51
|
Querejeta E, Oviedo-Chávez A, Araujo-Alvarez JM, Quiñones-Cárdenas AR, Delgado A. In vivo effects of local activation and blockade of 5-HT1B receptors on globus pallidus neuronal spiking. Brain Res 2005; 1043:186-94. [PMID: 15862532 DOI: 10.1016/j.brainres.2005.02.055] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2004] [Revised: 02/10/2005] [Accepted: 02/23/2005] [Indexed: 11/23/2022]
Abstract
Several morphological works have shown that the globus pallidus (GP) contains the highest density of 5-HT1B receptors within the telencephalon. However, the role of these receptors in the spiking of GP neurons in vivo is unknown. In the present work, we use single-unit extracellular recordings in the anesthetized rat to analyze changes in the firing rate of GP neurons evoked by local activation and blockade of 5-HT1B receptors. Intrapallidal administration of serotonin, or the serotonin uptake inhibitor fluoxetine, predominantly produced an excitatory effect in the basal firing rate of GP neurons. The 5-HT1B receptor agonist, L-694,247, caused a dose-dependent excitatory effect on most pallidal neurons tested. Blockade of 5-HT1B receptors by intrapallidal application of methiothepin predominantly caused inhibition in GP neurons firing rate. Moreover, methiothepin diminished the excitatory effect evoked by L-694,247. Furthermore, local serotonin did not evoke significant changes in the basal firing rate of GP neurons in unilateral striatal lesioned rats. Taken all together, these results suggest that serotonin 5-HT1B receptors significantly contribute to the control of spiking of the rat GP neurons, and that the 5-HT1B receptors exerting this control are most likely localized in the striato-pallidal pathway.
Collapse
Affiliation(s)
- Enrique Querejeta
- Sección de Estudios de Posgrado e Investigación Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Diáz Mirón, Casco de Santo Tomás, C.P. 11340, México D.F., Mexico.
| | | | | | | | | |
Collapse
|
52
|
Galvan A, Charara A, Pare JF, Levey AI, Smith Y. Differential subcellular and subsynaptic distribution of GABA(A) and GABA(B) receptors in the monkey subthalamic nucleus. Neuroscience 2004; 127:709-21. [PMID: 15283969 DOI: 10.1016/j.neuroscience.2004.05.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2004] [Indexed: 11/25/2022]
Abstract
The activation of GABA receptor subtype A (GABA(A)) and GABA receptor subtype B (GABA(B)) receptors mediates differential effects on GABAergic and non-GABAergic transmission in the basal ganglia. To further characterize the anatomical substrate that underlies these functions, we used immunogold labeling to compare the subcellular and subsynaptic localization of GABA(A) and GABA(B) receptors in the subthalamic nucleus (STN). Our findings demonstrate major differences and some similarities in the distribution of GABA(A) and GABA(B) receptors in the monkey STN. The immunoreactivity for GABA(A) receptor alpha1 subunits is mostly bound to the plasma membrane, whereas GABA(B) R1 subunit alpha1 immunoreactivity is largely expressed intracellularly. Plasma membrane-bound GABA(A) alpha1 subunit aggregate in the main body of putative GABAergic synapses, while GABA(B) R1 receptors are found at the edges of putative glutamatergic or GABAergic synapses. A large pool of plasma membrane-bound GABA(A) and GABA(B) receptors is extrasynaptic. In conclusion, these findings demonstrate a significant degree of heterogeneity between the distributions of the two major GABA receptor subtypes in the monkey STN. Their pattern of synaptic localization puts forward interesting questions regarding their mechanisms of activation and functions at GABAergic and non-GABAergic synapses.
Collapse
Affiliation(s)
- A Galvan
- Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | | | | | | | |
Collapse
|
53
|
Karachi C, Yelnik J, Tandé D, Tremblay L, Hirsch EC, François C. The pallidosubthalamic projection: An anatomical substrate for nonmotor functions of the subthalamic nucleus in primates. Mov Disord 2004; 20:172-80. [PMID: 15382210 DOI: 10.1002/mds.20302] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The subthalamic nucleus (STN) is the best target for correcting motor disability in parkinsonian patients with high-frequency stimulation. However, STN stimulation has also been reported to modify cognitive, emotional, and motivational functions. The aim of this study was to analyze the topographic organization of the STN according to its inputs coming from the sensorimotor, associative, and limbic territories of the external globus pallidus (GPe) in monkeys, with special reference to the limbic projection. Axonal tracers were injected into the different functional territories of the GPe. Injection performed in the limbic GPe resulted in labeling of cell bodies in the dorsal nucleus accumbens and in a dense labeling of axons in the anterior and medioventral portion of the STN. In comparison, injections in the associative and sensorimotor GPe led to labeling in the central and dorsolateral parts of the STN, respectively. Individual pallidosubthalamic axons ramified into numerous varicose branches, which were restricted to a given territory in the STN. These data provide a functional cartography of this structure in primates and suggest that behavioral disorders observed in stimulated parkinsonian patients could result from a dysfunction of the limbic part of the STN.
Collapse
Affiliation(s)
- Carine Karachi
- INSERM U289, Neurologie et Thérapeutique Expérimentale, Hôpital de la Salpêtrière, Paris, France.
| | | | | | | | | | | |
Collapse
|
54
|
Floran B, Floran L, Erlij D, Aceves J. Dopamine D4 receptors inhibit depolarization-induced [3H]GABA release in the rat subthalamic nucleus. Eur J Pharmacol 2004; 498:97-102. [PMID: 15363981 DOI: 10.1016/j.ejphar.2004.07.078] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2004] [Revised: 06/03/2004] [Accepted: 07/13/2004] [Indexed: 11/19/2022]
Abstract
We explored the role of dopamine D4 receptors on [3H]GABA release in the subthalamic nucleus. [3H]GABA release was evoked by high K+ in slices of the nucleus. The selective dopamine D4 receptor agonist PD168,077 (N-[[4-(2-cyanophenyl)-1-piperazynil]methyl]-3-methyl-benzamide) inhibited GABA release with greater potency (EC50=3.2 nM) than quinpirole (EC50=200 nM). SKF 21297 (6-chloro-7,8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide), a dopamine D1-like receptor agonist, had no effect. L-745,870 (3-[[4-(4-chlorophenyl)piperazin-1-yl]methyl]-1-1H-pyrollo[2,3-b] pyridine), a selective dopamine D4 receptor antagonist, reverted the quinpirole inhibition with greater potency (IC50=8.7 nM) than that of the dopamine D2/D3 receptor antagonist sulpiride and raclopride (IC50=4804 and 788 nM, respectively). Both methylphenidate and methamphetamine, dopamine reuptake blockers, inhibited by 30% high K(+)-evoked GABA release; the inhibition was blocked by L-745,870. These results show that dopamine D4 receptors modulate GABA release in the subthalamic nucleus. The results would explain how agents that increase interstitial dopamine like methylphenidate and amphethamine might control locomotor hyperactivity seen in disorders of dopamine D4 receptors.
Collapse
Affiliation(s)
- Benjamín Floran
- Departamento de Fisiología, Biofísica y Neurociencias, CINVESTAV-IPN, México, Mexico
| | | | | | | |
Collapse
|
55
|
Urbain N, Vautrelle N, Dahan L, Savasta M, Chouvet G. Glutamatergic-receptors blockade does not regularize the slow wave sleep bursty pattern of subthalamic neurons. Eur J Neurosci 2004; 20:392-402. [PMID: 15233749 DOI: 10.1111/j.1460-9568.2004.03488.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The subthalamic nucleus (STN) has been implicated in movement disorders observed in Parkinson's disease because of its pathological mixed burst firing mode and hyperactivity. In physiological conditions, STN bursty pattern has been shown to be dependent on slow wave cortical activity. Indeed, cortical ablation abolished STN bursting activity in urethane-anaesthetized intact or dopamine depleted rats. Thus, glutamate afferents might be involved in STN bursting activity during slow wave sleep (SWS) when thalamic and cortical cells oscillate in a low-frequency range. The present work was aimed to test, on non-anaesthetized rats, if it was possible to regularize the SWS STN bursty pattern by microiontophoresis of kynurenate, a broad-spectrum glutamate ionotropic receptors antagonist. As glutamatergic effects might be masked by GABAergic inputs arriving tonically and during the entire sleep-wake cycle on STN neurons, kynurenate was also co-iontophoresed with bicuculline, a GABA(A) receptors antagonist. Kynurenate iontophoretic applications had a weak inhibitory effect on the discharge rate of STN neurons whatever the vigilance state, and did not regularize the SWS STN bursty pattern. But, the robust bursty bicuculline-induced pattern was impaired by kynurenate, which elicited the emergence of single spikes between remaining bursts. These data indicate that the bursty pattern exhibited by STN neurons specifically in SWS, does not seem to exclusively depend on glutamatergic inputs to STN cells. Furthermore, GABA(A) receptors may play a critical role in regulating the influence of excitatory inputs on STN cells.
Collapse
Affiliation(s)
- Nadia Urbain
- Neurobiological Psychiatry Unit, McGill University, 1033 avenue des Pins Ouest, Montreal, Quebec, H3A 1A1, Canada.
| | | | | | | | | |
Collapse
|
56
|
Abstract
The basal ganglia and frontal cortex operate together to execute goal directed behaviors. This requires not only the execution of motor plans, but also the behaviors that lead to this execution, including emotions and motivation that drive behaviors, cognition that organizes and plans the general strategy, motor planning, and finally, the execution of that plan. The components of the frontal cortex that mediate these behaviors, are reflected in the organization, physiology, and connections between areas of frontal cortex and in their projections through basal ganglia circuits. This comprises a series of parallel pathways. However, this model does not address how information flows between circuits thereby developing new learned behaviors (or actions) from a combination of inputs from emotional, cognitive, and motor cortical areas. Recent anatomical evidence from primates demonstrates that the neuro-networks within basal ganglia pathways are in a position to move information across functional circuits. Two networks are: the striato-nigral-striatal network and the thalamo-cortical-thalamic network. Within each of these sets of connected structures, there are both reciprocal connections linking up regions associated with similar functions and non-reciprocal connections linking up regions that are associated with different cortical basal ganglia circuits. Each component of information (from limbic to motor outcome) sends both feedback connection, and also a feedforward connection, allowing the transfer of information. Information is channeled from limbic, to cognitive, to motor circuits. Action decision-making processes are thus influenced by motivation and cognitive inputs, allowing the animal to respond appropriate to environmental cues.
Collapse
Affiliation(s)
- Suzanne N Haber
- Department of Pharmacology and Physiology, University of Rochester School of Medicine, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| |
Collapse
|
57
|
Kolomiets BP, Deniau JM, Glowinski J, Thierry AM. Basal ganglia and processing of cortical information: functional interactions between trans-striatal and trans-subthalamic circuits in the substantia nigra pars reticulata. Neuroscience 2003; 117:931-8. [PMID: 12654344 DOI: 10.1016/s0306-4522(02)00824-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The substantia nigra pars reticulata (SNR), a major output station of basal ganglia, receives information from the cerebral cortex through three main pathways, i.e. a direct inhibitory trans-striatal pathway, an indirect excitatory trans-striatal pathway that involves the pallidum and the subthalamus and a direct excitatory trans-subthalamic pathway. In order to determine how cortical information flow originating from functionally distinct cortical areas and processed through the trans-striatal and trans-subthalamic pathways is integrated within the SNR, the responses induced by electrical stimulation of prefrontal, motor and auditory cortex in SNR cells were analyzed in anesthetized rats. Further confirming that direct striato-nigral pathways related to these functionally distinct cortical areas are organized in parallel channels, stimulation of the prefrontal, motor and auditory cortex induced an inhibitory response on distinct subpopulations of SNR cells. Within a given channel, the direct trans-striatal and the trans-subthalamic pathways converge on a large number of nigral cells. In addition, the present study reveals that nigral cells receiving an inhibitory input from a given cortical area through the direct trans-striatal pathway can also receive an excitatory input from a functionally distinct cortical area through the trans-subthalamic pathways. Such a convergence mainly occurred between the direct striato-nigral pathway issued from the auditory cortex and the trans-subthalamic pathways issued from the motor cortex. These data reveal the existence of a converging influence of trans-subthalamic and direct striato-nigral pathways not only within but also across channels. Within a given cortico-basal ganglia channel, the trans-subthalamic pathways likely contribute to the temporal shaping of the striato-nigral inhibition and thus of the disinhibition of the related nigral target nuclei in the thalamus and mesencephalon. Across channels, the specific interactions between trans-subthalamic and direct striato-nigral pathways could contribute to prevent inhibition of subpopulations of nigral cells implicated in competing functions.
Collapse
Affiliation(s)
- B P Kolomiets
- INSERM U114, Chaire de Neuropharmacologie, Collège de France, 11 Place M. Berthelot, 75231 Cedex 05, Paris, France
| | | | | | | |
Collapse
|
58
|
Urbain N, Rentéro N, Gervasoni D, Renaud B, Chouvet G. The switch of subthalamic neurons from an irregular to a bursting pattern does not solely depend on their GABAergic inputs in the anesthetic-free rat. J Neurosci 2002; 22:8665-75. [PMID: 12351741 PMCID: PMC6757798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2001] [Revised: 06/27/2002] [Accepted: 06/28/2002] [Indexed: 02/26/2023] Open
Abstract
The subthalamic nucleus (STN) powerfully controls basal ganglia outputs and has been implicated in movement disorders observed in Parkinson's disease because of its pathological mixed burst firing mode and hyperactivity. A recent study suggested that reciprocally connected glutamatergic STN and GABAergic globus pallidus (GP) neurons act in vitro as a generator of bursting activity in basal ganglia. In vivo, we reported that GP neurons increased their firing rate in wakefulness (W) compared with slow-wave sleep (SWS) without any change in their random pattern. In contrast, STN neurons exhibited similar firing rates in W and SWS, with an irregular pattern in W and a bursty one in SWS. Thus, the pallidal GABAergic tone might control the STN pattern. This hypothesis was tested by mimicking such variations with microiontophoresis of GABA receptor ligands. GABA agonists specifically decreased the STN firing rate but did not affect its firing pattern. GABA(A) (but not GABA(B)) antagonists strongly enhanced the STN mean discharge rate during all vigilance states up to three to five times its basal activity. However, such applications did not change the typical W random pattern. When applied during SWS, GABA(A) antagonists strongly reinforced the spontaneous bursty pattern into a particularly marked one with instantaneous frequencies reaching 500-600 Hz. SWS-W transitions occurring during ongoing antagonist iontophoresis invariably disrupted the bursty pattern into a random one. Thus GABA(A) receptors play a critical, but not exclusive, role in regulating the excitatory STN influence on basal ganglia outputs.
Collapse
Affiliation(s)
- Nadia Urbain
- Laboratoire de Neuropharmacologie et Neurochimie, Institut National de la Santé et de la Recherche Médicale U512, Université Claude-Bernard-Lyon 1, 69373 Lyon, France
| | | | | | | | | |
Collapse
|
59
|
Ramanathan S, Hanley JJ, Deniau JM, Bolam JP. Synaptic convergence of motor and somatosensory cortical afferents onto GABAergic interneurons in the rat striatum. J Neurosci 2002; 22:8158-69. [PMID: 12223570 PMCID: PMC6758073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2002] [Revised: 06/21/2002] [Accepted: 06/25/2002] [Indexed: 02/26/2023] Open
Abstract
Cortical afferents to the basal ganglia, and in particular the corticostriatal projections, are critical in the expression of basal ganglia function in health and disease. The corticostriatal projections are topographically organized but also partially overlap and interdigitate. To determine whether projections from distinct cortical areas converge at the level of single interneurons in the striatum, double anterograde labeling from the primary motor (M1) and primary somatosensory (S1) cortices in the rat, was combined with immunolabeling for parvalbumin (PV), to identify one population of striatal GABAergic interneurons. Cortical afferents from M1 and S1 gave rise to distinct, but partially overlapping, arbors of varicose axons in the striatum. PV-positive neurons were often apposed by cortical terminals and, in many instances, apposed by terminals from both cortical areas. Frequently, individual cortical axons formed multiple varicosities apposed to the same PV-positive neuron. Electron microscopy confirmed that the cortical terminals formed asymmetric synapses with the dendrites and perikarya of PV-positive neurons as well as unlabelled dendritic spines. Correlated light and electron microscopy revealed that individual PV-positive neurons received synaptic input from axon terminals derived from both motor and somatosensory cortices. These results demonstrate that, within areas of overlap of functionally distinct projections, there is synaptic convergence at the single cell level. Sensorimotor integration in the basal ganglia is thus likely to be mediated, at least in part, by striatal GABAergic interneurons. Furthermore, our findings suggest that the pattern of innervation of GABAergic interneurons by cortical afferents is different from the cortical innervation of spiny projection neurons.
Collapse
Affiliation(s)
- Sankari Ramanathan
- Medical Research Council Anatomical Neuropharmacology Unit, Department of Pharmacology, Oxford, OX1 3TH, United Kingdom
| | | | | | | |
Collapse
|
60
|
Karachi C, François C, Parain K, Bardinet E, Tandé D, Hirsch E, Yelnik J. Three-dimensional cartography of functional territories in the human striatopallidal complex by using calbindin immunoreactivity. J Comp Neurol 2002; 450:122-34. [PMID: 12124757 DOI: 10.1002/cne.10312] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This anatomic study presents an analysis of the distribution of calbindin immunohistochemistry in the human striatopallidal complex. Entire brains were sectioned perpendicularly to the mid-commissural line into 70-microm-thick sections. Every tenth section was immunostained for calbindin. Calbindin labeling exhibited a gradient on the basis of which three different regions were defined: poorly labeled, strongly labeled, and intermediate. Corresponding contours were traced in individual sections and reformatted as three-dimensional structures. The poorly labeled region corresponded to the dorsal part of the striatum and to the central part of the pallidum. The strongly labeled region included the ventral part of the striatum, the subcommissural part of the external pallidum but also the adjacent portion of its suscommissural part, and the anterior pole of the internal pallidum. The intermediate region was located between the poorly and strongly labeled regions. As axonal tracing and immunohistochemical studies in monkeys show a similar pattern, poorly, intermediate, and strongly labeled regions were considered as the sensorimotor, associative, and limbic territories of the human striatopallidal complex, respectively. However, the boundaries between these territories were not sharp but formed gradients of labeling, which suggests overlapping between adjacent territories. Similarly, the ventral boundary of the striatopallidal complex was blurred, suggesting a structural intermingling with the substantia innominata. This three-dimensional partitioning of the human striatopallidal complex could help to define functional targets for high-frequency stimulation with greater accuracy and help to identify new stimulation sites.
Collapse
Affiliation(s)
- Carine Karachi
- INSERM U289, Neurologie et Thérapeutique Expérimentale, Hôpital de la Salpêtrière, 75013 Paris, France.
| | | | | | | | | | | | | |
Collapse
|
61
|
Adachi K, Hasegawa M, Fujita S, Sato M, Miwa Y, Ikeda H, Koshikawa N, Cools AR. Dopaminergic and cholinergic stimulation of the ventrolateral striatum elicit rat jaw movements that are funnelled via distinct efferents. Eur J Pharmacol 2002; 442:81-92. [PMID: 12020685 DOI: 10.1016/s0014-2999(02)01496-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
It has been reported that two distinct types of jaw movements can be elicited by bilateral injections of drugs into the ventrolateral striatum: (1) dopamine receptor-mediated jaw movements that are elicited by a mixture of (+/-)-6-chloro-7,8-dihydroxy-3-allyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine-7,8-diol (SKF 82958; 5 microg) and quinpirole (10 microg), and (2) acetylcholine receptor-mediated jaw movements that are elicited by carbachol (2.5 microg). In the present study, electromyographic analysis was used to characterise these movements: the dopamine receptor-mediated jaw movements were marked by a dominant digastric activity during jaw opening and a dominant masseter activity during jaw closing (digastric/masseter type), whereas the acetylcholine receptor-mediated jaw movements were marked by a dominant digastric activity during jaw opening without any significant change in masseter activity during jaw closing (digastric type). The main goal was to (in)validate the hypothesis that these two types of jaw movements are funnelled via distinct gamma-aminobutyric acid (GABA)ergic output channels. Bilateral injections of both muscimol (25 and 50 ng/0.2 microl per side) and bicuculline (50 and 150 ng/0.2 microl per side) into the ventral pallidum, entopeduncular nucleus or dorsolateral part of the substantia nigra pars reticulata essentially inhibited dopamine receptor-mediated jaw movements to various degrees. In contrast, acetylcholine receptor-mediated jaw movements were inhibited by muscimol given into the entopeduncular nucleus and dorsolateral part of the substantia nigra pars reticulata, whereas these movements were enhanced by bicuculline. The acetylcholine receptor-mediated jaw movements were not affected by muscimol injections into the ventral pallidum, but were inhibited by bicuculline injections. Studies on such injections into the ventral pallidum, entopeduncular nucleus or dorsolateral part of the substantia nigra pars reticulata of naive rats revealed that jaw movements of the digastric/masseter type were elicited either by muscimol injections into the dorsolateral part of the substantia nigra pars reticulata or by combined injections of muscimol and bicuculline into the entopeduncular nucleus, and that jaw movements of the digastric type were elicited only by combined injections of muscimol and bicuculline into the entopeduncular nucleus. Together, the data allow the conclusion that dopamine receptor-mediated and acetylcholine receptor-mediated jaw movements are two distinct types of jaw movements that are funnelled via separate GABAergic output channels. It is suggested that the three different profiles of responses to GABAergic drugs in animals showing either dopamine receptor-mediated or acetylcholine receptor-mediated jaw movements reflect the involvement of three distinct types of output neurons of the striatum, namely: type I neurons with collateralised axons to the ventral pallidum, entopeduncular nucleus and dorsolateral part of the substantia nigra pars reticulata, mediating the dopamine receptor-mediated jaw movements; type II neurons with collateralised axons to the globus pallidus that, in turn, project to the entopeduncular nucleus and the dorsolateral part of the substantia nigra pars reticulata, mediating directly the acetylcholine receptor-mediated jaw movements; and type III neurons with a single axon to the ventral pallidum, mediating indirectly the acetylcholine receptor-mediated movements. It is evident that future studies are required to provide direct evidence in favour of the latter hypothesis.
Collapse
Affiliation(s)
- Kazunori Adachi
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
62
|
French SJ, Totterdell S. Hippocampal and prefrontal cortical inputs monosynaptically converge with individual projection neurons of the nucleus accumbens. J Comp Neurol 2002; 446:151-65. [PMID: 11932933 DOI: 10.1002/cne.10191] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Afferents to the nucleus accumbens from different sources innervate specific areas of the central "core" and peripheral "shell" and are related to each other, at the light microscopical level, in an intricate overlapping and nonoverlapping way. This lack of homogeneity suggests that this region consists of circuits involving emsembles of neurons modulated by specific sets of convergent afferent inputs and abnormal regulation of such ensembles has been implicated in mental disorders. Early extracellular studies suggested that individual Acb neurons might respond to activation of afferents from more than one excitatory input: More recent studies of hippocampal and amygdalar or prefrontal cortical afferents suggest that hippocampal afferents gate the input from the prefrontal cortex or amygdala. Electrophysiological evidence for convergence of excitatory afferents in the Acb is strong and suggests that these pathways are monosynaptic. Nevertheless, this convergence has proved difficult to demonstrate anatomically as a result of the spatial distribution of the afferent inputs on the dendritic tree of the target neurons. To establish whether individual accumbens neurons receive monosynaptic input from pairs of afferents, one projection was labelled anterogradely with Phaseolus vulgaris leucoagglutinin and the second with biotinylated dextran amine (BDA) with Vector slate grey and 3,3'-diaminobenzidine tetrahydrochloride as the chromagens. Accumbens neurons possibly postsynaptic to these afferents, labelled by an in vivo focal injection of BDA, were examined using correlated light and electron microscopy to establish the proximal-distal distribution of labelled afferent synaptic inputs on their dendritic arbours. Individual cells were shown to receive monosynaptic afferent input from both ventral subiculum and prefrontal cortex, providing an anatomical framework for the hippocampal gating of other limbic inputs to the accumbens.
Collapse
Affiliation(s)
- Sarah J French
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.
| | | |
Collapse
|
63
|
Bevan MD, Magill PJ, Hallworth NE, Bolam JP, Wilson CJ. Regulation of the timing and pattern of action potential generation in rat subthalamic neurons in vitro by GABA-A IPSPs. J Neurophysiol 2002; 87:1348-62. [PMID: 11877509 DOI: 10.1152/jn.00582.2001] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The regulation of activity in the subthalamic nucleus (STN) by GABAergic inhibition from the reciprocally connected globus pallidus (GP) plays an important role in normal movement and disorders of movement. To determine the precise manner in which GABAergic synaptic input, acting at A-type receptors, influences the firing of STN neurons, we recorded the response of STN neurons to GABA-A inhibitory postsynaptic potentials (IPSPs) that were evoked by supramaximal electrical stimulation of the internal capsule using the perforated-patch technique in slices at 37 degrees C. The mean equilibrium potential of the GABA-A IPSP (EGABA-A IPSP) was -79.4 +/- 7.0 mV. Single IPSPs disrupted the spontaneous oscillation that underlies rhythmic single-spike firing in STN neurons. As the magnitude of IPSPs increased, the effectiveness of prolonging the interspike interval was related more strongly to the phase of the oscillation at which the IPSP was evoked. Thus the largest IPSPs tended to reset the oscillatory cycle, whereas the smallest IPSPs tended to produce relatively phase-independent delays in firing. Multiple IPSPs were evoked at various frequencies and over different periods and their impact was studied on STN neurons held at different levels of polarization. Multiple IPSPs reduced and/or prevented action potential generation and/or produced sufficient hyperpolarization to activate a rebound depolarization, which generated a single spike or restored rhythmic spiking and/or generated a burst of activity. The pattern of IPSPs and the level of polarization of STN neurons were critical in determining the nature of the response. The duration of bursts varied from 20 ms to several hundred milliseconds, depending on the intrinsic rebound properties of the postsynaptic neuron. These data demonstrate that inhibitory input from the GP can produce a range of firing patterns in STN neurons, depending on the number and frequencies of IPSPs and the membrane properties and voltage of the postsynaptic neuron.
Collapse
Affiliation(s)
- M D Bevan
- Department of Anatomy and Neurobiology, University of Tennessee, Rm. 515 Link, 855 Monroe Avenue, Memphis, TN 38163, USA.
| | | | | | | | | |
Collapse
|
64
|
Brown LL, Feldman SM, Smith DM, Cavanaugh JR, Ackermann RF, Graybiel AM. Differential metabolic activity in the striosome and matrix compartments of the rat striatum during natural behaviors. J Neurosci 2002; 22:305-14. [PMID: 11756514 PMCID: PMC6757605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2001] [Revised: 10/11/2001] [Accepted: 10/12/2001] [Indexed: 02/23/2023] Open
Abstract
The striosome and matrix compartments of the striatum are clearly identified by their neurochemical expression patterns and anatomical connections. To determine whether these compartments are distinguishable functionally, we used [14C]deoxyglucose metabolic mapping in the rat and tested whether neutral behavioral states (free movement, gentle restraint, and focal tactile stimulation under gentle restraint) were associated with regions of high metabolic activity in the matrix, in striosomes, or in both. We identified metabolic peaks in the striatum by means of image analysis, striosome-matrix boundaries by [3H]naloxone binding, and primary somatosensory corticostriatal input clusters by injections of anterograde tracer into electrophysiologically identified sites in SI. Peak metabolic activity was primarily confined to the matrix compartment under each behavioral condition. These findings show that during relatively neutral behavioral conditions the balance of activity between the two compartments favors the matrix and suggest that this balance is present in the striatum as part of normal behavior and processing of afferent activity.
Collapse
Affiliation(s)
- Lucy L Brown
- Department of Neurology and Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | | | | | | | | | |
Collapse
|
65
|
Kolomiets BP, Deniau JM, Mailly P, Ménétrey A, Glowinski J, Thierry AM. Segregation and convergence of information flow through the cortico-subthalamic pathways. J Neurosci 2001; 21:5764-72. [PMID: 11466448 PMCID: PMC6762642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2001] [Revised: 05/04/2001] [Accepted: 05/11/2001] [Indexed: 02/20/2023] Open
Abstract
Cortico-basal ganglia circuits are organized in parallel channels. Information flow from functionally distinct cortical areas remains segregated within the striatum and through its direct projections to basal ganglia output structures. Whether such a segregation is maintained in trans-subthalamic circuits is still questioned. The effects of electrical stimulation of prefrontal, motor, and auditory cortex were analyzed in the subthalamic nucleus as well as in the striatum of anesthetized rats. In the striatum, cells (n = 300) presenting an excitatory response to stimulation of these cortical areas were located in distinct striatal territories, and none of the cells responded to two cortical stimulation sites. In the subthalamic nucleus, both prefrontal and motor cortex stimulations induced early and late excitatory responses as a result of activation of the direct cortico-subthalamic pathway and of the indirect cortico-striato-pallido-subthalamic pathway, respectively. Stimulation of the auditory cortex, which does not send direct projection to the subthalamic nucleus, induced only late excitatory responses. Among the subthalamic responding cells (n = 441), a few received both prefrontal and motor cortex (n = 19) or prefrontal and auditory cortex (n = 10) excitatory inputs, whereas a larger number of cells were activated from both motor and auditory cortices (n = 48). The data indicate that the segregation of cortical information flow originating from prefrontal, motor, and auditory cortices that occurred in the striatum is only partly maintained in the subthalamic nucleus. It can be proposed that the existence of specific patterns of convergence of information flow from these functionally distinct cortical areas in the subthalamic nucleus allows interactions between parallel channels.
Collapse
Affiliation(s)
- B P Kolomiets
- Institut National de la Santé et de la Recherche Médicale U114, Chaire de Neuropharmacologie, Collège de France, 75231 Paris Cedex 05, France
| | | | | | | | | | | |
Collapse
|
66
|
Baufreton J, Garret M, Dovero S, Dufy B, Bioulac B, Taupignon A. Activation of GABA(A) receptors in subthalamic neurons in vitro: properties of native receptors and inhibition mechanisms. J Neurophysiol 2001; 86:75-85. [PMID: 11431489 DOI: 10.1152/jn.2001.86.1.75] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The subthalamic nucleus (STN) influences the output of the basal ganglia, thereby interfering with motor behavior. The main inputs to the STN are GABAergic. We characterized the GABA(A) receptors expressed in the STN and investigated the response of subthalamic neurons to the activation of GABA(A) receptors. Cell-attached and whole cell recordings were made from rat brain slices using the patch-clamp technique. The newly identified epsilon subunit confers atypical pharmacological properties on recombinant receptors, which are insensitive to barbiturates and benzodiazepines. We tested the hypothesis that native subthalamic GABA(A) receptors contain epsilon proteins. Applications of increasing concentrations of muscimol, a selective GABA(A) agonist, induced Cl(-) and HCO currents with an EC(50) of 5 microM. Currents induced by muscimol were fully blocked by the GABA(A) receptor antagonists, bicuculline and picrotoxin. They were strongly potentiated by the barbiturate, pentobarbital (+190%), and by the benzodiazepines, diazepam (+197%) and flunitrazepam (+199%). Spontaneous inhibitory postsynaptic currents were also significantly enhanced by flunitrazepam. Furthermore, immunohistological experiments with an epsilon subunit-specific antibody showed that the epsilon protein was not expressed within the STN. Native subthalamic GABA(A) receptors did not, therefore, display pharmacological or structural properties consistent with receptors comprising epsilon. Burst firing is a hallmark of Parkinson's disease. Half of the subthalamic neurons have the intrinsic capacity of switching from regular-firing to burst-firing mode when hyperpolarized by current injection. This raises the possibility that activation of GABA(A) receptors might trigger the switch. Statistical analysis of spiking activity established that 90% of intact neurons in vitro were in single-spike firing mode, whereas 10% were in burst-firing mode. Muscimol reversibly stopped recurrent electrical activity in all intact neurons. In neurons held in whole cell configuration, membrane potential hyperpolarized by -10 mV whilst input resistance decreased by 50%, indicating powerful membrane shunting. Muscimol never induced burst firing, even in neurons that exhibited the capacity of switching from regular- to burst-firing mode. These molecular and functional data indicate that native subthalamic GABA(A) receptors do not contain the epsilon protein and activation of GABA(A) receptors induces membrane shunting, which is essential for firing inhibition but prevents switching to burst-firing. They suggest that the STN, like many other parts of the brain, has the physiological and structural features of the widely expressed GABA(A) receptors consisting of alphabetagamma subunits.
Collapse
Affiliation(s)
- J Baufreton
- Laboratoire de Neurophysiologie Centre National de la Recherche Scientifique Unité Mixte de Recherche 5543, Université de Bordeaux 2, 33076 Bordeaux cedex, France
| | | | | | | | | | | |
Collapse
|
67
|
Abstract
We present new techniques for extending the functionality of spiking neurons which allow the incorporation of several aspects of neuron function previously confined to the domain of low level ion-channel based models. These aspects include spontaneous (or endogenous) firing, the complex interaction of multiple ion-species and the spatial distribution of synaptic contacts over the cell membrane. These ideas are applied to a neural circuit consisting of the cortex and a subset of the nuclei in the basal ganglia-the subthalamic nucleus (STN) and the external segment of the globus pallidus (GPe). This circuit has been studied extensively in vitro by Plenz and Kitai [Plenz, D., & Kitai, S. T. (1999). A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus. Nature, 400 677-682] whose data we use to constrain our model. With respect to this circuit, we have obtained three main results. First, that its characteristic burst firing is due to a Ca2+ current mediated mechanism. Second, that noise can assist in the generation of bursting and, paradoxically, stabilise the network behaviour under synaptic weight variations. Third, that a variety of dendritic processing is necessary in order to obtain the full range of bursting behaviour.
Collapse
Affiliation(s)
- M D Humphries
- Department of Psychology, University of Sheffield, UK.
| | | |
Collapse
|
68
|
Joel D. Open interconnected model of basal ganglia-thalamocortical circuitry and its relevance to the clinical syndrome of Huntington's disease. Mov Disord 2001; 16:407-23. [PMID: 11391734 DOI: 10.1002/mds.1096] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The early stages of Huntington's disease (HD) present with motor, cognitive, and emotional symptoms. Correspondingly, current models implicate dysfunction of the motor, associative, and limbic basal ganglia-thalamocortical circuits. Available data, however, indicate that in the early stages of the disease, striatal damage is mainly restricted to the associative striatum. Based on an open interconnected model of basal ganglia-thalamocortical organization, we provide a detailed account of the mechanisms by which associative striatal pathology may lead to the complex pattern of motor, cognitive, and emotional symptoms of early HD. According to this account, the degeneration of a direct and several indirect pathways arising from the associative striatum leads to impaired functioning of: (1) the motor circuit, resulting in chorea and bradykinesia, (2) the associative circuit, resulting in abnormal eye movements, "frontal-like" cognitive deficits and "cognitive disinhibition," and (3) the limbic circuit, resulting in affective and psychiatric symptoms. When relevant, this analysis is aided by comparing the symptomatology of HD patients to that of patients with mild to moderate Parkinson's disease, since in the latter there is similar dysfunction of direct pathways but opposite dysfunction of indirect pathways. Finally, we suggest a potential novel treatment of HD and provide supportive evidence from a rat model of the disease.
Collapse
Affiliation(s)
- D Joel
- Department of Psychology, Tel Aviv University, Ramat-Aviv, Tel Aviv 69978, Israel.
| |
Collapse
|
69
|
Ojima H, Takayanagi M. Use of two anterograde axon tracers to label distinct cortical neuronal populations located in close proximity. J Neurosci Methods 2001; 104:177-82. [PMID: 11164243 DOI: 10.1016/s0165-0270(00)00341-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In order to investigate converging projections originating from adjacent populations of cortical neurons, injections of two different anterograde tracers, biotinylated dextranamine (BDA) and Phaseolus vulgaris leucoagglutinin (PHA-L), were made in close proximity. When the two injection sites were separated by around 500 microm and the time between injections was 1--4 h, BDA-labeling of neuronal elements was found not only at the BDA injection site but also at the PHA-L injection site. This false-positive BDA labeling of neurons at the PHA-L injection site was so intense that labeled axons could be traced, both into the neighboring cortical gray matter and into white matter. Increasing the separation distance to 1000 microm resulted in much fewer falsely positive labeled neurons at the PHA-L injection site. Even more effective was extending the time interval between the two injections. Thus, if the BDA injection preceded the PHA-L injection by more than 12 h, virtually no false-positive labeling was associated with the PHA-L injection site. These procedures may be applied to other combinations of anterograde tracers, such as BDA with tetramethylrhodamine-conjugated dextran amine.
Collapse
Affiliation(s)
- H Ojima
- Cortical Organization and Systematics, BSI, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | | |
Collapse
|
70
|
Parent A, Sato F, Wu Y, Gauthier J, Lévesque M, Parent M. Organization of the basal ganglia: the importance of axonal collateralization. Trends Neurosci 2000; 23:S20-7. [PMID: 11052216 DOI: 10.1016/s1471-1931(00)00022-7] [Citation(s) in RCA: 208] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Recent neuroanatomical data obtained with single-axon or single-cell labeling procedures in both rodents and primates have revealed the presence of various types of projection neurons with profusely collateralized axons within each of the major components of the basal ganglia. Such findings call for a reappraisal of current concepts of the anatomical and functional organization of the basal ganglia,which play such a crucial role in the control of motor behavior. The basal ganglia now stand as a widely distributed neuronal network, whose elements are endowed with a highly patterned set of axon collaterals. The elucidation of this finely tuned network is needed to understand the complex spatiotemporal sequence of neural events that ensures the flow of cortical information through the basal ganglia.
Collapse
Affiliation(s)
- A Parent
- Centre de recherche Université Laval Robert-Giffard, Beauport, Québec, Canada
| | | | | | | | | | | |
Collapse
|
71
|
Abstract
The present review was attempted to analyze the multiple channels of basal ganglia-thalamocortical connections, and the connections of their related nuclei. The prefrontal and motor areas consist of a number of modules, which seem to provide multiple subloops of the basal ganglia-thalamocortical connections in subhuman primates. There may be a great degree of convergence of the limbic, associative and motor loops at the level of the striatum, substantia nigra, pallidum, and the subthalamic nucleus as well as the pedunculopontine nucleus. Nigral dopaminergic neurons receive limbic input directly as well as indirectly through the striosomes in the striatum. Dopamine contributes to behavioral learning by signaling motivation and reinforcement. The pedunculopontine nucleus might be involved in behavioral state control, learning and reinforcement processes, locomotion and autonomic functions. Each subdivision of the motor areas receives a mixed and weighted transthalamic input from both the cerebellum and basal ganglia. In particular, based on the author's data, the hand/arm motor area and adjacent premotor area receive strong superficial basal ganglia-thalamocortical projections as well as the deep cerebello-thalamocortical projections. These areas, have very dense corticocotrical connections with other cortical areas, receive polymodal afferents from the parietal and temporal cortices, and integrated information, via multiple routes, from the prefrontal cortex. The author suggests that the ventrolateral part of the caudal medial pallidal segment (GPi) and the ventromedial part of the GPi are linked directly to these areas by ways of the oral part of ventral lateral nucleus (VLo) and the ventral part of the parvicellular part of ventral anterior nucleus (VApc), respectively. These connections are thought to be involved in the acquisition and coordination of motor sequences.
Collapse
Affiliation(s)
- K Nakano
- Department of Anatomy, Mie University Faculty of Medicine, Tsu, 514-8507, Mie, Japan.
| |
Collapse
|
72
|
Urbain N, Gervasoni D, Soulière F, Lobo L, Rentéro N, Windels F, Astier B, Savasta M, Fort P, Renaud B, Luppi PH, Chouvet G. Unrelated course of subthalamic nucleus and globus pallidus neuronal activities across vigilance states in the rat. Eur J Neurosci 2000; 12:3361-74. [PMID: 10998119 DOI: 10.1046/j.1460-9568.2000.00199.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The pallido-subthalamic pathway powerfully controls the output of the basal ganglia circuitry and has been implicated in movement disorders observed in Parkinson's disease (PD). To investigate the normal functioning of this pathway across the sleep-wake cycle, single-unit activities of subthalamic nucleus (STN) and globus pallidus (GP) neurons were examined, together with cortical electroencephalogram and nuchal muscular activity, in non-anaesthetized head-restrained rats. STN neurons shifted from a random discharge in wakefulness (W) to a bursting pattern in slow wave sleep (SWS), without any change in their mean firing rate. This burst discharge occurred in the 1-2 Hz range, but was not correlated with cortical slow wave activity. In contrast, GP neurons, with a mean firing rate higher in W than in SWS, exhibited a relatively regular discharge whatever the state of vigilance. During paradoxical sleep, both STN and GP neurons increased markedly their mean firing rate relative to W and SWS. Our results are not in agreement with the classical 'direct/indirect' model of the basal ganglia organization, as an inverse relationship between STN and GP activities is not observed under normal physiological conditions. Actually, because the STN discharge pattern appears dependent on coincident cortical activity, this nucleus can hardly be viewed as a relay along the indirect pathway, but might rather be considered as an input stage conveying corticothalamic information to the basal ganglia.
Collapse
Affiliation(s)
- N Urbain
- Laboratoire de Neuropharmacologie et Neurochimie, INSERM U512, Frnace.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Sato F, Lavall�e P, L�vesque M, Parent A. Single-axon tracing study of neurons of the external segment of the globus pallidus in primate. J Comp Neurol 2000. [DOI: 10.1002/(sici)1096-9861(20000131)417:1<17::aid-cne2>3.0.co;2-i] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
74
|
Magill PJ, Bolam JP, Bevan MD. Relationship of activity in the subthalamic nucleus-globus pallidus network to cortical electroencephalogram. J Neurosci 2000; 20:820-33. [PMID: 10632612 PMCID: PMC6772398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/1999] [Revised: 10/11/1999] [Accepted: 10/29/1999] [Indexed: 02/15/2023] Open
Abstract
One of the functions of the excitatory subthalamic nucleus (STN) is to relay cortical activity to other basal ganglia structures. The response of the STN to cortical input is shaped by inhibition from the reciprocally connected globus pallidus (GP). To examine the activity in the STN-GP network in relation to cortical activity, we recorded single and multiple unit activity in STN and/or GP together with cortical electroencephalogram in anesthetized rats during various states of cortical activation. During cortical slow-wave activity (SWA), STN and GP neurons fired bursts of action potentials at frequencies that were similar to those of coincident slow ( approximately 1 Hz) and spindle (7-14 Hz) cortical oscillations. Spontaneous or sensory-driven global activation was associated with a reduction of SWA and a shift in STN-GP activity from burst- to tonic- or irregular-firing. Rhythmic activity in STN and GP neurons was lost when the cortex was inactivated by spreading depression and did not resume until SWA had recovered. Although rhythmic STN-GP activity was correlated with SWA, the phase relationships of activities of neurons within the STN and GP and between the nuclei were variable. Even when neurons displayed synchronous bursting activity, correlations on the millisecond time scale, which might indicate shared synaptic input, were not observed. These data indicate that (1) STN and GP activity is intimately related to cortical activity and hence the sleep-wake cycle; (2) rhythmic oscillatory activity in the STN-GP network in disease states may be driven by the cortex; and (3) activity of the STN-GP network is regulated in space in a complex manner.
Collapse
Affiliation(s)
- P J Magill
- Medical Research Council Anatomical Neuropharmacology Unit, University Department of Pharmacology, Oxford, OX1 3TH, United Kingdom
| | | | | |
Collapse
|
75
|
Gorbachevskaya AI. Projections of the substantia nigra, ventral tegmental area, and amygdaloid body to the pallidum in the dog brain. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2000; 30:107-10. [PMID: 10768379 DOI: 10.1007/bf02461399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- A I Gorbachevskaya
- Laboratory for the Physiology of Higher Nervous Activity, IP Pavlov Institute of Physiology, Russian Academy of Sciences, St Peterburg
| |
Collapse
|
76
|
Alloway KD, Crist J, Mutic JJ, Roy SA. Corticostriatal projections from rat barrel cortex have an anisotropic organization that correlates with vibrissal whisking behavior. J Neurosci 1999; 19:10908-22. [PMID: 10594072 PMCID: PMC6784964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/1999] [Revised: 09/28/1999] [Accepted: 10/04/1999] [Indexed: 02/14/2023] Open
Abstract
To elucidate the detailed organization of corticostriatal projections from rodent somatosensory cortex, the anterograde tracers biotinylated dextran amine (BDA) and fluoro-ruby (FR) were injected into separate parts of the whisker "barrel" representation. In one group of rats, the two tracers were injected into different barrel columns residing in the same row; in the other group of rats, the tracers were deposited into barrel columns residing in different rows. Reconstructions of labeled axonal varicosities in the neostriatum and ventrobasal thalamus were analyzed quantitatively to compare the extent of overlapping projections to these subcortical structures. For both groups of animals, corticostriatal projections terminated in densely packed clusters that occupied curved lamellar-shaped regions along the dorsolateral edge of the neostriatum. When the tracers were injected into different whisker barrel rows, the distribution of BDA- and FR-labeled terminals in the neostriatum followed a crude somatotopic organization in which the amount of overlap was approximately the same as in the ventrobasal thalamus. When both tracers were injected into the same whisker barrel row, however, the amount of corticostriatal overlap was significantly higher than the amount of overlap observed in the ventrobasal thalamus. These results indicate that corticostriatal projections from whisker barrel cortex have an anisotropic organization that correlates with the pattern of vibrissal movements during whisking behavior.
Collapse
Affiliation(s)
- K D Alloway
- Department of Neuroscience, Penn State University College of Medicine, Hershey, Pennsylvania 17033-2255, USA.
| | | | | | | |
Collapse
|
77
|
Li L, Fulton JD, Yeomans JS. Effects of bilateral electrical stimulation of the ventral pallidum on acoustic startle. Brain Res 1999; 836:164-72. [PMID: 10415415 DOI: 10.1016/s0006-8993(99)01651-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The ventral pallidum (VP) is believed to occupy a critical position between the limbic and the motor systems, for transferring motive information into motor commands. To estimate the time course of signaling from the VP to motor outputs, in the present study we examined the effects of bilateral electrical stimulation of the VP on the acoustic startle reflex in awake rats. When the interstimulus interval (ISI) between VP stimulation and acoustic stimulation was shorter than 5 ms, VP stimulation potentiated acoustic startle. When the ISI was longer than 5 ms, VP stimulation inhibited acoustic startle over a large range of ISIs with the maximum inhibition at ISIs between 15 and 25 ms. In contrast, bilateral electrical stimulation of the amygdala did not have a significant inhibitory effect on acoustic startle, but strongly augmented acoustic startle at shorter ISIs (0-10 ms). Compared to unilateral electrical stimulation of the inferior colliculus (IC), bilateral stimulation of the VP gave rise to a rightward shift of the ISI curve, indicating that the neural pathways conveying the inhibitory influence from the VP to the acoustic startle circuit are longer than those from the IC.
Collapse
Affiliation(s)
- L Li
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
78
|
Graybiel AM, Penney JB. Chemical architecture of the basal ganglia. ACTA ACUST UNITED AC 1999. [DOI: 10.1016/s0924-8196(99)80025-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
79
|
Bevan MD, Booth PA, Eaton SA, Bolam JP. Selective innervation of neostriatal interneurons by a subclass of neuron in the globus pallidus of the rat. J Neurosci 1998; 18:9438-52. [PMID: 9801382 PMCID: PMC6792890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/1998] [Revised: 08/26/1998] [Accepted: 09/03/1998] [Indexed: 02/09/2023] Open
Abstract
A subpopulation of neurons in the globus pallidus projects to the neostriatum, which is the major recipient of afferent information to the basal ganglia. Given the moderate nature of this projection, we hypothesized that the pallidostriatal projection might exert indirect but powerful control over principal neuron activity by targeting interneurons, which comprise only a small percentage of neostriatal neurons. This was tested by the juxtacellular labeling and recording of pallidal neurons in combination with immunolabeling of postsynaptic neurons. In addition to innervating the subthalamic nucleus and output nuclei, 6 of 23 labeled pallidal neurons projected to the neostriatum. Both the firing characteristics and the extent of the axonal arborization in the neostriatum were variable. However, light and electron microscopic analysis of five pallidostriatal neurons revealed that each neuron selectively innervated neostriatal interneurons. A large proportion of the boutons of an individual axon (19-66%) made contact with parvalbumin-immunoreactive interneurons. An individual parvalbumin-immunoreactive neuron (n = 27) was apposed on average by 6.7 boutons (SD = 6.1) from a single pallidal axon (n = 2). Individual pallidostriatal boutons typically possessed more than one symmetrical synaptic specialization. In addition, 3-32% of boutons of axons from four of five pallidal neurons contacted nitric oxide synthase-immunoreactive neurons. Descending collaterals of pallidostriatal neurons were also found to make synaptic contact with dopaminergic and GABAergic neurons of the substantia nigra. These data imply that during periods of cortical activation, individual pallidal neurons may influence the activity of GABAergic interneurons of the neostriatum (which are involved in feed-forward inhibition and synchronization of principle neuron activity) while simultaneously patterning neuronal activity in basal ganglia downstream of the neostriatum.
Collapse
Affiliation(s)
- M D Bevan
- Medical Research Council Anatomical Neuropharmacology Unit, Oxford, OX1 3TH, United Kingdom
| | | | | | | |
Collapse
|
80
|
Clarke N, Bolam J. Distribution of glutamate receptor subunits at neurochemically characterized synapses in the entopeduncular nucleus and subthalamic nucleus of the rat. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19980803)397:3<403::aid-cne7>3.0.co;2-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
81
|
Maurice N, Deniau JM, Menetrey A, Glowinski J, Thierry AM. Prefrontal cortex-basal ganglia circuits in the rat: involvement of ventral pallidum and subthalamic nucleus. Synapse 1998; 29:363-70. [PMID: 9661254 DOI: 10.1002/(sici)1098-2396(199808)29:4<363::aid-syn8>3.0.co;2-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The core of the nucleus accumbens (NAcc core) is the principal input structure to the basal ganglia circuitry for the prelimbic and medial orbital areas (PL/MO) of the prefrontal cortex. As is now well recognized in the rat, the main basal ganglia output of this prefrontal channel is the dorsomedial part of the substantia nigra pars reticulata (SNR) and not the ventral pallidum as previously suggested. There is evidence suggesting that the ventral pallidum is rather involved with the subthalamic nucleus (STN) in an indirect NAcc-SNR pathway. Indeed, we have recently shown that the NAcc core sends an inhibitory input to the lateral ventral pallidum (VPl), which projects to the medial STN. In the present study, we injected biocytin into the medial STN, at a site where neurons presented an inhibitory response to VPl stimulation. This produced anterogradely labelled fibres in the medial SNR and in the VPl. Furthermore, the stimulation of the VPl induced an inhibition in a majority of the STN cells identified, by the antidromic activation method, as projecting to SNR (76.6%) and/or back to the VPl (72.7%). In conclusion, these data further demonstrate the existence of an indirect striato-nigral pathway in the PL/MO channel and indicate that VPl is involved in an inhibitory feedback circuit, which modulates the discharge of medial STN. These results indicate that the medial STN is implicated in the limbic/cognitive functions of the basal ganglia.
Collapse
Affiliation(s)
- N Maurice
- INSERM U 114, Collège de France, Paris, France.
| | | | | | | | | |
Collapse
|
82
|
Smith Y, Shink E, Sidibe M. Neuronal Circuitry and Synaptic Connectivity of the Basal Ganglia. Neurosurg Clin N Am 1998. [DOI: 10.1016/s1042-3680(18)30260-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
83
|
Bergman H, Feingold A, Nini A, Raz A, Slovin H, Abeles M, Vaadia E. Physiological aspects of information processing in the basal ganglia of normal and parkinsonian primates. Trends Neurosci 1998; 21:32-8. [PMID: 9464684 DOI: 10.1016/s0166-2236(97)01151-x] [Citation(s) in RCA: 405] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There are two views as to the character of basal-ganglia processing - processing by segregated parallel circuits or by information sharing. To distinguish between these views, we studied the simultaneous activity of neurons in the output stage of the basal ganglia with cross-correlation techniques. The firing of neurons in the globus pallidus of normal monkeys is almost always uncorrelated. However, after dopamine depletion and induction of parkinsonism by treatment with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), oscillatory activity appeared and the firing of many neurons became correlated. We conclude that the normal dopaminergic system supports segregation of the functional subcircuits of the basal ganglia, and that a breakdown of this independent processing is a hallmark of Parkinson's disease.
Collapse
Affiliation(s)
- H Bergman
- Dept of Physiology and the Center for Neural Computation, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | | | | | |
Collapse
|
84
|
Garcia-Cairasco N, Miguel EC, Rauch SL, Leckman JF. Current controversies and future directions in basal ganglia research. Integrating basic neuroscience and clinical investigation. Psychiatr Clin North Am 1997; 20:945-62. [PMID: 9443359 DOI: 10.1016/s0193-953x(05)70354-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This article discusses current controversies and future directions in basal ganglia research, detailing behavioral aspects, anatomic models, neurochemistry, pharmacology, and diagnostic methods as well as surgical techniques. A neuroethologic perspective is highlighted. Furthermore, the relevant literature pertaining to contemporary molecular approaches such as brain microinjections of embryonic or genetically modified cells, for therapeutic purposes and the use of transgenic and knockout animals.
Collapse
|
85
|
Clarke NP, Bevan MD, Cozzari C, Hartman BK, Bolam JP. Glutamate-enriched cholinergic synaptic terminals in the entopeduncular nucleus and subthalamic nucleus of the rat. Neuroscience 1997; 81:371-85. [PMID: 9300428 DOI: 10.1016/s0306-4522(97)00247-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Several lines of evidence suggest that the cholinergic neurons of the mesopontine tegmentum contain elevated levels of glutamate and are the source of cholinergic terminals in the subthalamic nucleus and entopeduncular nucleus. The object of this study was to test whether cholinergic terminals in the entopeduncular nucleus and subthalamic nucleus, also express relatively high levels of glutamate. To address this, double immunocytochemistry was performed at the electron microscopic level. Perfuse-fixed sections of rat brain were immunolabelled to reveal choline acetyltransferase by the pre-embedding avidin-biotin-peroxidase method. Serial ultrathin sections of cholinergic terminals in both the entoped uncular nucleus and subthalamic nucleus were then subjected to post-embedding immunocytochemistry to reveal glutamate and GABA. Quantification of the immunogold labelling showed that choline acetyltransferase-immunopositive terminals and boutons in both regions were significantly enriched in glutamate immunoreactivity and had significantly lower levels of GABA immunoreactivity in comparison to identified GABAergic terminals. Furthermore, the presumed transmitter pool of glutamate i.e. that associated with synaptic vesicles, was significantly greater in the choline acetyltransferase-positive terminals than identified GABA terminals, albeit significantly lower than in established glutamatergic terminals. In the entopeduncular nucleus, a small proportion of cholinergic terminals displayed high levels of GABA immunoreactivity. Taken together with other immunocytochemical and tracing data, the elevated levels of glutamate in cholinergic terminals in the entopeduncular nucleus and subthalamic nucleus, is further evidence adding weight to the suggestion that acetylcholine and glutamate may be co-localized in both the perikarya and terminals of at least a proportion of neurons of the mesopontine tegmentum.
Collapse
Affiliation(s)
- N P Clarke
- MRC Anatomical Neuropharmacology Unit, Department of Pharmacology, Oxford, U.K
| | | | | | | | | |
Collapse
|