51
|
Zhang Y, Talwar A, Tsang D, Bruchfeld A, Sadoughi A, Hu M, Omonuwa K, Cheng KF, Al-Abed Y, Miller EJ. Macrophage migration inhibitory factor mediates hypoxia-induced pulmonary hypertension. Mol Med 2012; 18:215-23. [PMID: 22113497 DOI: 10.2119/molmed.2011.00094] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 11/15/2011] [Indexed: 12/28/2022] Open
Abstract
Pulmonary hypertension (PH) is a devastating disease leading to progressive hypoxemia, right ventricular failure, and death. Hypoxia can play a pivotal role in PH etiology, inducing pulmonary vessel constriction and remodeling. These events lead to increased pulmonary vessel wall thickness, elevated vascular resistance and right ventricular hypertrophy. The current study examined the association of the inflammatory cytokine macrophage migration inhibitory factor (MIF) with chronic lung disease and its role in the development of hypoxia-induced PH. We found that plasma MIF in patients with primary PH or PH secondary to interstitial lung disease (ILD) was significantly higher than in the control group (P = 0.004 and 0.007, respectively). MIF involvement with hypoxia-induced fibroblast proliferation was examined in both a human cell-line and primary mouse cells from wild-type (mif⁺/⁺) and MIF-knockout (mif⁻/⁻) mice. In vitro, hypoxia-increased MIF mRNA, extracellular MIF protein accumulation and cell proliferation. Inhibition of MIF inflammatory activity reduced hypoxia-induced cell proliferation. However, hypoxia only increased proliferation of mif⁻/⁻ cells when they were supplemented with media from mif⁺/⁺ cells. This growth increase was suppressed by MIF inhibition. In vivo, chronic exposure of mice to a normobaric atmosphere of 10% oxygen increased lung tissue expression of mRNA encoding MIF and accumulation of MIF in plasma. Inhibition of the MIF inflammatory active site, during hypoxic exposure, significantly reduced pulmonary vascular remodeling, cardiac hypertrophy and right ventricular systolic pressure. The data suggest that MIF plays a critical role in hypoxia-induced PH, and its inhibition may be beneficial in preventing the development and progression of the disease.
Collapse
Affiliation(s)
- Yinzhong Zhang
- Centers for Heart and Lung Research, The Feinstein Institute for Medical Research, Manhasset, New York, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Lu D, Soleymani S, Madakshire R, Insel PA. ATP released from cardiac fibroblasts via connexin hemichannels activates profibrotic P2Y2 receptors. FASEB J 2012; 26:2580-91. [PMID: 22415310 DOI: 10.1096/fj.12-204677] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cardiac fibroblasts (CFs) play an essential role in remodeling of the cardiac extracellular matrix. Extracellular nucleotide signaling may provoke a profibrotic response in CFs. We tested the hypothesis that physical perturbations release ATP from CFs and that ATP participates in profibrotic signaling. ATP release was abolished by the channel inhibitor carbenoxolone and inhibited by knockdown of either connexin (Cx)43 or Cx45 (47 and 35%, respectively), implying that hypotonic stimulation induces ATP release via Cx43 and Cx45 hemichannels, although pannexin 1 may also play a role. ATP released by hypotonic stimulation rapidly (<10 min) increased phosphorylated ERK by 5-8 fold, an effect largely eliminated by P2Y(2) receptor knockdown or ATP hydrolysis with apyrase. ATP stimulation of P2Y(2) receptors increased α-smooth muscle actin (α-SMA) production, and in an ERK-dependent manner, ATP increased collagen accumulation by 60% and mRNA expression of profibrotic markers: plasminogen activator inhibitor-1 and monocyte chemotactic protein-1 by 4.5- and 4.0-fold, respectively. Apyrase treatment substantially reduced the basal profibrotic phenotype, decreasing collagen and α-SMA content and increasing matrix metalloproteinase expression. Thus, ATP release activates P2Y(2) receptors to mediate profibrotic responses in CFs, implying that nucleotide release under both basal and activated states is likely an important mechanism for fibroblast homeostasis.
Collapse
Affiliation(s)
- David Lu
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
53
|
Ryan J, Bloch K, Archer SL. Rodent models of pulmonary hypertension: harmonisation with the world health organisation's categorisation of human PH. Int J Clin Pract 2012:15-34. [PMID: 21736677 DOI: 10.1111/j.1742-1241.2011.02710.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The WHO classification of pulmonary hypertension (PH) recognises five distinct groups, all sharing a mean, resting, pulmonary artery pressure (PAP) > 25 mmHg. The aetiology of PH varies by group (1-pulmonary vascular disease, 2-high left heart filling pressures, 3-hypoxia, 4-unresolved pulmonary embolism and 5-miscellaneous). Inclusion in a group reflects shared histological, haemodynamic and pathophysiological features and has therapeutic implications. Advantages of using rodent models to understand the pathophysiology of human PH and to test experimental therapies include the economy, safety and mechanistic certainty they provide. As rodent models are meant to reflect human PH, they should be categorised by a parallel PH classification and limitations in achieving this ideal recognised. Challenges with rodent models include: accurate phenotypic characterisation (haemodynamics, histology and imaging), species and strain variations in the natural history of PH, and poor fidelity to the relevant human PH group. Rat models of group 1 PH include: monocrotaline (± pneumonectomy), chronic hypoxia + SU-5416 (a VEGF receptor inhibitor) and the fawn-hooded rat (FHR). Mouse models of group 1 PH include: transgenic mice overexpressing the serotonin transporter or dominant-negative mutants of bone morphogenetic protein receptor-2. Group 1 PH is also created by infecting S100A4/Mts1 mice with γ-herpesvirus. The histological features of group 1 PH, but not PH itself, are induced by exposure to Schistosoma mansoni or Stachybotrys chartarum. Group 3 PH is modelled by exposure of rats or mice to chronic hypoxia. Rodent models of groups 2, 4 and 5 PH are needed. Comprehensive haemodynamic, histological and molecular phenotyping, coupled with categorisation into WHO PH groups, enhances the utility of rodent models.
Collapse
Affiliation(s)
- J Ryan
- Section of Cardiology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | | | | |
Collapse
|
54
|
Yang S, Banerjee S, Freitas AD, Cui H, Xie N, Abraham E, Liu G. miR-21 regulates chronic hypoxia-induced pulmonary vascular remodeling. Am J Physiol Lung Cell Mol Physiol 2012; 302:L521-9. [PMID: 22227207 DOI: 10.1152/ajplung.00316.2011] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic hypoxia causes pulmonary vascular remodeling leading to pulmonary hypertension (PH) and right ventricle (RV) hypertrophy. Aberrant expression of microRNA (miRNA) is closely associated with a number of pathophysiologic processes. However, the role of miRNAs in chronic hypoxia-induced pulmonary vascular remodeling and PH has not been well characterized. In this study, we found increased expression of miR-21 in distal small arteries in the lungs of hypoxia-exposed mice. Putative miR-21 targets, including bone morphogenetic protein receptor (BMPR2), WWP1, SATB1, and YOD1, were downregulated in the lungs of hypoxia-exposed mice and in human pulmonary artery smooth muscle cells (PASMCs) overexpressing miR-21. We found that sequestration of miR-21, either before or after hypoxia exposure, diminished chronic hypoxia-induced PH and attenuated hypoxia-induced pulmonary vascular remodeling, likely through relieving the suppressed expression of miR-21 targets in the lungs of hypoxia-exposed mice. Overexpression of miR-21 enhanced, whereas downregulation of miR-21 diminished, the proliferation of human PASMCs in vitro and the expression of cell proliferation associated proteins, such as proliferating cell nuclear antigen, cyclin D1, and Bcl-xL. Our data suggest that miR-21 plays an important role in the pathogenesis of chronic hypoxia-induced pulmonary vascular remodeling and also suggest that miR-21 is a potential target for novel therapeutics to treat chronic hypoxia associated pulmonary diseases.
Collapse
Affiliation(s)
- Shanzhong Yang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama, Birmingham, USA
| | | | | | | | | | | | | |
Collapse
|
55
|
Paffett ML, Lucas SN, Campen MJ. Resveratrol reverses monocrotaline-induced pulmonary vascular and cardiac dysfunction: a potential role for atrogin-1 in smooth muscle. Vascul Pharmacol 2011; 56:64-73. [PMID: 22146233 DOI: 10.1016/j.vph.2011.11.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 10/31/2011] [Accepted: 11/20/2011] [Indexed: 12/19/2022]
Abstract
Arterial remodeling contributes to elevated pulmonary artery (PA) pressures and right ventricular hypertrophy seen in pulmonary hypertension (PH). Resveratrol, a sirtuin-1 (SIRT1) pathway activator, can prevent the development of PH in a commonly used animal model, but it is unclear whether it can reverse established PH pathophysiology. Furthermore, atrophic ubiquitin ligases, such as atrogin-1 and MuRF-1, are known to be induced by SIRT1 activators but have not been characterized in hypertrophic vascular disease. Therefore, we hypothesized that monocrotaline (MCT)-induced PH would attenuate atrophy pathways in the PA while, conversely, SIRT1 activation (resveratrol) would reverse indices of PH and restore atrophic gene expression. Thus, we injected Sprague-Dawley rats with MCT (50 mg/kg i.p.) or saline at Day 0, and then treated with oral resveratrol or sildenafil from days 28-42 post-MCT injection. Oral resveratrol attenuated established MCT-induced PH indices, including right ventricular systolic pressure, right ventricular hypertrophy, and medial thickening of intrapulmonary arteries. Resveratrol also normalized PA atrogin-1 mRNA expression, which was significantly reduced by MCT. In cultured human PA smooth muscle cells (hPASMC), resveratrol significantly inhibited PDGF-stimulated proliferation and cellular hypertrophy, which was also associated with improvements in atrogin-1 levels. In addition, SIRT1 inhibition augmented hPASMC proliferation, as assessed by DNA mass, and suppressed atrogin mRNA expression. These findings demonstrate an inverse relationship between indices of PH and PA atrogin expression that is SIRT1 dependent and may reflect a novel role for SIRT1 in PASMCs opposing cellular hypertrophy and proliferation.
Collapse
Affiliation(s)
- Michael L Paffett
- College of Pharmacy, Division of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131-0001, USA
| | | | | |
Collapse
|
56
|
ten Freyhaus H, Dumitrescu D, Berghausen E, Vantler M, Caglayan E, Rosenkranz S. Imatinib mesylate for the treatment of pulmonary arterial hypertension. Expert Opin Investig Drugs 2011; 21:119-34. [PMID: 22074410 DOI: 10.1517/13543784.2012.632408] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Despite recent advances, pulmonary arterial hypertension (PAH) remains a devastating disease which harbors a poor prognosis. Novel therapeutic approaches directly targeting pulmonary vascular remodeling are warranted. AREAS COVERED This review delineates the current limitations in the management of PAH and focuses on a novel, anti-proliferative therapeutic concept. It will help readers understand the mechanisms of receptor tyrosine kinase signaling, with a special focus on platelet-derived growth factor (PDGF) receptors and their role in the pathobiology of PAH. Furthermore, it provides a comprehensive summary regarding the rationale, efficacy and safety of the tyrosine kinase inhibitor imatinib mesylate , which potently inhibits the PDGF receptor, as an additional treatment option in PAH. EXPERT OPINION PDGF is a potent mitogen for pulmonary vascular smooth muscle cells and represents an important mediator of pulmonary vascular remodeling. Imatinib mesylate, a compound that inhibits the Bcr-Abl kinase and was developed for the treatment of chronic myeloid leukemia, also targets PDGF receptors. Both experimental and clinical data indicate that it reverses the vascular remodeling process even when it is fully established. Results from Phase II and III clinical trials suggest potent and prolonged efficacy in patients with severe PAH (i.e., pulmonary vascular resistance > 800 dynes*s*cm(-5)). Future studies should evaluate the long-term clinical efficacy and safety of imatinib, including patients with less impaired hemodynamics. Based on the current knowledge, this compound is likely to become an additional treatment option for patients with PAH and has the potential to at least partially correct the pathology of the disease.
Collapse
Affiliation(s)
- Henrik ten Freyhaus
- Klinik III für Innere Medizin, Center for Molecular Medicine Cologne, Universität zu Köln, Kerpener Str. 62, 50924 Köln, Germany
| | | | | | | | | | | |
Collapse
|
57
|
Nie X, Song S, Zhang L, Qiu Z, Shi S, Liu Y, Yao L, Zhu D. 15-Hydroxyeicosatetraenoic acid (15-HETE) protects pulmonary artery smooth muscle cells from apoptosis via inducible nitric oxide synthase (iNOS) pathway. Prostaglandins Other Lipid Mediat 2011; 97:50-9. [PMID: 22101001 DOI: 10.1016/j.prostaglandins.2011.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 11/04/2011] [Accepted: 11/04/2011] [Indexed: 10/15/2022]
Abstract
15-Hydroxyeicosatetraenoic acid (15-HETE), one of many important metabolic products of arachidonic acid (AA) catalyzed by 15-lipoxygenase, plays an important role in pulmonary vascular smooth muscle remodeling. We have previously shown its unsubstituted effects on the apoptotic responses of pulmonary artery smooth muscle cells (PASMCs), but the underlying mechanisms are still poorly manifested. Previous studies have shown that inducible nitric oxide synthase (iNOS) plays an important protective role against sepsis-induced pulmonary apoptosis. Therefore, the purpose of this study is to determine whether 15-HETE anti-apoptotic process is mediated through the iNOS pathway in rat PASMCs. To test this hypothesis, we studied the contribution of iNOS to the 15-HETE induced anti-apoptotic responses using cell viability measurement, Western blot, mitochondrial potential analysis, nuclear morphology determination and TUNEL assay. Our results showed that both exogenous and endogenous 15-HETE up-regulated iNOS protein and mRNA expression and 15-HETE enhanced the cell survival, attenuated mitochondrial depolarization, up-regulated the expression of Bcl-2 and procaspase-3 in PASMCs under serum-deprived condition. These effects were reversed by iNOS inhibitor SMT or l-canavanine. Taken together, our data indicates that iNOS is a novel signaling transduction pathway, which is necessary for the effects of 15-HETE in protection PASMCs from apoptosis and may be an important mechanism underlying the treatment of pulmonary artery hypertension and also provides a novel therapeutic insight in future.
Collapse
Affiliation(s)
- Xiaowei Nie
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University (Daqing), Daqing 163319, China.
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Hoshino A, Ishii G, Ito T, Aoyagi K, Ohtaki Y, Nagai K, Sasaki H, Ochiai A. Podoplanin-positive fibroblasts enhance lung adenocarcinoma tumor formation: podoplanin in fibroblast functions for tumor progression. Cancer Res 2011; 71:4769-79. [PMID: 21610106 DOI: 10.1158/0008-5472.can-10-3228] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
During the metastatic process, cancer cells interact with vascular adventitial fibroblasts (VAF), which are the main components of the outermost connective tissue layer of blood vessels. This activity suggests the presence of a specific tumor microenvironment in the perivascular area. The s.c. coinjection of human lung adenocarcinoma cell lines (A549, PC-14, and CRL-5807) and human VAF (hVAF) resulted in a high rate of tumor formation, compared with the coinjection of these cell lines and human lung tissue-derived fibroblasts (hLF). A cDNA microarray analysis revealed a higher expression level of podoplanin in hVAFs than in hLFs (4.7-fold). Flow cytometry analysis also showed a higher expression level of podoplanin in hVAFs (43% ± 17.5%) than in hLFs (16% ± 10.3%). Sorted podoplanin-positive hVAFs displayed enhanced tumor formation, lymph node metastasis, and lung metastasis of A549 compared to sorted podoplanin-negative hVAFs. Knockdown of podoplanin in hVAFs decreased the augmenting effect of tumor formation and in vitro colony formation. The overexpression of podoplanin in hVAFs hastened the tumor formation of A549, compared with control hVAFs. Furthermore, the analysis of small-sized human lung adenocarcinoma (n = 112) revealed that patients with podoplanin-positive cancer-associated fibroblasts had a significantly higher rate of lymph node metastasis and a high risk of recurrence. These results indicate a promotive effect of hVAFs mediated by podoplanin on cancer progression and suggest that the perivascular environment may constitute a specific niche for tumor progression.
Collapse
Affiliation(s)
- Ayuko Hoshino
- Laboratory of Cancer Biology, Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Schermuly RT, Janssen W, Weissmann N, Stasch JP, Grimminger F, Ghofrani HA. Riociguat for the treatment of pulmonary hypertension. Expert Opin Investig Drugs 2011; 20:567-76. [PMID: 21391889 DOI: 10.1517/13543784.2011.565048] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Pulmonary hypertension (PH) is a severe condition with a poor prognosis despite recent treatment advances. Therapies with new mechanisms of action are needed. AREAS COVERED This review will help readers understand the mechanism of action of the soluble guanylate cyclase (sGC) stimulator riociguat (BAY 63-2521) and will provide a comprehensive summary regarding efficacy and safety of this drug in the management of PH. The most relevant publications up to December 2010 were used as sources for this review. EXPERT OPINION Cyclic guanosine monophosphate (cGMP) is an important mediator of the preferential perfusion of well-ventilated regions throughout the lung. Drugs that increase cGMP levels could promote pulmonary vasorelaxation while maintaining optimal gas exchange. cGMP is generated by sGC, which can be stimulated by nitric oxide (NO). Riociguat stimulates sGC independently of NO and increases the sensitivity of sGC to NO, resulting in increased cGMP levels. Results to date suggest rapid, potent and prolonged efficacy and good tolerability in different types of PH. Phase III clinical trials are evaluating the long-term safety and clinical effectiveness of riociguat in pulmonary arterial hypertension (PAH) and chronic thromboembolic PH. Riociguat has the potential to become an important drug for the treatment of patients with PH.
Collapse
Affiliation(s)
- Ralph T Schermuly
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany.
| | | | | | | | | | | |
Collapse
|
60
|
Chan SY, Loscalzo J. Pulmonary vascular disease related to hemodynamic stress in the pulmonary circulation. Compr Physiol 2011; 1:123-39. [PMID: 23737167 PMCID: PMC3730284 DOI: 10.1002/cphy.c090004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Hemodynamic stress in the pulmonary vessel is directly linked to the development of vascular remodeling and dysfunction, ultimately leading to pulmonary hypertension. Recently, some advances have been made in our molecular understanding of the exogenous upstream stimuli that initiate hemodynamic pertubations as well as the downstream vasoactive effectors that control these responses. However, much still remains unknown regarding how these complex signaling pathways connect in order to result in these characteristic pathophysiological changes. This chapter will describe our current understanding of and needed areas of research into the clinical, physiological, and molecular changes associated with pressure/volume overload in the pulmonary circulation.
Collapse
Affiliation(s)
- Stephen Y. Chan
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Joseph Loscalzo
- Division of Cardiovascular Medicine Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
61
|
Inhibition of angiogenic activity of hypoxic fibroblast cell line MRC-5 in vitro by topotecan. Med Oncol 2010. [DOI: 10.1007/s12032-010-9710-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
62
|
|
63
|
Connolly MJ, Aaronson PI. Key role of the RhoA/Rho kinase system in pulmonary hypertension. Pulm Pharmacol Ther 2010; 24:1-14. [PMID: 20833255 DOI: 10.1016/j.pupt.2010.09.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 07/06/2010] [Accepted: 09/02/2010] [Indexed: 02/06/2023]
Abstract
Pulmonary hypertension (PH) is a general term comprising a spectrum of pulmonary hypertensive disorders which have in common an elevation of mean pulmonary arterial pressure (mPAP). The prototypical form of the disease, termed pulmonary arterial hypertension (PAH), is a rare but lethal syndrome with a complex aetiology characterised by increased pulmonary vascular resistance (PVR) and progressive elevation of mPAP; patients generally die from heart failure. Current therapies are inadequate and median survival is less than three years. PH due to chronic hypoxia (CH) is a condition separate from PAH and is strongly associated with chronic obstructive pulmonary disease (COPD). An early event in the pathogenesis of this form of PH is hypoxic pulmonary vasoconstriction (HPV), an acute homeostatic process that maintains the ventilation-perfusion ratio during alveolar hypoxia. The mechanisms underlying HPV remain controversial, but RhoA/Rho kinase (ROK)-mediated Ca²+-sensitisation is considered important. Increasing evidence also implicates RhoA/ROK in PASMC proliferation, inflammatory cell recruitment and the regulation of cell motility, all of which are involved in the pulmonary vascular remodelling occurring in all forms of PH. ROK is therefore a potential therapeutic target in treating PH of various aetiologies. Here, we examine current concepts regarding the aetiology of PAH and also PH due to CH, focusing on the contribution that RhoA/ROK-mediated processes may make to their development and on ROK inhibitors as potential therapies.
Collapse
Affiliation(s)
- Michelle J Connolly
- Division of Asthma, Allergy and Lung Biology, School of Medicine, King's College London, United Kingdom.
| | | |
Collapse
|
64
|
Misra S, Fu AA, Misra KD, Shergill UM, Leof EB, Mukhopadhyay D. Hypoxia-induced phenotypic switch of fibroblasts to myofibroblasts through a matrix metalloproteinase 2/tissue inhibitor of metalloproteinase-mediated pathway: implications for venous neointimal hyperplasia in hemodialysis access. J Vasc Interv Radiol 2010; 21:896-902. [PMID: 20434368 PMCID: PMC2920497 DOI: 10.1016/j.jvir.2010.02.030] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 02/08/2010] [Accepted: 02/18/2010] [Indexed: 01/16/2023] Open
Abstract
PURPOSE Hemodialysis grafts fail because of venous neointimal hyperplasia formation caused by adventitial fibroblasts that have become myofibroblasts (ie, alpha-smooth muscle actin [SMA]-positive cells) and migrate to the neointima. There is increased expression of hypoxia-inducible factor (HIF)-1alpha in venous neointimal hyperplasia formation in experimental animal models and clinical samples. It was hypothesized that, under hypoxic stimulus (ie, HIF-1alpha), fibroblasts will convert to myofibroblasts through a matrix metalloproteinase (MMP)-2-mediated pathway. MATERIALS AND METHODS Murine AKR-2B fibroblasts were made hypoxic or normoxic for 24, 48, and 72 hours. Protein expression for HIF-1alpha, alpha-SMA, MMP-2, MMP-9, tissue inhibitor of metalloproteinase (TIMP)-1, and TIMP-2 was performed to determine the kinetic changes of these proteins. Immunostaining for alpha-SMA, collagen, and fibronectin was performed. RESULTS At all time points, there was significantly increased expression of HIF-1alpha in the hypoxic fibroblasts compared with normoxic fibroblasts (P < .05). There was significantly increased expression of alpha-SMA at all time points, which peaked by 48 hours in hypoxic fibroblasts compared with normoxic fibroblasts (P < .05). There was a significant increase in the expression of active MMP-2 by 48-72 hours and a significant increase in TIMP-1 by 48-72 hours by hypoxic fibroblasts (P < .05). By 72 hours, there was significant increase in TIMP-2 expression (P < .05). Immunohistochemical analysis demonstrated increased expression of alpha-SMA, collagen, and fibronectin as the duration of hypoxia increased. CONCLUSIONS Under hypoxic conditions, fibroblasts will convert to myofibroblasts through an MMP-2-mediated pathway, which may provide insight into the mechanism of venous neointimal hyperplasia.
Collapse
Affiliation(s)
- Sanjay Misra
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| | | | | | | | | | | |
Collapse
|
65
|
Xu XF, Gu WZ, Wu XL, Li RY, Du LZ. Fetal pulmonary vascular remodeling in a rat model induced by hypoxia and indomethacin. J Matern Fetal Neonatal Med 2010; 24:172-82. [PMID: 20459333 DOI: 10.3109/14767058.2010.482608] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE This study sought to determine the effect of combined treatment of hypoxia plus indomethacin on pulmonary vascular remodeling in fetal rats. METHODS Hypoxia and indomethacin were used to treat pregnant rats during 19-21 days of gestation. The adventitia, media, and intima of pulmonary arteries from fetal rats were assessed. Western blots were used for determining the abundance of smooth muscle specific alpha-actin protein (α-SMA), elastin, and endothelial nitric oxide synthase (eNOS) in lung tissues. Plasma brain-type natriuretic peptide (BNP) levels, reflecting the increased right ventricular load or pulmonary arterial pressure, were detected. RESULTS The ratio of left ventricular free wall plus septum to right ventricular weight significantly increased in hypoxia plus indomethacin-treated group. The medial thickness percentage of pulmonary arteries of < 100 μm and ≥100 μm in diameter from hypoxia plus indomethacin-treated group was higher than that from control or single treatment group. Vascular elastin area percentage and immunostaining density of eNOS from the combined-treated group were higher than other groups. The relative abundance of α-SMA, elastin, and eNOS and plasma BNP levels in hypoxia plus indomethacin-treated group also significantly increased compared with other groups. CONCLUSIONS Hypoxia and indomethacin had synergistic effect on fetal pulmonary vascular remodeling. This rat model induced by combined treatments can mimic human persistent pulmonary hypertension of the newborn.
Collapse
Affiliation(s)
- Xue-Feng Xu
- The Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310003, People's Republic of China
| | | | | | | | | |
Collapse
|
66
|
Firth AL, Yao W, Ogawa A, Madani MM, Lin GY, Yuan JXJ. Multipotent mesenchymal progenitor cells are present in endarterectomized tissues from patients with chronic thromboembolic pulmonary hypertension. Am J Physiol Cell Physiol 2010; 298:C1217-25. [PMID: 20181931 DOI: 10.1152/ajpcell.00416.2009] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Factors contributing to the development of a fibrotic vascular scar and pulmonary vascular remodeling leading to chronic thromboembolic pulmonary hypertension (CTEPH) are still unknown. This study investigates the potential contribution of multipotent progenitor cells and myofibroblasts to the development and progression of CTEPH. Histological examination of endarterectomized tissues from patients with CTEPH identified significant neointimal formation. Morphological heterogeneity was observed in cells isolated from these tissues, including a network-like growth pattern and the formation of colony-forming unit-fibroblast-like colonies (CFU-F). Cells typically coexpressed intermediate filaments vimentin and smooth muscle alpha-actin. Cells were characterized by immunofluorescence and quantitated by fluorescent-activated cell sorting (FACS) for the presence of cell surface markers typical of mesenchymal progenitor cells; cells were >99% CD44(+) CD73(+), CD90(+), CD166(+); >80% CD29(+); 45-99% CD105(+); CD34(-) and CD45(-). Cells were capable of adipogenic and osteogenic differentiation, determined by Oil Red O and Alizarin Red staining, respectively. Additionally, a population of Stro-1(+) cells, a marker of bone marrow-derived stromal cells (4.2%), was sorted by FACS and also capable of adipogenic and osteogenic differentiation. In conclusion, this study is the first to identify a myofibroblast cell phenotype to be predominant within endarterectomized tissues, contributing extensively to the vascular lesion/clot. This cell may arise from transdifferentiation of adventitial fibroblasts or differentiation of mesenchymal progenitor cells. The unique microenvironment created by the stabilized clot is likely a factor in stimulating such cellular changes. These findings will be critical in establishing future studies in the development of novel and much needed therapeutic approaches for pulmonary hypertension.
Collapse
Affiliation(s)
- Amy L Firth
- Dept. of Medicine, Univ. of California, San Diego, La Jolla, 92093-0725, USA
| | | | | | | | | | | |
Collapse
|
67
|
Abstract
BACKGROUND Leptin has physiological roles in multiple systems, and has possible effects on several carcinogenesis steps. The aim of this study was to investigate the leptin levels in thyroid papillary carcinoma (TPC) patients. METHODS Forty-three female TPC patients and 30 healthy female control subjects were recruited for the study. TPC was diagnosed by fine needle aspiration biopsy. TPC patients had a bilateral total thyroidectomy operation and their leptin levels were measured before and 20 days after the operation. RESULTS Serum leptin levels of TPC patients were higher than in control group subjects (21.15 +/- 14.12 ng/mL vs. 9.89 +/- 0.21 ng/mL, p < 0.05). The leptin levels decreased after total thyroidectomy (13.92 +/- 10.55 ng/mL) compared to prethyroidectomy levels (22.94 +/- 14.67 ng/mL) in 34 patients who came to the follow-up visit (p < 0.05). However, the decreased post-thyroidectomy levels of leptin were still statistically significantly higher than the control group levels. Multivariate regression analysis showed that the leptin levels in TPC patients were not related to age, menopausal status or pathologic occult status but were directly related to the cancer group. CONCLUSION Leptin levels were elevated in thyroid cancer, decreased after total thyroidectomy, and might be associated with thyroid papillary carcinogenesis.
Collapse
Affiliation(s)
- Melih Akinci
- Department of General Surgery, Ankara Diskapi Education and Research Hospital, Ankara, Turkey.
| | | | | | | | | | | |
Collapse
|
68
|
Loss of myeloid cell-derived vascular endothelial growth factor accelerates fibrosis. Proc Natl Acad Sci U S A 2010; 107:4329-34. [PMID: 20142499 DOI: 10.1073/pnas.0912766107] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Tissue injury initiates a complex series of events that act to restore structure and physiological homeostasis. Infiltration of inflammatory cells and vascular remodeling are both keystones of this process. However, the role of inflammation and angiogenesis in general and, more specifically, the significance of inflammatory cell-derived VEGF in this context are unclear. To determine the role of inflammatory cell-derived VEGF in a clinically relevant and chronically inflamed injury, pulmonary fibrosis, we deleted the VEGF-A gene in myeloid cells. In a model of pulmonary fibrosis in mice, deletion of VEGF in myeloid cells resulted in significantly reduced formation of blood vessels; however, it causes aggravated fibrotic tissue damage. This was accompanied by a pronounced decrease in epithelial cell survival and a striking increase in myofibroblast invasion. The drastic increase in fibrosis following loss of myeloid VEGF in the damaged lungs was also marked by increased levels of hypoxia-inducible factor (HIF) expression and Wnt/beta-catenin signaling. This demonstrates that the process of angiogenesis, driven by myeloid cell-derived VEGF, is essential for the prevention of fibrotic damage.
Collapse
|
69
|
Firth AL, Yao W, Remillard CV, Ogawa A, Yuan JXJ. Upregulation of Oct-4 isoforms in pulmonary artery smooth muscle cells from patients with pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 2010; 298:L548-57. [PMID: 20139178 DOI: 10.1152/ajplung.00314.2009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Oct-4 is a transcription factor considered to be one of the defining pluripotency markers in embryonic stem cells. Its expression has also been demonstrated in adult stem cells, tumorigenic cells, and, most recently and controversially, in somatic cells. Oct-4 pseudogenes also contribute to carcinogenesis. Oct-4 may be involved in the excessive proliferation of pulmonary arterial smooth muscle cells (PASMC) in patients with idiopathic pulmonary arterial hypertension (IPAH), contributing to the pathogenesis of IPAH. In this study, we show that Oct-4 isoforms are upregulated in IPAH-PASMC. Human embryonic stem cells (H9 line) and human PASMC from normotensive subjects were used throughout the investigation as positive and negative controls. In addition to significant upregulation of Oct-4 in a population of IPAH-PASMC, HIF-2alpha, a hypoxia-inducible transcription factor that has been shown to bind to the Oct-4 promoter and induces its expression and transcriptional activity, was also increased. Interestingly, a substantial upregulation of Oct-4 isoforms and HIF-2alpha was also observed in normal PASMC exposed to chronic hypoxia. In conclusion, the data suggest that both Oct-4 isoforms are upregulated and potentially have a significant role in the development of vascular abnormalities associated with the pathogenesis of IPAH and in pulmonary hypertension triggered by chronic hypoxia.
Collapse
Affiliation(s)
- Amy L Firth
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California 92093-0725, USA
| | | | | | | | | |
Collapse
|
70
|
Wang S, Wang Y, Jiang J, Wang R, Li L, Qiu Z, Wu H, Zhu D. 15-HETE protects rat pulmonary arterial smooth muscle cells from apoptosis via the PI3K/Akt pathway. Prostaglandins Other Lipid Mediat 2010; 91:51-60. [PMID: 20060487 DOI: 10.1016/j.prostaglandins.2009.12.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 12/15/2009] [Accepted: 12/22/2009] [Indexed: 12/01/2022]
Abstract
15-Hydroxyeicosatetraenoic acid (15-HETE), a metabolic product of arachidonic acid (AA), plays an important role in pulmonary vascular smooth muscle remodeling. Although its effects on the apoptotic responses are known, the underlying mechanisms are still poorly understood. Since Akt is a critical regulator of cell survival and vascular remodeling, there may be a crosstalk between 15-HETE anti-apoptotic process and PI3K/Akt survival effect in rat pulmonary arterial smooth muscle cells (PASMCs). To test this hypothesis, we studied the effect of 15-HETE on cell survival and apoptosis using Western blot, cell viability measurement, nuclear morphology determination, TUNEL assay and mitochondrial potential analysis. We found that activation of the PI3K/Akt signaling system was necessary for the 15-HETE to suppress PASMC apoptosis and improve cell survival. Our results indicated that 15-HETE inhibited the apoptotic responses of PASMCs, including morphological alterations, mitochondrial depolarization and the expression apoptosis-specific proteins. These effects were likely to be mediated through the activation of PI3K/Akt. Two downstream signal molecules of PI3K/Akt were identified. Both FasL and Bad were down-regulated by 15-HETE and 15-HETE phosphorylated Bad. These changes depended on the PI3K/Akt signaling pathway in PASMCs. Thus a signal transduction pathway was demonstrated which is necessary for the effects of 15-HETE in protection PASMCs from apoptosis.
Collapse
Affiliation(s)
- Shuang Wang
- Institute of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, Harbin 157 Baojian Road, Nangang District, Harbin, Heilongjiang 150081, PR China
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Abstract
Sleep-induced apnea and disordered breathing refers to intermittent, cyclical cessations or reductions of airflow, with or without obstructions of the upper airway (OSA). In the presence of an anatomically compromised, collapsible airway, the sleep-induced loss of compensatory tonic input to the upper airway dilator muscle motor neurons leads to collapse of the pharyngeal airway. In turn, the ability of the sleeping subject to compensate for this airway obstruction will determine the degree of cycling of these events. Several of the classic neurotransmitters and a growing list of neuromodulators have now been identified that contribute to neurochemical regulation of pharyngeal motor neuron activity and airway patency. Limited progress has been made in developing pharmacotherapies with acceptable specificity for the treatment of sleep-induced airway obstruction. We review three types of major long-term sequelae to severe OSA that have been assessed in humans through use of continuous positive airway pressure (CPAP) treatment and in animal models via long-term intermittent hypoxemia (IH): 1) cardiovascular. The evidence is strongest to support daytime systemic hypertension as a consequence of severe OSA, with less conclusive effects on pulmonary hypertension, stroke, coronary artery disease, and cardiac arrhythmias. The underlying mechanisms mediating hypertension include enhanced chemoreceptor sensitivity causing excessive daytime sympathetic vasoconstrictor activity, combined with overproduction of superoxide ion and inflammatory effects on resistance vessels. 2) Insulin sensitivity and homeostasis of glucose regulation are negatively impacted by both intermittent hypoxemia and sleep disruption, but whether these influences of OSA are sufficient, independent of obesity, to contribute significantly to the "metabolic syndrome" remains unsettled. 3) Neurocognitive effects include daytime sleepiness and impaired memory and concentration. These effects reflect hypoxic-induced "neural injury." We discuss future research into understanding the pathophysiology of sleep apnea as a basis for uncovering newer forms of treatment of both the ventilatory disorder and its multiple sequelae.
Collapse
Affiliation(s)
- Jerome A Dempsey
- The John Rankin Laboratory of Pulmonary Medicine, Departments of Population Health Sciences and of Orthopedics and Rehabilitation, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706, USA.
| | | | | | | |
Collapse
|
72
|
Philippi NR, Bird CE, Marcus NJ, Olson EB, Chesler NC, Morgan BJ. Time course of intermittent hypoxia-induced impairments in resistance artery structure and function. Respir Physiol Neurobiol 2009; 170:157-63. [PMID: 19969108 DOI: 10.1016/j.resp.2009.12.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2009] [Revised: 11/13/2009] [Accepted: 12/02/2009] [Indexed: 11/30/2022]
Abstract
We previously demonstrated that chronic exposure to intermittent hypoxia (CIH) impairs endothelium-dependent vasodilation in rats. To determine the time course of this response, rats were exposed to CIH for 3, 14, 28, or 56 days. Then, we measured acetylcholine- and nitroprusside-induced vasodilation in isolated gracilis arteries. Also, we measured endothelial and inducible nitric oxide synthase, nitrotyrosine, and collagen in the arterial wall and urinary isoprostanes. Endothelium-dependent vasodilation was impaired after 2 weeks of CIH. Three days of CIH was not sufficient to produce this impairment and longer exposures (i.e. 4 and 8 weeks) did not exacerbate it. Impaired vasodilation was accompanied by increased collagen deposition. CIH elevated urinary isoprostane excretion, whereas there was no consistent effect on either isoform of nitric oxide synthase or nitrotyrosine. Exposure to CIH produces functional and structural deficits in skeletal muscle resistance arteries. These impairments develop within 2 weeks after initiation of exposure and they are accompanied by systemic evidence of oxidant stress.
Collapse
Affiliation(s)
- Nathan R Philippi
- John Rankin Laboratory of Pulmonary Medicine, Department of Orthopedics and Rehabilitation, University of Wisconsin, Madison, WI, USA
| | | | | | | | | | | |
Collapse
|
73
|
Xie N, Liu L. Elevated expression of urotensin II and its receptor in great artery of type 2 diabetes and its significance. Biomed Pharmacother 2009; 63:734-41. [PMID: 19906507 DOI: 10.1016/j.biopha.2009.04.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 04/15/2009] [Indexed: 12/09/2022] Open
Abstract
Urotensin II (U-II) and its receptor G-protein-coupled receptor GPR14 (UT) exert a broad spectrum of biological functions such as vascular remodeling and vasoactive cardiac inotropic. Now some preclinical and clinical studies showing that they may play an important role in insulin resistance. Then to research the role of U-II and UT in the vascular complication of type 2 diabetes especially in the big artery, we chose the GK rat who is the diabete-2 naturally. Through the HE stain and red oil O stain to chose the artery specimens that have no Atheromatous plaque, no Fatty streak and no Fibrous plaque. The immunohistochemistry and reverse transcription polymerase chain reaction (RT-PCR) to determine the degree of the expression and location of U-II and UT in the aorta. We found that U-II was significant up-regulated in the endothelial cell and adventitia of GK rat compared with healthy controls on both protein and mRNA levels. The UT was only highly enhanced in the endothelial. In the adventitia there is no difference on the quantity between two of them, These results suggest that the U-II and UT play an important role in the diabetic angiopathy especially in the large artery and maybe imply a new way to prevent the injury of artery in the diabete-2 patient.
Collapse
Affiliation(s)
- Ning Xie
- School of Clinical Medicine, Shandong University, Jinan 250012, China
| | | |
Collapse
|
74
|
Yildiz P. Molecular mechanisms of pulmonary hypertension. Clin Chim Acta 2009; 403:9-16. [PMID: 19361468 DOI: 10.1016/j.cca.2009.01.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 01/18/2009] [Accepted: 01/23/2009] [Indexed: 12/11/2022]
Abstract
The pathogenesis of pulmonary arterial hypertension (PAH) is complex, involving multiple modulating genes and environmental factors. Multifactorial impairment of the physiologic balance can lead to vasoconstriction, vascular smooth muscle cell and endothelial cell proliferation/fibrosis, inflammation, remodeling and in-situ thrombosis. These are the likely mechanisms that lead to narrowing of the vessel followed by progressive increase in pulmonary vascular resistance and the clinical manifestations of pulmonary hypertension. Subsequently, major goal of the therapy is to avoid acute pulmonary vasoconstriction, halt the progression of vascular remodeling, and reverse the early vascular remodeling if possible. Recently published data addressing certain molecular mechanisms for pathogenesis of PAH have led to the successful therapeutic interventions. This review will focus on the common and critical molecular pathways including genetic basis of the development of PAH that on the whole may be new targets for therapeutic interventions.
Collapse
Affiliation(s)
- Pinar Yildiz
- Department of Pulmonology, Yedikule Chest Disease and Surgery Training and Research Hospital, Zeytinburnu Istanbul, Turkey.
| |
Collapse
|
75
|
Abstract
Obesity results from an abnormal accumulation of fat in the white adipose tissue. Recent research utilizing genetic models of obesity in rodents has implicated a major role of leptin as a controller of obesity. Leptin is a 167-amino acid peptide hormone encoded by the obesity gene (ob), which is secreted by adipocytes and plays an important role in regulating food intake, energy expenditure and adiposity. Leptin receptors (OB-R) are expressed in the central nervous system mainly in afferent satiety centres of hypothalamus and in peripheral organs such as adipose tissues, skeletal muscles, pancreatic beta-cells and liver, thus indicating the autocrine and paracrine role of leptin in energy regulation. In human beings, a highly organized circadian pattern of leptin secretion is observed with peak levels in the midnight probably resulting from cumulative hyperinsulinemia of entire day. Leptin has a dual role in weight maintenance. Leptin reflects total body adipose tissue mass whereas in conditions of negative and positive energy balance, the dynamic changes in plasma leptin concentration function as a sensor of energy balance and influence the efferent energy regulation pathways. Many effects of leptin on metabolism are mediated by interaction with Insulin and also by synergistic action with cholecystokinin. Besides physiological roles, leptin may influence pathological conditions like obesity-associated atherosclerosis, oxidative stress and cancers. The purpose of the present review is to summarize the important aspects of the biology, actions, and regulation of leptin and to serve as an update of new information.
Collapse
|
76
|
Converging Evidence in Support of the Serotonin Hypothesis of Dexfenfluramine-Induced Pulmonary Hypertension With Novel Transgenic Mice. Circulation 2008; 117:2928-37. [DOI: 10.1161/circulationaha.108.767558] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
77
|
Pan JQ, Tan X, Li JC, Sun WD, Huang GQ, Wang XL. Reduced PKCα expression in pulmonary arterioles of broiler chickens is associated with early feed restriction. Res Vet Sci 2008; 84:434-9. [PMID: 17707446 DOI: 10.1016/j.rvsc.2007.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2006] [Revised: 06/12/2007] [Accepted: 06/21/2007] [Indexed: 01/14/2023]
Abstract
OBJECTIVE The present study was conducted to investigate the effect of early feed restriction on protein kinase Calpha (PKCalpha) expression in pulmonary arterioles, which has been revealed to promote pulmonary vascular remodeling in pulmonary hypertensive broilers. METHODS A total of 270day-old mixed sex commercial broilers were randomly distributed to a normal temperature control group (NT), a low temperature control group (LT) and a low temperature plus feed restriction group (LR). The PHS incidence, the right/total ventricular weight ratio (RV/TV), the vessel wall area/vessel total area ratio (WA/TA), the mean media thickness in pulmonary arterioles (mMTPA) and the expression of PKCalpha in the pulmonary arterioles were measured weekly. RESULTS Low temperature treatment significantly increased the PHS mortality. The RV/TV, WA/TA and mMTPA values of group LT were significantly elevated compared with those of group NT on d 35 and 42. The LT chickens had increased PKCalpha expression compared with their NT counterparts on d 28 and afterwards. Feed restriction reduced the PHS mortality, RV/TV, WA/TA and mMTPA in cold-exposed broilers. The LR chickens had much lower PKCalpha expression in pulmonary arterioles than the LT chickens. CONCLUSION Early time feed restriction inhibited pulmonary vascular remodeling in broilers, which might be partly attributed to reduced PKCalpha expression in pulmonary arterioles.
Collapse
Affiliation(s)
- Jia-qiang Pan
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | |
Collapse
|
78
|
Terrier B, Tamby MC, Camoin L, Guilpain P, Broussard C, Bussone G, Yaïci A, Hotellier F, Simonneau G, Guillevin L, Humbert M, Mouthon L. Identification of Target Antigens of Antifibroblast Antibodies in Pulmonary Arterial Hypertension. Am J Respir Crit Care Med 2008; 177:1128-34. [DOI: 10.1164/rccm.200707-1015oc] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
79
|
Hoshino A, Chiba H, Nagai K, Ishii G, Ochiai A. Human vascular adventitial fibroblasts contain mesenchymal stem/progenitor cells. Biochem Biophys Res Commun 2008; 368:305-10. [PMID: 18230345 DOI: 10.1016/j.bbrc.2008.01.090] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Accepted: 01/15/2008] [Indexed: 10/22/2022]
Abstract
Vascular adventitia is thought to change functions and contribute to diseases such as atherosclerosis, vascular restenosis, and fibrosis. To determine whether the adventitia contains mesenchymal stem/progenitor cells (MPCs), we cultured human vascular adventitial fibroblasts (hVAFs) from pulmonary arteries and analyzed their characteristics. The doubling time of the hVAFs was 1.5days, and the average number of passage was 11, which was independent of age and sex. The hVAFs were positive for vimentin, collagen type-1, CD29, CD44, and CD105, but negative for hematopoietic and endothelial cell markers. When hVAFs were cultured in appropriate media, they showed osteogenic and adipogenic differentiation by von Kossa, alkaline phosphatase, and oil red O staining. Myogenic differentiation was identified by increased expression of smooth muscle actin and calponin. These findings demonstrate that human vascular adventitia contains MPCs, and that hVAFs may be an ideal source for further experiments on stem cell biology and tissue engineering.
Collapse
Affiliation(s)
- Ayuko Hoshino
- Laboratory of Cancer Biology, Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | | | | | | | | |
Collapse
|
80
|
Abstract
Pulmonary arterial hypertension (PAH) is a complex disease that causes significant morbidity and mortality and is clinically characterized by an increase in pulmonary vascular resistance. The histopathology is marked by vascular proliferation/fibrosis, remodeling, and vessel obstruction. Development of PAH involves the complex interaction of multiple vascular effectors at all anatomic levels of the arterial wall. Subsequent vasoconstriction, thrombosis, and inflammation ensue, leading to vessel wall remodeling and cellular hyperproliferation as the hallmarks of severe disease. These processes are influenced by genetic predisposition as well as diverse endogenous and exogenous stimuli. Recent studies have provided a glimpse at certain molecular pathways that contribute to pathogenesis; these have led to the identification of attractive targets for therapeutic intervention. We will review our current understanding of the mechanistic underpinnings of the genetic and exogenous/acquired triggers of PAH. The resulting imbalance of vascular effectors provoking pathogenic vascular changes will also be discussed, with an emphasis on common and overarching regulatory pathways that may relate to the primary triggers of disease. The current conceptual framework should allow for future studies to refine our understanding of the molecular pathogenesis of PAH and improve the therapeutic regimen for this disease.
Collapse
Affiliation(s)
- Stephen Y. Chan
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Joseph Loscalzo
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
81
|
Dematteis M, Julien C, Guillermet C, Sturm N, Lantuejoul S, Mallaret M, Lévy P, Gozal E. Intermittent hypoxia induces early functional cardiovascular remodeling in mice. Am J Respir Crit Care Med 2007; 177:227-35. [PMID: 17962641 DOI: 10.1164/rccm.200702-238oc] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
RATIONALE Intermittent hypoxia, a hallmark of sleep apnea, is a major factor for hypertension and impaired vasoreactivity. OBJECTIVES To examine the temporal occurrence of these two outcomes in order to provide insight into mechanisms and early cardiovascular disease identification. METHODS Functional and structural cardiovascular alterations were assessed in C57BL6 mice exposed to intermittent hypoxia (21-4% Fi(O(2)), 30-s cycle, 8 h/d) or air for up to 35 days. Blood pressure, heart rate, and urinary catecholamines were measured at Days 1 and 14. Hindquarter vasoreactivity was assessed at Days 14 and 35, including vasoconstriction to norepinephrine, endothelium-, and non-endothelium-dependent vasodilation. Aorta, heart, and hindquarter skeletal muscles were immunostained for vascular markers PECAM-1 and collagen IV. MEASUREMENTS AND MAIN RESULTS Hemodynamic alterations occurred from Day 1, characterized by blood pressure surges with bradytachyarrhythmia driven by cyclic hypoxia. At Day 14, blood pressure at normoxia was elevated, with predominant diastolic increase. With hypoxia, vasopressive catecholamines were elevated, blood pressure surged with a lower hypoxic threshold, whereas heart rate fluctuations decreased. Histologic alterations started from Day 14, with decreased endothelial PECAM-1 expression in descending aorta and left heart. Impaired peripheral vasoreactivity occurred at Day 35, including hypervasoconstriction to norepinephrine secondary to sympathetic hyperactivity, without changes in pre- and postsynaptic alpha-adrenoceptors or in endothelium- and non-endothelium-dependent vasodilation. CONCLUSIONS Intermittent hypoxia induces sequential cardiovascular events suggesting increased chemoreflex and depressed baroreflex, resulting in sympathoadrenal hyperactivity, early hemodynamic alterations with proximal histologic remodeling, and delayed changes in peripheral vasoreactivity. Such early alterations before overt cardiovascular disease strengthen the need for identifying at-risk individuals for systematic treatment.
Collapse
Affiliation(s)
- Maurice Dematteis
- Laboratoire HP2, Institut Jean Roget, Faculté de Médecine de Grenoble, 38042 Grenoble Cedex 09, France.
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Paffett ML, Walker BR. Vascular adaptations to hypoxia: molecular and cellular mechanisms regulating vascular tone. Essays Biochem 2007; 43:105-19. [PMID: 17705796 DOI: 10.1042/bse0430105] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Several molecular and cellular adaptive mechanisms to hypoxia exist within the vasculature. Many of these processes involve oxygen sensing which is transduced into mediators of vasoconstriction in the pulmonary circulation and vasodilation in the systemic circulation. A variety of oxygen-responsive pathways, such as HIF (hypoxia-inducible factor)-1 and HOs (haem oxygenases), contribute to the overall adaptive process during hypoxia and are currently an area of intense research. Generation of ROS (reactive oxygen species) may also differentially regulate vascular tone in these circulations. Potential candidates underlying the divergent responses between the systemic and pulmonary circulations may include Nox (NADPH oxidase)-derived ROS and mitochondrial-derived ROS. In addition to alterations in ROS production governing vascular tone in the hypoxic setting, other vascular adaptations are likely to be involved. HPV (hypoxic pulmonary vasoconstriction) and CH (chronic hypoxia)-induced alterations in cellular proliferation, ionic conductances and changes in the contractile apparatus sensitivity to calcium, all occur as adaptive processes within the vasculature.
Collapse
Affiliation(s)
- Michael L Paffett
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, MSC08 4750 Albuquerque, NM 87131, USA
| | | |
Collapse
|
83
|
Grobe JL, Der Sarkissian S, Stewart JM, Meszaros JG, Raizada MK, Katovich MJ. ACE2 overexpression inhibits hypoxia-induced collagen production by cardiac fibroblasts. Clin Sci (Lond) 2007; 113:357-64. [PMID: 17600530 DOI: 10.1042/cs20070160] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cardiac remodelling is a key risk factor for the development of heart failure in the chronic phase following myocardial infarction. Our previous studies have shown an anti-remodelling role of ACE2 (angiotensin-converting enzyme 2) in vivo during hypertension and that these protective effects are mediated through increased circulating levels of Ang-(1–7) [angiotensin-(1–7)]. In the present study, we have demonstrated that cardiac myocytes have modest ACE2 activity, whereas cardiac fibroblasts do not exhibit any endogenous activity. As fibroblasts are the major cell type found in an infarct zone following a myocardial infarction, we examined the effects of ACE2 gene delivery to cultured cardiac fibroblasts after acute hypoxic exposure. Cardiac fibroblasts from 5-day-old Sprague–Dawley rat hearts were grown to confluence and transduced with a lentiviral vector containing murine ACE2 cDNA under transcriptional control by the EF1α (elongation factor 1α) promoter (lenti-ACE2). Transduction of fibroblasts with lenti-ACE2 resulted in a viral dose-dependent increase in ACE2 activity. This was associated with a significant attenuation of both basal and hypoxia/re-oxygenation-induced collagen production by the fibroblasts. Cytokine production, specifically TGFβ (transforming growth factor β), by these cells was also significantly attenuated by ACE2 expression. Collectively, these results indicate that: (i) endogenous ACE2 activity is observed in cardiac myocytes, but not in cardiac fibroblasts; (ii) ACE2 overexpression in the cardiac fibroblast attenuates collagen production; and (iii) this prevention is probably mediated by decreased expression of cytokines. We conclude that ACE2 expression, limited to cardiac fibroblasts, may represent a novel paradigm for in vivo therapy following acute ischaemia.
Collapse
Affiliation(s)
- Justin L Grobe
- Department of Pharmacodynamics, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | |
Collapse
|
84
|
Upadhyaya SK, Kumar A. Pulmonary hypertension in connective tissue disease. INDIAN JOURNAL OF RHEUMATOLOGY 2007. [DOI: 10.1016/s0973-3698(10)60095-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
85
|
Jin X, Ge X, Zhu DL, Yan C, Chu YF, Chen WD, Liu J, Gao PJ. Expression and function of vascular endothelial growth factor receptors (Flt-1 and Flk-1) in vascular adventitial fibroblasts. J Mol Cell Cardiol 2007; 43:292-300. [PMID: 17651752 DOI: 10.1016/j.yjmcc.2007.06.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 05/15/2007] [Accepted: 06/05/2007] [Indexed: 11/30/2022]
Abstract
Vascular endothelial growth factor receptors (VEGFRs) are previously considered to exist exclusively in endothelial cells. However, little is known if the receptors are expressed in other non-endothelial cells. In this study, we measured activation of two VEGFRs, Flk-1 and Flt-1, and their biological functions in cultured adventitial fibroblasts and injured rat carotid injury arteries induced by balloon angioplasty. Our results indicated that Flt-1, but not Flk-1, existed in adventitial fibroblasts. Angiotensin II increased Flt-1 protein expression in a time- and concentration-dependent manner. Adventitial fibroblast migration stimulated by vascular endothelial growth factor (VEGF) and placental growth factor (PIGF) required Flt-1 expression. The Flt-1-induced adventitial fibroblast migration was blocked by anti-Flt-1 neutralizing antibody and soluble VEGFR1 protein (sFlt-1). However, Flt-1 activation did not enhance cell proliferation. In addition, Flt-1 expression was significantly increased in the neointima and adventitia in injured rat carotid arteries. We concluded that functional expression of Flt-1 in adventitial fibroblasts might be an important mediator in the pathogenesis of vascular remodeling after arterial injury.
Collapse
Affiliation(s)
- Xin Jin
- Laboratory of Vascular Biology, Institute of Health Science Center, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Boraldi F, Annovi G, Carraro F, Naldini A, Tiozzo R, Sommer P, Quaglino D. Hypoxia influences the cellular cross-talk of human dermal fibroblasts. A proteomic approach. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:1402-13. [PMID: 17904921 DOI: 10.1016/j.bbapap.2007.08.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 08/13/2007] [Accepted: 08/14/2007] [Indexed: 11/18/2022]
Abstract
The ability of cells to respond to changes in oxygen availability is critical for many physiological and pathological processes (i.e. development, aging, wound healing, hypertension, cancer). Changes in the protein profile of normal human dermal fibroblasts were investigated in vitro after 96 h in 5% CO(2) and 21% O(2) (pO(2) = 140 mm Hg) or 2% O(2) (pO(2) = 14 mm Hg), these parameters representing a mild chronic hypoxic exposure which fibroblasts may undergo in vivo. The proliferation rate and the protein content were not significantly modified by hypoxia, whereas proteome analysis demonstrated changes in the expression of 56 proteins. Protein identification was performed by mass spectrometry. Data demonstrate that human fibroblasts respond to mild hypoxia increasing the expression of hypoxia inducible factor (HIF1a) and of the 150-kDa oxygen-regulated protein. Other differentially expressed proteins appeared to be related to stress response, transcriptional control, metabolism, cytoskeleton, matrix remodelling and angiogenesis. Furthermore, some of them, like galectin 1, 40S ribosomal protein SA, N-myc-downstream regulated gene-1 protein, that have been described in the literature as possible cancer markers, significantly changed their expression also in normal hypoxic fibroblasts. Interestingly, a bovine fetuin was also identified that appeared significantly less internalised by hypoxic fibroblasts. In conclusion, results indicate that human dermal fibroblasts respond to an in vitro mild chronic hypoxic exposure by modifying a number of multifunctional proteins. Furthermore, data highlight the importance of stromal cells in modulating the intercellular cross-talk occurring in physiological and in pathologic conditions.
Collapse
Affiliation(s)
- Federica Boraldi
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | | | | | | | | |
Collapse
|
87
|
Carlin CM, Peacock AJ, Welsh DJ. Fluvastatin inhibits hypoxic proliferation and p38 MAPK activity in pulmonary artery fibroblasts. Am J Respir Cell Mol Biol 2007; 37:447-56. [PMID: 17556673 DOI: 10.1165/rcmb.2007-0012oc] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The earliest structural change in hypoxia-induced pulmonary hypertension is increased proliferation of adventitial fibroblasts. This fibroproliferative response occurs in acute and chronic hypoxic models, is dependent on p38 mitogen-activated protein (MAP) kinase activation, is selective for the pulmonary circulation, and would seem an important therapeutic target. Simvastatin attenuates pulmonary vascular remodeling in animal models, but additional information regarding mechanisms of action, differential antiproliferative effects and dose responses of available statins is required for appropriate clinical trial design. Our objectives were to determine the effects of statins on acute hypoxia-induced proliferation and p38 MAP kinase activation in pulmonary and systemic artery fibroblasts, to assess the effects of cholesterol intermediates, prenyltransferase and related inhibitors, and to determine the statin's mechanism of action. Atorvastatin, fluvastatin, and simvastatin inhibited adventitial fibroblast proliferation. At low doses (1 microM), this effect was selective for hypoxic (versus serum-induced) proliferation and was also selective for pulmonary (versus systemic) fibroblasts. Complete inhibition of hypoxia-induced p38 MAP kinase activity was achieved at this 1-microM dose. The lipophilic statins exhibited similar potency. The statin effect was reversed by geranylgeranyl pyrophosphate and mimicked by geranylgeranyl transferase and Rac1 inhibitors. Hypoxia-induced p38 MAP kinase activation and proliferation in pulmonary adventitial fibroblasts is dependent on a geranylgeranylated signaling protein, probably Rac1. One micromolar of fluvastatin exhibits a circulation- and stimulus-selective antiproliferative effect on pulmonary artery fibroblasts. The pharmacokinetics of fluvastatin would suggest that its antiproliferative effects may be useful in pulmonary hypertension associated with hypoxia.
Collapse
|
88
|
Platoshyn O, Yu Y, Ko EA, Remillard CV, Yuan JXJ. Heterogeneity of hypoxia-mediated decrease in I(K(V)) and increase in [Ca2+](cyt) in pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2007; 293:L402-16. [PMID: 17526598 DOI: 10.1152/ajplung.00391.2006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Hypoxic pulmonary vasoconstriction is caused by a rise in cytosolic Ca(2+) ([Ca(2+)](cyt)) in pulmonary artery smooth muscle cells (PASMC) via multiple mechanisms. PASMC consist of heterogeneous phenotypes defined by contractility, proliferation, and apoptosis as well as by differences in expression and function of various genes. In rat PASMC, hypoxia-mediated decrease in voltage-gated K(+) (Kv) currents (I(K(V))) and increase in [Ca(2+)](cyt) were not uniformly distributed in all PASMC tested. Acute hypoxia decreased I(K(V)) and increased [Ca(2+)](cyt) in approximately 46% and approximately 53% of PASMC, respectively. Using combined techniques of single-cell RT-PCR and patch clamp, we show here that mRNA expression level of Kv1.5 in hypoxia-sensitive PASMC (in which hypoxia reduced I(K(V))) was much greater than in hypoxia-insensitive cells (in which hypoxia negligibly affected I(K(V))). These results demonstrate that 1) different PASMC express different Kv channel alpha- and beta-subunits, and 2) the sensitivity of a PASMC to acute hypoxia partially depends on the expression level of Kv1.5 channels; hypoxia reduces whole-cell I(K(V)) only in PASMC that express high level of Kv1.5. In addition, the acute hypoxia-mediated changes in [Ca(2+)](cyt) also vary in different PASMC. Hypoxia increases [Ca(2+)](cyt) only in 34% of cells tested, and the different sensitivity of [Ca(2+)](cyt) to hypoxia was not related to the resting [Ca(2+)](cyt). An intrinsic mechanism within each individual cell may be involved in the heterogeneity of hypoxia-mediated effect on [Ca(2+)](cyt) in PASMC. These data suggest that the heterogeneity of PASMC may partially be related to different expression levels and functional sensitivity of Kv channels to hypoxia and to differences in intrinsic mechanisms involved in regulating [Ca(2+)](cyt).
Collapse
Affiliation(s)
- Oleksandr Platoshyn
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0725, USA
| | | | | | | | | |
Collapse
|
89
|
Sousa AM, Liu T, Guevara O, Stevens J, Fanburg BL, Gaestel M, Toksoz D, Kayyali US. Smooth muscle alpha-actin expression and myofibroblast differentiation by TGFbeta are dependent upon MK2. J Cell Biochem 2007; 100:1581-92. [PMID: 17163490 PMCID: PMC2586991 DOI: 10.1002/jcb.21154] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fibroblasts play a major role in processes such as wound repair, scarring, and fibrosis. Differentiation into myofibroblasts, characterized by upregulation of smooth muscle alpha-actin (smalpha) in response to profibrotic agents such as TGFbeta is believed to be an important step in fibrosis. Therefore, elucidating mechanisms of myofibroblast differentiation might reveal novel targets in treating diseases such as idiopathic pulmonary fibrosis (IPF). MK2 is a kinase substrate of p38 MAP kinase that mediates some effects of p38 activation on the actin cytoskeleton. Using mouse embryonic fibroblasts (MEF) from MK2 knockout (MK2(-/-)) mice, we demonstrate that disrupting expression of MK2 expression reduces filamentous actin and stress fibers. It also causes MK2(-/-) MEF to express less smalpha than their corresponding wild-type (WT) MEF at baseline and in response to TGFbeta. Furthermore, TGFbeta causes downregulation of smalpha in MK2(-/-) MEF, instead of upregulation observed in WT MEF. Expression of other fibroblast markers, such as collagen, is not altered in MK2(-/-) MEF. Our results further suggest that downregulation of smalpha in MK2(-/-) MEF is not due to lack of activation of serum responsive promoter elements, but probably due to reduced smalpha message stability in these cells. These results indicate that MK2 plays a key role in regulation of smalpha expression, and that targeting MK2 might present a therapeutic approach in managing conditions such as pulmonary fibrosis.
Collapse
Affiliation(s)
- Anne Marie Sousa
- Pulmonary and Critical Care Division, Department of Medicine/Tupper Research Institute, Tufts-New England Medical Center, and Tufts University School of Medicine, Boston, Massachusetts
| | - Tiegang Liu
- Pulmonary and Critical Care Division, Department of Medicine/Tupper Research Institute, Tufts-New England Medical Center, and Tufts University School of Medicine, Boston, Massachusetts
| | - Oscar Guevara
- Pulmonary and Critical Care Division, Department of Medicine/Tupper Research Institute, Tufts-New England Medical Center, and Tufts University School of Medicine, Boston, Massachusetts
| | - JoAnne Stevens
- Pulmonary and Critical Care Division, Department of Medicine/Tupper Research Institute, Tufts-New England Medical Center, and Tufts University School of Medicine, Boston, Massachusetts
| | - Barry L. Fanburg
- Pulmonary and Critical Care Division, Department of Medicine/Tupper Research Institute, Tufts-New England Medical Center, and Tufts University School of Medicine, Boston, Massachusetts
| | - Matthias Gaestel
- Institute of Biochemistry, Medical School Hannover, Hannover, Germany
| | - Deniz Toksoz
- Pulmonary and Critical Care Division, Department of Medicine/Tupper Research Institute, Tufts-New England Medical Center, and Tufts University School of Medicine, Boston, Massachusetts
| | - Usamah S. Kayyali
- Pulmonary and Critical Care Division, Department of Medicine/Tupper Research Institute, Tufts-New England Medical Center, and Tufts University School of Medicine, Boston, Massachusetts
| |
Collapse
|
90
|
Paddenberg R, Stieger P, von Lilien AL, Faulhammer P, Goldenberg A, Tillmanns HH, Kummer W, Braun-Dullaeus RC. Rapamycin attenuates hypoxia-induced pulmonary vascular remodeling and right ventricular hypertrophy in mice. Respir Res 2007; 8:15. [PMID: 17319968 PMCID: PMC1821322 DOI: 10.1186/1465-9921-8-15] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Accepted: 02/24/2007] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Chronic hypoxia induces pulmonary arterial hypertension (PAH). Smooth muscle cell (SMC) proliferation and hypertrophy are important contributors to the remodeling that occurs in chronic hypoxic pulmonary vasculature. We hypothesized that rapamycin (RAPA), a potent cell cycle inhibitor, prevents pulmonary hypertension in chronic hypoxic mice. METHODS Mice were held either at normoxia (N; 21% O2) or at hypobaric hypoxia (H; 0.5 atm; ~10% O2). RAPA-treated animals (3 mg/kg*d, i.p.) were compared to animals injected with vehicle alone. Proliferative activity within the pulmonary arteries was quantified by staining for Ki67 (positive nuclei/vessel) and media area was quantified by computer-aided planimetry after immune-labeling for alpha-smooth muscle actin (pixel/vessel). The ratio of right ventricle to left ventricle plus septum (RV/[LV+S]) was used to determine right ventricular hypertrophy. RESULTS Proliferative activity increased by 34% at day 4 in mice held under H (median: 0.38) compared to N (median: 0.28, p = 0.028) which was completely blocked by RAPA (median HO+RAPA: 0.23, p = 0.003). H-induced proliferation had leveled off within 3 weeks. At this time point media area had, however, increased by 53% from 91 (N) to 139 (H, p < 0.001) which was prevented by RAPA (H+RAPA: 102; p < 0.001). RV/[LV+S] ratio which had risen from 0.17 (N) to 0.26 (H, p < 0.001) was attenuated in the H+RAPA group (0.22, p = 0.041). For a therapeutic approach animals were exposed to H for 21 days followed by 21 days in H +/- RAPA. Forty two days of H resulted in a media area of 129 (N: 83) which was significantly attenuated in RAPA-treated mice (H+RAPA: 92). RV/[LV+S] ratios supported prevention of PH (N 0.13; H 0.27; H+RAPA 0.17). RAPA treatment of N mice did not influence any parameter examined. CONCLUSION Therapy with rapamycin may represent a new strategy for the treatment of pulmonary hypertension.
Collapse
Affiliation(s)
- Renate Paddenberg
- Institute of Anatomy and Cell Biology, Giessen University, Giessen, Germany
| | - Philipp Stieger
- Department of Internal Medicine/Cardiology Giessen University, Giessen, Germany
| | | | - Petra Faulhammer
- Institute of Anatomy and Cell Biology, Giessen University, Giessen, Germany
| | - Anna Goldenberg
- Institute of Anatomy and Cell Biology, Giessen University, Giessen, Germany
| | - Harald H Tillmanns
- Department of Internal Medicine/Cardiology Giessen University, Giessen, Germany
| | - Wolfgang Kummer
- Institute of Anatomy and Cell Biology, Giessen University, Giessen, Germany
| | | |
Collapse
|
91
|
Yildirim AO, Bulau P, Zakrzewicz D, Kitowska KE, Weissmann N, Grimminger F, Morty RE, Eickelberg O. Increased Protein Arginine Methylation in Chronic Hypoxia. Am J Respir Cell Mol Biol 2006; 35:436-43. [PMID: 16690984 DOI: 10.1165/rcmb.2006-0097oc] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of nitric oxide synthesis. ADMA is generated by catabolism of proteins containing methylated arginine residues, and its levels are correlated with endothelial dysfunction in systemic cardiovascular diseases. Arginine methylation of cellular proteins is catalyzed by protein arginine methyltransferases (PRMT). The expression and localization of PRMT in the lung has not been addressed. Here, we sought to analyze the expression of PRMT isoforms in the lung and to determine whether PRMT expression is altered during exposure to chronic hypoxia (10% oxygen). Adult mice were exposed to hypoxia for up to 3 wk, and lung tissues were harvested and processed for RT-PCR, Western blotting, immunohistochemistry, and determination of tissue ADMA levels. All PRMT isoforms investigated were detected at the mRNA and protein level in mouse lung, and were localized primarily to the bronchial and alveolar epithelium. In lungs of mice subjected to chronic hypoxia, PRMT2 mRNA and protein levels were up-regulated, whereas the expression of all other PRMT isoforms remained unchanged. This was mainly due to increased expression of PRMT2 in alveolar type II cells, which did not express detectable levels of PRMT2 under normoxic conditions. Consistent with these observations, lung ADMA levels and ADMA/l-Arginine ratios were increased under hypoxic conditions. These results demonstrate that PRMTs are expressed and functional in the lung, and that hypoxia is a potent regulator of PRMT2 expression and lung ADMA concentrations. These data suggest that structural and functional changes caused by hypoxia may be linked to ADMA metabolism.
Collapse
Affiliation(s)
- Ali O Yildirim
- Department of Medicine II, University of Giessen Lung Center, Justus-Liebig University Giessen, Aulweg 123, Room 6-11, D-35392 Giessen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Wang H, Tang Y, Zhang YL. Hypoxic pulmonary hypertension (HPH) and iptakalim, a novel ATP-sensitive potassium channel opener targeting smaller arteries in hypertension. ACTA ACUST UNITED AC 2006; 23:293-316. [PMID: 16614730 DOI: 10.1111/j.1527-3466.2005.tb00174.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hypoxic pulmonary hypertension (HPH) is a serious and potentially devastating chronic disorder of the pulmonary circulation. Attempts to use drugs in the therapy of hypoxic pulmonary hypertension indicated the importance of prevention or reduction of vasoconstriction as well as of the reversal of remodeling within the cardiovascular system. Iptakalim (2,3-dimethyl-N-(1-methylethyl)-2-butylamine), a novel ATP-sensitive potassium channel opener, has the desired effects on hypoxic pulmonary arteries. Iptakalim decreases the elevated mean pressure in pulmonary arteries, and attenuates remodeling in the right ventricle, pulmonary arteries and airways. Moreover, iptakalim has selective antihypertensive effects: it significantly lowers arterial pressure in hypertensive animals, but has little if any effect in normotensive animals. In HPH iptakalim has selective effects on smaller arteries. Long-term iptakalim therapy decreases expression of sulfonylurea receptor 2 and of mRNA of inwardly rectifying potassium channel in smaller arteries of spontaneously hypertensive rats. Iptakalim inhibits the effects of endothelin-1, reduces the intracellular calcium concentration and inhibits the cell cycle in smooth muscle cells of pulmonary arteries. There is no evidence for the development of tolerance to the long-lasting antihypertensive action of iptakalim. At therapeutic doses iptakalim has no effects on the central nervous, respiratory, digestive, or endocrine systems. It has a broad therapeutic range, so that it can be safely used in the therapy of HPH.
Collapse
Affiliation(s)
- Hai Wang
- Department of Cardiovascular Pharmacology, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, Peoples' Republic of China.
| | | | | |
Collapse
|
93
|
Stenmark KR, Davie N, Frid M, Gerasimovskaya E, Das M. Role of the adventitia in pulmonary vascular remodeling. Physiology (Bethesda) 2006; 21:134-45. [PMID: 16565479 DOI: 10.1152/physiol.00053.2005] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
An increasing volume of experimental data indicates that the adventitial fibroblast, in both the pulmonary and systemic circulations, is a critical regulator of vascular wall function in health and disease. A rapidly emerging concept is that the vascular adventitia acts as biological processing center for the retrieval, integration, storage, and release of key regulators of vessel wall function. In response to stress or injury, resident adventitial cells can be activated and reprogrammed to exhibit different functional and structural behaviors. In fact, under certain conditions, the adventitial compartment may be considered the principal injury-sensing tissue of the vessel wall. In response to vascular stresses such as overdistension and hypoxia, the adventitial fibroblast is activated and undergoes phenotypic changes, which include proliferation, differentiation, upregulation of contractile and extracellular matrix proteins, and release of factors that directly affect medial smooth muscle cell tone and growth and that stimulate recruitment of inflammatory and progenitor cells to the vessel wall. Each of these changes in fibroblast phenotype modulates either directly or indirectly changes in overall vascular function and structure. The purpose of this review is to present the current evidence demonstrating that the adventitial fibroblast acts as a key regulator of pulmonary vascular function and structure from the "outside-in."
Collapse
Affiliation(s)
- Kurt R Stenmark
- Division of Pediatric Critical Care, University of Colorado at Denver and Health Sciences Center, Denver, Colorado, USA.
| | | | | | | | | |
Collapse
|
94
|
Abstract
The prevalence of obesity has markedly increased over the past two decades, especially in the industrialized countries. While the impact of excess body weight on the development of cardiac disease and diabetes has been well documented, the link between obesity and carcinogenesis is just being recognized. This review will focus on the link between leptin, a cytokine that is elevated in obese individuals, and cancer development. First, we briefly discuss the biological functions of leptin and its signaling pathways. Then, we summarize the effects of leptin on different cancer types in experimental cellular and animal models. Next, we analyze epidemiological data on the relationship between obesity and the presence of cancer or cancer risk in patients. Finally, leptin as a target for cancer treatment and prevention will be discussed.
Collapse
Affiliation(s)
- Cecilia Garofalo
- Department of Pharmaco-Biology, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | | |
Collapse
|
95
|
Invited Lectures : Overviews Purinergic signalling: past, present and future. Purinergic Signal 2006; 2:1-324. [PMID: 18404494 PMCID: PMC2096525 DOI: 10.1007/s11302-006-9006-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2006] [Indexed: 12/11/2022] Open
|
96
|
Chen YF, Feng JA, Li P, Xing D, Ambalavanan N, Oparil S. Atrial natriuretic peptide-dependent modulation of hypoxia-induced pulmonary vascular remodeling. Life Sci 2006; 79:1357-65. [PMID: 16714036 DOI: 10.1016/j.lfs.2006.03.051] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2006] [Revised: 03/23/2006] [Accepted: 03/31/2006] [Indexed: 10/24/2022]
Abstract
UNLABELLED Hypoxic stress upsets the balance in the normal relationships between mitogenic and growth inhibiting pathways in lung, resulting in pulmonary vascular remodeling characterized by hyperplasia of pulmonary arterial smooth muscle cells (PASMCs) and fibroblasts and enhanced deposition of extracellular matrix. Atrial natriuretic peptide (ANP) reduces pulmonary vascular resistance and attenuates hypoxia-induced pulmonary hypertension in vivo and PASMC proliferation and collagen synthesis in vitro. The current study utilized an ANP null mouse model (Nppa-/-) to test the hypothesis that ANP modulates the pulmonary vascular and alveolar remodeling response to normobaric hypoxic stress. Nine-10 wk old male ANP null (Nppa-/-) and wild type nontransgenic (NTG) mice were exposed to chronic hypoxia (10% O(2), 1 atm) or air for 6 wks. MEASUREMENT pulmonary hypertension, right ventricular hypertrophy, and pulmonary arterial and alveolar remodeling were assessed. Hypoxia-induced pulmonary arterial hypertrophy and muscularization were significantly increased in Nppa-/- mice compared to NTG controls. Furthermore, the stimulatory effects of hypoxia on alveolar myofibroblast transformation (8.2 and 5.4 fold increases in Nppa-/- and NTG mice, respectively) and expression of extracellular matrix molecule (including osteopontin [OPN] and periostin [PN]) mRNA in whole lung were exaggerated in Nppa-/- mice compared to NTG controls. Combined with our previous finding that ANP signaling attenuates transforming growth factor (TGF)-beta-induced expression of OPN and PN in isolated PASMCs, the current study supports the hypothesis that endogenous ANP plays an important anti-fibrogenic role in the pulmonary vascular adaptation to chronic hypoxia.
Collapse
MESH Headings
- Actins/metabolism
- Animals
- Atrial Natriuretic Factor/genetics
- Atrial Natriuretic Factor/physiology
- Blotting, Northern
- Chronic Disease
- Collagen/metabolism
- Hemodynamics
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/pathology
- Hypertrophy, Right Ventricular/pathology
- Hypoxia/complications
- Hypoxia/pathology
- Immunohistochemistry
- Lung/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/pathology
- Pulmonary Alveoli/pathology
- Pulmonary Artery/pathology
- Pulmonary Circulation/physiology
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
Collapse
Affiliation(s)
- Yiu-Fai Chen
- Vascular Biology and Hypertension Program, Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, 35296, USA.
| | | | | | | | | | | |
Collapse
|
97
|
Gerasimovskaya EV, Davie NJ, Ahmad S, Tucker DA, White CW, Stenmark KR. Extracellular adenosine triphosphate: a potential regulator of vasa vasorum neovascularization in hypoxia-induced pulmonary vascular remodeling. Chest 2006; 128:608S-610S. [PMID: 16373860 DOI: 10.1378/chest.128.6_suppl.608s] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
98
|
Abstract
The pathobiology of pulmonary arterial hypertension (PAH) includes endothelial cell dysfunction and proliferation and migration of VSMCs. As PDGF has been implicated in these processes, Schermuly et al. hypothesized that altered PDGF signaling may be involved in the vascular remodeling observed in PAH. To explore this notion further, the authors evaluated the effects of the PDGF receptor inhibitor STI571 in 2 different animal models of pulmonary hypertension. In both models, after development of pulmonary vascular disease, administration of STI571 reversed pulmonary vascular changes. These studies provide preclinical proof of concept for the clinical development of a PDGF inhibitor as a targeted therapy for PAH patients.
Collapse
Affiliation(s)
- Robyn J Barst
- New York Presbyterian Pulmonary Hypertension Center, Columbia University College of Physicians & Surgeons, New York, New York 10032, USA.
| |
Collapse
|
99
|
Dobreva I, Waeber G, James RW, Widmann C. Interleukin-8 secretion by fibroblasts induced by low density lipoproteins is p38 MAPK-dependent and leads to cell spreading and wound closure. J Biol Chem 2005; 281:199-205. [PMID: 16251188 DOI: 10.1074/jbc.m508857200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously reported (Dobreva, I., Waeber, G., Mooser, V., James, R. W., and Widmann, C. (2003) J. Lipid Res. 44, 2382-2390) that low density lipoproteins (LDLs) induce activation of the p38 MAPK pathway, resulting in fibroblast spreading and lamellipodia formation. Here, we show that LDL-stimulated fibroblast spreading and wound sealing are due to secretion of a soluble factor. Using an antibody-based human protein array, interleukin-8 (IL-8) was identified as the main cytokine whose concentration was increased in supernatants from LDL-stimulated cells. Incubation of supernatants from LDL-treated cells with an anti-IL-8 blocking antibody completely abolished their ability to induce cell spreading and mediate wound closure. In addition, fibroblasts treated with recombinant IL-8 spread to the same extent as cells incubated with LDL or supernatants from LDL-treated cells. The ability of LDL and IL-8 to induce fibroblast spreading was mediated by the IL-8 receptor type II (CXCR-2). Furthermore, LDL-induced IL-8 production and subsequent wound closure required the activation of the p38 MAPK pathway, because both processes were abrogated by a specific p38 inhibitor. Therefore, the capacity of LDLs to induce fibroblast spreading and accelerate wound closure relies on their ability to stimulate IL-8 secretion in a p38 MAPK-dependent manner. Regulation of fibroblast shape and migration by lipoproteins may be relevant to atherosclerosis that is characterized by increased LDL cholesterol levels, IL-8 production, and extensive remodeling of the vessel wall.
Collapse
Affiliation(s)
- Iveta Dobreva
- Department of Cellular Biology and Morphology, Faculty of Biology and Medicine, Lausanne University, 1005 Lausanne, Switzerland
| | | | | | | |
Collapse
|
100
|
Hayashida K, Fujita J, Miyake Y, Kawada H, Ando K, Ogawa S, Fukuda K. Bone marrow-derived cells contribute to pulmonary vascular remodeling in hypoxia-induced pulmonary hypertension. Chest 2005; 127:1793-8. [PMID: 15888860 DOI: 10.1378/chest.127.5.1793] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
STUDY OBJECTIVE In these days, it was reported that bone marrow (BM) cells might take part in the remodeling of some systemic vascular diseases; however, it remains unknown whether the BM cells were involved in the vascular remodeling of pulmonary arteries and the progression of pulmonary hypertension (PH). The purpose of this study was to investigate whether BM-derived cells contribute to pulmonary vascular remodeling in hypoxia-induced PH. MATERIALS AND METHODS To investigate the role of BM-derived cells, we transplanted the whole BM of enhanced green fluorescent protein (GFP)-transgenic mice to the lethally irradiated syngeneic mice (n = 30). After 8 weeks, chimera mice were exposed to consistent hypoxia using a hypoxic chamber (10% O(2)) for up to 4 or 8 weeks (10 mice per group). After hemodynamics and the ratio of right ventricular (RV) weight to left ventricle (LV) weight, RV/(LV + septum [S]), were measured, histologic and immunofluorescent staining were performed. RESULTS BM-transplanted mice showed a high chimerism (mean [+/- SEM], 91 +/- 2.3%). RV systolic pressure and the RV/(LV + S) ratio increased significantly with time in PH mice, indicating RV hypertrophy. Marked vascular remodeling including medial hypertrophy and adventitial proliferation was observed in the pulmonary arteries of PH mice. Strikingly, a number of GFP(+) cells were observed at the pulmonary arterial wall, including the adventitia, in hypoxia-induced PH mice, while very few cells were observed in the control mice. Metaspectrometer measurements using confocal laser scanning microscopy confirmed that this green fluorescence was produced by GFP, suggesting that these GFP(+) cells were mobilized from the BM. Most of them expressed alpha-smooth muscle actin, a smooth muscle cell, or myofibroblast phenotype, and contributed to the pulmonary vascular remodeling. A semiquantitative polymerase chain reaction of the GFP gene revealed that the BM-derived GFP-positive cells in the PH group were observed more than eightfold as often compared with the control mice. CONCLUSION The BM-derived cells mobilize to the hypertensive pulmonary arteries and contribute to the pulmonary vascular remodeling in hypoxia-induced PH mice.
Collapse
Affiliation(s)
- Kentaro Hayashida
- Cardiopulmonary Division, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | | | | | | | | | | | | |
Collapse
|