmium content, proline, oxidative stress, the activities of glutathione reductase, ascorbate peroxidase, the key enzymes of oxidative defense system, glyoxalase I, NR and NOS. GSH reduced oxidative stress and tissue Cd2+ content, but it improved growth, altered water relations, and additionally increased proline levels, activities of the AsA-GSH cycle, key enzymatic antioxidants, glyoxalase I and II, NR and NOS as well as NO content. The cPTIO and ST supplementation abolished the beneficial effects of GSH by reducing the activities of NO and NR. However, L-NAME did not retreat the favorable effects of GSH, although it reduced the NOS activity without eliminating NO content, suggesting that NR might be a prospective source of NO generated by GSH in Cd-stressed plants, which in turn accelerated the activities of antioxidant enzymes.
Collapse
Affiliation(s)
- Cengiz Kaya
- Soil Science and Plant Nutrition Department, Agriculture Faculty, Harran University, Sanliurfa, Turkey
| | - Tahir Polat
- Field Crops Department, Agriculture Faculty, Harran University, Sanliurfa, Turkey
| | | | - Prashant Kaushik
- Kikugawa Research Station, Yokohama Ueki, 2265, Kamo, Kikugawa City, Shizuoka, 439-0031, Japan
| | | | - Parvaiz Ahmad
- Botany and Microbiology Department, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
63
|
Garai S, Bhowal B, Kaur C, Singla-Pareek SL, Sopory SK. What signals the glyoxalase pathway in plants? PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2407-2420. [PMID: 34744374 PMCID: PMC8526643 DOI: 10.1007/s12298-021-00991-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/15/2021] [Accepted: 04/04/2021] [Indexed: 05/06/2023]
Abstract
Glyoxalase (GLY) system, comprising of GLYI and GLYII enzymes, has emerged as one of the primary methylglyoxal (MG) detoxification pathways with an indispensable role during abiotic and biotic stresses. MG homeostasis is indeed very closely guarded by the cell as its higher levels are cytotoxic for the organism. The dynamic responsiveness of MG-metabolizing GLY pathway to both endogenous cues such as, phytohormones, nutrient status, etc., as well as external environmental fluctuations (abiotic and biotic stresses) indicates that a tight regulation occurs in the cell to maintain physiological levels of MG in the system. Interestingly, GLY pathway is also manipulated by its substrates and reaction products. Hence, an investigation of signalling and regulatory aspects of GLY pathway would be worthwhile. Herein, we have attempted to converge all known factors acting as signals or directly regulating GLYI/II enzymes in plants. Further, we also discuss how crosstalk between these different signal molecules might facilitate the regulation of glyoxalase pathway. We believe that MG detoxification is controlled by intricate mechanisms involving a plethora of signal molecules.
Collapse
Affiliation(s)
- Sampurna Garai
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Bidisha Bhowal
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Charanpreet Kaur
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Sneh Lata Singla-Pareek
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Sudhir K. Sopory
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| |
Collapse
|
64
|
Yin L, Zhang M, Wu R, Chen X, Liu F, Xing B. Genome-wide analysis of OSCA gene family members in Vigna radiata and their involvement in the osmotic response. BMC PLANT BIOLOGY 2021; 21:408. [PMID: 34493199 PMCID: PMC8422765 DOI: 10.1186/s12870-021-03184-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 08/20/2021] [Indexed: 05/25/2023]
Abstract
BACKGROUND Mung bean (Vigna radiata) is a warm-season legume crop and belongs to the papilionoid subfamily of the Fabaceae family. China is the leading producer of mung bean in the world. Mung bean has significant economic and health benefits and is a promising species with broad adaptation ability and high tolerance to environmental stresses. OSCA (hyperosmolality-gated calcium-permeable channel) gene family members play an important role in the modulation of hypertonic stress, such as drought and salinity. However, genome-wide analysis of the OSCA gene family has not been conducted in mung bean. RESULTS We identified a total of 13 OSCA genes in the mung bean genome and named them according to their homology with AtOSCAs. All the OSCAs were phylogenetically split into four clades. Phylogenetic relationship and synteny analyses showed that the VrOSCAs in mung bean and soybean shared a relatively conserved evolutionary history. In addition, three duplicated VrOSCA gene pairs were identified, and the duplicated VrOSCAs gene pairs mainly underwent purifying selection pressure during evolution. Protein domain, motif and transmembrane analyses indicated that most of the VrOSCAs shared similar structures with their homologs. The expression pattern showed that except for VrOSCA2.1, the other 12 VrOSCAs were upregulated under treatment with ABA, PEG and NaCl, among which VrOSCA1.4 showed the largest increased expression levels. The duplicated genes VrOSCA2.1/VrOSCA2.2 showed divergent expression, which might have resulted in functionalization during subsequent evolution. The expression profiles under ABA, PEG and NaCl stress revealed a functional divergence of VrOSCA genes, which agreed with the analysis of cis-acting regulatory elements in the promoter regions of VrOSCA genes. CONCLUSIONS Collectively, the study provided a systematic analysis of the VrOSCA gene family in mung bean. Our results establish an important foundation for functional and evolutionary analysis of VrOSCAs and identify genes for further investigation of their ability to confer abiotic stress tolerance in mung bean.
Collapse
Affiliation(s)
- Lili Yin
- College of Life Science, Shanxi Datong University, Datong, 037009, People's Republic of China
| | - Meiling Zhang
- Beijing Academy of Forestry and Pomology Sciences, Beijing, 100093, People's Republic of China
| | - Ruigang Wu
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, 056038, People's Republic of China
| | - Xiaoliang Chen
- School of Medicine, Shanxi Datong University, Datong, 037009, People's Republic of China
| | - Fei Liu
- High Latitude Crops Institute, Shanxi Agricultural University, Datong, 037008, People's Republic of China
| | - Baolong Xing
- High Latitude Crops Institute, Shanxi Agricultural University, Datong, 037008, People's Republic of China.
| |
Collapse
|
65
|
El Nahhas N, AlKahtani MDF, Abdelaal KAA, Al Husnain L, AlGwaiz HIM, Hafez YM, Attia KA, El-Esawi MA, Ibrahim MFM, Elkelish A. Biochar and jasmonic acid application attenuates antioxidative systems and improves growth, physiology, nutrient uptake and productivity of faba bean (Vicia faba L.) irrigated with saline water. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:807-817. [PMID: 34225005 DOI: 10.1016/j.plaphy.2021.06.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 05/10/2023]
Abstract
The effect of foliar treatment with jasmonic acid at 0.5 mM (JA) and biochar (15 ton ha-1) as a soil amendment for the faba bean (Vicia faba L. Sakha 4) was studied under salinity conditions. Salt stress led to a significant decrease in leaf numbers, leaf areas and plants, chlorophyll content, relative water content, and yield parameters. In contrast, reactive oxygen species, the proline concentration, level of malondialdehyde, and amount of electrolyte leakage were noticeably increased during both seasons under salt levels of 1500 and 3000 ppm sodium chloride (NaCl). Also, enzyme activities (i.e., of superoxide dismutase, catalase, peroxidase, and glutathione reductase) were increased, especially under a high level of salinity stress (3000 ppm). Application of biochar, jasmonic acid, or biochar + jasmonic acid significantly reduced the catalase, superoxide dismutase, and glutathione reductase activities in salt-stressed plants to values approaching those of the control (unstressed) plants, especially under 1500 ppm of NaCl stress. Biochar and jasmonic acid treatments mitigated the damaging effects of salinity and improved the plant status as indicated by the plant height, leaf area, relative water content, and chlorophyll a and b concentrations. Moreover, biochar and jasmonic acid treatments of the salt-stressed plants enhanced plant productivity, number of flowers, number of seeds per plant, and weight of 100 seeds during two successive seasons. Overall, this study suggests that biochar or jasmonic acid treatments might be promising for mitigating the detrimental impact of salt stress on faba beans.
Collapse
Affiliation(s)
- Nihal El Nahhas
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Muneera D F AlKahtani
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 102275, Riyadh, 11675, Saudi Arabia.
| | - Khaled A A Abdelaal
- EPCRS Excellence Center, Plant Pathology and Biotechnology Lab., Faculty of Agriculture, Kafrelsheikh Univ., 33516, Egypt.
| | - Latifa Al Husnain
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 102275, Riyadh, 11675, Saudi Arabia.
| | - Hussah I M AlGwaiz
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 102275, Riyadh, 11675, Saudi Arabia
| | - Yaser M Hafez
- EPCRS Excellence Center, Plant Pathology and Biotechnology Lab., Faculty of Agriculture, Kafrelsheikh Univ., 33516, Egypt.
| | - Kotb A Attia
- Center of Excellence in Biotechnology Research, King Saud University, Riyadh, POX 2455-11451, Saudi Arabia; Rice Biotechnology Lab, Rice Research & Training Center, Field Crops Research Institute, Sakha, Kafr El-Sheikh, 33717, Egypt.
| | - Mohamed A El-Esawi
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Mohamed F M Ibrahim
- Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University, Cairo, 11566, Egypt.
| | - Amr Elkelish
- Botany Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt.
| |
Collapse
|
66
|
Gomez Mansur NM, Pena LB, Bossio AE, Lewi DM, Beznec AY, Blumwald E, Arbona V, Gómez-Cadenas A, Benavides MP, Gallego SM. An isopentenyl transferase transgenic wheat isoline exhibits less seminal root growth impairment and a differential metabolite profile under Cd stress. PHYSIOLOGIA PLANTARUM 2021; 173:223-234. [PMID: 33629739 DOI: 10.1111/ppl.13366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/05/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Cadmium is one of the most important contaminants and it induces severe plant growth restriction. In this study, we analyzed the metabolic changes associated with root growth restriction caused by cadmium in the early seminal root apex of wheat. Our study included two genotypes: the commercial variety ProINTA Federal (WT) and the PSARK ::IPT (IPT) line which exhibit high-grade yield performance under water deficit. Root tips of seedlings grown for 72 h without or with 10 μM CdCl2 (Cd-WT and Cd-IPT) were compared. Root length reduction was more severe in Cd-WT than Cd-IPT. Cd decreased superoxide dismutase activity in both lines and increased catalase activity only in the WT. In Cd-IPT, ascorbate and guaiacol peroxidase activities raised compared to Cd-WT. The hormonal homeostasis was altered by the metal, with significant decreases in abscisic acid, jasmonic acid, 12-oxophytodienoic acid, gibberellins GA20, and GA7 levels. Increases in flavonoids and phenylamides were also found. Root growth impairment was not associated with a decrease in expansin (EXP) transcripts. On the contrary, TaEXPB8 expression increased in the WT treated by Cd. Our findings suggest that the line expressing the PSARK ::IPT construction increased the homeostatic range to cope with Cd stress, which is visible by a lesser reduction of the root elongation compared to WT plants. The decline of root growth produced by Cd was associated with hormonal imbalance at the root apex level. We hypothesize that activation of phenolic secondary metabolism could enhance antioxidant defenses and contribute to cell wall reinforcement to deal with Cd toxicity.
Collapse
Affiliation(s)
- Nabila M Gomez Mansur
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas "Profesor Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina
| | - Liliana B Pena
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas "Profesor Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina
| | - Adrián E Bossio
- Instituto de Genética E. A. Favret, CICVyA, INTA. N. Repetto y de los Reseros s/n, Hurlingham, Argentina
| | - Dalia M Lewi
- Instituto de Genética E. A. Favret, CICVyA, INTA. N. Repetto y de los Reseros s/n, Hurlingham, Argentina
| | - Ailin Y Beznec
- Instituto de Genética E. A. Favret, CICVyA, INTA. N. Repetto y de los Reseros s/n, Hurlingham, Argentina
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California, California, USA
| | - Vicent Arbona
- Departament de Ciències Agràries i del Medi Natural, Ecofisiologia i Biotecnologia. Campus Riu Sec, Universitat Jaume I, Castelló de la Plana, Spain
| | - Aurelio Gómez-Cadenas
- Departament de Ciències Agràries i del Medi Natural, Ecofisiologia i Biotecnologia. Campus Riu Sec, Universitat Jaume I, Castelló de la Plana, Spain
| | - María P Benavides
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas "Profesor Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina
| | - Susana M Gallego
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas "Profesor Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina
| |
Collapse
|
67
|
Lashkary M, Moghaddam M, Asgharzade A, Tatari M. Titanium dioxide nanoparticle is involved in mitigating NaCl-induced Calendula officinalis L. by activation of antioxidant defense system and accumulation of osmolytes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:31-40. [PMID: 34087743 DOI: 10.1016/j.plaphy.2021.05.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
This study is aimed at evaluating the effects of TiO2NPs on biochemical and physiological parameters of marigold (Calendula officinalis L.) under NaCl stress. Treatments included TiO2NPs applied as foliar spraying in three levels (50, 100, and 200 mgL-1), no foliar application as control, and different NaCl levels (0, 30, 60, and 90 mM) by adding NaCl to irrigation water. According to the results, the application of different concentrations of TiO2 had various effects on the studied parameters. The use of 100 mgL-1 TiO2NPs increased flavonoid content of the leaves (at 30 mM NaCl), cell membrane injury (with no salinity), CAT and SOD activities (at 90 mM NaCl), and PPO activity (at 60 mM NaCl). On the other hand, using 100 mgL-1 TiO2NPs under salinity stress decreased MDA and H2O2 contents. Moreover, using 200 mgL-1 TiO2NPs increased photosynthetic pigments content, total flavonoid content of flowers, total soluble sugar, carotenoid content of flowers, and RWC (at the treatment with no salinity), aboveground and underground biomasses (at 30 mM and 60 mM NaCl, respectively), phenolic content and antioxidant activity (at 30 mM NaCl), and APX activity (at 90 mM NaCl). In conclusion, the findings of the present study indicated that TiO2NPs could be a useful material to mitigate the harmful effects of salinity stress. Furthermore, the TiO2NPs spraying could have beneficial effects on osmotic adjustment, biochemical compound, non-enzymatic and enzymatic antioxidant activities, and growth of marigold under NaCl stress conditions.
Collapse
Affiliation(s)
- Maryam Lashkary
- Department of Horticultural Science, Islamic Azad University, Shirvan Branch, Shirvan, Iran
| | - Mohammad Moghaddam
- Department of Horticultural Science and Landscape Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad, P.O. Box 91775-1163, Mashhad, Iran.
| | - Ahmad Asgharzade
- Department of Horticultural Science, Islamic Azad University, Shirvan Branch, Shirvan, Iran
| | - Maryam Tatari
- Department of Horticultural Science, Islamic Azad University, Shirvan Branch, Shirvan, Iran
| |
Collapse
|
68
|
El-Badri AMA, Batool M, Mohamed IAA, Khatab A, Sherif A, Wang Z, Salah A, Nishawy E, Ayaad M, Kuai J, Wang B, Zhou G. Modulation of salinity impact on early seedling stage via nano-priming application of zinc oxide on rapeseed (Brassica napus L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:376-392. [PMID: 34153882 DOI: 10.1016/j.plaphy.2021.05.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 05/07/2021] [Indexed: 06/13/2023]
Abstract
Salinity stress negatively affects the plant's developmental stages through micronutrient imbalance. As an essential micronutrient, ZnO can substitute Na+ absorption under saline conditions. Therefore, nanoparticles as technological innovation, improve the plant growth efficiency under biotic and abiotic stresses. Nano-priming has become widely applicable in agricultural research during the last decade. The current study was conducted to highlight the impact of ZnONPs priming on seedling biological processes under 150 mM of NaCl using two rapeseed cultivars during the early seedling stage. All concentrations of ZnONPs increased the germination parameters i.e., FG%, GR, VI (I), and VI (II). Meanwhile, the high concentration (ZnO 100%) showed the highest increase in shoot length (9.60% and 25.63%), root length (41.64% and 48.17%) for Yang You 9 and Zhong Shuang 11 over hydro-priming, respectively, as well as biomass. Additionally, nano-priming improved the proline, soluble sugar, and soluble protein contents as a result of osmotic protection modulation. Moreover, nano-priming alleviated ROS and biosynthesis pigments through the reduction of accumulated (H2O2) and (O2-), and chlorophyll degradation, respectively, also enhanced antioxidant adjustment via improving the plant defense system. Nano-priming substituted the Na+ by Zn2+, K+, and Ca2+, and compensated the deficit of micronutrients, thus reduced the Na+ toxicity in the cell cytosol. To track the effects of priming during seed imbibition, it noticed that ZnO 100% and ZnO 100%+S increased the Linoleic and Linolenic acids among the studied fatty acids composition by 12.02%, 7.59%, 13.27%, and 10.38% (Yang You 9), 7.42%, 2.77%, 2.93%, and 1.49% (Zhong Shuang 11) over the hydro-priming, respectively. Moreover, the gene expression patterns of BnCAM and BnPER reflected the enhancement of germination levels, notably under the influence of ZnO 100% priming, which increased the level of BnCAM by 70.42% and 111.9% in Yang You 9 and Zhong Shuang 11, respectively. Consequently, ZnO nano-priming enhanced the seedling development through the biosynthesis of pigments, osmotic protection, reduction of ROS accumulation, adjustment of antioxidant enzymes, and improvement of the nutrient absorption, thus enhancing the economic yield under saline conditions.
Collapse
Affiliation(s)
- Ali M A El-Badri
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Field Crops Research Institute, Agricultural Research Center, Egypt
| | - Maria Batool
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ibrahim A A Mohamed
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Botany Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Ahmed Khatab
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Field Crops Research Institute, Agricultural Research Center, Egypt
| | - Ahmed Sherif
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Field Crops Research Institute, Agricultural Research Center, Egypt
| | - Zongkai Wang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Akram Salah
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Elsayed Nishawy
- Desert Research Center, Genetics Resource Department, Egyptian Deserts Gene Bank, Cairo, 11735, Egypt
| | - Mohammed Ayaad
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Abo Zaabal, 13795, Cairo, Egypt
| | - Jie Kuai
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Bo Wang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Guangsheng Zhou
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
69
|
Yang L, Wang Y, Yang K. Klebsiella variicola improves the antioxidant ability of maize seedlings under saline-alkali stress. PeerJ 2021; 9:e11963. [PMID: 34434665 PMCID: PMC8359796 DOI: 10.7717/peerj.11963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/21/2021] [Indexed: 12/04/2022] Open
Abstract
Background Saline-alkali soil is mainly distributed in the northern and coastal areas of China. The Songnen Plain, located in the northeast of China, is a region with a relatively high concentration of saline-alkali soil and is also one of the more at-risk areas in the country. Every year, the increasing spread of saline-alkali soil areas has a serious impact on the growth of agricultural crops. The maize crop is sensitive to saline-alkali stress, which seriously affects its growth and development. Our previous study determined that Klebsiella variicola performs a variety of biological functions, as well as improves the rhizosphere microenvironment and promotes the growth and development of maize seedlings in saline-alkali soil environments. The present study further analyzed the mechanism that enables K. variicola to alleviate saline-alkali stress at the level of the antioxidant system. Methods The accumulation of O2− was observed directly via histochemical staining. The activities of several antioxidant enzymes were determined using the nitro blue tetrazolium and the guaiacol methods. The contents of non-enzymatic antioxidants were determined using the dithionitrobenzoic acid method. Results The contents of the superoxide anion and hydrogen peroxide in leaves and roots of maize seedlings increased under saline-alkali stress conditions. The higher level of reactive oxygen species increased the degree of membrane lipid peroxidation. There were differences in the degree of oxidative damage and performance of the antioxidant defence system in maize seedlings under saline-alkali stress. Following the application of increasing concentrations of K. variicola, the activity of antioxidant enzymes increased by 21.22%–215.46%, and the content of non-enzymatic antioxidants increased as well, the ratios of ASA/DHA and GSH/GSSG in leaves increased by 4.97% and 1.87 times, respectively, and those in roots increased by 3.24% and 1.60 times, respectively. The accumulation of reactive oxygen species was reduced, and the content of H2O2 decreased by 26.07%–46.97%. The content of O2− decreased by 20.18%–37.01%, which alleviated the oxidative damage to maize seedlings caused by saline-alkali stress. Conclusion K. variicola reduced ROS-induced peroxidation to membrane lipids and effectively alleviated the damage caused by saline-alkali stress by increasing the activities of antioxidant enzymes in maize seedlings, thus enhancing their saline-alkali tolerance. A bacterial concentration of 1×108 cfu/mL was optimal in each set of experiments.
Collapse
Affiliation(s)
- Lijuan Yang
- College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, People's Republic of China.,Key Laboratory of Crop Germplasm Improvement and Cultivation in Cold Regions of Education Department, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, People's Republic of China
| | - Yufeng Wang
- College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, People's Republic of China.,Key Laboratory of Crop Germplasm Improvement and Cultivation in Cold Regions of Education Department, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, People's Republic of China
| | - Kejun Yang
- College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, People's Republic of China.,Key Laboratory of Crop Germplasm Improvement and Cultivation in Cold Regions of Education Department, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, People's Republic of China
| |
Collapse
|
70
|
McIntyre KE, Bush DR, Argueso CT. Cytokinin Regulation of Source-Sink Relationships in Plant-Pathogen Interactions. FRONTIERS IN PLANT SCIENCE 2021; 12:677585. [PMID: 34504504 PMCID: PMC8421792 DOI: 10.3389/fpls.2021.677585] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/12/2021] [Indexed: 06/01/2023]
Abstract
Cytokinins are plant hormones known for their role in mediating plant growth. First discovered for their ability to promote cell division, this class of hormones is now associated with many other cellular and physiological functions. One of these functions is the regulation of source-sink relationships, a tightly controlled process that is essential for proper plant growth and development. As discovered more recently, cytokinins are also important for the interaction of plants with pathogens, beneficial microbes and insects. Here, we review the importance of cytokinins in source-sink relationships in plants, with relation to both carbohydrates and amino acids, and highlight a possible function for this regulation in the context of plant biotic interactions.
Collapse
Affiliation(s)
- Kathryn E. McIntyre
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, United States
- Graduate Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Daniel R. Bush
- Department of Biology, Colorado State University, Fort Collins, CO, United States
| | - Cristiana T. Argueso
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, United States
- Graduate Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
71
|
Gohari G, Panahirad S, Sepehri N, Akbari A, Zahedi SM, Jafari H, Dadpour MR, Fotopoulos V. Enhanced tolerance to salinity stress in grapevine plants through application of carbon quantum dots functionalized by proline. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:42877-42890. [PMID: 33829379 DOI: 10.1007/s11356-021-13794-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
Salinity has destructive impacts in plant production; therefore, application of new approaches such as nanotechnology and plant priming is attracting increasing attention as an innovative means to ameliorate salt stress effects. Considering the unique properties and recorded beneficial influence of carbon quantum dots (CQDs) and proline in plant growth and physiological parameters when applied individually, their conjugation in the form of carbon quantum dot nanoparticles functionalized by proline (Pro-CQDs NPs) could lead to synergistic effects. Accordingly, an experiment was conducted to evaluate the impact of this advanced nanomaterial (Pro-CQDs NPs) as a chemical priming agent, in grapevine plants cv. 'Rasha'. For this purpose, proline, CQDs, and Pro-CQDs NPs at three concentrations (0, 50, and 100 mg L-1) were applied exogenously 48 h prior to salinity stress (0 and 100 mM NaCl) that was imposed for a month. Three days after imposing salt stress, an array of biochemical measurements was recorded, while agronomic and some physiological parameters were noted at the end of the stress period. Results revealed that proline treatment at both concentrations, as well as CQDs and Pro-CQDs NPs at low concentration, positively affected grapevine plants under both non-stress and stress conditions. Specifically, the application of proline at 100 mg L-1 and Pro-CQDs NPs at 50 mg L-1 resulted in optimal performance identifying 50 mg L-1 Pro-CQDs NPs as the optimal treatment. Proline treatment at 100 mg L-1 increased leaf fresh weight (FW) and dry weight (DW); chl a, b, and proline content; SOD activity under both non-stress and stress conditions; Y (II) under salinity and carotenoid content; and CAT activity under control conditions. Pro-CQDs NP treatment at 50 mg L-1 enhanced total phenol, anthocyanin, and Fv/Fo, as well as APX and GP activities under both conditions, while increasing carotenoid, Y (II), Fv/Fo, and CAT activity under salinity. Furthermore, it decreased MDA and H2O2 contents at both conditions and EL and Y (NO) under salt stress. Overall, conjugation of CQDs with proline at 50 mg L-1 resulted in further improving the protective effect of proline application at 100 mg L-1. Therefore, functionalization of NPs with chemical priming agents appears to be an effective means of optimizing plant-priming approaches towards efficient amelioration of abiotic stress-related damage in plants.
Collapse
Affiliation(s)
- Gholamreza Gohari
- Department of Horticultural Sciences, Faculty of Agriculture, University of Maragheh, Maragheh, Iran.
| | - Sima Panahirad
- Department of Horticultural Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Nasrin Sepehri
- Department of Horticultural Sciences, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | - Ali Akbari
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Seyed Morteza Zahedi
- Department of Horticultural Sciences, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | - Hessam Jafari
- Department of Organic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Mohammad Reza Dadpour
- Department of Horticultural Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| |
Collapse
|
72
|
El-Badri AM, Batool M, A. A. Mohamed I, Wang Z, Khatab A, Sherif A, Ahmad H, Khan MN, Hassan HM, Elrewainy IM, Kuai J, Zhou G, Wang B. Antioxidative and Metabolic Contribution to Salinity Stress Responses in Two Rapeseed Cultivars during the Early Seedling Stage. Antioxidants (Basel) 2021; 10:antiox10081227. [PMID: 34439475 PMCID: PMC8389040 DOI: 10.3390/antiox10081227] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/13/2022] Open
Abstract
Measuring metabolite patterns and antioxidant ability is vital to understanding the physiological and molecular responses of plants under salinity. A morphological analysis of five rapeseed cultivars showed that Yangyou 9 and Zhongshuang 11 were the most salt-tolerant and -sensitive, respectively. In Yangyou 9, the reactive oxygen species (ROS) level and malondialdehyde (MDA) content were minimized by the activation of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) for scavenging of over-accumulated ROS under salinity stress. Furthermore, Yangyou 9 showed a significantly higher positive correlation with photosynthetic pigments, osmolyte accumulation, and an adjusted Na+/K+ ratio to improve salt tolerance compared to Zhongshuang 11. Out of 332 compounds identified in the metabolic profile, 225 metabolites were filtrated according to p < 0.05, and 47 metabolites responded to salt stress within tolerant and sensitive cultivars during the studied time, whereas 16 and 9 metabolic compounds accumulated during 12 and 24 h, respectively, in Yangyou 9 after being sown in salt treatment, including fatty acids, amino acids, and flavonoids. These metabolites are relevant to metabolic pathways (amino acid, sucrose, flavonoid metabolism, and tricarboxylic acid cycle (TCA), which accumulated as a response to salinity stress. Thus, Yangyou 9, as a tolerant cultivar, showed improved antioxidant enzyme activity and higher metabolite accumulation, which enhances its tolerance against salinity. This work aids in elucidating the essential cellular metabolic changes in response to salt stress in rapeseed cultivars during seed germination. Meanwhile, the identified metabolites can act as biomarkers to characterize plant performance in breeding programs under salt stress. This comprehensive study of the metabolomics and antioxidant activities of Brassica napus L. during the early seedling stage is of great reference value for plant breeders to develop salt-tolerant rapeseed cultivars.
Collapse
Affiliation(s)
- Ali Mahmoud El-Badri
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (A.M.E.-B.); (M.B.); (I.A.A.M.); (Z.W.); (A.K.); (A.S.); (M.N.K.); (J.K.); (G.Z.)
- Field Crops Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt; (H.M.H.); (I.M.E.)
| | - Maria Batool
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (A.M.E.-B.); (M.B.); (I.A.A.M.); (Z.W.); (A.K.); (A.S.); (M.N.K.); (J.K.); (G.Z.)
| | - Ibrahim A. A. Mohamed
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (A.M.E.-B.); (M.B.); (I.A.A.M.); (Z.W.); (A.K.); (A.S.); (M.N.K.); (J.K.); (G.Z.)
- Botany Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Zongkai Wang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (A.M.E.-B.); (M.B.); (I.A.A.M.); (Z.W.); (A.K.); (A.S.); (M.N.K.); (J.K.); (G.Z.)
| | - Ahmed Khatab
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (A.M.E.-B.); (M.B.); (I.A.A.M.); (Z.W.); (A.K.); (A.S.); (M.N.K.); (J.K.); (G.Z.)
- Field Crops Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt; (H.M.H.); (I.M.E.)
| | - Ahmed Sherif
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (A.M.E.-B.); (M.B.); (I.A.A.M.); (Z.W.); (A.K.); (A.S.); (M.N.K.); (J.K.); (G.Z.)
- Field Crops Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt; (H.M.H.); (I.M.E.)
| | - Hasan Ahmad
- National Gene Bank, Agricultural Research Center (ARC), Giza 12619, Egypt;
| | - Mohammad Nauman Khan
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (A.M.E.-B.); (M.B.); (I.A.A.M.); (Z.W.); (A.K.); (A.S.); (M.N.K.); (J.K.); (G.Z.)
| | - Hamada Mohamed Hassan
- Field Crops Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt; (H.M.H.); (I.M.E.)
| | - Ibrahim M. Elrewainy
- Field Crops Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt; (H.M.H.); (I.M.E.)
| | - Jie Kuai
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (A.M.E.-B.); (M.B.); (I.A.A.M.); (Z.W.); (A.K.); (A.S.); (M.N.K.); (J.K.); (G.Z.)
| | - Guangsheng Zhou
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (A.M.E.-B.); (M.B.); (I.A.A.M.); (Z.W.); (A.K.); (A.S.); (M.N.K.); (J.K.); (G.Z.)
| | - Bo Wang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (A.M.E.-B.); (M.B.); (I.A.A.M.); (Z.W.); (A.K.); (A.S.); (M.N.K.); (J.K.); (G.Z.)
- Correspondence: ; Tel.:+86-027-8728-2130 or +86-137-0719-2880
| |
Collapse
|
73
|
Palchetti MV, Reginato M, Llanes A, Hornbacher J, Papenbrock J, Barboza GE, Luna V, Cantero JJ. New insights into the salt tolerance of the extreme halophytic species Lycium humile (Lycieae, Solanaceae). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 163:166-177. [PMID: 33848929 DOI: 10.1016/j.plaphy.2021.03.054] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/27/2021] [Indexed: 05/27/2023]
Abstract
Knowledge about Solanaceae species naturally adapted to salinity is scarce, despite the fact that a considerable number of Solanaceae has been reported growing in saline environments. Lycium humile Phil. inhabits extreme saline soils in the Altiplano-Puna region (Central Andes, South America) and represents a promising experimental model to study salt tolerance in Solanaceae plants. Seeds, leaves and roots were collected from a saline environment (Salar del Diablo, Argentina). Seeds were scarified and 30 days after germination salt treatments were applied by adding NaCl salt pulses (up to 750 or 1000 mM). Different growth parameters were evaluated, and leaf spectral reflectance, endogenous phytohormone levels, antioxidant capacity, proline and elemental content, and morpho-anatomical characteristics in L. humile under salinity were analyzed both in controlled and natural conditions. The multiple salt tolerance mechanisms found in this species are mainly the accumulation of the phytohormone abscisic acid, the increase of the antioxidant capacity and proline content, together with the development of a large leaf water-storage parenchyma that allows Na+ accumulation and an efficient osmotic adjustment. Lycium humile is probably one of the most salt-tolerant Solanaceae species in the world, and, in controlled conditions, can effectively grow at high NaCl concentrations (at least, up to 750 mM NaCl) but also, in the absence of salts in the medium. Therefore, we propose that natural distribution of L. humile is more related to water availability, as a limiting factor of growth in Altiplano-Puna saline habitats, than to high salt concentrations in the soils.
Collapse
Affiliation(s)
- M Virginia Palchetti
- Instituto Multidisciplinario de Biología Vegetal, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Cba, Argentina; Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Cba, Argentina.
| | - Mariana Reginato
- Instituto de Investigaciones Agrobiotecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, X5804BYA, Río Cuarto, Cba, Argentina
| | - Analía Llanes
- Instituto de Investigaciones Agrobiotecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, X5804BYA, Río Cuarto, Cba, Argentina
| | - Johann Hornbacher
- Institute of Botany, Leibniz University Hannover, Herrenhäuserstr. 2, D-30419, Hannover, Germany
| | - Jutta Papenbrock
- Institute of Botany, Leibniz University Hannover, Herrenhäuserstr. 2, D-30419, Hannover, Germany
| | - Gloria E Barboza
- Instituto Multidisciplinario de Biología Vegetal, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Cba, Argentina; Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Cba, Argentina
| | - Virginia Luna
- Instituto de Investigaciones Agrobiotecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, X5804BYA, Río Cuarto, Cba, Argentina
| | - Juan José Cantero
- Instituto Multidisciplinario de Biología Vegetal, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Cba, Argentina; Departamento de Biología Agrícola, Facultad de Agronomía y Veterinaria, Universidad Nacional de Río Cuarto, X5804BYA, Río Cuarto, Cba, Argentina
| |
Collapse
|
74
|
Bijalwan P, Jeddi K, Saini I, Sharma M, Kaushik P, Hessini K. Mitigation of saline conditions in watermelon with mycorrhiza and silicon application. Saudi J Biol Sci 2021; 28:3678-3684. [PMID: 34220218 PMCID: PMC8241603 DOI: 10.1016/j.sjbs.2021.05.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 11/16/2022] Open
Abstract
Salt stress effects agronomic traits and uptake of minerals. Salt stress also enhanced the oxidative stress biomarkers like hydrogen peroxide (H2O2). Supplementation of Mycorrhiza enhances the agronomical traits and alleviates slat stress. Silicon application also mitigates the salt stress through modulating antioxidant enzymes. The combination of Mycorrhiza and Silicon were more effective than their individual effect.
Citrullus lanatus L. is critical vegetable for salinity stress. Arbuscular mycorrhizal fungi (AMF) and silicon treatments are known to help as bio-ameliorator of saline soils that can improve salinity tolerance in plants. But their combined effect has never been examined on watermelon therefore, present study investigated the effect of inoculation with the Arbuscular mycorrhizal fungi (AMF) along with silicon on the growth and yield parameters, antioxidant enzyme activities, pigment and mineral content of Citrullus lanatus L. plants grown during salt stress conditions. Outcomes from the study point out that salt stressed watermelon plants showed the best morphological and biochemical values when inoculated with Silicon (4 mM) + Glomus mosseae + Gigaspora gigantean. In addition, the plants inoculated by similar treatment demonstrated less osmotic activity, electrolyte leakage, as well as peroxide content. Treatments comprising Silicon (4 mM) with either Glomus mosseae and Gigaspora gigantean also performed significantly similar for most of the traits studied in the present investigation and better than the treatment only with either one of Glomus mosseae and Gigaspora gigantean. Antioxidant efficiency of melon was certainly appreciably enhanced after incubation with AMF and Si combination in salinity stress. Overall, the application of mycorrhiza and silicon can be considered to overcome the salinity stress in watermelon.
Collapse
Affiliation(s)
- Priyanka Bijalwan
- Defence Institute of Bio-Energy Research, DRDO, Pithoragarh, Uttarakhand 262501, India
| | - Kaouthar Jeddi
- Laboratory of Plant Biodiversity and Dynamic of Ecosystems in Arid Area, Faculty of Sciences of Sfax, B.P. 1171, Sfax 3000, Tunisia
| | - Ishan Saini
- Department of Botany, Kurukshetra University, Kurukshetra, 136118 Haryana, India
| | - Meenakshi Sharma
- Department of Botany, Kurukshetra University, Kurukshetra, 136118 Haryana, India
| | - Prashant Kaushik
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Kamel Hessini
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
75
|
Pal KK, Dey R, Sherathia DN, Devidayal, Mangalassery S, Kumar A, Rupapara RB, Mandaliya M, Rawal P, Bhadania RA, Thomas M, Patel MB, Maida P, Nawade BD, Ahmad S, Dash P, Radhakrishnan T. Alleviation of Salinity Stress in Peanut by Application of Endophytic Bacteria. Front Microbiol 2021; 12:650771. [PMID: 33936008 PMCID: PMC8079962 DOI: 10.3389/fmicb.2021.650771] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/18/2021] [Indexed: 01/24/2023] Open
Abstract
The development of salinity affects 7% of the world’s land surface, acting as a major constraint to crop productivity. This study attempted to use the co-evolving endophytes of peanut to alleviate salinity stress and enhance the yield of peanut. Diverse and different tissue colonizing endophytes were isolated from peanut and screened in vitro by seed germination bioassay imposing gradients of salinity, with two cultivars TG37A (susceptible) and GG2 (moderately resistant), in potted conditions using saline irrigation water. Finally, nine endophytes capable of producing IAA and ACC-deaminase, promoting root growth and yield in potted conditions were selected for further evaluation in field conditions. They were evaluated with saline water (1.5–2.0 dS/m) in saline soil with susceptible cultivar TG37A. Simultaneously, three endophytes (Bacillus firmus J22N; Bacillus tequilensis SEN15N; and Bacillus sp. REN51N) were evaluated with two cultivars, GG2 and TG37A, during rainy and post-rainy seasons with elevated salinity. The application of endophytes like Bacillus firmus J22N and Bacillus sp. REN51N enhanced the pod and haulm yield of peanuts by 14–19% across cultivars, salinity, and seasons. In addition, there was significant modulation in parameters like relative water content; production of enzymes like superoxide dismutase (SOD), glutathione reductase (GR), catalase (CAT), ascorbate peroxidase (APX), lipid peroxidase (POD), and H2O2 content in leaf; and uptake of potassium. The activities of the enzymes involved in scavenging reactive oxygen species (ROS) increased with salinity, and further increased with endophytes like Bacillus firmus J22N, Bacillus tequilensis SEN15N, and Bacillus sp. REN51N. There was an enhanced accumulation of proline, reduced level of phenol and H2O2, and enhanced uptake of potassium with the inoculation of endophytes. This improved scavenging capacity of plants by endophytic modulation of ROS scavengers, uptake of K, production of ACC deaminase and IAA, root and biomass growth, modulation in relative water content, and enhanced accumulation of osmoprotectant might be the reasons of alleviation of salinity stress. Endophytes could have alleviated salinity stress in peanuts, indicating the mechanisms and potential of peanuts at the field level. These endophytes could be applied to bring agricultural sustainability to salinity-affected areas in the future. Furthermore, few genera viz. Kocuria, Brevundimonas, Agrococcus, Dietzia, and Kytococcus were observed in peanut tissue for the first time.
Collapse
Affiliation(s)
- Kamal K Pal
- Section of Microbiology, ICAR-Directorate of Groundnut Research, Junagadh, India
| | - Rinku Dey
- Section of Microbiology, ICAR-Directorate of Groundnut Research, Junagadh, India
| | - Dharmesh N Sherathia
- Section of Microbiology, ICAR-Directorate of Groundnut Research, Junagadh, India
| | - Devidayal
- ICAR-Central Arid Zone Research Institute, Kukma, India
| | | | - Arvind Kumar
- Division of Crop Improvement, ICAR-Central Soil Salinity Research Institute, Karnal, India
| | - Rupal B Rupapara
- Section of Microbiology, ICAR-Directorate of Groundnut Research, Junagadh, India
| | - Mona Mandaliya
- Section of Microbiology, ICAR-Directorate of Groundnut Research, Junagadh, India
| | - Priya Rawal
- Section of Microbiology, ICAR-Directorate of Groundnut Research, Junagadh, India
| | - Roshani A Bhadania
- Section of Microbiology, ICAR-Directorate of Groundnut Research, Junagadh, India
| | - Manesh Thomas
- Section of Microbiology, ICAR-Directorate of Groundnut Research, Junagadh, India
| | - Mili B Patel
- Section of Microbiology, ICAR-Directorate of Groundnut Research, Junagadh, India
| | - Priyanka Maida
- Section of Microbiology, ICAR-Directorate of Groundnut Research, Junagadh, India
| | - Bhagwat D Nawade
- Section of Microbiology, ICAR-Directorate of Groundnut Research, Junagadh, India
| | - Suhail Ahmad
- Section of Microbiology, ICAR-Directorate of Groundnut Research, Junagadh, India
| | - Pitabas Dash
- Section of Microbiology, ICAR-Directorate of Groundnut Research, Junagadh, India
| | - T Radhakrishnan
- Section of Microbiology, ICAR-Directorate of Groundnut Research, Junagadh, India
| |
Collapse
|
76
|
Wuxal amino (Bio stimulant) improved growth and physiological performance of tomato plants under salinity stress through adaptive mechanisms and antioxidant potential. Saudi J Biol Sci 2021; 28:3204-3213. [PMID: 34121857 PMCID: PMC8176060 DOI: 10.1016/j.sjbs.2021.04.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 12/28/2022] Open
Abstract
In the present study, ameliorative capabilities of wuxal amino (bio stimulant) under salt stress has been investigated through adaptive mechanisms and antioxidant potential in tomato plants. In the experiment, two different concentrations (2 cm L-1 and 3 cm L-1) of wuxal amino through foliar application and soil irrigation were applied to the salt (150 mM) treated tomato plants and then morphological traits, photosynthetic pigments, osmolytes, secondary metabolites, oxidative stress and antioxidant enzymes activity were assessed at 60 days after planting. The results revealed that salt stress decreased the growth parameters, photosynthetic pigments, soluble sugars and soluble protein whereas, content of proline, ascorbic acid, total phenols, malondialdehyde, hydrogen peroxide and the activity of antioxidant enzymes activity increased under salt stress. Moreover, Wuxal amino application through foliar or soil to salt stressed plants improved morphological traits, photosynthetic pigments, osmolytes, total phenol and antioxidant enzymes activity. Interestingly, the deleterious impact of salinity on tomato plants were significantly reduced and it can be evident from reduced MDA and H2O2 levels. These responses varied with the mode (foliar or soil) of application of Wuxal amino under different concentrations (2 cm L-1 and 3 cm L-1). It was concluded that application of Wuxal amino (2 cm L-1, foliar) and (3 cm L-1; soil) proved best and could be commercially used as eco-friendly tool for the protection of tomato plants grown under salinity stress.
Collapse
|
77
|
Ahanger MA, Qi M, Huang Z, Xu X, Begum N, Qin C, Zhang C, Ahmad N, Mustafa NS, Ashraf M, Zhang L. Improving growth and photosynthetic performance of drought stressed tomato by application of nano-organic fertilizer involves up-regulation of nitrogen, antioxidant and osmolyte metabolism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 216:112195. [PMID: 33823368 DOI: 10.1016/j.ecoenv.2021.112195] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 05/20/2023]
Abstract
Organic fertilizer usage is been introduced into agricultural practices for preventing the damaging effects of chemical fertilizers. Present study investigated the beneficial role of organic fertilizer (nano-vermicompost) on the growth, oxidative stress parameters, antioxidant and nitrogen metabolism, osmolyte accumulation and mineral elements in tomato under drought stress. Drought stress resulted in reduced growth and biomass accumulation by triggering oxidative stress due to excess accumulation of reactive oxygen species (ROS) and reduced mineral uptake. Application of nano-vermicompost proved significantly beneficial in improving growth and mitigating the drought induced growth decline. Nano-vermicompost increased growth and dry matter content and ameliorated the decline in chlorophyll contents, photosynthesis and PSII activity more significantly at higher concentration (100 mg kg-1 soil). ROS accumulation was significantly reduced by nano-vermicompost application thereby enhancing the membrane stability under normal as well as drought conditions. Furthermore, lipid peroxidation and activities of protease and lypoxygenase were significantly reduced. Drought up-regulated antioxidant system and application of nano-vermicompost further enhanced the activities of antioxidant enzymes and the contents of non-enzymatic antioxidant components. Accumulation of osmolytes including proline, glycine betaine and sugars increased significantly due to nano-vermicompost application. Besides, decline in the activity of nitrate reductase and content of essential mineral elements like nitrogen, potassium and phosphorous was also ameliorated by nano-vermicompost application.
Collapse
Affiliation(s)
| | - Maodong Qi
- College of Life Sciences, Northwest A&F University, Yaangling, Shaanxi, China
| | - Ziguang Huang
- College of Life Sciences, Northwest A&F University, Yaangling, Shaanxi, China
| | - Xuedong Xu
- College of Life Sciences, Northwest A&F University, Yaangling, Shaanxi, China
| | - Naheeda Begum
- College of Life Sciences, Northwest A&F University, Yaangling, Shaanxi, China
| | - Cheng Qin
- College of Life Sciences, Northwest A&F University, Yaangling, Shaanxi, China
| | - Chenxi Zhang
- Institute of Molecular Biology and Biotechnology, Zoology, The University of Lahore, Lahore, Pakistan
| | - Nadeem Ahmad
- College of Life Sciences, Northwest A&F University, Yaangling, Shaanxi, China; Islamabad Model College for Boys, Federal Directorate of Education, H-9, Islamabad, Pakistan
| | - Nabil S Mustafa
- Department of Pomology, National Research Centre, Cairo, Egypt
| | | | - Lixin Zhang
- College of Life Sciences, Northwest A&F University, Yaangling, Shaanxi, China.
| |
Collapse
|
78
|
Niharika, Singh NB, Khare S, Singh A, Yadav V, Yadav RK. Kinetin modulates physiological and biochemical attributes of Vigna radiata L. seedlings exposed to 2-benzoxazolinone stress. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00734-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
79
|
Contribution of Rhizobium–Legume Symbiosis in Salt Stress Tolerance in Medicago truncatula Evaluated through Photosynthesis, Antioxidant Enzymes, and Compatible Solutes Accumulation. SUSTAINABILITY 2021. [DOI: 10.3390/su13063369] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The effects of salt stress on the growth, nodulation, and nitrogen (N) fixation of legumes are well known, but the relationship between symbiotic nitrogen fixation (SNF) driven by rhizobium–legume symbiosis and salt tolerance in Medicago truncatula is not well studied. The effects of the active nodulation process on salt stress tolerance of Medicago truncatula were evaluated by quantifying the compatible solutes, soluble sugars, and antioxidants enzymes, as well as growth and survival rate of plants. Eight weeks old plants, divided in three groups: (i) no nodules (NN), (ii) inactive nodules (IN), and (iii) active nodules (AN), were exposed to 150 mM of NaCl salt stress for 0, 8, 16, 24, 32, 40, and 48 h in hydroponic system. AN plants showed a higher survival rate (30.83% and 38.35%), chlorophyll contents (37.18% and 44.51%), and photosynthesis compared to IN and NN plants, respectively. Improved salt tolerance in AN plants was linked with higher activities of enzymatic and nonenzymatic antioxidants and higher K+ (20.45% and 39.21%) and lower Na+ accumulations (17.54% and 24.51%) when compared with IN and NN plants, respectively. Additionally, higher generation of reactive oxygen species (ROS) was indicative of salt stress, causing membrane damage as revealed by higher electrolyte leakage and lipid peroxidation. All such effects were significantly ameliorated in AN plants, showing higher compatible solutes (proline, free amino acids, glycine betaine, soluble sugars, and proteins) and maintaining higher relative water contents (61.34%). This study advocates positive role of Rhizobium meliloti inoculation against salt stress through upregulation of antioxidant system and a higher concentration of compatible solutes.
Collapse
|
80
|
Sinetova MA, Sidorov RA, Medvedeva AA, Starikov AY, Markelova AG, Allakhverdiev SI, Los DA. Effect of salt stress on physiological parameters of microalgae Vischeria punctata strain IPPAS H-242, a superproducer of eicosapentaenoic acid. J Biotechnol 2021; 331:63-73. [PMID: 33727081 DOI: 10.1016/j.jbiotec.2021.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/17/2021] [Accepted: 03/01/2021] [Indexed: 01/31/2023]
Abstract
The strain IPPAS H-242 is an eustigmatophycean alga with good growth characteristics and high content of the long chain polyunsaturated eicosapentaenoic fatty acid (EPA) - a very-long-chain fatty acid with high nutraceutical value. In this study, based on 18S rRNA gene and ITS1-5.8S-ITS2 sequences the strain IPPAS H-242 was identified as an authentic strain of Vischeria punctata. The effect of salt stress (0.5 M NaCl) on growth, cell morphology, ultrastructure, and biochemical composition with the emphasis on the fatty acid (FA) profile was investigated in batch cultures. Under salt stress, biomass accumulation and cell division were severely inhibited; cells were bigger, with higher chloroplast volume and numerous mitochondria, they had more proteins (73 % from the initial concentration as compared to 23 % in control) and their lipids had higher EPA proportion (13.6 % of total FA as compared to 6.4 % of total FA in control). In salt-stressed cells, thylakoid organization and photosynthetic activity were impaired, and D1 protein content decreased to trace amounts. In spite of an increase in EPA proportion in total FA, salt stress causes a decrease in total EPA productivity (49 mg/L as compared to 130 mg/L in control).
Collapse
Affiliation(s)
- Maria A Sinetova
- K.A. Timiryazev Institute of Plant Physiology RAS, Botanicheskaya str., 35, Moscow, 127276, Russia.
| | - Roman A Sidorov
- K.A. Timiryazev Institute of Plant Physiology RAS, Botanicheskaya str., 35, Moscow, 127276, Russia
| | - Anastasiya A Medvedeva
- K.A. Timiryazev Institute of Plant Physiology RAS, Botanicheskaya str., 35, Moscow, 127276, Russia
| | - Alexander Y Starikov
- K.A. Timiryazev Institute of Plant Physiology RAS, Botanicheskaya str., 35, Moscow, 127276, Russia
| | - Alexandra G Markelova
- K.A. Timiryazev Institute of Plant Physiology RAS, Botanicheskaya str., 35, Moscow, 127276, Russia
| | - Suleyman I Allakhverdiev
- K.A. Timiryazev Institute of Plant Physiology RAS, Botanicheskaya str., 35, Moscow, 127276, Russia.
| | - Dmitry A Los
- K.A. Timiryazev Institute of Plant Physiology RAS, Botanicheskaya str., 35, Moscow, 127276, Russia
| |
Collapse
|
81
|
Rehman HU, Alharby HF, Bamagoos AA, Abdelhamid MT, Rady MM. Sequenced application of glutathione as an antioxidant with an organic biostimulant improves physiological and metabolic adaptation to salinity in wheat. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 158:43-52. [PMID: 33296845 DOI: 10.1016/j.plaphy.2020.11.041] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/06/2020] [Indexed: 05/10/2023]
Abstract
Globally, salinity threatens the agricultural crops productivity by inhibiting plant growth and development through osmotic stress and ionic cytotoxicity. The polygenic nature of salinity offers several pragmatic shotgun approaches to improve salinity tolerance. The present study investigated the potential of glutathione (GSH; 1 mM) as an antioxidant and moringa leaf extract (MLE; 3%) as an organic biostimulant applied in sequence as seed priming and foliar spray on wheat growth, physiology and metabolic adaptation under saline conditions (9.16 dS m-1). Plants without any treatment and water spray (H2O) were considered controls. Salinity induced osmotic stress reduced the plant tissue water status and photosynthetic performance, and perturbed ionic (K+/Na+, Ca2+/Na+, K++Ca2+/Na+) and hormonal (IAA, GA3, zeatin, ABA) homeostasis, consequently affected growth and yield in wheat. Sequenced applied MLE and/or GSH improved osmotic stress tolerance by stabilizing membrane integrity and decreasing electrolyte leakage. These positive results were owed to enhanced endogenous GSH and ascorbate levels. Improved tissue water status was attributed to increased osmotic adjustment, better ionic and hormonal homeostasis contributed to improving photosynthetic efficiency and growth under salinity. Exogenously applied MLE and GSH sequences improved grain yield, which was attributed to the maintenance of green leaf area and delayed senescence associated with an increase in photosynthetic pigments and chlorophyll fluorescence traits. In crux, exogenous applied MLE and/or GSH can be the best physiological strategy to reduce the deleterious effects of salinity and improve physiological and metabolic adaptation in wheat under saline field conditions.
Collapse
Affiliation(s)
- Hafeez Ur Rehman
- Department of Agronomy, University of Agriculture, Faisalabad, 38040, Pakistan.
| | - Hesham F Alharby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Atif A Bamagoos
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Magdi T Abdelhamid
- Botany Department, National Research Centre, 33 Al Behoos Street, 12622, Dokki, Cairo, Egypt
| | - Mostafa M Rady
- Botany Department, Faculty of Agriculture, Fayoum University, 63514, Fayoum, Egypt
| |
Collapse
|
82
|
Zulfiqar F, Ashraf M. Bioregulators: unlocking their potential role in regulation of the plant oxidative defense system. PLANT MOLECULAR BIOLOGY 2021; 105:11-41. [PMID: 32990920 DOI: 10.1007/s11103-020-01077-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/23/2020] [Indexed: 05/21/2023]
Abstract
Plant bioregulators play an important role in managing oxidative stress tolerance in plants. Utilizing their ability in stress sensitive crops through genetic engineering will be a meaningful approach to manage food production under the threat of climate change. Exploitation of the plant defense system against oxidative stress to engineer tolerant plants in the climate change scenario is a sustainable and meaningful strategy. Plant bioregulators (PBRs), which are important biotic factors, are known to play a vital role not only in the development of plants, but also in inducing tolerance in plants against various environmental extremes. These bioregulators include auxins, gibberellins, cytokinins, abscisic acid, brassinosteroids, polyamines, strigolactones, and ascorbic acid and provide protection against the oxidative stress-associated reactive oxygen species through modulation or activation of a plant's antioxidant system. Therefore, exploitation of their functioning and accumulation is of considerable significance for the development of plants more tolerant of harsh environmental conditions in order to tackle the issue of food security under the threat of climate change. Therefore, this review summarizes a new line of evidence that how PBRs act as inducers of oxidative stress resistance in plants and how they could be modulated in transgenic crops via introgression of genes. Reactive oxygen species production during oxidative stress events and their neutralization through an efficient antioxidants system is comprehensively detailed. Further, the use of exogenously applied PBRs in the induction of oxidative stress resistance is discussed. Recent advances in engineering transgenic plants with modified PBR gene expression to exploit the plant defense system against oxidative stress are discussed from an agricultural perspective.
Collapse
Affiliation(s)
- Faisal Zulfiqar
- Institute of Horticultural Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan.
| | | |
Collapse
|
83
|
Panda A, Rangani J, Parida AK. Unraveling salt responsive metabolites and metabolic pathways using non-targeted metabolomics approach and elucidation of salt tolerance mechanisms in the xero-halophyte Haloxylon salicornicum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 158:284-296. [PMID: 33239222 DOI: 10.1016/j.plaphy.2020.11.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/11/2020] [Indexed: 05/22/2023]
Abstract
Haloxylon salicornicum is a xero-halophyte growing in saline and arid regions of the world. Metabolite profiling was carried out in shoot of both control and salinity treated (400 mM NaCl) samples by GC-QTOF-MS and HPLC-DAD analysis to decipher the salinity tolerance mechanism in this xero-halophyte. The present study investigates the alteration in metabolite profile of H. salicornicum that support the salinity tolerance of the plant. The metabolomic analysis of H. salicornicum shoot identified 56 metabolites, of which 47 metabolites were significantly changed in response to salinity. These metabolites were mainly included in the category of amino acids, organic acids, amines, sugar alcohols, sugars, fatty acids, alkaloids, and phytohormones. In response to salinity, most of the amino acids were down-regulated except alanine, phenylalanine, lysine, and tyramine, which were up-regulated in H. salicornicum. In contrast to amino acids, most sugars and organic acids were up-regulated in response to salinity. Correlation and pathway enrichment analysis identified important biological pathways playing significant roles in conferring salt tolerance of H. salicornicum. These biological pathways include amino sugar and nucleotide sugar metabolism, citrate cycle (TCA cycle), starch and sucrose metabolism, phenylalanine metabolism, cysteine, methionine, glycine, serine, and threonine metabolism, etc. The data presented here suggest that the modulations of various metabolic pathways facilitate H. salicornicum to survive and grow optimally even under high salinity condition. This study offers comprehensive information on metabolic adaptations and overall salt tolerance mechanisms in H. salicornicum. The information gained through this study will provide guidance to plant breeders and molecular biologists to develop salinity tolerant crop varieties.
Collapse
Affiliation(s)
- Ashok Panda
- Plant Omics Division, CSIR- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, 364002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Jaykumar Rangani
- Plant Omics Division, CSIR- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, 364002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Asish Kumar Parida
- Plant Omics Division, CSIR- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, 364002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| |
Collapse
|
84
|
Wang X, An M, Wang K, Fan H, Shi J, Chen K. Effects of Organic Polymer Compound Material on K + and Na + Distribution and Physiological Characteristics of Cotton Under Saline and Alkaline Stresses. FRONTIERS IN PLANT SCIENCE 2021; 12:636536. [PMID: 34122466 PMCID: PMC8194489 DOI: 10.3389/fpls.2021.636536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/29/2021] [Indexed: 05/05/2023]
Abstract
Soil salinization and alkalization greatly restrict crop growth and yield. In this study, NaCl (8 g kg-1) and Na2CO3 (8 g kg-1) were used to create saline stress and alkaline stress on cotton in pot cultivation in the field, and organic polymer compound material (OPCM) and stem girdling were applied before cotton sowing and at flowering and boll-forming stage, respectively, aiming to determine the effects of OPCM on K+ and Na+ absorption and transport and physiological characteristics of cotton leaf and root. The results showed that after applying the OPCM, the Na+ content in leaf of cotton under saline stress and alkaline stress were decreased by 7.72 and 6.49%, respectively, the K+/Na+ ratio in leaf were increased by 5.65 and 19.10%, respectively, the Na+ content in root were decreased by 9.57 and 0.53%, respectively, the K+/Na+ ratio in root were increased by 65.77 and 55.84%, respectively, and the transport coefficients of K+ and Na+ from leaf to root were increased by 39.59 and 21.38%, respectively. The activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD), and the relative electrical conductivity (REC) in cotton leaf were significantly increased, while the content of malondialdehyde (MDA) was decreased; but the changes in those in root were not significant. The boll weights were increased by 11.40 and 13.37%, respectively, compared with those for the control. After stem girdling, the application of OPCM still promoted the ion transport of cotton organs; moreover, the CAT activity in root was increased by 25.09% under saline stress, and the SOD activity in leaf and CAT in root were increased by 42.22 and 6.91%, respectively under alkaline stress. Therefore, OPCM can significantly change the transport of K+ and Na+ to maintain the K+ and Na+ homeostasis in leaf and root, and regulate physiological and biochemical indicators to alleviate the stress-induced damage. Besides, the regulation effect of OPCM on saline stress was better than that on alkaline stress.
Collapse
|
85
|
Fang S, Hou X, Liang X. Response Mechanisms of Plants Under Saline-Alkali Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:667458. [PMID: 34149764 PMCID: PMC8213028 DOI: 10.3389/fpls.2021.667458] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 05/10/2021] [Indexed: 05/20/2023]
Abstract
As two coexisting abiotic stresses, salt stress and alkali stress have severely restricted the development of global agriculture. Clarifying the plant resistance mechanism and determining how to improve plant tolerance to salt stress and alkali stress have been popular research topics. At present, most related studies have focused mainly on salt stress, and salt-alkali mixed stress studies are relatively scarce. However, in nature, high concentrations of salt and high pH often occur simultaneously, and their synergistic effects can be more harmful to plant growth and development than the effects of either stress alone. Therefore, it is of great practical importance for the sustainable development of agriculture to study plant resistance mechanisms under saline-alkali mixed stress, screen new saline-alkali stress tolerance genes, and explore new plant salt-alkali tolerance strategies. Herein, we summarized how plants actively respond to saline-alkali stress through morphological adaptation, physiological adaptation and molecular regulation.
Collapse
Affiliation(s)
- Shumei Fang
- Department of Biotechnology, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
- *Correspondence: Shumei Fang,
| | - Xue Hou
- Department of Biotechnology, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xilong Liang
- Department of Environmental Science, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
- Heilongjiang Plant Growth Regulator Engineering Technology Research Center, Daqing, China
- Xilong Liang,
| |
Collapse
|
86
|
Hongna C, Junmei S, Leyuan T, Xiaori H, Guolin L, Xianguo C. Exogenous Spermidine Priming Mitigates the Osmotic Damage in Germinating Seeds of Leymus chinensis Under Salt-Alkali Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:701538. [PMID: 34721448 PMCID: PMC8548376 DOI: 10.3389/fpls.2021.701538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/20/2021] [Indexed: 05/14/2023]
Abstract
Spermidine (Spd) is known to protect macromolecules involved in physiological and biochemical processes in plants. However, it is possible that Spd also plays an osmotic regulatory role in promoting the seed germination of Leymus chinensis (L. chinensis) under salt-alkali stress. To investigate this further, seeds of L. chinensis were soaked in Spd solution or distilled water, and a culture experiment was performed by sowing the soaked seeds in saline-alkaline soils. The data showed that the Spd priming resulted in an increase of more than 50% in soluble sugar content and an increase of more than 30% in proline content in the germinating seeds. In addition, the Spd priming resulted in an increase of more than 30% in catalase activity and an increase of more than 25% in peroxidase activity in the germinating seeds and effectively mitigated the oxidative damage to the plasma membrane in the germinating seeds under salt-alkali stress. Moreover, the Spd priming of seeds affected the accumulation of polyamine (PA) and maintained the activities of macromolecules involved in physiological metabolism in germinating seeds exposed to salt-alkali stress. Furthermore, the Spd priming treatment increased the hydrogen peroxide (H2O2) level to more than 30% and the Ca2+ concentration to more than 20% in the germinating seeds, thus breaking the dormancy induction pathways in L. chinensis seeds through beneficial hormone enrichment. This study provides an insight into the Spd-mediated regulation pathway during exogenous Spd priming of L. chinensis seeds, which mitigates osmotic and oxidative damage and maintains the integrality of the cell lipid membrane. Thus, exogenous Spd priming increases PA oxidase activity and maintains the accumulation of H2O2. We found that the H2O2 beneficially affected the balance of Ca2+ and hormones, promoting the vigor and germination of L. chinensis in response to salt-alkali stress.
Collapse
Affiliation(s)
- Chen Hongna
- Laboratory of Plant Nutrition and Biology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Land and Environment, Shenyang Agricultural University, Shenyang, China
| | - Shi Junmei
- College of Land and Environment, Shenyang Agricultural University, Shenyang, China
| | - Tao Leyuan
- Laboratory of Plant Nutrition and Biology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Han Xiaori
- College of Land and Environment, Shenyang Agricultural University, Shenyang, China
| | - Lin Guolin
- College of Land and Environment, Shenyang Agricultural University, Shenyang, China
| | - Cheng Xianguo
- Laboratory of Plant Nutrition and Biology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Cheng Xianguo,
| |
Collapse
|
87
|
Ahanger MA, Bhat JA, Siddiqui MH, Rinklebe J, Ahmad P. Integration of silicon and secondary metabolites in plants: a significant association in stress tolerance. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6758-6774. [PMID: 32585681 DOI: 10.1093/jxb/eraa291] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/16/2020] [Indexed: 05/03/2023]
Abstract
As sessile organisms, plants are unable to avoid being subjected to environmental stresses that negatively affect their growth and productivity. Instead, they utilize various mechanisms at the morphological, physiological, and biochemical levels to alleviate the deleterious effects of such stresses. Amongst these, secondary metabolites produced by plants represent an important component of the defense system. Secondary metabolites, namely phenolics, terpenes, and nitrogen-containing compounds, have been extensively demonstrated to protect plants against multiple stresses, both biotic (herbivores and pathogenic microorganisms) and abiotic (e.g. drought, salinity, and heavy metals). The regulation of secondary metabolism by beneficial elements such as silicon (Si) is an important topic. Silicon-mediated alleviation of both biotic and abiotic stresses has been well documented in numerous plant species. Recently, many studies have demonstrated the involvement of Si in strengthening stress tolerance through the modulation of secondary metabolism. In this review, we discuss Si-mediated regulation of the synthesis, metabolism, and modification of secondary metabolites that lead to enhanced stress tolerance, with a focus on physiological, biochemical, and molecular aspects. Whilst mechanisms involved in Si-mediated regulation of pathogen resistance via secondary metabolism have been established in plants, they are largely unknown in the case of abiotic stresses, thus leaving an important gap in our current knowledge.
Collapse
Affiliation(s)
| | - Javaid Akhter Bhat
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Manzer H Siddiqui
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, Wuppertal, Germany
- Department of Environment, Energy, and Geoinformatics, Sejong University, Seoul, Republic of Korea
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Botany, S.P. College Srinagar, Jammu and Kashmir, India
| |
Collapse
|
88
|
Kapoor RT, Hasanuzzaman M. Exogenous kinetin and putrescine synergistically mitigate salt stress in Luffa acutangula by modulating physiology and antioxidant defense. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:2125-2137. [PMID: 33268918 PMCID: PMC7688851 DOI: 10.1007/s12298-020-00894-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/17/2020] [Accepted: 10/10/2020] [Indexed: 05/11/2023]
Abstract
Salinity is one of the most vicious environmental constraints that hamper agricultural production. Experiments were done to explore the significant role of sole and synergistic supplementation of kinetin (100 µM KN) and putrescine (100 µM PUT) on Luffa acutangula in NaCl (100 mM) treatment. The harmful effects of salinity on growth were manifested by decreased seedling length, biomass, and pigment contents. We studied the effect of KN, and PUT in preventing salt (NaCl) induced physiological disorders and oxidative damages in 20-day-old Luffa acutangula seedlings. The individual application of KN and PUT increased growth and biochemical parameters, whereas combined KN + PUT treatment showed significant enhancement in growth, photosynthetic pigment content, and osmolyte accumulation in salt-affected plants. Application of KN and PUT also prevented hydrogen peroxide and superoxide production as confirmed by inhibition in electrolyte leakage and lipid peroxidation. Kinetin and PUT application upregulated the antioxidant defense system by enhancing antioxidant enzymes and non-enzymatic contents. Luffa seedlings treated with NaCl + KN + PUT showed 79, 26, 74, and 73% rise in superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase enzymes, respectively, in comparison to NaCl-stressed Luffa acutangula. Findings revealed that synergistic utilization of KN and PUT modulate growth and biochemical processes in seedlings efficaciously in comparison to the individual application under salt stress, and it may be due to a regulatory crosstalk mechanism.
Collapse
Affiliation(s)
- Riti Thapar Kapoor
- Plant Physiology Laboratory, Amity Institute of Biotechnology, Amity University, Noida 201 313 Uttar Pradesh, India
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, 1207 Bangladesh
| |
Collapse
|
89
|
Desoky ESM, Saad AM, El-Saadony MT, Merwad ARM, Rady MM. Plant growth-promoting rhizobacteria: Potential improvement in antioxidant defense system and suppression of oxidative stress for alleviating salinity stress in Triticum aestivum (L.) plants. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101878] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
90
|
Effect of Antioxidants on the Fibroblast Replicative Lifespan In Vitro. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6423783. [PMID: 33029282 PMCID: PMC7530501 DOI: 10.1155/2020/6423783] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/04/2020] [Accepted: 09/12/2020] [Indexed: 12/20/2022]
Abstract
Replicative senescence is an unalterable growth arrest of primary cells in the culture system. It has been reported that aging in vivo is related to the limited replicative capacity that normal somatic cells show in vitro. If oxidative damage contributes to the lifespan limitation, antioxidants are expected to extend the replicative lifespan of fibroblasts. This article critically reviews the results of experiments devoted to this problem performed within the last decades under conditions of in vitro culture. The results of studied are heterogeneous, some papers showing no effects of antioxidants; most finding limited enhancement of reproductive capacity of fibroblasts, some reporting a significant extension of replicative lifespan (RLS). Both natural and synthetic antioxidants were found to extend the RLS of fibroblasts, either by a direct antioxidant effect or, indirectly, by activation of signaling pathways and activation of proteasomes or hormetic effects. Most significant prolongation of RLS was reported so far for nicotinamide, N-hydroxylamines, carnosine and Methylene Blue. These results may be of importance for the design of skin-protecting cosmetics.
Collapse
|
91
|
Kaya C, Murillo-Amador B, Ashraf M. Involvement of L-Cysteine Desulfhydrase and Hydrogen Sulfide in Glutathione-Induced Tolerance to Salinity by Accelerating Ascorbate-Glutathione Cycle and Glyoxalase System in Capsicum. Antioxidants (Basel) 2020; 9:antiox9070603. [PMID: 32664227 PMCID: PMC7402142 DOI: 10.3390/antiox9070603] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 02/07/2023] Open
Abstract
The aim of this study is to assess the role of l-cysteine desulfhydrase (l-DES) and endogenous hydrogen sulfide (H2S) in glutathione (GSH)-induced tolerance to salinity stress (SS) in sweet pepper (Capsicum annuum L.). Two weeks after germination, before initiating SS, half of the pepper seedlings were retained for 12 h in a liquid solution containing H2S scavenger, hypotaurine (HT), or the l-DES inhibitor dl-propargylglycine (PAG). The seedlings were then exposed for three weeks to control or SS (100 mmol L−1 NaCl) and supplemented with or without GSH or GSH+NaHS (sodium hydrosulfide, H2S donor). Salinity suppressed dry biomass, leaf water potential, chlorophyll contents, maximum quantum efficiency, ascorbate, and the activities of dehydroascorbate reductase, monodehydroascorbate reductase, and glyoxalase II in plants. Contrarily, it enhanced the accumulation of hydrogen peroxide, malondialdehyde, methylglyoxal, electrolyte leakage, proline, GSH, the activities of glutathione reductase, peroxidase, catalase, superoxide dismutase, ascorbate peroxidase, glyoxalase I, and l-DES, as well as endogenous H2S content. Salinity enhanced leaf Na+ but reduced K+; however, the reverse was true with GSH application. Overall, the treatments, GSH and GSH+NaHS, effectively reversed the oxidative stress and upregulated salt tolerance in pepper plants by controlling the activities of the AsA-GSH and glyoxalase-system-related enzymes as well as the levels of osmolytes.
Collapse
Affiliation(s)
- Cengiz Kaya
- Soil Science and Plant Nutrition Department, Agriculture Faculty, Harran University, Sanliurfa 6300, Turkey
- Correspondence: (C.K.); (B.M.-A.)
| | - Bernardo Murillo-Amador
- Centro de Investigaciones Biológicas del Noroeste, S.C. Avenida Instituto Politécnico Nacional No. 195, Colonia Playa Palo de Santa Rita Sur, La Paz 23096, Baja California Sur, Mexico
- Correspondence: (C.K.); (B.M.-A.)
| | - Muhammad Ashraf
- Department of Botany, University of Agriculture, Faisalabad 38040, Pakistan;
| |
Collapse
|
92
|
Qin C, Ahanger MA, Zhou J, Ahmed N, Wei C, Yuan S, Ashraf M, Zhang L. Beneficial role of acetylcholine in chlorophyll metabolism and photosynthetic gas exchange in Nicotiana benthamiana seedlings under salinity stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:357-365. [PMID: 31811780 DOI: 10.1111/plb.13079] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 11/18/2019] [Indexed: 05/27/2023]
Abstract
Acetylcholine (ACh) is believed to improve plant growth. However, regulation at biochemical and molecular levels is largely unknown. The present study investigated the impact of exogenously applied ACh (10 µm) on growth and chlorophyll metabolism in hydroponically grown Nicotiana benthamiana under salt stress (150 mm NaCl). Salinity reduced root hydraulic conductivity while ACh-treated seedlings exhibited a significant increase, resulting in increased relative water content. Salinity induced a reduction in chlorophyll biosynthetic intermediates, such as protoporphyrin-IX, Mg-photoporphyrin-IX and protochlorophyllide, which were significantly ameliorated in the presence of ACh. This influence of ACh on chlorophyll synthesis was confirmed by up-regulation of HEMA1, CHLH, CAO and POR genes. Gas exchange parameters, i.e. stomatal conductance, internal CO2 concentration and transpiration rate, increased with ACh, thereby alleviating the salinity effects on photosynthesis. In addition, the salinity-induced enhancement of lipid peroxidation declined after ACh treatment through modulation of the activity of the assayed antioxidant enzymes (superoxide dismutase and peroxidase). Importantly, ACh significantly reduced the uptake of Na and increased uptake of K, resulting in a decline in the Na/K ratio. Results of the present study indicate that ACh can be effective in ameliorating NaCl-induced osmotic stress, altering chlorophyll metabolism and thus photosynthesis by maintaining ion homeostasis, hydraulic conductivity and water balance.
Collapse
Affiliation(s)
- C Qin
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - M A Ahanger
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - J Zhou
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, China
| | - N Ahmed
- Department of Botany, Mohi-Ud-Din Islamic University, Tarar Khal, Pakistan
| | - C Wei
- Shaanxi Tobacco Scientific Institution, Xi'an, China
| | - S Yuan
- Technology Center of Shaanxi China Tobacco Industrial Co., Ltd., Xi'an, China
| | - M Ashraf
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
- University of Agriculture, Faisalabad, Pakistan
| | - L Zhang
- College of Life Sciences, Northwest A&F University, Yangling, China
| |
Collapse
|
93
|
Amraee L, Rahmani F, Abdollahi Mandoulakani B. Exogenous application of 24-epibrassinosteroid mitigates NaCl toxicity in flax by modifying free amino acids profile and antioxidant defence system. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:565-575. [PMID: 32362312 DOI: 10.1071/fp19191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 01/04/2020] [Indexed: 06/11/2023]
Abstract
In the present study, we investigated the ameliorative effects of 24-epibrassinosteroid (24-epiBL) on antioxidant response and ion homeostasis in two NaCl-stressed Linum usitatissimum L. (flax) cultivars differing in salt tolerance. The content and profile of amino acids were also studied in the tolerant cultivar. Salt stress differently altered the activity of antioxidant enzymes, phenol and flavonoid contents, total antioxidant capacity and ion homeostasis in both cultivars, whereas H2O2 and malondialdehyde (MDA) contents were induced only in the TN-97-95 cultivar. Free amino acid concentrations showed variable patterns under salinity conditions compared with the control plants. 24-epiBL decreased the soluble protein content in NaCl-treated plants and also decreased stimulatory effects of salinity on the production and accumulation of phenol and flavonoid contents and antioxidant capacity with altered ion (Na+, K+, and Cl-) contents. The 24-epiBL reduced the chlorophylls (a, b) and carotenoid contents in salt-treated TN-97-95 cultivar while enhanced the activity of antioxidant enzymes and declined the H2O2 content and lipid peroxidation in both NaCl-stressed cultivars. The profile and content of amino acids were significantly changed by 24-epiBL application under salinity treatment. In summary, our findings demonstrate that 24-epiBL seed priming mitigates the deleterious effects of salt stress in flax plants.
Collapse
Affiliation(s)
- Leila Amraee
- Department of Biology, Faculty of Sciences, Urmia University, Urmia, Iran; and Institute of Biotechnology, Urmia University, Urmia, Iran
| | - Fatemeh Rahmani
- Department of Biology, Faculty of Sciences, Urmia University, Urmia, Iran; and Institute of Biotechnology, Urmia University, Urmia, Iran; and Corresponding author. Email address:
| | - Babak Abdollahi Mandoulakani
- Institute of Biotechnology, Urmia University, Urmia, Iran; and Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Urmia University, Urmia, Iran
| |
Collapse
|
94
|
Ahmad P, Alam P, Balawi TH, Altalayan FH, Ahanger MA, Ashraf M. Sodium nitroprusside (SNP) improves tolerance to arsenic (As) toxicity in Vicia faba through the modifications of biochemical attributes, antioxidants, ascorbate-glutathione cycle and glyoxalase cycle. CHEMOSPHERE 2020; 244:125480. [PMID: 31821927 DOI: 10.1016/j.chemosphere.2019.125480] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/17/2019] [Accepted: 11/25/2019] [Indexed: 05/19/2023]
Abstract
The present study was conducted to evaluate the effect of arsenic (As) toxicity and the mitigating role of nitric oxide (NO) donor sodium nitroprusside (SNP) on Vicia faba. Arsenics stress decreased the growth and biomass yield, and photosynthetic pigments, but it enhanced As accumulation. Supplementation of NO enhanced the afore-mentioned parameters except As accumulation which decreased in both shoot and root. Supplementation of NO enhanced the shoot tolerance index (Shoot TI%), root tolerance index (Root TI%) but it declined the As translocation factor (TF). Application of NO alleviated the As-induced decline in net assimilation rate, stomatal conductance, transpiration and leaf relative water content. The levels of proline and glycine betaine (GB) further increased due to NO application, whereas malondialdehyde (MDA), hydrogen peroxide (H2O2), electrolyte leakage (EL) and methylglyoxal (MG) declined considerably. Activities of enzymatic antioxidants such as superoxide dismutase (SOD) and catalase (CAT) increased under As stress. Supplementation of NO up-regulated the enzymes involved in Asc-Glu cycle and glyoxalase cycle under As toxicity. Another experiment was setup to authenticate whether NO was certainly able to alleviate As toxicity. For this purpose, the NO scavenger [2-(4-carboxy-2 phenyl)-4,4,5,5-tertamethylimidazoline-1-oxyl-3-oxide (cPTIO)] was added to As and NO supplemented plants. Addition of cPTIO to NO supplemented As-treated plants showed the same effect when As alone was supplied to plants. In conclusion, addition of NO to the growth medium maintained the plant performance under As toxicity through modulation of physio-biochemical attributes, antioxidant enzymes, and the Asc-Glu and glyoxalase systems.
Collapse
Affiliation(s)
- Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia; Department of Botany, S.P. College, Srinagar, Jammu and Kashmir, India.
| | - Pravej Alam
- Biology Department, College of Science and Humanities, Prince Sattam Bin Abdulaziz University (PSAU), Alkharj, Saudi Arabia.
| | - Thamer H Balawi
- Biology Department, College of Science and Humanities, Prince Sattam Bin Abdulaziz University (PSAU), Alkharj, Saudi Arabia
| | - Fahad H Altalayan
- Biology Department, College of Science and Humanities, Prince Sattam Bin Abdulaziz University (PSAU), Alkharj, Saudi Arabia
| | | | | |
Collapse
|
95
|
Elrys AS, Abdo AIE, Abdel-Hamed EMW, Desoky ESM. Integrative application of licorice root extract or lipoic acid with fulvic acid improves wheat production and defenses under salt stress conditions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 190:110144. [PMID: 31901539 DOI: 10.1016/j.ecoenv.2019.110144] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/17/2019] [Accepted: 12/27/2019] [Indexed: 05/27/2023]
Abstract
Although different plant extracts and plant growth regulators are used as biostimulants to support plants grown under salt stress conditions, little information is available regarding the use of licorice root extract (LRE) or lipoic acid (LA) as biostimulants. Studies on the application of LRE or LA in combination with fulvic acid (FA) as natural biostimulants have not been performed. Therefore, in this study, two pot experiments were conducted to evaluate the potential effects of LRE (5 g L-1) or LA (0.1 mM) supplemented as a foliar spray in combination with FA (0.2 mg kg-1 soil) on osmoprotectants and antioxidants, growth characteristics, photosynthetic pigments, nutrient uptake, and yield as well as on the anatomical features of the stems and leaves of wheat plants irrigated with three levels of saline water (0.70, 7.8, and 14.6 dSm-1). Moderate (7.8 dSm-1) and high (14.6 dSm-1) levels of salinity caused a significant (p ≤ 0.05) increase in the activities of SOD, APX CAT, POX, and GR as well as in electrolyte leakage, malondialdehyde level, and reactive oxygen species (O2‒ and H2O2) levels compared to those in controls (plants irrigated with tap water). However, the leaf relative water content, membrane stability index, NPK uptake, leaf area, plant height, spike length, straw yield, grain yield, and protein content of wheat grains significantly (p ≤ 0.05) decreased. Addition of LRE or LA and/or HA to wheat plants under saline stress significantly (p ≤ 0.05) enhanced their morphological and physio-biochemical characteristics in parallel with increases in the activities of enzymatic antioxidants. Salinity stress altered (p ≤ 0.05) wheat stem and leaf structures; however, treatment with LRE + FA significantly improved these negative effects. These findings indicate that FA + LRE treatment significantly improved the antioxidant defense system of the plants, thereby reducing ROS levels and increasing wheat growth and production under saline conditions.
Collapse
Affiliation(s)
- Ahmed S Elrys
- Soil Science Department, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt.
| | - Ahmed I E Abdo
- Soil Science Department, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt
| | - Enas M W Abdel-Hamed
- Soil Science Department, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt
| | - El-Sayed M Desoky
- Botany Department, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
96
|
Acidri R, Sawai Y, Sugimoto Y, Handa T, Sasagawa D, Masunaga T, Yamamoto S, Nishihara E. Exogenous Kinetin Promotes the Nonenzymatic Antioxidant System and Photosynthetic Activity of Coffee ( Coffea arabica L.) Plants Under Cold Stress Conditions. PLANTS (BASEL, SWITZERLAND) 2020; 9:E281. [PMID: 32098166 PMCID: PMC7076472 DOI: 10.3390/plants9020281] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/13/2020] [Accepted: 02/20/2020] [Indexed: 01/05/2023]
Abstract
Coffee plants are seasonally exposed to low chilling temperatures in many coffee-producing regions. In this study, we investigated the ameliorative effects of kinetin-a cytokinin elicitor compound on the nonenzymatic antioxidants and the photosynthetic physiology of young coffee plants subjected to cold stress conditions. Although net CO2 assimilation rates were not significantly affected amongst the treatments, the subjection of coffee plants to cold stress conditions caused low gas exchanges and photosynthetic efficiency, which was accompanied by membrane disintegration and the breakdown of chlorophyll pigments. Kinetin treatment, on the other hand, maintained a higher intercellular-to-ambient CO2 concentration ratio with concomitant improvement in stomatal conductance and mesophyll efficiency. Moreover, the leaves of kinetin-treated plants maintained slightly higher photochemical quenching (qP) and open photosystem II centers (qL), which was accompanied by higher electron transfer rates (ETRs) compared to their non-treated counterparts under cold stress conditions. The exogenous foliar application of kinetin also stimulated the metabolism of caffeine, trigonelline, 5-caffeoylquinic acid, mangiferin, anthocyanins and total phenolic content. The contents of these nonenzymatic antioxidants were highest under cold stress conditions in kinetin-treated plants than during optimal conditions. Our results further indicated that the exogenous application of kinetin increased the total radical scavenging capacity of coffee plants. Therefore, the exogenous application of kinetin has the potential to reinforce antioxidant capacity, as well as modulate the decline in photosynthetic productivity resulting in improved tolerance under cold stress conditions.
Collapse
Affiliation(s)
- Robert Acidri
- The United Graduate School of Agricultural Sciences, Tottori University, 4-01 Koyama-cho Minami, Tottori 680-8553, Japan; (R.A.); (T.H.); (D.S.)
| | - Yumiko Sawai
- Sawai Coffee Limited, 278-6, Takenouchi danchi, Sakaiminato City, Tottori 648-0046, Japan;
| | - Yuko Sugimoto
- Tottori Institute of Industrial Technology, 2032-3, Nakano-cho, Sakaiminato-shi, Tottori 684-0041, Japan
| | - Takuo Handa
- The United Graduate School of Agricultural Sciences, Tottori University, 4-01 Koyama-cho Minami, Tottori 680-8553, Japan; (R.A.); (T.H.); (D.S.)
| | - Daisuke Sasagawa
- The United Graduate School of Agricultural Sciences, Tottori University, 4-01 Koyama-cho Minami, Tottori 680-8553, Japan; (R.A.); (T.H.); (D.S.)
| | - Tsugiyaki Masunaga
- Faculty of Soil Eco-engineering and Plant Nutrition, Shimane University, 1060, Nishikawatsucho, Matsue 690-8504, Japan;
| | - Sadahiro Yamamoto
- Faculty of Agriculture, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8553, Japan;
| | - Eiji Nishihara
- Faculty of Agriculture, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8553, Japan;
| |
Collapse
|
97
|
Ahanger MA, Mir RA, Alyemeni MN, Ahmad P. Combined effects of brassinosteroid and kinetin mitigates salinity stress in tomato through the modulation of antioxidant and osmolyte metabolism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 147:31-42. [PMID: 31838316 DOI: 10.1016/j.plaphy.2019.12.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/05/2019] [Accepted: 12/05/2019] [Indexed: 05/08/2023]
Abstract
Salinity stress reduces growth and yield productivity of most crop plants. Potentiality of kinetin (Kn) and epi-brassinolide (EBL), either individually or combinedly in preventing the salinity (100 mM NaCl) stress mediated oxidative damage and photosynthetic inhibition was studied in Solanum lycopersicum. Combined application of Kn and EBL imparted much prominent impact on the growth, photosynthesis and metabolism of antioxidants, osmolytes and secondary metabolites. Synthesis of chlorophylls and carotenoids increased and the photosynthetic parameters like stomatal conductance, intercellular CO2 concentration and net photosynthesis were significantly improved due to application of Kn and EBL. Photosystem II functioning (Fv/Fm), photochemical quenching and electron transport rate (ETR) improved significantly in Kn and EBL treated plants imparting significant decline in salinity induced non-photochemical quenching. Exogenous Kn and EBL effectively prevented the oxidative damage by significantly declining the generation of hydrogen peroxide and superoxide under saline and non-saline conditions as reflected in lowered lipid peroxidation and electrolyte leakage. Reduced oxidative damage in Kn and EBL treated plants was accompanied down-regulation of protease and lipoxygenase concomitant with up-regulation of the antioxidant system and the accumulation of compatible osmolytes. Treatment of Kn and EBL proved effective in enhancing the contents of redox homeostasis, ascorbic acid and reduced glutathione, and the secondary metabolites assisting the enzymatic antioxidant system in combating the salinity stress efficiently. Results suggest that combined application of Kn and EBL regulate growth and photosynthesis in tomato more effectively than their individual application through a probable regulatory crosstalk mechanism.
Collapse
Affiliation(s)
| | - Rayees Ahmad Mir
- School of Studies in Botany, Jiwaji University, Gwalior, MP, India
| | - Mohammed Nasser Alyemeni
- Botany and Microbiology Department, College of Science, King Saudi University, P. O. Box. 2460, Riyadh, 11451, Saudi Arabia
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saudi University, P. O. Box. 2460, Riyadh, 11451, Saudi Arabia; Department of Botany, S.P. College, Srinagar, 190001, Jammu and Kashmir, India.
| |
Collapse
|
98
|
Combined Kinetin and Spermidine Treatments Ameliorate Growth and Photosynthetic Inhibition in Vigna angularis by Up-Regulating Antioxidant and Nitrogen Metabolism under Cadmium Stress. Biomolecules 2020; 10:biom10010147. [PMID: 31963299 PMCID: PMC7022836 DOI: 10.3390/biom10010147] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/26/2019] [Accepted: 12/28/2019] [Indexed: 01/24/2023] Open
Abstract
Pot experiments were conducted to investigate the probable beneficial role of the individual as well as combined application of kinetin (50 μM Kn) and spermidine (200 μM Spd) on Vigna angularis under cadmium (Cd) stress. Cd treatment reduced growth by declining the content of chlorophylls and carotenoids, photosynthesis, and gas exchange parameters. Exogenously, Kn and Spd application enhanced the photosynthetic parameters and up-regulated the antioxidant system by improving the activities of antioxidant enzymes and the content of non-enzymatic components. In addition, the application of Kn and Spd resulted in significant improvement in the content of sugars, proline, and glycine betaine, ameliorating the decline in relative water content. Oxidative stress parameters including hydrogen peroxide, superoxide, lipid peroxidation, lipoxygenase activity, and electrolyte leakage increased due to Cd stress; however, the application of Kn and Spd imparted a significant decline in all these parameters. Further, reduced Cd uptake was also observed due to Kn and Spd application. Total phenols and flavonoids also increased due to Kn and Spd treatments under normal as well as Cd stress conditions, which may have further helped with the elimination of reactive oxygen species. Reduction in the activity of nitrate reductase and the content of nitrogen was ameliorated due to the exogenous application of Kn and Spd. Therefore, the exogenous application of Kn and Spd benefited Vigna angularis counteracting the damaging effects of Cd stress by up-regulating the tolerance mechanisms, including antioxidant and osmolyte metabolism.
Collapse
|
99
|
Ahanger MA, Aziz U, Alsahli AA, Alyemeni MN, Ahmad P. Influence of Exogenous Salicylic Acid and Nitric Oxide on Growth, Photosynthesis, and Ascorbate-Glutathione Cycle in Salt Stressed Vigna angularis. Biomolecules 2019; 10:biom10010042. [PMID: 31888108 PMCID: PMC7022326 DOI: 10.3390/biom10010042] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/15/2019] [Accepted: 12/20/2019] [Indexed: 01/24/2023] Open
Abstract
The present study was carried out to investigate the beneficial role of exogenous application of salicylic acid (1 mM SA) and nitric oxide (100 μM NO) in preventing the oxidative damage in Vigna angularis triggered by salinity stress. Salinity (100 mM NaCl) stress reduced growth, biomass accumulation, chlorophyll synthesis, photosynthesis, gas exchange parameters, and photochemical efficiency (Fv/Fm) significantly. Exogenous application of SA and NO was affective in enhancing these growth and photosynthetic parameters. Salinity stress reduced relative water content over control. Further, the application of SA and NO enhanced the synthesis of proline, glycine betaine, and sugars as compared to the control as well as NaCl treated plants contributing to the maintenance of tissue water content. Exogenous application of SA and NO resulted in up-regulation of the antioxidant system. Activities of enzymatic antioxidants including superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), and glutathione reductase (GR), as well as the content of non-enzymatic components, were more in SA + NO treated seedlings as compared to control and salinity stressed counterparts resulting in significant alleviation of the NaCl mediated oxidative damage. Content of nitrogen, potassium, and calcium increased due to SA and NO under normal conditions and NaCl stress conditions while as Na and Cl content reduced significantly.
Collapse
Affiliation(s)
- Mohammad Abass Ahanger
- College of Life Sciences, Northwest A&F University Yangling, Xianyang 712100, Shaanxi, China;
| | - Usman Aziz
- College of Agronomy, Northwest A&F University Yangling, Xianyang 712100, Shaanxi, China;
| | - Abdulaziz Abdullah Alsahli
- Botany and Microbiology Department, College of Science, King Saudi University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia; (A.A.A.); (M.N.A.)
| | - Mohammed Nasser Alyemeni
- Botany and Microbiology Department, College of Science, King Saudi University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia; (A.A.A.); (M.N.A.)
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saudi University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia; (A.A.A.); (M.N.A.)
- Department of Botany, S.P. College, Srinagar, Jammu and Kashmir 190001, India
- Correspondence:
| |
Collapse
|
100
|
Begum N, Ahanger MA, Su Y, Lei Y, Mustafa NSA, Ahmad P, Zhang L. Improved Drought Tolerance by AMF Inoculation in Maize ( Zea mays) Involves Physiological and Biochemical Implications. PLANTS (BASEL, SWITZERLAND) 2019; 8:E579. [PMID: 31817760 PMCID: PMC6963921 DOI: 10.3390/plants8120579] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/25/2022]
Abstract
The role of arbuscular mycorrhizal fungus (AMF, Glomus versiforme) in amelioration of drought-induced effects on growth and physio-biochemical attributes in maize (Zea mays L.) was studied. Maize plants were exposed to two drought regimes, i.e., moderate drought (MD) and severe drought (SD), with and without AMF inoculation. Drought at both levels reduced plant height, and chlorophyll and carotenoid content, thereby impeding photosynthesis. In addition, drought stress enhanced the generation of toxic reactive oxygen species (ROS), including H2O2, resulting in membrane damage reflected as increased electrolyte leakage and lipid peroxidation. Such negative effects were much more apparent under SD conditions that those of MD and the control, however, AMF inoculation significantly ameliorated the deleterious effects of drought-induced oxidative damage. Under control conditions, inoculation of AMF increased growth and photosynthesis by significantly improving chlorophyll content, mineral uptake and assimilation. AMF inoculation increased the content of compatible solutes, such as proline, sugars and free amino acids, assisting in maintaining the relative water content. Up-regulation of the antioxidant system was obvious in AMF-inoculated plants, thereby mediating quick alleviation of oxidative effects of drought through elimination of ROS. In addition, AMF mediated up-regulation of the antioxidant system contributed to maintenance of redox homeostasis, leading to protection of major metabolic pathways, including photosynthesis, as observed in the present study. Total phenols increased due to AMF inoculation under both MD and SD conditions. The present study advocates the beneficial role of G. versiforme inoculation in maize against drought stress.
Collapse
Affiliation(s)
- Naheeda Begum
- College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China; (N.B.); (M.A.A.); (Y.S.); (Y.L.)
| | - Muhammad Abass Ahanger
- College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China; (N.B.); (M.A.A.); (Y.S.); (Y.L.)
| | - Yunyun Su
- College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China; (N.B.); (M.A.A.); (Y.S.); (Y.L.)
| | - Yafang Lei
- College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China; (N.B.); (M.A.A.); (Y.S.); (Y.L.)
| | - Nabil Sabet A. Mustafa
- Biotechnology for fruit Tress Micropropagation Laboratory, Department of Pomology, National Research Centre, Cairo 12622, Egypt;
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saudi University, Riyadh 11451, Saudi Arabia;
| | - Lixin Zhang
- College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China; (N.B.); (M.A.A.); (Y.S.); (Y.L.)
| |
Collapse
|