51
|
Rajković E, Schwarz C, Tischler D, Schedle K, Reisinger N, Emsenhuber C, Ocelova V, Roth N, Frieten D, Dusel G, Gierus M. Potential of Grape Extract in Comparison with Therapeutic Dosage of Antibiotics in Weaning Piglets: Effects on Performance, Digestibility and Microbial Metabolites of the Ileum and Colon. Animals (Basel) 2021; 11:ani11102771. [PMID: 34679793 PMCID: PMC8532789 DOI: 10.3390/ani11102771] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/03/2021] [Accepted: 09/17/2021] [Indexed: 11/27/2022] Open
Abstract
Simple Summary Diarrhea as a symptom of different enteric infections leads to poor animal health and performance at weaning, followed by economic losses. Phytogenic feed additives, e.g., grape extracts, have shown antimicrobial and anti-inflammatory properties and these might have beneficial effects on growth trends of weaning piglets and, thereby, potentially reduce the need for antibiotic treatments following weaning. An 8-week feeding trial investigated the potential effects of grape extract (GE) in a model with a negative control (NC) and positive control (PC; antibiotic treatment). Despite no changes in animal performance, dietary GE improved the digestibility of selected nutrients at the same, or even at higher level, as PC. Additionally, there was no clear effect of dietary intervention on the microbial metabolites from the ileum and colon at the end of the trial. These results indicated beneficial effects of GE compared to antibiotic treatment, as often applied at weaning. Abstract Enteric diseases in piglets, such as post-weaning diarrhea (PWD), often require antibiotic treatment of the entire litter. Grape polyphenols may help overcome PWD and thereby reduce the need for antibiotics. The potential of a grape extract (GE; continuous in-feed supplementation) on performance of weaning piglets, compared with both negative (NC; corn-based diet) and positive control (PC; NC + in-feed antibiotic (amoxicillin) in a therapeutic dosage for day 1–day 5 post weaning) was assessed. Apparent total tract digestibility (ATTD) and microbial metabolites were also evaluated on two sampling points (day 27/28 and day 55/56). We assigned 180 weaning piglets (6.9 ± 0.1 kg body weight (BW)) to 6 male and 6 female pens per treatment with 5 piglets each. Animals from PC showed higher BW on day 13 compared with NC and GE, and a tendency for higher BW on day 56 (p = 0.080) compared to NC. Furthermore, PC increased the average daily feed intake in the starter phase (day 1–day 13), and the average daily gain in the early grower phase (day 14–day 24). Overall, GE improved the ATTD at the same level as PC (ash, acid-hydrolyzed ether extract), or at a higher level than PC (dry matter, organic matter, gross energy, crude protein, P). There were no effects on microbial metabolites apart from minor trends for lactic acid and ammonia. Dietary inclusion of GE may have beneficial effects compared to therapeutic antibiotics, as frequently used at weaning.
Collapse
Affiliation(s)
- Emina Rajković
- FFoQSI GmbH—Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, 3430 Tulln, Austria; (E.R.); (D.T.)
- Department of Agrobiotechnology, Institute of Animal Nutrition, Livestock Products, and Nutrition Physiology (TTE), IFA-Tulln, University of Natural Resources and Life Sciences, Vienna (BOKU), 1190 Vienna, Austria; (K.S.); (M.G.)
| | - Christiane Schwarz
- Department of Agrobiotechnology, Institute of Animal Nutrition, Livestock Products, and Nutrition Physiology (TTE), IFA-Tulln, University of Natural Resources and Life Sciences, Vienna (BOKU), 1190 Vienna, Austria; (K.S.); (M.G.)
- Correspondence: ; Tel.: +43-1-47654-97615
| | - David Tischler
- FFoQSI GmbH—Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, 3430 Tulln, Austria; (E.R.); (D.T.)
- Department of Agrobiotechnology, Institute of Animal Nutrition, Livestock Products, and Nutrition Physiology (TTE), IFA-Tulln, University of Natural Resources and Life Sciences, Vienna (BOKU), 1190 Vienna, Austria; (K.S.); (M.G.)
| | - Karl Schedle
- Department of Agrobiotechnology, Institute of Animal Nutrition, Livestock Products, and Nutrition Physiology (TTE), IFA-Tulln, University of Natural Resources and Life Sciences, Vienna (BOKU), 1190 Vienna, Austria; (K.S.); (M.G.)
| | | | | | | | - Nataliya Roth
- BIOMIN Holding GmbH, 3131 Getzersdorf, Austria; (V.O.); (N.R.)
| | - Dörte Frieten
- Department of Animal Nutrition, University of Applied Sciences, 55411 Bingen am Rhein, Germany; (D.F.); (G.D.)
| | - Georg Dusel
- Department of Animal Nutrition, University of Applied Sciences, 55411 Bingen am Rhein, Germany; (D.F.); (G.D.)
| | - Martin Gierus
- Department of Agrobiotechnology, Institute of Animal Nutrition, Livestock Products, and Nutrition Physiology (TTE), IFA-Tulln, University of Natural Resources and Life Sciences, Vienna (BOKU), 1190 Vienna, Austria; (K.S.); (M.G.)
| |
Collapse
|
52
|
Xu W, Lin L, Liu A, Zhang T, Zhang S, Li Y, Chen J, Gong Z, Liu Z, Xiao W. L-Theanine affects intestinal mucosal immunity by regulating short-chain fatty acid metabolism under dietary fiber feeding. Food Funct 2021; 11:8369-8379. [PMID: 32935679 DOI: 10.1039/d0fo01069c] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To investigate the effects of l-Theanine (LTA) on intestinal mucosal immunity and the regulation of short-chain fatty acid (SCFA) metabolism under dietary fiber feeding, a 28-day feeding experiment was performed in Sprague-Dawley rats. The results show that LTA increased the proportion of Prevotella, Lachnospira, and Ruminococcus while increasing the total SCFA, acetic acid, propionic acid, and butyric acid contents in the feces. LTA also increased IgA, IgE, and IgG levels in the ileum, and increased villi height and crypt depth. Moreover, LTA upregulated the mRNA and protein expression of acetyl-CoA carboxylase 1, sterol element-binding protein 1c, fatty acid synthase, and 3-hydroxy-3-methylglutaryl coenzyme A reductase in the liver, while downregulating the expression of glucose-6-phosphatase and phosphoenolpyruvate carboxykinase 1 in the colon. Our study suggests that LTA can affect intestinal mucosal immunity by regulating SCFA metabolism under dietary fiber feeding.
Collapse
Affiliation(s)
- Wei Xu
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China and National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China and Hunan Agricultural University, Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, Changsha, Hunan 410128, China.
| | - Ling Lin
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China and National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China and Hunan Agricultural University, Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, Changsha, Hunan 410128, China.
| | - An Liu
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China and National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China and Hunan Agricultural University, Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, Changsha, Hunan 410128, China.
| | - Tuo Zhang
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China and National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China and Hunan Agricultural University, Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, Changsha, Hunan 410128, China.
| | - Sheng Zhang
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China and National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China and Hunan Agricultural University, Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, Changsha, Hunan 410128, China.
| | - Yinhua Li
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China and National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China and Hunan Agricultural University, Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, Changsha, Hunan 410128, China.
| | - Jinhua Chen
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China and National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China and Hunan Agricultural University, Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, Changsha, Hunan 410128, China.
| | - Zhihua Gong
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China and National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China and Hunan Agricultural University, Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, Changsha, Hunan 410128, China.
| | - Zhonghua Liu
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China and National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China and Hunan Agricultural University, Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, Changsha, Hunan 410128, China.
| | - Wenjun Xiao
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China and National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China and Hunan Agricultural University, Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, Changsha, Hunan 410128, China.
| |
Collapse
|
53
|
Palma Albornoz SP, Fraga-Silva TFDC, Gembre AF, de Oliveira RS, de Souza FM, Rodrigues TS, Kettelhut IDC, Manca CS, Jordao AA, Ramalho LNZ, Ribolla PEM, Carlos D, Bonato VLD. Obesity-Induced Dysbiosis Exacerbates IFN-γ Production and Pulmonary Inflammation in the Mycobacterium tuberculosis Infection. Cells 2021; 10:1732. [PMID: 34359902 PMCID: PMC8303177 DOI: 10.3390/cells10071732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 12/18/2022] Open
Abstract
The microbiota of the gut-lung axis affects local and far-reaching immune responses and might also trigger chronic and inflammatory diseases. We hypothesized that gut dysbiosis induced by obesity, which coexists in countries with a high tuberculosis burden, aggravates the host susceptibility and the pulmonary damage tolerance. To assess our hypothesis, we used a model of high-fat diet (HFD)-induced obesity, followed by infection of C57BL/6 mice with Mycobacterium tuberculosis. We showed that obesity increased the susceptibility, the pulmonary inflammation and IFN-γ levels in M. tuberculosis-infected mice. During the comorbidity obesity and tuberculosis, there is an increase of Bacteroidetes and Firmicutes in the lungs, and an increase of Firmicutes and butyrate in the feces. Depletion of gut microbiota by antibiotic treatment in the obese infected mice reduced the frequencies of CD4+IFN-γ+IL-17- cells and IFN-γ levels in the lungs, associated with an increase of Lactobacillus. Our findings reinforce the role of the gut-lung axis in chronic infections and suggest that the gut microbiota modulation may be a potential host-directed therapy as an adjuvant to treat TB in the context of IFN-γ-mediated immunopathology.
Collapse
Affiliation(s)
- Sandra Patricia Palma Albornoz
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo 14049-900, Brazil; (S.P.P.A.); (T.F.d.C.F.-S.); (R.S.d.O.); (F.M.d.S.); (T.S.R.); (D.C.)
| | - Thais Fernanda de Campos Fraga-Silva
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo 14049-900, Brazil; (S.P.P.A.); (T.F.d.C.F.-S.); (R.S.d.O.); (F.M.d.S.); (T.S.R.); (D.C.)
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo 14049-900, Brazil; (A.F.G.); (I.d.C.K.)
| | - Ana Flávia Gembre
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo 14049-900, Brazil; (A.F.G.); (I.d.C.K.)
| | - Rômulo Silva de Oliveira
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo 14049-900, Brazil; (S.P.P.A.); (T.F.d.C.F.-S.); (R.S.d.O.); (F.M.d.S.); (T.S.R.); (D.C.)
| | - Fernanda Mesquita de Souza
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo 14049-900, Brazil; (S.P.P.A.); (T.F.d.C.F.-S.); (R.S.d.O.); (F.M.d.S.); (T.S.R.); (D.C.)
| | - Tamara Silva Rodrigues
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo 14049-900, Brazil; (S.P.P.A.); (T.F.d.C.F.-S.); (R.S.d.O.); (F.M.d.S.); (T.S.R.); (D.C.)
| | - Isis do Carmo Kettelhut
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo 14049-900, Brazil; (A.F.G.); (I.d.C.K.)
| | - Camila Sanches Manca
- Department of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo 14049-900, Brazil;
| | - Alceu Afonso Jordao
- Department of Health Sciences, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo 14049-900, Brazil;
| | - Leandra Naira Zambelli Ramalho
- Department of Pathology and Legal Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo 14049-900, Brazil;
| | | | - Daniela Carlos
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo 14049-900, Brazil; (S.P.P.A.); (T.F.d.C.F.-S.); (R.S.d.O.); (F.M.d.S.); (T.S.R.); (D.C.)
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo 14049-900, Brazil; (A.F.G.); (I.d.C.K.)
| | - Vânia Luiza Deperon Bonato
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo 14049-900, Brazil; (S.P.P.A.); (T.F.d.C.F.-S.); (R.S.d.O.); (F.M.d.S.); (T.S.R.); (D.C.)
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo 14049-900, Brazil; (A.F.G.); (I.d.C.K.)
| |
Collapse
|
54
|
The Modification of the Gut Microbiota via Selected Specific Diets in Patients with Crohn's Disease. Nutrients 2021; 13:nu13072125. [PMID: 34206152 PMCID: PMC8308385 DOI: 10.3390/nu13072125] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
Gastrointestinal symptoms in Crohn’s disease (CD) are common and affect the quality of life of patients; consequently, a growing number of studies have been published on diet interventions in this group. The role of the gut microbiota in the pathogenesis and the progression of inflammatory bowel diseases (IBD), including CD, has been widely discussed. Mainly, a decreased abundance of Firmicutes, species of the Bifidobacterium genus, and the Faecalibacterium prausnitzii species as well as a reduced general diversity have been described. In this review article, we summarize available data on the influence of reduction diets on the microbiome of patients with CD. One of the most frequently used elimination diets in CD patients is the low-FODMAP (Fermentable Oligosaccharides, Disaccharides, Monosaccharides, and Polyols) diet. Although many papers show it may reduce abdominal pain, diarrhea, or bloating, it also reduces the intake of prebiotic substances, which can negatively affect the gut microbiota composition, decreasing the abundance of Bifidobacterium species and Faecalibacterium prausnitzii. Other elimination diets used by IBD patients, such as lactose-free or gluten-free diets, have also been shown to disturb the microbial diversity. On the other hand, CDED (Crohn’s disease exclusion diet) with partial enteral nutrition not only induces the remission of CD but also has a positive influence on the microbiota. The impact of diet interventions on the microbiota and, potentially, on the future course of the disease should be considered when nutritional guidelines for IBD patients are designed. Dietetic recommendations should be based not only on the regulation of the symptoms but also on the long-term development of the disease.
Collapse
|
55
|
Mohiuddin JJ, Chu B, Facciabene A, Poirier K, Wang X, Doucette A, Zheng C, Xu W, Anstadt EJ, Amaravadi RK, Karakousis GC, Mitchell TC, Huang AC, Shabason JE, Lin A, Swisher-McClure S, Maity A, Schuchter LM, Lukens JN. Association of Antibiotic Exposure With Survival and Toxicity in Patients With Melanoma Receiving Immunotherapy. J Natl Cancer Inst 2021; 113:162-170. [PMID: 32294209 DOI: 10.1093/jnci/djaa057] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/20/2020] [Accepted: 04/08/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Gut microbial diversity is associated with improved response to immune checkpoint inhibitors (ICI). Based on the known detrimental impact that antibiotics have on microbiome diversity, we hypothesized that antibiotic receipt prior to ICI would be associated with decreased survival. METHODS Patients with stage III and IV melanoma treated with ICI between 2008 and 2019 were selected from an institutional database. A window of antibiotic receipt within 3 months prior to the first infusion of ICI was prespecified. The primary outcome was overall survival (OS), and secondary outcomes were melanoma-specific mortality and immune-mediated colitis requiring intravenous steroids. All statistical tests were two-sided. RESULTS There were 568 patients in our database of which 114 received antibiotics prior to ICI. Of the patients, 35.9% had stage III disease. On multivariable Cox proportional hazards analysis of patients with stage IV disease, the antibiotic-exposed group had statistically significantly worse OS (hazard ratio [HR] = 1.81, 95% confidence interval [CI] = 1.27 to 2.57; P <.001). The same effect was observed among antibiotic-exposed patients with stage III disease (HR = 2.78, 95% CI = 1.31 to 5.87; P =.007). When limited to only patients who received adjuvant ICI (n = 89), antibiotic-exposed patients also had statistically significantly worse OS (HR = 4.84, 95% CI = 1.09 to 21.50; P =.04). The antibiotic group had a greater incidence of colitis (HR = 2.14, 95% CI = 1.02 to 4.52; P =.046). CONCLUSION Patients with stage III and IV melanoma exposed to antibiotics prior to ICI had statistically significantly worse OS than unexposed patients. Antibiotic exposure was associated with greater incidence of moderate to severe immune-mediated colitis. Given the large number of antibiotics prescribed annually, physicians should be judicious with their use in cancer populations likely to receive ICI.
Collapse
Affiliation(s)
- Jahan J Mohiuddin
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Brian Chu
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrea Facciabene
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Kendra Poirier
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Xingmei Wang
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Abigail Doucette
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Cathy Zheng
- Tara Miller Melanoma Center, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Wei Xu
- Tara Miller Melanoma Center, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Emily J Anstadt
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ravi K Amaravadi
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Giorgos C Karakousis
- Division of Endocrine and Oncologic Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Tara C Mitchell
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexander C Huang
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacob E Shabason
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexander Lin
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Amit Maity
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Lynn M Schuchter
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John N Lukens
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
56
|
Han H, Zhou Y, Liu Q, Wang G, Feng J, Zhang M. Effects of Ammonia on Gut Microbiota and Growth Performance of Broiler Chickens. Animals (Basel) 2021; 11:ani11061716. [PMID: 34201291 PMCID: PMC8228959 DOI: 10.3390/ani11061716] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/18/2021] [Accepted: 06/01/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The composition and function of gut microbiota is crucial for the health of the host and closely related to animal growth performance. Factors that impact microbiota composition can also impact its productivity. Ammonia (NH3), one of the major contaminants in poultry houses, negatively affects poultry performance. However, the influence of ammonia on broiler intestinal microflora, and whether this influence is related to growth performance, has not been reported. Our results indicated that ammonia caused changes to cecal microflora of broilers, and these changes related to growth performance. Understanding the effects of ammonia on the intestinal microflora of broilers will be beneficial in making targeted decisions to minimize the negative effects of ammonia on broilers. Abstract In order to investigate the influence of ammonia on broiler intestinal microflora and growth performance of broiler chickens, 288 21-day-old male Arbor Acres broilers with a similar weight were randomly divided into four groups with different NH3 levels: 0 ppm, 15 ppm, 25 ppm, and 35 ppm. The growth performance of each group was recorded and analyzed. Additionally, 16s rRNA sequencing was performed on the cecal contents of the 0 ppm group and the 35 ppm group broilers. The results showed the following: a decrease in growth performance in broilers was observed after 35 ppm ammonia exposure for 7 days and 25 ppm ammonia exposure for 14 days. At phylum level, the relative abundance of Proteobacteria phylum was increased after 35 ppm ammonia exposure. At genus level, ammonia increased the relative abundance of Escherichia–Shigella and decreased the relative abundance of Butyricicoccus, Parasutterella, Lachnospiraceae_UCG-010, Ruminococcaceae_UCG-013 and Ruminococcaceae_UCG-004. Negative correlation between Escherichia–Shigella and growth performance, and positive correlation between bacteria genera (including Butyricicoccus, Parasutterella, Lachnospiraceae_UCG-010, Ruminococcaceae_UCG-013 and Ruminococcaceae_UCG-004) and growth performance was observed. In conclusion, ammonia exposure caused changes in the structure of cecal microflora, and several species were either positively or negatively correlated with growth performance. These findings will help enhance our understanding of the possible mechanism by which ammonia affect the growth of broilers.
Collapse
|
57
|
Trakooncharoenvit A, Hara H, Hira T. Combination of α-Glycosyl-Isoquercitrin and Soybean Fiber Promotes Quercetin Bioavailability and Glucagon-like Peptide-1 Secretion and Improves Glucose Homeostasis in Rats Fed a High-Fat High-Sucrose Diet. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5907-5916. [PMID: 34008400 DOI: 10.1021/acs.jafc.1c01388] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This study examined the effects of a combination of soybean fiber and α-glycosyl-isoquercitrin (AGIQ) on improving quercetin bioavailability and glucose metabolism in rats fed an obesogenic diet. For 9 weeks, rats were individually fed a control diet, a high-fat high-sucrose (H) diet, H with soybean fiber (HS), or with AGIQ (HQ), or with both (HSQ). Quercetin derivatives in plasma, feces, urine, and cecal content were quantified by high-performance liquid chromatography to assess the bioavailability of quercetin, and meal tolerance tests were performed to assess postprandial glycemia and glucagon-like peptide-1 (GLP-1) responses. The HSQ group had higher plasma quercetin levels than HQ. The postprandial glycemia was attenuated in the HSQ group when compared to the H group. The basal plasma GLP-1 concentrations positively correlated with plasma quercetin derivative concentrations. Hence, the combination of soybean fiber and AGIQ could be beneficial for reducing the risk of glucose intolerance, possibly involving enhanced quercetin bioavailability and GLP-1 secretion.
Collapse
Affiliation(s)
| | - Hiroshi Hara
- Department of Food Science and Human Nutrition, Fuji Women's University, Ishikari 061-3204, Japan
| | - Tohru Hira
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| |
Collapse
|
58
|
Almugadam BS, Yang P, Tang L. Analysis of jejunum microbiota of HFD/STZ diabetic rats. Biomed Pharmacother 2021; 138:111094. [PMID: 34311521 DOI: 10.1016/j.biopha.2020.111094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/17/2020] [Accepted: 11/28/2020] [Indexed: 11/30/2022] Open
Abstract
Currently, several studies propose that the dominant intestinal bacteria are core flora. Besides keeping the homeostasis of the intestinal environment, the intestinal microflora also plays a role in body metabolism, production of some vitamins, and control of barrier function. The study aimed to investigate the jejunum microbiota in diabetic rats as well as it's the relationship with Ceftriaxone sodium-mediated gut dysbiosis, diabetic parameters, and intestinal permeability. Thirty-two Wistar rats (Male) were enrolled and divided into four groups (A, B, C, and D; N = 8). Subsequently, T2DM was induced in C and D groups by HFD/STZ model and then gut dysbiosis in B and D groups via intragastric administration of Ceftriaxone sodium for two weeks. The food-water intake, body weight, fasting blood glucose, plasma insulin, HOMA-IR, intestinal permeability, and jejunum microbiota and it's histology were investigated. In this study, T2DM was associated with a significant decrease in the richness and diversity of jejunum microbiota, elevation in the intestinal permeability, and higher abundance of some opportunistic pathogens. Ceftriaxone sodium-induced gut dysbiosis declined food-water intake, damagedthe villi of jejunum tissue, increased intestinal permeability, and affected the diversity of jejunum microbiota. In diabetic rats, Ceftriaxone sodium-mediated gut dysbiosis also declined the abundance of someSCFAs bacteria and raised the abundant of some opportunistic bacteria such as Staphylococcus_sciuri. Interestingly, we found that several bacteria were negatively correlated with HOMA-IR, fasting blood glucose, body weight, and intestinal permeability. Overall, the study highlighted the jejunum microflora alterations in HFD/STZ diabetic rats and assessed the effect of Ceftriaxone sodium-induced gut dysbiosis on diabetic parameters, jejunum microbiota and histology, and intestinal permeability, which are of potential for further studies.
Collapse
Affiliation(s)
- Babiker Saad Almugadam
- Department of Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China; Department of Microbiology, Faculty of Medical Laboratory Sciences, University of El Imam El Mahdi, Kosti, White Nile State, Sudan.
| | - Peng Yang
- Department of Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China.
| | - Li Tang
- Department of Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
59
|
Schubert ML, Rohrbach R, Schmitt M, Stein-Thoeringer CK. The Potential Role of the Intestinal Micromilieu and Individual Microbes in the Immunobiology of Chimeric Antigen Receptor T-Cell Therapy. Front Immunol 2021; 12:670286. [PMID: 34135898 PMCID: PMC8200823 DOI: 10.3389/fimmu.2021.670286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/04/2021] [Indexed: 12/25/2022] Open
Abstract
Cellular immunotherapy with chimeric antigen receptor (CAR)-T cells (CARTs) represents a breakthrough in the treatment of hematologic malignancies. CARTs are genetically engineered hybrid receptors that combine antigen-specificity of monoclonal antibodies with T cell function to direct patient-derived T cells to kill malignant cells expressing the target (tumor) antigen. CARTs have been introduced into clinical medicine as CD19-targeted CARTs for refractory and relapsed B cell malignancies. Despite high initial response rates, current CART therapies are limited by a long-term loss of antitumor efficacy, the occurrence of toxicities, and the lack of biomarkers for predicting therapy and toxicity outcomes. In the past decade, the gut microbiome of mammals has been extensively studied and evidence is accumulating that human health, apart from our own genome, largely depends on microbes that are living in and on the human body. The microbiome encompasses more than 1000 bacterial species who collectively encode a metagenome that guides multifaceted, bidirectional host-microbiome interactions, primarily through the action of microbial metabolites. Increasing knowledge has been accumulated on the role of the gut microbiome in T cell-driven anticancer immunotherapy. It has been shown that antibiotics, dietary components and gut microbes reciprocally affect the efficacy and toxicity of allogeneic hematopoietic cell transplantation (allo HCT) as the prototype of T cell-based immunotherapy for hematologic malignancies, and that microbiome diversity metrics can predict clinical outcomes of allo HCTs. In this review, we will provide a comprehensive overview of the principles of CD19-CART immunotherapy and major aspects of the gut microbiome and its modulators that impact antitumor T cell transfer therapies. We will outline i) the extrinsic and intrinsic variables that can contribute to the complex interaction of the gut microbiome and host in CART immunotherapy, including ii) antibiotic administration affecting loss of colonization resistance, expansion of pathobionts and disturbed mucosal and immunological homeostasis, and ii) the role of specific gut commensals and their microbial virulence factors in host immunity and inflammation. Although the role of the gut microbiome in CART immunotherapy has only been marginally explored so far, this review may open a new chapter and views on putative connections and mechanisms.
Collapse
Affiliation(s)
- Maria-Luisa Schubert
- Klinik fuer Haematologie, Onkologie und Rheumatologie, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Roman Rohrbach
- Research Division Microbiome and Cancer, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Michael Schmitt
- Klinik fuer Haematologie, Onkologie und Rheumatologie, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Christoph K Stein-Thoeringer
- Research Division Microbiome and Cancer, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany.,Klinik fuer Medizinische Onkologie, Nationales Centrum für Tumorerkrankungen (NCT), Heidelberg, Germany
| |
Collapse
|
60
|
Galmiche M, Achamrah N, Déchelotte P, Ribet D, Breton J. Role of microbiota-gut-brain axis dysfunctions induced by infections in the onset of anorexia nervosa. Nutr Rev 2021; 80:381-391. [PMID: 34010427 DOI: 10.1093/nutrit/nuab030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Anorexia nervosa (AN) is an eating disorder characterized by low food intake, severe body weight loss, intense fear of gaining weight, and dysmorphophobia. This chronic disease is associated with both psychiatric and somatic comorbidities. Over the years, clinical studies have accumulated evidence that viral or bacterial infections may promote the onset of eating disorders such as AN. This review aims to describe how infections and the subsequent immune responses affect food intake regulation in the short term and also how these processes may lead to long-term intestinal disorders, including gut barrier disruption and gut microbiota dysbiosis, even after the clearance of the pathogens. We discuss in particular how infection-mediated intestinal dysbiosis may promote the onset of several AN symptoms and comorbidities, including appetite dysregulation, functional gastrointestinal disorders, and mood disorders.
Collapse
Affiliation(s)
- Marie Galmiche
- M. Galmiche, N. Achamrah, P. Déchelotte, and J. Breton are with Nutrition Department, CHU Rouen, F-76000 Rouen, France. N. Achamrah, P. Déchelotte, D. Ribet, and J. Breton are with the UNIROUEN, INSERM UMR 1073, Nutrition, Gut and Brain Laboratory, Rouen, France. N. Achamrah, P. Déchelotte, D. Ribet, and J. Breton are with the UNIROUEN, Institute for Research and Innovation in Biomedicine, Normandie University, Rouen, France
| | - Najate Achamrah
- M. Galmiche, N. Achamrah, P. Déchelotte, and J. Breton are with Nutrition Department, CHU Rouen, F-76000 Rouen, France. N. Achamrah, P. Déchelotte, D. Ribet, and J. Breton are with the UNIROUEN, INSERM UMR 1073, Nutrition, Gut and Brain Laboratory, Rouen, France. N. Achamrah, P. Déchelotte, D. Ribet, and J. Breton are with the UNIROUEN, Institute for Research and Innovation in Biomedicine, Normandie University, Rouen, France
| | - Pierre Déchelotte
- M. Galmiche, N. Achamrah, P. Déchelotte, and J. Breton are with Nutrition Department, CHU Rouen, F-76000 Rouen, France. N. Achamrah, P. Déchelotte, D. Ribet, and J. Breton are with the UNIROUEN, INSERM UMR 1073, Nutrition, Gut and Brain Laboratory, Rouen, France. N. Achamrah, P. Déchelotte, D. Ribet, and J. Breton are with the UNIROUEN, Institute for Research and Innovation in Biomedicine, Normandie University, Rouen, France
| | - David Ribet
- M. Galmiche, N. Achamrah, P. Déchelotte, and J. Breton are with Nutrition Department, CHU Rouen, F-76000 Rouen, France. N. Achamrah, P. Déchelotte, D. Ribet, and J. Breton are with the UNIROUEN, INSERM UMR 1073, Nutrition, Gut and Brain Laboratory, Rouen, France. N. Achamrah, P. Déchelotte, D. Ribet, and J. Breton are with the UNIROUEN, Institute for Research and Innovation in Biomedicine, Normandie University, Rouen, France
| | - Jonathan Breton
- M. Galmiche, N. Achamrah, P. Déchelotte, and J. Breton are with Nutrition Department, CHU Rouen, F-76000 Rouen, France. N. Achamrah, P. Déchelotte, D. Ribet, and J. Breton are with the UNIROUEN, INSERM UMR 1073, Nutrition, Gut and Brain Laboratory, Rouen, France. N. Achamrah, P. Déchelotte, D. Ribet, and J. Breton are with the UNIROUEN, Institute for Research and Innovation in Biomedicine, Normandie University, Rouen, France
| |
Collapse
|
61
|
Angoa-Pérez M, Kuhn DM. Evidence for Modulation of Substance Use Disorders by the Gut Microbiome: Hidden in Plain Sight. Pharmacol Rev 2021; 73:571-596. [PMID: 33597276 PMCID: PMC7896134 DOI: 10.1124/pharmrev.120.000144] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The gut microbiome modulates neurochemical function and behavior and has been implicated in numerous central nervous system (CNS) diseases, including developmental, neurodegenerative, and psychiatric disorders. Substance use disorders (SUDs) remain a serious threat to the public well-being, yet gut microbiome involvement in drug abuse has received very little attention. Studies of the mechanisms underlying SUDs have naturally focused on CNS reward circuits. However, a significant body of research has accumulated over the past decade that has unwittingly provided strong support for gut microbiome participation in drug reward. β-Lactam antibiotics have been employed to increase glutamate transporter expression to reverse relapse-induced release of glutamate. Sodium butyrate has been used as a histone deacetylase inhibitor to prevent drug-induced epigenetic alterations. High-fat diets have been used to alter drug reward because of the extensive overlap of the circuitry mediating them. This review article casts these approaches in a different light and makes a compelling case for gut microbiome modulation of SUDs. Few factors alter the structure and composition of the gut microbiome more than antibiotics and a high-fat diet, and butyrate is an endogenous product of bacterial fermentation. Drugs such as cocaine, alcohol, opiates, and psychostimulants also modify the gut microbiome. Therefore, their effects must be viewed on a complex background of cotreatment-induced dysbiosis. Consideration of the gut microbiome in SUDs should have the beneficial effects of expanding the understanding of SUDs and aiding in the design of new therapies based on opposing the effects of abused drugs on the host's commensal bacterial community. SIGNIFICANCE STATEMENT: Proposed mechanisms underlying substance use disorders fail to acknowledge the impact of drugs of abuse on the gut microbiome. β-Lactam antibiotics, sodium butyrate, and high-fat diets are used to modify drug seeking and reward, overlooking the notable capacity of these treatments to alter the gut microbiome. This review aims to stimulate research on substance abuse-gut microbiome interactions by illustrating how drugs of abuse share with antibiotics, sodium butyrate, and fat-laden diets the ability to modify the host microbial community.
Collapse
Affiliation(s)
- Mariana Angoa-Pérez
- Research and Development Service, John D. Dingell VA Medical Center, and Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan
| | - Donald M Kuhn
- Research and Development Service, John D. Dingell VA Medical Center, and Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
62
|
Duan M, Liu F, Fu H, Lu S, Wang T. Preoperative Microbiomes and Intestinal Barrier Function Can Differentiate Prodromal Alzheimer's Disease From Normal Neurocognition in Elderly Patients Scheduled to Undergo Orthopedic Surgery. Front Cell Infect Microbiol 2021; 11:592842. [PMID: 33869072 PMCID: PMC8044800 DOI: 10.3389/fcimb.2021.592842] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 03/05/2021] [Indexed: 12/11/2022] Open
Abstract
Objective Emerging evidence links perturbations in the microbiome to neurodegeneration in amnestic mild cognitive impairment (aMCI) and Alzheimer’s disease (AD) and to surgical stress. In this study, we attempted to identify preoperative differences intestinal microbiota (IM) and barrier function between pAD [prodromal AD: Subjective cognitive decline (SCD) and aMCI] patients and normal neurocognition (NC) patients. Additionally, the potential associations between IM and barrier function, inflammation, and the clinical characteristics of pAD were evaluated. Design Eighty elderly patients scheduled to undergo orthopedic surgery were consecutively enrolled and grouped as NC, SCD, and aMCI following neuropsychological assessment. IM was determined by 16S rRNA MiSeq sequencing, and PICRUSt was used to predict functional shifts in IM. Furthermore, we investigated the association between IM and plasma claudin-1, occludin, LPS, systemic inflammatory cytokines, neuropsychological assessment, and clinical characteristics. Results There was a lower Chao1 index in the SCD group (P = 0.004) and differences in beta diversity among the three groups (PCA: P = 0.026, PCoA: P= 0.004). The relative abundance of Bacteroidetes was higher in the SCD group (P = 0.016, P = 0.008), and Firmicutes were more enriched in the aMCI group than in the SCD group (P= 0.026). At the family level, the total abundance of Gram-negative bacteria was higher in the SCD group than in the aMCI group (P = 0.047), and the Christensenellaceae family was detected at lower levels in the SCD and aMCI groups than in the NC group (P= 0.039). At the genus level, the eleven short-chain fatty acid (SCFA)-producing bacteria exhibited differences among the three groups. PICRUSt analysis showed that the pathways involved in SCFA catabolism, biosynthesis, and adherent junctions were reduced in SCD patients, and lipid synthesis proteins were reduced in pAD patients. Meanwhile, elevated plasma LPS and CRP were observed in SCD patients, and higher plasma occludin in aMCI patients. The IM was correlated with plasma claudin-1, LPS, inflammatory factors, neuropsychological assessment, and clinical characteristics. Conclusion The intestines of SCD and aMCI patients preoperatively exhibited IM dysbiosis and barrier dysfunction, and elevated plasma LPS and CRP were observed in SCD patients.
Collapse
Affiliation(s)
- Mei Duan
- Department of Anesthesiology, Xuanwu Hospital, Beijing, China
| | - Fangyan Liu
- Department of Anesthesiology, Xuanwu Hospital, Beijing, China
| | - Huiqun Fu
- Department of Anesthesiology, Xuanwu Hospital, Beijing, China
| | - Shibao Lu
- Department of Orthopedics, Xuanwu Hospital, Beijing, China
| | - Tianlong Wang
- Department of Anesthesiology, Xuanwu Hospital, Beijing, China
| |
Collapse
|
63
|
Wu L, Tang Z, Chen H, Ren Z, Ding Q, Liang K, Sun Z. Mutual interaction between gut microbiota and protein/amino acid metabolism for host mucosal immunity and health. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2021; 7:11-16. [PMID: 33997326 PMCID: PMC8110859 DOI: 10.1016/j.aninu.2020.11.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/25/2020] [Accepted: 11/18/2020] [Indexed: 02/06/2023]
Abstract
In recent years, many studies have shown that the intestinal microflora has various effects that are linked to the critical physiological functions and pathological systems of the host. The intestinal microbial community is widely involved in the metabolism of food components such as protein, which is one of the essential nutrients in diets. Additionally, dietary protein/amino acids have been shown to have had a profound impact on profile and operation of gut microbiota. This review summarizes the current literature on the mutual interaction between intestinal microbiota and protein/amino acid metabolism for host mucosal immunity and health.
Collapse
Affiliation(s)
- Liuting Wu
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Zhiru Tang
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Huiyuan Chen
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Zhongxiang Ren
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Qi Ding
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Kaiyang Liang
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Zhihong Sun
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| |
Collapse
|
64
|
Schneider KM, Elfers C, Ghallab A, Schneider CV, Galvez EJC, Mohs A, Gui W, Candels LS, Wirtz TH, Zuehlke S, Spiteller M, Myllys M, Roulet A, Ouzerdine A, Lelouvier B, Kilic K, Liao L, Nier A, Latz E, Bergheim I, Thaiss CA, Hengstler JG, Strowig T, Trautwein C. Intestinal Dysbiosis Amplifies Acetaminophen-Induced Acute Liver Injury. Cell Mol Gastroenterol Hepatol 2020; 11:909-933. [PMID: 33189892 PMCID: PMC7900526 DOI: 10.1016/j.jcmgh.2020.11.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Acute liver failure (ALF) represents an unmet medical need in Western countries. Although the link between intestinal dysbiosis and chronic liver disease is well-established, there is little evidence for a functional role of gut-liver interaction during ALF. Here we hypothesized that intestinal dysbiosis may affect ALF. METHODS To test this hypothesis, we assessed the association of proton pump inhibitor (PPI) or long-term antibiotics (ABx) intake, which have both been linked to intestinal dysbiosis, and occurrence of ALF in the 500,000 participants of the UK BioBank population-based cohort. For functional studies, male Nlrp6-/- mice were used as a dysbiotic mouse model and injected with a sublethal dose of acetaminophen (APAP) or lipopolysaccharide (LPS) to induce ALF. RESULTS Multivariate Cox regression analyses revealed a significantly increased risk (odds ratio, 2.3-3) for developing ALF in UK BioBank participants with PPI or ABx. Similarly, dysbiotic Nlrp6-/- mice displayed exacerbated APAP- and LPS-induced liver injury, which was linked to significantly reduced gut and liver tissue microbiota diversity and correlated with increased intestinal permeability at baseline. Fecal microbiota transfer (FMT) from Nlrp6-/- mice into wild-type (WT) mice augmented liver injury on APAP treatment in recipient WT mice, resembling the inflammatory phenotype of Nlrp6-/- mice. Specifically, FMT skewed monocyte polarization in WT mice toward a Ly6Chi inflammatory phenotype, suggesting a critical function of these cells as sensors of gut-derived signals orchestrating the inflammatory response. CONCLUSIONS Our data show an important yet unknown function of intestinal microbiota during ALF. Intestinal dysbiosis was transferrable to healthy WT mice via FMT and aggravated liver injury. Our study highlights intestinal microbiota as a targetable risk factor for ALF.
Collapse
Affiliation(s)
- Kai Markus Schneider
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany; Department of Microbiology; Institute for Immunology; and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Carsten Elfers
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Ahmed Ghallab
- Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, Dortmund, Germany; Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | | | - Eric J C Galvez
- Helmholtz Centre for Infection Research, Braunschweig, Germany; and Hannover Medical School, Hannover, Germany
| | - Antje Mohs
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Wenfang Gui
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | | | | | - Sebastian Zuehlke
- Department of Chemistry and Chemical Biology, Institute of Experimental Research (INFU), TU Dortmund University, Dortmund, Germany
| | - Michael Spiteller
- Department of Chemistry and Chemical Biology, Institute of Experimental Research (INFU), TU Dortmund University, Dortmund, Germany
| | - Maiju Myllys
- Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, Dortmund, Germany
| | | | | | | | - Konrad Kilic
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Lijun Liao
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany; Department of Anesthesiology and Pain Management, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Anika Nier
- Department of Nutritional Sciences, R.F. Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Eicke Latz
- Institute for Innate Immunity, University of Bonn, Bonn, Germany
| | - Ina Bergheim
- Department of Nutritional Sciences, R.F. Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Christoph A Thaiss
- Department of Microbiology; Institute for Immunology; and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, Dortmund, Germany
| | - Till Strowig
- Helmholtz Centre for Infection Research, Braunschweig, Germany; and Hannover Medical School, Hannover, Germany
| | - Christian Trautwein
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany.
| |
Collapse
|
65
|
Pinto DV, Raposo RS, Matos GA, Alvarez-Leite JI, Malva JO, Oriá RB. Methylmercury Interactions With Gut Microbiota and Potential Modulation of Neurogenic Niches in the Brain. Front Neurosci 2020; 14:576543. [PMID: 33224022 PMCID: PMC7670038 DOI: 10.3389/fnins.2020.576543] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/24/2020] [Indexed: 12/13/2022] Open
Affiliation(s)
- Daniel V Pinto
- Laboratory of Tissue Healing, Ontogeny and Nutrition, Department of Morphology, School of Medicine, Institute of Biomedicine, Federal University of Ceara, Fortaleza, Brazil
| | - Ramon S Raposo
- Experimental Biology Core, University of Fortaleza, Fortaleza, Brazil
| | - Gabriella A Matos
- Laboratory of Tissue Healing, Ontogeny and Nutrition, Department of Morphology, School of Medicine, Institute of Biomedicine, Federal University of Ceara, Fortaleza, Brazil
| | - Jacqueline I Alvarez-Leite
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - João O Malva
- Center for Innovative Biomedicine and Biotechnology (CIBB), Faculty of Medicine, Institute of Pharmacology and Experimental Therapeutics, Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
| | - Reinaldo B Oriá
- Laboratory of Tissue Healing, Ontogeny and Nutrition, Department of Morphology, School of Medicine, Institute of Biomedicine, Federal University of Ceara, Fortaleza, Brazil
| |
Collapse
|
66
|
Skonieczna-Żydecka K, Jakubczyk K, Maciejewska-Markiewicz D, Janda K, Kaźmierczak-Siedlecka K, Kaczmarczyk M, Łoniewski I, Marlicz W. Gut Biofactory-Neurocompetent Metabolites within the Gastrointestinal Tract. A Scoping Review. Nutrients 2020; 12:E3369. [PMID: 33139656 PMCID: PMC7693392 DOI: 10.3390/nu12113369] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota have gained much scientific attention recently. Apart from unravelling the taxonomic data, we should understand how the altered microbiota structure corresponds to functions of this complex ecosystem. The metabolites of intestinal microorganisms, especially bacteria, exert pleiotropic effects on the human organism and contribute to the host systemic balance. These molecules play key roles in regulating immune and metabolic processes. A subset of them affect the gut brain axis signaling and balance the mental wellbeing. Neurotransmitters, short chain fatty acids, tryptophan catabolites, bile acids and phosphatidylcholine, choline, serotonin, and L-carnitine metabolites possess high neuroactive potential. A scoping literature search in PubMed/Embase was conducted up until 20 June 2020, using three major search terms "microbiota metabolites" AND "gut brain axis" AND "mental health". This review aimed to enhance our knowledge regarding the gut microbiota functional capacity, and support current and future attempts to create new compounds for future clinical interventions.
Collapse
Affiliation(s)
- Karolina Skonieczna-Żydecka
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland; (K.S.-Ż.); (K.J.); (D.M.-M.); (K.J.)
| | - Karolina Jakubczyk
- Department of Surgical Oncology, Medical University of Gdansk, Smoluchowskiego 17, 80-214 Gdańsk, Poland;
| | - Dominika Maciejewska-Markiewicz
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland; (K.S.-Ż.); (K.J.); (D.M.-M.); (K.J.)
| | - Katarzyna Janda
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland; (K.S.-Ż.); (K.J.); (D.M.-M.); (K.J.)
| | | | - Mariusz Kaczmarczyk
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland;
| | - Igor Łoniewski
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland; (K.S.-Ż.); (K.J.); (D.M.-M.); (K.J.)
| | - Wojciech Marlicz
- Department of Gastroenterology, Pomeranian Medical University, 71-252 Szczecin, Poland
- The Centre for Digestive Diseases Endoklinika, 70-535 Szczecin, Poland
| |
Collapse
|
67
|
Lee JHJ, Zhu J. Optimizing Secondary Electrospray Ionization High-Resolution Mass Spectrometry (SESI-HRMS) for the Analysis of Volatile Fatty Acids from Gut Microbiome. Metabolites 2020; 10:E351. [PMID: 32872254 PMCID: PMC7570293 DOI: 10.3390/metabo10090351] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/19/2020] [Accepted: 08/26/2020] [Indexed: 12/19/2022] Open
Abstract
Gut microbiota plays essential roles in maintaining gut homeostasis. The composition of gut microbes and their metabolites are altered in response to diet and remedial agents such as antibiotics. However, little is known about the effect of antibiotics on the gut microbiota and their volatile metabolites. In this study, we evaluated the impact of a moderate level of ampicillin treatment on volatile fatty acids (VFAs) of gut microbial cultures using an optimized real-time secondary electrospray ionization coupled with high-resolution mass spectrometry (SESI-HRMS). To evaluate the ionization efficiency, different types of electrospray solvents and concentrations of formic acid as an additive (0.01, 0.05, and 0.1%, v/v) were tested using VFAs standard mixture (C2-C7). As a result, the maximum SESI-HRMS signals of all studied m/z values were observed from water with 0.01% formic acid than those from the aqueous methanolic solutions. Optimal temperatures of sample inlet and ion chamber were set at 130 °C and 85 °C, respectively. SESI spray pressure at 0.5 bar generated the maximum intensity than other tested values. The optimized SESI-HRMS was then used for the analysis of VFAs in gut microbial cultures. We detected that the significantly elevated C4 and C7 VFAs in the headspace of gut microbial cultures six hours after ampicillin treatment (1 mg/L). In conclusion, our results suggested that the optimized SESI-HRMS method can be suitable for the analysis of VFAs from gut microbes in a rapid, sensitive, and non-invasive manner.
Collapse
Affiliation(s)
- Jisun H. J. Lee
- Department of Human Sciences, The Ohio State University, Campbell Hall, 1787 Neil Avenue, Columbus, OH 43210, USA;
- James Comprehensive Cancer Center, The Ohio State University, Wiseman Hall, 400 W 12th Ave, Columbus, OH 43210, USA
| | - Jiangjiang Zhu
- Department of Human Sciences, The Ohio State University, Campbell Hall, 1787 Neil Avenue, Columbus, OH 43210, USA;
- James Comprehensive Cancer Center, The Ohio State University, Wiseman Hall, 400 W 12th Ave, Columbus, OH 43210, USA
| |
Collapse
|
68
|
Kashtanova DA, Tkacheva ON. The phenomenon of intestinal permeability and its association with cardiovascular disease. Current status. КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2020. [DOI: 10.15829/1728-8800-2020-2474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Changes in the intestinal permeability in various pathologies are widely discussed in the scientific community. There is still no consensus on whether high intestinal permeability can lead to chronic noncommunicable diseases, but there is much evidence that increased permeability can aggravate some of them. The article discusses a modern vision of the intestinal permeability including its potential contribution to the development of cardiovascular pathologies, which are the number one mortality cause both in Russia and around the world.
Collapse
Affiliation(s)
- D. A. Kashtanova
- Russian Clinical and Research Center of Gerontology, Pirogov Russian National Research Medical University
| | - O. N. Tkacheva
- Russian Clinical and Research Center of Gerontology, Pirogov Russian National Research Medical University
| |
Collapse
|
69
|
Free Fatty Acid Receptors 2 and 3 as Microbial Metabolite Sensors to Shape Host Health: Pharmacophysiological View. Biomedicines 2020; 8:biomedicines8060154. [PMID: 32521775 PMCID: PMC7344995 DOI: 10.3390/biomedicines8060154] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022] Open
Abstract
The role of the gut microbiome in human health is becoming apparent. The major functional impact of the gut microbiome is transmitted through the microbial metabolites that are produced in the gut and interact with host cells either in the local gut environment or are absorbed into circulation to impact distant cells/organs. Short-chain fatty acids (SCFAs) are the major microbial metabolites that are produced in the gut through the fermentation of non-digestible fibers. SCFAs are known to function through various mechanisms, however, their signaling through free fatty acid receptors 2 and 3 (FFAR2/3; type of G-coupled protein receptors) is a new therapeutic approach. FFAR2/3 are widely expressed in diverse cell types in human and mice, and function as sensors of SCFAs to change several physiological and cellular functions. FFAR2/3 modulate neurological signaling, energy metabolism, intestinal cellular homeostasis, immune response, and hormone synthesis. FFAR2/3 function through Gi and/or Gq signaling, that is mediated through specific structural features of SCFAs-FFAR2/3 bindings and modulating specific signaling pathway. In this review, we discuss the wide-spread expression and structural homologies between human and mice FFAR2/3, and their role in different human health conditions. This information can unlock opportunities to weigh the potential of FFAR2/3 as a drug target to prevent human diseases.
Collapse
|
70
|
Graversen KB, Bahl MI, Larsen JM, Ballegaard ASR, Licht TR, Bøgh KL. Short-Term Amoxicillin-Induced Perturbation of the Gut Microbiota Promotes Acute Intestinal Immune Regulation in Brown Norway Rats. Front Microbiol 2020; 11:496. [PMID: 32292395 PMCID: PMC7135894 DOI: 10.3389/fmicb.2020.00496] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 03/06/2020] [Indexed: 12/17/2022] Open
Abstract
The intestinal gut microbiota is essential for maintaining host health. Concerns have been raised about the possible connection between antibiotic use, causing microbiota disturbances, and the increase in allergic and autoimmune diseases observed during the last decades. To elucidate the putative connection between antibiotic use and immune regulation, we have assessed the effects of the antibiotic amoxicillin on immune regulation, protein uptake, and bacterial community structure in a Brown Norway rat model. Daily intra-gastric administration of amoxicillin resulted in an immediate and dramatic shift in fecal microbiota, characterized by a reduction of within sample (α) diversity, reduced variation between animals (β diversity), increased relative abundance of Bacteroidetes and Gammaproteobacteria, with concurrent reduction of Firmicutes, compared to a water control group. In the small intestine, amoxicillin also affected microbiota composition significantly, but in a different way than observed in feces. The small intestine of control animals was vastly dominated by Lactobacillus, but this genus was much less abundant in the amoxicillin group. Instead, multiple different genera expanded after amoxicillin administration, with high variation between individual animals, thus the small intestinal α and β diversity were higher in the amoxicillin group compared to controls. After 1 week of daily amoxicillin administration, total fecal IgA level, relative abundance of small intestinal regulatory T cells and goblet cell numbers were higher in the amoxicillin group compared to controls. Several bacterial genera, including Escherichia/Shigella, Klebsiella (Gammaproteobacteria), and Bifidobacterium, for which the relative abundance was higher in the small intestine in the amoxicillin group than in controls, were positively correlated with the fraction of small intestinal regulatory T cells. Despite of epidemiologic studies showing an association between early life antibiotic consumption and later prevalence of inflammatory bowel diseases and food allergies, our findings surprisingly indicated that amoxicillin-induced perturbation of the gut microbiota promotes acute immune regulation. We speculate that the observed increase in relative abundance of small intestinal regulatory T cells is partly mediated by immunomodulatory lipopolysaccharides derived from outgrowth of Gammaproteobacteria.
Collapse
Affiliation(s)
| | - Martin Iain Bahl
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jeppe Madura Larsen
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Tine Rask Licht
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | | |
Collapse
|
71
|
Yang C, Merlin D. Nanoparticle-Mediated Drug Delivery Systems For The Treatment Of IBD: Current Perspectives. Int J Nanomedicine 2019; 14:8875-8889. [PMID: 32009785 PMCID: PMC6859086 DOI: 10.2147/ijn.s210315] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 10/19/2019] [Indexed: 12/13/2022] Open
Abstract
Inflammatory bowel disease (IBD), which mainly consists of Crohn’s disease and ulcerative colitis, is a chronic and relapsing inflammatory condition of the gastrointestinal tract. The traditional treatment strategies relied on frequent administration of high dosages of medications, including antibiotics, non-steroidal anti-inflammatory drugs, biologics, and immunomodulators, with the goal of reducing inflammation. Some of these medications were effective in alleviating the early-stage inflammatory symptoms, but their long-term efficacies were compromised by the accumulation of toxicities. Recently, nanoparticle (NP)-based drugs have been widely studied for their potential to solve such problems. Various mechanisms/strategies, including size-, charge-, pH-, pressure-, degradation-, ligand-receptor-, and microbiome- dependent drug delivery systems, have been exploited in preclinical studies. A certain number of NP delivery systems have sought to target drugs to the inflamed intestine. Although several NP-based drugs have entered clinical trials for the treatment of IBD, most have failed due to premature drug release, weak targeting ability, and the high immune toxicity of some of the synthetic nanomaterials that have been used to fabricate the NPs. Therefore, there is still a need for rationally designed and stable NP drug delivery system that can specifically target drugs to the disease site, prolong the drug’s residence time, and minimize systemic side effects. This review will analyze the current state of the art in NP-mediated drug delivery for IBD treatment. We will focus on topics such as deliverable targets (at the tissue or cellular level) for treating inflammation; the target-homing NP materials that can interact with such targets; and the major administration routes for treating IBD. These discussions will integrate notable trends in the research and development of IBD medications, including multi-responsive NP-mediated delivery and naturally-derived targeting NPs. Finally, current challenges and future directions will be presented in the hopes of advancing the study of NP-mediated strategies for treating IBD.
Collapse
Affiliation(s)
- Chunhua Yang
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Digestive Disease Research Group, Georgia State University, Atlanta, GA 30302, USA
| | - Didier Merlin
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Digestive Disease Research Group, Georgia State University, Atlanta, GA 30302, USA.,Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
| |
Collapse
|