51
|
Méndez-Vigo B, Gomaa NH, Alonso-Blanco C, Xavier Picó F. Among- and within-population variation in flowering time of Iberian Arabidopsis thaliana estimated in field and glasshouse conditions. THE NEW PHYTOLOGIST 2013; 197:1332-1343. [PMID: 23252608 DOI: 10.1111/nph.12082] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 11/05/2012] [Indexed: 05/08/2023]
Abstract
The study of the evolutionary and population genetics of quantitative traits requires the assessment of within- and among-population patterns of variation. We carried out experiments including eight Iberian Arabidopsis thaliana populations (10 individuals per population) in glasshouse and field conditions. We quantified among- and within-population variation for flowering time and for several field life-history traits. Individuals were genotyped with microsatellites, single nucleotide polymorphisms and four well-known flowering genes (FRI, FLC, CRY2 and PHYC). Phenotypic and genotypic data were used to conduct Q(ST)-F(ST) comparisons. Life-history traits varied significantly among- and within-populations. Flowering time also showed substantial within- and among-population variation as well as significant genotype × environment interactions among the various conditions. Individuals bearing FRI truncations exhibited reduced recruitment in field conditions and differential flowering time behavior across experimental conditions, suggesting that FRI contributes to the observed significant genotype × environment interactions. Flowering time estimated in field conditions was the only trait showing significantly higher quantitative genetic differentiation than neutral genetic differentiation values. Overall, our results show that these A. thaliana populations are genetically more differentiated for flowering time than for neutral markers, suggesting that flowering time is likely to be under divergent selection.
Collapse
Affiliation(s)
- Belén Méndez-Vigo
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049, Madrid, Spain
| | - Nasr H Gomaa
- Department of Botany, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Carlos Alonso-Blanco
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049, Madrid, Spain
| | - F Xavier Picó
- Departamento de Ecología Integrativa, Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas (CSIC), 41092, Sevilla, Spain
| |
Collapse
|
52
|
Wang Z, Chen Z, Cheng J, Lai Y, Wang J, Bao Y, Huang J, Zhang H. QTL analysis of Na+ and K+ concentrations in roots and shoots under different levels of NaCl stress in rice (Oryza sativa L.). PLoS One 2012; 7:e51202. [PMID: 23236455 PMCID: PMC3516561 DOI: 10.1371/journal.pone.0051202] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 10/30/2012] [Indexed: 11/30/2022] Open
Abstract
The key to plant survival under NaCl salt stress is maintaining a low Na(+) level or Na(+)/K(+) ratio in the cells. A population of recombinant inbred lines (RILs, F(2:9)) derived from a cross between the salt-tolerant japonica rice variety Jiucaiqing and the salt-sensitive indica variety IR26, was used to determine Na(+) and K(+) concentrations in the roots and shoots under three different NaCl stress conditions (0, 100 and 120 mM NaCl). A total of nine additive QTLs were identified by QTL Cartographer program using single-environment phenotypic values, whereas eight additive QTLs were identified by QTL IciMapping program. Among these additive QTLs, five were identified by both programs. Epistatic QTLs and QTL-by-environment interactions were detected by QTLNetwork program in the joint analyses of multi-environment phenotypic values, and one additive QTL and nine epistatic QTLs were identified. There were three epistatic QTLs identified for Na(+) in roots (RNC), three additive QTLs and two epistatic QTLs identified for Na(+) in shoots (SNC), four additive QTLs identified for K(+) in roots (RKC), four additive QTLs and three epistatic QTLs identified for K(+) in shoots (SKC) and one additive QTL and one epistatic QTL for salt tolerance rating (STR). The phenotypic variation explained by each additive, epistatic QTL and QTL×environment interaction ranged from 8.5 to 18.9%, 0.5 to 5.3% and 0.7 to 7.5%, respectively. By comparing the chromosomal positions of these additive QTLs with those previously identified, five additive QTLs, qSNC9, qSKC1, qSKC9, qRKC4 and qSTR7, might represent novel salt tolerance loci. The identification of salt tolerance in selected RILs showed that a major QTL qSNC11 played a significant role in rice salt tolerance, and could be used to improve salt tolerance of commercial rice varieties with marker-assisted selection (MAS) approach.
Collapse
Affiliation(s)
- Zhoufei Wang
- The Laboratory of Seed Science and Technology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Zhiwei Chen
- The Laboratory of Seed Science and Technology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Jinping Cheng
- The Laboratory of Seed Science and Technology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Yanyan Lai
- The Laboratory of Seed Science and Technology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Jianfei Wang
- The Laboratory of Seed Science and Technology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Yongmei Bao
- The Laboratory of Seed Science and Technology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Ji Huang
- The Laboratory of Seed Science and Technology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Hongsheng Zhang
- The Laboratory of Seed Science and Technology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, People’s Republic of China
| |
Collapse
|
53
|
Mapping the genetic basis of symbiotic variation in legume-rhizobium interactions in Medicago truncatula. G3-GENES GENOMES GENETICS 2012; 2:1291-303. [PMID: 23173081 PMCID: PMC3484660 DOI: 10.1534/g3.112.003269] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 08/19/2012] [Indexed: 01/30/2023]
Abstract
Mutualisms are known to be genetically variable, where the genotypes differ in the fitness benefits they gain from the interaction. To date, little is known about the loci that underlie such genetic variation in fitness or whether the loci influencing fitness are partner specific, and depend on the genotype of the interaction partner. In the legume-rhizobium mutualism, one set of potential candidate genes that may influence the fitness benefits of the symbiosis are the plant genes involved in the initiation of the signaling pathway between the two partners. Here we performed quantitative trait loci (QTL) mapping in Medicago truncatula in two different rhizobium strain treatments to locate regions of the genome influencing plant traits, assess whether such regions are dependent on the genotype of the rhizobial mutualist (QTL × rhizobium strain), and evaluate the contribution of sequence variation at known symbiosis signaling genes. Two of the symbiotic signaling genes, NFP and DMI3, colocalized with two QTL affecting average fruit weight and leaf number, suggesting that natural variation in nodulation genes may potentially influence plant fitness. In both rhizobium strain treatments, there were QTL that influenced multiple traits, indicative of either tight linkage between loci or pleiotropy, including one QTL with opposing effects on growth and reproduction. There was no evidence for QTL × rhizobium strain or genotype × genotype interactions, suggesting either that such interactions are due to small-effect loci or that more genotype-genotype combinations need to be tested in future mapping studies.
Collapse
|
54
|
Nakaya A, Isobe SN. Will genomic selection be a practical method for plant breeding? ANNALS OF BOTANY 2012; 110:1303-16. [PMID: 22645117 PMCID: PMC3478044 DOI: 10.1093/aob/mcs109] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 04/11/2012] [Indexed: 05/18/2023]
Abstract
BACKGROUND Genomic selection or genome-wide selection (GS) has been highlighted as a new approach for marker-assisted selection (MAS) in recent years. GS is a form of MAS that selects favourable individuals based on genomic estimated breeding values. Previous studies have suggested the utility of GS, especially for capturing small-effect quantitative trait loci, but GS has not become a popular methodology in the field of plant breeding, possibly because there is insufficient information available on GS for practical use. SCOPE In this review, GS is discussed from a practical breeding viewpoint. Statistical approaches employed in GS are briefly described, before the recent progress in GS studies is surveyed. GS practices in plant breeding are then reviewed before future prospects are discussed. CONCLUSIONS Statistical concepts used in GS are discussed with genetic models and variance decomposition, heritability, breeding value and linear model. Recent progress in GS studies is reviewed with a focus on empirical studies. For the practice of GS in plant breeding, several specific points are discussed including linkage disequilibrium, feature of populations and genotyped markers and breeding scheme. Currently, GS is not perfect, but it is a potent, attractive and valuable approach for plant breeding. This method will be integrated into many practical breeding programmes in the near future with further advances and the maturing of its theory.
Collapse
Affiliation(s)
- Akihiro Nakaya
- Center for Transdisciplinary Research, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8585, Japan
| | - Sachiko N. Isobe
- Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba 292-0818, Japan
- For correspondence. E-mail:
| |
Collapse
|
55
|
Hartman Y, Hooftman DAP, Uwimana B, van de Wiel CCM, Smulders MJM, Visser RGF, van Tienderen PH. Genomic regions in crop-wild hybrids of lettuce are affected differently in different environments: implications for crop breeding. Evol Appl 2012; 5:629-40. [PMID: 23028403 PMCID: PMC3461145 DOI: 10.1111/j.1752-4571.2012.00240.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 12/21/2011] [Indexed: 11/30/2022] Open
Abstract
Many crops contain domestication genes that are generally considered to lower fitness of crop-wild hybrids in the wild environment. Transgenes placed in close linkage with such genes would be less likely to spread into a wild population. Therefore, for environmental risk assessment of GM crops, it is important to know whether genomic regions with such genes exist, and how they affect fitness. We performed quantitative trait loci (QTL) analyses on fitness(-related) traits in two different field environments employing recombinant inbred lines from a cross between cultivated Lactuca sativa and its wild relative Lactuca serriola. We identified a region on linkage group 5 where the crop allele consistently conferred a selective advantage (increasing fitness to 212% and 214%), whereas on linkage group 7, a region conferred a selective disadvantage (reducing fitness to 26% and 5%), mainly through delaying flowering. The probability for a putative transgene spreading would therefore depend strongly on the insertion location. Comparison of these field results with greenhouse data from a previous study using the same lines showed considerable differences in QTL patterns. This indicates that care should be taken when extrapolating experiments from the greenhouse, and that the impact of domestication genes has to be assessed under field conditions.
Collapse
Affiliation(s)
- Yorike Hartman
- Institute for Biodiversity and Ecosystem Dynamics, Universiteit van Amsterdam Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
56
|
Predicting adaptive phenotypes from multilocus genotypes in Sitka spruce (Picea sitchensis) using random forest. G3-GENES GENOMES GENETICS 2012; 2:1085-93. [PMID: 22973546 PMCID: PMC3429923 DOI: 10.1534/g3.112.002733] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Accepted: 07/03/2012] [Indexed: 11/18/2022]
Abstract
Climate is the primary driver of the distribution of tree species worldwide, and the potential for adaptive evolution will be an important factor determining the response of forests to anthropogenic climate change. Although association mapping has the potential to improve our understanding of the genomic underpinnings of climatically relevant traits, the utility of adaptive polymorphisms uncovered by such studies would be greatly enhanced by the development of integrated models that account for the phenotypic effects of multiple single-nucleotide polymorphisms (SNPs) and their interactions simultaneously. We previously reported the results of association mapping in the widespread conifer Sitka spruce (Picea sitchensis). In the current study we used the recursive partitioning algorithm ‘Random Forest’ to identify optimized combinations of SNPs to predict adaptive phenotypes. After adjusting for population structure, we were able to explain 37% and 30% of the phenotypic variation, respectively, in two locally adaptive traits—autumn budset timing and cold hardiness. For each trait, the leading five SNPs captured much of the phenotypic variation. To determine the role of epistasis in shaping these phenotypes, we also used a novel approach to quantify the strength and direction of pairwise interactions between SNPs and found such interactions to be common. Our results demonstrate the power of Random Forest to identify subsets of markers that are most important to climatic adaptation, and suggest that interactions among these loci may be widespread.
Collapse
|
57
|
Prediction of genetic values of quantitative traits with epistatic effects in plant breeding populations. Heredity (Edinb) 2012; 109:313-9. [PMID: 22892636 DOI: 10.1038/hdy.2012.44] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Though epistasis has long been postulated to have a critical role in genetic regulation of important pathways as well as provide a major source of variation in the process of speciation, the importance of epistasis for genomic selection in the context of plant breeding is still being debated. In this paper, we report the results on the prediction of genetic values with epistatic effects for 280 accessions in the Nebraska Wheat Breeding Program using adaptive mixed least absolute shrinkage and selection operator (LASSO). The development of adaptive mixed LASSO, originally designed for association mapping, for the context of genomic selection is reported. The results show that adaptive mixed LASSO can be successfully applied to the prediction of genetic values while incorporating both marker main effects and epistatic effects. Especially, the prediction accuracy is substantially improved by the inclusion of two-locus epistatic effects (more than onefold in some cases as measured by cross-validation correlation coefficient), which is observed for multiple traits and planting locations. This points to significant potential in using non-additive genetic effects for genomic selection in crop breeding practices.
Collapse
|
58
|
Wang Z, Cheng J, Chen Z, Huang J, Bao Y, Wang J, Zhang H. Identification of QTLs with main, epistatic and QTL × environment interaction effects for salt tolerance in rice seedlings under different salinity conditions. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 255:6. [PMID: 22678666 DOI: 10.1007/s00425-021-03802-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/22/2021] [Indexed: 05/24/2023]
Abstract
Salt tolerance of rice (Oryza sativa L.) at the seedling stage is one of the major determinants of its stable establishment in saline soil. One population of recombinant inbred lines (RILs, F (2:9)) derived from a cross between the salt-tolerant variety Jiucaiqing and the salt-sensitive variety IR26 was used to determine the genetic mechanism of four salt tolerance indices, seedling height (SH), dry shoot weight (DSW), dry root weight (DRW) and Na/K ratios (Na/K) in roots after 10 days in three salt concentrations (0.0, 0.5 and 0.7 % NaCl). The main effect QTLs (M-QTLs) and epistatic QTLs (E-QTLs) were detected by QTL IciMapping program using single environment phenotypic values. Eleven M-QTLs and 11 E-QTLs were identified for the salt tolerance indices. There were six M-QTLs and two E-QTLs identified for SH, three M-QTLs and five E-QTLs identified for DSW, two M-QTLs and one E-QTL identified for DRW, and three E-QTLs identified for Na/K. The phenotypic variation explained by each M-QTL and E-QTL ranged from 7.8 to 23.9 % and 13.3 to 73.7 %, respectively. The QTL-by-environment interactions were detected by QTLNetwork program in the joint analyses of multi-environment phenotypic values. Six M-QTLs and five E-QTLs were identified. The phenotypic variation explained by each QTL and QTL × environment interaction ranged from 0.95 to 6.90 % and 0.02 to 0.50 %, respectively. By comparing chromosomal positions of these M-QTLs with those previously identified, five M-QTLs qSH1.3, qSH12.1, qSH12.2, qDSW12.1 and qDRW11 might represent novel salt tolerance genes. Five selected RILs with high salt tolerance had six to eight positive alleles of the M-QTLs, indicating that pyramiding by marker-assisted selection (MAS) of M-QTLs can be applied in rice salt tolerance breeding programs.
Collapse
Affiliation(s)
- Zhoufei Wang
- The Laboratory of Seed Science and Technology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
59
|
Wang Z, Cheng J, Chen Z, Huang J, Bao Y, Wang J, Zhang H. Identification of QTLs with main, epistatic and QTL × environment interaction effects for salt tolerance in rice seedlings under different salinity conditions. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 125:807-15. [PMID: 22678666 DOI: 10.1007/s00122-012-1873-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 04/04/2012] [Indexed: 05/02/2023]
Abstract
Salt tolerance of rice (Oryza sativa L.) at the seedling stage is one of the major determinants of its stable establishment in saline soil. One population of recombinant inbred lines (RILs, F (2:9)) derived from a cross between the salt-tolerant variety Jiucaiqing and the salt-sensitive variety IR26 was used to determine the genetic mechanism of four salt tolerance indices, seedling height (SH), dry shoot weight (DSW), dry root weight (DRW) and Na/K ratios (Na/K) in roots after 10 days in three salt concentrations (0.0, 0.5 and 0.7 % NaCl). The main effect QTLs (M-QTLs) and epistatic QTLs (E-QTLs) were detected by QTL IciMapping program using single environment phenotypic values. Eleven M-QTLs and 11 E-QTLs were identified for the salt tolerance indices. There were six M-QTLs and two E-QTLs identified for SH, three M-QTLs and five E-QTLs identified for DSW, two M-QTLs and one E-QTL identified for DRW, and three E-QTLs identified for Na/K. The phenotypic variation explained by each M-QTL and E-QTL ranged from 7.8 to 23.9 % and 13.3 to 73.7 %, respectively. The QTL-by-environment interactions were detected by QTLNetwork program in the joint analyses of multi-environment phenotypic values. Six M-QTLs and five E-QTLs were identified. The phenotypic variation explained by each QTL and QTL × environment interaction ranged from 0.95 to 6.90 % and 0.02 to 0.50 %, respectively. By comparing chromosomal positions of these M-QTLs with those previously identified, five M-QTLs qSH1.3, qSH12.1, qSH12.2, qDSW12.1 and qDRW11 might represent novel salt tolerance genes. Five selected RILs with high salt tolerance had six to eight positive alleles of the M-QTLs, indicating that pyramiding by marker-assisted selection (MAS) of M-QTLs can be applied in rice salt tolerance breeding programs.
Collapse
Affiliation(s)
- Zhoufei Wang
- The Laboratory of Seed Science and Technology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
60
|
Tang Z, Xiao J, Hu W, Yu B, Xu C. Bin-based model construction and analytical strategies for dissecting complex traits with chromosome segment substitution lines. CHINESE SCIENCE BULLETIN-CHINESE 2012. [DOI: 10.1007/s11434-012-5195-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
61
|
Richards CL, Rosas U, Banta J, Bhambhra N, Purugganan MD. Genome-wide patterns of Arabidopsis gene expression in nature. PLoS Genet 2012; 8:e1002662. [PMID: 22532807 PMCID: PMC3330097 DOI: 10.1371/journal.pgen.1002662] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Accepted: 03/05/2012] [Indexed: 02/01/2023] Open
Abstract
Organisms in the wild are subject to multiple, fluctuating environmental factors, and it is in complex natural environments that genetic regulatory networks actually function and evolve. We assessed genome-wide gene expression patterns in the wild in two natural accessions of the model plant Arabidopsis thaliana and examined the nature of transcriptional variation throughout its life cycle and gene expression correlations with natural environmental fluctuations. We grew plants in a natural field environment and measured genome-wide time-series gene expression from the plant shoot every three days, spanning the seedling to reproductive stages. We find that 15,352 genes were expressed in the A. thaliana shoot in the field, and accession and flowering status (vegetative versus flowering) were strong components of transcriptional variation in this plant. We identified between ∼110 and 190 time-varying gene expression clusters in the field, many of which were significantly overrepresented by genes regulated by abiotic and biotic environmental stresses. The two main principal components of vegetative shoot gene expression (PC(veg)) correlate to temperature and precipitation occurrence in the field. The largest PC(veg) axes included thermoregulatory genes while the second major PC(veg) was associated with precipitation and contained drought-responsive genes. By exposing A. thaliana to natural environments in an open field, we provide a framework for further understanding the genetic networks that are deployed in natural environments, and we connect plant molecular genetics in the laboratory to plant organismal ecology in the wild.
Collapse
Affiliation(s)
- Christina L. Richards
- Department of Biology and Center for Genomics and Systems Biology, New York University, New York, New York, United States of America
- Department of Integrative Biology, University of South Florida, Tampa, Florida, United States of America
| | - Ulises Rosas
- Department of Biology and Center for Genomics and Systems Biology, New York University, New York, New York, United States of America
| | - Joshua Banta
- Department of Biology and Center for Genomics and Systems Biology, New York University, New York, New York, United States of America
- Department of Biology, University of Texas at Tyler, Tyler, Texas, United States of America
| | - Naeha Bhambhra
- Department of Biology and Center for Genomics and Systems Biology, New York University, New York, New York, United States of America
| | - Michael D. Purugganan
- Department of Biology and Center for Genomics and Systems Biology, New York University, New York, New York, United States of America
| |
Collapse
|
62
|
Uwimana B, Smulders MJM, Hooftman DAP, Hartman Y, van Tienderen PH, Jansen J, McHale LK, Michelmore RW, Visser RGF, van de Wiel CCM. Crop to wild introgression in lettuce: following the fate of crop genome segments in backcross populations. BMC PLANT BIOLOGY 2012; 12:43. [PMID: 22448748 PMCID: PMC3384248 DOI: 10.1186/1471-2229-12-43] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Accepted: 03/26/2012] [Indexed: 05/09/2023]
Abstract
BACKGROUND After crop-wild hybridization, some of the crop genomic segments may become established in wild populations through selfing of the hybrids or through backcrosses to the wild parent. This constitutes a possible route through which crop (trans)genes could become established in natural populations. The likelihood of introgression of transgenes will not only be determined by fitness effects from the transgene itself but also by the crop genes linked to it. Although lettuce is generally regarded as self-pollinating, outbreeding does occur at a low frequency. Backcrossing to wild lettuce is a likely pathway to introgression along with selfing, due to the high frequency of wild individuals relative to the rarely occurring crop-wild hybrids. To test the effect of backcrossing on the vigour of inter-specific hybrids, Lactuca serriola, the closest wild relative of cultivated lettuce, was crossed with L. sativa and the F(1) hybrid was backcrossed to L. serriola to generate BC(1) and BC(2) populations. Experiments were conducted on progeny from selfed plants of the backcrossing families (BC(1)S(1) and BC(2)S(1)). Plant vigour of these two backcrossing populations was determined in the greenhouse under non-stress and abiotic stress conditions (salinity, drought, and nutrient deficiency). RESULTS Despite the decreasing contribution of crop genomic blocks in the backcross populations, the BC(1)S(1) and BC(2)S(1) hybrids were characterized by a substantial genetic variation under both non-stress and stress conditions. Hybrids were identified that performed equally or better than the wild genotypes, indicating that two backcrossing events did not eliminate the effect of the crop genomic segments that contributed to the vigour of the BC(1) and BC(2) hybrids. QTLs for plant vigour under non-stress and the various stress conditions were detected in the two populations with positive as well as negative effects from the crop. CONCLUSION As it was shown that the crop contributed QTLs with either a positive or a negative effect on plant vigour, we hypothesize that genomic regions exist where transgenes could preferentially be located in order to mitigate their persistence in natural populations through genetic hitchhiking.
Collapse
Affiliation(s)
- Brigitte Uwimana
- Wageningen UR Plant Breeding, Postbus 386, 6700AJ Wageningen, the Netherlands
| | - Marinus JM Smulders
- Wageningen UR Plant Breeding, Postbus 16, 6700AA Wageningen, the Netherlands
| | - Danny AP Hooftman
- Centre for Ecology & Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire, OX10 8BB, UK
| | - Yorike Hartman
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Postbus 94248, 1090 GE Amsterdam, the Netherlands
| | - Peter H van Tienderen
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Postbus 94248, 1090 GE Amsterdam, the Netherlands
| | - Johannes Jansen
- Wageningen UR Plant Biometris, Postbus 100, 6700AC Wageningen, the Netherlands
| | - Leah K McHale
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH 43210, USA
| | - Richard W Michelmore
- Genome Center and Department of Plant Sciences, University of California Davis, Davis, CA 95616-8816, USA
| | - Richard GF Visser
- Wageningen UR Plant Breeding, Postbus 386, 6700AJ Wageningen, the Netherlands
| | | |
Collapse
|
63
|
Bouteillé M, Rolland G, Balsera C, Loudet O, Muller B. Disentangling the intertwined genetic bases of root and shoot growth in Arabidopsis. PLoS One 2012; 7:e32319. [PMID: 22384215 PMCID: PMC3286473 DOI: 10.1371/journal.pone.0032319] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 01/25/2012] [Indexed: 01/11/2023] Open
Abstract
Root growth and architecture are major components of plant nutrient and water use efficiencies and these traits are the matter of extensive genetic analysis in several crop species. Because root growth relies on exported assimilate from the shoot, and changes in assimilate supply are known to alter root architecture, we hypothesized (i) that the genetic bases of root growth could be intertwined with the genetic bases of shoot growth and (ii) that the link could be either positive, with alleles favouring shoot growth also favouring root growth, or negative, because of competition for assimilates. We tested these hypotheses using a quantitative genetics approach in the model species Arabidopsis thaliana and the Bay-0 × Shahdara recombinant inbred lines population. In accordance with our hypothesis, root and shoot growth traits were strongly correlated and most root growth quantitative trait loci (QTLs) colocalized with shoot growth QTLs with positive alleles originating from either the same or the opposite parent. In order to identify regions that could be responsible for root growth independently of the shoot, we generated new variables either based on root to shoot ratios, residuals of root to shoot correlations or coordinates of principal component analysis. These variables showed high heritability allowing genetic analysis. They essentially all yielded similar results pointing towards two regions involved in the root--shoot balance. Using Heterogeneous Inbred Families (a kind of near-isogenic lines), we validated part of the QTLs present in these two regions for different traits. Our study thus highlights the difficulty of disentangling intertwined genetic bases of root and shoot growth and shows that this difficulty can be overcome by using simple statistical tools.
Collapse
Affiliation(s)
- Marie Bouteillé
- INRA, Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, UMR759, INRA, Montpellier, France
- SupAgro, Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, UMR759, INRA, Montpellier, France
| | - Gaëlle Rolland
- INRA, Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, UMR759, INRA, Montpellier, France
- SupAgro, Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, UMR759, INRA, Montpellier, France
| | - Crispulo Balsera
- INRA, Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, UMR759, INRA, Montpellier, France
- SupAgro, Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, UMR759, INRA, Montpellier, France
| | - Olivier Loudet
- INRA, UMR1318, Institut Jean-Pierre Bourgin, Versailles, France
- AgroParisTech, UMR1318, Institut Jean-Pierre Bourgin, Versailles, France
| | - Bertrand Muller
- INRA, Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, UMR759, INRA, Montpellier, France
- SupAgro, Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, UMR759, INRA, Montpellier, France
| |
Collapse
|
64
|
Mishra Y, Johansson Jänkänpää H, Kiss AZ, Funk C, Schröder WP, Jansson S. Arabidopsis plants grown in the field and climate chambers significantly differ in leaf morphology and photosystem components. BMC PLANT BIOLOGY 2012; 12:6. [PMID: 22236032 PMCID: PMC3296669 DOI: 10.1186/1471-2229-12-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 01/11/2012] [Indexed: 05/19/2023]
Abstract
BACKGROUND Plants exhibit phenotypic plasticity and respond to differences in environmental conditions by acclimation. We have systematically compared leaves of Arabidopsis thaliana plants grown in the field and under controlled low, normal and high light conditions in the laboratory to determine their most prominent phenotypic differences. RESULTS Compared to plants grown under field conditions, the "indoor plants" had larger leaves, modified leaf shapes and longer petioles. Their pigment composition also significantly differed; indoor plants had reduced levels of xanthophyll pigments. In addition, Lhcb1 and Lhcb2 levels were up to three times higher in the indoor plants, but differences in the PSI antenna were much smaller, with only the low-abundance Lhca5 protein showing altered levels. Both isoforms of early-light-induced protein (ELIP) were absent in the indoor plants, and they had less non-photochemical quenching (NPQ). The field-grown plants had a high capacity to perform state transitions. Plants lacking ELIPs did not have reduced growth or seed set rates, but their mortality rates were sometimes higher. NPQ levels between natural accessions grown under different conditions were not correlated. CONCLUSION Our results indicate that comparative analysis of field-grown plants with those grown under artificial conditions is important for a full understanding of plant plasticity and adaptation.
Collapse
Affiliation(s)
- Yogesh Mishra
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
- Umeå Plant Science Centre, Department of Chemistry, Umeå University, Umeå, Sweden
| | | | - Anett Z Kiss
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| | - Christiane Funk
- Umeå Plant Science Centre, Department of Chemistry, Umeå University, Umeå, Sweden
| | - Wolfgang P Schröder
- Umeå Plant Science Centre, Department of Chemistry, Umeå University, Umeå, Sweden
| | - Stefan Jansson
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
65
|
|
66
|
Chan EKF, Rowe HC, Corwin JA, Joseph B, Kliebenstein DJ. Combining genome-wide association mapping and transcriptional networks to identify novel genes controlling glucosinolates in Arabidopsis thaliana. PLoS Biol 2011; 9:e1001125. [PMID: 21857804 PMCID: PMC3156686 DOI: 10.1371/journal.pbio.1001125] [Citation(s) in RCA: 195] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 07/07/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Genome-wide association (GWA) is gaining popularity as a means to study the architecture of complex quantitative traits, partially due to the improvement of high-throughput low-cost genotyping and phenotyping technologies. Glucosinolate (GSL) secondary metabolites within Arabidopsis spp. can serve as a model system to understand the genomic architecture of adaptive quantitative traits. GSL are key anti-herbivory defenses that impart adaptive advantages within field trials. While little is known about how variation in the external or internal environment of an organism may influence the efficiency of GWA, GSL variation is known to be highly dependent upon the external stresses and developmental processes of the plant lending it to be an excellent model for studying conditional GWA. METHODOLOGY/PRINCIPAL FINDINGS To understand how development and environment can influence GWA, we conducted a study using 96 Arabidopsis thaliana accessions, >40 GSL phenotypes across three conditions (one developmental comparison and one environmental comparison) and ∼230,000 SNPs. Developmental stage had dramatic effects on the outcome of GWA, with each stage identifying different loci associated with GSL traits. Further, while the molecular bases of numerous quantitative trait loci (QTL) controlling GSL traits have been identified, there is currently no estimate of how many additional genes may control natural variation in these traits. We developed a novel co-expression network approach to prioritize the thousands of GWA candidates and successfully validated a large number of these genes as influencing GSL accumulation within A. thaliana using single gene isogenic lines. CONCLUSIONS/SIGNIFICANCE Together, these results suggest that complex traits imparting environmentally contingent adaptive advantages are likely influenced by up to thousands of loci that are sensitive to fluctuations in the environment or developmental state of the organism. Additionally, while GWA is highly conditional upon genetics, the use of additional genomic information can rapidly identify causal loci en masse.
Collapse
Affiliation(s)
- Eva K. F. Chan
- Department of Plant Sciences, University of California–Davis, Davis, California, United States of America
- Monsanto Company, Vegetable Seeds Division, Woodland, California, United States of America
| | - Heather C. Rowe
- Department of Plant Sciences, University of California–Davis, Davis, California, United States of America
| | - Jason A. Corwin
- Department of Plant Sciences, University of California–Davis, Davis, California, United States of America
| | - Bindu Joseph
- Department of Plant Sciences, University of California–Davis, Davis, California, United States of America
| | - Daniel J. Kliebenstein
- Department of Plant Sciences, University of California–Davis, Davis, California, United States of America
| |
Collapse
|
67
|
Pavlicev M, Norgard EA, Fawcett GL, Cheverud JM. Evolution of pleiotropy: epistatic interaction pattern supports a mechanistic model underlying variation in genotype-phenotype map. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2011; 316:371-85. [PMID: 21462316 DOI: 10.1002/jez.b.21410] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 02/25/2011] [Accepted: 03/02/2011] [Indexed: 11/10/2022]
Abstract
The genotype-phenotype (GP) map consists of developmental and physiological mechanisms mapping genetic onto phenotypic variation. It determines the distribution of heritable phenotypic variance on which selection can act. Comparative studies of morphology as well as of gene regulatory networks show that the GP map itself evolves, yet little is known about the actual evolutionary mechanisms involved. The study of such mechanisms requires exploring the variation in GP maps at the population level, which presently is easier to quantify by statistical genetic methods rather than by regulatory network structures. We focus on the evolution of pleiotropy, a major structural aspect of the GP map. Pleiotropic genes affect multiple traits and underlie genetic covariance between traits, often causing evolutionary constraints. Previous quantitative genetic studies have demonstrated population-level variation in pleiotropy in the form of loci, at which genotypes differ in the genetic covariation between traits. This variation can potentially fuel evolution of the GP map under selection and/or drift. Here, we propose a developmental mechanism underlying population genetic variation in covariance and test its predictions. Specifically, the mechanism predicts that the loci identified as responsible for genetic variation in pleiotropy are involved in trait-specific epistatic interactions. We test this prediction for loci affecting allometric relationships between traits in an advanced intercross between inbred mouse strains. The results consistently support the prediction. We further find a high degree of sign epistasis in these interactions, which we interpret as an indication of adaptive gene complexes within the diverged parental lines.
Collapse
Affiliation(s)
- Mihaela Pavlicev
- Center for Ecological and Evolutionary Synthesis, Department of Biology, University of Oslo, Norway.
| | | | | | | |
Collapse
|
68
|
Zhang F, Zhai HQ, Paterson AH, Xu JL, Gao YM, Zheng TQ, Wu RL, Fu BY, Ali J, Li ZK. Dissecting genetic networks underlying complex phenotypes: the theoretical framework. PLoS One 2011; 6:e14541. [PMID: 21283795 PMCID: PMC3024316 DOI: 10.1371/journal.pone.0014541] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 12/17/2010] [Indexed: 11/19/2022] Open
Abstract
Great progress has been made in genetic dissection of quantitative trait variation during the past two decades, but many studies still reveal only a small fraction of quantitative trait loci (QTLs), and epistasis remains elusive. We integrate contemporary knowledge of signal transduction pathways with principles of quantitative and population genetics to characterize genetic networks underlying complex traits, using a model founded upon one-way functional dependency of downstream genes on upstream regulators (the principle of hierarchy) and mutual functional dependency among related genes (functional genetic units, FGU). Both simulated and real data suggest that complementary epistasis contributes greatly to quantitative trait variation, and obscures the phenotypic effects of many 'downstream' loci in pathways. The mathematical relationships between the main effects and epistatic effects of genes acting at different levels of signaling pathways were established using the quantitative and population genetic parameters. Both loss of function and "co-adapted" gene complexes formed by multiple alleles with differentiated functions (effects) are predicted to be frequent types of allelic diversity at loci that contribute to the genetic variation of complex traits in populations. Downstream FGUs appear to be more vulnerable to loss of function than their upstream regulators, but this vulnerability is apparently compensated by different FGUs of similar functions. Other predictions from the model may account for puzzling results regarding responses to selection, genotype by environment interaction, and the genetic basis of heterosis.
Collapse
Affiliation(s)
- Fan Zhang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hu-Qu Zhai
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Andrew H. Paterson
- Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia, United States of America
| | - Jian-Long Xu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yong-Ming Gao
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tian-Qing Zheng
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rong-Ling Wu
- Center for Statistical Genetics, Pennsylvania State University, Hershey, Pennsylvania, United States of America
| | - Bin-Ying Fu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jauhar Ali
- Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia, United States of America
| | - Zhi-Kang Li
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
- Plant Breeding, Genetics, and Biotechnology Division, International Rice Research Institute, Manila, Philippines
- * E-mail:
| |
Collapse
|
69
|
Bergelson J, Roux F. Towards identifying genes underlying ecologically relevant traits in Arabidopsis thaliana. Nat Rev Genet 2010; 11:867-79. [PMID: 21085205 DOI: 10.1038/nrg2896] [Citation(s) in RCA: 210] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A major challenge in evolutionary biology and plant breeding is to identify the genetic basis of complex quantitative traits, including those that contribute to adaptive variation. Here we review the development of new methods and resources to fine-map intraspecific genetic variation that underlies natural phenotypic variation in plants. In particular, the analysis of 107 quantitative traits reported in the first genome-wide association mapping study in Arabidopsis thaliana sets the stage for an exciting time in our understanding of plant adaptation. We also argue for the need to place phenotype-genotype association studies in an ecological context if one is to predict the evolutionary trajectories of plant species.
Collapse
Affiliation(s)
- Joy Bergelson
- Department of Ecology and Evolution, University of Chicago, Illinois 60637, USA.
| | | |
Collapse
|
70
|
von Korff M, Léon J, Pillen K. Detection of epistatic interactions between exotic alleles introgressed from wild barley (H. vulgare ssp. spontaneum). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 121:1455-64. [PMID: 20617300 DOI: 10.1007/s00122-010-1401-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Accepted: 06/25/2010] [Indexed: 05/25/2023]
Abstract
The expression of a quantitative phenotype can be controlled through genotype, environment and genotype by environment interaction effects. Further, genotype effects can be attributed to major genes, quantitative trait loci (QTL) and gene by gene interactions, which are also termed epistatic interactions. The present study demonstrates that two-way epistatic interactions can play an important role for the expression of domestication-related traits like heading date, plant height and yield. In the BC(2)DH population S42, carrying wild barley introgressions in the genetic background of the spring barley cultivar Scarlett, 13, 8 and 12 marker by marker interaction effects could be detected for the traits heading date, plant height and yield, respectively. Significant allelic combinations at interacting loci coincided for heading date, plant height and yield suggesting the presence of pleiotropic effects rather than several linked QTL. The mode of epistasis observed was primarily characterised by either (1) compensatory effects, where allelic combinations from the same genotype buffered the phenotype, or (2) augmented effects, where only the combination of the exotic allele at both interacting loci caused an altered phenotype. The present study shows that estimates of main effects of QTL can be confounded by interactions with background loci, suggesting that the identification of epistatic effects is important for gene cloning and marker-assisted selection. Furthermore, interaction effects between loci and putative candidate genes detected in the present study reveal potential functional relationships, which can be used to further elucidate gene networks in barley.
Collapse
Affiliation(s)
- Maria von Korff
- Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | | | | |
Collapse
|
71
|
Des Marais DL, Juenger TE. Pleiotropy, plasticity, and the evolution of plant abiotic stress tolerance. Ann N Y Acad Sci 2010; 1206:56-79. [PMID: 20860683 DOI: 10.1111/j.1749-6632.2010.05703.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Progress in understanding the mechanisms of adaptive plant abiotic stress response has historically come from two separate fields. Molecular biologists employ mutagenic screens, experimental manipulations, and controlled stress treatment to identify genes that, when perturbed, have fairly large effects on phenotype. By contrast, quantitative and evolutionary geneticists generally study naturally occurring variants to inform multigenic models of trait architecture in an effort to predict, for example, the evolutionary response to selection. We discuss five emerging themes from the molecular study of osmotic stress response: the multigenic nature of adaptive response, the modular organization of response to specific cues, the pleiotropic effects of key signaling proteins, the integration of many environmental signals, and the abundant cross-talk between signaling pathways. We argue that these concepts can be incorporated into existing models of trait evolution and provide examples of what may constitute the molecular basis of plasticity and evolvability of abiotic stress response. We conclude by considering future directions in the study of the functional molecular evolution of abiotic stress response that may facilitate new discoveries in molecular biology, evolutionary studies, and plant breeding.
Collapse
Affiliation(s)
- David L Des Marais
- Section of Integrative Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | | |
Collapse
|
72
|
Wilczek AM, Burghardt LT, Cobb AR, Cooper MD, Welch SM, Schmitt J. Genetic and physiological bases for phenological responses to current and predicted climates. Philos Trans R Soc Lond B Biol Sci 2010; 365:3129-47. [PMID: 20819808 PMCID: PMC2981944 DOI: 10.1098/rstb.2010.0128] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We are now reaching the stage at which specific genetic factors with known physiological effects can be tied directly and quantitatively to variation in phenology. With such a mechanistic understanding, scientists can better predict phenological responses to novel seasonal climates. Using the widespread model species Arabidopsis thaliana, we explore how variation in different genetic pathways can be linked to phenology and life-history variation across geographical regions and seasons. We show that the expression of phenological traits including flowering depends critically on the growth season, and we outline an integrated life-history approach to phenology in which the timing of later life-history events can be contingent on the environmental cues regulating earlier life stages. As flowering time in many plants is determined by the integration of multiple environmentally sensitive gene pathways, the novel combinations of important seasonal cues in projected future climates will alter how phenology responds to variation in the flowering time gene network with important consequences for plant life history. We discuss how phenology models in other systems--both natural and agricultural--could employ a similar framework to explore the potential contribution of genetic variation to the physiological integration of cues determining phenology.
Collapse
Affiliation(s)
- A M Wilczek
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA.
| | | | | | | | | | | |
Collapse
|
73
|
Floral genetic architecture: an examination of QTL architecture underlying floral (co)variation across environments. Genetics 2010; 186:1451-65. [PMID: 20837996 DOI: 10.1534/genetics.110.119982] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genetic correlations are expected to be high among functionally related traits and lower between groups of traits with distinct functions (e.g., reproductive vs. resource-acquisition traits). Here, we explore the quantitative-genetic and QTL architecture of floral organ sizes, vegetative traits, and life history in a set of Brassica rapa recombinant inbred lines within and across field and greenhouse environments. Floral organ lengths were strongly positively correlated within both environments, and analysis of standardized G-matrices indicates that the structure of genetic correlations is ∼80% conserved across environments. Consistent with these correlations, we detected a total of 19 and 21 additive-effect floral QTL in the field and the greenhouse, respectively, and individual QTL typically affected multiple organ types. Interestingly, QTL×QTL epistasis also appeared to contribute to observed genetic correlations; i.e., interactions between two QTL had similar effects on filament length and two estimates of petal size. Although floral and nonfloral traits are hypothesized to be genetically decoupled, correlations between floral organ size and both vegetative and life-history traits were highly significant in the greenhouse; G-matrices of floral and vegetative traits as well as floral and life-history traits differed across environments. Correspondingly, many QTL (45% of those mapped in the greenhouse) showed environmental interactions, including approximately even numbers of floral and nonfloral QTL. Most instances of QTL×QTL epistasis for floral traits were environment dependent.
Collapse
|
74
|
Conte M, de Simone S, Simmons SJ, Ballaré CL, Stapleton AE. Chromosomal loci important for cotyledon opening under UV-B in Arabidopsis thaliana. BMC PLANT BIOLOGY 2010; 10:112. [PMID: 20565708 PMCID: PMC3095277 DOI: 10.1186/1471-2229-10-112] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Accepted: 06/16/2010] [Indexed: 05/08/2023]
Abstract
BACKGROUND Understanding of the genetic architecture of plant UV-B responses allows extensive targeted testing of candidate genes or regions, along with combinations of those genes, for placement in metabolic or signal transduction pathways. RESULTS Composite interval mapping and single-marker analysis methods were used to identify significant loci for cotyledon opening under UV-B in four sets of recombinant inbred lines. In addition, loci important for canalization (stability) of cotyledon opening were detected in two mapping populations. One candidate locus contained the gene HY5. Mutant analysis demonstrated that HY5 was required for UV-B-specific cotyledon opening. CONCLUSIONS Structured mapping populations provide key information on the degree of complexity in the genetic control of UV-B-induced cotyledon opening in Arabidopsis. The loci identified using quantitative trait analysis methods are useful for follow-up testing of candidate genes.
Collapse
Affiliation(s)
- Mariana Conte
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura, Consejo Nacional de Investigaciones Científicas y Técnicas and Universidad de Buenos Aires, C1417 DSE Buenos Aires, Argentina
| | - Silvia de Simone
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura, Consejo Nacional de Investigaciones Científicas y Técnicas and Universidad de Buenos Aires, C1417 DSE Buenos Aires, Argentina
| | - Susan J Simmons
- Department of Mathematics and Statistics, University of North Carolina at Wilmington, Wilmington, NC 28403 USA
| | - Carlos L Ballaré
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura, Consejo Nacional de Investigaciones Científicas y Técnicas and Universidad de Buenos Aires, C1417 DSE Buenos Aires, Argentina
| | - Ann E Stapleton
- Department of Biology and Marine Biology, University of North Carolina at Wilmington, Wilmington, NC 28403 USA
| |
Collapse
|
75
|
Gutierrez-Gonzalez JJ, Wu X, Gillman JD, Lee JD, Zhong R, Yu O, Shannon G, Ellersieck M, Nguyen HT, Sleper DA. Intricate environment-modulated genetic networks control isoflavone accumulation in soybean seeds. BMC PLANT BIOLOGY 2010; 10:105. [PMID: 20540761 PMCID: PMC3224685 DOI: 10.1186/1471-2229-10-105] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 06/11/2010] [Indexed: 05/02/2023]
Abstract
BACKGROUND Soybean (Glycine max [L] Merr.) seed isoflavones have long been considered a desirable trait to target in selection programs for their contribution to human health and plant defense systems. However, attempts to modify seed isoflavone contents have not always produced the expected results because their genetic basis is polygenic and complex. Undoubtedly, the extreme variability that seed isoflavones display over environments has obscured our understanding of the genetics involved. RESULTS In this study, a mapping population of RILs with three replicates was analyzed in four different environments (two locations over two years). We found a total of thirty-five main-effect genomic regions and many epistatic interactions controlling genistein, daidzein, glycitein and total isoflavone accumulation in seeds. The use of distinct environments permitted detection of a great number of environment-modulated and minor-effect QTL. Our findings suggest that isoflavone seed concentration is controlled by a complex network of multiple minor-effect loci interconnected by a dense epistatic map of interactions. The magnitude and significance of the effects of many of the nodes and connections in the network varied depending on the environmental conditions. In an attempt to unravel the genetic architecture underlying the traits studied, we searched on a genome-wide scale for genomic regions homologous to the most important identified isoflavone biosynthetic genes. We identified putative candidate genes for several of the main-effect and epistatic QTL and for QTL reported by other groups. CONCLUSIONS To better understand the underlying genetics of isoflavone accumulation, we performed a large scale analysis to identify genomic regions associated with isoflavone concentrations. We not only identified a number of such regions, but also found that they can interact with one another and with the environment to form a complex adaptable network controlling seed isoflavone levels. We also found putative candidate genes in several regions and overall we advanced the knowledge of the genetics underlying isoflavone synthesis.
Collapse
Affiliation(s)
- Juan J Gutierrez-Gonzalez
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO 65211, USA
- USDA-ARS Plant Science Research Unit and University of Minnesota, St Paul, Minnesota 55108, USA
| | - Xiaolei Wu
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO 65211, USA
| | - Jason D Gillman
- USDA-ARS, 108 Waters Hall, University of Missouri, Columbia, MO 65211, USA
| | - Jeong-Dong Lee
- Division of Plant Biosciences, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Rui Zhong
- Donald Danforth Plant Science Center, 975 North Warson Road, Saint Louis, MO 63132, USA
| | - Oliver Yu
- Donald Danforth Plant Science Center, 975 North Warson Road, Saint Louis, MO 63132, USA
| | - Grover Shannon
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO 65211, USA
| | - Mark Ellersieck
- Department of Statistics, University of Missouri, 146 Middlebush Hall, Columbia, MO 65211 USA
| | - Henry T Nguyen
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO 65211, USA
| | - David A Sleper
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
76
|
Wu X, Wang Z, Chang X, Jing R. Genetic dissection of the developmental behaviours of plant height in wheat under diverse water regimes. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:2923-37. [PMID: 20497970 PMCID: PMC3298886 DOI: 10.1093/jxb/erq117] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 04/03/2010] [Accepted: 04/07/2010] [Indexed: 05/18/2023]
Abstract
Plant height (PH), a crucial trait related to yield potential in crop plants, is known to be typically quantitatively inherited. However, its full expression can be inhibited by a limited water supply. In this study, the genetic basis of the developmental behaviour of PH was assessed in a 150-line wheat (Triticum aestivum L.) doubled haploid population (Hanxuan 10 x Lumai 14) grown in 10 environments (year x site x water regime combinations) by unconditional and conditional quantitative trait locus (QTL) analyses in a mixed linear model. Genes that were expressed selectively during ontogeny were identified. No single QTL was continually active in all periods of PH growth, and QTLs with additive effects (A-QTLs) expressed in the period S1|S0 (the period from the original point to the jointing stage) formed a foundation for PH development. Additive main effects (a effects), which were mostly expressed in S1|S0, were more important than epistatic main effects (aa effects) or QTL x environment interaction (QE) effects, suggesting that S1|S0 was the most significant development period affecting PH growth. A few QTLs, such as QPh.cgb-6B.7, showed high adaptability for water-limited environments. Many QTLs, including four A-QTLs (QPh.cgb-2D.1, QPh.cgb-4B.1, QPh.cgb-4D.1, and QPh.cgb-5A.7) coincident with previously identified reduced height (Rht) genes (Rht8, Rht1, Rht2, and Rht9), interacted with more than one other QTL, indicating that the genetic architecture underlying PH development is a network of genes with additive and epistatic effects. Therefore, based on multilocus combinations in S1|S0, superior genotypes were predicted for guiding improvements in breeding for PH.
Collapse
Affiliation(s)
| | | | | | - Ruilian Jing
- National Key Facility for Crop Gene Resources and Genetic Improvement/Key Laboratory of Crop Germplasm and Biotechnology, Ministry of Agriculture/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
77
|
Díaz-Ruiz R, Torres AM, Satovic Z, Gutierrez MV, Cubero JI, Román B. Validation of QTLs for Orobanche crenata resistance in faba bean (Vicia faba L.) across environments and generations. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 120:909-19. [PMID: 19956921 DOI: 10.1007/s00122-009-1220-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Accepted: 11/12/2009] [Indexed: 05/20/2023]
Abstract
Broomrape (Orobanche crenata Forsk.) is a major root-parasite of faba bean (Vicia faba L.), that seriously limits crop cultivation in the whole Mediterranean area. This parasitic weed is difficult to control, difficult to evaluate and the resistance identified so far is of polygenic nature. This study was conducted to identify genetic regions associated with broomrape resistance in recombinant inbred lines (RILs) and to validate their previous location in the original F(2) population derived from the cross between lines Vf6 and Vf136. A progeny consisting of 165 F(6) RILs was evaluated in three environments across two locations in 2003 and 2004. Two hundred seventy seven molecular markers were assigned to 21 linkage groups (9 of them assigned to specific chromosomes) that covered 2,856.7 cM of the V. faba genome. The composite interval mapping on the F(6) map detected more quantitative trait loci (QTL) than in the F(2) analysis. In this sense, four QTLs controlling O. crenata resistance (Oc2-Oc5) were identified in the RI segregant population in three different environments. Only Oc1, previously reported in the F(2) population, was not significant in the advanced lines. Oc2 and Oc3 were found to be associated with O. crenata resistance in at least two of the three environments, while the remaining two, Oc4 and Oc5, were only detected in Córdoba-04 and Mengíbar-04 and seemed to be environment dependent.
Collapse
Affiliation(s)
- Ramón Díaz-Ruiz
- Colegio de Postgraduados, Campus Puebla, Santiago Momoxpanm, C.P. 72760, Municipio de San Pedro Cholula, Puebla, Mexico
| | | | | | | | | | | |
Collapse
|
78
|
Huang X, Schmitt J, Dorn L, Griffith C, Effgen S, Takao S, Koornneef M, Donohue K. The earliest stages of adaptation in an experimental plant population: strong selection on QTLS for seed dormancy. Mol Ecol 2010; 19:1335-51. [PMID: 20149097 DOI: 10.1111/j.1365-294x.2010.04557.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Colonizing species may often encounter strong selection during the initial stages of adaptation to novel environments. Such selection is particularly likely to act on traits expressed early in development since early survival is necessary for the expression of adaptive phenotypes later in life. Genetic studies of fitness under field conditions, however, seldom include the earliest developmental stages. Using a new set of recombinant inbred lines, we present a study of the genetic basis of fitness variation in Arabidopsis thaliana in which genotypes, environments, and geographic location were manipulated to study total lifetime fitness, beginning with the seed stage. Large-effect quantitative trait loci (QTLs) for fitness changed allele frequency and closely approached 90% in some treatments within a single generation. These QTLs colocated with QTLs for germination phenology when seeds were dispersed following a schedule of a typical winter annual, and they were detected in two geographic locations at different latitudes. Epistatically interacting loci affected both fitness and germination in many cases. QTLs for field germination phenology colocated with known QTLs for primary dormancy induction as assessed in laboratory tests, including the candidate genes DOG1 and DOG6. Therefore fitness, germination phenology, and primary dormancy are genetically associated at the level of specific chromosomal regions and candidate loci. Genes associated with the ability to arrest development at early life stages and assess environmental conditions are thereby likely targets of intense natural selection early in the colonization process.
Collapse
Affiliation(s)
- Xueqing Huang
- Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829 Cologne, Germany
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Yang X, Guo Y, Yan J, Zhang J, Song T, Rocheford T, Li JS. Major and minor QTL and epistasis contribute to fatty acid compositions and oil concentration in high-oil maize. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 120:665-78. [PMID: 19856173 DOI: 10.1007/s00122-009-1184-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Accepted: 09/30/2009] [Indexed: 05/24/2023]
Abstract
High-oil maize is a useful genetic resource for genomic investigation in plants. To determine the genetic basis of oil concentration and composition in maize grain, a recombinant inbred population derived from a cross between normal line B73 and high-oil line By804 was phenotyped using gas chromatography, and genotyped with 228 molecular markers. A total of 42 individual QTL, associated with fatty acid compositions and oil concentration, were detected in 21 genomic regions. Five major QTL were identified for measured traits, one each of which explained 42.0% of phenotypic variance for palmitic acid, 15.0% for stearic acid, 27.7% for oleic acid, 48.3% for linoleic acid, and 15.7% for oil concentration in the RIL population. Thirty-six loci were involved in 24 molecular marker pairs of epistatic interactions across all traits, which explained phenotypic variances ranging from 0.4 to 6.1%. Seven of 18 mapping candidate genes related to lipid metabolism were localized within or were close to identified individual QTL, explaining 0.7-13.2% of the population variance. These results demonstrated that a few major QTL with large additive effects could play an important role in attending fatty acid compositions and increasing oil concentration in used germplasm. A larger number of minor QTL and a certain number of epistatic QTL, both with additive effects, also contributed to fatty acid compositions and oil concentration.
Collapse
Affiliation(s)
- Xiaohong Yang
- Beijing Key Laboratory of Crop Genetic Improvement, National Maize Improvement Center of China, China Agricultural University, Yuanmingyuan West Road, Haidian, 100193 Beijing, China
| | | | | | | | | | | | | |
Collapse
|
80
|
Csöngei V, Járomi L, Sáfrány E, Sipeky C, Magyari L, Faragó B, Bene J, Polgár N, Lakner L, Sarlós P, Varga M, Melegh B. Interaction of the major inflammatory bowel disease susceptibility alleles in Crohn’s disease patients. World J Gastroenterol 2010; 16:176-83. [PMID: 20066736 PMCID: PMC2806555 DOI: 10.3748/wjg.v16.i2.176] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the interaction of interleukin-23 receptor (IL23R) (rs1004819 and rs2201841), autophagy-related 16-like 1 (ATG16L1) (rs2241880), caspase recruitment domain-containing protein 15 (CARD15) genes, and IBD5 locus in Crohn’s disease (CD) patients.
METHODS: A total of 315 unrelated subjects with CD and 314 healthy controls were genotyped. Interactions and specific genotype combinations of a total of eight variants were tested. The variants of IBD5 locus (IGR2198a_1 rs11739135 and IGR2096a_1 rs12521868), CARD15 (R702W rs2066845 and L1007fs rs2066847), ATG16L1 (rs2241880) and IL23R (rs1004819, rs2201841) genes were genotyped by PCR-RFLP, the G908R (rs2066844) in CARD15 was determined by direct sequencing.
RESULTS: The association of ATG16L1 T300A with CD was confirmed [P = 0.004, odds ratio (OR) = 1.69, 95% CI: 1.19-2.41], and both IL23R variants were found to represent significant risk for the disease (P = 0.008, OR = 2.05, 95% CI: 1.20-3.50 for rs1004819 AA; P < 0.001, OR = 2.97, 95% CI: 1.65-5.33 for rs2201841 CC). Logistic regression analysis of pairwise interaction of the inflammatory bowel disease (IBD) loci indicated that IL23R, ATG16L1, CARD15 and IBD5 (IGR2198a_1) contribute independently to disease risk. We also analysed the specific combinations by pair of individual ATG16L1, IL23R rs1004819, rs2201841, IGR2198a_1, IGR2096a_1 and CARD15 genotypes for disease risk influence. In almost all cases, the combined risk of susceptibility pairs was higher in patients carrying two different risk-associated gene variants together than individuals with just one polymorphism. The highest OR was found for IL23R rs2201841 homozygous genotype with combination of positive CARD15 status (P < 0.001, OR = 9.15, 95% CI: 2.05-40.74).
CONCLUSION: The present study suggests a cumulative effect of individual IBD susceptibility loci.
Collapse
|
81
|
MacLean RC. Predicting epistasis: an experimental test of metabolic control theory with bacterial transcription and translation. J Evol Biol 2010; 23:488-93. [PMID: 20070461 DOI: 10.1111/j.1420-9101.2009.01888.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Epistatic interactions between mutations are thought to play a crucial role in a number of evolutionary processes, including adaptation and sex. Evidence for epistasis is abundant, but tests of general theoretical models that can predict epistasis are lacking. In this study, I test the ability of metabolic control theory to predict epistasis using a novel experimental approach that combines phenotypic and genetic perturbations of enzymes involved in gene expression and protein synthesis in the bacterium Pseudomonas aeruginosa. These experiments provide experimental support for two key predictions of metabolic control theory: (i) epistasis between genes involved in the same pathway is antagonistic; (ii) epistasis becomes increasingly antagonistic as mutational severity increases. Metabolic control theory is a general theory that applies to any set of genes that are involved in the same linear processing chain, not just metabolic pathways, and I argue that this theory is likely to have important implications for predicting epistasis between functionally coupled genes, such as those involved in antibiotic resistance. Finally, this study highlights the fact that phenotypic manipulations of gene activity provide a powerful method for studying epistasis that complements existing genetic methods.
Collapse
Affiliation(s)
- R C MacLean
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK.
| |
Collapse
|
82
|
Understanding the evolution of defense metabolites in Arabidopsis thaliana using genome-wide association mapping. Genetics 2009; 185:991-1007. [PMID: 19737743 DOI: 10.1534/genetics.109.108522] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
With the improvement and decline in cost of high-throughput genotyping and phenotyping technologies, genome-wide association (GWA) studies are fast becoming a preferred approach for dissecting complex quantitative traits. Glucosinolate (GSL) secondary metabolites within Arabidopsis spp. can serve as a model system to understand the genomic architecture of quantitative traits. GSLs are key defenses against insects in the wild and the relatively large number of cloned quantitative trait locus (QTL) controlling GSL traits allows comparison of GWA to previous QTL analyses. To better understand the specieswide genomic architecture controlling plant-insect interactions and the relative strengths of GWA and QTL studies, we conducted a GWA mapping study using 96 A. thaliana accessions, 43 GSL phenotypes, and approximately 230,000 SNPs. Our GWA analysis identified the two major polymorphic loci controlling GSL variation (AOP and MAM) in natural populations within large blocks of positive associations encompassing dozens of genes. These blocks of positive associations showed extended linkage disequilibrium (LD) that we hypothesize to have arisen from balancing or fluctuating selective sweeps at both the AOP and MAM loci. These potential sweep blocks are likely linked with the formation of new defensive chemistries that alter plant fitness in natural environments. Interestingly, this GWA analysis did not identify the majority of previously identified QTL even though these polymorphisms were present in the GWA population. This may be partly explained by a nonrandom distribution of phenotypic variation across population subgroups that links population structure and GSL variation, suggesting that natural selection can hinder the detection of phenotype-genotype associations in natural populations.
Collapse
|
83
|
Wu X, Blake S, Sleper DA, Shannon JG, Cregan P, Nguyen HT. QTL, additive and epistatic effects for SCN resistance in PI 437654. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 118:1093-105. [PMID: 19184662 DOI: 10.1007/s00122-009-0965-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Accepted: 01/06/2009] [Indexed: 05/18/2023]
Abstract
PI 437654 is a unique accession because of its resistance to nearly all HG types (races) of soybean cyst nematode (Heterodera glycines Ichinohe; SCN). Objectives of this study were to confirm and refine the locations and gene action associated with SCN resistance previously discovered in PI 437654, and to identify new QTLs that may have been missed because of low coverage with genetic markers used in previous studies. Using 205 F(7:9) RILs and 276 SSR and AFLP molecular markers covering 2,406.5 cM of 20 linkage groups (LGs), we confirmed and refined the locations of major SCN resistance QTLs on LG-A2, -B1, and -G previously identified in PI 437654 or other resistant sources. We found that these major QTLs have epistatic effects among them or with other loci for SCN resistance. We also detected some new QTLs with additive or epistatic effects for SCN resistance to different HG types (races) on all LGs except LGs-B2 and -D1b. The QTL on LG-G was associated with resistance to HG types 2.5.7, 1.2.5.7, 0, and 2.7 (races 1, 2, 3, and 5), and it contributed a large proportion of the additive effects. The QTL on LG-A2 was associated with resistance to HG types 2.5.7 and 0 (races 1 and 3). The QTL on LG-B1, associated with resistance to HG types 2.5.7, 0, 2.7 (races 1, 3, and 5), was the similar QTL found in PI 90763 and PI 404198B. In addition to QTL on LGs-A2, -B1 and -G, a novel additive QTL associated with SCN resistance to HG types 0, 2.7, and 1.3.5.6.7 (race 3, 5, and 14) was identified on LG-I flanked by Sat_299 and Sat_189. Several minor QTLs on LGs-C1, D1a, H, and K were also found to be associated with SCN resistance. Confirmation of the new resistance QTL is underway by evaluating another RIL population with a different genetic background.
Collapse
Affiliation(s)
- Xiaolei Wu
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211, USA.
| | | | | | | | | | | |
Collapse
|
84
|
Wentzell AM, Boeye I, Zhang Z, Kliebenstein DJ. Genetic networks controlling structural outcome of glucosinolate activation across development. PLoS Genet 2008; 4:e1000234. [PMID: 18949035 PMCID: PMC2565841 DOI: 10.1371/journal.pgen.1000234] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 09/22/2008] [Indexed: 12/30/2022] Open
Abstract
Most phenotypic variation present in natural populations is under polygenic control, largely determined by genetic variation at quantitative trait loci (QTLs). These genetic loci frequently interact with the environment, development, and each other, yet the importance of these interactions on the underlying genetic architecture of quantitative traits is not well characterized. To better study how epistasis and development may influence quantitative traits, we studied genetic variation in Arabidopsis glucosinolate activation using the moderately sized Bayreuth x Shahdara recombinant inbred population, in terms of number of lines. We identified QTLs for glucosinolate activation at three different developmental stages. Numerous QTLs showed developmental dependency, as well as a large epistatic network, centered on the previously cloned large-effect glucosinolate activation QTL, ESP. Analysis of Heterogeneous Inbred Families validated seven loci and all of the QTL x DPG (days post-germination) interactions tested, but was complicated by the extensive epistasis. A comparison of transcript accumulation data within 211 of these RILs showed an extensive overlap of gene expression QTLs for structural specifiers and their homologs with the identified glucosinolate activation loci. Finally, we were able to show that two of the QTLs are the result of whole-genome duplications of a glucosinolate activation gene cluster. These data reveal complex age-dependent regulation of structural outcomes and suggest that transcriptional regulation is associated with a significant portion of the underlying ontogenic variation and epistatic interactions in glucosinolate activation.
Collapse
Affiliation(s)
- Adam M. Wentzell
- Genetics Graduate Group, University of California Davis, Davis, California, United States of America
- Department of Plant Sciences, University of California Davis, Davis, California, United States of America
| | - Ian Boeye
- Department of Plant Sciences, University of California Davis, Davis, California, United States of America
| | - Zhiyong Zhang
- Department of Plant Sciences, University of California Davis, Davis, California, United States of America
| | - Daniel J. Kliebenstein
- Genetics Graduate Group, University of California Davis, Davis, California, United States of America
- Department of Plant Sciences, University of California Davis, Davis, California, United States of America
| |
Collapse
|
85
|
McDaniel SF, Willis JH, Shaw AJ. The genetic basis of developmental abnormalities in interpopulation hybrids of the moss Ceratodon purpureus. Genetics 2008; 179:1425-35. [PMID: 18562651 PMCID: PMC2475744 DOI: 10.1534/genetics.107.086314] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Accepted: 04/21/2008] [Indexed: 11/18/2022] Open
Abstract
Divergent populations are intrinsically reproductively isolated when hybrids between them either fail to develop properly or do not produce viable offspring. Intrinsic isolation may result from Dobzhansky-Muller (DM) incompatibilities, in which deleterious interactions among genes or gene products lead to developmental problems or underdominant chromosome structure differences between the parents. These mechanisms can be tested by studying marker segregation patterns in a hybrid mapping population. Here we examine the genetic basis of abnormal development in hybrids between two geographically distant populations of the moss Ceratodon purpureus. Approximately half of the hybrid progeny exhibited a severely reduced growth rate in early gametophyte development. We identified four unlinked quantitative trait loci (QTL) that interacted asymmetrically to cause the abnormal development phenotype. This pattern is consistent with DM interactions. We also found an excess of recombination between three marker pairs in the abnormally developing progeny, relative to that estimated in the normal progeny. This suggests that structural differences in these regions contribute to hybrid breakdown. Two QTL coincided with inferred structural differences, consistent with recent theory suggesting that rearrangements may harbor population divergence alleles. These observations suggest that multiple complex genetic factors contribute to divergence among populations of C. purpureus.
Collapse
Affiliation(s)
- Stuart F McDaniel
- Biology Department, Duke University, Durham, North Carolina 27708, USA.
| | | | | |
Collapse
|
86
|
Pisabarro AG, Perez G, Lavin JL, Ramirez L. Genetic networks for the functional study of genomes. BRIEFINGS IN FUNCTIONAL GENOMICS AND PROTEOMICS 2008; 7:249-63. [DOI: 10.1093/bfgp/eln026] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
87
|
Heterosis for biomass-related traits in Arabidopsis investigated by quantitative trait loci analysis of the triple testcross design with recombinant inbred lines. Genetics 2008; 177:1839-50. [PMID: 18039885 DOI: 10.1534/genetics.107.077628] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Arabidopsis thaliana has emerged as a leading model species in plant genetics and functional genomics including research on the genetic causes of heterosis. We applied a triple testcross (TTC) design and a novel biometrical approach to identify and characterize quantitative trait loci (QTL) for heterosis of five biomass-related traits by (i) estimating the number, genomic positions, and genetic effects of heterotic QTL, (ii) characterizing their mode of gene action, and (iii) testing for presence of epistatic effects by a genomewide scan and marker x marker interactions. In total, 234 recombinant inbred lines (RILs) of Arabidopsis hybrid C24 x Col-0 were crossed to both parental lines and their F1 and analyzed with 110 single-nucleotide polymorphism (SNP) markers. QTL analyses were conducted using linear transformations Z1, Z2, and Z3 calculated from the adjusted entry means of TTC progenies. With Z1, we detected 12 QTL displaying augmented additive effects. With Z2, we mapped six QTL for augmented dominance effects. A one-dimensional genome scan with Z3 revealed two genomic regions with significantly negative dominance x additive epistatic effects. Two-way analyses of variance between marker pairs revealed nine digenic epistatic interactions: six reflecting dominance x dominance effects with variable sign and three reflecting additive x additive effects with positive sign. We conclude that heterosis for biomass-related traits in Arabidopsis has a polygenic basis with overdominance and/or epistasis being presumably the main types of gene action.
Collapse
|
88
|
Zeng C, Han Y, Shi L, Peng L, Wang Y, Xu F, Meng J. Genetic analysis of the physiological responses to low boron stress in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2008; 31:112-122. [PMID: 17999661 DOI: 10.1111/j.1365-3040.2007.01745.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Boron (B) is an essential micronutrient for higher plants. There is wide genetic variation in the response to B deficiency among plant species and cultivars. The objective of this study was to identify quantitative trait loci (QTL) that control B efficiency in natural Arabidopsis accessions. The B efficiency coefficient (BEC) and seed yield under low B conditions (SYLB) were investigated by solution culture in two separate experiments in an Arabidopsis recombinant inbred line (RIL) population. Both of the traits studied exhibited high transgressive variation in the RIL population, and, in total, five and three QTL were identified for BEC and SYLB, respectively. Three of the five QTL, including the QTL, AtBE1-2, that has a large effect on the BEC, were found at the interval of the corresponding QTL for SYLB in both experiments. The close genetic relationship between BEC and SYLB was further confirmed by conditional QTL mapping in the RIL population and unconditional QTL mapping in an AtBE1-2-segregated F(2) population. Epistatic interactions for the tested traits were analysed, and were found to be widespread in the detected QTL of Arabidopsis in the RIL population. Comparison of the QTL interval for B efficiency with reported B-related genes showed that 10 B-related genes, together with one BOR1 homolog (BOR5, At1g74810) were located in the QTL region of AtBE1-2. These results suggest that natural variation in B efficiency in Arabidopsis has a complex molecular basis. They also provide a basis for fine mapping and cloning of the B-efficiency genes, with the ultimate aim of discovering the physiological mechanism of action of the genes.
Collapse
Affiliation(s)
- Changying Zeng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | | | |
Collapse
|
89
|
Li H, Ribaut JM, Li Z, Wang J. Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2008; 116:243-60. [PMID: 17985112 DOI: 10.1007/s00122-007-0663-5] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Accepted: 10/02/2007] [Indexed: 05/18/2023]
Abstract
It has long been recognized that epistasis or interactions between non-allelic genes plays an important role in the genetic control and evolution of quantitative traits. However, the detection of epistasis and estimation of epistatic effects are difficult due to the complexity of epistatic patterns, insufficient sample size of mapping populations and lack of efficient statistical methods. Under the assumption of additivity of QTL effects on the phenotype of a trait in interest, the additive effect of a QTL can be completely absorbed by the flanking marker variables, and the epistatic effect between two QTL can be completely absorbed by the four marker-pair multiplication variables between the two pairs of flanking markers. Based on this property, we proposed an inclusive composite interval mapping (ICIM) by simultaneously considering marker variables and marker-pair multiplications in a linear model. Stepwise regression was applied to identify the most significant markers and marker-pair multiplications. Then a two-dimensional scanning (or interval mapping) was conducted to identify QTL with significant digenic epistasis using adjusted phenotypic values based on the best multiple regression model. The adjusted values retain the information of QTL on the two current mapping intervals but exclude the influence of QTL on other intervals and chromosomes. Epistatic QTL can be identified by ICIM, no matter whether the two interacting QTL have any additive effects. Simulated populations and one barley doubled haploids (DH) population were used to demonstrate the efficiency of ICIM in mapping both additive QTL and digenic interactions.
Collapse
Affiliation(s)
- Huihui Li
- School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China
| | | | | | | |
Collapse
|
90
|
Dong C, Chu X, Wang Y, Wang Y, Jin L, Shi T, Huang W, Li Y. Exploration of gene–gene interaction effects using entropy-based methods. Eur J Hum Genet 2007; 16:229-35. [DOI: 10.1038/sj.ejhg.5201921] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
91
|
Abstract
Dissection of cytonuclear interactions is fundamentally important for understanding the genetic architecture of complex traits. Here we propose a mating design based on reciprocal crosses and extend the existing QTL mapping method to evaluate the contribution of cytoplasm and QTL x cytoplasm interactions to the phenotypic variation. Efficiency of the design and method is demonstrated via simulated data.
Collapse
Affiliation(s)
- Zaixiang Tang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | | | | | | | | |
Collapse
|
92
|
Wilfert L, Gadau J, Baer B, Schmid-Hempel P. Natural variation in the genetic architecture of a host-parasite interaction in the bumblebee Bombus terrestris. Mol Ecol 2007; 16:1327-39. [PMID: 17391417 DOI: 10.1111/j.1365-294x.2007.03234.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The genetic architecture of fitness-relevant traits in natural populations is a topic that has remained almost untouched by quantitative genetics. Given the importance of parasitism for the host's fitness, we used QTL mapping to study the genetic architecture of traits relevant for host-parasite interactions in the trypanosome parasite, Crithidia bombi and its host, Bombus terrestris. The three traits analysed were the parasite's infection intensity, the strength of the general immune response (measured as the encapsulation of a novel antigen) and body size. The genetic architecture of these traits was examined in three natural, unmanipulated mapping populations of B. terrestris. Our results indicate that the intracolonial phenotypic variation of all three traits is based on a network of QTLs and epistatic interactions. While these networks are similar between mapping populations in complexity and number of QTLs, as well as in their epistatic interactions, the variability in the position of QTL and the interacting loci was high. Only one QTL for body size was plausibly found in at least two populations. QTLs for encapsulation and Crithidia infection intensity were located on the same linkage groups.
Collapse
Affiliation(s)
- L Wilfert
- ETH Zürich, Institute for Integrative Biology (IBZ), Experimental Ecology Group, ETH-Zentrum CHN, CH-8092 Zürich, Switzerland.
| | | | | | | |
Collapse
|
93
|
Pepin KM, Wichman HA. VARIABLE EPISTATIC EFFECTS BETWEEN MUTATIONS AT HOST RECOGNITION SITES IN ?X174 BACTERIOPHAGE. Evolution 2007; 61:1710-24. [PMID: 17598750 DOI: 10.1111/j.1558-5646.2007.00143.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Epistatic interactions between mutations are widespread. Theoretical investigations have shown that variability in epistatic effects influences fundamental evolutionary processes, yet few empirical studies have identified causes or the extent of this variation. We examined variation in epistatic effects of mutations at two host recognition sites in phiX174 bacteriophage. We calculated epistatic effects from the sum of fitness effects (log scale) of two single mutants and their corresponding double mutant for five combinations of mutations in six conditions. We found that epistatic effects differed in sign, degree, and variability across conditions. The data highlight that even between single mutations at the same two sites the sign and variability of epistatic effects are affected by environment. We discuss these findings in the context of studying the role of epistasis in evolution.
Collapse
Affiliation(s)
- Kim M Pepin
- Department of Biological Sciences, University of Idaho, Moscow, Idaho 83844, USA.
| | | |
Collapse
|
94
|
Brock MT, Tiffin P, Weinig C. Sequence diversity and haplotype associations with phenotypic responses to crowding: GIGANTEA affects fruit set in Arabidopsis thaliana. Mol Ecol 2007; 16:3050-62. [PMID: 17614917 DOI: 10.1111/j.1365-294x.2007.03298.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Identifying the molecular genetic basis of intraspecific variation in quantitative traits promises to provide novel insight into their evolutionary history as well as genetic mechanisms of adaptation. In an attempt to identify genes responsible for natural variation in competitive responses in Arabidopsis thaliana, we examined DNA sequence diversity at seven loci previously identified as members of the phytochrome B signalling network. For one gene, GIGANTEA (GI), we detected significant haplotype structure. To test for GI haplogroup-phenotype associations, we genotyped 161 A. thaliana accessions at GI and censused the same accessions for total fruit set and the expression of three phenotypic traits (days to flowering, petiole length, and inflorescence height) in a greenhouse experiment where plants were grown in crowded and uncrowded environments. We detected a significant association between GI and total fruit set that resulted in a 14% difference in average fruit set among GI haplogroups. Given that fruit set is an important component of fitness in this species and given the magnitude of the effect, the question arises as to how variation at this locus is maintained. Our observation of frequent and significant epistasis between GI and background single nucleotide polymorphisms (SNP), where the fitness ranking of the GI allele either reverses or does not differ depending on the allele at the interacting SNP, suggests that epistatic selection may actively maintain or at least slow the loss of variation at GI. This result is particularly noteworthy in the light of the ongoing debate regarding the genetic underpinnings of phenotypic evolution and recent observations that epistasis for phenotypic traits and components of fitness is common in A. thaliana.
Collapse
Affiliation(s)
- Marcus T Brock
- Department of Plant Biology, University of Minnesota, 1445 Gortner Avenue, Saint Paul, Minnesota 55108, USA.
| | | | | |
Collapse
|
95
|
Korves TM, Schmid KJ, Caicedo AL, Mays C, Stinchcombe JR, Purugganan MD, Schmitt J. Fitness Effects Associated with the Major Flowering Time GeneFRIGIDAinArabidopsis thalianain the Field. Am Nat 2007; 169:E141-57. [PMID: 17427127 DOI: 10.1086/513111] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Accepted: 09/25/2006] [Indexed: 11/03/2022]
Abstract
To date, the effect of natural selection on candidate genes underlying complex traits has rarely been studied experimentally, especially under ecologically realistic conditions. Here we report that the effect of selection on the flowering time gene FRIGIDA (FRI) reverses depending on the season of germination and allelic variation at the interacting gene FLOWERING LOCUS C (FLC). In field studies of 136 European accessions of Arabidopsis thaliana, accessions with putatively functional FRI alleles had higher winter survival in one FLC background in a fall-germinating cohort, but accessions with deletion null FRI alleles had greater seed production in the other FLC background in a spring-germinating cohort. Consistent with FRI's role in flowering, selection analyses suggest that the difference in winter survival can be attributed to time to bolting. However, in the spring cohort, the fitness difference was associated with rosette size. Our analyses also reveal that controlling for population structure with estimates of inferred ancestry and a geographical restriction was essential for detecting fitness associations. Overall, our results suggest that the combined effects of seasonally varying selection and epistasis could explain the maintenance of variation at FRI and, more generally, may be important in the evolution of genes underlying complex traits.
Collapse
Affiliation(s)
- Tonia M Korves
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island 02912, USA.
| | | | | | | | | | | | | |
Collapse
|
96
|
Abstract
Quantitative genetics is at or is fast approaching its centennial. In this perspective I consider five current issues pertinent to the application of quantitative genetics to evolutionary theory. First, I discuss the utility of a quantitative genetic perspective in describing genetic variation at two very different levels of resolution, (1) in natural, free-ranging populations and (2) to describe variation at the level of DNA transcription. Whereas quantitative genetics can serve as a very useful descriptor of genetic variation, its greater usefulness is in predicting evolutionary change, particularly when used in the first instance (wild populations). Second, I review the contributions of Quantitative trait loci (QLT) analysis in determining the number of loci and distribution of their genetic effects, the possible importance of identifying specific genes, and the ability of the multivariate breeder's equation to predict the results of bivariate selection experiments. QLT analyses appear to indicate that genetic effects are skewed, that at least 20 loci are generally involved, with an unknown number of alleles, and that a few loci have major effects. However, epistatic effects are common, which means that such loci might not have population-wide major effects: this question waits upon (QTL) analyses conducted on more than a few inbred lines. Third, I examine the importance of research into the action of specific genes on traits. Although great progress has been made in identifying specific genes contributing to trait variation, the high level of gene interactions underlying quantitative traits makes it unlikely that in the near future we will have mechanistic models for such traits, or that these would have greater predictive power than quantitative genetic models. In the fourth section I present evidence that the results of bivariate selection experiments when selection is antagonistic to the genetic covariance are frequently not well predicted by the multivariate breeder's equation. Bivariate experiments that combine both selection and functional analyses are urgently needed. Finally, I discuss the importance of gaining more insight, both theoretical and empirical, on the evolution of the G and P matrices.
Collapse
Affiliation(s)
- Derek A Roff
- Department of Biology, University of California, Riverside, California 92521, USA.
| |
Collapse
|
97
|
Ehrenreich IM, Stafford PA, Purugganan MD. The genetic architecture of shoot branching in Arabidopsis thaliana: a comparative assessment of candidate gene associations vs. quantitative trait locus mapping. Genetics 2007; 176:1223-36. [PMID: 17435248 PMCID: PMC1894586 DOI: 10.1534/genetics.107.071928] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Association mapping focused on 36 genes involved in branch development was used to identify candidate genes for variation in shoot branching in Arabidopsis thaliana. The associations between four branching traits and moderate-frequency haplogroups at the studied genes were tested in a panel of 96 accessions from a restricted geographic range in Central Europe. Using a mixed-model association-mapping method, we identified three loci--MORE AXILLARY GROWTH 2 (MAX2), MORE AXILLARY GROWTH 3 (MAX3), and SUPERSHOOT 1 (SPS1)--that were significantly associated with branching variation. On the basis of a more extensive examination of the MAX2 and MAX3 genomic regions, we find that linkage disequilibrium in these regions decays within approximately 10 kb and trait associations localize to the candidate genes in these regions. When the significant associations are compared to relevant quantitative trait loci (QTL) from previous Ler x Col and Cvi x Ler recombinant inbred line (RIL) mapping studies, no additive QTL overlapping these candidate genes are observed, although epistatic QTL for branching, including one that spans the SPS1, are found. These results suggest that epistasis is prevalent in determining branching variation in A. thaliana and may need to be considered in linkage disequilibrium mapping studies of genetically diverse accessions.
Collapse
Affiliation(s)
- Ian M. Ehrenreich
- Department of Genetics, North Carolina State University, Raleigh, North Carolina 27695 and Department of Biology and Center for Comparative Functional Genomics, New York University, New York, New York 10003
| | - Phillip A. Stafford
- Department of Genetics, North Carolina State University, Raleigh, North Carolina 27695 and Department of Biology and Center for Comparative Functional Genomics, New York University, New York, New York 10003
| | - Michael D. Purugganan
- Department of Genetics, North Carolina State University, Raleigh, North Carolina 27695 and Department of Biology and Center for Comparative Functional Genomics, New York University, New York, New York 10003
- Corresponding author: Department of Biology and Center for Comparative Functional Genomics, New York University, 1009 Silver Center, 100 Washington Square E., New York, NY 10003-6688. E-mail:
| |
Collapse
|
98
|
Villalta I, Bernet GP, Carbonell EA, Asins MJ. Comparative QTL analysis of salinity tolerance in terms of fruit yield using two Solanum populations of F7 lines. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2007; 114:1001-17. [PMID: 17394031 DOI: 10.1007/s00122-006-0494-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Accepted: 12/21/2006] [Indexed: 05/04/2023]
Abstract
Salt tolerance has been analysed in two populations of F(7) lines developed from a salt sensitive genotype of Solanum lycopersicum var. cerasiforme, as female parent, and two salt tolerant lines, as male parents, from S. pimpinellifolium, the P population (142 lines), and S. cheesmaniae, the C population (116 lines). Salinity effects on 19 quantitative traits including fruit yield were investigated by correlation, principal component analysis, ANOVA and QTL analysis. A total of 153 and 124 markers were genotyped in the P and C populations, respectively. Some flowering time and salt tolerance candidate genes were included. Since most traits deviated from a normal distribution, results based on the Kruskal-Wallis non-parametric test were preferred. Interval mapping methodology and ANOVA were also used for QTL detection. Eight out of 15 QTLs at each population were detected for the target traits under both control and high salinity conditions, and among them, only average fruit weight (FW) and fruit number (FN) QTLs (fw1.1, fw2.1 and fn1.2) were detected in both populations. The individual contribution of QTLs were, in general, low. After leaf chloride concentration, flowering time is the trait most affected by salinity because different QTLs are detected and some of their QTLxE interactions have been found significant. Also reinforcing the interest on information provided by QTL analysis, it has been found that non-correlated traits may present QTL(s) that are associated with the same marker. A few salinity specific QTLs for fruit yield, not associated with detrimental effects, might be used to increase tomato salt tolerance. The beneficial allele at two of them, fw8.1 (in C) and tw8.1 (for total fruit weight in P) corresponds to the salt sensitive parent, suggesting that the effect of the genetic background is crucial to breed for wide adaptation using wild germplasm.
Collapse
Affiliation(s)
- I Villalta
- Instituto Valenciano de Investigaciones Agrarias, Apdo. Oficial, 46113 Moncada (Valencia), Spain
| | | | | | | |
Collapse
|
99
|
Wilfert L, Gadau J, Schmid-Hempel P. THE GENETIC ARCHITECTURE OF IMMUNE DEFENSE AND REPRODUCTION IN MALE BOMBUS TERRESTRIS BUMBLEBEES. Evolution 2007; 61:804-15. [PMID: 17439613 DOI: 10.1111/j.1558-5646.2007.00079.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Understanding the architecture of genetic variation, that is the number, effect, location, and interaction, of genes responsible for phenotypic variability in nature is important for the understanding of microevolutionary processes. In this study, we have used a quantitative trait loci (QTL) approach to uncover the genetic architecture of fitness-relevant traits associated with reproduction and immune defense in male Bombus terrestris bumblebees. Three male reproductive investment traits, the number and length of the produced sperm and the size of the accessory glands, were studied. Two branches of the insect innate immune system, the activation of the Phenoloxidase-cascade and the hemolymph's antibacterial activity, were investigated. We found that variation in most of the studied traits is based on a network of minor QTLs and epistatic interactions. Unexpectedly, there was no evidence for phenotypic or genetic trade-offs between the presumably costly investment in immune defense and reproductive effort in this population for the measured traits. In fact, we found a positive correlation, both, in phenotype and genetic architecture for the number of produced sperm and antibacterial activity against an insect pathogen. A major finding for all traits analyzed was that the epistatic interactions accounted for a major proportion of the explained phenotypic variance. Especially for traits involved in immune defense, this pattern highlights the possible role of parasites in the evolution and maintenance of recombination and sexual reproduction.
Collapse
Affiliation(s)
- Lena Wilfert
- ETH Zürich, Institute of Integrative Biology (IBZ), Experimental Ecology Group, ETH-Zentrum CHN, CH-8092 Zürich, Switzerland.
| | | | | |
Collapse
|
100
|
Abstract
The doubled-haploid (DH) barley population (Harrington x TR306) developed by the North American Barley Genome Mapping Project (NABGMP) for QTL mapping consisted of 145 lines and 127 markers covering a total genome length of 1270 cM. These DH lines were evaluated in approximately 25 environments for seven quantitative traits: heading, height, kernel weight, lodging, maturity, test weight, and yield. We applied an empirical Bayes method that simultaneously estimates 127 main effects for all markers and 127(127-1)/2=8001 interaction effects for all marker pairs in a single model. We found that the largest main-effect QTL (single marker) and the largest epistatic effect (single pair of markers) explained approximately 18 and 2.6% of the phenotypic variance, respectively. On average, the sum of all significant main effects and the sum of all significant epistatic effects contributed 35 and 6% of the total phenotypic variance, respectively. Epistasis seems to be negligible for all the seven traits. We also found that whether two loci interact does not depend on whether or not the loci have individual main effects. This invalidates the common practice of epistatic analysis in which epistatic effects are estimated only for pairs of loci of which both have main effects.
Collapse
Affiliation(s)
- Shizhong Xu
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, USA.
| | | |
Collapse
|