51
|
Adipose tissue of female Wistar rats respond to Ilex paraguariensis treatment after ovariectomy surgery. J Tradit Complement Med 2020; 11:238-248. [PMID: 34012870 PMCID: PMC8116720 DOI: 10.1016/j.jtcme.2020.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/13/2022] Open
Abstract
Background and aim Metabolic disturbances are known for their increasing epidemiological importance. Ilex paraguariensis presents a potential option for mitigating lipid metabolism imbalance. However, most of the literature to date has not considered sex bias. This study aimed to evaluate the effect of Ilex paraguariensis on the metabolism of different adipose tissue depots in males and females. Experimental procedure After ovariectomy, female Wistar rats received daily treatment with the extract (1 g/kg) for forty-five days. Biochemical serum parameters and tissue metabolism were evaluated. Oxidation, lipogenesis and lipolysis were evaluated in brown, white visceral, retroperitoneal and gonadal adipose tissues. Results and conclusion The results showed that treatment with the extract led to a reduced weight gain in ovariectomised females in comparison to control. The triglyceride concentration was decreased in males. Glucose oxidation and lipid synthesis in visceral and retroperitoneal adipose tissues were restored in ovariectomised females after treatment. The response to epinephrine decreased in visceral adipose tissue of control males; however, lipolysis in females did not respond to ovariectomy or treatment. These findings highlight the enormous potential effects of I. paraguariensis on lipid metabolism, modulating lipogenic pathways in females and lipolytic pathways in males. Furthermore, the sex approach applied in this study contributes to more effective screening of the effects of I. paraguariensis bioactive substances. Ilex paraguariensis reduced weight gain of ovariectomy females to control levels Serum triglycerides decreased in male and estrogen-deficient female after treatment Treatment restored glucose oxidation and lipogenesis of estrogen-deficient females I. paraguariensis decreased lipolysis response in visceral adipose tissue of males
Collapse
|
52
|
Abstract
Regional adipose tissue distribution differs between men and women. Differences in the accumulation of adipose tissue as well as the regulation of secretion of a number of products from adipose tissue are under the control of sex steroids, which act through a wide variety of mechanisms, both direct and indirect, to tailor metabolism to the unique needs of each sex. A fuller understanding of sex-based differences in adipose tissue function may help with tailored strategies for disease prevention and treatment and provide insights into fundamental differences in the processes that regulate nutrient homeostasis and body weight.
Collapse
Affiliation(s)
- Kathleen M Gavin
- Division of Geriatric Medicine, Department of Medicine, Eastern Colorado VA Geriatric, Research, Education, and Clinical Center (GRECC), University of Colorado Anschutz Medical Campus, 12631 East 17th Avenue, Aurora, CO 80045, USA
| | - Daniel H Bessesen
- Division of Endocrinology, Metabolism, and Diabetes, Anschutz Health and Wellness Center, University of Colorado, School of Medicine, 12348 East Montview Boulevard, Aurora, CO 80045, USA.
| |
Collapse
|
53
|
McBride RB, Fei K, Rothstein JH, Alexeeff SE, Song X, Sakoda LC, McGuire V, Achacoso N, Acton L, Liang RY, Lipson JA, Yaffe MJ, Rubin DL, Whittemore AS, Habel LA, Sieh W. Alcohol and Tobacco Use in Relation to Mammographic Density in 23,456 Women. Cancer Epidemiol Biomarkers Prev 2020; 29:1039-1048. [PMID: 32066618 PMCID: PMC7196522 DOI: 10.1158/1055-9965.epi-19-0348] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/27/2019] [Accepted: 02/07/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Percent density (PD) is a strong risk factor for breast cancer that is potentially modifiable by lifestyle factors. PD is a composite of the dense (DA) and nondense (NDA) areas of a mammogram, representing predominantly fibroglandular or fatty tissues, respectively. Alcohol and tobacco use have been associated with increased breast cancer risk. However, their effects on mammographic density (MD) phenotypes are poorly understood. METHODS We examined associations of alcohol and tobacco use with PD, DA, and NDA in a population-based cohort of 23,456 women screened using full-field digital mammography machines manufactured by Hologic or General Electric. MD was measured using Cumulus. Machine-specific effects were estimated using linear regression, and combined using random effects meta-analysis. RESULTS Alcohol use was positively associated with PD (P trend = 0.01), unassociated with DA (P trend = 0.23), and inversely associated with NDA (P trend = 0.02) adjusting for age, body mass index, reproductive factors, physical activity, and family history of breast cancer. In contrast, tobacco use was inversely associated with PD (P trend = 0.0008), unassociated with DA (P trend = 0.93), and positively associated with NDA (P trend<0.0001). These trends were stronger in normal and overweight women than in obese women. CONCLUSIONS These findings suggest that associations of alcohol and tobacco use with PD result more from their associations with NDA than DA. IMPACT PD and NDA may mediate the association of alcohol drinking, but not tobacco smoking, with increased breast cancer risk. Further studies are needed to elucidate the modifiable lifestyle factors that influence breast tissue composition, and the important role of the fatty tissues on breast health.
Collapse
Affiliation(s)
- Russell B McBride
- Institute for Translational Epidemiology, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kezhen Fei
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Joseph H Rothstein
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Stacey E Alexeeff
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Xiaoyu Song
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Lori C Sakoda
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Valerie McGuire
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, California
| | - Ninah Achacoso
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Luana Acton
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Rhea Y Liang
- Department of Radiology, Stanford University School of Medicine, Stanford, California
| | - Jafi A Lipson
- Department of Radiology, Stanford University School of Medicine, Stanford, California
| | - Martin J Yaffe
- Departments of Medical Biophysics and Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Daniel L Rubin
- Department of Radiology, Stanford University School of Medicine, Stanford, California
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, California
| | - Alice S Whittemore
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, California
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, California
| | - Laurel A Habel
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Weiva Sieh
- Institute for Translational Epidemiology, Icahn School of Medicine at Mount Sinai, New York, New York.
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
54
|
Kim JY, Kim MH, Lee HJ, Huh JW, Lee SR, Lee HS, Lee DS. Peroxiredoxin 4 inhibits insulin-induced adipogenesis through regulation of ER stress in 3T3-L1 cells. Mol Cell Biochem 2020; 468:97-109. [PMID: 32185676 DOI: 10.1007/s11010-020-03714-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/06/2020] [Indexed: 02/06/2023]
Abstract
Obesity was originally considered a disease endemic to developed countries but has since emerged as a global health problem. Obesity is characterized by abnormal or excessive lipid accumulation (World Health Organization, WHO) resulting from pre-adipocyte differentiation (adipogenesis). The endoplasmic reticulum (ER) produces proteins and cholesterol and shuttles these compounds to their target sites. Many studies have implicated ER stress, indicative of ER dysfunction, in adipogenesis. Reactive oxygen species (ROS) are also known to be involved in pre-adipocyte differentiation. Prx4 specific to the ER lumen exhibits ROS scavenging activity, and we thereby focused on ER-specific Prx4 in tracking changes in adipocyte differentiation and lipid accumulation. Overexpression of Prx4 reduced ER stress and suppressed lipid accumulation by regulating adipogenic gene expression during adipogenesis. Our results demonstrate that Prx4 inhibits ER stress, lowers ROS levels, and attenuates pre-adipocyte differentiation. These findings suggested enhancing the activity of Prx4 may be helpful in the treatment of obesity; the data also support the development of new therapeutic approaches to obesity and obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Jae Yeop Kim
- School of Life Sciences, BK21 Plus KNU Creative Bioresearch Group, Kyungpook National University, Daegu, Republic of Korea.,School of Life Sciences & Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Mi Hye Kim
- School of Life Sciences, BK21 Plus KNU Creative Bioresearch Group, Kyungpook National University, Daegu, Republic of Korea.,School of Life Sciences & Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Hong Jun Lee
- College of Medicine, Chungbuk National University, Chungbuk, Republic of Korea.,Research Institute, E-Biogen Inc, Seoul, Korea
| | - Jae-Won Huh
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Sang-Rae Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Hyun-Shik Lee
- School of Life Sciences, BK21 Plus KNU Creative Bioresearch Group, Kyungpook National University, Daegu, Republic of Korea.,School of Life Sciences & Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Dong-Seok Lee
- School of Life Sciences, BK21 Plus KNU Creative Bioresearch Group, Kyungpook National University, Daegu, Republic of Korea. .,School of Life Sciences & Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
55
|
Day JR, David A, Barbosa MGDM, Brunette MA, Cascalho M, Shikanov A. Encapsulation of ovarian allograft precludes immune rejection and promotes restoration of endocrine function in immune-competent ovariectomized mice. Sci Rep 2019; 9:16614. [PMID: 31719632 PMCID: PMC6851353 DOI: 10.1038/s41598-019-53075-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 10/15/2019] [Indexed: 12/22/2022] Open
Abstract
Premature ovarian insufficiency (POI) is a significant complication of cytotoxic treatments due to extreme ovarian sensitivity to chemotherapy and radiation. POI is particularly devastating for young girls reaching puberty, because it irreversibly affects their physical and cognitive development. Changes occurring during puberty determine their height, bone health, insulin responsiveness, lipid metabolism, cardiovascular health and cognition. The only available treatment for POI during puberty is hormone replacement therapy (HRT), which delivers non-physiological levels of estrogen, lacks other ovarian hormones and pulsatility, and is not responsive to feedback regulation. Here we report that ovarian allografts encapsulated in a hydrogel-based capsule and implanted in ovariectomized mice restore ovarian endocrine function in immune competent mice. Ovarian tissue from BALB/c mice was encapsulated in poly(ethylene-glycol) (PEG) hydrogels, with a proteolytically degradable core and a non-degradable shell. The dual capsules were implanted subcutaneously in immune competent ovariectomized C57BL/6 mice for a period of 60 days. As expected, non-encapsulated ovarian allografts implanted in a control group sensitized the recipients as confirmed with donor-specific IgG in the serum, which increased 26-fold in the 3 weeks following transplantation (p = 0.02) and infiltration of the graft with CD8 T cells consistent with allo-immunity. In contrast, encapsulation in the Dual PEG capsules prevented sensitization to the allograft in all the recipients with no evidence of lymphocytic infiltration. In summary, the approach of hydrogel-based immunoisolation presents a minimally invasive and robust cell-therapy to restore hormonal balance in ovarian insufficiency. This report is the first to demonstrate the application of a tunable PEG-based hydrogel as an immunoisolator of allogeneic ovarian tissue to restore endocrine function in ovariectomized mice and prevent cell-mediated immune rejection in immune competent mice.
Collapse
Affiliation(s)
- James Ronald Day
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA
| | - Anu David
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA
| | - Mayara Garcia de Mattos Barbosa
- Department of Surgery, University of Michigan, Ann Arbor, USA
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, USA
| | | | - Marilia Cascalho
- Department of Surgery, University of Michigan, Ann Arbor, USA
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, USA
| | - Ariella Shikanov
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA.
- Department of Macromolecular Science & Engineering, University of Michigan, Ann Arbor, USA.
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, USA.
| |
Collapse
|
56
|
Le Floc'h N, Furbeyre H, Prunier A, Louveau I. Effect of surgical or immune castration on postprandial nutrient profiles in male pigs. Arch Anim Nutr 2019; 73:255-270. [PMID: 31234660 DOI: 10.1080/1745039x.2019.1627836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
To avoid boar taint before slaughtering, late castration by immunisation against gonadotrophin releasing hormone or immunocastration has been developed. The current study aimed at determining whether differences in feed efficiency between castrated male (CM), immune castrated (IM) and entire male pigs (EM) can be explained by differences in nutrient plasma profiles after a meal. In this study, 24 male pigs (n = 8/type) were enrolled between 14 to 19 weeks of age. Entire and IM pigs ate less and were more feed efficient than CM pigs (p < 0.05). The postprandial plasma profiles of glucose, insulin, urea and amino acids (AA) were determined before (d -6), just after (d 8) and well after (d 16) the decrease in testicular hormones in IM pigs. For each test day, pigs were fasted overnight and subsequently fed a small meal (400 g). On d -6, postprandial profiles of plasma glucose of IM pigs did not differ from the two other types of pigs. On d 8, EM pigs had a greater average plasma glucose concentration than IM and CM pigs (p < 0.05) but the profiles did not differ. On d 16, the differences between profiles of glucose suggest a lower clearance of glucose in EM compared with IM and CM pigs. Plasma insulin did not significantly differ between the three types. Plasma urea profiles did not differ between CM, EM and IC pigs on d -6 whereas CM pigs showed higher plasma urea concentrations than EM and IM thereafter (p < 0.01). Among AA, Lys plasma concentrations were greater in CM than in EM and IM pigs on d -6, d 8 and d 16 (p < 0.05), whereas on d 16 plasma Hypro concentrations were lower in CM than in EM and IM pigs (p < 0.05). The finding that plasma glucose profiles were modified by immunocastration much faster and earlier than urea and AA profiles, suggest that the decrease in testicular hormones impacted energy metabolism more rapidly than protein metabolism.
Collapse
|
57
|
Metabolic Cytokines at Fasting and During Macronutrient Challenges: Influence of Obesity, Female Androgen Excess and Sex. Nutrients 2019; 11:nu11112566. [PMID: 31652917 PMCID: PMC6893420 DOI: 10.3390/nu11112566] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/11/2019] [Accepted: 09/15/2019] [Indexed: 12/17/2022] Open
Abstract
Scope: Cytokines have pleiotropic functions within the organism and their levels may be influenced by obesity, visceral adiposity and sex hormones. Diet composition may also affect their systemic concentrations during fasting and in the postprandial period. Hence, we studied the influence of sex steroids and obesity on the circulating levels of a panel of metabolic cytokines in the fasting state and after single macronutrient challenges. Methods: On alternate days we submitted 17 women with polycystic ovary syndrome (PCOS) (9 non-obese, 8 obese), 17 non-hyperandrogenic control women (9 non-obese, 8 obese) and 19 control men (10 non-obese, 9 obese) to isocaloric oral glucose, lipid and protein loads. Serum levels of omentin-1, vaspin, lipocalin-2, adipsin, PAI-1, chemerin, FGF-21 and FGF-23 were determined by Luminex multiplex technology. Results: During fasting, obese patients presented higher levels of PAI-1, chemerin and adipsin but decreased FGF-23 and omentin-1 compared with non-obese subjects. Vaspin showed sexual dimorphism with lower levels in men than women with PCOS and female controls. Following macronutrient ingestion, most metabolic cytokines presented a similar physiological response consisting of a decrease in circulating concentrations, which was inversely associated with the fasting levels of these molecules. Protein intake caused the major postprandial decrease whereas glucose did not significantly reduce PAI-1, FGF-23 and vaspin, and even increased FGF-21. Regardless of the macronutrient administered, vaspin levels showed a larger reduction in non-obese individuals while the decrease in PAI-1 was particularly noticeable in the obese subgroup. The postprandial reductions of omentin-1 and FGF-23 after glucose and protein loads were influenced by obesity. No major differences were found between patients with PCOS and male and female controls. Conclusions: Obesity, but not PCOS or sex, markedly influences metabolic cytokine levels at fasting and after macronutrient ingestion. The observed postprandial decrease in their circulating concentrations might represent a physiological compensatory mechanism against food-induced inflammation and oxidative stress. This mechanism is altered by obesity and is differently modulated by macronutrients, suggesting a larger contribution of glucose to stressful postprandial responses.
Collapse
|
58
|
Effect of oophorosalpingo-hysterectomy on serum antioxidant enzymes in female dogs. Sci Rep 2019; 9:9674. [PMID: 31273281 PMCID: PMC6609779 DOI: 10.1038/s41598-019-46204-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 06/25/2019] [Indexed: 12/11/2022] Open
Abstract
There are few studies evaluating the oxidant-antioxidant status after oophorosalpingohysterectomy (OSH) in female dogs. Here we determined the effect of OSH on antioxidant enzymes in serum, and quantified morphological changes in subcutaneous adipocytes. Lateral OSH was performed in 12 female dogs. The concentration of 17β-estradiol (17β-E2), the activities of extracellular superoxide dismutase (SOD-ec), glutathione peroxidase (GPx), glutathione-S-transferase (GST) and glutathione reductase (GR) were determined. Glutathione (GSH), glutathione disulfide (GSSG), lipid peroxidation (LPO), total antioxidant capacity (TAC), carbonylation and vitamin C were measured in serum. Subcutaneous adipose tissue was obtained to determine morphological changes and cell number, under basal conditions and six months after OSH. The SOD-ec, GPx and GST activities increased significantly (p ≤ 0.05), LPO, carbonylation and GSSG also increased. GSH and vitamin C decreased (p = 0.03). 17β-E2 tended to decrease six months after OSH. Hypertrophy of subcutaneous adipocytes was observed after OSH from the first month and was accentuated after six months (p = 0.001). The results suggest that 17β-E2 decreases after OSH and alters the antioxidant enzyme activities in serum thus, redox balance is altered. These changes are associated with an increase in body weight and hypertrophy of subcutaneous adipose tissue.
Collapse
|
59
|
Rangel-Huerta OD, Pastor-Villaescusa B, Gil A. Are we close to defining a metabolomic signature of human obesity? A systematic review of metabolomics studies. Metabolomics 2019; 15:93. [PMID: 31197497 PMCID: PMC6565659 DOI: 10.1007/s11306-019-1553-y] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 06/01/2019] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Obesity is a disorder characterized by a disproportionate increase in body weight in relation to height, mainly due to the accumulation of fat, and is considered a pandemic of the present century by many international health institutions. It is associated with several non-communicable chronic diseases, namely, metabolic syndrome, type 2 diabetes mellitus (T2DM), cardiovascular diseases (CVD), and cancer. Metabolomics is a useful tool to evaluate changes in metabolites due to being overweight and obesity at the body fluid and cellular levels and to ascertain metabolic changes in metabolically unhealthy overweight and obese individuals (MUHO) compared to metabolically healthy individuals (MHO). OBJECTIVES We aimed to conduct a systematic review (SR) of human studies focused on identifying metabolomic signatures in obese individuals and obesity-related metabolic alterations, such as inflammation or oxidative stress. METHODS We reviewed the literature to identify studies investigating the metabolomics profile of human obesity and that were published up to May 7th, 2019 in SCOPUS and PubMed through an SR. The quality of reporting was evaluated using an adapted of QUADOMICS. RESULTS Thirty-three articles were included and classified according to four types of approaches. (i) studying the metabolic signature of obesity, (ii) studying the differential responses of obese and non-obese subjects to dietary challenges (iii) studies that used metabolomics to predict weight loss and aimed to assess the effects of weight loss interventions on the metabolomics profiles of overweight or obese human subjects (iv) articles that studied the effects of specific dietary patterns or dietary compounds on obesity-related metabolic alterations in humans. CONCLUSION The present SR provides state-of-the-art information about the use of metabolomics as an approach to understanding the dynamics of metabolic processes involved in human obesity and emphasizes metabolic signatures related to obesity phenotypes.
Collapse
Affiliation(s)
- Oscar Daniel Rangel-Huerta
- Faculty of Medicine, Department of Nutrition, University of Oslo, Oslo, Norway
- Norwegian Veterinary Institute, Oslo, Norway
| | - Belén Pastor-Villaescusa
- LMU - Ludwig-Maximilians-Universität München, Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, University of Munich Medical Center, Munich, Germany
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Centre for Environmental Health, Neuherberg, Germany
| | - Angel Gil
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology "José Mataix, Centre for Biomedical Research, University of Granada", Granada, Spain.
- Instituto de Investigación Biosanitaria ibs-Granada, Granada, Spain.
- Physiopathology of Obesity and Nutrition Networking Biomedical Research Centre (CIBEROBN), Madrid, Spain.
| |
Collapse
|
60
|
Kawakami T, Takasaki S, Kadota Y, Fukuoka D, Sato M, Suzuki S. Regulatory role of metallothionein-1/2 on development of sex differences in a high-fat diet-induced obesity. Life Sci 2019; 226:12-21. [PMID: 30954474 DOI: 10.1016/j.lfs.2019.04.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 10/27/2022]
Abstract
AIMS To evaluate the role of metallothionein (MT) in sex differences of obesity, we examined the effect of MT on regulation of lipid accumulation in female and male wild type (WT) and MT1/MT2-null (MT-KO) mice. MAIN METHODS Male and female WT and MT-KO mice fed standard diet (SD) or high-fat diet (HFD) for 35 weeks. Surgical castration in male mice was also performed to examine the effects of androgen on fat accumulation under HFD condition. KEY FINDINGS The fat mass and size of adipocytes in white adipose tissue (WAT) was greater in adult MT-KO mice than in WT mice after 35 weeks of SD feeding without gender differences, suggesting a role of MT in limiting WAT development during normal growth in both sexes. In female mice fed HFD, weights of WAT and body were greater in MT-KO mice than in WT mice, indicating that MT had a preventive role against excess fat accumulation. In male mice fed HFD, WAT weight hardly increased in MT-KO mice compared to the increase in WT mice. Surgically castrated WT males fed HFD had lower WAT weight compared with sham-treated mice, although castrated MT-KO males fed HFD had greater increases in WAT weight compared with sham-treated mice and castrated WT males. SIGNIFICANCE These data suggest that MT could enhance the preventive action of estrogen against excess fat accumulation, on the contrary, MT augmented the ability of androgen to increase fat accumulation. MT may act to modify the susceptibility to obesity under sex hormones.
Collapse
Affiliation(s)
- Takashige Kawakami
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan.
| | - Satoshi Takasaki
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Yoshito Kadota
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Daiki Fukuoka
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Masao Sato
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Shinya Suzuki
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| |
Collapse
|
61
|
Jablonska I, Mielicki W. Analysis of the Effect of Serum Estradiol Concentration on Facial Skin Moisture, Pore Width, Discoloration and Smoothness in 16- to 50-Year-Old Women at the 5th and 25th Days of the Menstrual Cycle. Skin Pharmacol Physiol 2019; 32:125-131. [PMID: 30904911 DOI: 10.1159/000497102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 01/18/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Analysis of the relationship between the estradiol blood concentration and the skin moisture, pore width, discoloration and smoothness in differently aged women on the 5th and 25th days of the menstrual cycle. METHODS The study involved 57 women divided into 4 age groups. Measurements of skin moisture, pore width, discoloration and smoothness were performed using the Aramo SG Aram Huvis device. The estradiol serum concentration was determined by radioimmunoassay. RESULTS In the luteal phase of the cycle, facial skin moisture increases from 93.5% of the correct standard moisture index in the youngest to 115.5% in the oldest group. A positive correlation (r2 = 0.45) between estradiol concentration and skin moisture was observed on the 5th day of the cycle in 40- to 50-year-olds. For women on the 25th day of the menstruation cycle, estrogen concentration below the normal range was more beneficial for skin smoothness and pore width for the oldest group. The difference was not statistically significant (p > 0.05); how-ever, in the 40- to 50-year age group, skin smoothness was much better (43.5 ± 6.7%) for low estradiol while it was 37.5 ± 4.7% in the 20- to 29-year age group. Similarly, in the 40- to 50-year age group, skin pore width was much smaller (35.2 ± 15.7%) for low estradiol while it was 54.3 ± 28.8% in the 20- to 29-year age group. CONCLUSIONS Skin moisture was related to the concentration of estradiol only in the oldest examined group of women regardless of the phase of menstrual cycle. In the 40- to 50-year-old group of women, the low level of estradiol on the 25th day of the cycle is better used to maintain a good facial skin appearance and has a positive influence not only on skin moisture, but also on pore width and skin smoothness.
Collapse
Affiliation(s)
| | - Wojciech Mielicki
- Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
62
|
Developmental programming: Changes in mediators of insulin sensitivity in prenatal bisphenol A-treated female sheep. Reprod Toxicol 2019; 85:110-122. [PMID: 30853570 DOI: 10.1016/j.reprotox.2019.03.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 02/26/2019] [Accepted: 03/04/2019] [Indexed: 12/12/2022]
Abstract
Developmental exposure to endocrine disruptor bisphenol A (BPA) is associated with metabolic defects during adulthood. In sheep, prenatal BPA treatment causes insulin resistance (IR) and adipocyte hypertrophy in the female offspring. To determine if changes in insulin sensitivity mediators (increase in inflammation, oxidative stress, and lipotoxicity and/or decrease in adiponectin) and the intracrine steroidal milieu contributes to these metabolic perturbations, metabolic tissues collected from 21-month-old female offspring born to mothers treated with 0, 0.05, 0.5, or 5 mg/kg/day of BPA were studied. Findings showed prenatal BPA in non-monotonic manner (1) increased oxidative stress; (2) induced lipotoxicity in liver and muscle; and (3) increased aromatase and estrogen receptor expression in visceral adipose tissues. These changes are generally associated with the development of peripheral and tissue level IR and may explain the IR status and adipocyte hypertrophy observed in prenatal BPA-treated female sheep.
Collapse
|
63
|
Immunometabolic Links between Estrogen, Adipose Tissue and Female Reproductive Metabolism. BIOLOGY 2019; 8:biology8010008. [PMID: 30736459 PMCID: PMC6466614 DOI: 10.3390/biology8010008] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 01/26/2019] [Accepted: 02/03/2019] [Indexed: 12/25/2022]
Abstract
The current knowledge of sex-dependent differences in adipose tissue biology remains in its infancy and is motivated in part by the desire to understand why menopause is linked to an increased risk of metabolic disease. However, the development and characterization of targeted genetically-modified rodent models are shedding new light on the physiological actions of sex hormones in healthy reproductive metabolism. In this review we consider the need for differentially regulating metabolic flexibility, energy balance, and immunity in a sex-dependent manner. We discuss the recent advances in our understanding of physiological roles of systemic estrogen in regulating sex-dependent adipose tissue distribution, form and function; and in sex-dependent healthy immune function. We also review the decline in protective properties of estrogen signaling in pathophysiological settings such as obesity-related metaflammation and metabolic disease. It is clear that the many physiological actions of estrogen on energy balance, immunity, and immunometabolism together with its dynamic regulation in females make it an excellent candidate for regulating metabolic flexibility in the context of reproductive metabolism.
Collapse
|
64
|
Characterization of the mouse white adipose tissue redox environment and associations with perinatal environmental exposures to bisphenol A and high-fat diets. J Nutr Biochem 2019; 66:86-97. [PMID: 30776609 DOI: 10.1016/j.jnutbio.2019.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/12/2018] [Accepted: 01/11/2019] [Indexed: 02/07/2023]
Abstract
White adipose tissue (WAT) plays an important role in obesity pathophysiology. Redox signaling underlies several aspects of WAT physiology; however, the thiol redox environment of WAT has not yet been fully characterized. Dietary and endocrine disrupting chemical (EDC) exposures during development can transiently impact the cellular redox environment, but it is unknown whether these exposures can reprogram the WAT thiol redox environment. To characterize the WAT thiol redox environment, we took a descriptive approach and measured thiol redox parameters using high-performance liquid chromatography in mouse mesenteric (mWAT), gonadal (gWAT) and subinguinal (sWAT) depots. Cysteine (CYSS:CYS) and glutathione (GSSG:GSH) redox potentials (Eh) were more oxidizing in gWAT and sWAT than mWAT. Increased body weight, relative WAT weight and age were associated with oxidizing GSSG:GSH Eh in mWAT in a sex-specific manner. Body weight and relative WAT weight were also positively associated with GSSG:GSH Eh in sWAT. We carried out a second mouse study with perinatal exposures to bisphenol A (BPA) and Mediterranean and Western high-fat diets (HFDs) to determine whether early-life chemical and dietary factors have long-lasting impacts on mWAT redox parameters. Mice exposed to Mediterranean HFD or BPA had more oxidizing GSSG:GSH mWAT Eh than controls, with more pronounced differences in females. These findings suggest an important role for the thiol redox environment in WAT physiology. Observed sex-specific and depot-specific differences in thiol redox parameters are consistent with known WAT physiology. Lastly, mWAT GSSG:GSH Eh may be reprogrammed by developmental exposure to HFDs and EDCs, which may have implications for obesity risk.
Collapse
|
65
|
Vihma V, Heinonen S, Naukkarinen J, Kaprio J, Rissanen A, Turpeinen U, Hämäläinen E, Hakkarainen A, Lundbom J, Lundbom N, Mikkola TS, Tikkanen MJ, Pietiläinen KH. Increased body fat mass and androgen metabolism - A twin study in healthy young women. Steroids 2018; 140:24-31. [PMID: 30149073 DOI: 10.1016/j.steroids.2018.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/15/2018] [Accepted: 08/21/2018] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Obesity may alter serum steroid concentrations and metabolism. We investigated this in healthy young women with increased body fat and their leaner co-twin sisters. DESIGN Age and genetic background both strongly influence serum steroid levels and body composition. This is a cross-sectional study of 13 female monozygotic twin pairs (age, 23-36 years), ten of which were discordant for body mass index (median difference in body weight between the co-twins, 19 kg). METHODS We determined body composition by dual energy X-ray absorptiometry and magnetic resonance imaging, serum androgens by liquid chromatography-tandem mass spectrometry, and mRNA expression of genes in subcutaneous adipose tissue and adipocytes. RESULTS The heavier women had lower serum dehydroepiandrosterone (DHEA), dihydrotestosterone (DHT), and sex hormone-binding globulin (SHBG) (P < 0.05 for all) compared to their leaner co-twins with no differences in serum testosterone or androstenedione levels. Serum DHEA correlated inversely with %body fat (r = -0.905, P = 0.002), and DHT positively with SHBG (r = 0.842, P = 0.002). In adipose tissue or adipocytes, expressions of STS (steroid sulfatase) and androgen-related genes were significantly higher in the heavier compared to the leaner co-twin, and within pairs, correlated positively with adiposity but were not related to serum androgen levels. None of the serum androgen or SHBG levels correlated with indices of insulin resistance. CONCLUSIONS Serum DHEA levels were best predicted by %body fat, and serum DHT by SHBG. These or other serum androgen concentrations did not reflect differences in androgen-related genes in adipose tissue. General or intra-abdominal adiposity were not associated with increased androgenicity in young women.
Collapse
Affiliation(s)
- Veera Vihma
- University of Helsinki and Helsinki University Hospital, Heart and Lung Center, Biomedicum C315a, Haartmaninkatu 8, 00290 Helsinki, Finland; Folkhälsan Research Center, P.O. Box 63, 00014 University of Helsinki, Finland.
| | - Sini Heinonen
- University of Helsinki, Research Programs Unit, Diabetes and Obesity, Obesity Research Unit, P.O. Box 63, 00014 University of Helsinki, Finland
| | - Jussi Naukkarinen
- University of Helsinki, Research Programs Unit, Diabetes and Obesity, Obesity Research Unit, P.O. Box 63, 00014 University of Helsinki, Finland
| | - Jaakko Kaprio
- University of Helsinki, FIMM, Institute for Molecular Medicine Finland, and Department of Public Health, P.O. Box 20, 00014 University of Helsinki, Finland
| | - Aila Rissanen
- University of Helsinki, Research Programs Unit, Diabetes and Obesity, Obesity Research Unit, P.O. Box 63, 00014 University of Helsinki, Finland
| | - Ursula Turpeinen
- Helsinki University Hospital, HUSLAB, P.O. Box 720, 00029 HUS, Helsinki, Finland
| | - Esa Hämäläinen
- Helsinki University Hospital, HUSLAB, P.O. Box 720, 00029 HUS, Helsinki, Finland
| | - Antti Hakkarainen
- University of Helsinki and HUS Medical Imaging Center, Helsinki University Hospital, Haartmaninkatu 4, 00290 Helsinki, Finland
| | - Jesper Lundbom
- University of Helsinki and HUS Medical Imaging Center, Helsinki University Hospital, Haartmaninkatu 4, 00290 Helsinki, Finland
| | - Nina Lundbom
- University of Helsinki and HUS Medical Imaging Center, Helsinki University Hospital, Haartmaninkatu 4, 00290 Helsinki, Finland
| | - Tomi S Mikkola
- Folkhälsan Research Center, P.O. Box 63, 00014 University of Helsinki, Finland; Helsinki University Hospital, Obstetrics and Gynecology, P.O. Box 140, 00029 HUS, Helsinki, Finland
| | - Matti J Tikkanen
- University of Helsinki and Helsinki University Hospital, Heart and Lung Center, Biomedicum C315a, Haartmaninkatu 8, 00290 Helsinki, Finland; Folkhälsan Research Center, P.O. Box 63, 00014 University of Helsinki, Finland
| | - Kirsi H Pietiläinen
- University of Helsinki, Research Programs Unit, Diabetes and Obesity, Obesity Research Unit, P.O. Box 63, 00014 University of Helsinki, Finland; Helsinki University Hospital, Endocrinology, Abdominal Center, P.O. Box 340, 00029 HUS, Helsinki, Finland
| |
Collapse
|
66
|
Sadie-Van Gijsen H. Adipocyte biology: It is time to upgrade to a new model. J Cell Physiol 2018; 234:2399-2425. [PMID: 30192004 DOI: 10.1002/jcp.27266] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 07/25/2018] [Indexed: 12/15/2022]
Abstract
Globally, the obesity pandemic is profoundly affecting quality of life and economic productivity, but efforts to address this, especially on a pharmacological level, have generally proven unsuccessful to date, serving as a stark demonstration that our understanding of adipocyte biology and pathophysiology is incomplete. To deliver better insight into adipocyte function and obesity, we need improved adipocyte models with a high degree of fidelity in representing the in vivo state and with a diverse range of experimental applications. Adipocyte cell lines, especially 3T3-L1 cells, have been used extensively over many years, but these are limited in terms of relevance and versatility. In this review, I propose that primary adipose-derived stromal/stem cells (ASCs) present a superior model with which to study adipocyte biology ex vivo. In particular, ASCs afford us the opportunity to study adipocytes from different, functionally distinct, adipose depots and to investigate, by means of in vivo/ex vivo studies, the effects of many different physiological and pathophysiological factors, such as age, body weight, hormonal status, diet and nutraceuticals, as well as disease and pharmacological treatments, on the biology of adipocytes and their precursors. This study will give an overview of the characteristics of ASCs and published studies utilizing ASCs, to highlight the areas where our knowledge is lacking. More comprehensive studies in primary ASCs will contribute to an improved understanding of adipose tissue, in healthy and dysfunctional states, which will enhance our efforts to more successfully manage and treat obesity.
Collapse
Affiliation(s)
- Hanél Sadie-Van Gijsen
- Division of Endocrinology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Parow, South Africa.,Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Parow, South Africa
| |
Collapse
|
67
|
Mathew H, Castracane VD, Mantzoros C. Adipose tissue and reproductive health. Metabolism 2018; 86:18-32. [PMID: 29155136 DOI: 10.1016/j.metabol.2017.11.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/06/2017] [Accepted: 11/08/2017] [Indexed: 01/04/2023]
Abstract
The understanding of adipose tissue role has evolved from that of a depot energy storage organ to a dynamic endocrine organ. While genetics, sexual phenotype and sex steroids can impact the mass and distribution of adipose tissue, there is a counter-influence of white adipocytes on reproduction. This primarily occurs via the secretion of adipokines, the most studied of which- leptin and adiponectin- are highlighted in this article. Leptin, the "satiety hormone" primarily acts on the hypothalamus via pro-opiomelanocortin (POMC), neuropeptide Y (NPY), and agouti-related peptide (AgRP) neurons to translate acute changes in nutrition and energy expenditure, as well as chronic adipose accumulation into changes in appetite and potentially mediate insulin resistance via shared pathway and notably impacting reproductive health via influence on GnRH secreting neurons. Meanwhile, adiponectin is notable for its action in mediating insulin sensitivity, with receptors found at every level of the reproductive axis. Both have been examined in the context of physiologic and pathologic reproductive conditions. Leptin has been shown to influence puberty, pregnancy, hypothalamic amenorrhea, and lipodystrophy, and with a potential therapeutic role for both metabolic and reproductive health. Adiponectin mediates the relative state of insulin resistance in pregnancy, and has been implicated in conditions such as polycystic ovary syndrome and reproductive malignancies. There are numerous other adipokines, including resistin, visfatin, chemerin and retinol binding protein-4, which may also play roles in reproductive health and disease states. The continued examination of these and other adipokines in both normal reproduction and reproductive pathologies represents an important avenue for continued study. Here, we seek to provide a broad, yet comprehensive overview of many facets of these relationships and highlight areas of consideration for clinicians and future study.
Collapse
Affiliation(s)
- Hannah Mathew
- Section of Endocrinology, Diabetes and Weight Management, Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA, USA.
| | - V Daniel Castracane
- Department of Obstetrics and Gynecology, Texas Tech University Health Sciences Center, Odessa, TX, USA
| | - Christos Mantzoros
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
68
|
Supplementation of suckling rats with cow's milk induces hyperphagia and higher visceral adiposity in females at adulthood, but not in males. J Nutr Biochem 2018; 55:89-103. [DOI: 10.1016/j.jnutbio.2017.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 12/17/2022]
|
69
|
Sex-based differences in phagocyte metabolic profile in rats with monosodium glutamate-induced obesity. Sci Rep 2018; 8:5419. [PMID: 29615659 PMCID: PMC5882925 DOI: 10.1038/s41598-018-23664-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 03/14/2018] [Indexed: 12/16/2022] Open
Abstract
The important component of obesity pathogenesis is inflammatory activation of innate immune cells within adipose tissue and in other body locations. Both the course of obesity and innate immune reactivity are characterized by sex-associated differences. The aim of the work was a comparative investigation of metabolic profiles of phagocytes from different locations in male and female rats with MSG-induced obesity. The administration of monosodium glutamate (MSG) caused obesity, with sex-associated differences, that was more severe in male rats. Obesity was associated with pro-inflammatory activation of CD14+ phagocytes from adipose tissue in female, but not in male rats, which was demonstrated by decreased phagocytosis activity along with increased ROS generation. Phagocytes from the peritoneal cavity and peripheral blood of obese female rats exhibited neutral metabolic profile, whereas those cells from obese male rats displayed a pro-inflammatory metabolic profile. Thus, the manifestation of obesity-induced inflammation was characterized by different patterns of metabolic profile of phagocytes in male and female rats. Identified immune cell characteristics expand our knowledge of obesity immunobiology and may help to develop more effective preventive and therapeutic interventions for obese patients of different sexes.
Collapse
|
70
|
Verboven K, Wouters K, Gaens K, Hansen D, Bijnen M, Wetzels S, Stehouwer CD, Goossens GH, Schalkwijk CG, Blaak EE, Jocken JW. Abdominal subcutaneous and visceral adipocyte size, lipolysis and inflammation relate to insulin resistance in male obese humans. Sci Rep 2018; 8:4677. [PMID: 29549282 PMCID: PMC5856747 DOI: 10.1038/s41598-018-22962-x] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 03/05/2018] [Indexed: 12/16/2022] Open
Abstract
Obesity is associated with a disturbed adipose tissue (AT) function characterized by adipocyte hypertrophy, an impaired lipolysis and pro-inflammatory phenotype, which contributes to insulin resistance (IR). We investigated whether AT phenotype in different AT depots of obese individuals with and without type 2 diabetes mellitus (T2DM) is associated with whole-body IR. Subcutaneous (SC) and visceral (V) AT biopsies from 18 lean, 17 obese and 8 obese T2DM men were collected. AT phenotype was characterized by ex vivo measurement of basal and stimulated lipolysis (mature adipocytes), adipocyte size distribution (AT tissue sections) and AT immune cells (flow cytometry). In VAT, mean adipocyte size, CD45+ leukocytes and M1 macrophages were significantly increased in both obese groups compared to lean individuals. In SCAT, despite adipocyte hypertrophy, no significant differences in immune cell populations between groups were found. In SCAT, multiple linear regression analysis showed that none of the AT phenotype markers independently contributed to HOMA-IR while in VAT, mean adipocyte size was significantly related to HOMA-IR. In conclusion, beside adipocyte hypertrophy in VAT, M1 macrophage- or B-cell-mediated inflammation, may contribute to IR, while inflammation in hypertrophic SCAT does not seem to play a major role in IR.
Collapse
Affiliation(s)
- K Verboven
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands. .,Rehabilitation Research Center, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium.
| | - K Wouters
- Department of Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - K Gaens
- Department of Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - D Hansen
- Rehabilitation Research Center, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium.,Heart Centre Hasselt, Jessa Hospital, Hasselt, Belgium
| | - M Bijnen
- Department of Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - S Wetzels
- Department of Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - C D Stehouwer
- Department of Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - G H Goossens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - C G Schalkwijk
- Department of Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - E E Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - J W Jocken
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
71
|
Puttabyatappa M, Lu C, Martin JD, Chazenbalk G, Dumesic D, Padmanabhan V. Developmental Programming: Impact of Prenatal Testosterone Excess on Steroidal Machinery and Cell Differentiation Markers in Visceral Adipocytes of Female Sheep. Reprod Sci 2017; 25:1010-1023. [PMID: 29237348 DOI: 10.1177/1933719117746767] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Prenatal testosterone (T)-treated female sheep manifest reduced adipocyte size and peripheral insulin resistance. The small adipocyte phenotype may reflect defects in adipogenesis and its steroidal machinery. To test whether prenatal T treatment from gestational days 30 to 90 alters the visceral adipose tissue (VAT) steroidal machinery and reduces adipocyte differentiation, we examined expression of the steroidogenic enzymes, steroid receptors, and adipocyte differentiation markers at fetal day 90 and postnatal ages 10 and 21 months. Because gestational T treatment increases fetal T and maternal insulin, the contributions of these were assessed by androgen receptor antagonist or insulin sensitizer cotreatment, either separately (at fetal day 90 and 21 months of age time points) or together (10 months of age). The effects on adipogenesis were assessed in the VAT-derived mesenchymal stem cells (AT-MSCs) from pre- and postpubertal time points to evaluate the effects of pubertal steroidal changes on adipogenesis. Our results show that VAT manifests potentially a predominant estrogenic intracrine milieu (increased aromatase and estrogen receptor α) and reduced differentiation markers at fetal day 90 and postnatal 21 months of age. These changes appear to involve both androgenic and metabolic pathways. Preliminary findings suggest that prenatal T treatment reduces adipogenesis, decreases expression of differentiation, and increases expression of commitment markers at both pre- and postpubertal time points. Together, these findings suggest that (1) increased commitment of AT-MSCs to adipocyte lineage and decreased differentiation to adipocytes may underlie the small adipocyte phenotype of prenatal T-treated females and (2) excess T-induced changes in steroidal machinery in the VAT likely participate in the programming/maintenance of this defect.
Collapse
Affiliation(s)
| | - Chunxia Lu
- 1 Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Jacob D Martin
- 1 Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Gregorio Chazenbalk
- 2 Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Daniel Dumesic
- 2 Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | |
Collapse
|
72
|
True C, Abbott DH, Roberts CT, Varlamov O. Sex Differences in Androgen Regulation of Metabolism in Nonhuman Primates. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1043:559-574. [PMID: 29224110 DOI: 10.1007/978-3-319-70178-3_24] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The in-depth characterization of sex differences relevant to human physiology requires the judicious use of a variety of animal models and human clinical data. Nonhuman primates (NHPs) represent an important experimental system that bridges rodent studies and clinical investigations. NHP studies have been especially useful in understanding the role of sex hormones in development and metabolism and also allow the elucidation of the effects of pertinent dietary influences on physiology pertinent to disease states such as obesity and diabetes. This chapter summarizes the current state of our understanding of androgen effects on male and female NHP metabolism relevant to hypogonadism in human males and polycystic ovary syndrome in human females. This review will also focus on the interaction between altered androgen levels and dietary restriction and excess, in particular the Western-style diet that underlies significant human pathophysiology.
Collapse
Affiliation(s)
- Cadence True
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - David H Abbott
- Department of Obstetrics and Gynecology and the Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, USA
| | - Charles T Roberts
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA.
| | - Oleg Varlamov
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
73
|
Lecka-Czernik B, Stechschulte LA, Czernik PJ, Sherman SB, Huang S, Krings A. Marrow Adipose Tissue: Skeletal Location, Sexual Dimorphism, and Response to Sex Steroid Deficiency. Front Endocrinol (Lausanne) 2017; 8:188. [PMID: 28824548 PMCID: PMC5543291 DOI: 10.3389/fendo.2017.00188] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/18/2017] [Indexed: 01/29/2023] Open
Abstract
Marrow adipose tissue (MAT) is unique with respect to origin, metabolism, and function. MAT is characterized with high heterogeneity which correlates with skeletal location and bone metabolism. This fat depot is also highly sensitive to various hormonal, environmental, and pharmacologic cues to which it responds with changes in volume and/or metabolic phenotype. We have demonstrated previously that MAT has characteristics of both white (WAT) and brown (BAT)-like or beige adipose tissue, and that beige phenotype is attenuated with aging and in diabetes. Here, we extended our analysis by comparing MAT phenotype in different locations within a tibia bone of mature C57BL/6 mice and with respect to the presence of sex steroids in males and females. We report that MAT juxtaposed to trabecular bone of proximal tibia (pMAT) is characterized by elevated expression of beige fat markers including Ucp1, HoxC9, Prdm16, Tbx1, and Dio2, when compared with MAT located in distal tibia (dMAT). There is also a difference in tissue organization with adipocytes in proximal tibia being dispersed between trabeculae, while adipocytes in distal tibia being densely packed. Higher trabecular bone mass (BV/TV) in males correlates with lower pMAT volume and higher expression of beige markers in the same location, when compared with females. However, there is no sexual divergence in the volume and transcriptional profile of dMAT. A removal of ovaries in females resulted in decreased cortical bone mass and increased volume of both pMAT and dMAT, as well as volume of gonadal WAT (gWAT). Increase in pMAT volume was associated with marked increase in Fabp4 and Adiponectin expression and relative decrease in beige fat gene markers. A removal of testes in males resulted in cortical and trabecular bone loss and the tendency to increased volume of both pMAT and dMAT, despite a loss of gWAT. Orchiectomy did not affect the expression of white and beige adipocyte gene markers. In conclusion, expression profile of beige adipocyte gene markers correlates with skeletal location of active bone remodeling and higher BV/TV, however bone loss resulted from sex steroid deficiency is not proportional to MAT expansion at the same skeletal location.
Collapse
Affiliation(s)
- Beata Lecka-Czernik
- Department of Orthopaedic Surgery, University of Toledo Health Sciences Campus, Toledo, OH, United States
- Department of Physiology and Pharmacology, University of Toledo Health Sciences Campus, Toledo, OH, United States
- Center for Diabetes and Endocrine Research, University of Toledo Health Sciences Campus, Toledo, OH, United States
- *Correspondence: Beata Lecka-Czernik,
| | - Lance A. Stechschulte
- Department of Orthopaedic Surgery, University of Toledo Health Sciences Campus, Toledo, OH, United States
- Center for Diabetes and Endocrine Research, University of Toledo Health Sciences Campus, Toledo, OH, United States
| | - Piotr J. Czernik
- Department of Physiology and Pharmacology, University of Toledo Health Sciences Campus, Toledo, OH, United States
| | - Shermel B. Sherman
- Department of Orthopaedic Surgery, University of Toledo Health Sciences Campus, Toledo, OH, United States
| | - Shilong Huang
- Department of Orthopaedic Surgery, University of Toledo Health Sciences Campus, Toledo, OH, United States
| | - Amrei Krings
- Department of Orthopaedic Surgery, University of Toledo Health Sciences Campus, Toledo, OH, United States
| |
Collapse
|