51
|
Feliciano DM. The Neurodevelopmental Pathogenesis of Tuberous Sclerosis Complex (TSC). Front Neuroanat 2020; 14:39. [PMID: 32765227 PMCID: PMC7381175 DOI: 10.3389/fnana.2020.00039] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/10/2020] [Indexed: 12/22/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is a model disorder for understanding brain development because the genes that cause TSC are known, many downstream molecular pathways have been identified, and the resulting perturbations of cellular events are established. TSC, therefore, provides an intellectual framework to understand the molecular and biochemical pathways that orchestrate normal brain development. The TSC1 and TSC2 genes encode Hamartin and Tuberin which form a GTPase activating protein (GAP) complex. Inactivating mutations in TSC genes (TSC1/TSC2) cause sustained Ras homologue enriched in brain (RHEB) activation of the mammalian isoform of the target of rapamycin complex 1 (mTORC1). TOR is a protein kinase that regulates cell size in many organisms throughout nature. mTORC1 inhibits catabolic processes including autophagy and activates anabolic processes including mRNA translation. mTORC1 regulation is achieved through two main upstream mechanisms. The first mechanism is regulation by growth factor signaling. The second mechanism is regulation by amino acids. Gene mutations that cause too much or too little mTORC1 activity lead to a spectrum of neuroanatomical changes ranging from altered brain size (micro and macrocephaly) to cortical malformations to Type I neoplasias. Because somatic mutations often underlie these changes, the timing, and location of mutation results in focal brain malformations. These mutations, therefore, provide gain-of-function and loss-of-function changes that are a powerful tool to assess the events that have gone awry during development and to determine their functional physiological consequences. Knowledge about the TSC-mTORC1 pathway has allowed scientists to predict which upstream and downstream mutations should cause commensurate neuroanatomical changes. Indeed, many of these predictions have now been clinically validated. A description of clinical imaging and histochemical findings is provided in relation to laboratory models of TSC that will allow the reader to appreciate how human pathology can provide an understanding of the fundamental mechanisms of development.
Collapse
Affiliation(s)
- David M Feliciano
- Department of Biological Sciences, Clemson University, Clemson, SC, United States
| |
Collapse
|
52
|
Pellegrini L, Bonfio C, Chadwick J, Begum F, Skehel M, Lancaster MA. Human CNS barrier-forming organoids with cerebrospinal fluid production. Science 2020; 369:eaaz5626. [PMID: 32527923 PMCID: PMC7116154 DOI: 10.1126/science.aaz5626] [Citation(s) in RCA: 214] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 05/22/2020] [Indexed: 12/13/2022]
Abstract
Cerebrospinal fluid (CSF) is a vital liquid, providing nutrients and signaling molecules and clearing out toxic by-products from the brain. The CSF is produced by the choroid plexus (ChP), a protective epithelial barrier that also prevents free entry of toxic molecules or drugs from the blood. Here, we establish human ChP organoids with a selective barrier and CSF-like fluid secretion in self-contained compartments. We show that this in vitro barrier exhibits the same selectivity to small molecules as the ChP in vivo and that ChP-CSF organoids can predict central nervous system (CNS) permeability of new compounds. The transcriptomic and proteomic signatures of ChP-CSF organoids reveal a high degree of similarity to the ChP in vivo. Finally, the intersection of single-cell transcriptomics and proteomic analysis uncovers key human CSF components produced by previously unidentified specialized epithelial subtypes.
Collapse
Affiliation(s)
- Laura Pellegrini
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Claudia Bonfio
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Jessica Chadwick
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Farida Begum
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Mark Skehel
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Madeline A Lancaster
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
53
|
Xiang Y, Cakir B, Park IH. Deconstructing and reconstructing the human brain with regionally specified brain organoids. Semin Cell Dev Biol 2020; 111:40-51. [PMID: 32553582 DOI: 10.1016/j.semcdb.2020.05.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 04/21/2020] [Accepted: 05/27/2020] [Indexed: 12/31/2022]
Abstract
Brain organoids, three-dimensional neural cultures recapitulating the spatiotemporal organization and function of the brain in a dish, offer unique opportunities for investigating the human brain development and diseases. To model distinct parts of the brain, various region-specific human brain organoids have been developed. In this article, we review current approaches to produce human region-specific brain organoids, developed through the endeavor of many researchers. We highlight the applications of human region-specific brain organoids, especially in reconstructing regional interactions in the brain through organoid fusion. We also outline the existing challenges to drive forward further the brain organoid technology and its applications for future studies.
Collapse
Affiliation(s)
- Yangfei Xiang
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA.
| | - Bilal Cakir
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - In-Hyun Park
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
54
|
Non-Invasive MRI of Blood-Cerebrospinal Fluid Barrier Function. Nat Commun 2020; 11:2081. [PMID: 32350278 PMCID: PMC7190825 DOI: 10.1038/s41467-020-16002-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 04/07/2020] [Indexed: 01/09/2023] Open
Abstract
The blood–cerebrospinal fluid barrier (BCSFB) is a highly dynamic transport interface that serves brain homeostasis. To date, however, understanding of its role in brain development and pathology has been hindered by the absence of a non-invasive technique for functional assessment. Here we describe a method for non-invasive measurement of BSCFB function by using tracer-free MRI to quantify rates of water delivery from arterial blood to ventricular cerebrospinal fluid. Using this method, we record a 36% decrease in BCSFB function in aged mice, compared to a 13% decrease in parenchymal blood flow, itself a leading candidate biomarker of early neurodegenerative processes. We then apply the method to explore the relationship between BCSFB function and ventricular morphology. Finally, we provide proof of application to the human brain. Our findings position the BCSFB as a promising new diagnostic and therapeutic target, the function of which can now be safely quantified using non-invasive MRI. The blood–cerebrospinal fluid barrier (BCSFB) is an important interface for brain homeostasis. Here the authors describe a non-invasive MRI technique for the quantitative assessment of BCSFB function.
Collapse
|
55
|
Zhang J, Bhuiyan MIH, Zhang T, Karimy JK, Wu Z, Fiesler VM, Zhang J, Huang H, Hasan MN, Skrzypiec AE, Mucha M, Duran D, Huang W, Pawlak R, Foley LM, Hitchens TK, Minnigh MB, Poloyac SM, Alper SL, Molyneaux BJ, Trevelyan AJ, Kahle KT, Sun D, Deng X. Modulation of brain cation-Cl - cotransport via the SPAK kinase inhibitor ZT-1a. Nat Commun 2020; 11:78. [PMID: 31911626 PMCID: PMC6946680 DOI: 10.1038/s41467-019-13851-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 11/27/2019] [Indexed: 02/08/2023] Open
Abstract
The SLC12A cation-Cl- cotransporters (CCC), including NKCC1 and the KCCs, are important determinants of brain ionic homeostasis. SPAK kinase (STK39) is the CCC master regulator, which stimulates NKCC1 ionic influx and inhibits KCC-mediated efflux via phosphorylation at conserved, shared motifs. Upregulation of SPAK-dependent CCC phosphorylation has been implicated in several neurological diseases. Using a scaffold-hybrid strategy, we develop a novel potent and selective SPAK inhibitor, 5-chloro-N-(5-chloro-4-((4-chlorophenyl)(cyano)methyl)-2-methylphenyl)-2-hydroxybenzamide ("ZT-1a"). ZT-1a inhibits NKCC1 and stimulates KCCs by decreasing their SPAK-dependent phosphorylation. Intracerebroventricular delivery of ZT-1a decreases inflammation-induced CCC phosphorylation in the choroid plexus and reduces cerebrospinal fluid (CSF) hypersecretion in a model of post-hemorrhagic hydrocephalus. Systemically administered ZT-1a reduces ischemia-induced CCC phosphorylation, attenuates cerebral edema, protects against brain damage, and improves outcomes in a model of stroke. These results suggest ZT-1a or related compounds may be effective CCC modulators with therapeutic potential for brain disorders associated with impaired ionic homeostasis.
Collapse
Affiliation(s)
- Jinwei Zhang
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Hatherly Laboratories, Exeter, EX4 4PS, UK.
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361004, China.
| | - Mohammad Iqbal H Bhuiyan
- Department of Neurology and Pittsburgh Institute For Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Ting Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jason K Karimy
- Departments of Neurosurgery, Pediatrics, and Cellular & Molecular Physiology; Interdepartmental Neuroscience Program; and Centers for Mendelian Genomics, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Zhijuan Wu
- Newcastle University Business School, Newcastle University, Newcastle upon Tyne, NE1 4SE, UK
| | - Victoria M Fiesler
- Department of Neurology and Pittsburgh Institute For Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Jingfang Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Huachen Huang
- Department of Neurology and Pittsburgh Institute For Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Md Nabiul Hasan
- Department of Neurology and Pittsburgh Institute For Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Anna E Skrzypiec
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Hatherly Laboratories, Exeter, EX4 4PS, UK
| | - Mariusz Mucha
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Hatherly Laboratories, Exeter, EX4 4PS, UK
| | - Daniel Duran
- Departments of Neurosurgery, Pediatrics, and Cellular & Molecular Physiology; Interdepartmental Neuroscience Program; and Centers for Mendelian Genomics, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Wei Huang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Robert Pawlak
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Hatherly Laboratories, Exeter, EX4 4PS, UK
| | - Lesley M Foley
- Animal Imaging Center, University of Pittsburgh, Pittsburgh, PA, 15203, USA
| | - T Kevin Hitchens
- Animal Imaging Center, University of Pittsburgh, Pittsburgh, PA, 15203, USA
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Margaret B Minnigh
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Samuel M Poloyac
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Seth L Alper
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Bradley J Molyneaux
- Department of Neurology and Pittsburgh Institute For Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Andrew J Trevelyan
- Institute of Neuroscience, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Kristopher T Kahle
- Departments of Neurosurgery, Pediatrics, and Cellular & Molecular Physiology; Interdepartmental Neuroscience Program; and Centers for Mendelian Genomics, Yale School of Medicine, New Haven, CT, 06511, USA.
| | - Dandan Sun
- Department of Neurology and Pittsburgh Institute For Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
- Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Educational and Clinical Center, Pittsburgh, PA, 15213, USA.
| | - Xianming Deng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China.
| |
Collapse
|
56
|
Sorrentino NC, Cacace V, De Risi M, Maffia V, Strollo S, Tedesco N, Nusco E, Romagnoli N, Ventrella D, Huang Y, Liu N, Kalled SL, Choi VW, De Leonibus E, Fraldi A. Enhancing the Therapeutic Potential of Sulfamidase for the Treatment of Mucopolysaccharidosis IIIA. Mol Ther Methods Clin Dev 2019; 15:333-342. [PMID: 31788497 PMCID: PMC6881609 DOI: 10.1016/j.omtm.2019.10.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/21/2019] [Indexed: 12/12/2022]
Abstract
Mucopolysaccharidosis type IIIA (MPS-IIIA) is a lysosomal storage disorder (LSD) caused by inherited defect of sulfamidase, a lysosomal sulfatase. MPS-IIIA is one of the most common and severe forms of LSDs with CNS involvement. Presently there is no cure. Here we have developed a new gene delivery approach for the treatment of MPS-IIIA based on the use of a modified version of sulfamidase expression cassette. This cassette encodes both a chimeric sulfamidase containing an alternative signal peptide (sp) to improve enzyme secretion and sulfatase-modifying factor 1 (SUMF1) to increase sulfamidase post-translational activation rate. We demonstrate that improved secretion and increased activation of sulfamidase act synergistically to enhance enzyme biodistribution in wild-type (WT) pigs upon intrathecal adeno-associated virus serotype 9 (AAV9)-mediated gene delivery. Translating such gene delivery strategy to a mouse model of MPS-IIIA results in a rescue of brain pathology, including memory deficit, as well as improvement in somatic tissues. These data may pave the way for developing effective gene delivery replacement protocols for the treatment of MPS-IIIA patients.
Collapse
Affiliation(s)
| | - Vincenzo Cacace
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli, Naples, Italy
| | - Maria De Risi
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli, Naples, Italy
| | - Veronica Maffia
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli, Naples, Italy
| | - Sandra Strollo
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli, Naples, Italy
| | - Novella Tedesco
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli, Naples, Italy
| | - Edoardo Nusco
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli, Naples, Italy
| | - Noemi Romagnoli
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, Ozzano dell’Emilia, Bologna, Italy
| | - Domenico Ventrella
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, Ozzano dell’Emilia, Bologna, Italy
| | - Yan Huang
- Takeda Pharmaceuticals, Cambridge, MA, USA
| | - Nan Liu
- Takeda Pharmaceuticals, Cambridge, MA, USA
| | | | | | - Elvira De Leonibus
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli, Naples, Italy
- Institute of Cellular Biology and Neurobiology (IBCN), National Research Council (CNR), Via Ramarini 32, Monterotondo, Rome, Italy
| | - Alessandro Fraldi
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli, Naples, Italy
- Department of Translational Medicine, University of Naples “Federico II,” Naples, Italy
| |
Collapse
|
57
|
Lamus F, Martín C, Carnicero E, Moro J, Fernández J, Mano A, Gato Á, Alonso M. FGF2/EGF contributes to brain neuroepithelial precursor proliferation and neurogenesis in rat embryos: the involvement of embryonic cerebrospinal fluid. Dev Dyn 2019; 249:141-153. [DOI: 10.1002/dvdy.135] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 11/10/2019] [Accepted: 11/11/2019] [Indexed: 12/23/2022] Open
Affiliation(s)
- F. Lamus
- Departamento de Anatomía y Radiología, Facultad de MedicinaUniversidad de Valladolid Valladolid Spain
| | - C. Martín
- Departamento de Anatomía y Radiología, Facultad de MedicinaUniversidad de Valladolid Valladolid Spain
| | - E. Carnicero
- Departamento de Anatomía y Radiología, Facultad de MedicinaUniversidad de Valladolid Valladolid Spain
- Laboratorio de Desarrollo y Teratología del Sistema Nervioso, Instituto de Neurociencias de Castilla y León (INCYL)Universidad de Valladolid Valladolid Spain
| | | | - J.M.F. Fernández
- Departamento de Biología Celular, Histología y Farmacología; Facultad de MedicinaUniversidad de Valladolid Valladolid Spain
| | - A. Mano
- Departamento de Anatomía y Radiología, Facultad de MedicinaUniversidad de Valladolid Valladolid Spain
- Laboratorio de Desarrollo y Teratología del Sistema Nervioso, Instituto de Neurociencias de Castilla y León (INCYL)Universidad de Valladolid Valladolid Spain
| | - Á. Gato
- Departamento de Anatomía y Radiología, Facultad de MedicinaUniversidad de Valladolid Valladolid Spain
- Laboratorio de Desarrollo y Teratología del Sistema Nervioso, Instituto de Neurociencias de Castilla y León (INCYL)Universidad de Valladolid Valladolid Spain
| | - M.I. Alonso
- Departamento de Anatomía y Radiología, Facultad de MedicinaUniversidad de Valladolid Valladolid Spain
- Laboratorio de Desarrollo y Teratología del Sistema Nervioso, Instituto de Neurociencias de Castilla y León (INCYL)Universidad de Valladolid Valladolid Spain
| |
Collapse
|
58
|
Taghian T, Marosfoi MG, Puri AS, Cataltepe OI, King RM, Diffie EB, Maguire AS, Martin DR, Fernau D, Batista AR, Kuchel T, Christou C, Perumal R, Chandra S, Gamlin PD, Bertrand SG, Flotte TR, McKenna-Yasek D, Tai PWL, Aronin N, Gounis MJ, Sena-Esteves M, Gray-Edwards HL. A Safe and Reliable Technique for CNS Delivery of AAV Vectors in the Cisterna Magna. Mol Ther 2019; 28:411-421. [PMID: 31813800 DOI: 10.1016/j.ymthe.2019.11.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 11/29/2022] Open
Abstract
Global gene delivery to the CNS has therapeutic importance for the treatment of neurological disorders that affect the entire CNS. Due to direct contact with the CNS, cerebrospinal fluid (CSF) is an attractive route for CNS gene delivery. A safe and effective route to achieve global gene distribution in the CNS is needed, and administration of genes through the cisterna magna (CM) via a suboccipital puncture results in broad distribution in the brain and spinal cord. However, translation of this technique to clinical practice is challenging due to the risk of serious and potentially fatal complications in patients. Herein, we report development of a gene therapy delivery method to the CM through adaptation of an intravascular microcatheter, which can be safely navigated intrathecally under fluoroscopic guidance. We examined the safety, reproducibility, and distribution/transduction of this method in sheep using a self-complementary adeno-associated virus 9 (scAAV9)-GFP vector. This technique was used to treat two Tay-Sachs disease patients (30 months old and 7 months old) with AAV gene therapy. No adverse effects were observed during infusion or post-treatment. This delivery technique is a safe and minimally invasive alternative to direct infusion into the CM, achieving broad distribution of AAV gene transfer to the CNS.
Collapse
Affiliation(s)
- Toloo Taghian
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Miklos G Marosfoi
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Ajit S Puri
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, USA; Department of Neurological Surgery, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Oguz I Cataltepe
- Department of Neurological Surgery, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Robert M King
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Elise B Diffie
- Scott-Ritchey Research Center, Auburn University, Auburn, AL 36849, USA
| | - Anne S Maguire
- Scott-Ritchey Research Center, Auburn University, Auburn, AL 36849, USA
| | - Douglas R Martin
- Scott-Ritchey Research Center, Auburn University, Auburn, AL 36849, USA; Department of Anatomy, Physiology and Pharmacology, Auburn University, AL 36849, USA
| | - Deborah Fernau
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ana Rita Batista
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Tim Kuchel
- South Australian Health and Medical Research Institute, Gillies Plains, SA 5086, Australia
| | - Chris Christou
- South Australian Health and Medical Research Institute, Gillies Plains, SA 5086, Australia
| | - Raj Perumal
- South Australian Health and Medical Research Institute, Gillies Plains, SA 5086, Australia
| | | | - Paul D Gamlin
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Stephanie G Bertrand
- Department of Environmental Population Health, Cummings Veterinary School at Tufts University, Grafton, MA 01536, USA
| | - Terence R Flotte
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Diane McKenna-Yasek
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Phillip W L Tai
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Neil Aronin
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Matthew J Gounis
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Miguel Sena-Esteves
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Heather L Gray-Edwards
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
59
|
Andreotti JP, Silva WN, Costa AC, Picoli CC, Bitencourt FCO, Coimbra-Campos LMC, Resende RR, Magno LAV, Romano-Silva MA, Mintz A, Birbrair A. Neural stem cell niche heterogeneity. Semin Cell Dev Biol 2019; 95:42-53. [PMID: 30639325 PMCID: PMC6710163 DOI: 10.1016/j.semcdb.2019.01.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/02/2018] [Accepted: 01/08/2019] [Indexed: 12/15/2022]
Abstract
In mammals, new neurons can be generated from neural stem cells in specific regions of the adult brain. Neural stem cells are characterized by their abilities to differentiate into all neural lineages and to self-renew. The specific microenvironments regulating neural stem cells, commonly referred to as neurogenic niches, comprise multiple cell populations whose precise contributions are under active current exploration. Understanding the cross-talk between neural stem cells and their niche components is essential for the development of therapies against neurological disorders in which neural stem cells function is altered. In this review, we describe and discuss recent studies that identified novel components in the neural stem cell niche. These discoveries bring new concepts to the field. Here, we evaluate these recent advances that change our understanding of the neural stem cell niche heterogeneity and its influence on neural stem cell function.
Collapse
Affiliation(s)
- Julia P Andreotti
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Walison N Silva
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alinne C Costa
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Caroline C Picoli
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Flávia C O Bitencourt
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Rodrigo R Resende
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luiz A V Magno
- Department of Mental Health, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marco A Romano-Silva
- Department of Mental Health, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Department of Radiology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
60
|
Castro Dias M, Mapunda JA, Vladymyrov M, Engelhardt B. Structure and Junctional Complexes of Endothelial, Epithelial and Glial Brain Barriers. Int J Mol Sci 2019; 20:E5372. [PMID: 31671721 PMCID: PMC6862204 DOI: 10.3390/ijms20215372] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 10/25/2019] [Accepted: 10/26/2019] [Indexed: 01/04/2023] Open
Abstract
The homeostasis of the central nervous system (CNS) is ensured by the endothelial, epithelial, mesothelial and glial brain barriers, which strictly control the passage of molecules, solutes and immune cells. While the endothelial blood-brain barrier (BBB) and the epithelial blood-cerebrospinal fluid barrier (BCSFB) have been extensively investigated, less is known about the epithelial and mesothelial arachnoid barrier and the glia limitans. Here, we summarize current knowledge of the cellular composition of the brain barriers with a specific focus on describing the molecular constituents of their junctional complexes. We propose that the brain barriers maintain CNS immune privilege by dividing the CNS into compartments that differ with regard to their role in immune surveillance of the CNS. We close by providing a brief overview on experimental tools allowing for reliable in vivo visualization of the brain barriers and their junctional complexes and thus the respective CNS compartments.
Collapse
Affiliation(s)
| | | | | | - Britta Engelhardt
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland.
| |
Collapse
|
61
|
Basal Sodium-Dependent Vitamin C Transporter 2 polarization in choroid plexus explant cells in normal or scorbutic conditions. Sci Rep 2019; 9:14422. [PMID: 31594969 PMCID: PMC6783570 DOI: 10.1038/s41598-019-50772-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/15/2019] [Indexed: 01/10/2023] Open
Abstract
Vitamin C is incorporated into the cerebrospinal fluid (CSF) through choroid plexus cells. While the transfer of vitamin C from the blood to the brain has been studied functionally, the vitamin C transporter, SVCT2, has not been detected in the basolateral membrane of choroid plexus cells. Furthermore, it is unknown how its expression is induced in the developing brain and modulated in scurvy conditions. We concluded that SVCT2 is intensely expressed in the second half of embryonic brain development and postnatal stages. In postnatal and adult brain, SVCT2 is highly expressed in all choroidal plexus epithelial cells, shown by colocalization with GLUT1 in the basolateral membranes and without MCT1 colocalization, which is expressed in the apical membrane. We confirmed that choroid plexus explant cells (in vitro) form a sealed epithelial structure, which polarized basolaterally, endogenous or overexpressed SVCT2. These results are reproduced in vivo by injecting hSVCT2wt-EYFP lentivirus into the CSF. Overexpressed SVCT2 incorporates AA (intraperitoneally injected) from the blood to the CSF. Finally, we observed in Guinea pig brain under scorbutic condition, that normal distribution of SVCT2 in choroid plexus may be regulated by peripheral concentrations of vitamin C. Additionally, we observed that SVCT2 polarization also depends on the metabolic stage of the choroid plexus cells.
Collapse
|
62
|
Şuşman S, Leucuţa DC, Kacso G, Florian ŞI. High dose vs low dose irradiation of the subventricular zone in patients with glioblastoma-a systematic review and meta-analysis. Cancer Manag Res 2019; 11:6741-6753. [PMID: 31410064 PMCID: PMC6645358 DOI: 10.2147/cmar.s206033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/06/2019] [Indexed: 01/19/2023] Open
Abstract
PURPOSE The published data indicate that the irradiation of the subventricular zone (SVZ) might play a role in the treatment of patients with glioblastoma (GBM). We aimed to determine whether radiation treatment doses (high vs low) applied to the SVZ can lead to an increase in progression free survival (PFS) and overall survival (OS). PATIENTS AND METHODS We undertook a systematic review and meta-analysis according to the PICOS research criteria of patients with glioblastoma which received high doses compared to low doses in order to determine if they have a better survival in observational and experimental studies. RESULTS Our survey of the literature yielded 2573 unique records. After screening, 17 were assessed for eligibility, and in the end 8 were included in the qualitative and 4 in the quantitative analysis. Subjects who received higher doses of ipsilateral SVZ (iSVZ) irradiation had a statistically significant better PFS than those receiving lower doses (HR 0.58 [95% CI 0.42-0.82], p=0.002). Subjects receiving higher doses of contralateral SVZ (cSVZ) irradiation did not have a statistically significant better PFS than those receiving lower doses (HR =0.89 [95% CI 0.35-2.26], p=0.81). Also for OS the subjects receiving higher doses to the iSVZ did not have a statistically significant better survival than those receiving lower doses (HR =0.75 [95% CI 0.51-1.11], p=0.15). CONCLUSION The data indicate a possible involvement of the SVZ in the onset and progression of the GBM, as well as a possible role of the SVZ in radiation therapy.
Collapse
Affiliation(s)
- Sergiu Şuşman
- Department of Morphological Sciences, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Neuropathology-Imogen Research Center, Emergency County Hospital, Cluj-Napoca, Romania
| | - Daniel-Corneliu Leucuţa
- Department of Medical Informatics and Biostatistics, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Gabriel Kacso
- Department of Oncology and Radiotherapy, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Amethyst Radiotherapy Center, Cluj-Napoca, Romania
| | - Ştefan Ioan Florian
- Department of Neurosciences, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Neurosurgery, Emergency County Hospital, Cluj-Napoca, Romania
| |
Collapse
|
63
|
OTX2 Signals from the Choroid Plexus to Regulate Adult Neurogenesis. eNeuro 2019; 6:ENEURO.0262-18.2019. [PMID: 31064838 PMCID: PMC6506823 DOI: 10.1523/eneuro.0262-18.2019] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 02/12/2019] [Accepted: 02/16/2019] [Indexed: 01/09/2023] Open
Abstract
Proliferation and migration during adult neurogenesis are regulated by a microenvironment of signaling molecules originating from local vasculature, from CSF produced by the choroid plexus, and from local supporting cells including astrocytes. Here, we focus on the function of OTX2 homeoprotein transcription factor in the mouse adult ventricular-subventricular zone (V-SVZ), which generates olfactory bulb neurons. We find that OTX2 secreted by choroid plexus is transferred to the supporting cells of the V-SVZ and rostral migratory stream. Deletion of Otx2 in choroid plexus affects neuroblast migration and reduces the number of olfactory bulb newborn neurons. Adult neurogenesis was also decreased by expressing secreted single-chain antibodies to sequester OTX2 in the CSF, demonstrating the importance of non-cell-autonomous OTX2. We show that OTX2 activity modifies extracellular matrix components and signaling molecules produced by supporting astrocytes. Thus, we reveal a multilevel and non-cell-autonomous role of a homeoprotein and reinforce the choroid plexus and astrocytes as key niche compartments affecting adult neurogenesis.
Collapse
|
64
|
Lewitt MS, Boyd GW. The Role of Insulin-Like Growth Factors and Insulin-Like Growth Factor-Binding Proteins in the Nervous System. BIOCHEMISTRY INSIGHTS 2019; 12:1178626419842176. [PMID: 31024217 PMCID: PMC6472167 DOI: 10.1177/1178626419842176] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 03/15/2019] [Indexed: 01/23/2023]
Abstract
The insulin-like growth factors (IGF-I and IGF-II) and their receptors are widely expressed in nervous tissue from early embryonic life. They also cross the blood brain barriers by active transport, and their regulation as endocrine factors therefore differs from other tissues. In brain, IGFs have paracrine and autocrine actions that are modulated by IGF-binding proteins and interact with other growth factor signalling pathways. The IGF system has roles in nervous system development and maintenance. There is substantial evidence for a specific role for this system in some neurodegenerative diseases, and neuroprotective actions make this system an attractive target for new therapeutic approaches. In developing new therapies, interaction with IGF-binding proteins and other growth factor signalling pathways should be considered. This evidence is reviewed, gaps in knowledge are highlighted, and recommendations are made for future research.
Collapse
Affiliation(s)
- Moira S Lewitt
- School of Health & Life Sciences, University of the West of Scotland, Paisley, UK
| | - Gary W Boyd
- School of Health & Life Sciences, University of the West of Scotland, Paisley, UK
| |
Collapse
|
65
|
Meyer G, González-Arnay E, Moll U, Nemajerova A, Tissir F, González-Gómez M. Cajal-Retzius neurons are required for the development of the human hippocampal fissure. J Anat 2019; 235:569-589. [PMID: 30861578 DOI: 10.1111/joa.12947] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2019] [Indexed: 01/14/2023] Open
Abstract
Cajal-Retzius neurons (CRN) are the main source of Reelin in the marginal zone of the developing neocortex and hippocampus (HC). They also express the transcription factor p73 and are complemented by later-appearing GABAergic Reelin+ interneurons. The human dorsal HC forms at gestational week 10 (GW10), when it develops a rudimentary Ammonic plate and incipient dentate migration, although the dorsal hippocampal fissure (HF) remains shallow and contains few CRN. The dorsal HC transforms into the indusium griseum (IG), concurrently with the rostro-caudal appearance of the corpus callosum, by GW14-17. Dorsal and ventral HC merge at the site of the former caudal hem, which is located at the level of the future atrium of the lateral ventricle and closely connected with the choroid plexus. The ventral HC forms at GW11 in the temporal lobe. The ventral HF is wide open at GW14-16 and densely populated by large numbers of CRNs. These are in intimate contact with the meninges and meningeal blood vessels, suggesting signalling through diverse pathways. At GW17, the fissure deepens and begins to fuse, although it is still marked by p73/Reelin+ CRNs. The p73KO mouse illustrates the importance of p73 in CRN for HF formation. In the mutant, Tbr1/Reelin+ CRNs are born in the hem but do not leave it and subsequently disappear, so that the mutant cortex and HC lack CRN from the onset of corticogenesis. The HF is absent, which leads to profound architectonic alterations of the HC. To determine which p73 isoform is important for HF formation, isoform-specific TAp73- and DeltaNp73-deficient embryonic and early postnatal mice were examined. In both mutants, the number of CRNs was reduced, but each of their phenotypes was much milder than in the global p73KO mutant missing both isoforms. In the TAp73KO mice, the HF of the dorsal HC failed to form, but was present in the ventral HC. In the DeltaNp73KO mice, the HC had a mild patterning defect along with a shorter HF. Complex interactions between both isoforms in CRNs may contribute to their crucial activity in the developing brain.
Collapse
Affiliation(s)
- Gundela Meyer
- Department of Basic Medical Sciences, University La Laguna, La Laguna, Spain
| | | | - Ute Moll
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - Alice Nemajerova
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - Fadel Tissir
- Developmental Neurobiology Group, Institute of NeuroScience, UCL Louvain, Brussels, Belgium
| | | |
Collapse
|
66
|
Ghasemi Hamidabadi H, Nazm Bojnordi M, Rezaei N, Soleimani S. Evaluation of Differential Gene Expression during Transdifferentiation of Bone Marrow Stromal Cells to Glial Phenotype in the Presence of Cerebrospinal Fluid. Avicenna J Med Biotechnol 2019; 11:28-34. [PMID: 30800240 PMCID: PMC6359706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The present study assessed the alteration of gene expression during transdifferentiation of Bone Marrow Stromal Cells (BMSCs) into oligodendrocyte in the presence of Cerebrospinal Fluid (CSF). METHODS BMSCs were collected from female Sprague-Dawley rats and were cultured in DMEM/F12 medium supplemented with Retinoic Acid (RA), basic Fibroblast Growth Factor (bFGF), and Epidermal Growth Factor (EGF). CSF was added daily to the culture media. The oligoprogenitor and oligodendrocyte generation was assessed by immunocytochemistry for Oligo 2, A2B5, CNP and MBP markers. RESULTS The mean percentages of immunopositive cells for Olig2 and A2B5 were 52.1±1.74 and 56.34±2.55%, respectively. The number of immunopositive cells for glial markers CNP and MBP were 48.8±3.12 and 40.5±8.92%, respectively. Alteration of gene expression of Oct4, Olig 2, PDGFR-α and PLP were examined by real time PCR during transdifferentiation of BMSC to oligodendrocyte. Immunocytochemical results indicate that oligoprogenitor cells were immunopositive for Oligo2 and A2B5 markers. Also, oligodendrocytes expressed the mature glial markers of CNP and MBP indicating successful differentiation. CONCLUSION In conclusion, CSF promotes the transdifferentiation of BMSC into mature oligodendrocyte via providing an appropriate niche for glial maturation.
Collapse
Affiliation(s)
- Hatef Ghasemi Hamidabadi
- Immunogenetic Research Center, Department of Anatomy and Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maryam Nazm Bojnordi
- Immunogenetic Research Center, Department of Anatomy and Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran,Corresponding author: Maryam Nazm Bojnordi, Ph.D., Cellular & Molecular Biology Research Center, Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran, Tel: +98 11 33543080-81, Fax: +98 11 33543242, E-mail:
| | - Nourollah Rezaei
- Immunogenetic Research Center, Department of Anatomy and Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sara Soleimani
- Department of Anatomy & Cell Biology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
67
|
Keeley DP, Sherwood DR. Tissue linkage through adjoining basement membranes: The long and the short term of it. Matrix Biol 2019; 75-76:58-71. [PMID: 29803937 PMCID: PMC6252152 DOI: 10.1016/j.matbio.2018.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/18/2018] [Accepted: 05/21/2018] [Indexed: 01/01/2023]
Abstract
Basement membranes (BMs) are thin dense sheets of extracellular matrix that surround most tissues. When the BMs of neighboring tissues come into contact, they usually slide along one another and act to separate tissues and organs into distinct compartments. However, in certain specialized regions, the BMs of neighboring tissues link, helping to bring tissues together. These BM connections can be transient, such as during tissue fusion events in development, or long-term, as with adult tissues involved with filtration, including the blood brain barrier and kidney glomerulus. The transitory nature of these connections in development and the complexity of tissue filtration systems in adults have hindered the understanding of how juxtaposed BMs fasten together. The recent identification of a BM-BM adhesion system in C. elegans, termed B-LINK (BM linkage), however, is revealing cellular and extracellular matrix components of a nascent tissue adhesion system. We discuss insights gained from studying the B-LINK tissue adhesion system in C. elegans, compare this adhesion with other BM-BM connections in Drosophila and vertebrates, and outline important future directions towards elucidating this fascinating and poorly understood mode of adhesion that joins neighboring tissues.
Collapse
Affiliation(s)
- Daniel P Keeley
- Department of Biology, Regeneration Next, Duke University, Box 90338, Durham, NC 27708, USA
| | - David R Sherwood
- Department of Biology, Regeneration Next, Duke University, Box 90338, Durham, NC 27708, USA.
| |
Collapse
|
68
|
Abstract
BACKGROUND There is currently a renaissance of interest in the many functions of cerebrospinal fluid (CSF). Altered flow of CSF, for example, has been shown to impair the clearance of pathogenic inflammatory proteins involved in neurodegenerative diseases, such as amyloid-β. In addition, the role of CSF in the newly discovered lymphatic system of the brain has become a prominently researched area in clinical neuroscience, as CSF serves as a conduit between the central nervous system and immune system. MAIN BODY This article will review the importance of CSF in regulating normal brain development and function, from the prenatal period throughout the lifespan, and highlight recent research that CSF abnormalities in autism spectrum disorder (ASD) are present in infancy, are detectable by conventional structural MRI, and could serve as an early indicator of altered neurodevelopment. CONCLUSION The identification of early CSF abnormalities in children with ASD, along with emerging knowledge of the underlying pathogenic mechanisms, has the potential to serve as early stratification biomarkers that separate children with ASD into biological subtypes that share a common pathophysiology. Such subtypes could help parse the phenotypic heterogeneity of ASD and map on to targeted, biologically based treatments.
Collapse
Affiliation(s)
- Mark D Shen
- Carolina Institute for Developmental Disabilities, Department of Psychiatry, and the UNC Intellectual and Developmental Disabilities Research Center, University of North Carolina at Chapel Hill School of Medicine, Campus Box 3367, Chapel Hill, NC, 27599-3367, USA.
| |
Collapse
|
69
|
Saunders NR, Dziegielewska KM, Møllgård K, Habgood MD. Physiology and molecular biology of barrier mechanisms in the fetal and neonatal brain. J Physiol 2018; 596:5723-5756. [PMID: 29774535 PMCID: PMC6265560 DOI: 10.1113/jp275376] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 03/12/2018] [Indexed: 12/11/2022] Open
Abstract
Properties of the local internal environment of the adult brain are tightly controlled providing a stable milieu essential for its normal function. The mechanisms involved in this complex control are structural, molecular and physiological (influx and efflux transporters) frequently referred to as the 'blood-brain barrier'. These mechanisms include regulation of ion levels in brain interstitial fluid essential for normal neuronal function, supply of nutrients, removal of metabolic products, and prevention of entry or elimination of toxic agents. A key feature is cerebrospinal fluid secretion and turnover. This is much less during development, allowing greater accumulation of permeating molecules. The overall effect of these mechanisms is to tightly control the exchange of molecules into and out of the brain. This review presents experimental evidence currently available on the status of these mechanisms in developing brain. It has been frequently stated for over nearly a century that the blood-brain barrier is not present or at least is functionally deficient in the embryo, fetus and newborn. We suggest the alternative hypothesis that the barrier mechanisms in developing brain are likely to be appropriately matched to each stage of its development. The contributions of different barrier mechanisms, such as changes in constituents of cerebrospinal fluid in relation to specific features of brain development, for example neurogenesis, are only beginning to be studied. The evidence on this previously neglected aspect of brain barrier function is outlined. We also suggest future directions this field could follow with special emphasis on potential applications in a clinical setting.
Collapse
Affiliation(s)
- Norman R. Saunders
- Department of Pharmacology and TherapeuticsUniversity of MelbourneParkvilleVictoriaAustralia
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenBlegdamsvej 3CopenhagenDenmark
| | - Katarzyna M. Dziegielewska
- Department of Pharmacology and TherapeuticsUniversity of MelbourneParkvilleVictoriaAustralia
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenBlegdamsvej 3CopenhagenDenmark
| | - Kjeld Møllgård
- Department of Pharmacology and TherapeuticsUniversity of MelbourneParkvilleVictoriaAustralia
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenBlegdamsvej 3CopenhagenDenmark
| | - Mark D. Habgood
- Department of Pharmacology and TherapeuticsUniversity of MelbourneParkvilleVictoriaAustralia
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenBlegdamsvej 3CopenhagenDenmark
| |
Collapse
|
70
|
Wang J, Pan Y, Cui Q, Yao B, Wang J, Dai J. Penetration of PFASs Across the Blood Cerebrospinal Fluid Barrier and Its Determinants in Humans. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:13553-13561. [PMID: 30362723 DOI: 10.1021/acs.est.8b04550] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Laboratory studies indicate that exposure to perfluoroalkyl and polyfluoroalkyl substances (PFASs) can induce neurobehavioral effects in animals. However, the penetration of PFASs across the brain barrier and its determining factors are yet to be clarified in humans. We studied PFAS levels in 223 matched-pair serum and cerebrospinal fluid (CSF) samples from hospital in-patients using UPLC/MS/MS. Among the 21 target analytes, PFOA, PFOS, and 6:2 Cl-PFESA were dominant in serum, with mean concentrations of 7.4, 6.8, and 6.2 ng/mL, respectively, contributing 79% to the total PFAS burden in serum. In CSF, PFOA, PFOS, and 6:2 Cl-PFESA were again the dominant PFASs, with mean concentrations of 0.078, 0.028, and 0.051 ng/mL contributing 36%, 13%, and 24%, respectively, to the total PFAS burden in CSF. Furthermore, PFAS penetration ( RPFAS, PFASCSF/PFASserum) was positively correlated with the barrier permeability index RAlb (AlbuminCSF/Albuminserum), indicating that barrier integrity was the main determinant of PFAS penetration across the blood-CSF barrier. Positive associations between the RPFAS values of the main PFASs and serum C-reactive protein were observed, implying that inflammation facilitates the penetration of PFASs across the brain barrier.
Collapse
Affiliation(s)
- Jinghua Wang
- Key Laboratory of Animal Ecology and Conservation Biology , Institute of Zoology, Chinese Academy of Sciences , Beijing 100101 , China
| | - Yitao Pan
- Key Laboratory of Animal Ecology and Conservation Biology , Institute of Zoology, Chinese Academy of Sciences , Beijing 100101 , China
| | - Qianqian Cui
- Key Laboratory of Animal Ecology and Conservation Biology , Institute of Zoology, Chinese Academy of Sciences , Beijing 100101 , China
| | - Bing Yao
- Reproductive Medical Center, Nanjing Jinling Hospital , Nanjing University, School of Medicine , Nanjing 210002 , Jiangsu , China
| | - Jianshe Wang
- Key Laboratory of Animal Ecology and Conservation Biology , Institute of Zoology, Chinese Academy of Sciences , Beijing 100101 , China
| | - Jiayin Dai
- Key Laboratory of Animal Ecology and Conservation Biology , Institute of Zoology, Chinese Academy of Sciences , Beijing 100101 , China
| |
Collapse
|
71
|
Bardella C, Al-Shammari AR, Soares L, Tomlinson I, O'Neill E, Szele FG. The role of inflammation in subventricular zone cancer. Prog Neurobiol 2018; 170:37-52. [PMID: 29654835 DOI: 10.1016/j.pneurobio.2018.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/10/2018] [Accepted: 04/07/2018] [Indexed: 12/12/2022]
Abstract
The adult subventricular zone (SVZ) stem cell niche has proven vital for discovering neurodevelopmental mechanisms and holds great potential in medicine for neurodegenerative diseases. Yet the SVZ holds a dark side - it can become tumorigenic. Glioblastomas can arise from the SVZ via cancer stem cells (CSCs). Glioblastoma and other brain cancers often have dismal prognoses since they are resistant to treatment. In this review we argue that the SVZ is susceptible to cancer because it contains stem cells, migratory progenitors and unusual inflammation. Theoretically, SVZ stem cells can convert to CSCs more readily than can postmitotic neural cells. Additionally, the robust long-distance migration of SVZ progenitors can be subverted upon tumorigenesis to an infiltrative phenotype. There is evidence that the SVZ, even in health, exhibits chronic low-grade cellular and molecular inflammation. Its inflammatory response to brain injuries and disease differs from that of other brain regions. We hypothesize that the SVZ inflammatory environment can predispose cells to novel mutations and exacerbate cancer phenotypes. This can be studied in animal models in which human mutations related to cancer are knocked into the SVZ to induce tumorigenesis and the CSC immune interactions that precede full-blown cancer. Importantly inflammation can be pharmacologically modulated providing an avenue to brain cancer management and treatment. The SVZ is accessible by virtue of its location surrounding the lateral ventricles and CSCs in the SVZ can be targeted with a variety of pharmacotherapies. Thus, the SVZ can yield aggressive tumors but can be targeted via several strategies.
Collapse
Affiliation(s)
- Chiara Bardella
- Institute of Cancer and Genomics Sciences, University of Birmingham, Birmingham, UK
| | - Abeer R Al-Shammari
- Research and Development, Qatar Research Leadership Program, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Luana Soares
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK; Department of Oncology, University of Oxford, Oxford, UK
| | - Ian Tomlinson
- Institute of Cancer and Genomics Sciences, University of Birmingham, Birmingham, UK
| | - Eric O'Neill
- Department of Oncology, University of Oxford, Oxford, UK
| | - Francis G Szele
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
72
|
Johnson BA, Coutts M, Vo HM, Hao X, Fatima N, Rivera MJ, Sims RJ, Neel MJ, Kang YJ, Monuki ES. Accurate, strong, and stable reporting of choroid plexus epithelial cells in transgenic mice using a human transthyretin BAC. Fluids Barriers CNS 2018; 15:22. [PMID: 30111340 PMCID: PMC6094443 DOI: 10.1186/s12987-018-0107-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/25/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Choroid plexus epithelial cells express high levels of transthyretin, produce cerebrospinal fluid and many of its proteins, and make up the blood-cerebrospinal fluid barrier. Choroid plexus epithelial cells are vital to brain health and may be involved in neurological diseases. Transgenic mice containing fluorescent and luminescent reporters of these cells would facilitate their study in health and disease, but prior transgenic reporters lost expression over the early postnatal period. METHODS Human bacterial artificial chromosomes in which the transthyretin coding sequence was replaced with DNA for tdTomato or luciferase 2 were used in pronuclear injections to produce transgenic mice. These mice were characterized by visualizing red fluorescence, immunostaining, real-time reverse transcription polymerase chain reaction, and luciferase enzyme assay. RESULTS Reporters were faithfully expressed in cells that express transthyretin constitutively, including choroid plexus epithelial cells, retinal pigment epithelium, pancreatic islets, and liver. Expression of tdTomato in choroid plexus began at the appropriate embryonic age, being detectable by E11.5. Relative levels of tdTomato transcript in the liver and choroid plexus paralleled relative levels of transcripts for transthyretin. Expression remained robust over the first postnatal year, although choroid plexus transcripts of tdTomato declined slightly with age whereas transthyretin remained constant. TdTomato expression patterns were consistent across three founder lines, displayed no sex differences, and were stable across several generations. Two of the tdTomato lines were bred to homozygosity, and homozygous mice are healthy and fertile. The usefulness of tdTomato reporters in visualizing and analyzing live Transwell cultures was demonstrated. Luciferase activity was very high in homogenates of choroid plexus and continued to be expressed through adulthood. Luciferase also was detectable in eye and pancreas. CONCLUSIONS Transgenic mice bearing fluorescent and luminescent reporters of transthyretin should prove useful for tracking transplanted choroid plexus epithelial cells, for purifying the cells, and for reporting their derivation from stem cells. They also should prove useful for studying transthyretin synthesis by other cell types, as transthyretin has been implicated in many functions and conditions, including clearance of β-amyloid peptides associated with Alzheimer's disease, heat shock in neurons, processing of neuropeptides, nerve regeneration, astrocyte metabolism, and transthyretin amyloidosis.
Collapse
Affiliation(s)
- Brett A Johnson
- Department of Pathology and Laboratory Medicine, UC Irvine, Irvine, USA.,Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, USA
| | - Margaret Coutts
- Department of Pathology and Laboratory Medicine, UC Irvine, Irvine, USA.,Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, USA
| | - Hillary M Vo
- Department of Pathology and Laboratory Medicine, UC Irvine, Irvine, USA.,Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, USA
| | - Xinya Hao
- Department of Pathology and Laboratory Medicine, UC Irvine, Irvine, USA.,Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, USA
| | - Nida Fatima
- Department of Pathology and Laboratory Medicine, UC Irvine, Irvine, USA.,Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, USA
| | - Maria J Rivera
- Department of Biological Sciences, California State University, Long Beach, USA
| | - Robert J Sims
- Department of Biological Sciences, California State University, Long Beach, USA
| | - Michael J Neel
- Department of Pathology and Laboratory Medicine, UC Irvine, Irvine, USA.,Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, USA
| | - Young-Jin Kang
- Department of Pathology and Laboratory Medicine, UC Irvine, Irvine, USA.,Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, USA
| | - Edwin S Monuki
- Department of Pathology and Laboratory Medicine, UC Irvine, Irvine, USA. .,Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, USA. .,Department of Developmental and Cell Biology, UC Irvine, Irvine, USA.
| |
Collapse
|
73
|
Tan KZ, Cunningham AM, Joshi A, Oei JL, Ward MC. Expression of kappa opioid receptors in developing rat brain - Implications for perinatal buprenorphine exposure. Reprod Toxicol 2018; 78:81-89. [PMID: 29635048 DOI: 10.1016/j.reprotox.2018.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 04/03/2018] [Accepted: 04/06/2018] [Indexed: 12/19/2022]
Abstract
Buprenorphine, a mu opioid receptor partial agonist and kappa opioid receptor (KOR) antagonist, is an emerging therapeutic agent for maternal opioid dependence in pregnancy and neonatal abstinence syndrome. However, the endogenous opioid system plays a critical role in modulating neurodevelopment and perinatal buprenorphine exposure may detrimentally influence this. To identify aspects of neurodevelopment vulnerable to perinatal buprenorphine exposure, we defined KOR protein expression and its cellular associations in normal rat brain from embryonic day 16 to postnatal day 23 with double-labelling immunohistochemistry. KOR was expressed on neural stem and progenitor cells (NSPCs), choroid plexus epithelium, subpopulations of cortical neurones and oligodendrocytes, and NSPCs and subpopulations of neurones in postnatal hippocampus. These distinct patterns of KOR expression suggest several pathways vulnerable to perinatal buprenorphine exposure, including proliferation, neurogenesis and neurotransmission. We thus suggest the cautious use of buprenorphine in both mothers and infants until its impact on neurodevelopment is better defined.
Collapse
Affiliation(s)
- Kathleen Z Tan
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Randwick, NSW 2031, Australia
| | - Anne M Cunningham
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Randwick, NSW 2031, Australia; Westfield Research Laboratories, Sydney Children's Hospital, High Street, Randwick, NSW 2031, Australia.
| | - Anjali Joshi
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Randwick, NSW 2031, Australia; Westfield Research Laboratories, Sydney Children's Hospital, High Street, Randwick, NSW 2031, Australia
| | - Ju Lee Oei
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Randwick, NSW 2031, Australia; The Royal Hospital for Women, Barker Street, Randwick, NSW 2031, Australia
| | - Meredith C Ward
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Randwick, NSW 2031, Australia; The Royal Hospital for Women, Barker Street, Randwick, NSW 2031, Australia; Westfield Research Laboratories, Sydney Children's Hospital, High Street, Randwick, NSW 2031, Australia.
| |
Collapse
|
74
|
Glutathione Conjugation at the Blood-CSF Barrier Efficiently Prevents Exposure of the Developing Brain Fluid Environment to Blood-Borne Reactive Electrophilic Substances. J Neurosci 2018; 38:3466-3479. [PMID: 29507144 DOI: 10.1523/jneurosci.2967-17.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 02/01/2018] [Accepted: 02/17/2018] [Indexed: 02/06/2023] Open
Abstract
Exposure of the developing brain to toxins, drugs, or deleterious endogenous compounds during the perinatal period can trigger alterations in cell division, migration, differentiation, and synaptogenesis, leading to lifelong neurological impairment. The brain is protected by cellular barriers acting through multiple mechanisms, some of which are still poorly explored. We used a combination of enzymatic assays, live tissue fluorescence microscopy, and an in vitro cellular model of the blood-CSF barrier to investigate an enzymatic detoxification pathway in the developing male and female rat brain. We show that during the early postnatal period the choroid plexus epithelium forming the blood-CSF barrier and the ependymal cell layer bordering the ventricles harbor a high detoxifying capacity that involves glutathione S-transferases. Using a functional knock-down rat model for choroidal glutathione conjugation, we demonstrate that already in neonates, this metabolic pathway efficiently prevents the penetration of blood-borne reactive compounds into CSF. The versatility of the protective mechanism results from the multiplicity of the glutathione S-transferase isoenzymes, which are differently expressed between the choroidal epithelium and the ependyma. The various isoenzymes display differential substrate specificities, which greatly widen the spectrum of molecules that can be inactivated by this pathway. In conclusion, the blood-CSF barrier and the ependyma are identified as key cellular structures in the CNS to protect the brain fluid environment from different chemical classes of potentially toxic compounds during the postnatal period. This metabolic neuroprotective function of brain interfaces ought to compensate for the liver postnatal immaturity.SIGNIFICANCE STATEMENT Brain homeostasis requires a stable and controlled internal environment. Defective brain protection during the perinatal period can lead to lifelong neurological impairment. We demonstrate that the choroid plexus forming the blood-CSF barrier is a key player in the protection of the developing brain. Glutathione-dependent enzymatic metabolism in the choroidal epithelium inactivates a broad spectrum of noxious compounds, efficiently preventing their penetration into the CSF. A second line of detoxification is located in the ependyma separating the CSF from brain tissue. Our study reveals a novel facet of the mechanisms by which the brain is protected at a period of high vulnerability, at a time when the astrocytic network is still immature and liver xenobiotic metabolism is limited.
Collapse
|
75
|
Boggild S, Molgaard S, Glerup S, Nyengaard JR. Highly segregated localization of the functionally related vps10p receptors sortilin and SorCS2 during neurodevelopment. J Comp Neurol 2018; 526:1267-1286. [PMID: 29405286 DOI: 10.1002/cne.24403] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 01/20/2018] [Accepted: 01/22/2018] [Indexed: 12/11/2022]
Abstract
Nervous system development is a precisely orchestrated series of events requiring a multitude of intrinsic and extrinsic cues. Sortilin and SorCS2 are members of the Vps10p receptor family with complementary influence on some of these cues including the neurotrophins (NTs). However, the developmental time points where sortilin and SorCS2 exert their activities in conjunction or independently still remain unclear. In this study we present the characterization of the spatiotemporal expression pattern of sortilin and SorCS2 in the developing murine nervous system. Sortilin is highly expressed in the fetal nervous system with expression localized to distinct cell populations. Expression was high in neurons of the cortical plate and developing allocortex, as well as subpallial structures. Furthermore, the neuroepithelium lining the ventricles and the choroid plexus showed high expression of sortilin, together with the developing retina, spinal ganglia, and sympathetic ganglia. In contrast, SorCS2 was confined in a marked degree to the thalamus and, at E13.5, the floor plate from midbrain rostrally to spinal cord caudally. SorCS2 was also found in the ventricular zones of the ventral hippocampus and nucleus accumbens areas, in the meninges and in Schwann cells. Hence, sortilin and SorCS2 are extensively present in several distinct anatomical areas in the developing nervous system and are rarely co-expressed. Possible functions of sortilin and SorCS2 pertain to NT signaling, axon guidance and beyond. The present data will form the basis for hypotheses and study designs for unravelling the functions of sortilin and SorCS2 during the establishment of neuronal structures and connections.
Collapse
Affiliation(s)
- Simon Boggild
- Department of Clinical Medicine, Aarhus University, MIND Centre, Core Center for Molecular Morphology, Section for Stereology and Microscopy, Aarhus C, 8000, Denmark.,MIND Centre, Department of Biomedicine, Aarhus University, Ole Worms Allé 3, Aarhus C, 8000, Denmark
| | - Simon Molgaard
- Department of Clinical Medicine, Aarhus University, MIND Centre, Core Center for Molecular Morphology, Section for Stereology and Microscopy, Aarhus C, 8000, Denmark.,MIND Centre, Department of Biomedicine, Aarhus University, Ole Worms Allé 3, Aarhus C, 8000, Denmark
| | - Simon Glerup
- MIND Centre, Department of Biomedicine, Aarhus University, Ole Worms Allé 3, Aarhus C, 8000, Denmark
| | - Jens Randel Nyengaard
- Department of Clinical Medicine, Aarhus University, MIND Centre, Core Center for Molecular Morphology, Section for Stereology and Microscopy, Aarhus C, 8000, Denmark.,Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University, Aarhus C, 8000, Denmark
| |
Collapse
|
76
|
Abdelhamed Z, Vuong SM, Hill L, Shula C, Timms A, Beier D, Campbell K, Mangano FT, Stottmann RW, Goto J. A mutation in Ccdc39 causes neonatal hydrocephalus with abnormal motile cilia development in mice. Development 2018; 145:145/1/dev154500. [PMID: 29317443 DOI: 10.1242/dev.154500] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 11/16/2017] [Indexed: 12/24/2022]
Abstract
Pediatric hydrocephalus is characterized by an abnormal accumulation of cerebrospinal fluid (CSF) and is one of the most common congenital brain abnormalities. However, little is known about the molecular and cellular mechanisms regulating CSF flow in the developing brain. Through whole-genome sequencing analysis, we report that a homozygous splice site mutation in coiled-coil domain containing 39 (Ccdc39) is responsible for early postnatal hydrocephalus in the progressive hydrocephalus (prh) mouse mutant. Ccdc39 is selectively expressed in embryonic choroid plexus and ependymal cells on the medial wall of the forebrain ventricle, and the protein is localized to the axoneme of motile cilia. The Ccdc39prh/prh ependymal cells develop shorter cilia with disorganized microtubules lacking the axonemal inner arm dynein. Using high-speed video microscopy, we show that an orchestrated ependymal ciliary beating pattern controls unidirectional CSF flow on the ventricular surface, which generates bulk CSF flow in the developing brain. Collectively, our data provide the first evidence for involvement of Ccdc39 in hydrocephalus and suggest that the proper development of medial wall ependymal cilia is crucial for normal mouse brain development.
Collapse
Affiliation(s)
- Zakia Abdelhamed
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45242, USA.,Department of Anatomy and Embryology, Faculty of Medicine (Girls' Section), Al-Azhar University, Cairo 11651, Egypt
| | - Shawn M Vuong
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45242, USA
| | - Lauren Hill
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45242, USA
| | - Crystal Shula
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45242, USA
| | - Andrew Timms
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Hospital, 4800 Sand Point Way NE, Seattle, WA 98105, USA
| | - David Beier
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Hospital, 4800 Sand Point Way NE, Seattle, WA 98105, USA
| | - Kenneth Campbell
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45242, USA.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45242 USA
| | - Francesco T Mangano
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45242, USA
| | - Rolf W Stottmann
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45242 USA .,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45242 USA
| | - June Goto
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45242, USA
| |
Collapse
|
77
|
Cruz Y, García EE, Gálvez JV, Arias-Santiago SV, Carvajal HG, Silva-García R, Bonilla-Jaime H, Rojas-Castañeda J, Ibarra A. Release of interleukin-10 and neurotrophic factors in the choroid plexus: possible inductors of neurogenesis following copolymer-1 immunization after cerebral ischemia. Neural Regen Res 2018; 13:1743-1752. [PMID: 30136689 PMCID: PMC6128049 DOI: 10.4103/1673-5374.238615] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Copolymer-1 (Cop-1) is a peptide with immunomodulatory properties, approved by the Food and Drug Administration of United States in the treatment of multiple sclerosis. Cop-1 has been shown to exert neuroprotective effects and induce neurogenesis in cerebral ischemia models. Nevertheless, the mechanism involved in the neurogenic action of this compound remains unknown. The choroid plexus (CP) is a network of cells that constitute the interphase between the immune and central nervous systems, with the ability to mediate neurogenesis through the release of cytokines and growth factors. Therefore, the CP could play a role in Cop-1-induced neurogenesis. In order to determine the participation of the CP in the induction of neurogenesis after Cop-1 immunization, we evaluated the gene expression of various growth factors (brain-derived neurotrophic factor, insulin-like growth factor 1, neurotrophin-3) and cytokines (tumor necrosis factor alpha, interferon-gamma, interleukin-4 (IL-4), IL-10 and IL-17), in the CP at 14 days after ischemia. Furthermore, we analyzed the correlation between the expression of these genes and neurogenesis. Our results showed that Cop-1 was capable of stimulating an upregulation in the expression of the genes encoding for brain-derived neurotrophic factor, insulin-like growth factor 1, neurotrophin-3 and IL-10 in the CP, which correlated with an increase in neurogenesis in the subventricular and subgranular zone. As well, we observed a downregulation of IL-17 gene expression. This study demonstrates the effect of Cop-1 on the expression of growth factors and IL-10 in the CP, in the same way, presents a possible mechanism involved in the neurogenic effect of Cop-1.
Collapse
Affiliation(s)
- Yolanda Cruz
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Norte, Huixquilucan, Estado de México; Lab. De Biología de la reproducción, UAMI. Ciudad de México; Doctorado en Ciencias Biológicas, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa. Ciudad de México, México
| | - Edna E García
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Norte, Huixquilucan, Estado de México, México
| | - Jessica V Gálvez
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Norte, Huixquilucan, Estado de México, México
| | - Stella V Arias-Santiago
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Norte, Huixquilucan, Estado de México, México
| | - Horacio G Carvajal
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Norte, Huixquilucan, Estado de México, México
| | | | | | - Julio Rojas-Castañeda
- Subdirección de Medicina Experimental, Instituto Nacional de Pediatría. Ciudad de México, México
| | - Antonio Ibarra
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Norte, Huixquilucan, Estado de México, México
| |
Collapse
|
78
|
A Hidden Epithelial Barrier in the Brain with a Central Role in Regulating Brain Homeostasis. Implications for Aging. Ann Am Thorac Soc 2017; 13 Suppl 5:S407-S410. [PMID: 28005425 DOI: 10.1513/annalsats.201609-676aw] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite increasing interest the last years, the choroid plexus still is a relatively understudied tissue in neuroscience. The choroid plexus contains fenestrated capillaries surrounded by tightly connected choroid plexus epithelial cells that form the blood-cerebrospinal fluid barrier. The choroid plexus is the main source of cerebrospinal fluid production, assures removal of toxic waste products, and acts as gatekeeper of the brain by the presence of resident inflammatory cells. Increasing evidence shows that choroid plexus' dysfunction, via altered secretory, transport, immune, and barrier function, plays a central role in a very diverse set of clinical conditions such as aging and the age-associated Alzheimer's disease. Indeed, age-related changes may weaken the barrier formed by the choroid plexus epithelial cells and/or impair the choroid plexus' ability to generate cerebrospinal fluid and to produce beneficial factors. Consequently, advanced knowledge of the choroid plexus-cerebrospinal fluid system in aging is essential to better understand age-associated neurological diseases and might open up new therapeutic strategies.
Collapse
|
79
|
Arai Y, Taverna E. Neural Progenitor Cell Polarity and Cortical Development. Front Cell Neurosci 2017; 11:384. [PMID: 29259543 PMCID: PMC5723293 DOI: 10.3389/fncel.2017.00384] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 11/17/2017] [Indexed: 12/15/2022] Open
Abstract
Neurons populating the cerebral cortex are generated during embryonic development from neural stem and progenitor cells in a process called neurogenesis. Neural stem and progenitor cells are classified into several classes based on the different location of mitosis (apical or basal) and polarity features (bipolar, monopolar and non-polar). The polarized architecture of stem cells is linked to the asymmetric localization of proteins, mRNAs and organelles, such as the centrosome and the Golgi apparatus (GA). Polarity affects stem cell function and allows stem cells to integrate environmental cues from distinct niches in the developing cerebral cortex. The crucial role of polarity in neural stem and progenitor cells is highlighted by the fact that impairment of cell polarity is linked to neurodevelopmental disorders such as Down syndrome, Fragile X syndrome, autism spectrum disorders (ASD) and schizophrenia.
Collapse
Affiliation(s)
- Yoko Arai
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241/INSERM U1050, PSL Research University, Paris, France
| | - Elena Taverna
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology (MPG), Leipzig, Germany
| |
Collapse
|
80
|
Smith LK, White CW, Villeda SA. The systemic environment: at the interface of aging and adult neurogenesis. Cell Tissue Res 2017; 371:105-113. [PMID: 29124393 PMCID: PMC5748432 DOI: 10.1007/s00441-017-2715-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 10/09/2017] [Indexed: 02/06/2023]
Abstract
Aging results in impaired neurogenesis in the two neurogenic niches of the adult mammalian brain, the dentate gyrus of the hippocampus and the subventricular zone of the lateral ventricle. While significant work has characterized intrinsic cellular changes that contribute to this decline, it is increasingly apparent that the systemic environment also represents a critical driver of brain aging. Indeed, emerging studies utilizing the model of heterochronic parabiosis have revealed that immune-related molecular and cellular changes in the aging systemic environment negatively regulate adult neurogenesis. Interestingly, these studies have also demonstrated that age-related decline in neurogenesis can be ameliorated by exposure to the young systemic environment. While this burgeoning field of research is increasingly garnering interest, as yet, the precise mechanisms driving either the pro-aging effects of aged blood or the rejuvenating effects of young blood remain to be thoroughly defined. Here, we review how age-related changes in blood, blood-borne factors, and peripheral immune cells contribute to the age-related decline in adult neurogenesis in the mammalian brain, and posit both direct neural stem cell and indirect neurogenic niche-mediated mechanisms.
Collapse
Affiliation(s)
- Lucas K Smith
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, 94143, USA.,The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, 94143, USA.,Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Charles W White
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, 94143, USA.,The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, 94143, USA.,Developmental and Stem Cell Biology Graduate Program, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Saul A Villeda
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, 94143, USA. .,The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, 94143, USA. .,Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, CA, 94143, USA. .,Developmental and Stem Cell Biology Graduate Program, University of California San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
81
|
Shokohi R, Nabiuni M, Irian S, Miyan JA. In Vitro Effects of Wistar Rat Prenatal and Postnatal Cerebrospinal Fluid on Neural Differentiation and P roliferation of Mesenchymal Stromal Cells Derived from Bone Marrow. CELL JOURNAL 2017; 19:537-544. [PMID: 29105387 PMCID: PMC5672091 DOI: 10.22074/cellj.2018.4130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 10/16/2016] [Indexed: 11/18/2022]
Abstract
Objective Cerebrospinal fluid (CSF) plays an important role in cortical development during the fetal stages. Embryonic
CSF (E-CSF) consists of numerous neurotrophic and growth factors that regulate neurogenesis, differentiation, and
proliferation. Mesenchymal stem cells (MSCs) are multi-potential stem cells that can differentiate into mesenchymal
and non-mesenchymal cells, including neural cells. This study evaluates the prenatal and postnatal effects of CSF on
proliferation and neural differentiation of bone marrow MSCs (BM-MSCs) at gestational ages E19, E20, and the first
day after birth (P1).
Materials and Methods In this experimental study, we confirmed the mesenchymal nature of BM-MSCs according to
their adherence properties and surface markers (CD44, CD73 and CD45). The multi-potential characteristics of BM-
MSCs were verified by assessments of the osteogenic and adipogenic potentials of these cells. Under appropriate in
vitro conditions, the BM-MSCs cultures were incubated with and without additional pre- and postnatal CSF. The MTT
assay was used to quantify cellular proliferation and viability. Immunocytochemistry was used to study the expression
of MAP-2 and β-III tubulin in the BM-MSCs. We used ImageJ software to measure the length of the neurites in the
cultured cells.
Results BM-MSCs differentiated into neuronal cell types when exposed to basic fibroblast growth factor (b-FGF).
Viability and proliferation of the BM-MSCs conditioned with E19, E20, and P1 CSF increased compared to the control
group. We observed significantly elevated neural differentiation of the BM-MSCS cultured in the CSF-supplemented
medium from E19 compared to cultures conditioned with E20 and P1 CSF group.
Conclusion The results have confirmed that E19, E20, and P1 CSF could induce proliferation and differentiation of
BM-MSCs though they are age dependent factors. The presented data support a significant, conductive role of CSF
components in neuronal survival, proliferation, and differentiation.
Collapse
Affiliation(s)
- Rozmehr Shokohi
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mohammad Nabiuni
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| | - Saeed Irian
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Jaleel A Miyan
- Faculty of Life Sciences, The University of Manchester, Manchester, UK
| |
Collapse
|
82
|
E. Kypreos K, A. Karavia E, Constantinou C, Hatziri A, Kalogeropoulou C, Xepapadaki E, Zvintzou E. Apolipoprotein E in diet-induced obesity: a paradigm shift from conventional perception. J Biomed Res 2017; 32:183. [PMID: 29770778 PMCID: PMC6265402 DOI: 10.7555/jbr.32.20180007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/08/2018] [Indexed: 12/16/2022] Open
Abstract
Apolipoprotein E (APOE) is a major protein component of peripheral and brain lipoprotein transport systems. APOE in peripheral circulation does not cross blood brain barrier or blood cerebrospinal fluid barrier. As a result, peripheral APOE expression does not affect brain APOE levels and vice versa. Numerous epidemiological studies suggest a key role of peripherally expressed APOE in the development and progression of coronary heart disease while brain APOE has been associated with dementia and Alzheimer's disease. More recent studies, mainly in experimental mice, suggested a link between Apoe and morbid obesity. According to the latest findings, expression of human apolipoprotein E3 (APOE3) isoform in the brain of mice is associated with a potent inhibition of visceral white adipose tissue (WAT) mitochondrial oxidative phosphorylation leading to significantly reduced substrate oxidation, increased fat accumulation and obesity. In contrast, hepatically expressed APOE3 is associated with a notable shift of substrate oxidation towards non-shivering thermogenesis in visceral WAT mitochondria, leading to resistance to obesity. These novel findings constitute a major paradigm shift from the widely accepted perception that APOE promotes obesity via receptor-mediated postprandial lipid delivery to WAT. Here, we provide a critical review of the latest facts on the role of APOE in morbid obesity.
Collapse
Affiliation(s)
- Kyriakos E. Kypreos
- Department of Pharmacology, University of Patras Medical School, Rio Achaias, TK 26500, Greece
| | - Eleni A. Karavia
- Department of Pharmacology, University of Patras Medical School, Rio Achaias, TK 26500, Greece
| | - Caterina Constantinou
- Department of Pharmacology, University of Patras Medical School, Rio Achaias, TK 26500, Greece
| | - Aikaterini Hatziri
- Department of Pharmacology, University of Patras Medical School, Rio Achaias, TK 26500, Greece
| | | | - Eva Xepapadaki
- Department of Pharmacology, University of Patras Medical School, Rio Achaias, TK 26500, Greece
| | - Evangelia Zvintzou
- Department of Pharmacology, University of Patras Medical School, Rio Achaias, TK 26500, Greece
| |
Collapse
|
83
|
Czuba E, Steliga A, Lietzau G, Kowiański P. Cholesterol as a modifying agent of the neurovascular unit structure and function under physiological and pathological conditions. Metab Brain Dis 2017; 32:935-948. [PMID: 28432486 PMCID: PMC5504126 DOI: 10.1007/s11011-017-0015-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/17/2017] [Indexed: 02/08/2023]
Abstract
The brain, demanding constant level of cholesterol, precisely controls its synthesis and homeostasis. The brain cholesterol pool is almost completely separated from the rest of the body by the functional blood-brain barrier (BBB). Only a part of cholesterol pool can be exchanged with the blood circulation in the form of the oxysterol metabolites such, as 27-hydroxycholesterol (27-OHC) and 24S-hydroxycholesterol (24S-OHC). Not only neurons but also blood vessels and neuroglia, constituting neurovascular unit (NVU), are crucial for the brain cholesterol metabolism and undergo precise regulation by numerous modulators, metabolites and signal molecules. In physiological conditions maintaining the optimal cholesterol concentration is important for the energetic metabolism, composition of cell membranes and myelination. However, a growing body of evidence indicates the consequences of the cholesterol homeostasis dysregulation in several pathophysiological processes. There is a causal relationship between hypercholesterolemia and 1) development of type 2 diabetes due to long-term high-fat diet consumption, 2) significance of the oxidative stress consequences for cerebral amyloid angiopathy and neurodegenerative diseases, 3) insulin resistance on progression of the neurodegenerative brain diseases. In this review, we summarize the current state of knowledge concerning the cholesterol influence upon functioning of the NVU under physiological and pathological conditions.
Collapse
Affiliation(s)
- Ewelina Czuba
- Department of Anatomy and Neurobiology, Medical University of Gdańsk, 1 Dębinki Str, 80-211, Gdańsk, Poland.
| | - Aleksandra Steliga
- Department of Health Sciences, Pomeranian University of Słupsk, 64 Bohaterów Westerplatte Str, 76-200, Słupsk, Poland
| | - Grażyna Lietzau
- Department of Anatomy and Neurobiology, Medical University of Gdańsk, 1 Dębinki Str, 80-211, Gdańsk, Poland
| | - Przemysław Kowiański
- Department of Anatomy and Neurobiology, Medical University of Gdańsk, 1 Dębinki Str, 80-211, Gdańsk, Poland
- Department of Health Sciences, Pomeranian University of Słupsk, 64 Bohaterów Westerplatte Str, 76-200, Słupsk, Poland
| |
Collapse
|
84
|
Guerra M, Blázquez JL, Rodríguez EM. Blood-brain barrier and foetal-onset hydrocephalus, with a view on potential novel treatments beyond managing CSF flow. Fluids Barriers CNS 2017; 14:19. [PMID: 28701191 PMCID: PMC5508761 DOI: 10.1186/s12987-017-0067-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/24/2017] [Indexed: 12/12/2022] Open
Abstract
Despite decades of research, no compelling non-surgical therapies have been developed for foetal hydrocephalus. So far, most efforts have pointed to repairing disturbances in the cerebrospinal fluid (CSF) flow and to avoid further brain damage. There are no reports trying to prevent or diminish abnormalities in brain development which are inseparably associated with hydrocephalus. A key problem in the treatment of hydrocephalus is the blood–brain barrier that restricts the access to the brain for therapeutic compounds or systemically grafted cells. Recent investigations have started to open an avenue for the development of a cell therapy for foetal-onset hydrocephalus. Potential cells to be used for brain grafting include: (1) pluripotential neural stem cells; (2) mesenchymal stem cells; (3) genetically-engineered stem cells; (4) choroid plexus cells and (5) subcommissural organ cells. Expected outcomes are a proper microenvironment for the embryonic neurogenic niche and, consequent normal brain development.
Collapse
Affiliation(s)
- M Guerra
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile.
| | - J L Blázquez
- Departamento de Anatomía e Histología Humana, Facultad de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - E M Rodríguez
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
85
|
Karimy JK, Duran D, Hu JK, Gavankar C, Gaillard JR, Bayri Y, Rice H, DiLuna ML, Gerzanich V, Marc Simard J, Kahle KT. Cerebrospinal fluid hypersecretion in pediatric hydrocephalus. Neurosurg Focus 2017; 41:E10. [PMID: 27798982 DOI: 10.3171/2016.8.focus16278] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Hydrocephalus, despite its heterogeneous causes, is ultimately a disease of disordered CSF homeostasis that results in pathological expansion of the cerebral ventricles. Our current understanding of the pathophysiology of hydrocephalus is inadequate but evolving. Over this past century, the majority of hydrocephalus cases has been explained by functional or anatomical obstructions to bulk CSF flow. More recently, hydrodynamic models of hydrocephalus have emphasized the role of abnormal intracranial pulsations in disease pathogenesis. Here, the authors review the molecular mechanisms of CSF secretion by the choroid plexus epithelium, the most efficient and actively secreting epithelium in the human body, and provide experimental and clinical evidence for the role of increased CSF production in hydrocephalus. Although the choroid plexus epithelium might have only an indirect influence on the pathogenesis of many types of pediatric hydrocephalus, the ability to modify CSF secretion with drugs newer than acetazolamide or furosemide would be an invaluable component of future therapies to alleviate permanent shunt dependence. Investigation into the human genetics of developmental hydrocephalus and choroid plexus hyperplasia, and the molecular physiology of the ion channels and transporters responsible for CSF secretion, might yield novel targets that could be exploited for pharmacotherapeutic intervention.
Collapse
Affiliation(s)
| | | | | | | | | | - Yasar Bayri
- Department of Neurosurgery, Marmara University School of Medicine, Istanbul, Turkey; and
| | | | | | | | - J Marc Simard
- Departments of 3 Neurosurgery and.,Pathology and Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Kristopher T Kahle
- Departments of 1 Neurosurgery and.,Pediatrics, Cellular, and Molecular Physiology and Centers for Mendelian Genomics, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
86
|
The vasculature as a neural stem cell niche. Neurobiol Dis 2017; 107:4-14. [PMID: 28132930 DOI: 10.1016/j.nbd.2017.01.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 01/06/2017] [Accepted: 01/25/2017] [Indexed: 12/31/2022] Open
Abstract
Neural stem cells (NSCs) are multipotent, self-renewing progenitors that generate progeny that differentiate into neurons and glia. NSCs in the adult mammalian brain are generally quiescent. Environmental stimuli such as learning or exercise can activate quiescent NSCs, inducing them to proliferate and produce new neurons and glia. How are these behaviours coordinated? The neurovasculature, the circulatory system of the brain, is a key component of the NSC microenvironment, or 'niche'. Instructive signals from the neurovasculature direct NSC quiescence, proliferation, self-renewal and differentiation. During ageing, a breakdown in the niche accompanies NSC dysfunction and cognitive decline. There is much interest in reversing these changes and enhancing NSC activity by targeting the neurovasculature therapeutically. Here we discuss principles of neurovasculature-NSC crosstalk, and the implications for the design of NSC-based therapies. We also consider the emerging contributions to this field of the model organism Drosophila melanogaster.
Collapse
|
87
|
Kadoshima T, Sakaguchi H, Eiraku M. Generation of Various Telencephalic Regions from Human Embryonic Stem Cells in Three-Dimensional Culture. Methods Mol Biol 2017; 1597:1-16. [PMID: 28361306 DOI: 10.1007/978-1-4939-6949-4_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In the developing embryo, telencephalon arises from the rostral portion of the neural tube. The telencephalon further subdivides into distinct brain regions along the dorsal-ventral (DV) axis by exogenous patterning signals. Here, we describe a protocol for in vitro generation of various telencephalic regions from human embryonic stem cells (ESCs). Dissociated human ESCs are reaggregated in a low-cell-adhesion 96-well plate and cultured as floating aggregates. Telencephalic neural progenitors are efficiently generated when ESC aggregates are cultured in serum-free medium containing TGFβ inhibitor and Wnt inhibitor. In long-term culture, the telencephalic neural progenitors acquire cortical identities and self-organize a stratified cortical structure as seen in human fetal cortex. By treatment with Shh signal, the telencephalic progenitors acquire ventral (subpallial) identities and generate lateral ganglionic eminence (LGE) and medial ganglionic eminence (MGE). In contrast, by treatment with Wnt and BMP signals, their regional identities shift to more dorsal side that generates choroid plexus and medial palllium (hippocampal primordium).
Collapse
Affiliation(s)
- Taisuke Kadoshima
- Cell Asymmetry team, RIKEN Center for Developmental Biology, Kobe, Hyogo, Japan
- Asubio Pharma Co., Ltd., Kobe, Hyogo, Japan
| | - Hideya Sakaguchi
- In Vitro Histogenesis team, RIKEN Center for Developmental Biology, Kobe, Hyogo, Japan
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Mototsugu Eiraku
- In Vitro Histogenesis team, RIKEN Center for Developmental Biology, Kobe, Hyogo, Japan
| |
Collapse
|
88
|
Koshida R, Oishi H, Hamada M, Takei Y, Takahashi S. MafB is required for development of the hindbrain choroid plexus. Biochem Biophys Res Commun 2016; 483:288-293. [PMID: 28025141 DOI: 10.1016/j.bbrc.2016.12.150] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 12/22/2016] [Indexed: 10/20/2022]
Abstract
The choroid plexus (ChP) is a non-neural epithelial tissue that produces cerebrospinal fluid (CSF). The ChP differentiates from the roof plate, a dorsal midline structure of the neural tube. However, molecular mechanisms underlying ChP development are poorly understood compared to neural development. MafB is a bZip transcription factor that is known to be expressed in the roof plate. Here we investigated the role of MafB in embryonic development of the hindbrain ChP (hChP) using Mafb-deficient mice. Immunohistochemical analyses revealed that MafB is expressed in the roof plate and early hChP epithelial cells but its expression disappears at a later embryonic stage. We also found that the Mafb-deficient hChP exhibits delayed differentiation and results in hypoplasia compared to the wild-type hChP. Furthermore, the Mafb-deficient hChP exhibits increased apoptotic cell death and decreased proliferating cells at E12.5, an early stage of hChP development. Collectively, our findings reveal that MafB play an important role in promoting hChP development during embryogenesis.
Collapse
Affiliation(s)
- Ryusuke Koshida
- Department of Anatomy and Neuroscience, Faculty of Medicine, University of Tsukuba, Tsukuba, 305-8575, Japan.
| | - Hisashi Oishi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, 305-8575, Japan
| | - Michito Hamada
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, 305-8575, Japan
| | - Yosuke Takei
- Department of Anatomy and Neuroscience, Faculty of Medicine, University of Tsukuba, Tsukuba, 305-8575, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, 305-8575, Japan
| |
Collapse
|
89
|
Balusu S, Van Wonterghem E, De Rycke R, Raemdonck K, Stremersch S, Gevaert K, Brkic M, Demeestere D, Vanhooren V, Hendrix A, Libert C, Vandenbroucke RE. Identification of a novel mechanism of blood-brain communication during peripheral inflammation via choroid plexus-derived extracellular vesicles. EMBO Mol Med 2016; 8:1162-1183. [PMID: 27596437 PMCID: PMC5048366 DOI: 10.15252/emmm.201606271] [Citation(s) in RCA: 246] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Here, we identified release of extracellular vesicles (EVs) by the choroid plexus epithelium (CPE) as a new mechanism of blood–brain communication. Systemic inflammation induced an increase in EVs and associated pro‐inflammatory miRNAs, including miR‐146a and miR‐155, in the CSF. Interestingly, this was associated with an increase in amount of multivesicular bodies (MVBs) and exosomes per MVB in the CPE cells. Additionally, we could mimic this using LPS‐stimulated primary CPE cells and choroid plexus explants. These choroid plexus‐derived EVs can enter the brain parenchyma and are taken up by astrocytes and microglia, inducing miRNA target repression and inflammatory gene up‐regulation. Interestingly, this could be blocked in vivo by intracerebroventricular (icv) injection of an inhibitor of exosome production. Our data show that CPE cells sense and transmit information about the peripheral inflammatory status to the central nervous system (CNS) via the release of EVs into the CSF, which transfer this pro‐inflammatory message to recipient brain cells. Additionally, we revealed that blockage of EV secretion decreases brain inflammation, which opens up new avenues to treat systemic inflammatory diseases such as sepsis.
Collapse
Affiliation(s)
- Sriram Balusu
- Inflammation Research Center, VIB, Ghent, Belgium Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium Department of Medical Protein Research, VIB, Ghent, Belgium Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Elien Van Wonterghem
- Inflammation Research Center, VIB, Ghent, Belgium Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Riet De Rycke
- Inflammation Research Center, VIB, Ghent, Belgium Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Koen Raemdonck
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Stephan Stremersch
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Kris Gevaert
- Department of Medical Protein Research, VIB, Ghent, Belgium Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Marjana Brkic
- Inflammation Research Center, VIB, Ghent, Belgium Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium Department of Neurobiology, Institute for Biological Research, University of Belgrade, Belgrade, Republic of Serbia
| | - Delphine Demeestere
- Inflammation Research Center, VIB, Ghent, Belgium Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Valerie Vanhooren
- Inflammation Research Center, VIB, Ghent, Belgium Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium
| | - Claude Libert
- Inflammation Research Center, VIB, Ghent, Belgium Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Roosmarijn E Vandenbroucke
- Inflammation Research Center, VIB, Ghent, Belgium Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
90
|
Costa AR, Marcelino H, Gonçalves I, Quintela T, Tomás J, Duarte AC, Fonseca AM, Santos CRA. Sex Hormones Protect Against Amyloid-β Induced Oxidative Stress in the Choroid Plexus Cell Line Z310. J Neuroendocrinol 2016; 28. [PMID: 27328988 DOI: 10.1111/jne.12404] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 05/23/2016] [Accepted: 06/18/2016] [Indexed: 11/27/2022]
Abstract
The choroid plexus (CP) epithelium is a unique structure in the brain that forms an interface between the peripheral blood on the basal side and the cerebrospinal fluid (CSF) on the apical side. It is a relevant source of many polypeptides secreted to the CSF with neuroprotective functions and also participates in the elimination and detoxification of brain metabolites, such as β-amyloid (Aβ) removal from the CSF through transporter-mediated influx. The CP is also a target tissue for sex hormones (SHs) that have recognised neuroprotective effects against a variety of insults, including Aβ toxicity and oxidative stress in the central nervous system. The present study aimed to understand how SHs modulate Aβ-induced oxidative stress in a CP cell line (Z310 cell line) by analysing the effects of Aβ1-42 on oxidative stress, mitochondrial function and apoptosis, as well as by assessing how 17β-oestradiol (E2 ) and 5α-dihydrotestosterone (DHT) modulated these effects and the cellular uptake of Aβ1-42 by CP cells. Our findings show that E2 and DHT treatment reduce Aβ1-42 -induced oxidative stress and the internalisation of Aβ1-42 by CP epithelial cells, highlighting the importance of considering the background of SHs and therefore sex-related differences in Aβ metabolism and clearance by CP cells.
Collapse
Affiliation(s)
- A R Costa
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - H Marcelino
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - I Gonçalves
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - T Quintela
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - J Tomás
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - A C Duarte
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - A M Fonseca
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - C R A Santos
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
91
|
Yalcin A, Ceylan M, Bayraktutan OF, Sonkaya AR, Yuce I. Age and gender related prevalence of intracranial calcifications in CT imaging; data from 12,000 healthy subjects. J Chem Neuroanat 2016; 78:20-24. [PMID: 27475519 DOI: 10.1016/j.jchemneu.2016.07.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/20/2016] [Accepted: 07/20/2016] [Indexed: 01/15/2023]
Abstract
PURPOSE Location and extent of intracranial calcifications have been detected accurately with the use of CT technology and since, many clinical or pathological entities have been linked to these calcifications. Our purpose is to provide data regarding the prevalence of calcifications in various locations in brain. MATERIAL AND METHODS We retrospectively examined 11,941 subjects who underwent non-contrast enhanced brain CT examination. We determined the prevalence of choroid plexus, pineal gland, habenula, dura mater, basal ganglia and vascular calcifications. RESULTS Of 11,941 subjects, 70.2% had choroid plexus calcifications. Calcifications were most frequently seen in pineal gland and 71.6% of the study population had pineal calcifications. Habeluna and dural calcifications were present in 19.2% and 12.5% of the population respectively. Basal ganglia calcifications and vascular calcifications only constituted 1.3% and 3.5% of the study population respectively. Male dominance was present in all calcification types except basal ganglia calcifications. CONCLUSIONS Showing associations and dissociations from the literature, our study provides a baseline data regarding the prevalence of various types of intracranial calcifications.
Collapse
Affiliation(s)
- Ahmet Yalcin
- Section of Radiology, Regional Education and Research Hospital, Erzurum, Turkey.
| | - Mustafa Ceylan
- Section of Neurology, Regional Education and Research Hospital, Erzurum, Turkey
| | | | - Ali Rıza Sonkaya
- Section of Neurology, Mareşal Çakmak Military Hospital, Erzurum, Turkey
| | - Ihsan Yuce
- Department of Radiology, School of Medicine, Ataturk University, Erzurum, Turkey
| |
Collapse
|
92
|
Ayala-Sarmiento AE, Estudillo E, Pérez-Sánchez G, Sierra-Sánchez A, González-Mariscal L, Martínez-Fong D, Segovia J. GAS1 is present in the cerebrospinal fluid and is expressed in the choroid plexus of the adult rat. Histochem Cell Biol 2016; 146:325-36. [PMID: 27225491 DOI: 10.1007/s00418-016-1449-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2016] [Indexed: 12/19/2022]
Abstract
Growth arrest specific 1 (GAS1) is a GPI-anchored protein that inhibits proliferation when overexpressed in tumors but during development it promotes proliferation and survival of different organs and tissues. This dual ability is caused by its capacity to interact both by inhibiting the signaling induced by the glial cell line-derived neurotrophic factor and by facilitating the activity of the sonic hedgehog pathway. GAS1 is expressed as membrane bound in different organs and as a secreted form by glomerular mesangial cells. In the developing central nervous system, GAS1 is found in neural progenitors; however, it continues to be expressed in the adult brain. Here, we demonstrate that soluble GAS1 is present in the cerebrospinal fluid (CSF) and it is expressed in the choroid plexus (CP) of the adult rat, the main producer of CSF. Additionally, we confirm the presence of GAS1 in blood plasma and liver of the adult rat, the principal source of blood plasma proteins. The pattern of expression of GAS1 is perivascular in both the CP and the liver. In vitro studies show that the fibroblast cell line NIH/3T3 expresses one form of GAS1 and releases two soluble forms into the supernatant. Briefly, in the present work, we show the presence of GAS1 in adult rat body fluids focusing in the CSF and the CP, and suggest that secreted GAS1 exists as two different isoforms.
Collapse
Affiliation(s)
- Alberto E Ayala-Sarmiento
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN #2508, 07360, Mexico, D.F., Mexico
| | - Enrique Estudillo
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN #2508, 07360, Mexico, D.F., Mexico
| | - Gilberto Pérez-Sánchez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN #2508, 07360, Mexico, D.F., Mexico
| | - Arturo Sierra-Sánchez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN #2508, 07360, Mexico, D.F., Mexico
| | - Lorenza González-Mariscal
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN #2508, 07360, Mexico, D.F., Mexico
| | - Daniel Martínez-Fong
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN #2508, 07360, Mexico, D.F., Mexico
| | - José Segovia
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN #2508, 07360, Mexico, D.F., Mexico.
| |
Collapse
|
93
|
Gonçalves I, Hubbard PC, Tomás J, Quintela T, Tavares G, Caria S, Barreiros D, Santos CRA. 'Smelling' the cerebrospinal fluid: olfactory signaling molecules are expressed in and mediate chemosensory signaling from the choroid plexus. FEBS J 2016; 283:1748-66. [PMID: 26934374 DOI: 10.1111/febs.13700] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 02/13/2016] [Accepted: 02/29/2016] [Indexed: 01/03/2023]
Abstract
The olfactory-type signaling machinery has been known to be involved not only in odorant detection but also in other tissues with unsuspected sensory roles. As a barrier, the choroid plexus (CP) is an active participant in the monitoring of the cerebrospinal fluid (CSF), promptly responding to alterations in its composition. We hypothesized that olfactory signaling could be active in CP, contributing to the surveillance of the CSF composition. We determined the mRNA and protein expression of the major components of the olfactory transduction pathway in the rat CP, including odorant receptors, the olfactory G-protein (Gαolf), adenylate cyclase 3 and cyclic nucleotide-gated channel 2. The functionality of the transduction pathway and the intracellular mechanisms involved were analyzed by DC field potential recording electrophysiological analysis, in an ex vivo CP-brain setup, using polyamines as stimuli and blockers of the downstream signaling pathways. Concentration-dependent responses were obtained for the polyamines studied (cadaverine, putrescine, spermine and spermidine), all known to be present in the CSF. Transfection of a CP epithelial cell line with siRNA against Gαolf effectively knocked down protein expression and reduced the CP cells' response to spermine. Thus, the key components of the olfactory chemosensory apparatus are present and are functional in murine CP, and polyamines seem to trigger both the cAMP and the phospholipase C-inositol 1,4,5-trisphosphate pathways. Olfactory-like chemosensory signaling may be an essential component of the CP chemical surveillance apparatus to detect alterations in the CSF composition, and to elicit responses to modulate and maintain brain homeostasis.
Collapse
Affiliation(s)
- Isabel Gonçalves
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Peter C Hubbard
- CCMAR - Centro de Ciências do Mar, Universidade do Algarve, Faro, Portugal
| | - Joana Tomás
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Telma Quintela
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Gabriela Tavares
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Sandra Caria
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Daniela Barreiros
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Cecília R A Santos
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
94
|
Telocytes in their context with other intercellular communication agents. Semin Cell Dev Biol 2016; 55:9-13. [PMID: 27013113 DOI: 10.1016/j.semcdb.2016.03.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/13/2016] [Accepted: 03/15/2016] [Indexed: 11/23/2022]
Abstract
The past decade has borne witness to an explosion in our understanding of the fundamental complexities of intercellular communication. Previously, the field was solely defined by the simple exchange of endocrine, autocrine and epicrine agents. Then it was discovered that cells possess an elaborate system of extracellular vesicles, including exosomes, which carry a vast array of small and large molecules (including many epigenetic agents such as a variety RNAs and DNA), as well as large organelles that modulate almost every aspect of cellular function. In addition, it was thought that electrical communication between cells was limited mainly to neurotransmitters and neuromodulators in the nervous system. Also within the past decade, it was found that - in addition to neurons - most cells (both mammalian and non-mammalian) communicate via elaborate bioelectric systems which modulate many fundamental cellular processes including growth, differentiation, morphogenesis and repair. In the nervous system, volume transmission via the extracellular matrix has been added to the list. Lastly, it was discovered that what had previously been regarded as simple connective cells in most tissues proved to be miniature communication devices now known as telocytes. These unusually long, tenuous and sinuous cells utilize elaborate electrical, chemical and epigenetic mechanisms, including the exchange of exosomes, to integrate many activities within and between nearly all types of cells in tissues and organs. Their interrelationship with neural stem cells and neurogenesis in the context of neurodegenerative disease is just beginning to be explored. This review presents an account of precisely how each of these varied mechanisms are relevant and critical to the understanding of what telocytes are and how they function.
Collapse
|
95
|
Sonic Hedgehog promotes proliferation of Notch-dependent monociliated choroid plexus tumour cells. Nat Cell Biol 2016; 18:418-30. [PMID: 26999738 PMCID: PMC4814324 DOI: 10.1038/ncb3327] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 02/09/2016] [Indexed: 12/17/2022]
Abstract
Aberrant Notch signaling has been linked to many cancers including choroid plexus (CP) tumours, a group of rare and predominantly pediatric brain neoplasms. We developed animal models of CP tumours by inducing sustained expression of Notch1 that recapitulate properties of human CP tumours with aberrant NOTCH signaling. Whole transcriptome and functional analyses showed that tumour cell proliferation is associated with Sonic Hedgehog (Shh) in the tumour microenvironment. Unlike CP epithelial cells, which have multiple primary cilia, tumour cells possess a solitary primary cilium as a result of Notch-mediated suppression of multiciliate diffferentiation. A Shh-driven signaling cascade in the primary cilium occurs in tumour cells but not in epithelial cells. Lineage studies show that CP tumours arise from mono-ciliated progenitors in the roof plate characterized by elevated Notch signaling. Abnormal SHH signaling and distinct ciliogenesis are detected in human CP tumours, suggesting SHH pathway and cilia differentiation as potential therapeutic avenues.
Collapse
|
96
|
Moore GRW, Laule C, Leung E, Pavlova V, Morgan BP, Esiri MM. Complement and Humoral Adaptive Immunity in the Human Choroid Plexus: Roles for Stromal Concretions, Basement Membranes, and Epithelium. J Neuropathol Exp Neurol 2016; 75:415-28. [PMID: 26994633 PMCID: PMC4824036 DOI: 10.1093/jnen/nlw017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The choroid plexus (CP) provides a barrier to entry of toxic molecules from the blood into the brain and transports vital molecules into the cerebrospinal fluid. While a great deal is known about CP physiology, relatively little is known about its immunology. Here, we show immunohistochemical data that help define the role of the CP in innate and adaptive humoral immunity. The results show that complement, in the form of C1q, C3d, C9, or C9neo, is preferentially deposited in stromal concretions. In contrast, immunoglobulin (Ig) G (IgG) and IgA are more often found in CP epithelial cells, and IgM is found in either locale. C4d, IgD, and IgE are rarely, if ever, seen in the CP. In multiple sclerosis CP, basement membrane C9 or stromal IgA patterns were common but were not specific for the disease. These findings indicate that the CP may orchestrate the clearance of complement, particularly by deposition in its concretions, IgA and IgG preferentially via its epithelium, and IgM by either mechanism.
Collapse
Affiliation(s)
- G R Wayne Moore
- From the Department of Pathology and Laboratory Medicine (GRWM, CL, EL, VP); Department of Radiology, University of British Columbia (CL); Vancouver General Hospital, Vancouver Coastal Health Authority (GRWM); International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Centre (GRWM, CL, EL, VP), Vancouver, BC, Canada; Institute of Infection and Immunity, Cardiff University, Henry Wellcome Building, Heath Park, Cardiff, UK (BPM); and Neuropathology Department, University of Oxford, John Radcliffe Hospital, Oxford, UK (MME).
| | - Cornelia Laule
- From the Department of Pathology and Laboratory Medicine (GRWM, CL, EL, VP); Department of Radiology, University of British Columbia (CL); Vancouver General Hospital, Vancouver Coastal Health Authority (GRWM); International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Centre (GRWM, CL, EL, VP), Vancouver, BC, Canada; Institute of Infection and Immunity, Cardiff University, Henry Wellcome Building, Heath Park, Cardiff, UK (BPM); and Neuropathology Department, University of Oxford, John Radcliffe Hospital, Oxford, UK (MME)
| | - Esther Leung
- From the Department of Pathology and Laboratory Medicine (GRWM, CL, EL, VP); Department of Radiology, University of British Columbia (CL); Vancouver General Hospital, Vancouver Coastal Health Authority (GRWM); International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Centre (GRWM, CL, EL, VP), Vancouver, BC, Canada; Institute of Infection and Immunity, Cardiff University, Henry Wellcome Building, Heath Park, Cardiff, UK (BPM); and Neuropathology Department, University of Oxford, John Radcliffe Hospital, Oxford, UK (MME)
| | - Vladimira Pavlova
- From the Department of Pathology and Laboratory Medicine (GRWM, CL, EL, VP); Department of Radiology, University of British Columbia (CL); Vancouver General Hospital, Vancouver Coastal Health Authority (GRWM); International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Centre (GRWM, CL, EL, VP), Vancouver, BC, Canada; Institute of Infection and Immunity, Cardiff University, Henry Wellcome Building, Heath Park, Cardiff, UK (BPM); and Neuropathology Department, University of Oxford, John Radcliffe Hospital, Oxford, UK (MME)
| | - B Paul Morgan
- From the Department of Pathology and Laboratory Medicine (GRWM, CL, EL, VP); Department of Radiology, University of British Columbia (CL); Vancouver General Hospital, Vancouver Coastal Health Authority (GRWM); International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Centre (GRWM, CL, EL, VP), Vancouver, BC, Canada; Institute of Infection and Immunity, Cardiff University, Henry Wellcome Building, Heath Park, Cardiff, UK (BPM); and Neuropathology Department, University of Oxford, John Radcliffe Hospital, Oxford, UK (MME)
| | - Margaret M Esiri
- From the Department of Pathology and Laboratory Medicine (GRWM, CL, EL, VP); Department of Radiology, University of British Columbia (CL); Vancouver General Hospital, Vancouver Coastal Health Authority (GRWM); International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Centre (GRWM, CL, EL, VP), Vancouver, BC, Canada; Institute of Infection and Immunity, Cardiff University, Henry Wellcome Building, Heath Park, Cardiff, UK (BPM); and Neuropathology Department, University of Oxford, John Radcliffe Hospital, Oxford, UK (MME)
| |
Collapse
|
97
|
Bueno D, Garcia-Fernàndez J. Evolutionary development of embryonic cerebrospinal fluid composition and regulation: an open research field with implications for brain development and function. Fluids Barriers CNS 2016; 13:5. [PMID: 26979569 PMCID: PMC4793645 DOI: 10.1186/s12987-016-0029-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/10/2016] [Indexed: 12/29/2022] Open
Abstract
Within the consolidated field of evolutionary development, there is emerging research on evolutionary aspects of central nervous system development and its implications for adult brain structure and function, including behaviour. The central nervous system is one of the most intriguing systems in complex metazoans, as it controls all body and mind functions. Its failure is responsible for a number of severe and largely incurable diseases, including neurological and neurodegenerative ones. Moreover, the evolution of the nervous system is thought to be a critical step in the adaptive radiation of vertebrates. Brain formation is initiated early during development. Most embryological, genetic and evolutionary studies have focused on brain neurogenesis and regionalisation, including the formation and function of organising centres, and the comparison of homolog gene expression and function among model organisms from different taxa. The architecture of the vertebrate brain primordium also reveals the existence of connected internal cavities, the cephalic vesicles, which in fetuses and adults become the ventricular system of the brain. During embryonic and fetal development, brain cavities and ventricles are filled with a complex, protein-rich fluid called cerebrospinal fluid (CSF). However, CSF has not been widely analysed from either an embryological or evolutionary perspective. Recently, it has been demonstrated in higher vertebrates that embryonic cerebrospinal fluid has key functions in delivering diffusible signals and nutrients to the developing brain, thus contributing to the proliferation, differentiation and survival of neural progenitor cells, and to the expansion and patterning of the brain. Moreover, it has been shown that the composition and homeostasis of CSF are tightly controlled in a time-dependent manner from the closure of the anterior neuropore, just before the initiation of primary neurogenesis, up to the formation of functional choroid plexuses. In this review, we draw together existing literature about the formation, function and homeostatic regulation of embryonic cerebrospinal fluid, from the closure of the anterior neuropore to the formation of functional fetal choroid plexuses, from an evolutionary perspective. The relevance of these processes to the normal functions and diseases of adult brain will also be discussed.
Collapse
Affiliation(s)
- David Bueno
- Department of Genetics, Microbiology and Statistics, Unit of Biomedical, Evolutionary and Developmental Genetics, Faculty of Biological Sciences, University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Catalonia, Spain.
| | - Jordi Garcia-Fernàndez
- Department of Genetics, Microbiology and Statistics, Unit of Biomedical, Evolutionary and Developmental Genetics, Faculty of Biological Sciences, University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Catalonia, Spain
| |
Collapse
|
98
|
Abstract
Hydrocephalus is a common disorder of cerebral spinal fluid (CSF) physiology resulting in abnormal expansion of the cerebral ventricles. Infants commonly present with progressive macrocephaly whereas children older than 2 years generally present with signs and symptoms of intracranial hypertension. The classic understanding of hydrocephalus as the result of obstruction to bulk flow of CSF is evolving to models that incorporate dysfunctional cerebral pulsations, brain compliance, and newly characterised water-transport mechanisms. Hydrocephalus has many causes. Congenital hydrocephalus, most commonly involving aqueduct stenosis, has been linked to genes that regulate brain growth and development. Hydrocephalus can also be acquired, mostly from pathological processes that affect ventricular outflow, subarachnoid space function, or cerebral venous compliance. Treatment options include shunt and endoscopic approaches, which should be individualised to the child. The long-term outcome for children that have received treatment for hydrocephalus varies. Advances in brain imaging, technology, and understanding of the pathophysiology should ultimately lead to improved treatment of the disorder.
Collapse
Affiliation(s)
- Kristopher T Kahle
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Abhaya V Kulkarni
- Division of Neurosurgery, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - David D Limbrick
- Division of Neurosurgery, St Louis Children's Hospital, Washington University School of Medicine, St Louis, MO, USA
| | - Benjamin C Warf
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
99
|
Daouk J, Bouzerar R, Chaarani B, Zmudka J, Meyer ME, Balédent O. Use of dynamic (18)F-fluorodeoxyglucose positron emission tomography to investigate choroid plexus function in Alzheimer's disease. Exp Gerontol 2016; 77:62-8. [PMID: 26899566 DOI: 10.1016/j.exger.2016.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/03/2016] [Accepted: 02/15/2016] [Indexed: 12/11/2022]
Abstract
Choroid plexuses (CPs) are structures involved in CSF production and cerebral regulation and present atypical glucose metabolism. In addition, CPs impairment may be related to Alzheimer disease (AD). In the present study, we present the first results pointing out glucose metabolism in the CP with dynamic fluorodeoxyglucose positron emission tomography (dynamic (18)F-FDG-PET). We studied 47 elderly adults who were classified into three classes: healthy subjects (HS), amnestic mild cognitive impairment (aMCI) and AD. All participants have undergone dynamic (18)F-FDG-PET for 45 min. Acquisitions were divided into 34 frames to extract tissue time-activity curves (TTACs) in various structures including CSF and CPs. Results showed a decreased CPs (18)F-FDG metabolism in AD compared with aMCI and HS. Conversely, dynamic uptake was higher in CSF for AD compared with the other groups. ROC analysis showed that CPs TTACs are a promising tool as it yielded sensitivity of 85.7% and a specificity of 83.3%. Our study showed a disturbance of glucose exchange at the blood-CSF barrier level which is in favour of a key-role of the CPs in AD.
Collapse
Affiliation(s)
- Joël Daouk
- Bioflow Image, University of Picardie Jules Verne, Amiens, France.
| | - Roger Bouzerar
- Bioflow Image, University of Picardie Jules Verne, Amiens, France; Department of Medical Image Processing, Amiens University Hospital, Amiens, France
| | - Bader Chaarani
- Bioflow Image, University of Picardie Jules Verne, Amiens, France; Department of Medical Image Processing, Amiens University Hospital, Amiens, France; Department of Nuclear Medicine, Amiens University Hospital, Amiens, France
| | - Jadwiga Zmudka
- Bioflow Image, University of Picardie Jules Verne, Amiens, France; Department of Geriatry, Amiens University Hospital, Amiens, France
| | - Marc-Etienne Meyer
- Bioflow Image, University of Picardie Jules Verne, Amiens, France; Department of Nuclear Medicine, Amiens University Hospital, Amiens, France
| | - Olivier Balédent
- Bioflow Image, University of Picardie Jules Verne, Amiens, France; Department of Medical Image Processing, Amiens University Hospital, Amiens, France
| |
Collapse
|
100
|
Tomás J, Santos CRA, Quintela T, Gonçalves I. "Tasting" the cerebrospinal fluid: Another function of the choroid plexus? Neuroscience 2016; 320:160-71. [PMID: 26850994 DOI: 10.1016/j.neuroscience.2016.01.057] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 12/29/2015] [Accepted: 01/27/2016] [Indexed: 01/10/2023]
Abstract
The choroid plexus (CP) located in brain ventricles, by forming the interface between the blood and the cerebrospinal fluid (CSF) is in a privileged position to monitor the composition of these body fluids. Yet, the mechanisms involved in this surveillance system remain to be identified. The taste transduction pathway senses some types of molecules, thereby evaluating the chemical content of fluids, not only in the oral cavity but also in other tissues throughout the body, such as some cell types of the airways, the gastrointestinal tract, testis and skin. Therefore, we hypothesized that the taste transduction pathway could also be operating in the CP to assess the composition of the CSF. We found transcripts for some taste receptors (Tas1r1, Tas1r2, Tas1r3, Tas2r109 and Tas2r144) and for downstream signaling molecules (α-Gustducin, Plcβ2, ItpR3 and TrpM5) that encode this pathway, and confirmed the expression of the corresponding proteins in Wistar rat CP explants and in the CP epithelial cells (CPEC). The functionality of the T2R receptor expressed in CP cells was assessed by calcium imaging, of CPEC stimulated with the bitter compound D-Salicin, which elicited a rise in the intracellular Ca(2+). This effect was diminished in the presence of the bitter receptor blocker Probenecid. In summary, we described the expression of the taste-related components involved in the transduction signaling cascade in CP. Taken together, our results suggest that the taste transduction pathway in CPEC makes use of T2R receptors in the chemical surveillance of the CSF composition, in particular to sense bitter noxious compounds.
Collapse
Affiliation(s)
- J Tomás
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - C R A Santos
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - T Quintela
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - I Gonçalves
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal.
| |
Collapse
|