51
|
Evaluation of Eosinophilic Cationic Protein and Some Immunological Markers in Patients Infected with Scabies. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.3.48] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
52
|
Human leukocyte antigen-G 3' untranslated region polymorphism +3142G/C (rs1063320) and haplotypes are associated with manifestations of the American Tegumentary Leishmaniasis in a Northeastern Brazilian population. Hum Immunol 2019; 80:908-916. [PMID: 31420207 DOI: 10.1016/j.humimm.2019.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 07/25/2019] [Accepted: 08/05/2019] [Indexed: 11/21/2022]
Abstract
While the role of cytokine genes has been well documented in the context of Leishmania (Viannia) braziliensis infection, no studies have addressed the influence of human leukocyte antigen-G (HLA-G) in susceptibility/resistance to American Tegumentary Leishmaniasis (ATL). Here, we evaluated the influences of HLA-G, IL-10, TNF-A and IFN-G in the susceptibility and clinical manifestations of ATL. DNA of 114 ATL patients and 346 healthy individuals were sequenced for well-documented polymorphisms in HLA-G 3' untranslated region (UTR), in IL-10 and TNF-A promoters and in IFN-G intron 1. Soluble HLA-G (sHLA-G) and cytokine levels were evaluated by ELISA and flow cytometry, respectively. Analyses were performed using GraphPad and R-package software. Individuals bearing HLA-G +3142G/G showed an association with increased risk for ATL, whereas those carrying the HLA-G +3142C/G and one copy of UTR6 haplotype, showed an association with decreased risk for ATL. sHLA-G was overexpressed in "susceptible" patients compared to the "resistant'' one, and also in patients bearing +3142G/G genotype. From these results, HLA-G +3142G/G may be considered as genotype of susceptibility and UTR6 as marker of protection to ATL. Our findings showed a participation of HLA-G in the pathogenesis of the ATL.
Collapse
|
53
|
Gonçalves de Albuquerque SDC, da Costa Oliveira CN, Vaitkevicius-Antão V, Silva AC, Luna CF, de Lorena VMB, de Paiva-Cavalcanti M. Study of association of the rs2275913 IL-17A single nucleotide polymorphism and susceptibility to cutaneous leishmaniasis caused by Leishmania braziliensis. Cytokine 2019; 123:154784. [PMID: 31344596 DOI: 10.1016/j.cyto.2019.154784] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 05/23/2019] [Accepted: 07/16/2019] [Indexed: 12/14/2022]
Abstract
Cutaneous leishmaniasis (CL) caused by Leishmania braziliensis is the most spread clinical form of leishmaniasis in Brazil. However, only a few part of the people infected develop clinically perceptive disease, suggesting the influence of human genetic components in the CL pathogeny. The rs2275913 SNP is the nucleotide variant of the IL17A gene. The A allele is associated with a vast number of infectious and non-infectious diseases. Here, we investigated the association of the rs2275913 SNP (G/A) from IL-17A and two forms of susceptibility to CL in Brazil by case-control study. Furthermore, we evaluated the functional relevance of this SNP during the immune response of the host and analyzed its impact in the parasite elimination. Weak associations of A allele with susceptibility to L. braziliensis infection or to symptomatic CL were observed, and a tendency of A allele carriers to be more susceptible to infection and cutaneous disease. Functional analysis of the Th17 cell phenotypes revealed lower frequencies of CD4+ IL-17+ cells in samples of infected people with AA/AG genotypes. Furthermore, people carrying the A allele maintain higher parasite loads, reinforcing the genetic susceptibility findings. This study adds knowledge about the influence of a significant genetic variation on IL-17 promoter on CL pathogenesis, and may contribute to enhance the knowledge about the role of IL-17 in the L. braziliensis infections.
Collapse
Affiliation(s)
- Suênia da Cunha Gonçalves de Albuquerque
- Department of Microbiology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Av. Prof. Moraes Rego S/N, 50670-420 Recife, Pernambuco, Brazil; Central Laboratory of Public Health Dr Milton Bezerra de Sobral, Rua João Fernandes Vieira S/N, 50050-215 Recife, Pernambuco, Brazil
| | - Cíntia Nascimento da Costa Oliveira
- Department of Microbiology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Av. Prof. Moraes Rego S/N, 50670-420 Recife, Pernambuco, Brazil
| | - Victor Vaitkevicius-Antão
- Department of Microbiology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Av. Prof. Moraes Rego S/N, 50670-420 Recife, Pernambuco, Brazil
| | - Ana Carla Silva
- Department of Microbiology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Av. Prof. Moraes Rego S/N, 50670-420 Recife, Pernambuco, Brazil
| | - Carlos Feitosa Luna
- Department of Microbiology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Av. Prof. Moraes Rego S/N, 50670-420 Recife, Pernambuco, Brazil
| | - Virgínia Maria Barros de Lorena
- Department of Immunology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Av. Prof. Moraes Rego S/N, 50670-420 Recife, Pernambuco, Brazil
| | - Milena de Paiva-Cavalcanti
- Department of Microbiology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Av. Prof. Moraes Rego S/N, 50670-420 Recife, Pernambuco, Brazil.
| |
Collapse
|
54
|
Carvalho AM, Novais FO, Paixão CS, de Oliveira CI, Machado PRL, Carvalho LP, Scott P, Carvalho EM. Glyburide, a NLRP3 Inhibitor, Decreases Inflammatory Response and Is a Candidate to Reduce Pathology in Leishmania braziliensis Infection. J Invest Dermatol 2019; 140:246-249.e2. [PMID: 31252034 DOI: 10.1016/j.jid.2019.05.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/30/2019] [Accepted: 05/16/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Augusto M Carvalho
- Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Bahia, Brazil; Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Bahia, Brazil; Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Fernanda O Novais
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | - Paulo Roberto Lima Machado
- Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Bahia, Brazil; Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Bahia, Brazil; Instituto Nacional de Ciência e Tecnologia de Doenças Tropicais (INCT-DT), Salvador, Bahia, Brazil
| | - Lucas P Carvalho
- Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Bahia, Brazil; Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Bahia, Brazil; Instituto Nacional de Ciência e Tecnologia de Doenças Tropicais (INCT-DT), Salvador, Bahia, Brazil
| | - Phillip Scott
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Edgar M Carvalho
- Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Bahia, Brazil; Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Bahia, Brazil; Instituto Nacional de Ciência e Tecnologia de Doenças Tropicais (INCT-DT), Salvador, Bahia, Brazil.
| |
Collapse
|
55
|
Borbón TY, Scorza BM, Clay GM, Lima Nobre de Queiroz F, Sariol AJ, Bowen JL, Chen Y, Zhanbolat B, Parlet CP, Valadares DG, Cassel SL, Nauseef WM, Horswill AR, Sutterwala FS, Wilson ME. Coinfection with Leishmania major and Staphylococcus aureus enhances the pathologic responses to both microbes through a pathway involving IL-17A. PLoS Negl Trop Dis 2019; 13:e0007247. [PMID: 31107882 PMCID: PMC6527190 DOI: 10.1371/journal.pntd.0007247] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 02/15/2019] [Indexed: 12/12/2022] Open
Abstract
Cutaneous leishmaniasis (CL) is a parasitic disease causing chronic, ulcerating skin lesions. Most humans infected with the causative Leishmania protozoa are asymptomatic. Leishmania spp. are usually introduced by sand flies into the dermis of mammalian hosts in the presence of bacteria from either the host skin, sand fly gut or both. We hypothesized that bacteria at the dermal inoculation site of Leishmania major will influence the severity of infection that ensues. A C57BL/6 mouse ear model of single or coinfection with Leishmania major, Staphylococcus aureus, or both showed that single pathogen infections caused localized lesions that peaked after 2–3 days for S. aureus and 3 weeks for L. major infection, but that coinfection produced lesions that were two-fold larger than single infection throughout 4 weeks after coinfection. Coinfection increased S. aureus burdens over 7 days, whereas L. major burdens (3, 7, 28 days) were the same in singly and coinfected ears. Inflammatory lesions throughout the first 4 weeks of coinfection had more neutrophils than did singly infected lesions, and the recruited neutrophils from early (day 1) lesions had similar phagocytic and NADPH oxidase capacities. However, most neutrophils were apoptotic, and transcription of immunomodulatory genes that promote efferocytosis was not upregulated, suggesting that the increased numbers of neutrophils may, in part, reflect defective clearance and resolution of the inflammatory response. In addition, the presence of more IL-17A-producing γδ and non-γδ T cells in early lesions (1–7 days), and L. major antigen-responsive Th17 cells after 28 days of coinfection, with a corresponding increase in IL-1β, may recruit more naïve neutrophils into the inflammatory site. Neutralization studies suggest that IL-17A contributed to an enhanced inflammatory response, whereas IL-1β has an important role in controlling bacterial replication. Taken together, these data suggest that coinfection of L. major infection with S. aureus exacerbates disease, both by promoting more inflammation and neutrophil recruitment and by increasing neutrophil apoptosis and delaying resolution of the inflammatory response. These data illustrate the profound impact that coinfecting microorganisms can exert on inflammatory lesion pathology and host adaptive immune responses. Cutaneous leishmaniasis (CL) is a vector-borne ulcerating skin disease affecting several million people worldwide. The causative Leishmania spp. protozoa are transmitted by infected phlebotomine sand flies. During a sand fly bite, bacteria can be coincidentally inoculated into the dermis with the parasite. Staphylococcus aureus is the most common bacterium in CL skin lesions. Symptomatic CL is characterized by papulonodular skin lesions that ulcerate and resolve with scarring, although most cutaneous Leishmania infections are asymptomatic. We sought to explore factors that determine whether infection with a cutaneous Leishmania species would result in symptomatic CL rather than asymptomatic infection. We hypothesized that local bacteria promote the development of symptomatic CL lesions during infection with Leishmania major. We discovered that cutaneous lesions were significantly larger in mice inoculated simultaneously with S. aureus and L. major than in mice infected with either organism alone. Coinfection led to increased S. aureus growth in skin lesions, whereas L. major parasite numbers were unchanged by coinfection. The size of the exacerbated lesion correlated with early increased numbers of neutrophils and elevated levels of proinflammatory cytokines IL-1β and IL-17A during the first 7 days, and with sustained increases in IL-17A through 28 days of coinfection. Neutralizing antibody experiments suggested IL-17A was partially responsible for lesion exacerbation during coinfection, whereas IL-1β was important for both control of early lesion exacerbation and promotion of IL-17A production. These data suggest that treatment of symptomatic CL targeting the parasite, local commensal bacteria, and host proinflammatory IL-17A immune responses might improve the outcome of CL.
Collapse
Affiliation(s)
- Tiffany Y. Borbón
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States of America
- Medical Scientist Training Program and the Carver College of Medicine, University of Iowa, Iowa City, IA, United States of America
| | - Breanna M. Scorza
- Interdisciplinary Ph.D. Program in Immunology, University of Iowa, Iowa City, IA, United States of America
| | - Gwendolyn M. Clay
- Medical Scientist Training Program and the Carver College of Medicine, University of Iowa, Iowa City, IA, United States of America
- Interdisciplinary Ph.D. Program in Molecular Medicine, University of Iowa, Iowa City, IA, United States of America
| | | | - Alan J. Sariol
- Interdisciplinary Ph.D. Program in Immunology, University of Iowa, Iowa City, IA, United States of America
| | - Jayden L. Bowen
- Medical Scientist Training Program and the Carver College of Medicine, University of Iowa, Iowa City, IA, United States of America
| | - Yani Chen
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa City, IA, United States of America
- Iowa Inflammation Program, Department of Internal Medicine, University of Iowa, Iowa City, IA, United States of America
- Veterans’ Affairs Medical Center, Iowa City, IA, United States of America
| | - Bayan Zhanbolat
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa City, IA, United States of America
- Iowa Inflammation Program, Department of Internal Medicine, University of Iowa, Iowa City, IA, United States of America
- Veterans’ Affairs Medical Center, Iowa City, IA, United States of America
| | - Corey P. Parlet
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States of America
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa City, IA, United States of America
- Iowa Inflammation Program, Department of Internal Medicine, University of Iowa, Iowa City, IA, United States of America
| | - Diogo G. Valadares
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States of America
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa City, IA, United States of America
- Iowa Inflammation Program, Department of Internal Medicine, University of Iowa, Iowa City, IA, United States of America
- Veterans’ Affairs Medical Center, Iowa City, IA, United States of America
- Conselho Nacional de Desenvolvimento Cientifico e Tecnológico (CNPq), Brasilia, Brazil
| | - Suzanne L. Cassel
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
| | - William M. Nauseef
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States of America
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa City, IA, United States of America
- Iowa Inflammation Program, Department of Internal Medicine, University of Iowa, Iowa City, IA, United States of America
- Veterans’ Affairs Medical Center, Iowa City, IA, United States of America
| | - Alexander R. Horswill
- Department of Immunology and Microbiology, University of Colorado Denver—Anschutz Medical Campus, Aurora, CO, United States of America
| | - Fayyaz S. Sutterwala
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
| | - Mary E. Wilson
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States of America
- Medical Scientist Training Program and the Carver College of Medicine, University of Iowa, Iowa City, IA, United States of America
- Interdisciplinary Ph.D. Program in Immunology, University of Iowa, Iowa City, IA, United States of America
- Interdisciplinary Ph.D. Program in Molecular Medicine, University of Iowa, Iowa City, IA, United States of America
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa City, IA, United States of America
- Iowa Inflammation Program, Department of Internal Medicine, University of Iowa, Iowa City, IA, United States of America
- Veterans’ Affairs Medical Center, Iowa City, IA, United States of America
- * E-mail:
| |
Collapse
|
56
|
Polari LP, Carneiro PP, Macedo M, Machado PRL, Scott P, Carvalho EM, Bacellar O. Leishmania braziliensis Infection Enhances Toll-Like Receptors 2 and 4 Expression and Triggers TNF-α and IL-10 Production in Human Cutaneous Leishmaniasis. Front Cell Infect Microbiol 2019; 9:120. [PMID: 31119102 PMCID: PMC6507514 DOI: 10.3389/fcimb.2019.00120] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 04/04/2019] [Indexed: 12/14/2022] Open
Abstract
Cutaneous leishmaniasis (CL) caused by infection with Leishmania braziliensis is characterized by an exaggerated inflammatory response that controls the parasite burden, but also contributes to pathology. While myeloid cells are required to eliminate the parasite, recent studies indicate that they may also participate in the inflammatory response driving disease progression. The innate immune response to leishmania is driven in part by the Toll-like receptors (TLRs) TLR2, TLR4, and TLR9. In this study, we used flow cytometric analysis to compare TLR2 and TLR4 expression in monocyte subsets (classical, intermediate, and non-classical) from CL patients and healthy subjects (HS). We also determined if there was an association of either the pro-inflammatory cytokine TNF or the anti-inflammatory cytokine IL-10 with TLR2 or TLR4 expression levels after L. braziliensis infection. In vitro infection with L. braziliensis caused CL monocytes to up-regulate TLR2 and TLR4 expression. We also found that intermediate monocytes expressed the highest levels of TLR2 and TLR4 and that infected monocytes produced more TNF and IL-10 than uninfected monocytes. Finally, while classical and intermediate monocytes were mainly responsible for TNF production, classical monocytes were the main source of IL-10. Collectively, our studies revealed that up-regulated TLR2/4 expression and TNF production by intermediate/inflammatory subsets of monocytes from patients correlates with detrimental outcome of cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Ludmila P Polari
- Serviço de Imunologia, Complexo Hospitalar Universitário Prof. Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
| | - Pedro Paulo Carneiro
- Serviço de Imunologia, Complexo Hospitalar Universitário Prof. Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil.,Instituto Nacional de Ciência e Tecnologia de Doenças Tropicais - INCT-DT (CNPq/MCT), Salvador, Brazil
| | - Michael Macedo
- Serviço de Imunologia, Complexo Hospitalar Universitário Prof. Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
| | - Paulo R L Machado
- Serviço de Imunologia, Complexo Hospitalar Universitário Prof. Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil.,Instituto Nacional de Ciência e Tecnologia de Doenças Tropicais - INCT-DT (CNPq/MCT), Salvador, Brazil
| | - Phillip Scott
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Edgar M Carvalho
- Instituto Nacional de Ciência e Tecnologia de Doenças Tropicais - INCT-DT (CNPq/MCT), Salvador, Brazil.,Instituto Pesquisa Gonçalo Moniz - Fiocruz-Bahia, Salvador, Brazil
| | - Olívia Bacellar
- Serviço de Imunologia, Complexo Hospitalar Universitário Prof. Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil.,Instituto Nacional de Ciência e Tecnologia de Doenças Tropicais - INCT-DT (CNPq/MCT), Salvador, Brazil
| |
Collapse
|
57
|
The Role of Infection in Acute Exacerbation of Idiopathic Pulmonary Fibrosis. Mediators Inflamm 2019; 2019:5160694. [PMID: 30718973 PMCID: PMC6335849 DOI: 10.1155/2019/5160694] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/03/2018] [Accepted: 11/05/2018] [Indexed: 11/18/2022] Open
Abstract
Background Acute exacerbation of IPF (AE-IPF) is associated with high mortality. We studied changes in pathogen involvement during AE-IPF and explored a possible role of infection in AE-IPF. Objectives Our purpose is to investigate the role of infection in AE-IPF. Methods Overall, we recruited 170 IPF patients (48 AE-IPF, 122 stable) and 70 controls at Shanghai Pulmonary Hospital. Specific IgM against microbial pathogens and pathogens in sputum were assessed. RNA sequences of pathogens in nasopharyngeal swab of IPF patients were detected by PathChip. A panel of serum parameters reflecting immune function were assessed. Results Antiviral/bacterial IgM was higher in IPF vs. controls and in AE-IPF vs. stable IPF. Thirty-eight different bacterial strains were detected in IPF patient sputum. Bacteria-positive results were found in 9/48 (18.8%) of AE-IPF and in 26/122 (21.3%) stable IPF. Fifty-seven different viruses were detected in nasopharyngeal swabs of IPF patients. Virus-positive nasopharyngeal swabs were found in 18/30 (60%) of tested AE-IPF and in 13/30 (43.3%) of stable IPF. AE-IPF showed increased inflammatory cytokines (IL-6, IFN-γ, MIG, IL-17, and IL-9) vs. stable IPF and controls. Mortality of AE-IPF in one year (39.5%) was higher compared to stable IPF (28.7%).Conclusions. IPF patients had different colonization with pathogens in sputum and nasopharyngeal swabs; they also displayed abnormally activated immune response, which was exacerbated during AE-IPF.
Collapse
|
58
|
Gene expression profile of cytokines produced in biopsies from patients with American cutaneous leishmaniasis. Acta Trop 2019; 189:69-75. [PMID: 30273562 DOI: 10.1016/j.actatropica.2018.09.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/17/2018] [Accepted: 09/25/2018] [Indexed: 11/27/2022]
Abstract
American cutaneous leishmaniasis (ACL) causes a local inflammatory process, inducing expression of several cytokine genes. Particularly, IFN-γ can predict to disease susceptibility. Based in these data, this study was aimed to investigate the gene expression profile of IFN-γ, IL-10, IL-27, TNF-γ, TGF-β and IL-6 produced in biopsies from ACL patients; and whether the gene expression profile of IFN-γ could determine the disease evolution. Gene expression of 6 cytokines was investigated in 40 formalin-fixed paraffin embedded (FFPE) biopsies from patients with cutaneous leishmaniosis (CL); and 10 FFPE biopsies from patients with mucosal leishmaniasis (ML) (control). All 50 patients were infected with Leishmania (Viannia) braziliensis. Gene expression was determined by qPCR; and a normal control group was used for calculations (5 normal biopsies). Values were expressed as Relative Quantification (RQ). The 40 CL patients were classified into 2 groups. CLlowIFN-γ, 35 patients with RQ for IFN-γ below 100; and CLhighIFN-γ, 5 (12.5%) patients with RQ above 100. Significant increase of mRNA levels of IFN-γ, IL-10 and IL-27 was shown in CLhighIFN-γ group when compared with CLlowIFN-γ and ML groups. TNF-α levels in CLlowIFN-γ group were higher than CLhighIFN-γ and ML groups. TGF-β and IL-6 were similar in 3 groups. Comparison of cytokine expression/group showed that CLlowIFN-γ group had an equilibrium between the cytokines analyzed. In ML group, IFN-γ was over-expressed; but in CLhighIFN-γ group, besides IFN-γ, IL-27 was also over-expressed. The immune response to Leishmania induces to identification of some markers, which can be determined by analysis by gene expression of cytokines produced in biopsies.
Collapse
|
59
|
Saini C, Kumar P, Tarique M, Sharma A, Ramesh V. Regulatory T cells antagonize proinflammatory response of IL-17 during cutaneous tuberculosis. J Inflamm Res 2018; 11:377-388. [PMID: 30319283 PMCID: PMC6168067 DOI: 10.2147/jir.s172878] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background The clinical forms of cutaneous tuberculosis (CTB) consist of a spectrum that reflects the host's immune response to Mycobacterium tuberculosis; it provides an ideal model to study the immunological dysregulation in humans. IL-17 plays an important role in initial immune response and is involved in both immune-mediated protection and pathology during M. tuberculosis infection. TGF-β producing regulatory T-cells (Tregs) are high in leprosy patients and responsible for immune suppression. However, in CTB, the involvement of Tregs and Th17 remains unevaluated. Objective To study the role of proinflammatory Th17 and Treg cells in the human CTB. Methods Blood and skin biopsies of CTB patients and healthy controls (HC) were included in the study. Flow cytometric analysis of IL-17, FOXP3, and TGF-β in blood was done followed by immunohistochemistry on paraffin-embedded skin sections. Expression of IFN-γ, TGF-β, and IL-17 was evaluated by quantitative real-time PCR. Results We found significant (P<0.0002) lower expression of proinflammatory IL-17 and IFN-γ (P<0.01) in CTB skins as compared to HC. However, the frequency of TGF-β producing Treg cells was found to be high in CTB patients (P<0.001) as compared to HC. A similar type of profile was observed by flow cytometric analysis. Treg cells produced suppressive cytokine TGF-β which showed a positive correlation with FOXP3 gene expression. Conclusion Our study found an increase in lineage-specific CD4+ Tregs in CTB as compared to the HC individuals. Such cells secrete TGF-β, a suppressive cytokine and may play a role in negatively regulating the T-cell immune responses in CTB. In addition, Tregs with TGF-β may downregulate Th17 cell responses leading to the antigen-specific anergy associated with CTB patients.
Collapse
Affiliation(s)
- Chaman Saini
- Department of Biochemistry, all India Institute of Medical Sciences, New Delhi, India,
| | - Praveen Kumar
- Department of Biochemistry, all India Institute of Medical Sciences, New Delhi, India, .,Department of Microbiology, Government Medical College, Kota, India
| | - Mohd Tarique
- Department of Biochemistry, all India Institute of Medical Sciences, New Delhi, India,
| | - Alpana Sharma
- Department of Biochemistry, all India Institute of Medical Sciences, New Delhi, India,
| | - Venkatesh Ramesh
- Department of Dermatology, Safdarjung Hospital, New Delhi, India,
| |
Collapse
|
60
|
Teixeira CR, Santos CDS, Prates DB, Dos Santos RT, Araújo-Santos T, de Souza-Neto SM, Borges VM, Barral-Netto M, Brodskyn CI. Lutzomyia longipalpis Saliva Drives Interleukin-17-Induced Neutrophil Recruitment Favoring Leishmania infantum Infection. Front Microbiol 2018; 9:881. [PMID: 29867796 PMCID: PMC5953329 DOI: 10.3389/fmicb.2018.00881] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 04/17/2018] [Indexed: 11/22/2022] Open
Abstract
During bloodfeeding, the presence of sand fly saliva in the hemorrhagic pool where Leishmania is also inoculated modulates the development of host immune mechanisms creating a favorable environment for disease progression. To date, information obtained through experimental models suggests that sand fly saliva induces cellular recruitment and modulates production of eicosanoids. However, the effect of sand fly saliva in the different steps of the inflammatory response triggered by Leishmania remains undefined. Here we further investigate if interaction of Lutzomyia longipalpis salivary gland sonicate (SGS) with different host cells present during the initial inflammatory events regulate Leishmania infantum infectivity. Initially, we observed that incubation of human peripheral blood mononuclear cells (PBMC) with Lu. longipalpis SGS in the presence of L. infantum significantly increased IL-10 but did not alter expression of IFN-γ and TNF-α by CD4+ T cells induced by the parasite alone. Interestingly, incubation of PBMC with Lu. longipalpis SGS alone or in the presence of L. infantum resulted in increased IL-17 production. The presence of IL-17 is related to neutrophil recruitment and plays an important role at the site of infection. Here, we also observed increased migration of neutrophil using an in vitro chemotactic assay following incubation with supernatants from PBMC stimulated with L. infantum and Lu. longipalpis SGS. Neutrophil migration was abrogated following neutralization of IL-17 with specific antibodies. Moreover, culture of human neutrophils with L. infantum in the presence of Lu. longipalpis SGS promoted neutrophil apoptosis resulting in increased parasite viability. Neutrophils operate as the first line of defense in the early stages of infection and later interact with different cells, such as macrophages. The crosstalk between neutrophils and macrophages is critical to determine the type of specific immune response that will develop. Here, we observed that co-culture of human macrophages with autologous neutrophils previously infected in the presence of Lu. longipalpis SGS resulted in a higher infection rate, accompanied by increased production of TGF-β and PGE2. Our results provide new insight into the contribution of Lu. longipalpis SGS to L. infantum-induced regulation of important inflammatory events, creating a favorable environment for parasite survival inside different host cells.
Collapse
Affiliation(s)
| | | | - Deboraci B Prates
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil.,Instituto de Ciências da Saúde da Universidade Federal da Bahia, Departamentos de Biomorfologia e Biointeração, Salvador, Brazil
| | | | - Théo Araújo-Santos
- Centro de Ciências Biológicas e Saúde, Universidade Federal do Oeste da Bahia, Barreiras, Brazil
| | | | - Valéria M Borges
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Manoel Barral-Netto
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil.,Faculdade de Medicina da Universidade Federal da Bahia, Departamento de Patologia e Medicina Legal, Salvador, Brazil.,Instituto de Investigação em Imunologia, iii-INCT, São Paulo, Brazil
| | - Cláudia I Brodskyn
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil.,Instituto de Ciências da Saúde da Universidade Federal da Bahia, Departamentos de Biomorfologia e Biointeração, Salvador, Brazil.,Instituto de Investigação em Imunologia, iii-INCT, São Paulo, Brazil
| |
Collapse
|
61
|
Almeida MS, Lorena VMB, Medeiros CDA, Junior WO, Cavalcanti MDGAM, Martins SM, de Morais CNL. Alternative Th17 and CD4 + CD25 + FoxP3 + cell frequencies increase and correlate with worse cardiac function in Chagas cardiomyopathy. Scand J Immunol 2018; 87:e12650. [PMID: 29473686 DOI: 10.1111/sji.12650] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 02/15/2018] [Indexed: 01/16/2023]
Abstract
Immune homeostasis has been suggested to play an important role in the clinical evolution of chronic Chagas disease; however, the immunopathologic factors involved have not been fully elucidated. Therefore, our study aimed to analyse the frequency of CD4+ CD25+ FoxP3+ cells, classic Th17 cells, alternative Th17 cells and IL-17+ B cells from peripheral blood of chronic cardiac patients after in vitro stimulation with Trypanosoma cruzi soluble EPI antigen. Patients were selected and classified according to clinical evaluation of cardiac involvement: mild, B1 (CARD1) (n = 20) and severe, C (CARD2) (n = 11). Patients with the indeterminate form of CD were included as the control group A (IND) (n = 17). Blood samples were collected and cultured in the presence of EPI antigen. Cells frequency and median fluorescence intensity (MFI) were obtained by flow cytometry. Our results showed that only CD4+ CD25+ FoxP3+ , CD4+ CD25high FoxP3+ , CD4+ IL-17+ IFN-γ- and CD4+ IL-17+ IFN-γ+ cells are more frequent in patients with severe cardiac disease and correlate with worse global cardiac function. However, while indeterminate patients demonstrated a positive correlation between CD4+ CD25+ FoxP3+ and CD4+ IL-17+ IFN-γ- Th17 cells, this relationship was not observed in cardiac patients. IL-17 expression by Th17 cells and B cells correlated with disease progression. Altogether our results suggest that the clinical progression of Chagas cardiomyopathy involves worsening of inflammation and impairment of immunoregulatory mechanisms.
Collapse
Affiliation(s)
- M S Almeida
- Immunology Department, Aggeu Magalhães Research Center, FIOCRUZ, Recife, Brazil
| | - V M B Lorena
- Immunology Department, Aggeu Magalhães Research Center, FIOCRUZ, Recife, Brazil.,Integrated Chagas Disease Programme (PIDC), FIOCRUZ, Recife, Brazil
| | - C de A Medeiros
- Ambulatório de Doença de Chagas e Insuficiência Cardíaca do Pronto Socorro Cardiológico de Pernambuco (PROCAPE), University of Pernambuco (UPE), Recife, Brazil
| | - W O Junior
- Integrated Chagas Disease Programme (PIDC), FIOCRUZ, Recife, Brazil.,Ambulatório de Doença de Chagas e Insuficiência Cardíaca do Pronto Socorro Cardiológico de Pernambuco (PROCAPE), University of Pernambuco (UPE), Recife, Brazil
| | - M da G A M Cavalcanti
- Integrated Chagas Disease Programme (PIDC), FIOCRUZ, Recife, Brazil.,Ambulatório de Doença de Chagas e Insuficiência Cardíaca do Pronto Socorro Cardiológico de Pernambuco (PROCAPE), University of Pernambuco (UPE), Recife, Brazil
| | - S M Martins
- Integrated Chagas Disease Programme (PIDC), FIOCRUZ, Recife, Brazil.,Ambulatório de Doença de Chagas e Insuficiência Cardíaca do Pronto Socorro Cardiológico de Pernambuco (PROCAPE), University of Pernambuco (UPE), Recife, Brazil
| | - C N L de Morais
- Immunology Department, Aggeu Magalhães Research Center, FIOCRUZ, Recife, Brazil
| |
Collapse
|
62
|
Kauffmann F, Meert E, de Jonge K, Elkrim Y, Hanot Mambres D, Denis O, Muraille E, Magez S, De Trez C. STAT6 Mediates Footpad Immunopathology in the Absence of IL-12p40 Following Infection of Susceptible BALB/c Mice With Leishmania major. Front Immunol 2018; 9:503. [PMID: 29593739 PMCID: PMC5861353 DOI: 10.3389/fimmu.2018.00503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 02/26/2018] [Indexed: 01/19/2023] Open
Abstract
Leishmania major (L. major) parasites are intracellular parasites belong to the Trypanosomatidae family and are the causative agent of cutaneous leishmaniasis. This disease affects approximately 1.5 million per year worldwide and there is currently no prophylactic vaccine available. L. major is transmitted by the bite of an infected sandfly and has been considered for decades now as a mouse model of choice to identify the factors implicated in T helper (Th)1 and Th2 polarization due to the natural resistance and susceptibility to infection of C57BL/6 and BALB/c mice, respectively. In this study, we refine the role of IL-12p40 cytokine, which is implicated the development of a protective Th1 response, and STAT6, a transcription factor involved in the signaling via detrimental interleukin (IL)-4 and IL-13 associated Th2 cytokines during L. major infection in the BALB/c model. In the absence of STAT6 and IL-12p40 signaling, double knockout (DKO) susceptible BALB/c mice displayed reduced footpad swelling and ulcerative lesion compared to IL-12p40−/− mice upon L. major infection. Hence, they expressed slower upregulation of keratinocyte markers implicated in the inhibition of wound healing, such as keratin 6a (Krt6a) and Krt16. This coincides with the presence of neutrophils displaying an altered phenotype characterized by a lower expression of surface markers Ly6C, CD11b, and Ly6G. These neutrophils exhibited very lower levels of apoptosis similarly to neutrophils present in resistant STAT6−/− mice. Interestingly, the reduced footpad swelling in DKO mice is associated with a high footpad parasite level similar to susceptible IL-12p40−/− mice. In conclusion, this study demonstrate that in the absence of both STAT6 and IL-12p40 signaling, L. major-infected mice display smaller and less ulcerated lesions, which does, however, not correlate with reduced parasite load. In addition, the presence of neutrophils with an altered phenotype is associated with reduced apoptosis and delayed immunopathologies, demonstrating the detrimental role of STAT6 in infected susceptible BALB/c mice.
Collapse
Affiliation(s)
- Florence Kauffmann
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Elyn Meert
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Kaat de Jonge
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Yvon Elkrim
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Laboratory of Myeloid Cell Immunology, VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium
| | - Delphine Hanot Mambres
- Unité de Recherche en Biologie des Microorganismes, Laboratoire d'Immunologie et de Microbiologie, Université de Namur, Namur, Belgium
| | - Olivier Denis
- Scientific Service Immunology, Scientific Institute of Public Health (WIV-ISP), Brussels, Belgium
| | - Eric Muraille
- Unité de Recherche en Biologie des Microorganismes, Laboratoire d'Immunologie et de Microbiologie, Université de Namur, Namur, Belgium.,Laboratoire de Parasitologie, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Stefan Magez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Ghent University Global Campus, Incheon, South Korea
| | - Carl De Trez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
63
|
Goundry A, Romano A, Lima APCA, Mottram JC, Myburgh E. Inhibitor of serine peptidase 2 enhances Leishmania major survival in the skin through control of monocytes and monocyte-derived cells. FASEB J 2018; 32:1315-1327. [PMID: 29097502 PMCID: PMC5892728 DOI: 10.1096/fj.201700797r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Leishmania major is the causative agent of the neglected tropical disease, cutaneous leishmaniasis. In the mouse, protective immunity to Leishmania is associated with inflammatory responses. Here, we assess the dynamics of the inflammatory responses at the lesion site during experimental long-term, low-dose intradermal infection of the ear, employing noninvasive imaging and genetically modified L. major. Significant infiltrates of neutrophils and monocytes occurred at 1-4 d and 2-4 wk, whereas dermal macrophage and dendritic cell (DC) numbers were only slightly elevated in the first days. Quantitative whole-body bioluminescence imaging of myeloperoxidase activity and the quantification of parasite loads indicated that the Leishmania virulence factor, inhibitor of serine peptidase 2 (ISP2), is required to modulate phagocyte activation and is important for parasite survival at the infection site. ISP2 played a role in the control of monocyte, monocyte-derived macrophage, and monocyte-derived DC (moDC) influx, and was required to reduce iNOS expression in monocytes, monocyte-derived cells, and dermal DCs; the expression of CD80 in moDCs; and levels of IFN-γ in situ. Our findings indicate that the increased survival of L. major in the dermis during acute infection is associated with the down-regulation of inflammatory monocytes and monocyte-derived cells via ISP2.-Goundry, A., Romano, A., Lima, A. P. C. A., Mottram, J. C., Myburgh, E. Inhibitor of serine peptidase 2 enhances Leishmania major survival in the skin through control of monocytes and monocyte-derived cells.
Collapse
Affiliation(s)
- Amy Goundry
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom.,Department of Biology, Centre for Immunology and Infection, University of York, York, United Kingdom.,Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Audrey Romano
- Department of Biology, Centre for Immunology and Infection, University of York, York, United Kingdom
| | - Ana Paula C A Lima
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jeremy C Mottram
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom.,Department of Biology, Centre for Immunology and Infection, University of York, York, United Kingdom
| | - Elmarie Myburgh
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom.,Department of Biology, Centre for Immunology and Infection, University of York, York, United Kingdom
| |
Collapse
|
64
|
Didwania N, Shadab M, Sabur A, Ali N. Alternative to Chemotherapy-The Unmet Demand against Leishmaniasis. Front Immunol 2017; 8:1779. [PMID: 29312309 PMCID: PMC5742582 DOI: 10.3389/fimmu.2017.01779] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 11/28/2017] [Indexed: 12/15/2022] Open
Abstract
Leishmaniasis is a neglected protozoan disease that mainly affects the tropical as well as subtropical countries of the world. The primary option to control the disease still relies on chemotherapy. However, a hindrance to treatments owing to the emergence of drug-resistant parasites, enormous side effects of the drugs, their high cost, and requirement of long course hospitalization has added to the existing problems of leishmaniasis containment program. This review highlights the prospects of immunotherapy and/or immunochemotherapy to address the limitations for current treatment measures for leishmaniasis. In addition to the progress in alternate therapeutic strategies, the possibility and advances in developing preventive measures against the disease have been pointed. The review highlights our recent understandings of the protective immunology that can be exploited to develop an effective vaccine against leishmaniasis. Moreover, an update on the approaches that have evolved over the recent years are predominantly focused to overcome the current challenges in developing immunotherapeutic as well as prophylactic antileishmanial vaccines is discussed.
Collapse
Affiliation(s)
- Nicky Didwania
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Md Shadab
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Abdus Sabur
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Nahid Ali
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
65
|
Hurdayal R, Brombacher F. Interleukin-4 Receptor Alpha: From Innate to Adaptive Immunity in Murine Models of Cutaneous Leishmaniasis. Front Immunol 2017; 8:1354. [PMID: 29176972 PMCID: PMC5686050 DOI: 10.3389/fimmu.2017.01354] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/03/2017] [Indexed: 12/16/2022] Open
Abstract
The interleukin (IL)-4 receptor alpha (IL-4Rα), ubiquitously expressed on both innate and adaptive immune cells, controls the signaling of archetypal type 2 immune regulators; IL-4 and IL-13, which elicit their signaling action by the type 1 IL-4Rα/gamma common and/or the type 2 IL-4Rα/IL-13Rα complexes. Global gene-deficient mouse models targeting IL-4, IL-13, or the IL-4Rα chain, followed by the development of conditional mice and generation of important cell-type-specific IL-4Rα-deficient mouse models, were indeed critical to gaining in-depth understanding of detrimental T helper (Th) 2 mechanisms in type 1-controlled diseases. A primary example being cutaneous leishmaniasis, which is caused by the protozoan parasite Leishmania major, among others. The disease is characterized by localized self-healing cutaneous lesions and necrosis for which, currently, not a single vaccine has made it to a stage that can be considered effective. The spectrum of human leishmaniasis belongs to the top 10 infectious diseases according to the World Health Organization. As such, 350 million humans are at risk of infection and disease, with an incidence of 1.5–2 million new cases being reported annually. A major aim of our research is to identify correlates of host protection and evasion, which may aid in vaccine design and therapeutic interventions. In this review, we focus on the immune-regulatory role of the IL-4Rα chain from innate immune responses to the development of beneficial type 1 and detrimental type 2 adaptive immune responses during cutaneous Leishmania infection. We discuss the cell-specific requirements of the IL-4Rα chain on crucial innate immune cells during L. major infection, including, IL-4Rα-responsive skin keratinocytes, macrophages, and neutrophils, as well as dendritic cells (DCs). The latter, contributing to one of the paradigm shifts with respect to the role of IL-4 instructing DCs in vivo, to promote Th1 responses against L. major. Finally, we extend these innate responses and mechanisms to control of adaptive immunity and the effect of IL-4Rα-responsiveness on T and B lymphocytes orchestrating the development of CD4+ Th1/Th2 and B effector 1/B effector 2 B cells in response to L. major infection in the murine host.
Collapse
Affiliation(s)
- Ramona Hurdayal
- Faculty of Health Sciences, Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa.,International Center for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa.,Department of Molecular and Cell Biology Faculty of Science, University of Cape Town, Cape Town, South Africa
| | - Frank Brombacher
- Faculty of Health Sciences, Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa.,International Center for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa
| |
Collapse
|
66
|
Gonçalves-de-Albuquerque SDC, Pessoa-e-Silva R, Trajano-Silva LAM, de Goes TC, de Morais RCS, da C. Oliveira CN, de Lorena VMB, de Paiva-Cavalcanti M. The Equivocal Role of Th17 Cells and Neutrophils on Immunopathogenesis of Leishmaniasis. Front Immunol 2017; 8:1437. [PMID: 29163510 PMCID: PMC5670345 DOI: 10.3389/fimmu.2017.01437] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/16/2017] [Indexed: 01/17/2023] Open
Abstract
Advances in the understanding of leishmaniasis progression indicate that cellular interactions more complex than the Th1/Th2 paradigm define the course of infection. Th17 cells are a crucial modulator of adaptive immunity against Leishmania parasites acting mainly on neutrophil recruitment and playing a dual role at the site of infection. This review describes the roles of both these cell types in linking innate defense responses to the establishment of specific immunity. We focus on the Th17-neutrophil interaction as a crucial component of anti-Leishmania immunity, and the clinical evolution of cutaneous or visceral leishmaniasis. To date, information obtained through experimental models and patient evaluations suggests that the influence of the presence of interleukin (IL)-17 (the main cytokine produced by Th17 cells) and neutrophils during Leishmania infections is strictly dependent on the tissue (skin or liver/spleen) and parasite species. Also, the time at which neutrophils are recruited, and the persistence of IL-17 in the infection microenvironment, may also be significant. A clearer understanding of these interactions will enable better measurement of the influence of IL-17 and its regulators, and contribute to the identification of disease/resistance biomarkers.
Collapse
Affiliation(s)
| | - Rômulo Pessoa-e-Silva
- Department of Microbiology, Aggeu Magalhães Research Center, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
| | - Lays A. M. Trajano-Silva
- Department of Microbiology, Aggeu Magalhães Research Center, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
| | - Tayná Correia de Goes
- Department of Microbiology, Aggeu Magalhães Research Center, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
| | - Rayana C. S. de Morais
- Department of Microbiology, Aggeu Magalhães Research Center, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
| | - Cíntia N. da C. Oliveira
- Department of Microbiology, Aggeu Magalhães Research Center, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
| | - Virgínia M. B. de Lorena
- Department of Microbiology, Aggeu Magalhães Research Center, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
| | - Milena de Paiva-Cavalcanti
- Department of Microbiology, Aggeu Magalhães Research Center, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
| |
Collapse
|
67
|
Caffeic acid combined with autoclaved Leishmania major boosted the protection of infected BALB/c mice by enhancing IgG2 production, IFN-γ/TGF-β and iNO synthase/arginase1 ratios, and the death of infected phagocytes. Inflammopharmacology 2017; 26:621-634. [DOI: 10.1007/s10787-017-0399-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 09/12/2017] [Indexed: 12/19/2022]
|
68
|
Ni G, Liao Z, Chen S, Wang T, Yuan J, Pan X, Mounsey K, Cavezza S, Liu X, Wei MQ. Blocking IL-10 signalling at the time of immunization does not increase unwanted side effects in mice. BMC Immunol 2017; 18:40. [PMID: 28810829 PMCID: PMC5557397 DOI: 10.1186/s12865-017-0224-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 08/01/2017] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Cancer therapeutic vaccine induced cytotoxic T cell (CTL) responses are pivotal for the killing of tumour cells. Blocking interleukin 10 (IL-10) signalling at the time of immunization increases vaccine induced CTL responses and improves prevention of tumour growth in animal models compared to immunization without an IL-10 signalling blockade. Therefore, this immunization strategy may have potential to curtail cancer in a clinical setting. However, IL-10 deficiency leads to autoimmune disease in the gut. Blocking IL-10 at the time of immunization may result in unwanted side effects, especially immune-pathological diseases in the intestine. METHODS We investigated whether blocking IL-10 at the time of immunization results in intestinal inflammation responses in a mouse TC-1 tumour model and in a NOD autoimmune disease prone mouse model. RESULTS We now show that blocking IL-10 at the time of immunization increases IL-10 production by CD4+ T cells in the spleen and draining lymph nodes, and does not result in blood cell infiltration to the intestines leading to intestinal pathological changes. Moreover, immunization with papillomavirus like particles combined with simultaneously blocking IL-10 signalling does not increase the incidence of autoimmune disease in Non-obese diabetic (NOD) mice. CONCLUSIONS Our results indicate that immunization with an IL-10 inhibitor may facilitate the generation of safe, effective therapeutic vaccines against chronic viral infection and cancer.
Collapse
Affiliation(s)
- Guoying Ni
- School of Medical Science, Griffith Health Institute, Griffith University, Gold Coast, QLD 4333 Australia
| | - Zaowen Liao
- Cancer Research Institute, The First People’s Hospital of Foshan, Foshan, Guangdong 528000 China
| | - Shu Chen
- Cancer Research Institute, The First People’s Hospital of Foshan, Foshan, Guangdong 528000 China
| | - Tianfang Wang
- Inflammation and Healing Research Cluster, University of the Sunshine Coast, Maroochydore DC, QLD 4558 Australia
| | - Jianwei Yuan
- Molecular diagnosis and Target Therapy Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong China
| | - Xuan Pan
- Molecular diagnosis and Target Therapy Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong China
| | - Kate Mounsey
- Inflammation and Healing Research Cluster, University of the Sunshine Coast, Maroochydore DC, QLD 4558 Australia
| | - Shelley Cavezza
- Inflammation and Healing Research Cluster, University of the Sunshine Coast, Maroochydore DC, QLD 4558 Australia
| | - Xiaosong Liu
- Cancer Research Institute, The First People’s Hospital of Foshan, Foshan, Guangdong 528000 China
- Inflammation and Healing Research Cluster, University of the Sunshine Coast, Maroochydore DC, QLD 4558 Australia
- Molecular diagnosis and Target Therapy Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong China
| | - Ming Q. Wei
- School of Medical Science, Griffith Health Institute, Griffith University, Gold Coast, QLD 4333 Australia
| |
Collapse
|
69
|
Bhat SA, Mounsey KE, Liu X, Walton SF. Host immune responses to the itch mite, Sarcoptes scabiei, in humans. Parasit Vectors 2017; 10:385. [PMID: 28797273 PMCID: PMC5553898 DOI: 10.1186/s13071-017-2320-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 08/02/2017] [Indexed: 12/21/2022] Open
Abstract
Scabies is a parasitic disease due to infestation of skin by the burrowing mite Sarcoptes scabiei. Scabies is a major public health problem and endemic in resource poor communities worldwide affecting over 100 million people. Associated bacterial infections cause substantial morbidity, and in severe cases can lead to renal and cardiac diseases. Mite infestation of the skin causes localised cutaneous inflammation, pruritus, skin lesions, and allergic and inflammatory responses are mounted by the host against the mite and its products. Our current understanding of the immune and inflammatory responses associated with the clinical manifestations in scabies is far outweighed by the significant global impact of the disease. This review aims to provide a better understanding of human immune responses to S. scabiei in ordinary and crusted scabies phenotypes.
Collapse
Affiliation(s)
- Sajad A. Bhat
- Inflammation & Healing Research Cluster, School of Health and Sport Sciences, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Locked Bag 4, Maroochydore DC, QLD 4558 Australia
| | - Kate E. Mounsey
- Inflammation & Healing Research Cluster, School of Health and Sport Sciences, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Locked Bag 4, Maroochydore DC, QLD 4558 Australia
| | - Xiaosong Liu
- Inflammation & Healing Research Cluster, School of Health and Sport Sciences, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Locked Bag 4, Maroochydore DC, QLD 4558 Australia
| | - Shelley F. Walton
- Inflammation & Healing Research Cluster, School of Health and Sport Sciences, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Locked Bag 4, Maroochydore DC, QLD 4558 Australia
| |
Collapse
|
70
|
Gimblet C, Meisel JS, Loesche MA, Cole SD, Horwinski J, Novais FO, Misic AM, Bradley CW, Beiting DP, Rankin SC, Carvalho LP, Carvalho EM, Scott P, Grice EA. Cutaneous Leishmaniasis Induces a Transmissible Dysbiotic Skin Microbiota that Promotes Skin Inflammation. Cell Host Microbe 2017; 22:13-24.e4. [PMID: 28669672 DOI: 10.1016/j.chom.2017.06.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 05/09/2017] [Accepted: 06/08/2017] [Indexed: 12/15/2022]
Abstract
Skin microbiota can impact allergic and autoimmune responses, wound healing, and anti-microbial defense. We investigated the role of skin microbiota in cutaneous leishmaniasis and found that human patients infected with Leishmania braziliensis develop dysbiotic skin microbiota, characterized by increases in the abundance of Staphylococcus and/or Streptococcus. Mice infected with L. major exhibit similar changes depending upon disease severity. Importantly, this dysbiosis is not limited to the lesion site, but is transmissible to normal skin distant from the infection site and to skin from co-housed naive mice. This observation allowed us to test whether a pre-existing dysbiotic skin microbiota influences disease, and we found that challenging dysbiotic naive mice with L. major or testing for contact hypersensitivity results in exacerbated skin inflammatory responses. These findings demonstrate that a dysbiotic skin microbiota is not only a consequence of tissue stress, but also enhances inflammation, which has implications for many inflammatory cutaneous diseases.
Collapse
Affiliation(s)
- Ciara Gimblet
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jacquelyn S Meisel
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael A Loesche
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephen D Cole
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joseph Horwinski
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Fernanda O Novais
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ana M Misic
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Charles W Bradley
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel P Beiting
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shelley C Rankin
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lucas P Carvalho
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador 40296-710, Brazil; Serviço de Imunologia, Complexo Hospitalar Prof. Edgard Santos, Universidade Federal da Bahia, Salvador 40170-115, Brazil; Instituto Nacional de Ciências e Tecnologia-Doenças Tropicais, Salvador 40110-160, Brazil
| | - Edgar M Carvalho
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador 40296-710, Brazil; Serviço de Imunologia, Complexo Hospitalar Prof. Edgard Santos, Universidade Federal da Bahia, Salvador 40170-115, Brazil; Instituto Nacional de Ciências e Tecnologia-Doenças Tropicais, Salvador 40110-160, Brazil
| | - Phillip Scott
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Elizabeth A Grice
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
71
|
Abstract
The interleukin-17 (IL-17) family cytokines, such as IL-17A and IL-17F, play
important protective roles in host immune response to a variety of infections
such as bacterial, fungal, parasitic, and viral. The IL-17R signaling and
downstream pathways mediate induction of proinflammatory molecules which
participate in control of these pathogens. However, the production of IL-17 can
also mediate pathology and inflammation associated with infections. In this
review, we will discuss the yin-and-yang roles of IL-17 in host immunity to
pathogens.
Collapse
Affiliation(s)
- Shibali Das
- Department of Molecular Microbiology, Washington University in St. Louis, St Louis, MO, USA
| | - Shabaana Khader
- Department of Molecular Microbiology, Washington University in St. Louis, St Louis, MO, USA
| |
Collapse
|
72
|
Wound healing in cutaneous leishmaniasis: A double edged sword of IL-10 and TGF-β. Comp Immunol Microbiol Infect Dis 2017; 51:15-26. [PMID: 28504090 DOI: 10.1016/j.cimid.2017.02.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 01/16/2017] [Accepted: 02/08/2017] [Indexed: 01/05/2023]
Abstract
Immune responses have a crucial role during the wound healing process in cutaneous leishmaniasis (CL). However, there are several paradoxes in immunity against CL. On the one hand, regulatory cytokines interleukin (IL)-10 and transforming growth factor beta (TGF-β) increase susceptibility to CL through suppression of several proinflammatory cytokines that require for defense against CL. On the other hand, these cytokines play a pivotal role in the acceleration of wound healing process. This review discusses about the dual role of IL-10 and TGF-β during the wound healing process and immunity against CL to offer a new insight about wound healing in CL.
Collapse
|
73
|
Saini C, Tarique M, Rai R, Siddiqui A, Khanna N, Sharma A. T helper cells in leprosy: An update. Immunol Lett 2017; 184:61-66. [PMID: 28235552 DOI: 10.1016/j.imlet.2017.02.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 01/24/2017] [Accepted: 02/20/2017] [Indexed: 01/02/2023]
Abstract
Leprosy is an ancient disease caused by gram positive, rod shaped bacilli called Mycobacterium leprae. Patients present with varied clinico-pathological disease depending on the host immune response to Mycobacterium leprae. Thus tuberculoid (TT) and lepromatous (LL) patients represent two ends of a spectrum where the former shows limited disease, high T cell mediate immune (CMI) response and low antibody (HI) levels in serum. In contrast the latter has low T cell and high humoral immune response i.e antibody levels. The mechanisms underlying these differences have been investigated intensely; however, there is no consensus on the primary immunological basis. Over three decades, Th1 and Th2 paradigm were thought to underling tuberculoid and lepromatous disease respectively. However many patients were shown to have mixed Th1/Th2 pattern of (IFN-γ/IL-4) cytokines. The present review was undertaken with a view to understand the T cells and cytokine dysregulation in leprosy. In recent years the sub classes of T cells that are Regulatory in nature (Treg) have been implicated in immune diseases where they were shown to suppress T cell functions. Additionally Th17 cells secreting IL-17A, IL17F, were implicated in immune inflammation. Taken together these regulatory cells may play a part in influencing immune responses in leprosy.
Collapse
Affiliation(s)
- Chaman Saini
- Department of Biochemistry, All India Institute of Medical sciences, New Delhi 110029, India.
| | - Mohd Tarique
- Department of Biochemistry, All India Institute of Medical sciences, New Delhi 110029, India
| | - Reeta Rai
- Department of Biochemistry, All India Institute of Medical sciences, New Delhi 110029, India
| | | | - Neena Khanna
- Department of Dermatology, All India Institute of Medical sciences, New Delhi 110029, India
| | - Alpana Sharma
- Department of Biochemistry, All India Institute of Medical sciences, New Delhi 110029, India.
| |
Collapse
|
74
|
Wang Y, Jiang B, Guo Y, Li W, Tian Y, Sonnenberg GF, Weiser JN, Ni X, Shen H. Cross-protective mucosal immunity mediated by memory Th17 cells against Streptococcus pneumoniae lung infection. Mucosal Immunol 2017; 10:250-259. [PMID: 27118490 PMCID: PMC5083242 DOI: 10.1038/mi.2016.41] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 03/22/2016] [Indexed: 02/04/2023]
Abstract
Pneumonia caused by Streptococcus pneumoniae (Sp) remains a leading cause of serious illness and death worldwide. Immunization with conjugated pneumococcal vaccine has lowered the colonization rate and consequently invasive diseases by inducing serotype-specific antibodies. However, many of the current pneumonia cases result from infection by serotype strains not included in the vaccine. In this study, we asked if cross-protection against lung infection by heterologous strains can be induced, and investigated the underlying immune mechanism. We found that immune mice recovered from a prior infection were protected against heterologous Sp strains in the pneumonia challenge model, as evident by accelerated bacterial clearance, reduced pathology, and apoptosis of lung epithelial cells. Sp infection in the lung induced strong T-helper type 17 (Th17) responses at the lung mucosal site. Transfer of CD4+ T cells from immune mice provided heterologous protection against pneumonia, and this protection was abrogated by interleukin-17A (IL-17A) blockade. Transfer of memory CD4+ T cells from IL-17A-knockout mice failed to provide protection. These results indicate that memory Th17 cells had a key role in providing protection against pneumonia in a serotype-independent manner and suggest the feasibility of developing a broadly protective vaccine against bacterial pneumonia by targeting mucosal Th17 T cells.
Collapse
Affiliation(s)
- Yan Wang
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, PA 19104, USA
| | - Bin Jiang
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, PA 19104, USA
| | - Yongli Guo
- Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
| | - Wenchao Li
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, PA 19104, USA
| | - Ying Tian
- Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Gregory F Sonnenberg
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Department of Microbiology & Immunology, and The Jill Robert’s Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medical College, New York, NY, USA
| | - Jeffery N. Weiser
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, PA 19104, USA
,Department of Microbiology, NYU School of Medicine, New York, NY 10016, USA
| | - Xin Ni
- Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
| | - Hao Shen
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, PA 19104, USA
,Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
| |
Collapse
|
75
|
dos Santos Thomazelli APF, Tomiotto-Pellissier F, da Silva SS, Panis C, Orsini TM, Cataneo AHD, Miranda-Sapla MM, Custódio LA, Tatakihara VLH, Bordignon J, Silveira GF, Sforcin JM, Pavanelli WR, Conchon-Costa I. Brazilian propolis promotes immunomodulation on human cells from American Tegumentar Leishmaniasis patients and healthy donors infected with L. braziliensis. Cell Immunol 2017; 311:22-27. [DOI: 10.1016/j.cellimm.2016.09.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 09/20/2016] [Accepted: 09/28/2016] [Indexed: 01/25/2023]
|
76
|
Immunity to Lutzomyia whitmani Saliva Protects against Experimental Leishmania braziliensis Infection. PLoS Negl Trop Dis 2016; 10:e0005078. [PMID: 27812113 PMCID: PMC5094744 DOI: 10.1371/journal.pntd.0005078] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 09/27/2016] [Indexed: 11/30/2022] Open
Abstract
Background Previous works showed that immunization with saliva from Lutzomyia intermedia, a vector of Leishmania braziliensis, does not protect against experimental infection. However, L. braziliensis is also transmitted by Lutzomyia whitmani, a sand fly species closely related to Lu. intermedia. Herein we describe the immune response following immunization with Lu. whitmani saliva and the outcome of this response after L. braziliensis infection. Methods and findings BALB/c mice immunized with Lu. whitmani saliva developed robust humoral and cellular immune responses, the latter characterized by an intense cellular infiltrate and production of IFN-γ and IL-10, by both CD4+ and CD8+ cells. Mice immunized as above and challenged with L. braziliensis plus Lu. whitmani saliva displayed significantly smaller lesions and parasite load at the challenge site. This protection was associated with a higher (p<0.05) IFN-γ production in response to SLA stimulation. Long-term persisting immunity was also detected in mice immunized with Lu. whitmani saliva. Furthermore, individuals residing in an endemic area for cutaneous leishmaniasis (CL) presented antibody responses to Lu. whitmani saliva. However CL patients, with active lesions, displayed a lower humoral response to Lu. whitmani saliva compared to individuals with subclinical Leishmania infection. Conclusion Pre-exposure to Lu. whitmani saliva induces protection against L. braziliensis in a murine model. We also show that Lu. whitmani salivary proteins are immunogenic in naturally exposed individuals. Our results reinforce the importance of investigating the immunomodulatory effect of saliva from different species of closely related sand flies. The saliva from sand flies contains biologically active proteins that permit the insect to obtain a blood meal. When vertebrates are continuously exposed to these molecules, through insect biting, for example, they induce an immune response (antibody and cell-mediated immunity) in the vertebrate host. Previously, we showed that immunity to salivary proteins from Lutzomyia intermedia a vector of Leishmania braziliensis, the main species that causes cutaneous leishmaniasis (CL) in Brazil, did not protect but exacerbated CL. In the present work, we investigated if immunity to Lutzomyia whitmani, another vector of L. braziliensis, induced a similar effect or not. We observed that mice immunized with Lu. whitmani saliva develop immunity to the salivary components and that this immunity protected the mice against CL development. We further observed that people residing in areas where Lu. whitmani occurs also develop antibodies to saliva and that CL patients have lower levels of these antibodies. These evidences point to differences in the protein repertoire present in the saliva of different sand flies and highlight the concept that salivary proteins should be considered as additional components of a vaccine for leishmaniasis.
Collapse
|
77
|
Maspi N, Abdoli A, Ghaffarifar F. Pro- and anti-inflammatory cytokines in cutaneous leishmaniasis: a review. Pathog Glob Health 2016; 110:247-260. [PMID: 27660895 DOI: 10.1080/20477724.2016.1232042] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cutaneous leishmaniasis (CL) is caused by different species of the genus Leishmania. Pro- and anti-inflammatory cytokines play different roles in resistance/susceptibility and the immunopathogenesis of Leishmania infection. The balance and dynamic changes in cytokines may control or predict clinical outcome. T helper 1 (Th1) inflammatory cytokines (especially interferon-γ, tumor necrosis factor-α and interleukin-12) are the crucial factors in the initiation of protective immunity against L. major infection, whereas T helper 2 cytokines including IL-5, IL-4, and IL-13 facilitate the persistence of parasites by downregulating the Th1 immune response. On the other hand, aggravation of inflammatory reactions leads to collateral tissue damage and formation of ulcer. For this reason, immunity system such as T regulatory cells produce regulatory cytokines such as transforming growth factor-β and IL-10 to inhibit possible injures caused by increased inflammatory responses in infection site. In this article, we review the role of pro- and anti-inflammatory cytokines in the immunoprotection and immunopathology of CL.
Collapse
Affiliation(s)
- Nahid Maspi
- a Faculty of Medical Sciences, Department of Parasitology , Tarbiat Modares University , Tehran , Iran
| | - Amir Abdoli
- a Faculty of Medical Sciences, Department of Parasitology , Tarbiat Modares University , Tehran , Iran
| | - Fathemeh Ghaffarifar
- a Faculty of Medical Sciences, Department of Parasitology , Tarbiat Modares University , Tehran , Iran
| |
Collapse
|
78
|
Hartley MA, Bourreau E, Rossi M, Castiglioni P, Eren RO, Prevel F, Couppié P, Hickerson SM, Launois P, Beverley SM, Ronet C, Fasel N. Leishmaniavirus-Dependent Metastatic Leishmaniasis Is Prevented by Blocking IL-17A. PLoS Pathog 2016; 12:e1005852. [PMID: 27658195 PMCID: PMC5033371 DOI: 10.1371/journal.ppat.1005852] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 08/09/2016] [Indexed: 12/11/2022] Open
Abstract
Cutaneous leishmaniasis has various outcomes, ranging from self-healing reddened papules to extensive open ulcerations that metastasise to secondary sites and are often resistant to standard therapies. In the case of L. guyanensis (L.g), about 5-10% of all infections result in metastatic complications. We recently showed that a cytoplasmic virus within L.g parasites (LRV1) is able to act as a potent innate immunogen, worsening disease outcome in a murine model. In this study, we investigated the immunophenotype of human patients infected by L.g and found a significant association between the inflammatory cytokine IL-17A, the presence of LRV1 and disease chronicity. Further, IL-17A was inversely correlated to the protective cytokine IFN-γ. These findings were experimentally corroborated in our murine model, where IL-17A produced in LRV1+ L.g infection contributed to parasite virulence and dissemination in the absence of IFN-γ. Additionally, IL-17A inhibition in mice using digoxin or SR1001, showed therapeutic promise in limiting parasite virulence. Thus, this murine model of LRV1-dependent infectious metastasis validated markers of disease chronicity in humans and elucidated the immunologic mechanism for the dissemination of Leishmania parasites to secondary sites. Moreover, it confirms the prognostic value of LRV1 and IL-17A detection to prevent metastatic leishmaniasis in human patients.
Collapse
Affiliation(s)
- Mary-Anne Hartley
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Eliane Bourreau
- Immunologie des Leishmanioses, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Matteo Rossi
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Patrik Castiglioni
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Remzi Onur Eren
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Florence Prevel
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Pierre Couppié
- Service de Dermatologie, Centre Hospitalier Andrée Rosemon, Cayenne, French Guiana
| | - Suzanne M. Hickerson
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Pascal Launois
- World Health Organization Immunology Research and Training centre (WHO-IRTC), Epalinges, Switzerland
| | - Stephen M. Beverley
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Catherine Ronet
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Nicolas Fasel
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
- * E-mail:
| |
Collapse
|
79
|
Miahipour A, Haji-Fatahaliha M, Keshavarz H, Gharavi MJ, Mohamadi H, Babaloo Z, Rafati S, Younesi V, Hosseini M, Yousefi M. T Helper 1 (Th1), Th2, and Th17 Responses toLeishmania majorLipophosphoglycan 3. Immunol Invest 2016; 45:692-702. [PMID: 27611455 DOI: 10.1080/08820139.2016.1208217] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
80
|
Shokri M, Roohvand F, Alimohammadian MH, Ebrahimirad M, Ajdary S. Comparing Montanide ISA 720 and 50-V2 adjuvants formulated with LmSTI1 protein of Leishmania major indicated the potential cytokine patterns for induction of protective immune responses in BALB/c mice. Mol Immunol 2016; 76:108-15. [DOI: 10.1016/j.molimm.2016.06.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 06/07/2016] [Accepted: 06/15/2016] [Indexed: 10/21/2022]
|
81
|
Weinkopff T, Konradt C, Christian DA, Discher DE, Hunter CA, Scott P. Leishmania major Infection-Induced VEGF-A/VEGFR-2 Signaling Promotes Lymphangiogenesis That Controls Disease. THE JOURNAL OF IMMUNOLOGY 2016; 197:1823-31. [PMID: 27474074 DOI: 10.4049/jimmunol.1600717] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/29/2016] [Indexed: 01/09/2023]
Abstract
Cutaneous leishmaniasis causes a spectrum of diseases from self-healing to severe nonhealing lesions. Defining the factors contributing to lesion resolution may help in developing new therapies for those patients with chronic disease. We found that infection with Leishmania major increases the expression of vascular endothelial growth factor-A and vascular endothelial growth factor receptor (VEGFR)-2 and is associated with significant changes in the blood and lymphatic vasculature at the site of infection. Ab blockade of VEGFR-2 during infection led to a reduction in lymphatic endothelial cell proliferation and simultaneously increased lesion size without altering the parasite burden. These data show that L. major infection initiates enhanced vascular endothelial growth factor-A/VEGFR-2 signaling and suggest that VEGFR-2-dependent lymphangiogenesis is a mechanism that restricts tissue inflammation in leishmaniasis.
Collapse
Affiliation(s)
- Tiffany Weinkopff
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Christoph Konradt
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
| | - David A Christian
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Dennis E Discher
- Biophysical Eng'g Labs, University of Pennsylvania, Philadelphia, PA 19104
| | - Christopher A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Phillip Scott
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
| |
Collapse
|
82
|
Abstract
Cutaneous leishmaniasis is a major public health problem and causes a range of diseases from self-healing infections to chronic disfiguring disease. Currently, there is no vaccine for leishmaniasis, and drug therapy is often ineffective. Since the discovery of CD4(+) T helper 1 (TH1) cells and TH2 cells 30 years ago, studies of cutaneous leishmaniasis in mice have answered basic immunological questions concerning the development and maintenance of CD4(+) T cell subsets. However, new strategies for controlling the human disease have not been forthcoming. Nevertheless, advances in our knowledge of the cells that participate in protection against Leishmania infection and the cells that mediate increased pathology have highlighted new approaches for vaccine development and immunotherapy. In this Review, we discuss the early events associated with infection, the CD4(+) T cells that mediate protective immunity and the pathological role that CD8(+) T cells can have in cutaneous leishmaniasis.
Collapse
|
83
|
Banerjee A, Bhattacharya P, Joshi AB, Ismail N, Dey R, Nakhasi HL. Role of pro-inflammatory cytokine IL-17 in Leishmania pathogenesis and in protective immunity by Leishmania vaccines. Cell Immunol 2016; 309:37-41. [PMID: 27444130 DOI: 10.1016/j.cellimm.2016.07.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 06/28/2016] [Accepted: 07/06/2016] [Indexed: 02/01/2023]
Abstract
The clinical outcome of Leishmania pathogenesis ranges from active skin lesions to fatal visceral dissemination and severely impaired T cell immunity. It is well established that a strong Th1 immune response is protective against cutaneous forms of the disease, however a mixed Th1/Th2 response is most commonly observed against visceral infections as evident from previous studies. Aside from Th1/Th2 cytokines, the pro-inflammatory IL-17 cytokine family plays an important role in the clearance of intracellular pathogens. In Leishmania induced skin lesions, IL-17 produced by Th17 cells is shown to exacerbate the disease, suggesting a role in pathogenesis. However, a protective role for IL-17 is indicated by the expansion of IL-17 producing cells in vaccine-induced immunity. In human visceral leishmaniasis (VL) it has been demonstrated that IL-17 and IL-22 are associated with protection against re-exposure to Leishmania, which further suggests the involvement of IL-17 in vaccine induced protective immunity. Although there is no vaccine against any form of leishmaniasis, the development of genetically modified live attenuated parasites as vaccine candidates prove to be promising, as they successfully induce a robust protective immune response in various animal models. However, the role of IL-17 producing cells and Th17 cells in response to these vaccine candidates remains unexplored. In this article, we review the role of IL-17 in Leishmania pathogenesis and the potential impact on vaccine induced immunity, with a special focus on live attenuated Leishmania parasites.
Collapse
Affiliation(s)
- Antara Banerjee
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Parna Bhattacharya
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Amritanshu B Joshi
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Nevien Ismail
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Ranadhir Dey
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA.
| | - Hira L Nakhasi
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA.
| |
Collapse
|
84
|
Srivastava S, Shankar P, Mishra J, Singh S. Possibilities and challenges for developing a successful vaccine for leishmaniasis. Parasit Vectors 2016; 9:277. [PMID: 27175732 PMCID: PMC4866332 DOI: 10.1186/s13071-016-1553-y] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 04/28/2016] [Indexed: 02/07/2023] Open
Abstract
Leishmaniasis is a vector-borne disease caused by different species of protozoan parasites of the genus Leishmania. It is a major health problem yet neglected tropical diseases, with approximately 350 million people worldwide at risk and more than 1.5 million infections occurring each year. Leishmaniasis has different clinical manifestations, including visceral (VL or kala-azar), cutaneous (CL), mucocutaneous (MCL), diffuse cutaneous (DCL) and post kala-azar dermal leishmaniasis (PKDL). Currently, the only mean to treat and control leishmaniasis is by rational medications and vector control. However, the number of available drugs is limited and even these are either exorbitantly priced, have toxic side effects or prove ineffective due to the emergence of resistant strains. On the other hand, the vector control methods are not so efficient. Therefore, there is an urgent need for developing a safe, effective, and affordable vaccine for the prevention of leishmaniasis. Although in recent years a large body of researchers has concentrated their efforts on this issue, yet only three vaccine candidates have gone for clinical trial, until date. These are: (i) killed vaccine in Brazil for human immunotherapy; (ii) live attenuated vaccine for humans in Uzbekistan; and (iii) second-generation vaccine for dog prophylaxis in Brazil. Nevertheless, there are at least half a dozen vaccine candidates in the pipeline. One can expect that, in the near future, the understanding of the whole genome of Leishmania spp. will expand the vaccine discovery and strategies that may provide novel vaccines. The present review focuses on the development and the status of various vaccines and potential vaccine candidates against leishmaniasis.
Collapse
Affiliation(s)
- Saumya Srivastava
- Division of Clinical Microbiology and Molecular Medicine, Department of Laboratory Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Prem Shankar
- Division of Clinical Microbiology and Molecular Medicine, Department of Laboratory Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Jyotsna Mishra
- Division of Clinical Microbiology and Molecular Medicine, Department of Laboratory Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Sarman Singh
- Division of Clinical Microbiology and Molecular Medicine, Department of Laboratory Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
| |
Collapse
|
85
|
Jawed JJ, Majumder S, Bandyopadhyay S, Biswas S, Parveen S, Majumdar S. SLA-PGN-primed dendritic cell-based vaccination induces Th17-mediated protective immunity against experimental visceral leishmaniasis: a crucial role of PKCβ. Pathog Dis 2016; 74:ftw041. [PMID: 27150838 DOI: 10.1093/femspd/ftw041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2016] [Indexed: 11/12/2022] Open
Abstract
Emergence of drug resistance during visceral leishmaniasis (VL) is a major obstacle imposed during successful therapy. An effective vaccine strategy against this disease is therefore necessary. Our present study exploited the SLA (soluble leishmanial antigen) and PGN (peptidoglycan) stimulated bone marrow-derived dendritic cells (DCs) as a suitable vaccine candidate during experimental VL. SLA-PGN-stimulated DCs showed a significant decrease in hepatic and splenic parasite burden, which were associated with increased production of nitric oxide and pro-inflammatory cytokines such as IL-12, IFN-γ and IL-17. Elevated level of IL-17 was accompanied with the generation of more Th17 cells. Further studies on DC provided the evidence that these SLA-PGN-stimulated DCs played an important role in providing necessary cytokines such as IL-6, IL-23 and TGF-β for the generation of Th17 cells. Interestingly, inhibition of protein kinase C-β (PKCβ) in DCs led to decreased production of Th17 polarizing cytokines, causing reduction of the Th17 population size. Altogether, our finding highlighted the important role of DC-based PKCβ in regulation of the function and generation of Th17 cells.
Collapse
Affiliation(s)
- Junaid Jibran Jawed
- Division of Molecular Medicine, Bose Institute, P1/12, C.I.T. Scheme VII-M, Kolkata-700054, India
| | - Saikat Majumder
- Division of Molecular Medicine, Bose Institute, P1/12, C.I.T. Scheme VII-M, Kolkata-700054, India
| | - Syamdas Bandyopadhyay
- Division of Molecular Medicine, Bose Institute, P1/12, C.I.T. Scheme VII-M, Kolkata-700054, India
| | - Satabdi Biswas
- Division of Molecular Medicine, Bose Institute, P1/12, C.I.T. Scheme VII-M, Kolkata-700054, India
| | - Shabina Parveen
- Division of Molecular Medicine, Bose Institute, P1/12, C.I.T. Scheme VII-M, Kolkata-700054, India
| | - Subrata Majumdar
- Division of Molecular Medicine, Bose Institute, P1/12, C.I.T. Scheme VII-M, Kolkata-700054, India
| |
Collapse
|
86
|
Park AJ, Rendini T, Martiniuk F, Levis WR. Leprosy as a model to understand cancer immunosurveillance and T cell anergy. J Leukoc Biol 2016; 100:47-54. [PMID: 27106673 DOI: 10.1189/jlb.5ru1215-537rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/05/2016] [Indexed: 12/12/2022] Open
Abstract
Leprosy is a disease caused by Mycobacterium leprae that presents on a spectrum of both clinical manifestations and T cell response. On one end of this spectrum, tuberculoid leprosy is a well-controlled disease, characterized by a cell-mediated immunity and immunosurveillance. On the opposite end of the spectrum, lepromatous leprosy is characterized by M. leprae proliferation and T cell anergy. Similar to progressive tumor cells, M. leprae escapes immunosurveillance in more severe forms of leprosy. The mechanisms by which M. leprae is able to evade the host immune response involve many, including the alterations of lipid droplets, microRNA, and Schwann cells, and involve the regulation of immune regulators, such as the negative checkpoint regulators CTLA-4, programmed death 1, and V-domain Ig suppressor of T cell activation-important targets in today's cancer immunotherapies. The means by which tumor cells become able to escape immunosurveillance through negative checkpoint regulators are evidenced by the successes of treatments, such as nivolumab and ipilimumab. Many parallels can be drawn between the immune responses seen in leprosy and cancer. Therefore, the understanding of how M. leprae encourages immune escape during proliferative disease states has potential to add to our understanding of cancer immunotherapy.
Collapse
Affiliation(s)
- Andrew J Park
- Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Tina Rendini
- Bellevue Hospital Center, National Hansen's Disease Program, New York, New York, USA; and
| | | | - William R Levis
- Bellevue Hospital Center, National Hansen's Disease Program, New York, New York, USA; and
| |
Collapse
|
87
|
Hoseini MHM, Moradi M, Alimohammadian MH, Shahgoli VK, Darabi H, Rostami A. Immunotherapeutic effects of chitin in comparison with chitosan against Leishmania major infection. Parasitol Int 2016; 65:99-104. [DOI: 10.1016/j.parint.2015.10.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/20/2015] [Accepted: 10/24/2015] [Indexed: 11/27/2022]
|
88
|
Kammoun-Rebai W, Naouar I, Libri V, Albert M, Louzir H, Meddeb-Garnaoui A, Duffy D. Protein biomarkers discriminate Leishmania major-infected and non-infected individuals in areas endemic for cutaneous leishmaniasis. BMC Infect Dis 2016; 16:138. [PMID: 27009263 PMCID: PMC4806467 DOI: 10.1186/s12879-016-1458-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 03/09/2016] [Indexed: 11/23/2022] Open
Abstract
Background A successful host immune response to infection is dependent upon both innate and adaptive immune effector mechanisms. Cutaneous leishmaniasis results in an adaptive Th1 CD4+ T cell response that efficiently clears the parasite, but may also result in scaring. However the role of innate mechanisms during parasite clearance remains less well defined. Methods We examined a unique cohort of individuals, living in a Leishmania major endemic region, that were stratified among 3 distinct clinical groups in a cross-sectional study. Specifically, patients were classified either as healed (n = 17), asymptomatic (23), or naïve to infection (18) based upon the classical Leishmanin Skin Test (LST) and the presence or absence of scars. Utilizing a multiplexed immunoassay approach we characterized the induced cytokine and chemokine response to L. major. Results A subset of innate immune molecules was induced in all groups. By contrast, T cell-associated cytokines were largely induced in exposed groups as compared to L. major-infection naïve individuals. Two exceptions were IL-17A and IL-12p70, induced and not induced, respectively, in naïve individuals. In addition, GM-CSF was more strongly induced in healed patients as compared to the other two groups. Surprisingly an IL-13 response was the best cytokine for classifying previously infected donors. Conclusions Exploratory data analysis, utilizing principle component analysis (PCA), revealed distinct patient clusters of the healed and naïve groups based on the most differentially induced proteins. Asymptomatic previously infected individuals were more difficult to assign to a particular cluster based on these induced proteins. Analysis of these proteins may enable the identification of biomarkers associated with disease, leading to a better understanding of the protective mechanisms of immune response against leishmaniasis. Electronic supplementary material The online version of this article (doi:10.1186/s12879-016-1458-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wafa Kammoun-Rebai
- Laboratory of Medical Parasitology, Biotechnologies and Biomolecules, Institut Pasteur de Tunis, Tunis, Tunisia.,University of Tunis El Manar, Tunis, 1068, Tunisia
| | - Ikbel Naouar
- University of Tunis El Manar, Tunis, 1068, Tunisia.,Laboratory of Transmission Control and Immunobiology of Infection, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Valentina Libri
- Center for Human Immunology, Institut Pasteur, Paris, France
| | - Matthew Albert
- Center for Human Immunology, Institut Pasteur, Paris, France.,Department of Immunology, Laboratory of Dendritic Cell Immunobiology, Institut Pasteur, Paris, France.,Inserm U818, Paris, France
| | - Hechmi Louzir
- University of Tunis El Manar, Tunis, 1068, Tunisia.,Laboratory of Transmission Control and Immunobiology of Infection, Institut Pasteur de Tunis, Tunis, Tunisia.,Faculty of Medicine, Tunis, Tunisia
| | - Amel Meddeb-Garnaoui
- Laboratory of Medical Parasitology, Biotechnologies and Biomolecules, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Darragh Duffy
- Center for Human Immunology, Institut Pasteur, Paris, France. .,Department of Immunology, Laboratory of Dendritic Cell Immunobiology, Institut Pasteur, Paris, France. .,Inserm U818, Paris, France.
| |
Collapse
|
89
|
The Role of Nitric Oxide and Reactive Oxygen Species in the Killing of Leishmania braziliensis by Monocytes from Patients with Cutaneous Leishmaniasis. PLoS One 2016; 11:e0148084. [PMID: 26840253 PMCID: PMC4739692 DOI: 10.1371/journal.pone.0148084] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 01/12/2016] [Indexed: 12/02/2022] Open
Abstract
Human cutaneous leishmaniasis (CL) caused by Leishmania braziliensis, presents an exaggerated Th1 response that is associated with ulcer development. Macrophages are the primary cells infected by Leishmania parasites and both reactive oxygen species (ROS) and nitric oxide (NO) are important in the control of Leishmania by these cells. The mechanism involved in the killing of L. braziliensis is not well established. In this study, we evaluate the role of ROS and NO in the control of L. braziliensis infection by monocytes from CL patients. After in vitro infection with L. braziliensis, the oxidative burst by monocytes from CL patients was higher when compared to monocytes from healthy subjects (HS). Inhibition of the ROS pathway caused a significant decrease in the oxidative burst in L. braziliensis infected monocytes from both groups. In addition, we evaluated the intracellular expression of ROS and NO in L. braziliensis-infected monocytes. Monocytes from CL patients presented high expression of ROS after infection with L. braziliensis. The expression of NO was higher in monocytes from CL patients as compared to expression in monocytes from HS. A strong positive correlation between NO production and lesion size of CL patients was observed. The inhibition of ROS production in leishmania-infected monocytes from CL patients allowed the growth of viable promastigotes in culture supernatants. Thus, we demonstrate that while production of ROS is involved in L. braziliensis killing, NO alone is not sufficient to control infection and may contribute to the tissue damage observed in human CL.
Collapse
|
90
|
Bhattacharya P, Ghosh S, Ejazi SA, Rahaman M, Pandey K, Ravi Das VN, Das P, Goswami RP, Saha B, Ali N. Induction of IL-10 and TGFβ from CD4+CD25+FoxP3+ T Cells Correlates with Parasite Load in Indian Kala-azar Patients Infected with Leishmania donovani. PLoS Negl Trop Dis 2016; 10:e0004422. [PMID: 26829554 PMCID: PMC4735109 DOI: 10.1371/journal.pntd.0004422] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 01/11/2016] [Indexed: 01/01/2023] Open
Abstract
Background Visceral leishmaniasis (VL) is distinguished by a complex interplay of immune response and parasite multiplication inside host cells. However, the direct association between different immunological correlates and parasite numbers remains largely unknown. Methodology/Principal Findings We examined the plasma levels of different disease promoting/protective as well as Th17 cytokines and found IL-10, TGFβ and IL-17 to be significantly correlated with parasite load in VL patients (r = 0.52, 0.53 and 0.51 for IL-10, TGFβ and IL-17, respectively). We then extended our investigation to a more antigen-specific response and found leishmanial antigen stimulated levels of both IL-10 and TGFβ to be significantly associated with parasite load (r = 0.71 and 0.72 for IL-10 and TGFβ respectively). In addition to cytokines we also looked for different cellular subtypes that could contribute to cytokine secretion and parasite persistence. Our observations manifested an association between different Treg cell markers and disease progression as absolute numbers of CD4+CD25+ (r = 0.55), CD4+CD25hi (r = 0.61) as well as percentages of CD4+CD25+FoxP3+ T cells (r = 0.68) all correlated with parasite load. Encouraged by these results, we investigated a link between these immunological components and interestingly found both CD4+CD25+ and CD4+CD25+FoxP3+ Treg cells to secrete significantly (p<0.05) higher amounts of not only IL-10 but also TGFβ in comparison to corresponding CD25- T cells. Conclusions/Significance Our findings shed some light on source(s) of TGFβ and suggest an association between these disease promoting cytokines and Treg cells with parasite load during active disease. Moreover, the direct evidence of CD4+CD25+FoxP3+ Treg cells as a source of IL-10 and TGFβ during active VL could open new avenues for immunotherapy towards cure of this potentially fatal disease. Visceral leishmaniasis (VL) is one of the most widespread parasitic diseases worldwide and is caused by kinetoplastid protozoa of the Leishmania donovani complex. The disease begins with internalization of L. donovani parasites and their multiplication within host macrophages followed subsequently by immune suppression. However, the immunological factors responsible for disease progression and their association with parasite dynamics are not completely understood. Herein, we investigated the correlation of different immune components (cytokines and cellular subsets) with parasite load and their involvement in the course of VL. Our study revealed a significant positive correlation between parasite load and plasma as well as antigen specific levels of IL-10 and TGFβ. In addition to cytokines, cellular subsets could also contribute to disease pathogenesis through their regulatory mechanisms. Our results indicate different Treg cell markers (absolute numbers of CD4+CD25+ and CD4+CD25hi and percentages of CD4+CD25+FoxP3+) to be strongly correlated with parasite load. Exploring an association between these immunological correlates revealed Treg cells to be the source of these cytokines during VL. Therefore, this study points to a significant role of IL-10, TGFβ and Treg cells in parasite load and active VL, providing evidence which could be helpful in devising new immunotherapeutic strategies against this disease.
Collapse
Affiliation(s)
- Pradyot Bhattacharya
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Smriti Ghosh
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Sarfaraz Ahmad Ejazi
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Mehebubar Rahaman
- Department of Tropical Medicine, School of Tropical Medicine, Kolkata, West Bengal, India
| | - Krishna Pandey
- Department of Clinical Medicine, Rajendra Memorial Research Institute of Medical Sciences, Patna, Bihar, India
| | - Vidya Nand Ravi Das
- Department of Clinical Medicine, Rajendra Memorial Research Institute of Medical Sciences, Patna, Bihar, India
| | - Pradeep Das
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Patna, Bihar, India
| | - Rama Prosad Goswami
- Department of Tropical Medicine, School of Tropical Medicine, Kolkata, West Bengal, India
| | - Bibhuti Saha
- Department of Tropical Medicine, School of Tropical Medicine, Kolkata, West Bengal, India
| | - Nahid Ali
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, West Bengal, India
- * E-mail:
| |
Collapse
|
91
|
Charmoy M, Hurrell BP, Romano A, Lee SH, Ribeiro-Gomes F, Riteau N, Mayer-Barber K, Tacchini-Cottier F, Sacks DL. The Nlrp3 inflammasome, IL-1β, and neutrophil recruitment are required for susceptibility to a nonhealing strain of Leishmania major in C57BL/6 mice. Eur J Immunol 2016; 46:897-911. [PMID: 26689285 DOI: 10.1002/eji.201546015] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/23/2015] [Accepted: 12/16/2015] [Indexed: 01/12/2023]
Abstract
Infection of C57BL/6 mice with most Leishmania major strains results in a healing lesion and clearance of parasites from the skin. Infection of C57BL/6 mice with the L. major Seidman strain (LmSd), isolated from a patient with chronic lesions, despite eliciting a strong Th1 response, results in a nonhealing lesion, poor parasite clearance, and complete destruction of the ear dermis. We show here that in comparison to a healing strain, LmSd elicited early upregulation of IL-1β mRNA and IL-1β-producing dermal cells and prominent neutrophil recruitment to the infected skin. Mice deficient in Nlrp3, apoptosis-associated speck-like protein containing a caspase recruitment domain, or caspase-1/11, or lacking IL-1β or IL-1 receptor signaling, developed healing lesions and cleared LmSd from the infection site. Mice resistant to LmSd had a stronger antigen-specific Th1 response. The possibility that IL-1β might act through neutrophil recruitment to locally suppress immunity was supported by the healing observed in neutropenic Genista mice. Secretion of mature IL-1β by LmSd-infected macrophages in vitro was dependent on activation of the Nlrp3 inflammasome and caspase-1. These data reveal that Nlrp3 inflammasome-dependent IL-1β, associated with localized neutrophil recruitment, plays a crucial role in the development of a nonhealing form of cutaneous leishmaniasis in conventionally resistant mice.
Collapse
Affiliation(s)
- Melanie Charmoy
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin P Hurrell
- Department of Biochemistry, WHO-Immunology Research and Training Center, University of Lausanne, Lausanne, Switzerland
| | - Audrey Romano
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sang Hun Lee
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Flavia Ribeiro-Gomes
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nicolas Riteau
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Katrin Mayer-Barber
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Fabienne Tacchini-Cottier
- Department of Biochemistry, WHO-Immunology Research and Training Center, University of Lausanne, Lausanne, Switzerland
| | - David L Sacks
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
92
|
Zhao GH, Fang YQ, Ryan U, Guo YX, Wu F, Du SZ, Chen DK, Lin Q. Dynamics of Th17 associating cytokines in Cryptosporidium parvum-infected mice. Parasitol Res 2015; 115:879-87. [PMID: 26593737 DOI: 10.1007/s00436-015-4831-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/10/2015] [Indexed: 12/20/2022]
Abstract
Cryptosporidium parvum commonly inhabits the intestinal tract of animals and humans and can cause acute watery diarrhea and weight loss. However, host immune responses to Cryptosporidium infections are not fully understood. IL-17 (also called IL-17A) is a pro-inflammatory cytokine of Th17 cells that plays a role in the host response to Cryptosporidium baileyi infection. The present study examined levels of IL-17-specific messenger RNA (mRNA) and Th17 associating cytokines in C. parvum-infected immune-suppressed BALB/c mice using real-time quantitative PCR (qPCR). Levels of IL-17 protein were determined by ELISA. The results showed that levels of IL-17 mRNA and Th17 cell-related cytokines, namely TGF-β, IL-6, STAT-3, RORγt, IL-22, TNF-α, and IL-23, were significantly increased (P < 0.05) in gut-associated lymphoid tissue (GALT) and spleen. IL-17 protein levels in GALT were also significantly increased (P < 0.05) after infection. The present study suggested that Th17 cells play a role in host-C. parvum interaction. These results could inform future studies of the immune response against C. parvum infection in transient immunosuppressed populations.
Collapse
Affiliation(s)
- G H Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, People's Republic of China
| | - Y Q Fang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, People's Republic of China
| | - U Ryan
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, 6150, Australia
| | - Y X Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, People's Republic of China
| | - F Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, People's Republic of China
| | - S Z Du
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, People's Republic of China
| | - D K Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, People's Republic of China.
| | - Q Lin
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, People's Republic of China.
| |
Collapse
|
93
|
Terrazas C, Varikuti S, Kimble J, Moretti E, Boyaka PN, Satoskar AR. IL-17A promotes susceptibility during experimental visceral leishmaniasis caused by Leishmania donovani. FASEB J 2015; 30:1135-43. [PMID: 26581600 DOI: 10.1096/fj.15-277202] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 11/09/2015] [Indexed: 12/20/2022]
Abstract
Leishmania donovani is an intracellular parasite that infects professional phagocytes and causes visceral leishmaniasis (VL). The immune response during VL has been extensively studied in the context of T-helper (Th)1 and Th2 responses. Immunity against this parasite is dependent on IFN-γ production and subsequent macrophage activation, and the Th2 response promotes granuloma formation. The cytokine IL-17A is associated with neutrophilic inflammation. Depletion of neutrophils during experimental VL results in enhanced parasitic loads. Furthermore, although patients resistant to VL showed enhanced levels of IL-17A in circulation, little is known about the role of IL-17A during VL infection. Here, we used IL-17A-deficient mice and IL-17A reporter mice to address the role of IL-17A during VL. IL-17A(-/-) mice were highly resistant to VL infection, showing decreased parasites in the liver and spleen. This unexpected phenotype was associated with enhanced IFN-γ production by T cells and decreased accumulation of neutrophils and monocytes, resulting in reduced number of granulomas. We also found γδ T and Th17 cells as the main IL-17A(+) cells during VL infection. Our data reveal an unexpected role of IL-17A rendering susceptibility against L. donovani by regulating the IFN-γ response and promoting detrimental inflammation.
Collapse
Affiliation(s)
- Cesar Terrazas
- *Department of Pathology, Department of Veterinary Biosciences, and Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Sanjay Varikuti
- *Department of Pathology, Department of Veterinary Biosciences, and Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Jennifer Kimble
- *Department of Pathology, Department of Veterinary Biosciences, and Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Ellen Moretti
- *Department of Pathology, Department of Veterinary Biosciences, and Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Prosper N Boyaka
- *Department of Pathology, Department of Veterinary Biosciences, and Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Abhay R Satoskar
- *Department of Pathology, Department of Veterinary Biosciences, and Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
94
|
Sheel M, Beattie L, Frame TCM, de Labastida Rivera F, Faleiro RJ, Bunn PT, Montes de Oca M, Edwards CL, Ng SS, Kumar R, Amante FH, Best SE, McColl SR, Varelias A, Kuns RD, MacDonald KPA, Smyth MJ, Haque A, Hill GR, Engwerda CR. IL-17A-Producing γδ T Cells Suppress Early Control of Parasite Growth by Monocytes in the Liver. THE JOURNAL OF IMMUNOLOGY 2015; 195:5707-17. [PMID: 26538396 DOI: 10.4049/jimmunol.1501046] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 10/06/2015] [Indexed: 12/24/2022]
Abstract
Intracellular infections, such as those caused by the protozoan parasite Leishmania donovani, a causative agent of visceral leishmaniasis (VL), require a potent host proinflammatory response for control. IL-17 has emerged as an important proinflammatory cytokine required for limiting growth of both extracellular and intracellular pathogens. However, there are conflicting reports on the exact roles for IL-17 during parasitic infections and limited knowledge about cellular sources and the immune pathways it modulates. We examined the role of IL-17 in an experimental model of VL caused by infection of C57BL/6 mice with L. donovani and identified an early suppressive role for IL-17 in the liver that limited control of parasite growth. IL-17-producing γδ T cells recruited to the liver in the first week of infection were the critical source of IL-17 in this model, and CCR2(+) inflammatory monocytes were an important target for the suppressive effects of IL-17. Improved parasite control was independent of NO generation, but associated with maintenance of superoxide dismutase mRNA expression in the absence of IL-17 in the liver. Thus, we have identified a novel inhibitory function for IL-17 in parasitic infection, and our results demonstrate important interactions among γδ T cells, monocytes, and infected macrophages in the liver that can determine the outcome of parasitic infection.
Collapse
Affiliation(s)
- Meru Sheel
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Lynette Beattie
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Teija C M Frame
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia; School of Biomedical Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | | | - Rebecca J Faleiro
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia; Queensland University of Technology, Institute of Health and Biomedical Innovation, Brisbane, Queensland 4059, Australia
| | - Patrick T Bunn
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia; Institute of Glycomics, Griffith University, Gold Coast, Queensland 4215, Australia
| | - Marcela Montes de Oca
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia; School of Medicine, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Chelsea L Edwards
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia; School of Medicine, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Susanna S Ng
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia; School of Natural Sciences, Griffith University, Nathan, Queensland 4111, Australia
| | - Rajiv Kumar
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia; Netaji Subhas Institute of Technology, New Delhi 110078, India; and
| | - Fiona H Amante
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Shannon E Best
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Shaun R McColl
- Centre for Molecular Pathology, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Antiopi Varelias
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Rachel D Kuns
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Kelli P A MacDonald
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Mark J Smyth
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Ashraful Haque
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Geoff R Hill
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Christian R Engwerda
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia;
| |
Collapse
|
95
|
Aguilo N, Alvarez-Arguedas S, Uranga S, Marinova D, Monzón M, Badiola J, Martin C. Pulmonary but Not Subcutaneous Delivery of BCG Vaccine Confers Protection to Tuberculosis-Susceptible Mice by an Interleukin 17-Dependent Mechanism. J Infect Dis 2015; 213:831-9. [PMID: 26494773 DOI: 10.1093/infdis/jiv503] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/14/2015] [Indexed: 01/20/2023] Open
Abstract
Some of the most promising novel tuberculosis vaccine strategies currently under development are based on respiratory vaccination, mimicking the natural route of infection. In this work, we have compared pulmonary and subcutaneous delivery of BCG vaccine in the tuberculosis-susceptible DBA/2 mouse strain, a model in which parenterally administered BCG vaccine does not protect against tuberculosis. Our data show that intranasally but not subcutaneously administered BCG confers robust protection against pulmonary tuberculosis challenge. In addition, our results indicate that pulmonary vaccination triggers a Mycobacterium tuberculosis-specific mucosal immune response orchestrated by interleukin 17A (IL-17A). Thus, IL-17A neutralization in vivo reduces protection and abrogates M. tuberculosis-specific immunoglobulin A (IgA) secretion to respiratory airways and lung expression of polymeric immunoglobulin receptor induced following intranasal vaccination. Together, our results demonstrate that pulmonary delivery of BCG can overcome the lack of protection observed when BCG is given parenterally, suggesting that respiratory tuberculosis vaccines could have an advantage in tuberculosis-endemic countries, where intradermally administered BCG has inefficient effectiveness against pulmonary tuberculosis.
Collapse
Affiliation(s)
- Nacho Aguilo
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Medicina Preventiva, y Salud Pública CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Samuel Alvarez-Arguedas
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Medicina Preventiva, y Salud Pública CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Santiago Uranga
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Medicina Preventiva, y Salud Pública CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Dessislava Marinova
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Medicina Preventiva, y Salud Pública CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Monzón
- Research Centre for Encephalopathies and Transmissible Emerging Diseases, Universidad de Zaragoza
| | - Juan Badiola
- Research Centre for Encephalopathies and Transmissible Emerging Diseases, Universidad de Zaragoza
| | - Carlos Martin
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Medicina Preventiva, y Salud Pública Servicio de Microbiología, Hospital Universitario Miguel Servet, ISS Aragón, Zaragoza CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
96
|
Hosein S, Rodríguez-Cortés A, Blake DP, Allenspach K, Alberola J, Solano-Gallego L. Transcription of Toll-Like Receptors 2, 3, 4 and 9, FoxP3 and Th17 Cytokines in a Susceptible Experimental Model of Canine Leishmania infantum Infection. PLoS One 2015; 10:e0140325. [PMID: 26465878 PMCID: PMC4605763 DOI: 10.1371/journal.pone.0140325] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/24/2015] [Indexed: 12/03/2022] Open
Abstract
Canine leishmaniosis (CanL) due to Leishmania infantum is a chronic zoonotic systemic disease resulting from complex interactions between protozoa and the canine immune system. Toll-like receptors (TLRs) are essential components of the innate immune system and facilitate the early detection of many infections. However, the role of TLRs in CanL remains unknown and information describing TLR transcription during infection is extremely scarce. The aim of this research project was to investigate the impact of L. infantum infection on canine TLR transcription using a susceptible model. The objectives of this study were to evaluate transcription of TLRs 2, 3, 4 and 9 by means of quantitative reverse transcription polymerase chain reaction (qRT-PCR) in skin, spleen, lymph node and liver in the presence or absence of experimental L. infantum infection in Beagle dogs. These findings were compared with clinical and serological data, parasite densities in infected tissues and transcription of IL-17, IL-22 and FoxP3 in different tissues in non-infected dogs (n = 10), and at six months (n = 24) and 15 months (n = 7) post infection. Results revealed significant down regulation of transcription with disease progression in lymph node samples for TLR3, TLR4, TLR9, IL-17, IL-22 and FoxP3. In spleen samples, significant down regulation of transcription was seen in TLR4 and IL-22 when both infected groups were compared with controls. In liver samples, down regulation of transcription was evident with disease progression for IL-22. In the skin, upregulation was seen only for TLR9 and FoxP3 in the early stages of infection. Subtle changes or down regulation in TLR transcription, Th17 cytokines and FoxP3 are indicative of the silent establishment of infection that Leishmania is renowned for. These observations provide new insights about TLR transcription, Th17 cytokines and Foxp3 in the liver, spleen, lymph node and skin in CanL and highlight possible markers of disease susceptibility in this model.
Collapse
Affiliation(s)
- Shazia Hosein
- Royal Veterinary College, Pathology and Pathogen Biology, University of London, Hawkshead Lane, North Mymms, AL9 7TA, United Kingdom
- * E-mail: (SH); (LSG)
| | - Alhelí Rodríguez-Cortés
- Universitat Autònoma de Barcelona, LeishLAB-SAF, Departament de Farmacologia de Terapèutica i de Toxicologia, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Damer P. Blake
- Royal Veterinary College, Pathology and Pathogen Biology, University of London, Hawkshead Lane, North Mymms, AL9 7TA, United Kingdom
| | - Karin Allenspach
- Royal Veterinary College, Clinical Sciences and Services, University of London, Hawkshead Lane, North Mymms, AL9 7TA, United Kingdom
| | - Jordi Alberola
- Universitat Autònoma de Barcelona, LeishLAB-SAF, Departament de Farmacologia de Terapèutica i de Toxicologia, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Laia Solano-Gallego
- Royal Veterinary College, Pathology and Pathogen Biology, University of London, Hawkshead Lane, North Mymms, AL9 7TA, United Kingdom
- Universitat Autònoma de Barcelona, Facultat de Veterinaria, 08193 Cerdanyola del Vallès, Barcelona, Spain
- * E-mail: (SH); (LSG)
| |
Collapse
|
97
|
Crosby EJ, Clark M, Novais FO, Wherry EJ, Scott P. Lymphocytic Choriomeningitis Virus Expands a Population of NKG2D+CD8+ T Cells That Exacerbates Disease in Mice Coinfected with Leishmania major. THE JOURNAL OF IMMUNOLOGY 2015; 195:3301-10. [PMID: 26290604 DOI: 10.4049/jimmunol.1500855] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 07/30/2015] [Indexed: 12/11/2022]
Abstract
Leishmaniasis is a significant neglected tropical disease that is associated with a wide range of clinical presentations and a lifelong persistent infection. Because of the chronic nature of the disease, there is a high risk for coinfection occurring in patients, and how coinfections influence the outcome of leishmaniasis is poorly understood. To address this issue, we infected mice with Leishmania major and 2 wk later with lymphocytic choriomeningitis virus (LCMV) and then monitored the course of infection. Leishmania parasites are controlled by production of IFN-γ, which leads to macrophage-mediated parasite killing. Thus, one might predict that coinfection with LCMV, which induces a strong systemic type 1 response, would accelerate disease resolution. However, we found that infection with LCMV led to significantly enhanced disease in L. major-infected animals. This increased disease correlated with an infiltration into the leishmanial lesions of NKG2D(+) CD8(+) T cells producing granzyme B, but surprisingly little IFN-γ. We found that depletion of CD8 T cells after viral clearance, as well as blockade of NKG2D, reversed the increased pathology seen in coinfected mice. Thus, this work highlights the impact a secondary infection can have on leishmaniasis and demonstrates that even pathogens known to promote a type 1 response may exacerbate leishmanial infections.
Collapse
Affiliation(s)
- Erika J Crosby
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Megan Clark
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Fernanda O Novais
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
| | - E John Wherry
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Phillip Scott
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
| |
Collapse
|
98
|
Gimblet C, Loesche MA, Carvalho L, Carvalho EM, Grice EA, Artis D, Scott P. IL-22 Protects against Tissue Damage during Cutaneous Leishmaniasis. PLoS One 2015; 10:e0134698. [PMID: 26285207 PMCID: PMC4540492 DOI: 10.1371/journal.pone.0134698] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/13/2015] [Indexed: 01/11/2023] Open
Abstract
Cutaneous leishmaniasis is a disease characterized by ulcerating skin lesions, the resolution of which requires an effective, but regulated, immune response that limits parasite growth without causing permanent tissue damage. While mechanisms that control the parasites have been well studied, the factors regulating immunopathologic responses are less well understood. IL-22, a member of the IL-10 family of cytokines, can contribute to wound healing, but in other instances promotes pathology. Here we investigated the role of IL-22 during leishmania infection, and found that IL-22 limits leishmania-induced pathology when a certain threshold of damage is induced by a high dose of parasites. Il22-/- mice developed more severe disease than wild-type mice, with significantly more pathology at the site of infection, and in some cases permanent loss of tissue. The increased inflammation was not due to an increased parasite burden, but rather was associated with the loss of a wound healing phenotype in keratinocytes. Taken together, these studies demonstrate that during cutaneous leishmaniasis, IL-22 can play a previously unappreciated role in controlling leishmania-induced immunopathology.
Collapse
Affiliation(s)
- Ciara Gimblet
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States of America
| | - Michael A. Loesche
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States of America
| | - Lucas Carvalho
- Serviço de Imunologia, Universidade Federal da Bahia, Salvador, Bahia, Brazil
- Instituto Nacional de Ciências e Tecnologia—Doenças Tropicais, Salvador, Bahia, Brazil
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Edgar M. Carvalho
- Serviço de Imunologia, Universidade Federal da Bahia, Salvador, Bahia, Brazil
- Instituto Nacional de Ciências e Tecnologia—Doenças Tropicais, Salvador, Bahia, Brazil
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Elizabeth A. Grice
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States of America
| | - David Artis
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States of America
| | - Phillip Scott
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States of America
| |
Collapse
|
99
|
Abstract
Leprosy, caused by noncultivable Mycobacterium leprae (ML), has varied manifestations, which are associated with the host immune responses. The dermal involvement is accompanied by peripheral nerve damage, which leads to sensory motor loss and deformities. Both innate and acquired immune responses are involved. The main cell to be compromised is the CD4 + T helper cell, which shows antigen specific unresponsiveness to only ML and not to other common antigens in the bacilliferous generalized lepromatous form of the disease. In contrast, the paucibacillary localized tuberculoid form shows appropriate T cell functions and poor antibody response. The dichotomy between T cell functions and antibodies are discussed against the current information on cytokines, Th subsets, and regulatory T cells. During lepromatous reactions, there is a temporary, heightened T cell immunity, even in lepromatous subjects. The dermal lesions confirm many features observed with peripheral blood mononuclear cells and give additional information on local immune responses. Nerve damage involves both immune and nonimmune mechanisms. Leprosy is a model disease for understanding host immune responses to intracellular bacilli. There are challenges in diagnosing early leprosy. In spite of intensive efforts by many groups, consensus on a universal test suitable for endemic areas is awaited.
Collapse
Affiliation(s)
- Indira Nath
- Institute of Pathology (ICMR), Safdarjung Hospital Campus, New Delhi, India.
| | - Chaman Saini
- Institute of Pathology (ICMR), Safdarjung Hospital Campus, New Delhi, India
| | | |
Collapse
|
100
|
Novais FO, Scott P. CD8+ T cells in cutaneous leishmaniasis: the good, the bad, and the ugly. Semin Immunopathol 2015; 37:251-9. [PMID: 25800274 DOI: 10.1007/s00281-015-0475-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 02/25/2015] [Indexed: 11/30/2022]
Abstract
CD8(+) T lymphocytes are components of the adaptive immune response and play an important role in protection against many viral and bacterial infections. However, their role in parasitic infections is less well understood. In leishmaniasis, a disease caused by intracellular protozoan parasites of the genus Leishmania, CD8(+) T cells have been shown to be protective. However, increasing evidence indicates that CD8(+) T cells may also exacerbate disease. In this review, we will describe the situations where CD8(+) T cells are either good or bad for the outcome of the infection and attempt to reconcile the dual role played by CD8(+) T cells in cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Fernanda O Novais
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Room 346 Hill Pavilion, 380 S. University Avenue, Philadelphia, PA, 19104-4539, USA,
| | | |
Collapse
|