51
|
Ng J, Kamm RD, Wohland T, Kraut RS. Evidence from ITIR-FCS Diffusion Studies that the Amyloid-Beta (Aβ) Peptide Does Not Perturb Plasma Membrane Fluidity in Neuronal Cells. J Mol Biol 2018; 430:3439-3453. [PMID: 29746852 DOI: 10.1016/j.jmb.2018.04.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/27/2018] [Accepted: 04/29/2018] [Indexed: 10/17/2022]
Abstract
The amyloid-beta (Aβ) peptide, commonly found in elevated levels in the brains of patients with Alzheimer's disease (AD) and in the cerebrospinal fluid of individuals presenting mild cognitive impairment, is thought to be one of the major factors resulting in the onset of AD. Although observed and studied at the molecular level for several decades, the exact disease pathology of AD is still not totally clear. One way in which Aβ is thought to affect neurons is by influencing cell membrane fluidity, which could result in abnormal synaptic or signaling function. The effects of Aβ on the fluidity of biological membranes have been studied using numerous membrane models such as artificial lipid bilayers and vesicles, living cells and membranes extracted from animal models of AD, yet there is still no consensus as to what effects Aβ has, if any, on membrane fluidity. As one of the most precise and accurate means of assaying membrane dynamics, we have thus chosen fluorescence correlation spectroscopy to investigate the issue, using fluorescent membrane-targeted probes on living cells treated with Aβ(1-42) oligomers and observing possible changes in membrane diffusion. Effects of Aβ on viability in different cell types varied from no detectable effect to extensive cell death by 72 h post-exposure. However, there was no change in the fluidity of either ordered membrane domains or the bulk membrane in any of these cells within this period. Our conclusion from these results is that perturbation of membrane fluidity is not likely to be a factor in acute Aβ-induced cytotoxicity.
Collapse
Affiliation(s)
- Justin Ng
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, S637551, Singapore; Singapore-MIT Alliance for Research and Technology, BioSyM IRG, 1 Create Way, S138602, Singapore
| | - Roger D Kamm
- Singapore-MIT Alliance for Research and Technology, BioSyM IRG, 1 Create Way, S138602, Singapore
| | - Thorsten Wohland
- Singapore-MIT Alliance for Research and Technology, BioSyM IRG, 1 Create Way, S138602, Singapore; Department of Biological Sciences and Chemistry, National University of Singapore, 14 Science Drive 4, S117543, Singapore
| | - Rachel S Kraut
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, S637551, Singapore; Singapore-MIT Alliance for Research and Technology, BioSyM IRG, 1 Create Way, S138602, Singapore.
| |
Collapse
|
52
|
Yamada M, Hayashi H, Yuuki M, Matsushima N, Yuan B, Takagi N. Furin inhibitor protects against neuronal cell death induced by activated NMDA receptors. Sci Rep 2018; 8:5212. [PMID: 29581474 PMCID: PMC5980093 DOI: 10.1038/s41598-018-23567-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/15/2018] [Indexed: 12/11/2022] Open
Abstract
The proprotein convertases (PCs) act as serine proteases and are known to convert diverse precursor proteins into their active forms. Among the PCs, furin has been considered to play a crucial role not only in embryogenesis, but also in the initiation and progression of certain pathologic conditions. However, the roles played by furin with respect to neuronal cell injuries remain to be determined. An excessive influx of Ca2+ through the N-methyl-d-aspartate (NMDA) receptor has been associated with diverse neurological and neurodegenerative disorders. The aim of this study was to achieve further insight into the pathophysiologic roles of furin in cultured cortical neurons. We demonstrated that furin inhibitors dose-dependently prevented neuronal injury induced by NMDA treatment. Neuronal injury induced by NMDA treatment was attenuated by the calpain inhibitor calpeptin. And the increase observed in the activity of calpain after NMDA treatment was significantly inhibited by these furin inhibitors. Furthermore, calpain-2 activity, which was evaluated by means of the immunoblotting assay, was increased by NMDA treatment. It was noteworthy that this increased activity was almost completely inhibited by a furin inhibitor. Our findings suggested that furin is involved in NMDA-induced neuronal injury by acting upstream of calpain.
Collapse
Affiliation(s)
- Mariko Yamada
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Hideki Hayashi
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Moe Yuuki
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Nahoko Matsushima
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Bo Yuan
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Norio Takagi
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan.
| |
Collapse
|
53
|
Analysis of Physicochemical Interaction of Aβ40 with a GM1 Ganglioside-Containing Lipid Membrane. J Phys Chem B 2018. [DOI: 10.1021/acs.jpcb.8b00139] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
54
|
Ariga T. The Pathogenic Role of Ganglioside Metabolism in Alzheimer's Disease-Cholinergic Neuron-Specific Gangliosides and Neurogenesis. Mol Neurobiol 2018; 54:623-638. [PMID: 26748510 DOI: 10.1007/s12035-015-9641-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is the most common type of dementia with clinical symptoms that include deficits in memory, judgment, thinking, and behavior. Gangliosides are present on the outer surface of plasma membranes and are especially abundant in the nervous tissues of vertebrates. Ganglioside metabolism, especially the cholinergic neuron-specific gangliosides, GQ1bα and GT1aα, is altered in mouse model of AD and patients with AD. Thus, alterations in ganglioside metabolism may participate in several events related to the pathogenesis of AD. Increased expressions of GT1aα may reflect cholinergic neurogenesis. Most changes in ganglioside metabolism occur in the specific brain areas and their lipid rafts. Targeting ganglioside metabolism in lipid rafts may represent an underexploited opportunity to design novel therapeutic strategies for AD.
Collapse
Affiliation(s)
- Toshio Ariga
- Department of Neuroscience and Regenerative Medicine, Institute of Neuroscience, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA. .,Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, Chiyoda-ku, Tokyo, 101-8308, Japan.
| |
Collapse
|
55
|
Matsuzaki K, Kato K, Yanagisawa K. Ganglioside-Mediated Assembly of Amyloid β-Protein: Roles in Alzheimer's Disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 156:413-434. [PMID: 29747822 DOI: 10.1016/bs.pmbts.2017.10.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Assembly and deposition of amyloid β-protein (Aβ) is an early and invariable pathological event of Alzheimer's disease (AD), a chronic neurodegenerative disease affecting the neurons in the brain of aging population. Thus, clarification of the molecular mechanism underlying Aβ assembly is crucial not only for understanding the pathogenesis of AD, but also for developing disease-modifying remedies. In 1995, ganglioside-bound Aβ (GAβ), with unique molecular characteristics, including its altered immunoreactivity and its conspicuous ability to accelerate Aβ assembly, was discovered in an autopsied brain showing early pathological changes of AD. Based on these findings, it was hypothesized that GAβ is an endogenous seed for amyloid fibril formation in the AD brain. A body of evidence that supports the GAβ hypothesis has been growing for over 20years as follows. First, the conformational changes of Aβ from a random coil to an α-helix, and then to a β-sheet in the presence of ganglioside were validated by several techniques. Second, the seed activity of GAβ to accelerate the assembly of soluble Aβ into amyloid fibrils was confirmed by various in vitro and in vivo experiments. Third, it was found that the Aβ binding to ganglioside to form GAβ occurs under limited conditions, which were provided by the lipid environment surrounding ganglioside. Fourth, the region-specific Aβ deposition in the brain appeared to be dependent on the presence of the lipid environment that was in favor of GAβ generation. In this chapter, further progress of the study of ganglioside-mediated Aβ assembly, especially from the aspects of physicochemistry, structural biology, and neuropathology, is reviewed.
Collapse
Affiliation(s)
| | - Koichi Kato
- Nagoya City University, Nagoya, Japan; Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Japan
| | - Katsuhiko Yanagisawa
- Center for Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Japan.
| |
Collapse
|
56
|
Nday CM, Eleftheriadou D, Jackson G. Shared pathological pathways of Alzheimer's disease with specific comorbidities: current perspectives and interventions. J Neurochem 2018; 144:360-389. [PMID: 29164610 DOI: 10.1111/jnc.14256] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 11/10/2017] [Accepted: 11/10/2017] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) belongs to one of the most multifactorial, complex and heterogeneous morbidity-leading disorders. Despite the extensive research in the field, AD pathogenesis is still at some extend obscure. Mechanisms linking AD with certain comorbidities, namely diabetes mellitus, obesity and dyslipidemia, are increasingly gaining importance, mainly because of their potential role in promoting AD development and exacerbation. Their exact cognitive impairment trajectories, however, remain to be fully elucidated. The current review aims to offer a clear and comprehensive description of the state-of-the-art approaches focused on generating in-depth knowledge regarding the overlapping pathology of AD and its concomitant ailments. Thorough understanding of associated alterations on a number of molecular, metabolic and hormonal pathways, will contribute to the further development of novel and integrated theranostics, as well as targeted interventions that may be beneficial for individuals with age-related cognitive decline.
Collapse
Affiliation(s)
- Christiane M Nday
- Department of Chemical Engineering, Laboratory of Inorganic Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Despoina Eleftheriadou
- Department of Chemical Engineering, Laboratory of Inorganic Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Graham Jackson
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, South Africa
| |
Collapse
|
57
|
Suzuki M, Sango K, Wada K, Nagai Y. Pathological role of lipid interaction with α-synuclein in Parkinson's disease. Neurochem Int 2018; 119:97-106. [PMID: 29305919 DOI: 10.1016/j.neuint.2017.12.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/11/2017] [Accepted: 12/31/2017] [Indexed: 12/11/2022]
Abstract
Alpha-synuclein (αSyn) plays a central role in the pathogenesis of Parkinson's disease (PD) and dementia with Lewy bodies (DLB). In sporadic PD and DLB, normally harmless αSyn proteins without any mutations might gain toxic functions by unknown mechanisms. Thus, it is important to elucidate the factors promoting the toxic conversion of αSyn, towards understanding the pathogenesis of and developing disease-modifying therapies for PD and DLB. Accumulating biophysical and biochemical studies have demonstrated that αSyn interacts with lipid membrane, and the interaction influences αSyn oligomerization and aggregation. Furthermore, genetic and clinicopathological studies have revealed mutations in the glucocerebrosidase 1 (GBA1) gene, which encodes a degrading enzyme for the glycolipid glucosylceramide (GlcCer), as strong risk factors for PD and DLB, and we recently demonstrated that GlcCer promotes toxic conversion of αSyn. Moreover, pathological studies have shown the existence of αSyn pathology in lysosomal storage disorders (LSDs) patient' brain, in which glycosphingolipids (GSLs) is found to be accumulated. In this review, we focus on the lipids as a key factor for inducing wild-type (WT) αSyn toxic conversion, we summarize the knowledge about the interaction between αSyn and lipid membrane, and propose our hypothesis that aberrantly accumulated GSLs might contribute to the toxic conversion of αSyn. Identifying the trigger for toxic conversion of αSyn would open a new therapeutic road to attenuate or prevent crucial events leading to the formation of toxic αSyn.
Collapse
Affiliation(s)
- Mari Suzuki
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan; Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira 187-8502, Japan; Diabetic Neuropathy Project, Department of Sensory and Motor Systems, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, 156-8506, Japan.
| | - Kazunori Sango
- Diabetic Neuropathy Project, Department of Sensory and Motor Systems, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, 156-8506, Japan
| | - Keiji Wada
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira 187-8502, Japan
| | - Yoshitaka Nagai
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan; Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira 187-8502, Japan.
| |
Collapse
|
58
|
Abstract
This review begins by attempting to recount some of the pioneering discoveries that first identified the presence of gangliosides in the nervous system, their structures and topography. This is presented as prelude to the current emphasis on physiological function, about which much has been learned but still remains to be elucidated. These areas include ganglioside roles in nervous system development including stem cell biology, membranes and organelles within neurons and glia, ion transport mechanisms, receptor modulation including neurotrophic factor receptors, and importantly the pathophysiological role of ganglioside aberrations in neurodegenerative disorders. This relates to their potential as therapeutic agents, especially in those conditions characterized by deficiency of one or more specific gangliosides. Finally we attempt to speculate on future directions ganglioside research is likely to take so as to capitalize on the impressive progress to date.
Collapse
Affiliation(s)
- Robert Ledeen
- Division of Neurochemistry, Department of Pharmacology, Physiology & Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, USA.
| | - Gusheng Wu
- Division of Neurochemistry, Department of Pharmacology, Physiology & Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
59
|
Vieira MNN, Lima-Filho RAS, De Felice FG. Connecting Alzheimer's disease to diabetes: Underlying mechanisms and potential therapeutic targets. Neuropharmacology 2017; 136:160-171. [PMID: 29129775 DOI: 10.1016/j.neuropharm.2017.11.014] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is a risk factor for type 2 diabetes and vice versa, and a growing body of evidence indicates that these diseases are connected both at epidemiological, clinical and molecular levels. Recent studies have begun to reveal common pathogenic mechanisms shared by AD and type 2 diabetes. Impaired neuronal insulin signaling and endoplasmic reticulum (ER) stress are present in animal models of AD, similar to observations in peripheral tissue in T2D. These findings shed light into novel diabetes-related mechanisms leading to brain dysfunction in AD. Here, we review the literature on selected mechanisms shared between these diseases and discuss how the identification of such mechanisms may lead to novel therapeutic targets in AD. This article is part of the Special Issue entitled 'Metabolic Impairment as Risk Factors for Neurodegenerative Disorders.'
Collapse
Affiliation(s)
- Marcelo N N Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil.
| | - Ricardo A S Lima-Filho
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil.
| | - Fernanda G De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; Centre for Neuroscience Studies, Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| |
Collapse
|
60
|
Branch T, Barahona M, Dodson CA, Ying L. Kinetic Analysis Reveals the Identity of Aβ-Metal Complex Responsible for the Initial Aggregation of Aβ in the Synapse. ACS Chem Neurosci 2017. [PMID: 28621929 PMCID: PMC5609119 DOI: 10.1021/acschemneuro.7b00121] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
![]()
The
mechanism of Aβ aggregation in the absence of metal ions
is well established, yet the role that Zn2+ and Cu2+, the two most studied metal ions, released during neurotransmission,
paly in promoting Aβ aggregation in the vicinity of neuronal
synapses remains elusive. Here we report the kinetics of Zn2+ binding to Aβ and Zn2+/Cu2+ binding
to Aβ-Cu to form ternary complexes under near physiological
conditions (nM Aβ, μM metal ions). We find that these
reactions are several orders of magnitude slower than Cu2+ binding to Aβ. Coupled reaction-diffusion simulations of the
interactions of synaptically released metal ions with Aβ show
that up to a third of Aβ is Cu2+-bound under repetitive
metal ion release, while any other Aβ-metal complexes (including
Aβ-Zn) are insignificant. We therefore conclude that Zn2+ is unlikely to play an important role in the very early
stages (i.e., dimer formation) of Aβ aggregation, contrary to
a widely held view in the subject. We propose that targeting the specific
interactions between Cu2+ and Aβ may be a viable
option in drug development efforts for early stages of AD.
Collapse
Affiliation(s)
- Thomas Branch
- Institute of Chemical Biology, ‡Department of Chemistry, §Department of Mathematics, and ∥National Heart
and Lung Institute, Imperial College London, London SW7 2AZ, United Kingdom
| | - Mauricio Barahona
- Institute of Chemical Biology, ‡Department of Chemistry, §Department of Mathematics, and ∥National Heart
and Lung Institute, Imperial College London, London SW7 2AZ, United Kingdom
| | - Charlotte A. Dodson
- Institute of Chemical Biology, ‡Department of Chemistry, §Department of Mathematics, and ∥National Heart
and Lung Institute, Imperial College London, London SW7 2AZ, United Kingdom
| | - Liming Ying
- Institute of Chemical Biology, ‡Department of Chemistry, §Department of Mathematics, and ∥National Heart
and Lung Institute, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
61
|
Neutral Sphingomyelinase-2 Deficiency Ameliorates Alzheimer's Disease Pathology and Improves Cognition in the 5XFAD Mouse. J Neurosci 2017; 36:8653-67. [PMID: 27535912 DOI: 10.1523/jneurosci.1429-16.2016] [Citation(s) in RCA: 187] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 06/27/2016] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Recent evidence implicates exosomes in the aggregation of Aβ and spreading of tau in Alzheimer's disease. In neural cells, exosome formation can be blocked by inhibition or silencing of neutral sphingomyelinase-2 (nSMase2). We generated genetically nSMase2-deficient 5XFAD mice (fro;5XFAD) to assess AD-related pathology in a mouse model with consistently reduced ceramide generation. We conducted in vitro assays to assess Aβ42 aggregation and glial clearance with and without exosomes isolated by ultracentrifugation and determined exosome-induced amyloid aggregation by particle counting. We analyzed brain exosome content, amyloid plaque formation, neuronal degeneration, sphingolipid, Aβ42 and phospho-tau levels, and memory-related behaviors in 5XFAD versus fro;5XFAD mice using contextual and cued fear conditioning. Astrocyte-derived exosomes accelerated aggregation of Aβ42 and blocked glial clearance of Aβ42 in vitro Aβ42 aggregates were colocalized with extracellular ceramide in vitro using a bifunctional ceramide analog preloaded into exosomes and in vivo using anticeramide IgG, implicating ceramide-enriched exosomes in plaque formation. Compared with 5XFAD mice, the fro;5XFAD mice had reduced brain exosomes, ceramide levels, serum anticeramide IgG, glial activation, total Aβ42 and plaque burden, tau phosphorylation, and improved cognition in a fear-conditioned learning task. Ceramide-enriched exosomes appear to exacerbate AD-related brain pathology by promoting the aggregation of Aβ. Reduction of exosome secretion by nSMase2 loss of function improves pathology and cognition in the 5XFAD mouse model. SIGNIFICANCE STATEMENT We present for the first time evidence, using Alzheimer's disease (AD) model mice deficient in neural exosome secretion due to lack of neutral sphingomyelinase-2 function, that ceramide-enriched exosomes exacerbate AD-related pathologies and cognitive deficits. Our results provide rationale to pursue a means of inhibiting exosome secretion as a potential therapy for individuals at risk for developing AD.
Collapse
|
62
|
Grimm MOW, Mett J, Grimm HS, Hartmann T. APP Function and Lipids: A Bidirectional Link. Front Mol Neurosci 2017; 10:63. [PMID: 28344547 PMCID: PMC5344993 DOI: 10.3389/fnmol.2017.00063] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 02/24/2017] [Indexed: 12/14/2022] Open
Abstract
Extracellular neuritic plaques, composed of aggregated amyloid-β (Aβ) peptides, are one of the major histopathological hallmarks of Alzheimer's disease (AD), a progressive, irreversible neurodegenerative disorder and the most common cause of dementia in the elderly. One of the most prominent risk factor for sporadic AD, carrying one or two aberrant copies of the apolipoprotein E (ApoE) ε4 alleles, closely links AD to lipids. Further, several lipid classes and fatty acids have been reported to be changed in the brain of AD-affected individuals. Interestingly, the observed lipid changes in the brain seem not only to be a consequence of the disease but also modulate Aβ generation. In line with these observations, protective lipids being able to decrease Aβ generation and also potential negative lipids in respect to AD were identified. Mechanistically, Aβ peptides are generated by sequential proteolytic processing of the amyloid precursor protein (APP) by β- and γ-secretase. The α-secretase appears to compete with β-secretase for the initial cleavage of APP, preventing Aβ production. All APP-cleaving secretases as well as APP are transmembrane proteins, further illustrating the impact of lipids on Aβ generation. Beside the pathological impact of Aβ, accumulating evidence suggests that Aβ and the APP intracellular domain (AICD) play an important role in regulating lipid homeostasis, either by direct effects or by affecting gene expression or protein stability of enzymes involved in the de novo synthesis of different lipid classes. This review summarizes the current literature addressing the complex bidirectional link between lipids and AD and APP processing including lipid alterations found in AD post mortem brains, lipids that alter APP processing and the physiological functions of Aβ and AICD in the regulation of several lipid metabolism pathways.
Collapse
Affiliation(s)
- Marcus O. W. Grimm
- Experimental Neurology, Saarland UniversityHomburg/Saar, Germany
- Neurodegeneration and Neurobiology, Saarland UniversityHomburg/Saar, Germany
- Deutsches Institut für DemenzPrävention (DIDP), Saarland UniversityHomburg/Saar, Germany
| | - Janine Mett
- Experimental Neurology, Saarland UniversityHomburg/Saar, Germany
| | - Heike S. Grimm
- Experimental Neurology, Saarland UniversityHomburg/Saar, Germany
| | - Tobias Hartmann
- Experimental Neurology, Saarland UniversityHomburg/Saar, Germany
- Neurodegeneration and Neurobiology, Saarland UniversityHomburg/Saar, Germany
- Deutsches Institut für DemenzPrävention (DIDP), Saarland UniversityHomburg/Saar, Germany
| |
Collapse
|
63
|
Gade Malmos K, Blancas-Mejia LM, Weber B, Buchner J, Ramirez-Alvarado M, Naiki H, Otzen D. ThT 101: a primer on the use of thioflavin T to investigate amyloid formation. Amyloid 2017; 24:1-16. [PMID: 28393556 DOI: 10.1080/13506129.2017.1304905] [Citation(s) in RCA: 282] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Thioflavin T (ThT) has been widely used to investigate amyloid formation since 1989. While concerns have recently been raised about its use as a probe specific for amyloid, ThT still continues to be a very valuable tool for studying kinetic aspects of fibrillation and associated inhibition mechanisms. This review aims to provide a conceptual instruction manual, covering appropriate considerations and pitfalls related to the use of ThT. We start by giving a brief introduction to amyloid formation with focus on the morphology of different aggregate species, followed by a discussion of the quality of protein needed to obtain reliable fibrillation data. After an overview of the photochemical basis for ThT's amyloid binding properties and artifacts that may arise from this, we describe how to plan and analyze ThT assays. We conclude with recommendations for complementary techniques to address shortcomings in the ThT assay.
Collapse
Affiliation(s)
- Kirsten Gade Malmos
- a Interdisciplinary Nanoscience Center (iNANO) and Center for Insoluble Protein Structures (inSPIN) , Aarhus University , Aarhus C , Denmark.,b Department of Molecular Biology and Genetics , Aarhus University , Aarhus C , Denmark
| | - Luis M Blancas-Mejia
- c Department of Biochemistry and Molecular Biology , Mayo Clinic , Rochester , MN , USA
| | - Benedikt Weber
- d Center for Integrated Protein Science Munich at the Department Chemie , Technische Universität München , Garching , Germany
| | - Johannes Buchner
- d Center for Integrated Protein Science Munich at the Department Chemie , Technische Universität München , Garching , Germany
| | | | - Hironobu Naiki
- e Department of Molecular Pathology, Faculty of Medical Sciences , University of Fukui , Fukui , Japan
| | - Daniel Otzen
- a Interdisciplinary Nanoscience Center (iNANO) and Center for Insoluble Protein Structures (inSPIN) , Aarhus University , Aarhus C , Denmark
| |
Collapse
|
64
|
El Gaamouch F, Jing P, Xia J, Cai D. Alzheimer's Disease Risk Genes and Lipid Regulators. J Alzheimers Dis 2017; 53:15-29. [PMID: 27128373 DOI: 10.3233/jad-160169] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Brain lipid homeostasis plays an important role in Alzheimer's disease (AD) and other neurodegenerative disorders. Aggregation of amyloid-β peptide is one of the major events in AD. The complex interplay between lipids and amyloid-β accumulation has been intensively investigated. The proportions of lipid components including phospholipids, sphingolipids, and cholesterol are roughly similar across different brain regions under physiological conditions. However, disruption of brain lipid homeostasis has been described in AD and implicated in disease pathogenesis. Moreover, studies suggest that analysis of lipid composition in plasma and cerebrospinal fluid could improve our understanding of the disease development and progression, which could potentially serve as disease biomarkers and prognostic indicators for AD therapies. Here, we summarize the functional roles of AD risk genes and lipid regulators that modulate brain lipid homeostasis including different lipid species, lipid complexes, and lipid transporters, particularly their effects on amyloid processing, clearance, and aggregation, as well as neuro-toxicities that contribute to AD pathogenesis.
Collapse
Affiliation(s)
- Farida El Gaamouch
- James J Peters VA Medical Center, Research & Development, Bronx, NY, USA.,Department of Neurology, Alzheimer Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ping Jing
- The Central Hospital of Wuhan, China
| | | | - Dongming Cai
- James J Peters VA Medical Center, Research & Development, Bronx, NY, USA.,Department of Neurology, Alzheimer Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,The Central Hospital of Wuhan, China
| |
Collapse
|
65
|
Whyte LS, Lau AA, Hemsley KM, Hopwood JJ, Sargeant TJ. Endo-lysosomal and autophagic dysfunction: a driving factor in Alzheimer's disease? J Neurochem 2017; 140:703-717. [PMID: 28027395 DOI: 10.1111/jnc.13935] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/19/2016] [Accepted: 12/19/2016] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, and its prevalence will increase significantly in the coming decades. Although important progress has been made, fundamental pathogenic mechanisms as well as most hereditary contributions to the sporadic form of the disease remain unknown. In this review, we examine the now substantial links between AD pathogenesis and lysosomal biology. The lysosome hydrolyses and processes cargo delivered by multiple pathways, including endocytosis and autophagy. The endo-lysosomal and autophagic networks are central to clearance of cellular macromolecules, which is important given there is a deficit in clearance of amyloid-β in AD. Numerous studies show prominent lysosomal dysfunction in AD, including perturbed trafficking of lysosomal enzymes and accumulation of the same substrates that accumulate in lysosomal storage disorders. Examination of the brain in lysosomal storage disorders shows the accumulation of amyloid precursor protein metabolites, which further links lysosomal dysfunction with AD. This and other evidence leads us to hypothesise that genetic variation in lysosomal genes modifies the disease course of sporadic AD.
Collapse
Affiliation(s)
- Lauren S Whyte
- Lysosomal Diseases Research Unit, Nutrition and Metabolism Theme, South Australian Health and Medical Research Institute, Adelaide, Australia.,School of Medicine, University of Adelaide, Adelaide, Australia
| | - Adeline A Lau
- Lysosomal Diseases Research Unit, Nutrition and Metabolism Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Kim M Hemsley
- Lysosomal Diseases Research Unit, Nutrition and Metabolism Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - John J Hopwood
- Lysosomal Diseases Research Unit, Nutrition and Metabolism Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Timothy J Sargeant
- Lysosomal Diseases Research Unit, Nutrition and Metabolism Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| |
Collapse
|
66
|
Dinkins MB, Wang G, Bieberich E. Sphingolipid-Enriched Extracellular Vesicles and Alzheimer's Disease: A Decade of Research. J Alzheimers Dis 2017; 60:757-768. [PMID: 27662306 PMCID: PMC5360538 DOI: 10.3233/jad-160567] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EVs), particularly exosomes, have emerged in the last 10 years as a new player in the progression of Alzheimer's disease (AD) with high potential for being useful as a diagnostic and treatment tool. Exosomes and other EVs are enriched with the sphingolipid ceramide as well as other more complex glycosphingolipids such as gangliosides. At least a subpopulation of exosomes requires neutral sphingomyelinase activity for their biogenesis and secretion. As ceramide is often elevated in AD, exosome secretion may be affected as well. Here, we review the available data showing that exosomes regulate the aggregation and clearance of amyloid-beta (Aβ) and discuss the differences in data from laboratories regarding Aβ binding, induction of aggregation, and glial clearance. We also summarize available data on the role of exosomes in extracellular tau propagation, AD-related exosomal mRNA/miRNA cargo, and the use of exosomes as biomarker and gene therapy vehicles for diagnosis and potential treatment.
Collapse
Affiliation(s)
- Michael B. Dinkins
- Department of Neuroscience and Regenerative Medicine, The Medical College of Georgia, Augusta University, Augusta, Georgia, 30912, USA
| | - Guanghu Wang
- Department of Neuroscience and Regenerative Medicine, The Medical College of Georgia, Augusta University, Augusta, Georgia, 30912, USA
| | - Erhard Bieberich
- Department of Neuroscience and Regenerative Medicine, The Medical College of Georgia, Augusta University, Augusta, Georgia, 30912, USA
| |
Collapse
|
67
|
Structural and fluctuational difference between two ends of Aβ amyloid fibril: MD simulations predict only one end has open conformations. Sci Rep 2016; 6:38422. [PMID: 27934893 PMCID: PMC5146922 DOI: 10.1038/srep38422] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 11/08/2016] [Indexed: 02/02/2023] Open
Abstract
Aβ amyloid fibrils, which are related to Alzheimer’s disease, have a cross-β structure consisting of two β-sheets: β1 and β2. The Aβ peptides are thought to be serially arranged in the same molecular conformation along the fibril axis. However, to understand the amyloid extension mechanism, we must understand the amyloid fibril structure and fluctuation at the fibril end, which has not been revealed to date. Here, we reveal these features by all-atom molecular dynamics (MD) simulations of Aβ42 and Aβ40 fibrils in explicit water. The structure and fluctuation were observed to differ between the two ends. At the even end, the Aβ peptide always took a closed form wherein β1 and β2 were closely spaced. The Aβ peptide fluctuated more at the odd end and took an open form wherein the two β-sheets were well separated. The differences are attributed to the stronger β-sheet formation by the β1 exposed at the even end than the β2 exposed at the odd end. Along with the small fluctuations at the even end, these results explain why the fibril extends from one end only, as observed in experiments. Our MD results agree well with recent observations by high-speed atomic force microscopy.
Collapse
|
68
|
Thomaier M, Gremer L, Dammers C, Fabig J, Neudecker P, Willbold D. High-Affinity Binding of Monomeric but Not Oligomeric Amyloid-β to Ganglioside GM1 Containing Nanodiscs. Biochemistry 2016; 55:6662-6672. [DOI: 10.1021/acs.biochem.6b00829] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Maren Thomaier
- Institute
of Complex Systems (ICS-6), Structural Biochemistry, Forschungszentrum Jülich, 52425, Jülich, Germany
- Institut
für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Lothar Gremer
- Institute
of Complex Systems (ICS-6), Structural Biochemistry, Forschungszentrum Jülich, 52425, Jülich, Germany
- Institut
für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Christina Dammers
- Institute
of Complex Systems (ICS-6), Structural Biochemistry, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Judith Fabig
- Institute
of Complex Systems (ICS-6), Structural Biochemistry, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Philipp Neudecker
- Institute
of Complex Systems (ICS-6), Structural Biochemistry, Forschungszentrum Jülich, 52425, Jülich, Germany
- Institut
für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Dieter Willbold
- Institute
of Complex Systems (ICS-6), Structural Biochemistry, Forschungszentrum Jülich, 52425, Jülich, Germany
- Institut
für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| |
Collapse
|
69
|
Yuyama K, Igarashi Y. Physiological and pathological roles of exosomes in the nervous system. Biomol Concepts 2016; 7:53-68. [PMID: 26812803 DOI: 10.1515/bmc-2015-0033] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 12/22/2015] [Indexed: 01/23/2023] Open
Abstract
Exosomes represent a subtype of extracellular nanovesicles that are generated from the luminal budding of limiting endosomal membranes and subsequent exocytosis. They encapsulate or associate with obsolete molecules to eliminate or to transfer their cargos in intercellular communication. The exosomes are also released and transported between neurons and glia in the nervous system, having a broad impact on nerve development, activation and regeneration. Accumulating evidence suggests that the exosomes are attributed to the pathogenesis of several neurodegenerative diseases such as prion disease, Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, as well as aging, in which the exosomes lack the capacity for cellular self-repair and spread their enclosed pathological agents among neurons. In this article, we review the current proposed functions of exosomes in physiological and pathological processes in the nervous system.
Collapse
|
70
|
Yanagisawa K. GM1 Ganglioside and the Seeding of Amyloid in Alzheimer’s Disease: Endogenous Seed for Alzheimer Amyloid. Neuroscientist 2016; 11:250-60. [PMID: 15911874 DOI: 10.1177/1073858405275177] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A fundamental question about the pathogenesis of Alzheimer’s disease (AD) is how monomeric, nontoxic amyloid β-protein (Aβ) is converted to its toxic aggregates in the brain. The author previously identified a unique Aβ species in the AD brain, which is characterized by its binding to GM1 ganglioside (GM1). On the basis of the molecular characteristics of GM1-bound Aβ (GAβ), the author hypothesized that GM1 plays a critical role in the process. The author recently examined this possibility using a novel monoclonal antibody raised against purified GAβ and validated that GAβ is endogenously generated in the brain and accelerates Aβ assembly by acting as a seed. Furthermore, the author provided a possibility that aging and the expression of apolipoprotein E4 facilitate Aβ assembly in the brain through an increase in the GM1 content in the neuronal membranes, which likely induces GAβ generation. The author’s results imply a mechanism underlying the onset of AD and also provide a new insight into development of novel therapeutic strategy.
Collapse
Affiliation(s)
- Katsuhiko Yanagisawa
- Department of Alzheimer's Disease Research, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, Obu, Japan.
| |
Collapse
|
71
|
Amyloid-β peptides in interaction with raft-mime model membranes: a neutron reflectivity insight. Sci Rep 2016; 6:20997. [PMID: 26880066 PMCID: PMC4754687 DOI: 10.1038/srep20997] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 01/14/2016] [Indexed: 12/11/2022] Open
Abstract
The role of first-stage β–amyloid aggregation in the development of the Alzheimer disease, is widely accepted but still unclear. Intimate interaction with the cell membrane is invoked. We designed Neutron Reflectometry experiments to reveal the existence and extent of the interaction between β–amyloid (Aβ) peptides and a lone customized biomimetic membrane, and their dependence on the aggregation state of the peptide. The membrane, asymmetrically containing phospholipids, GM1 and cholesterol in biosimilar proportion, is a model for a raft, a putative site for amyloid-cell membrane interaction. We found that the structured-oligomer of Aβ(1-42), its most acknowledged membrane-active state, is embedded as such into the external leaflet of the membrane. Conversely, the Aβ(1-42) unstructured early-oligomers deeply penetrate the membrane, likely mimicking the interaction at neuronal cell surfaces, when the Aβ(1-42) is cleaved from APP protein and the membrane constitutes a template for its further structural evolution. Moreover, the smaller Aβ(1-6) fragment, the N-terminal portion of Aβ, was also used. Aβ N-terminal is usually considered as involved in oligomer stabilization but not in the peptide-membrane interaction. Instead, it was seen to remove lipids from the bilayer, thus suggesting its role, once in the whole peptide, in membrane leakage, favouring peptide recruitment.
Collapse
|
72
|
Martins IJ. Magnesium Therapy Prevents Senescence with the Reversal of Diabetes and Alzheimer’s Disease. Health (London) 2016. [DOI: 10.4236/health.2016.87073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
73
|
Williams TL, Urbanc B, Marshall KE, Vadukul DM, Jenkins ATA, Serpell LC. Europium as an inhibitor of Amyloid-β(1-42) induced membrane permeation. FEBS Lett 2015; 589:3228-36. [PMID: 26450778 PMCID: PMC4641243 DOI: 10.1016/j.febslet.2015.09.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/16/2015] [Accepted: 09/25/2015] [Indexed: 11/25/2022]
Abstract
Europium ions complex with GM1 gangliosides in phospholipid membranes. Europium ions cause inhibition Aβ–membrane interactions. Europium blocks an Aβ receptor protecting against membrane permeation. Discrete Aβ binding events correlate to specific membrane permeation events.
Soluble Amyloid-beta (Aβ) oligomers are a source of cytotoxicity in Alzheimer’s disease (AD). The toxicity of Aβ oligomers may arise from their ability to interact with and disrupt cellular membranes mediated by GM1 ganglioside receptors within these membranes. Therefore, inhibition of Aβ–membrane interactions could provide a means of preventing the toxicity associated with Aβ. Here, using Surface Plasmon field-enhanced Fluorescence Spectroscopy, we determine that the lanthanide, Europium III chloride (Eu3+), strongly binds to GM1 ganglioside-containing membranes and prevents the interaction with Aβ42 leading to a loss of the peptides ability to cause membrane permeation. Here we discuss the molecular mechanism by which Eu3+ inhibits Aβ42-membrane interactions and this may lead to protection of membrane integrity against Aβ42 induced toxicity.
Collapse
Affiliation(s)
- Thomas L Williams
- School of Life Sciences, University of Sussex, Falmer, East Sussex BN1 9QG, UK; Physics Department, Drexel University, Philadelphia, PA 19104, USA; School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Brigita Urbanc
- Physics Department, Drexel University, Philadelphia, PA 19104, USA
| | - Karen E Marshall
- School of Life Sciences, University of Sussex, Falmer, East Sussex BN1 9QG, UK
| | - Devkee M Vadukul
- School of Life Sciences, University of Sussex, Falmer, East Sussex BN1 9QG, UK
| | | | - Louise C Serpell
- School of Life Sciences, University of Sussex, Falmer, East Sussex BN1 9QG, UK.
| |
Collapse
|
74
|
Itakura M, Nakajima H, Kubo T, Semi Y, Kume S, Higashida S, Kaneshige A, Kuwamura M, Harada N, Kita A, Azuma YT, Yamaji R, Inui T, Takeuchi T. Glyceraldehyde-3-phosphate Dehydrogenase Aggregates Accelerate Amyloid-β Amyloidogenesis in Alzheimer Disease. J Biol Chem 2015; 290:26072-87. [PMID: 26359500 DOI: 10.1074/jbc.m115.669291] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Indexed: 11/06/2022] Open
Abstract
Alzheimer disease (AD) is a progressive neurodegenerative disorder characterized by loss of neurons and formation of pathological extracellular deposits induced by amyloid-β peptide (Aβ). Numerous studies have established Aβ amyloidogenesis as a hallmark of AD pathogenesis, particularly with respect to mitochondrial dysfunction. We have previously shown that glycolytic glyceraldehyde-3-phosphate dehydrogenase (GAPDH) forms amyloid-like aggregates upon exposure to oxidative stress and that these aggregates contribute to neuronal cell death. Here, we report that GAPDH aggregates accelerate Aβ amyloidogenesis and subsequent neuronal cell death both in vitro and in vivo. Co-incubation of Aβ40 with small amounts of GAPDH aggregates significantly enhanced Aβ40 amyloidogenesis, as assessed by in vitro thioflavin-T assays. Similarly, structural analyses using Congo red staining, circular dichroism, and atomic force microscopy revealed that GAPDH aggregates induced Aβ40 amyloidogenesis. In PC12 cells, GAPDH aggregates augmented Aβ40-induced cell death, concomitant with disruption of mitochondrial membrane potential. Furthermore, mice injected intracerebroventricularly with Aβ40 co-incubated with GAPDH aggregates exhibited Aβ40-induced pyramidal cell death and gliosis in the hippocampal CA3 region. These observations were accompanied by nuclear translocation of apoptosis-inducing factor and cytosolic release of cytochrome c from mitochondria. Finally, in the 3×Tg-AD mouse model of AD, GAPDH/Aβ co-aggregation and mitochondrial dysfunction were consistently detected in an age-dependent manner, and Aβ aggregate formation was attenuated by GAPDH siRNA treatment. Thus, this study suggests that GAPDH aggregates accelerate Aβ amyloidogenesis, subsequently leading to mitochondrial dysfunction and neuronal cell death in the pathogenesis of AD.
Collapse
Affiliation(s)
- Masanori Itakura
- From the Laboratory of Veterinary Pharmacology, Graduate School of Life and Environmental Sciences, and
| | - Hidemitsu Nakajima
- From the Laboratory of Veterinary Pharmacology, Graduate School of Life and Environmental Sciences, and
| | - Takeya Kubo
- From the Laboratory of Veterinary Pharmacology, Graduate School of Life and Environmental Sciences, and
| | - Yuko Semi
- From the Laboratory of Veterinary Pharmacology, Graduate School of Life and Environmental Sciences, and
| | - Satoshi Kume
- the Laboratories of Biological Macromolecules and
| | - Shusaku Higashida
- From the Laboratory of Veterinary Pharmacology, Graduate School of Life and Environmental Sciences, and
| | - Akihiro Kaneshige
- From the Laboratory of Veterinary Pharmacology, Graduate School of Life and Environmental Sciences, and
| | - Mitsuru Kuwamura
- Laboratory of Veterinary Pathology, Osaka Prefecture University, Osaka 5988531 and
| | - Naoki Harada
- Nutrition Chemistry, Osaka Prefecture University, Osaka 5998531, Japan
| | - Akinori Kita
- From the Laboratory of Veterinary Pharmacology, Graduate School of Life and Environmental Sciences, and
| | - Yasu-Taka Azuma
- From the Laboratory of Veterinary Pharmacology, Graduate School of Life and Environmental Sciences, and
| | - Ryoichi Yamaji
- Nutrition Chemistry, Osaka Prefecture University, Osaka 5998531, Japan
| | - Takashi Inui
- the Laboratories of Biological Macromolecules and
| | - Tadayoshi Takeuchi
- From the Laboratory of Veterinary Pharmacology, Graduate School of Life and Environmental Sciences, and
| |
Collapse
|
75
|
Mishra P, Ayyannan SR, Panda G. Perspectives on Inhibiting β-Amyloid Aggregation through Structure-Based Drug Design. ChemMedChem 2015; 10:1467-74. [DOI: 10.1002/cmdc.201500215] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 06/30/2015] [Indexed: 12/24/2022]
|
76
|
Ledeen RW, Wu G. The multi-tasked life of GM1 ganglioside, a true factotum of nature. Trends Biochem Sci 2015; 40:407-18. [PMID: 26024958 DOI: 10.1016/j.tibs.2015.04.005] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/22/2015] [Accepted: 04/27/2015] [Indexed: 11/19/2022]
Abstract
GM1 ganglioside occurs widely in vertebrate tissues, where it exhibits many essential functions, both in the plasma membrane and intracellular loci. Its essentiality is revealed in the dire consequences resulting from genetic deletion. This derives from its key roles in several signalosome systems, characteristically located in membrane rafts, where it associates with specific proteins that have glycolipid-binding domains. Thus, GM1 interacts with proteins that modulate mechanisms such as ion transport, neuronal differentiation, G protein-coupled receptors (GPCRs), immune system reactivities, and neuroprotective signaling. The latter occurs through intimate association with neurotrophin receptors, which has relevance to the etiopathogenesis of neurodegenerative diseases and potential therapies. Here, we review the current state of knowledge of these GM1-associated mechanisms.
Collapse
Affiliation(s)
- Robert W Ledeen
- Department of Neurology and Neurosciences, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA.
| | - Gusheng Wu
- Department of Neurology and Neurosciences, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA
| |
Collapse
|
77
|
Yanagisawa K. GM1 ganglioside and Alzheimer’s disease. Glycoconj J 2015; 32:87-91. [DOI: 10.1007/s10719-015-9579-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 03/02/2015] [Accepted: 03/04/2015] [Indexed: 12/20/2022]
|
78
|
Oikawa N, Matsubara T, Fukuda R, Yasumori H, Hatsuta H, Murayama S, Sato T, Suzuki A, Yanagisawa K. Imbalance in fatty-acid-chain length of gangliosides triggers Alzheimer amyloid deposition in the precuneus. PLoS One 2015; 10:e0121356. [PMID: 25798597 PMCID: PMC4370507 DOI: 10.1371/journal.pone.0121356] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 01/30/2015] [Indexed: 12/26/2022] Open
Abstract
Amyloid deposition, a crucial event of Alzheimer's disease (AD), emerges in distinct brain regions. A key question is what triggers the assembly of the monomeric amyloid ß-protein (Aß) into fibrils in the regions. On the basis of our previous findings that gangliosides facilitate the initiation of Aß assembly at presynaptic neuritic terminals, we investigated how lipids, including gangliosides, cholesterol and sphingomyelin, extracted from synaptic plasma membranes (SPMs) isolated from autopsy brains were involved in the Aß assembly. We focused on two regions of the cerebral cortex; precuneus and calcarine cortex, one of the most vulnerable and one of the most resistant regions to amyloid deposition, respectively. Here, we show that lipids extracted from SPMs isolated from the amyloid-bearing precuneus, but neither the amyloid-free precuneus nor the calcarine cortex, markedly accelerate the Aß assembly in vitro. Through liquid chromatography-mass spectrometry of the lipids, we identified an increase in the ratio of the level of GD1b-ganglioside containing C20:0 fatty acid to that containing C18:0 as a cause of the enhanced Aß assembly in the precuneus. Our results suggest that the local glycolipid environment play a critical role in the initiation of Alzheimer amyloid deposition.
Collapse
Affiliation(s)
- Naoto Oikawa
- Department of Drug Discovery, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Teruhiko Matsubara
- Department of Bioscience and Informatics, Keio University, Kanagawa, Japan
| | - Ryoto Fukuda
- Department of Bioscience and Informatics, Keio University, Kanagawa, Japan
| | - Hanaki Yasumori
- Department of Bioscience and Informatics, Keio University, Kanagawa, Japan
| | - Hiroyuki Hatsuta
- Department of Neuropathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Shigeo Murayama
- Department of Neuropathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Toshinori Sato
- Department of Bioscience and Informatics, Keio University, Kanagawa, Japan
| | - Akemi Suzuki
- Institute of Glycoscience, Tokai University, Kanagawa, Japan
| | - Katsuhiko Yanagisawa
- Department of Drug Discovery, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Aichi, Japan
- Department of Alzheimer’s Disease Research, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Aichi, Japan
- * E-mail:
| |
Collapse
|
79
|
GM1 Ganglioside: Past Studies and Future Potential. Mol Neurobiol 2015; 53:1824-1842. [DOI: 10.1007/s12035-015-9136-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/22/2015] [Indexed: 10/23/2022]
|
80
|
Abstract
For over a century, researchers have observed similar neurodegenerative hallmarks in brains of people affected by rare early-onset lysosomal storage diseases and late-onset neurodegenerative diseases such as Alzheimer's and Parkinson's disease. Increasing evidence suggests these apparently disparate diseases share a common underlying feature, namely, a dysfunctional clearance of cellular cargo through the secretory-endosomal-autophagic-lysosomal-exocytic (SEALE) network. By providing examples of rare and common neurodegenerative diseases known to have pathologically altered cargo flux through the SEALE network, we explore the unifying hypothesis that impaired catabolism or exocytosis of SEALE cargo, places a burden of stress on neurons that initiates pathogenesis. We also describe how a growing understanding of genetic, epigenetic and age-related modifications of the SEALE network, has inspired a number of novel disease-modifying therapeutic approaches aimed at alleviating SEALE storage and providing therapeutic benefit to people affected by these devastating diseases across the age spectrum.
Collapse
Affiliation(s)
- Barry Boland
- Department of Pharmacology and Therapeutics, School of Medicine, University College Cork, Cork, Ireland.
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, United Kingdom.
| |
Collapse
|
81
|
Weissmiller AM, Natera-Naranjo O, Reyna SM, Pearn ML, Zhao X, Nguyen P, Cheng S, Goldstein LSB, Tanzi RE, Wagner SL, Mobley WC, Wu C. A γ-secretase inhibitor, but not a γ-secretase modulator, induced defects in BDNF axonal trafficking and signaling: evidence for a role for APP. PLoS One 2015; 10:e0118379. [PMID: 25710492 PMCID: PMC4339551 DOI: 10.1371/journal.pone.0118379] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 01/14/2015] [Indexed: 11/19/2022] Open
Abstract
Clues to Alzheimer disease (AD) pathogenesis come from a variety of different sources including studies of clinical and neuropathological features, biomarkers, genomics and animal and cellular models. An important role for amyloid precursor protein (APP) and its processing has emerged and considerable interest has been directed at the hypothesis that Aβ peptides induce changes central to pathogenesis. Accordingly, molecules that reduce the levels of Aβ peptides have been discovered such as γ-secretase inhibitors (GSIs) and modulators (GSMs). GSIs and GSMs reduce Aβ levels through very different mechanisms. However, GSIs, but not GSMs, markedly increase the levels of APP CTFs that are increasingly viewed as disrupting neuronal function. Here, we evaluated the effects of GSIs and GSMs on a number of neuronal phenotypes possibly relevant to their use in treatment of AD. We report that GSI disrupted retrograde axonal trafficking of brain-derived neurotrophic factor (BDNF), suppressed BDNF-induced downstream signaling pathways and induced changes in the distribution within neuronal processes of mitochondria and synaptic vesicles. In contrast, treatment with a novel class of GSMs had no significant effect on these measures. Since knockdown of APP by specific siRNA prevented GSI-induced changes in BDNF axonal trafficking and signaling, we concluded that GSI effects on APP processing were responsible, at least in part, for BDNF trafficking and signaling deficits. Our findings argue that with respect to anti-amyloid treatments, even an APP-specific GSI may have deleterious effects and GSMs may serve as a better alternative.
Collapse
Affiliation(s)
- April M. Weissmiller
- Department of Neurosciences, University of California San Diego, San Diego, California, United States of America
| | - Orlangie Natera-Naranjo
- Department of Neurosciences, University of California San Diego, San Diego, California, United States of America
| | - Sol M. Reyna
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, California, United States of America
| | - Matthew L. Pearn
- Department of Anesthesiology, University of California San Diego, San Diego, California, United States of America
- V.A. San Diego Healthcare System, San Diego, California, United States of America
| | - Xiaobei Zhao
- Department of Neurosciences, University of California San Diego, San Diego, California, United States of America
| | - Phuong Nguyen
- Department of Neurosciences, University of California San Diego, San Diego, California, United States of America
| | - Soan Cheng
- Department of Neurosciences, University of California San Diego, San Diego, California, United States of America
| | - Lawrence S. B. Goldstein
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, California, United States of America
| | - Rudolph E. Tanzi
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Steven L. Wagner
- Department of Neurosciences, University of California San Diego, San Diego, California, United States of America
| | - William C. Mobley
- Department of Neurosciences, University of California San Diego, San Diego, California, United States of America
| | - Chengbiao Wu
- Department of Neurosciences, University of California San Diego, San Diego, California, United States of America
| |
Collapse
|
82
|
Okabayashi S, Shimozawa N, Yasutomi Y, Yanagisawa K, Kimura N. Diabetes mellitus accelerates Aβ pathology in brain accompanied by enhanced GAβ generation in nonhuman primates. PLoS One 2015; 10:e0117362. [PMID: 25675436 PMCID: PMC4326359 DOI: 10.1371/journal.pone.0117362] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 12/21/2014] [Indexed: 11/18/2022] Open
Abstract
Growing evidence suggests that diabetes mellitus (DM) is one of the strongest risk factors for developing Alzheimer’s disease (AD). However, it remains unclear why DM accelerates AD pathology. In cynomolgus monkeys older than 25 years, senile plaques (SPs) are spontaneously and consistently observed in their brains, and neurofibrillary tangles are present at 32 years of age and older. In laboratory-housed monkeys, obesity is occasionally observed and frequently leads to development of type 2 DM. In the present study, we performed histopathological and biochemical analyses of brain tissue in cynomolgus monkeys with type 2 DM to clarify the relationship between DM and AD pathology. Here, we provide the evidence that DM accelerates Aβ pathology in vivo in nonhuman primates who had not undergone any genetic manipulation. In DM-affected monkey brains, SPs were observed in frontal and temporal lobe cortices, even in monkeys younger than 20 years. Biochemical analyses of brain revealed that the amount of GM1-ganglioside-bound Aβ (GAβ)—the endogenous seed for Aβ fibril formation in the brain—was clearly elevated in DM-affected monkeys. Furthermore, the level of Rab GTPases was also significantly increased in the brains of adult monkeys with DM, almost to the same levels as in aged monkeys. Intraneuronal accumulation of enlarged endosomes was also observed in DM-affected monkeys, suggesting that exacerbated endocytic disturbance may underlie the acceleration of Aβ pathology due to DM.
Collapse
Affiliation(s)
- Sachi Okabayashi
- Tsukuba Primate Research Center, National Institute of Biomedical Innovation, 1–1 Hachimandai, Tsukuba-shi, Ibaraki, 305–0843, Japan
- The Corporation for Production and Research of Laboratory Primates, 1–1 Hachimandai, Tsukuba-shi, Ibaraki, 305–0843, Japan
| | - Nobuhiro Shimozawa
- Tsukuba Primate Research Center, National Institute of Biomedical Innovation, 1–1 Hachimandai, Tsukuba-shi, Ibaraki, 305–0843, Japan
| | - Yasuhiro Yasutomi
- Tsukuba Primate Research Center, National Institute of Biomedical Innovation, 1–1 Hachimandai, Tsukuba-shi, Ibaraki, 305–0843, Japan
| | - Katsuhiko Yanagisawa
- Section of Cell Biology and Pathology, Department of Alzheimer's Disease Research, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology (NCGG), Gengo 35, Moriika, Obu, Aichi, 474–8511, Japan
| | - Nobuyuki Kimura
- Tsukuba Primate Research Center, National Institute of Biomedical Innovation, 1–1 Hachimandai, Tsukuba-shi, Ibaraki, 305–0843, Japan
- Section of Cell Biology and Pathology, Department of Alzheimer's Disease Research, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology (NCGG), Gengo 35, Moriika, Obu, Aichi, 474–8511, Japan
- * E-mail:
| |
Collapse
|
83
|
Thal DR, Walter J, Saido TC, Fändrich M. Neuropathology and biochemistry of Aβ and its aggregates in Alzheimer's disease. Acta Neuropathol 2015; 129:167-82. [PMID: 25534025 DOI: 10.1007/s00401-014-1375-y] [Citation(s) in RCA: 217] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/09/2014] [Accepted: 12/13/2014] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is characterized by β-amyloid plaques and intraneuronal τ aggregation usually associated with cerebral amyloid angiopathy (CAA). Both β-amyloid plaques and CAA deposits contain fibrillar aggregates of the amyloid β-peptide (Aβ). Aβ plaques and CAA develop first in neocortical areas of preclinical AD patients and, then, expand in a characteristic sequence into further brain regions with end-stage pathology in symptomatic AD patients. Aβ aggregates are not restricted to amyloid plaques and CAA. Soluble and several types of insoluble non-plaque- and non-CAA-associated Aβ aggregates have been described. Amyloid fibrils are products of a complex self-assembly process that involves different types of transient intermediates. Amongst these intermediate species are protofibrils and oligomers. Different variants of Aβ peptides may result from alternative processing or from mutations that lead to rare forms of familial AD. These variants can exhibit different self-assembly and aggregation properties. In addition, several post-translational modifications of Aβ have been described that result, for example, in the production of N-terminal truncated Aβ with pyroglutamate modification at position 3 (AβN3pE) or of Aβ phosphorylated at serine 8 (pSer8Aβ). Both AβN3pE and pSer8Aβ show enhanced aggregation into oligomers and fibrils. However, the earliest detectable soluble and insoluble Aβ aggregates in the human brain exhibit non-modified Aβ, whereas AβN3pE and pSer8Aβ are detected in later stages. This finding indicates the existence of different biochemical stages of Aβ aggregate maturation with pSer8Aβ being related mainly to cases with symptomatic AD. The conversion from preclinical to symptomatic AD could thereby be related to combined effects of increased Aβ concentration, maturation of aggregates and spread of deposits into additional brain regions. Thus, the inhibition of Aβ aggregation and maturation before entering the symptomatic stage of the disease as indicated by the accumulation of pSer8Aβ may represent an attractive treatment strategy for preventing disease progression.
Collapse
|
84
|
Knight EM, Williams HN, Stevens AC, Kim SH, Kottwitz JC, Morant AD, Steele JW, Klein WL, Yanagisawa K, Boyd RE, Lockhart DJ, Sjoberg ER, Ehrlich ME, Wustman BA, Gandy S. Evidence that small molecule enhancement of β-hexosaminidase activity corrects the behavioral phenotype in Dutch APP(E693Q) mice through reduction of ganglioside-bound Aβ. Mol Psychiatry 2015; 20:109-17. [PMID: 25349165 PMCID: PMC5189927 DOI: 10.1038/mp.2014.135] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 08/07/2014] [Accepted: 08/28/2014] [Indexed: 01/08/2023]
Abstract
Certain mutant Alzheimer's amyloid-β (Aβ) peptides (that is, Dutch mutant APP(E693Q)) form complexes with gangliosides (GAβ). These mutant Aβ peptides may also undergo accelerated aggregation and accumulation upon exposure to GM2 and GM3. We hypothesized that increasing β-hexosaminidase (β-hex) activity would lead to a reduction in GM2 levels, which in turn, would cause a reduction in Aβ aggregation and accumulation. The small molecule OT1001 is a β-hex-targeted pharmacological chaperone with good bioavailability, blood-brain barrier penetration, high selectivity for β-hex and low cytotoxicity. Dutch APP(E693Q) transgenic mice accumulate oligomeric Aβ as they age, as well as Aβ oligomer-dose-dependent anxiety and impaired novel object recognition (NOR). Treatment of Dutch APP(E693Q) mice with OT1001 caused a dose-dependent increase in brain β-hex levels up to threefold over those observed at baseline. OT1001 treatment was associated with reduced anxiety, improved learning behavior in the NOR task and dramatically reduced GAβ accumulation in the subiculum and perirhinal cortex, both of which are brain regions required for normal NOR. Pharmacological chaperones that increase β-hex activity may be useful in reducing accumulation of certain mutant species of Aβ and in preventing the associated behavioral pathology.
Collapse
Affiliation(s)
- E M Knight
- Departments of Neurology and Psychiatry, and Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | - S H Kim
- Departments of Neurology and Psychiatry, and Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - J C Kottwitz
- Departments of Neurology and Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - A D Morant
- Departments of Neurology and Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - W L Klein
- Department of Neurobiology and Cognitive Neurology, and Alzheimer's Disease Center, Northwestern University, Evanston, IL, USA
| | - K Yanagisawa
- Research Institute, National Center for Geriatrics and Gerontology, Obu City, Aichi, Japan
| | - R E Boyd
- Amicus Therapeutics, Cranbury, NJ, USA
| | | | | | - M E Ehrlich
- Departments of Neurology and Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - S Gandy
- Departments of Neurology and Psychiatry, and Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- James J. Peters Veterans Affairs Medical Center, Bronx, New York, NY, USA
| |
Collapse
|
85
|
Yamamoto N, Arima H, Sugiura T, Hirate H, Kusama N, Suzuki K, Sobue K. Midazolam inhibits the formation of amyloid fibrils and GM1 ganglioside-rich microdomains in presynaptic membranes through the gamma-aminobutyric acid A receptor. Biochem Biophys Res Commun 2015; 457:547-53. [PMID: 25600806 DOI: 10.1016/j.bbrc.2015.01.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 01/08/2015] [Indexed: 01/23/2023]
Abstract
Recent studies have suggested that a positive correlation exists between surgical interventions performed under general anesthesia and the risk of developing Alzheimer's disease (AD) in the late postoperative period. It has been reported that amyloid β-protein (Αβ) fibrillogenesis, which is closely related to AD, is accelerated by exposure to anesthetics. However, the mechanisms underlying these effects remain uncertain. This study was designed to investigate whether the anesthetic midazolam affects Αβ fibrillogenesis, and if so, whether it acts through GM1 ganglioside (GM1) on the neuronal surface. Midazolam treatment decreased GM1 expression in the detergent-resistant membrane microdomains of neurons, and these effects were regulated by the gamma-aminobutyric acid-A receptor. Midazolam inhibited Αβ fibril formation from soluble Αβ on the neuronal surface. In addition, midazolam suppressed GM1-induced fibril formation in a cell-free system. Moreover, midazolam inhibited the formation of Αβ assemblies in synaptosomes isolated from aged mouse brains. These finding suggested that midazolam has direct and indirect inhibitory effects on Αβ fibrillogenesis.
Collapse
Affiliation(s)
- Naoki Yamamoto
- Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa, Ishikawa, Japan; Laboratory of Neurochemistry, Department of Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan.
| | - Hajime Arima
- Department of Anesthesiology and Medical Crisis Management, Nagoya City University Graduate School of Medical Sciences, Nagoya City, Aichi, Japan
| | - Takeshi Sugiura
- Department of Anesthesiology and Medical Crisis Management, Nagoya City University Graduate School of Medical Sciences, Nagoya City, Aichi, Japan
| | - Hiroyuki Hirate
- Department of Anesthesiology and Medical Crisis Management, Nagoya City University Graduate School of Medical Sciences, Nagoya City, Aichi, Japan
| | - Nobuyoshi Kusama
- Department of Anesthesiology and Medical Crisis Management, Nagoya City University Graduate School of Medical Sciences, Nagoya City, Aichi, Japan
| | - Kenji Suzuki
- Laboratory of Molecular Medicinal Science, Department of Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Kazuya Sobue
- Department of Anesthesiology and Medical Crisis Management, Nagoya City University Graduate School of Medical Sciences, Nagoya City, Aichi, Japan
| |
Collapse
|
86
|
Alterations in Cholesterol and Ganglioside GM1 Content of Lipid Rafts in Platelets From Patients With Alzheimer Disease. Alzheimer Dis Assoc Disord 2015; 29:63-9. [DOI: 10.1097/wad.0000000000000041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
87
|
Lipids in Amyloid-β Processing, Aggregation, and Toxicity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 855:67-94. [PMID: 26149926 DOI: 10.1007/978-3-319-17344-3_3] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aggregation of amyloid-beta (Aβ) peptide is the major event underlying neuronal damage in Alzheimer's disease (AD). Specific lipids and their homeostasis play important roles in this and other neurodegenerative disorders. The complex interplay between the lipids and the generation, clearance or deposition of Aβ has been intensively investigated and is reviewed in this chapter. Membrane lipids can have an important influence on the biogenesis of Aβ from its precursor protein. In particular, increased cholesterol in the plasma membrane augments Aβ generation and shows a strong positive correlation with AD progression. Furthermore, apolipoprotein E, which transports cholesterol in the cerebrospinal fluid and is known to interact with Aβ or compete with it for the lipoprotein receptor binding, significantly influences Aβ clearance in an isoform-specific manner and is the major genetic risk factor for AD. Aβ is an amphiphilic peptide that interacts with various lipids, proteins and their assemblies, which can lead to variation in Aβ aggregation in vitro and in vivo. Upon interaction with the lipid raft components, such as cholesterol, gangliosides and phospholipids, Aβ can aggregate on the cell membrane and thereby disrupt it, perhaps by forming channel-like pores. This leads to perturbed cellular calcium homeostasis, suggesting that Aβ-lipid interactions at the cell membrane probably trigger the neurotoxic cascade in AD. Here, we overview the roles of specific lipids, lipid assemblies and apolipoprotein E in Aβ processing, clearance and aggregation, and discuss the contribution of these factors to the neurotoxicity in AD.
Collapse
|
88
|
Cutler RG, Thompson KW, Camandola S, Mack KT, Mattson MP. Sphingolipid metabolism regulates development and lifespan in Caenorhabditis elegans. Mech Ageing Dev 2014; 143-144:9-18. [PMID: 25437839 DOI: 10.1016/j.mad.2014.11.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 11/26/2014] [Accepted: 11/27/2014] [Indexed: 01/19/2023]
Abstract
Sphingolipids are a highly conserved lipid component of cell membranes involved in the formation of lipid raft domains that house many of the receptors and cell-to-cell signaling factors involved in regulating cell division, maturation, and terminal differentiation. By measuring and manipulating sphingolipid metabolism using pharmacological and genetic tools in Caenorhabditis elegans, we provide evidence that the synthesis and remodeling of specific ceramides (e.g., dC18:1-C24:1), gangliosides (e.g., GM1-C24:1), and sphingomyelins (e.g., dC18:1-C18:1) influence development rate and lifespan. We found that the levels of fatty acid chain desaturation and elongation in many sphingolipid species increased during development and aging, with no such changes in developmentally-arrested dauer larvae or normal adults after food withdrawal (an anti-aging intervention). Pharmacological inhibitors and small interfering RNAs directed against serine palmitoyl transferase and glucosylceramide synthase acted to slow development rate, extend the reproductive period, and increase lifespan. In contrast, worms fed an egg yolk diet rich in sphingolipids exhibited accelerated development and reduced lifespan. Our findings demonstrate that sphingolipid accumulation and remodeling are critical events that determine development rate and lifespan in the nematode model, with both development rate and aging being accelerated by the synthesis of sphingomyelin, and its metabolism to ceramides and gangliosides.
Collapse
Affiliation(s)
- Roy G Cutler
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Kenneth W Thompson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Simonetta Camandola
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Kendra T Mack
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD 21224, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
89
|
Ueno H, Yamaguchi T, Fukunaga S, Okada Y, Yano Y, Hoshino M, Matsuzaki K. Comparison between the Aggregation of Human and Rodent Amyloid β-Proteins in GM1 Ganglioside Clusters. Biochemistry 2014; 53:7523-30. [DOI: 10.1021/bi501239q] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Hiroshi Ueno
- Graduate School of Pharmaceutical
Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takahiro Yamaguchi
- Graduate School of Pharmaceutical
Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Saori Fukunaga
- Graduate School of Pharmaceutical
Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuki Okada
- Graduate School of Pharmaceutical
Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoshiaki Yano
- Graduate School of Pharmaceutical
Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masaru Hoshino
- Graduate School of Pharmaceutical
Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Katsumi Matsuzaki
- Graduate School of Pharmaceutical
Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
90
|
Sashidhara KV, Modukuri RK, Jadiya P, Dodda RP, Kumar M, Sridhar B, Kumar V, Haque R, Siddiqi MI, Nazir A. Benzofuran-chalcone hybrids as potential multifunctional agents against Alzheimer's disease: synthesis and in vivo studies with transgenic Caenorhabditis elegans. ChemMedChem 2014; 9:2671-84. [PMID: 25251917 DOI: 10.1002/cmdc.201402291] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Indexed: 12/20/2022]
Abstract
In the search for effective multifunctional agents for the treatment of Alzheimer's disease (AD), a series of novel hybrids incorporating benzofuran and chalcone fragments were designed and synthesized. These hybrids were screened by using a transgenic Caenorhabditis elegans model that expresses the human β-amyloid (Aβ) peptide. Among the hybrids investigated, (E)-3-(7-methyl-2-(4-methylbenzoyl)benzofuran-5-yl)-1-phenylprop-2-en-1-one (4 f), (E)-3-(2-benzoyl-7-methylbenzofuran-5-yl)-1-phenylprop-2-en-1-one (4 i), and (E)-3-(2-benzoyl-7-methylbenzofuran-5-yl)-1-(thiophen-2-yl)prop-2-en-1-one (4 m) significantly decreased Aβ aggregation and increased acetylcholine (ACh) levels along with the overall availability of ACh at the synaptic junction. These compounds were also found to decrease acetylcholinesterase (AChE) levels, reduce oxidative stress in the worms, lower lipid content, and to provide protection against chemically induced cholinergic neurodegeneration. Overall, the multifunctional effects of these hybrids qualify them as potential drug leads for further development in AD therapy.
Collapse
Affiliation(s)
- Koneni V Sashidhara
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Jankipuram Extension, Sitapur Road, Lucknow 226031 (India).
| | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Matsuzaki K. How do membranes initiate Alzheimer's Disease? Formation of toxic amyloid fibrils by the amyloid β-protein on ganglioside clusters. Acc Chem Res 2014; 47:2397-404. [PMID: 25029558 DOI: 10.1021/ar500127z] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alzheimer's disease (AD), a severe neurodegenerative disorder, causes more than half of dementia cases. According to the popular "Aβ hypothesis" to explain the mechanism of this disease, amyloid β-peptides (Aβ) of 39-43 amino acid residues aggregate and deposit onto neurons, igniting the neurotoxic cascade of the disease. Therefore, researchers studying AD would like to elucidate the mechanisms by which essentially water-soluble but hydrophobic Aβ aggregates under pathological conditions. Most researchers have investigated the aggregation of Aβ in aqueous solution, and they concluded that the final aggregation product, the amyloid fibrils, were less toxic than the component peptide oligomers. They consequently shifted their interests to more toxic "soluble oligomers", structures that form as intermediates or off-pathway products during the aggregation process. Some researchers have also investigated artificial oligomers prepared under nonphysiological conditions. In contrast to these "in solution" studies, we have focused on "membrane-mediated" amyloidogenesis. In an earlier study, other researchers identified a specific form of Aβ that was bound to monosialoganglioside GM1, a sugar lipid, in brains of patients who exhibited the early pathological changes associated with AD. This Account summarizes 15 years of our research on this topic. We have found that Aβ specifically binds to GM1 that occurs in clusters, but not when it is uniformly distributed. Clustering is facilitated by cholesterol. Upon binding, Aβ changes its conformation from a random coil to an α-helix-rich structure. A CH-π interaction between the aromatic side chains of Aβ and carbohydrate moieties appended to GM1 appears to be important for binding. In addition, as Aβ accumulates and reaches its first threshold concentration (Aβ/GM1 = ∼0.013), aggregated β-sheets of ∼15 molecules appear and coexist with the helical form. However, this β-structure is stable and does not form larger aggregates. When the disease progresses further and the Aβ/GM1 ratio exceeds ∼0.044, the β-structure converts to a second β-structure that can seed aggregates. The seed recruits monomers from the aqueous phase to form toxic amyloid fibrils that have larger surface hydrophobicity and can contain antiparallel β-sheets. In contrast, amyloid fibrils formed in aqueous solution are less toxic and have parallel β-sheets. The less polar environments of GM1 clusters play an important role in the formation of these toxic fibrils. Membranes that contain GM1 clusters not only accelerate the aggregation of Aβ by locally concentrating Aβ molecules but also generate amyloid fibrils with unique structures and significant cytotoxicity. The inhibition of this aggregation cascade could be a promising strategy for the development of AD-modulating therapies.
Collapse
Affiliation(s)
- Katsumi Matsuzaki
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29
Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
92
|
Matveev SV, Spielmann HP, Metts BM, Chen J, Onono F, Zhu H, Scheff SW, Walker LC, LeVine H. A distinct subfraction of Aβ is responsible for the high-affinity Pittsburgh compound B-binding site in Alzheimer's disease brain. J Neurochem 2014; 131:356-68. [PMID: 24995708 DOI: 10.1111/jnc.12815] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/18/2014] [Accepted: 06/29/2014] [Indexed: 12/27/2022]
Abstract
The positron emission tomography (PET) ligand (11) C-labeled Pittsburgh compound B (PIB) is used to image β-amyloid (Aβ) deposits in the brains of living subjects with the intent of detecting early stages of Alzheimer's disease (AD). However, deposits of human-sequence Aβ in amyloid precursor protein transgenic mice and non-human primates bind very little PIB. The high stoichiometry of PIB:Aβ binding in human AD suggests that the PIB-binding site may represent a particularly pathogenic entity and/or report local pathologic conditions. In this study, (3) H-PIB was employed to track purification of the PIB-binding site in > 90% yield from frontal cortical tissue of autopsy-diagnosed AD subjects. The purified PIB-binding site comprises a distinct, highly insoluble subfraction of the Aβ in AD brain with low buoyant density because of the sodium dodecyl sulfate-resistant association with a limited subset of brain proteins and lipids with physical properties similar to lipid rafts and to a ganglioside:Aβ complex in AD and Down syndrome brain. Both the protein and lipid components are required for PIB binding. Elucidation of human-specific biological components and pathways will be important in guiding improvement of the animal models for AD and in identifying new potential therapeutic avenues. A lipid-associated subpopulation of Aβ accounts for the high-affinity binding of Pittsburgh compound B (PIB) in Alzheimer's disease brain. Mass spectrometry of the isolated PIB-binding site from frontal cortex identified Aβ peptides and a set of plaque-associated proteins in AD but not age-matched normal brain. The PIB-binding site may represent a particularly pathogenic entity and/or report local pathologic conditions.
Collapse
Affiliation(s)
- Sergey V Matveev
- Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Yuyama K, Sun H, Sakai S, Mitsutake S, Okada M, Tahara H, Furukawa JI, Fujitani N, Shinohara Y, Igarashi Y. Decreased amyloid-β pathologies by intracerebral loading of glycosphingolipid-enriched exosomes in Alzheimer model mice. J Biol Chem 2014; 289:24488-98. [PMID: 25037226 DOI: 10.1074/jbc.m114.577213] [Citation(s) in RCA: 275] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Elevated levels of amyloid-β peptide (Aβ) in the human brain are linked to the pathogenesis of Alzheimer disease. Recent in vitro studies have demonstrated that extracellular Aβ can bind to exosomes, which are cell-secreted nanovesicles with lipid membranes that are known to transport their cargos intercellularly. Such findings suggest that the exosomes are involved in Aβ metabolism in brain. Here, we found that neuroblastoma-derived exosomes exogenously injected into mouse brains trapped Aβ and with the associated Aβ were internalized into brain-resident phagocyte microglia. Accordingly, continuous intracerebral administration of the exosomes into amyloid-β precursor protein transgenic mice resulted in marked reductions in Aβ levels, amyloid depositions, and Aβ-mediated synaptotoxicity in the hippocampus. In addition, we determined that glycosphingolipids (GSLs), a group of membrane glycolipids, are highly abundant in the exosomes, and the enriched glycans of the GSLs are essential for Aβ binding and assembly on the exosomes both in vitro and in vivo. Our data demonstrate that intracerebrally administered exosomes can act as potent scavengers for Aβ by carrying it on the exosome surface GSLs and suggest a role of exosomes in Aβ clearance in the central nervous system. Improving Aβ clearance by exosome administration would provide a novel therapeutic intervention for Alzheimer disease.
Collapse
Affiliation(s)
- Kohei Yuyama
- From the Laboratory of Biomembrane and Biofunctional Chemistry, Graduate School of Advanced Life Science, and Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, Sapporo 001-0021, Japan
| | - Hui Sun
- From the Laboratory of Biomembrane and Biofunctional Chemistry, Graduate School of Advanced Life Science, and Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, Sapporo 001-0021, Japan
| | - Shota Sakai
- From the Laboratory of Biomembrane and Biofunctional Chemistry, Graduate School of Advanced Life Science, and Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, Sapporo 001-0021, Japan
| | - Susumu Mitsutake
- From the Laboratory of Biomembrane and Biofunctional Chemistry, Graduate School of Advanced Life Science, and Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, Sapporo 001-0021, Japan, Department of Applied Biochemistry and Food Science, Faculty of Agriculture, Saga University, Saga 840-8502, Japan
| | - Megumi Okada
- Department of Cellular and Molecular Biology, Graduate School of Biomedical Science, Hiroshima University, Hiroshima 734-8553, Japan, and
| | - Hidetoshi Tahara
- Department of Cellular and Molecular Biology, Graduate School of Biomedical Science, Hiroshima University, Hiroshima 734-8553, Japan, and
| | - Jun-Ichi Furukawa
- Laboratory of Medical and Functional Glycomics, Graduate School of Advanced Life Science, and Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, Sapporo 001-0021, Japan
| | - Naoki Fujitani
- Laboratory of Medical and Functional Glycomics, Graduate School of Advanced Life Science, and Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, Sapporo 001-0021, Japan
| | - Yasuro Shinohara
- Laboratory of Medical and Functional Glycomics, Graduate School of Advanced Life Science, and Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, Sapporo 001-0021, Japan
| | - Yasuyuki Igarashi
- From the Laboratory of Biomembrane and Biofunctional Chemistry, Graduate School of Advanced Life Science, and Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, Sapporo 001-0021, Japan,
| |
Collapse
|
94
|
Ali-Rahmani F, Schengrund CL, Connor JR. HFE gene variants, iron, and lipids: a novel connection in Alzheimer's disease. Front Pharmacol 2014; 5:165. [PMID: 25071582 PMCID: PMC4086322 DOI: 10.3389/fphar.2014.00165] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 06/24/2014] [Indexed: 12/14/2022] Open
Abstract
Iron accumulation and associated oxidative stress in the brain have been consistently found in several neurodegenerative diseases. Multiple genetic studies have been undertaken to try to identify a cause of neurodegenerative diseases but direct connections have been rare. In the iron field, variants in the HFE gene that give rise to a protein involved in cellular iron regulation, are associated with iron accumulation in multiple organs including the brain. There is also substantial epidemiological, genetic, and molecular evidence of disruption of cholesterol homeostasis in several neurodegenerative diseases, in particular Alzheimer's disease (AD). Despite the efforts that have been made to identify factors that can trigger the pathological events associated with neurodegenerative diseases they remain mostly unknown. Because molecular phenotypes such as oxidative stress, synaptic failure, neuronal loss, and cognitive decline, characteristics associated with AD, have been shown to result from disruption of a number of pathways, one can easily argue that the phenotype seen may not arise from a linear sequence of events. Therefore, a multi-targeted approach is needed to understand a complex disorder like AD. This can be achieved only when knowledge about interactions between the different pathways and the potential influence of environmental factors on them becomes available. Toward this end, this review discusses what is known about the roles and interactions of iron and cholesterol in neurodegenerative diseases. It highlights the effects of gene variants of HFE (H63D- and C282Y-HFE) on iron and cholesterol metabolism and how they may contribute to understanding the etiology of complex neurodegenerative diseases.
Collapse
Affiliation(s)
- Fatima Ali-Rahmani
- Departments of Neurosurgery, Neural and Behavioral Sciences and Pediatrics, Center for Aging and Neurodegenerative Diseases, Penn State Hershey Medical CenterHershey, PA, USA
- Departments of Biochemistry and Molecular Biology, The Pennsylvania State University College of MedicineHershey, PA, USA
| | - Cara-Lynne Schengrund
- Departments of Biochemistry and Molecular Biology, The Pennsylvania State University College of MedicineHershey, PA, USA
| | - James R. Connor
- Departments of Neurosurgery, Neural and Behavioral Sciences and Pediatrics, Center for Aging and Neurodegenerative Diseases, Penn State Hershey Medical CenterHershey, PA, USA
| |
Collapse
|
95
|
Pathological roles of ceramide and its metabolites in metabolic syndrome and Alzheimer's disease. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:793-8. [DOI: 10.1016/j.bbalip.2013.08.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 07/30/2013] [Accepted: 08/02/2013] [Indexed: 02/03/2023]
|
96
|
Soluble Aβ oligomers are rapidly sequestered from brain ISF in vivo and bind GM1 ganglioside on cellular membranes. Neuron 2014; 82:308-19. [PMID: 24685176 DOI: 10.1016/j.neuron.2014.02.027] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2014] [Indexed: 01/06/2023]
Abstract
Soluble Aβ oligomers contribute importantly to synaptotoxicity in Alzheimer's disease, but their dynamics in vivo remain unclear. Here, we found that soluble Aβ oligomers were sequestered from brain interstitial fluid onto brain membranes much more rapidly than nontoxic monomers and were recovered in part as bound to GM1 ganglioside on membranes. Aβ oligomers bound strongly to GM1 ganglioside, and blocking the sialic acid residue on GM1 decreased oligomer-mediated LTP impairment in mouse hippocampal slices. In a hAPP transgenic mouse model, substantial levels of GM1-bound Aβ₄₂ were recovered from brain membrane fractions. We also detected GM1-bound Aβ in human CSF, and its levels correlated with Aβ₄₂, suggesting its potential as a biomarker of Aβ-related membrane dysfunction. Together, these findings highlight a mechanism whereby hydrophobic Aβ oligomers become sequestered onto GM1 ganglioside and presumably other lipids on neuronal membranes, where they may induce progressive functional and structural changes.
Collapse
|
97
|
The case for involvement of spiroplasma in the pathogenesis of transmissible spongiform encephalopathies. J Neuropathol Exp Neurol 2014; 73:104-14. [PMID: 24423635 DOI: 10.1097/nen.0000000000000033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Spiroplasma biofilm formation explains the role of these wall-less bacteria in the pathogenesis of transmissible spongiform encephalopathies (TSEs). Spiroplasma embedded in the biofilm polysaccharide matrix are markedly resistant to physical and chemical treatment, simulating the biologic properties of the TSE agent. Microcolonies of spiroplasma embedded in biofilm bound to clay are the likely mechanism of lateral transmission of scrapie in sheep and chronic wasting disease in deer via soil ingestion. Spiroplasma in biofilm bound to the stainless steel of surgical instruments may also cause iatrogenic transmission of Creutzfeldt-Jakob disease. Sessile spiroplasma in biofilm attach to the surface by curli-like fibrils, a functional amyloid that is important for spiroplasma entering cells. Curli fibers have been shown to interact with host proteins and initiate formation of a potentially toxic amyloid that multiplies by self-assembly. In TSE, this mechanism may explain how spiroplasma trigger the formation of prion amyloid. This possibility is supported by experiments that show spiroplasma produce α-synuclein in mammalian tissue cultures. The data linking spiroplasma to neurodegenerative diseases provide a rationale for developing diagnostic tests for TSE based on the presence of spiroplasma-specific proteins or nucleic acid. Research efforts should focus on this bacterium for development of therapeutic regimens for Creutzfeldt-Jakob disease.
Collapse
|
98
|
The impact of cholesterol, DHA, and sphingolipids on Alzheimer's disease. BIOMED RESEARCH INTERNATIONAL 2014; 2013:814390. [PMID: 24575399 PMCID: PMC3929518 DOI: 10.1155/2013/814390] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/13/2013] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder currently affecting over 35 million people worldwide. Pathological hallmarks of AD are massive amyloidosis, extracellular senile plaques, and intracellular neurofibrillary tangles accompanied by an excessive loss of synapses. Major constituents of senile plaques are 40–42 amino acid long peptides termed β-amyloid (Aβ). Aβ is produced by sequential proteolytic processing of the amyloid precursor protein (APP). APP processing and Aβ production have been one of the central scopes in AD research in the past. In the last years, lipids and lipid-related issues are more frequently discussed to contribute to the AD pathogenesis. This review summarizes lipid alterations found in AD postmortem brains, AD transgenic mouse models, and the current understanding of how lipids influence the molecular mechanisms leading to AD and Aβ generation, focusing especially on cholesterol, docosahexaenoic acid (DHA), and sphingolipids/glycosphingolipids.
Collapse
|
99
|
Bucciantini M, Rigacci S, Stefani M. Amyloid Aggregation: Role of Biological Membranes and the Aggregate-Membrane System. J Phys Chem Lett 2014; 5:517-27. [PMID: 26276603 DOI: 10.1021/jz4024354] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Several human degenerative diseases involve amyloidogenic peptides/proteins with high conformational plasticity and propensity to self-aggregate into polymeric fibrillar assemblies sharing the cross-β structure and endowed with cytotoxic potential. Although the mechanisms of amyloid growth and toxicity are not fully understood, a common property of amyloids is their ability to interact with lipid bilayers disturbing membrane integrity. Lipid bilayers can also act as conformational catalysts, favoring protein misfolding and inducing the growth of aggregation nuclei, early oligomers, and mature fibrils with specific biophysical, structural, and toxicity features. This Perspective will highlight these effects in the context of a membrane-oligomer system where the conformational/biophysical features of either component affect those of the other. In this context, we will highlight the modulation of the protein-cell surface interaction by the content of membrane cholesterol and gangliosides, notably GM1. In particular, we will discuss data that indicate how these interactions affect the structural and stability properties of both protein and bilayers as well as the final cytotoxic effect. Our goal is to propose shared membrane-based mechanisms that could apply to any amyloidogenic peptide/protein, providing a biochemical background for amyloid growth and toxicity.
Collapse
Affiliation(s)
- Monica Bucciantini
- †Department of Biomedical Experimental and Clinical Sciences and Research Centre on the Molecular Basis of Neurodegeneration, University of Florence, V.le Morgagni 50, 50134 Florence, Italy
| | - Stefania Rigacci
- †Department of Biomedical Experimental and Clinical Sciences and Research Centre on the Molecular Basis of Neurodegeneration, University of Florence, V.le Morgagni 50, 50134 Florence, Italy
| | - Massimo Stefani
- †Department of Biomedical Experimental and Clinical Sciences and Research Centre on the Molecular Basis of Neurodegeneration, University of Florence, V.le Morgagni 50, 50134 Florence, Italy
- ‡National Institute of Biostructures and Biosystems (INBB), Viale Medaglie d'Oro 305, 00136 Rome, Italy
| |
Collapse
|
100
|
Lee H, Lee JK, Bae YC, Yang SH, Okino N, Schuchman EH, Yamashita T, Bae JS, Jin HK. Inhibition of GM3 synthase attenuates neuropathology of Niemann-Pick disease Type C. by affecting sphingolipid metabolism. Mol Cells 2014; 37:161-71. [PMID: 24599001 PMCID: PMC3935629 DOI: 10.14348/molcells.2014.2347] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 12/17/2013] [Accepted: 12/18/2013] [Indexed: 11/29/2022] Open
Abstract
In several lysosomal storage disorders, including Niemann-Pick disease Type C (NP-C), sphingolipids, including glycosphingolipids, particularly gangliosides, are the predominant storage materials in the brain, raising the possibility that accumulation of these lipids may be involved in the NP-C neurodegenerative process. However, correlation of these accumulations and NP-C neuropathology has not been fully characterized. Here we derived NP-C mice with complete and partial deletion of the Siat9 (encoding GM3 synthase) gene in order to investigate the role of ganglioside in NP-C pathogenesis. According to our results, NPC mice with homozygotic deletion of GM3 synthase exhibited an enhanced neuropathological phenotype and died significantly earlier than NP-C mice. Notably, in contrast to complete depletion, NP-C mice with partial deletion of the GM3 synthase gene showed ameliorated NP-C neuropathology, including motor disability, demyelination, and abnormal accumulation of cholesterol and sphingolipids. These findings indicate the crucial role of GM3 synthesis in the NP-C phenotype and progression of CNS pathologic abnormality, suggesting that well-controlled inhibition of GM3 synthesis could be used as a therapeutic strategy.
Collapse
Affiliation(s)
- Hyun Lee
- Stem Cell Neuroplasticity Research Group, Kyungpook National University, Daegu 702-701,
Korea
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu 702-701,
Korea
| | - Jong Kil Lee
- Stem Cell Neuroplasticity Research Group, Kyungpook National University, Daegu 702-701,
Korea
- Department of Physiology, BK21 PLUS KNU Biomedical Convergence Program for Creative Talent, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 700-842,
Korea
| | - Yong Chul Bae
- Department of Oral Anatomy and Neurobiology, Kyungpook National University, Daegu 700-412,
Korea
| | - Song Hyun Yang
- Institute of Metabolism, Green Cross Reference Laboratory, Yongin 446-850,
Korea
| | - Nozomu Okino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581,
Japan
| | - Edward H. Schuchman
- Departments of Genetics and Genomic Sciences & Gene and Cell Therapy, Mount Sinai School of Medicine, New York,
USA
| | - Tadashi Yamashita
- World Class University Program, Kyungpook National University, Daegu 700-842,
Korea
- Laboratory of Advanced Chemical Biology, Graduate School of Life Science, Hokkaido University,
Japan
| | - Jae-sung Bae
- Stem Cell Neuroplasticity Research Group, Kyungpook National University, Daegu 702-701,
Korea
- Department of Physiology, BK21 PLUS KNU Biomedical Convergence Program for Creative Talent, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 700-842,
Korea
| | - Hee Kyung Jin
- Stem Cell Neuroplasticity Research Group, Kyungpook National University, Daegu 702-701,
Korea
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu 702-701,
Korea
| |
Collapse
|