51
|
Kake S, Kawaguchi H, Nagasato T, Yamada T, Ito T, Maruyama I, Miura N, Tanimoto A. Association Between HMGB1 and Thrombogenesis in a Hyperlipaemia-induced Microminipig Model of Atherosclerosis. In Vivo 2020; 34:1871-1874. [PMID: 32606157 PMCID: PMC7439884 DOI: 10.21873/invivo.11982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM An appropriate animal model is essential to investigate the relationship between inflammation, atherosclerosis, and thrombogenesis, and the development of preventive measures and therapies for atherosclerosis. MATERIALS AND METHODS Atherosclerosis was induced in Microminipigs (MMPs) using a high-fat diet. We assessed high mobility group box 1 (HMGB1) expression levels and measured thrombus formation using a Total Thrombus Formation Analysis System (T-TAS). MMPs were divided into a normal diet (control) group and four high-fat diet groups, with differing amounts of cholesterol. After 8 weeks, blood was collected for analysis. RESULTS HMGB1 levels increased with increasing dietary cholesterol, and a negative correlation was found between HMGB1 levels and thrombus formation time. CONCLUSION T-TAS is useful in the assessment of thrombogenesis in MMPs and HMGB1 is associated with thrombus formation.
Collapse
Affiliation(s)
- Satoru Kake
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
- Department of Comparative Animal Science, College of Life Science, Kurashiki University of Science and The Arts, Okayama, Japan
| | - Hiroaki Kawaguchi
- Hygiene and Health Promotion Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Tomoka Nagasato
- Systems Biology in Thromboregulation, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
- Research Institute, Fujimori Kogyo Co., Ltd., Kanagawa, Japan
| | - Tomonobu Yamada
- Drug Safety Research Laboratories, Shin Nippon Biomedical Laboratories, Ltd., Kagoshima, Japan
| | - Takashi Ito
- Systems Biology in Thromboregulation, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Ikuro Maruyama
- Systems Biology in Thromboregulation, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Naoki Miura
- Veterinary Teaching Hospital, Joint faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Akihide Tanimoto
- Department of Molecular and Cellular Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
52
|
Fakhrabadi HG, Rabbani-Chadegani A, Ghadam P, Amiri S. Protective effect of bleomycin on 5-azacitidine induced cytotoxicity and apoptosis in mice hematopoietic stem cells via Bcl-2/Bax and HMGB1 signaling pathway. Toxicol Appl Pharmacol 2020; 396:114996. [DOI: 10.1016/j.taap.2020.114996] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 02/02/2023]
|
53
|
Zhu X, Cong J, Yang B, Sun Y. Association analysis of high-mobility group box-1 protein 1 (HMGB1)/toll-like receptor (TLR) 4 with nasal interleukins in allergic rhinitis patients. Cytokine 2020; 126:154880. [DOI: 10.1016/j.cyto.2019.154880] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/23/2019] [Accepted: 10/07/2019] [Indexed: 12/19/2022]
|
54
|
Gambino CM, Sasso BL, Bivona G, Agnello L, Ciaccio M. Aging and Neuroinflammatory Disorders: New Biomarkers and Therapeutic Targets. Curr Pharm Des 2019; 25:4168-4174. [DOI: 10.2174/1381612825666191112093034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/07/2019] [Indexed: 12/31/2022]
Abstract
:
Chronic neuroinflammation is a common feature of the pathogenic mechanisms involved in various
neurodegenerative age-associated disorders, such as Alzheimer's disease, multiple sclerosis, Parkinson’s disease,
and dementia.
:
In particular, persistent low-grade inflammation may disrupt the brain endothelial barrier and cause a significant
increase of pro-inflammatory cytokines and immune cells into the cerebral tissue that, in turn, leads to microglia
dysfunction and loss of neuroprotective properties.
:
Nowadays, growing evidence highlights a strong association between persistent peripheral inflammation, as well
as metabolic alterations, and neurodegenerative disorder susceptibility. The identification of common pathways
involved in the development of these diseases, which modulate the signalling and immune response, is an important
goal of ongoing research.
:
The aim of this review is to elucidate which inflammation-related molecules are robustly associated with the risk
of neurodegenerative diseases. Of note, peripheral biomarkers may represent direct measures of pathophysiologic
processes common of aging and neuroinflammatory processes. In addition, molecular changes associated with the
neurodegenerative process might be present many decades before the disease onset. Therefore, the identification
of a comprehensive markers panel, closely related to neuroinflammation, could be helpful for the early diagnosis,
and the identification of therapeutic targets to counteract the underlying chronic inflammatory processes.
Collapse
Affiliation(s)
- Caterina M. Gambino
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, University of Palermo, Palermo, Italy
| | - Bruna Lo Sasso
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, University of Palermo, Palermo, Italy
| | - Giulia Bivona
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, University of Palermo, Palermo, Italy
| | - Luisa Agnello
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, University of Palermo, Palermo, Italy
| | - Marcello Ciaccio
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, University of Palermo, Palermo, Italy
| |
Collapse
|
55
|
Mei L, He M, Zhang C, Miao J, Wen Q, Liu X, Xu Q, Ye S, Ye P, Huang H, Lin J, Zhou X, Zhao K, Chen D, Zhou J, Li C, Li H. Paeonol attenuates inflammation by targeting HMGB1 through upregulating miR-339-5p. Sci Rep 2019; 9:19370. [PMID: 31852965 PMCID: PMC6920373 DOI: 10.1038/s41598-019-55980-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/02/2019] [Indexed: 12/26/2022] Open
Abstract
Sepsis is a life-threatening disease caused by infection. Inflammation is a key pathogenic process in sepsis. Paeonol, an active ingredient in moutan cortex (a Chinese herb), has many pharmacological activities, such as anti-inflammatory and antitumour actions. Previous studies have indicated that paeonol inhibits the expression of HMGB1 and the transcriptional activity of NF-κB. However, its underlying mechanism is still unknown. In this study, microarray assay and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) results confirmed that paeonol could significantly up-regulate the expression of miR-339-5p in RAW264.7 cells stimulated by LPS. Dual-luciferase assays indicated that miR-339-5p interacted with the 3′ untranslated region (3′-UTR) of HMGB1. Western blot, immunofluorescence and enzyme-linked immunosorbent assay (ELISA) analyses indicated that miR-339-5p mimic and siHMGB1 both negatively regulated the expression and secretion of inflammatory cytokines (e.g., HMGB1, IL-1β and TNF-α) in LPS-induced RAW264.7 cells. Studies have confirmed that IKK-β is targeted by miR-339-5p, and we further found that paeonol could inhibit IKK-β expression. Positive mutual feedback between HMGB1 and IKK-β was observed when we silenced HMGB1 or IKK-β. These results indicated that paeonol could attenuate the inflammation mediated by HMGB1 and IKK-β by upregulating miR-339-5p expression. In addition, we constructed CLP model mice by cecal ligation and puncture. Paeonol was used to intervene to investigate its anti-inflammatory effect in vivo. The results showed that paeonol could improve the survival rate of sepsis mice and protect the kidney of sepsis mice.
Collapse
Affiliation(s)
- Liyan Mei
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China
| | - Meihong He
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China
| | - Chaoying Zhang
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China
| | - Jifei Miao
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China
| | - Quan Wen
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Xia Liu
- School of Basic Medical Sciences, Guiyang University of Chinese Medicine, Guiyang, Guizhou Province, 550025, China
| | - Qin Xu
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China
| | - Sen Ye
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China
| | - Peng Ye
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China
| | - Huina Huang
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China
| | - Junli Lin
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China
| | - Xiaojing Zhou
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China
| | - Kai Zhao
- School of Nursing Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China
| | - Dongfeng Chen
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China
| | - Jianhong Zhou
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China
| | - Chun Li
- School of Nursing Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China
| | - Hui Li
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China.
| |
Collapse
|
56
|
Circulating intranuclear proteins may play a role in development of disseminated intravascular coagulation in individuals with acute leukemia. Int J Hematol 2019; 111:378-387. [PMID: 31848990 DOI: 10.1007/s12185-019-02798-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 10/25/2022]
Abstract
Intranuclear proteins, including high mobility group box 1 (HMGB1) and histone H3, released from inflammatory cells activate platelets and the coagulation systems, leading to development of disseminated intravascular coagulation (DIC) in individuals with sepsis. These observations prompted us to hypothesize that HMGB1 and histone H3 liberated from leukemia cells undergoing apoptosis after chemotherapy might play a role in development of DIC. To test this hypothesis, we prospectively measured plasma levels of coagulation markers and intranuclear proteins in patients with newly diagnosed acute leukemia (n = 17) before and after chemotherapy. Ten of 17 patients were diagnosed with DIC at the time of diagnosis of leukemia. Serum levels of HMGB1 and histone H3 were significantly higher in patients with DIC than in non-DIC patients. Of note, seven patients developed DIC or experienced exacerbation of coagulopathy after administration of anti-leukemic agents. Intriguingly, an increase in levels of HMGB1 and histone H3 were detected in five of seven patients. These findings suggest that intranuclear proteins spontaneously released from leukemia cells may play a role in development of leukemia-related DIC. Additionally, remission induction chemotherapy causes apoptosis of leukemia cells, leading to forced release of intranuclear proteins, which may exacerbate coagulopathy.
Collapse
|
57
|
MIR-140-5p affects chondrocyte proliferation, apoptosis, and inflammation by targeting HMGB1 in osteoarthritis. Inflamm Res 2019; 69:63-73. [PMID: 31712854 DOI: 10.1007/s00011-019-01294-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 09/11/2019] [Accepted: 10/17/2019] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE This study aimed to test the expression and biological function of miR-140-5p in osteoarthritis (OA), and identify its target gene and explore its mechanism in OA. METHODS Differential genes were screened and analyzed by gene microarray and WGCNA analysis. The normal human chondrocytes C28/I2 were induced by IL-1β to construct the OA cell model. The expression of miR-140-5p and high mobility group box 1 (HMGB1) was quantified by quantitative real-time PCR (qRT-PCR) in OA tissues and IL-1β-induced chondrocytes. Western blotting was performed to evaluate the expression of HMGB1 and PI3K/AKT pathway activation. The concentrations of tumor necrosis factor (TNF)-α, interleukin (IL)-6, MMP-1 and MMP-3 were determined by ELISA. CCK-8 and flow cytometry were conducted to determine the cellular capabilities of proliferation and cell apoptosis. RESULTS Bioinformatics analysis demonstrated that HMGB1 was highly expressed in OA and activated PI3K/AKT pathway. Also, HMGB1 was predicted as a target of miR-140-5p. The levels of miR-140-5p were negatively correlated with HMGB1 in OA tissues and IL-1β-induced chondrocytes. The overexpression of miR-140-5p reduced the expression of HMGB1 protein, p-AKT (Ser473) and p-PI3K in IL-1β-induced chondrocytes. Besides, the expression of p-AKT (Ser473) and p-PI3K was significantly upregulated by employing miR-140-5p inhibitor, but retrieved after treating with LY294002. Furthermore, miR-140-5p inhibited inflammation, matrix metalloprotease expression and apoptosis in IL-1β-induced chondrocytes through regulating HMGB1. CONCLUSION MiR-140-5p was down-regulated while HMGB1 was upregulated in OA. MiR-140-5p could inhibit the PI3K/AKT signaling pathway and suppress the progression of OA through targeting HMGB1.
Collapse
|
58
|
Wang M, Gauthier A, Daley L, Dial K, Wu J, Woo J, Lin M, Ashby C, Mantell LL. The Role of HMGB1, a Nuclear Damage-Associated Molecular Pattern Molecule, in the Pathogenesis of Lung Diseases. Antioxid Redox Signal 2019; 31:954-993. [PMID: 31184204 PMCID: PMC6765066 DOI: 10.1089/ars.2019.7818] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 06/07/2019] [Indexed: 12/11/2022]
Abstract
Significance: High-mobility group protein box 1 (HMGB1), a ubiquitous nuclear protein, regulates chromatin structure and modulates the expression of many genes involved in the pathogenesis of lung cancer and many other lung diseases, including those that regulate cell cycle control, cell death, and DNA replication and repair. Extracellular HMGB1, whether passively released or actively secreted, is a danger signal that elicits proinflammatory responses, impairs macrophage phagocytosis and efferocytosis, and alters vascular remodeling. This can result in excessive pulmonary inflammation and compromised host defense against lung infections, causing a deleterious feedback cycle. Recent Advances: HMGB1 has been identified as a biomarker and mediator of the pathogenesis of numerous lung disorders. In addition, post-translational modifications of HMGB1, including acetylation, phosphorylation, and oxidation, have been postulated to affect its localization and physiological and pathophysiological effects, such as the initiation and progression of lung diseases. Critical Issues: The molecular mechanisms underlying how HMGB1 drives the pathogenesis of different lung diseases and novel therapeutic approaches targeting HMGB1 remain to be elucidated. Future Directions: Additional research is needed to identify the roles and functions of modified HMGB1 produced by different post-translational modifications and their significance in the pathogenesis of lung diseases. Such studies will provide information for novel approaches targeting HMGB1 as a treatment for lung diseases.
Collapse
Affiliation(s)
- Mao Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Alex Gauthier
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - LeeAnne Daley
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Katelyn Dial
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Jiaqi Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Joanna Woo
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Mosi Lin
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Charles Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Lin L. Mantell
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
- Center for Inflammation and Immunology, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York
| |
Collapse
|
59
|
Denning NL, Aziz M, Gurien SD, Wang P. DAMPs and NETs in Sepsis. Front Immunol 2019; 10:2536. [PMID: 31736963 PMCID: PMC6831555 DOI: 10.3389/fimmu.2019.02536] [Citation(s) in RCA: 362] [Impact Index Per Article: 72.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/11/2019] [Indexed: 12/21/2022] Open
Abstract
Sepsis is a deadly inflammatory syndrome caused by an exaggerated immune response to infection. Much has been focused on host response to pathogens mediated through the interaction of pathogen-associated molecular patterns (PAMPs) and pattern recognition receptors (PRRs). PRRs are also activated by host nuclear, mitochondrial, and cytosolic proteins, known as damage-associated molecular patterns (DAMPs) that are released from cells during sepsis. Some well described members of the DAMP family are extracellular cold-inducible RNA-binding protein (eCIRP), high mobility group box 1 (HMGB1), histones, and adenosine triphosphate (ATP). DAMPs are released from the cell through inflammasome activation or passively following cell death. Similarly, neutrophil extracellular traps (NETs) are released from neutrophils during inflammation. NETs are webs of extracellular DNA decorated with histones, myeloperoxidase, and elastase. Although NETs contribute to pathogen clearance, excessive NET formation promotes inflammation and tissue damage in sepsis. Here, we review DAMPs and NETs and their crosstalk in sepsis with respect to their sources, activation, release, and function. A clear grasp of DAMPs, NETs and their interaction is crucial for the understanding of the pathophysiology of sepsis and for the development of novel sepsis therapeutics.
Collapse
Affiliation(s)
- Naomi-Liza Denning
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, NY, United States.,Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States.,Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Monowar Aziz
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, NY, United States.,Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States
| | - Steven D Gurien
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, NY, United States.,Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Ping Wang
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, NY, United States.,Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States.,Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States.,Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| |
Collapse
|
60
|
Xia YY, Xue M, Wang Y, Huang ZH, Huang C. Electroacupuncture Alleviates Spared Nerve Injury-Induced Neuropathic Pain And Modulates HMGB1/NF-κB Signaling Pathway In The Spinal Cord. J Pain Res 2019; 12:2851-2863. [PMID: 31695479 PMCID: PMC6805246 DOI: 10.2147/jpr.s220201] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/12/2019] [Indexed: 01/03/2023] Open
Abstract
Background Neuropathic pain with complications greatly affects patients worldwide. High mobility group box 1 (HMGB1) has been shown to contribute to the pathogenesis of neuropathic pain; thus, suppression of HMGB1 may provide a novel therapeutic option for neuropathic pain. Electroacupuncture (EA) has been indicated to be effective in attenuating neuropathic pain, but the underlying mechanism remains to be fully clarified. We aim to explore whether 2Hz EA stimulation regulates the spinal HMGB1/NF-κB signaling in neuropathic pain induced by spared nerve injury (SNI). Materials and methods Paw withdrawal threshold and CatWalk gait analysis were used to assess the effect of 2Hz EA on pain-related behaviors in SNI rats. Administration of 2Hz EA to SNI rats once every other day lasting for 21 days. Expression of spinal protein molecules were detected using Western blot and immunofluorescence staining. Results It was found that SNI significantly induced mechanical hypersensitivity and decrease of gait parameters, and subsequently increased the levels of HMGB1, TLR4, MyD88, and NF-κB p65 protein expression. 2Hz EA stimulation led to remarkable attenuation of mechanical hypersensitivity, upregulation of spinal HMGB1, TLR4, MyD88, and NF-κB p65 protein expressions induced by SNI, and significant improvement in gait parameters. Furthermore, immunofluorescence staining also confirmed that 2Hz EA obviously suppressed the co-expression of microglia activation marker CD11b and TLR4 or MyD88, as well as the activation of NF-κB p65 in SNI rats. Conclusion This study suggested that blockade of HMGB1/NF-κB signaling in the spinal cord may be a promising therapeutic approach for 2Hz EA management of SNI-induced neuropathic pain.
Collapse
Affiliation(s)
- Yang-Yang Xia
- Department of Physiology, Gannan Medical University, Ganzhou 341000, People's Republic of China
| | - Meng Xue
- Department of Physiology, Gannan Medical University, Ganzhou 341000, People's Republic of China
| | - Ying Wang
- Department of Physiology, Gannan Medical University, Ganzhou 341000, People's Republic of China
| | - Zhi-Hua Huang
- Department of Physiology, Gannan Medical University, Ganzhou 341000, People's Republic of China.,Pain Medicine Research Institute, Gannan Medical University, Ganzhou 341000, People's Republic of China
| | - Cheng Huang
- Department of Physiology, Gannan Medical University, Ganzhou 341000, People's Republic of China.,Pain Medicine Research Institute, Gannan Medical University, Ganzhou 341000, People's Republic of China
| |
Collapse
|
61
|
Shivappagowdar A, Pati S, Narayana C, Ayana R, Kaushik H, Sah R, Garg S, Khanna A, Kumari J, Garg L, Sagar R, Singh S. A small bioactive glycoside inhibits epsilon toxin and prevents cell death. Dis Model Mech 2019; 12:dmm.040410. [PMID: 31492678 PMCID: PMC6826021 DOI: 10.1242/dmm.040410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 08/23/2019] [Indexed: 12/24/2022] Open
Abstract
Clostridium perfringens epsilon toxin (Etx) is categorized as the third most lethal bioterrorism agent by the Centers for Disease Control and Prevention (CDC), with no therapeutic counter measures available for humans. Here, we have developed a high-affinity inhibitory compound by synthesizing and evaluating the structure activity relationship (SAR) of a library of diverse glycosides (numbered 1-12). SAR of glycoside-Etx heptamers revealed exceptionally strong H-bond interactions of glycoside-4 with a druggable pocket in the oligomerization and β-hairpin region of Etx. Analysis of its structure suggested that glycoside-4 might self-aggregate to form a robust micelle-like supra-molecular complex due to its linear side-chain architecture, which was authenticated by fluorescence spectroscopy. Further, this micelle hinders the Etx monomer-monomer interaction required for oligomerization, validated by both surface plasmon resonance (SPR) and immunoblotting. This phenomenon in turn leads to blockage of pore formation. Downstream evaluation revealed that glycoside-4 effectively blocked cell death of Etx-treated cultured primary cells and maintained cellular homeostasis via disrupting oligomerization, blocking pore formation, restoring calcium homeostasis, stabilizing the mitochondrial membrane and impairing high mobility group box 1 (HMGB1) translocation from nucleus to cytoplasm. Furthermore, a single dosage of glycoside-4 protected the Etx-challenged mice and restored normal function to multiple organs. This work reports for the first time a potent, nontoxic glycoside with strong ability to occlude toxin lethality, representing it as a bio-arm therapeutic against Etx-based biological threat.
Collapse
Affiliation(s)
- Abhishek Shivappagowdar
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, Uttar Pradesh 201314, India
| | - Soumya Pati
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, Uttar Pradesh 201314, India
| | - Chintam Narayana
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Greater Noida, Uttar Pradesh 201314, India
| | - Rajagopal Ayana
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, Uttar Pradesh 201314, India
| | - Himani Kaushik
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi 110067, India
| | - Raj Sah
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Swati Garg
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, Uttar Pradesh 201314, India
| | - Ashish Khanna
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Jyoti Kumari
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, Uttar Pradesh 201314, India
| | - Lalit Garg
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi 110067, India
| | - Ram Sagar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
62
|
Paudel YN, Angelopoulou E, Piperi C, Balasubramaniam VR, Othman I, Shaikh MF. Enlightening the role of high mobility group box 1 (HMGB1) in inflammation: Updates on receptor signalling. Eur J Pharmacol 2019; 858:172487. [DOI: 10.1016/j.ejphar.2019.172487] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/19/2019] [Accepted: 06/19/2019] [Indexed: 12/17/2022]
|
63
|
Lin SS, Yuan LJ, Niu CC, Tu YK, Yang CY, Ueng SWN. Hyperbaric oxygen inhibits the HMGB1/RAGE signaling pathway by upregulating Mir-107 expression in human osteoarthritic chondrocytes. Osteoarthritis Cartilage 2019; 27:1372-1381. [PMID: 31146014 DOI: 10.1016/j.joca.2019.05.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE MicroRNA (miRNA)107 expression is downregulated but high mobility group box 1 (HMGB-1), Toll-like receptors (TLRs), and receptor for advanced glycation end products (RAGE) are upregulated in osteoarthritic (OA) cartilage. We investigated mir-107/HMGB-1 signaling in OA after hyperbaric oxygen (HBO) treatment. DESIGN MiR-107 mimic was transfected and the HMGB-1 was analyzed in OA chondrocytes. MiRNA targets were identified using bioinformatics and a luciferase reporter assay. After HBO treatment, the mRNA or protein levels of HMGB-1, RAGE, TLR2, TLR4, and inducible nitric oxide (NO) synthase (iNOS) and phosphorylation of mitogen-activated protein kinase (MAPK) were evaluated. The secreted HMGB-1 and matrix metalloproteases (MMPs) levels were quantified. Finally, we detected the HMGB-1 and iNOS expression in rabbit cartilage defects. RESULTS Overexpression of miR-107 suppressed HMGB-1 expression in OA chondrocytes. The 3'UTR of HMGB-1 mRNA contained a 'seed-matched-sequence' for miR-107. MiR-107 was induced by HBO and a marked suppression of HMGB-1 was observed simultaneously in OA chondrocytes. Knockdown of miR-107 upregulated HMGB-1 expression in hyperoxic cells. HBO downregulated the mRNA and protein expression of HMGB-1, RAGE, TLR2, TLR4, and iNOS, and the secretion of HMGB-1. HBO decreased the nuclear translocation of nuclear factor (NF)-κB, downregulated the phosphorylation of MAPK, and significantly decreased the secretion of MMPs. Morphological and immunohistochemical observation demonstrated that HBO markedly enhanced cartilage repair and the area stained positive for HMGB-1 and iNOS tended to be lower in the HBO group. CONCLUSIONS HBO inhibits HMGB-1/RAGE signaling related pathways by upregulating miR-107 expression in human OA chondrocytes.
Collapse
Affiliation(s)
- S-S Lin
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Linkou, Taiwan; Department of Nursing, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| | - L-J Yuan
- Department of Orthopaedic Surgery, E-Da Hospital, I-Shou University.
| | - C-C Niu
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Linkou, Taiwan.
| | - Y-K Tu
- Department of Orthopaedic Surgery, E-Da Hospital, I-Shou University.
| | - C-Y Yang
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Linkou, Taiwan.
| | - S W N Ueng
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Linkou, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan; Bone and Joint Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan.
| |
Collapse
|
64
|
Lu H, Zhang Z, Barnie PA, Su Z. Dual faced HMGB1 plays multiple roles in cardiomyocyte senescence and cardiac inflammatory injury. Cytokine Growth Factor Rev 2019; 47:74-82. [DOI: 10.1016/j.cytogfr.2019.05.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/16/2019] [Accepted: 05/16/2019] [Indexed: 01/06/2023]
|
65
|
Meng R, Gu L, Lu Y, Zhao K, Wu J, Wang H, Han J, Tang Y, Lu B. High mobility group box 1 enables bacterial lipids to trigger receptor-interacting protein kinase 3 (RIPK3)-mediated necroptosis and apoptosis in mice. J Biol Chem 2019; 294:8872-8884. [PMID: 31000631 DOI: 10.1074/jbc.ra118.007040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/04/2019] [Indexed: 12/14/2022] Open
Abstract
Receptor-interacting protein kinase 3 (RIPK3) is a key regulator of programmed cell death and inflammation during viral infection or sterile tissue injury. Whether and how bacterial infection also activates RIPK3-dependent immune responses remains poorly understood. Here we show that bacterial lipids (lipid IVa or lipid A) form a complex with high mobility group box 1 (HMGB1), released by activated immune cells or damaged tissue during bacterial infection, and that this complex triggers RIPK3- and TIR domain-containing adapter-inducing IFN-β (TRIF)-dependent immune responses. We found that these responses lead to macrophage death, interleukin (IL)-1α release, and IL-1β maturation. In an air-pouch inflammatory infiltration model, genetic deletion of Ripk3, Trif, or IL-1 receptor (Il-1R), or monoclonal antibody-mediated HMGB1 neutralization uniformly attenuated inflammatory responses induced by Gram-negative bacteria that release lipid IVa and lipid A. These findings uncover a previously unrecognized mechanism by which host factors and bacterial components work in concert to orchestrate immune responses.
Collapse
Affiliation(s)
- Ran Meng
- From the Department of Hematology and Key Laboratory of Non-resolving Inflammation and Tumor and.,the Postdoctoral Research Station of Clinical Medicine, The 3rd Xiangya Hospital, Central South University, Changsha, Hunan Province 410000, China
| | - Lan Gu
- From the Department of Hematology and Key Laboratory of Non-resolving Inflammation and Tumor and.,the Key Laboratory of Medical Genetics, School of Biological Science and Technology, Central South University, Changsha, Hunan Province 410000, China
| | - Yanyan Lu
- From the Department of Hematology and Key Laboratory of Non-resolving Inflammation and Tumor and.,the Key Laboratory of Medical Genetics, School of Biological Science and Technology, Central South University, Changsha, Hunan Province 410000, China
| | - Kai Zhao
- From the Department of Hematology and Key Laboratory of Non-resolving Inflammation and Tumor and.,the Key Laboratory of Medical Genetics, School of Biological Science and Technology, Central South University, Changsha, Hunan Province 410000, China
| | - Jianfeng Wu
- the State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Haichao Wang
- the Department of Emergency Medicine, North Shore University Hospital, Northwell Health, Manhasset, New York 11030
| | - Jiahuai Han
- the State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Yiting Tang
- From the Department of Hematology and Key Laboratory of Non-resolving Inflammation and Tumor and .,the Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province 410000, China
| | - Ben Lu
- From the Department of Hematology and Key Laboratory of Non-resolving Inflammation and Tumor and .,the Key Laboratory of Medical Genetics, School of Biological Science and Technology, Central South University, Changsha, Hunan Province 410000, China.,the Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan Province 410000, China, and.,the Department of Pathophysiology, School of Basic Medical Science, Jinan University, Guangzhou, Guangdong Province 510632, China
| |
Collapse
|
66
|
HMGB1 is a Central Driver of Dynamic Pro-inflammatory Networks in Pediatric Acute Liver Failure induced by Acetaminophen. Sci Rep 2019; 9:5971. [PMID: 30979951 PMCID: PMC6461628 DOI: 10.1038/s41598-019-42564-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/27/2019] [Indexed: 12/12/2022] Open
Abstract
Acetaminophen (APAP) overdose (APAPo) is predominant in the NIH Pediatric Acute Liver Failure (PALF) Study. We assayed multiple inflammatory mediators in serial serum samples from 13 PALF survivors with APAPo + N-acetylcysteine (NAC, the frontline therapy for APAPo), 8 non-APAPo + NAC, 40 non-APAPo non-NAC, and 12 non-survivors. High Mobility Group Box 1 (HMGB1) was a dominant mediator in dynamic inflammation networks in all sub-groups, associated with a threshold network complexity event at d1–2 following enrollment that was exceeded in non-survivors vs. survivors. We thus hypothesized that differential HMGB1 network connectivity after day 2 is related to the putative threshold event in non-survivors. DyNA showed that HMGB1 is most connected in non-survivors on day 2–3, while no connections were observed in APAPo + NAC and non-APAPo + NAC survivors. Inflammatory dynamic networks, and in particular HMGB1 connectivity, were associated with the use of NAC in the context of APAPo. To recapitulate hepatocyte (HC) damage in vitro, primary C57BL/6 HC and HC-specific HMGB1-null HC were treated with APAP + NAC. Network phenotypes of survivors were recapitulated in C57BL/6 mouse HC and were greatly altered in HMGB1-null HC. HC HMGB1 may thus coordinate a pro-inflammatory program in PALF non-survivors (which is antagonized by NAC), while driving an anti-inflammatory/repair program in survivors.
Collapse
|
67
|
Crowe LAN, McLean M, Kitson SM, Melchor EG, Patommel K, Cao HM, Reilly JH, Leach WJ, Rooney BP, Spencer SJ, Mullen M, Chambers M, Murrell GAC, McInnes IB, Akbar M, Millar NL. S100A8 & S100A9: Alarmin mediated inflammation in tendinopathy. Sci Rep 2019; 9:1463. [PMID: 30728384 PMCID: PMC6365574 DOI: 10.1038/s41598-018-37684-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 12/12/2018] [Indexed: 11/11/2022] Open
Abstract
Alarmins S100A8 and S100A9 are endogenous molecules released in response to environmental triggers and cellular damage. They are constitutively expressed in immune cells such as monocytes and neutrophils and their expression is upregulated under inflammatory conditions. The molecular mechanisms that regulate inflammatory pathways in tendinopathy are largely unknown therefore identifying early immune effectors is essential to understanding the pathology. Based on our previous investigations highlighting tendinopathy as an alarmin mediated pathology we sought evidence of S100A8 & A9 expression in a human model of tendinopathy and thereafter, to explore mechanisms whereby S100 proteins may regulate release of inflammatory mediators and matrix synthesis in human tenocytes. Immunohistochemistry and quantitative RT-PCR showed S100A8 & A9 expression was significantly upregulated in tendinopathic tissue compared with control. Furthermore, treating primary human tenocytes with exogenous S100A8 & A9 significantly increased protein release of IL-6, IL-8, CCL2, CCL20 and CXCL10; however, no alterations in genes associated with matrix remodelling were observed at a transcript level. We propose S100A8 & A9 participate in early pathology by modulating the stromal microenvironment and influencing the inflammatory profile observed in tendinopathy. S100A8 and S100A9 may participate in a positive feedback mechanism involving enhanced leukocyte recruitment and release of pro-inflammatory cytokines from tenocytes that perpetuates the inflammatory response within the tendon in the early stages of disease.
Collapse
Affiliation(s)
- Lindsay A N Crowe
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences University of Glasgow, Glasgow, Scotland, UK
| | - Michael McLean
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences University of Glasgow, Glasgow, Scotland, UK
| | - Susan M Kitson
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences University of Glasgow, Glasgow, Scotland, UK
| | - Emma Garcia Melchor
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences University of Glasgow, Glasgow, Scotland, UK
| | - Katharina Patommel
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences University of Glasgow, Glasgow, Scotland, UK
| | - Hai Man Cao
- Orthopaedic Research Institute, Department of Orthopaedic Surgery, St George Hospital Campus, University of New South Wales, New South Wales, Australia
| | - James H Reilly
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences University of Glasgow, Glasgow, Scotland, UK
| | - William J Leach
- Department of Orthopaedic Surgery, Queen Elizabeth University Hospital Glasgow, Glasgow, Scotland, UK
| | - Brain P Rooney
- Department of Orthopaedic Surgery, Queen Elizabeth University Hospital Glasgow, Glasgow, Scotland, UK
| | - Simon J Spencer
- Department of Orthopaedic Surgery, Queen Elizabeth University Hospital Glasgow, Glasgow, Scotland, UK
| | - Michael Mullen
- Department of Orthopaedic Surgery, Queen Elizabeth University Hospital Glasgow, Glasgow, Scotland, UK
| | - Max Chambers
- Department of Orthopaedic Surgery, Queen Elizabeth University Hospital Glasgow, Glasgow, Scotland, UK
| | - George A C Murrell
- Orthopaedic Research Institute, Department of Orthopaedic Surgery, St George Hospital Campus, University of New South Wales, New South Wales, Australia
| | - Iain B McInnes
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences University of Glasgow, Glasgow, Scotland, UK
| | - Moeed Akbar
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences University of Glasgow, Glasgow, Scotland, UK
| | - Neal L Millar
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences University of Glasgow, Glasgow, Scotland, UK.
| |
Collapse
|
68
|
Niu CC, Lin SS, Yuan LJ, Lu ML, Ueng SWN, Yang CY, Tsai TT, Lai PL. Upregulation of miR-107 expression following hyperbaric oxygen treatment suppresses HMGB1/RAGE signaling in degenerated human nucleus pulposus cells. Arthritis Res Ther 2019; 21:42. [PMID: 30704538 PMCID: PMC6357369 DOI: 10.1186/s13075-019-1830-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/18/2019] [Indexed: 02/07/2023] Open
Abstract
Background The expression of both high-mobility group box 1 (HMGB1) and receptor for advanced glycation end-products (RAGE) is upregulated in degenerated discs. HMGB1 is known to function as a coupling factor between hypoxia and inflammation in arthritis, and this inflammatory response is modulated by microRNAs (miRNAs), with miR-107 expression downregulated during hypoxia. In this study, we investigated the regulation of the miR-107/HMGB1/RAGE pathway in degenerated nucleus pulposus cells (NPCs) after hyperbaric oxygen (HBO) treatment. Methods NPCs were separated from human degenerated intervertebral disc tissues. The control cells were maintained in 5% CO2/95% air, and the hyperoxic cells were exposed to 100% O2 at 2.5 atmospheres absolute. MiRNA expression profiling was performed via microarray and confirmed by real-time PCR, and miRNA target genes were identified using bioinformatics and luciferase reporter assays. The cellular protein and mRNA levels of HMGB1, RAGE, and inducible nitric oxide synthase (iNOS) were assessed, and the phosphorylation of MAPK (p38MAPK, ERK, and JNK) was evaluated. Additionally, cytosolic and nuclear fractions of the IκBα and NF-κB p65 proteins were analyzed, and secreted HMGB1 and metalloprotease (MMP) levels in the conditioned media were quantified. Results Using microarray analyses, 96 miRNAs were identified as upregulated and 66 downregulated following HBO treatment. Based on these results, miR-107 was selected for further investigation. Bioinformatics analyses indicated that the 3′ untranslated region of the HMGB1 mRNA contained the “seed-matched-sequence” for hsa-miR-107, which was validated via dual-luciferase reporter assays. MiR-107 was markedly induced by HBO, and simultaneous suppression of HMGB1 was observed in NPCs. Knockdown of miR-107 resulted in upregulation of HMGB1 expression in HBO-treated cells, and HBO treatment downregulated the mRNA and protein levels of HMGB1, RAGE, and iNOS and the secretion of HMGB1. In addition, HBO treatment upregulated the protein levels of cytosolic IκBα and decreased the nuclear translocation of NF-κB in NPCs. Moreover, HBO treatment downregulated the phosphorylation of p38MAPK, ERK, and JNK and significantly decreased the secretion of MMP-3, MMP-9, and MMP-13. Conclusions HBO inhibits pathways related to HMGB1/RAGE signaling via upregulation of miR-107 expression in degenerated human NPCs.
Collapse
Affiliation(s)
- Chi-Chien Niu
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, No 5, Fu-Hsing Street 333, Taoyuan, Taoyuan, Taiwan. .,College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Song-Shu Lin
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, No 5, Fu-Hsing Street 333, Taoyuan, Taoyuan, Taiwan.,Department of Nursing, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Li-Jen Yuan
- Department of Orthopaedic Surgery, E-Da Hospital/I-Shou University, Kaohsiung, Taiwan
| | - Meng-Ling Lu
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Steve W N Ueng
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, No 5, Fu-Hsing Street 333, Taoyuan, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chuen-Yung Yang
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, No 5, Fu-Hsing Street 333, Taoyuan, Taoyuan, Taiwan
| | - Tsung-Ting Tsai
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, No 5, Fu-Hsing Street 333, Taoyuan, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Bone and Joint Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Po-Liang Lai
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, No 5, Fu-Hsing Street 333, Taoyuan, Taoyuan, Taiwan
| |
Collapse
|
69
|
Kapurniotu A, Gokce O, Bernhagen J. The Multitasking Potential of Alarmins and Atypical Chemokines. Front Med (Lausanne) 2019; 6:3. [PMID: 30729111 PMCID: PMC6351468 DOI: 10.3389/fmed.2019.00003] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/04/2019] [Indexed: 12/19/2022] Open
Abstract
When the human genome was sequenced, it came as a surprise that it contains “only” 21,306 protein-coding genes. However, complexity and diversity are multiplied by alternative splicing, non-protein-coding transcripts, or post-translational modifications (PTMs) on proteome level. Here, we discuss how the multi-tasking potential of proteins can substantially enhance the complexity of the proteome further, while at the same time offering mechanisms for the fine-regulation of cell responses. Discoveries over the past two decades have led to the identification of “surprising” and previously unrecognized functionalities of long known cytokines, inflammatory mediators, and intracellular proteins that have established novel molecular networks in physiology, inflammation, and cardiovascular disease. In this mini-review, we focus on alarmins and atypical chemokines such as high-mobility group box protein-1 (HMGB-1) and macrophage migration-inhibitory factor (MIF)-type proteins that are prototypical examples of these classes, featuring a remarkable multitasking potential that allows for an elaborate fine-tuning of molecular networks in the extra- and intracellular space that may eventually give rise to novel “task”-based precision medicine intervention strategies.
Collapse
Affiliation(s)
- Aphrodite Kapurniotu
- Division of Peptide Biochemistry, Technische Universität München, Freising, Germany
| | - Ozgun Gokce
- System Neuroscience Laboratory, Institute for Stroke and Dementia Research, Klinikum der Universität München, Munich, Germany
| | - Jürgen Bernhagen
- Department of Vascular Biology, Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-University, Munich, Germany.,Munich Heart Alliance, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
70
|
Li M, Chen S, Shi X, Lyu C, Zhang Y, Tan M, Wang C, Zang N, Liu X, Hu Y, Shen J, Zhou L, Gu Y. Cell permeable HMGB1-binding heptamer peptide ameliorates neurovascular complications associated with thrombolytic therapy in rats with transient ischemic stroke. J Neuroinflammation 2018; 15:237. [PMID: 30139371 PMCID: PMC6108117 DOI: 10.1186/s12974-018-1267-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/02/2018] [Indexed: 01/11/2023] Open
Abstract
Background Blood–brain barrier (BBB) breakdown and inflammatory responses are the major causes of tissue-type plasminogen activator (tPA)-induced hemorrhagic transformation (HT), while high-mobility group box 1 (HMGB1) exacerbates inflammatory damage to BBB during the process of brain ischemia/reperfusion. This study aimed to investigate the change of HMGB1 after thrombolytic therapy and whether blocking HMGB1 could ameliorate the neurovasculature complications secondary to tPA treatment in stroke rats. Methods Sera from acute stroke patients and rats with thrombolytic therapy were collected to investigate HMGB1 secretion. Male Sprague-Dawley rats with 2 h or 4.5 h middle cerebral artery occlusion were continuously infused with tPA followed by administration of membrane permeable HMGB1-binding heptamer peptide (HBHP). The mortality rate, neurological score, HT, brain swelling, BBB permeability, and inflammatory factors were determined. Results The results revealed that HMGB1 levels were elevated in both stroke patients and rats after tPA treatment. Blocking HMGB1 signaling by HBHP in the rat model of 4.5 h brain ischemia significantly attenuated tPA-related complications, including mortality rate, the degree of hemorrhage, brain swelling, neurological deficits, BBB impairment, microglia activation, and the expressions of inflammatory cytokines. Conclusions tPA treatment might induce HMGB1 secretion while blocking HMGB1 with HBHP could markedly reduce the risk of thrombolysis-associated brain hemorrhage and mortality through attenuating BBB damage and inflammatory reactions. These results indicate that HMGB1 may potentiate the risk of HT in tPA administration and that blocking HMGB1 signaling would be helpful in preventing complications brought by thrombolysis in ischemic stroke. Trial registration http://www.chictr.org.cn. Unique identifier: ChiCTR-OOC-16010052. Registered 30 November 2016. Electronic supplementary material The online version of this article (10.1186/s12974-018-1267-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Miaodan Li
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Shumin Chen
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Xue Shi
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Chenfei Lyu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Yongfang Zhang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Miaoqin Tan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Chen Wang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Nailiang Zang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Xiaoxi Liu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Yafang Hu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Jiangang Shen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, People's Republic of China.
| | - Liang Zhou
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China.
| | - Yong Gu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China.
| |
Collapse
|
71
|
Ravizza T, Terrone G, Salamone A, Frigerio F, Balosso S, Antoine DJ, Vezzani A. High Mobility Group Box 1 is a novel pathogenic factor and a mechanistic biomarker for epilepsy. Brain Behav Immun 2018; 72:14-21. [PMID: 29031614 DOI: 10.1016/j.bbi.2017.10.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 10/02/2017] [Accepted: 10/11/2017] [Indexed: 12/11/2022] Open
Abstract
Approximately 30% of epilepsy patients experience seizures that are not controlled by the available drugs. Moreover, these drugs provide mainly a symptomatic treatment since they do not interfere with the disease's mechanisms. A mechanistic approach to the discovery of key pathogenic brain modifications causing seizure onset, recurrence and progression is instrumental for designing novel and rationale therapeutic interventions that could modify the disease course or prevent its development. In this regard, increasing evidence shows that neuroinflammation is a pathogenic factor in drug-resistant epilepsies. The High Mobility Group Box 1 (HMGB1)/Toll-like receptor 4 axis is a key initiator of neuroinflammation following brain injuries leading to epilepsy, and its activation contributes to seizure mechanisms in animal models. Recent findings have shown dynamic changes in HMGB1 and its isoforms in the brain and blood of animals exposed to acute brain injuries and undergoing epileptogenesis, and in surgically resected epileptic foci in humans. HMGB1 isoforms reflect different pathophysiological processes, and the disulfide isoform, which is generated in the brain during oxidative stress, is implicated in seizures, cell loss and cognitive dysfunctions. Interfering with disulfide HMGB1-activated cell signaling mediates significant therapeutic effects in epilepsy models. Moreover, both clinical and experimental data suggest that HMGB1 isoforms may serve as mechanistic biomarkers for epileptogenesis and drug-resistant epilepsy. These novel findings suggest that the HMGB1 system could be targeted to prevent seizure generation and may provide clinically useful prognostic biomarkers which may also predict the patient's response to therapy.
Collapse
Affiliation(s)
- Teresa Ravizza
- Dept of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Italy
| | - Gaetano Terrone
- Dept of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Italy
| | - Alessia Salamone
- Dept of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Italy
| | - Federica Frigerio
- Dept of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Italy
| | - Silvia Balosso
- Dept of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Italy
| | - Daniel J Antoine
- MRC Centre for Inflammation Research, The Queens Medical Research Institute, Ten University of Edinburgh, Edinburgh, UK
| | - Annamaria Vezzani
- Dept of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Italy.
| |
Collapse
|
72
|
Yagmur E, Buendgens L, Herbers U, Beeretz A, Weiskirchen R, Koek GH, Trautwein C, Tacke F, Koch A. High mobility group box 1 as a biomarker in critically ill patients. J Clin Lab Anal 2018; 32:e22584. [PMID: 29862569 DOI: 10.1002/jcla.22584] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/15/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Extracellular release of high mobility group box 1 (HMGB1) acts as a danger-associated molecular pattern, thereby "alarming" the immune system and promoting systemic inflammation. We investigated plasma HMGB1 concentrations as a potential diagnostic and prognostic biomarker in critical illness. METHODS Our study included 218 critically ill patients (145 with sepsis, 73 without sepsis), of whom blood samples were obtained at the time-point of admission to the medical intensive care unit (ICU). RESULTS High mobility group box 1 levels were significantly elevated in critically ill patients (n = 218) compared with healthy controls (n = 66). Elevated HMGB1 plasma levels were independent from the presence of sepsis. Moreover, HMGB1 was not associated with disease severity, organ failure, or mortality in the ICU. We observed a trend toward lower HMGB1 levels in ICU patients with pre-existing obesity, type 2 diabetes and end-stage renal disease patients on chronic hemodialysis. CONCLUSION In conclusion, our study did not reveal significant associations between HMGB1 levels at ICU admission and clinical outcomes in critically ill patients. Due to the pathogenic role of HMGB1 in the late phases of experimental sepsis, future studies might assess the potential value of HMGB1 by measuring its plasma concentrations at later time points during the course of critical illness.
Collapse
Affiliation(s)
- Eray Yagmur
- Medical Care Centre, Dr Stein and Colleagues, Mönchengladbach, Germany
| | - Lukas Buendgens
- Department of Medicine III, RWTH-University Hospital Aachen, Aachen, Germany
| | - Ulf Herbers
- Department of Medicine III, RWTH-University Hospital Aachen, Aachen, Germany
| | - Anne Beeretz
- Department of Medicine III, RWTH-University Hospital Aachen, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH-University Hospital Aachen, Aachen, Germany
| | - Ger H Koek
- Section of Gastroenterology and Hepatology, Department of Internal Medicine, Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands
| | - Christian Trautwein
- Department of Medicine III, RWTH-University Hospital Aachen, Aachen, Germany
| | - Frank Tacke
- Department of Medicine III, RWTH-University Hospital Aachen, Aachen, Germany
| | - Alexander Koch
- Department of Medicine III, RWTH-University Hospital Aachen, Aachen, Germany
| |
Collapse
|
73
|
Giglio P, Gagliardi M, Tumino N, Antunes F, Smaili S, Cotella D, Santoro C, Bernardini R, Mattei M, Piacentini M, Corazzari M. PKR and GCN2 stress kinases promote an ER stress-independent eIF2α phosphorylation responsible for calreticulin exposure in melanoma cells. Oncoimmunology 2018; 7:e1466765. [PMID: 30221067 DOI: 10.1080/2162402x.2018.1466765] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 04/03/2018] [Accepted: 04/13/2018] [Indexed: 12/21/2022] Open
Abstract
The immunogenic cell death (ICD) process represents a novel therapeutic approach to treat tumours, in which cytotoxic compounds promote both cancer cell death and the emission of damage-associated molecular patterns (DAMPs) from dying cells, to activate the immune system against the malignancy. Therefore, we explored the possibility to stimulate the key molecular players with a pivotal role in the execution of the ICD program in melanoma cells. To this aim, we used the pro-ICD agents mitoxantrone and doxorubicin and found that both agents could induce cell death and stimulate the release/exposure of the strictly required DAMPs in melanoma cells: i) calreticulin (CRT) exposure on the cell membrane; ii) ATP secretion; iii) type I IFNs gene up-regulation and iv) HMGB1 secretion, highlighting no interference by oncogenic BRAF. Importantly, although the ER stress-related PERK activation has been linked to CRT externalization, through the phosphorylation of eIF2α, we found that this stress pathway together with PERK were not involved in melanoma cells. Notably, we identified PKR and GCN2 as key mediators of eIF2α phosphorylation, facilitating the translocation of CTR on melanoma cells surface, under pro-ICD drugs stimulation. Therefore, our data indicate that pro-ICD drugs are able to stimulate the production/release of DAMPs in melanoma cells at least in vitro, indicating in this approach a potential new valuable therapeutic strategy to treat human skin melanoma malignancy.
Collapse
Affiliation(s)
- Paola Giglio
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy.,Department of Epidemiology, National Institute for Infectious Diseases 'L. Spallanzani', Rome, Italy
| | - Mara Gagliardi
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy.,Department of Health Science (DISS), University of Piemonte Orientale, Novara, Italy
| | - Nicola Tumino
- Department of Epidemiology, National Institute for Infectious Diseases 'L. Spallanzani', Rome, Italy
| | - Fernanda Antunes
- Department of Pharmacology, Federal University of São Paulo, Brazil
| | - Soraya Smaili
- Department of Pharmacology, Federal University of São Paulo, Brazil
| | - Diego Cotella
- Department of Health Science (DISS), University of Piemonte Orientale, Novara, Italy
| | - Claudio Santoro
- Department of Health Science (DISS), University of Piemonte Orientale, Novara, Italy
| | - Roberta Bernardini
- Department of Biology, Centro Servizi Interdipartimentale-STA, University of Rome Tor Vergata, Rome, Italy
| | - Maurizio Mattei
- Department of Biology, Centro Servizi Interdipartimentale-STA, University of Rome Tor Vergata, Rome, Italy
| | - Mauro Piacentini
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy.,Department of Epidemiology, National Institute for Infectious Diseases 'L. Spallanzani', Rome, Italy
| | - Marco Corazzari
- Department of Epidemiology, National Institute for Infectious Diseases 'L. Spallanzani', Rome, Italy.,Department of Health Science (DISS), University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
74
|
Khambu B, Huda N, Chen X, Antoine DJ, Li Y, Dai G, Köhler UA, Zong WX, Waguri S, Werner S, Oury TD, Dong Z, Yin XM. HMGB1 promotes ductular reaction and tumorigenesis in autophagy-deficient livers. J Clin Invest 2018; 128:2419-2435. [PMID: 29558368 DOI: 10.1172/jci91814] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/13/2018] [Indexed: 12/13/2022] Open
Abstract
Autophagy is important for liver homeostasis, and the deficiency leads to injury, inflammation, ductular reaction (DR), fibrosis, and tumorigenesis. It is not clear how these events are mechanistically linked to autophagy deficiency. Here, we reveal the role of high-mobility group box 1 (HMGB1) in two of these processes. First, HMGB1 was required for DR, which represents the expansion of hepatic progenitor cells (HPCs) implicated in liver repair and regeneration. DR caused by hepatotoxic diets (3,5-diethoxycarbonyl-1,4-dihydrocollidine [DDC] or choline-deficient, ethionine-supplemented [CDE]) also depended on HMGB1, indicating that HMGB1 may be generally required for DR in various injury scenarios. Second, HMGB1 promoted tumor progression in autophagy-deficient livers. Receptor for advanced glycation end product (RAGE), a receptor for HMGB1, was required in the same two processes and could mediate the proliferative effects of HMBG1 in isolated HPCs. HMGB1 was released from autophagy-deficient hepatocytes independently of cellular injury but depended on NRF2 and the inflammasome, which was activated by NRF2. Pharmacological or genetic activation of NRF2 alone, without disabling autophagy or causing injury, was sufficient to cause inflammasome-dependent HMGB1 release. In conclusion, HMGB1 release is a critical mechanism in hepatic pathogenesis under autophagy-deficient conditions and leads to HPC expansion as well as tumor progression.
Collapse
Affiliation(s)
- Bilon Khambu
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Nazmul Huda
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Xiaoyun Chen
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Daniel J Antoine
- MRC Center for Inflammation Research, The Queen's Medical Research Institute, The University of Edinburgh, United Kingdom
| | - Yong Li
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Guoli Dai
- Department of Biology, Purdue University School of Science, Indianapolis, Indiana, USA
| | - Ulrike A Köhler
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Wei-Xing Zong
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, New Brunswick, New Jersey, USA
| | - Satoshi Waguri
- Department of Anatomy and Histology, Fukushima Medical University, School of Medicine, Fukushima, Japan
| | - Sabine Werner
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Tim D Oury
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Zheng Dong
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, Georgia, USA
| | - Xiao-Ming Yin
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
75
|
Liu Q, Rehman H, Krishnasamy Y, Lemasters JJ, Zhong Z. Ischemic preconditioning attenuates acute lung injury after partial liver transplantation. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2018; 10:83-94. [PMID: 29755641 PMCID: PMC5943607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 04/14/2018] [Indexed: 06/08/2023]
Abstract
Pulmonary complications frequently occur after liver transplantation and are often life-threatening. Thus, we investigated whether hepatic ischemic preconditioning (IP) attenuates acute lung injury (ALI) after small-for-size liver transplantation. Rat livers were explanted after 9-min ischemia plus 5-min reperfusion, reduced to 50% of original size ex vivo, and implanted into recipients with approximately twice the donor body weight, resulting in quarter-size liver grafts (QSG). After QSG transplantation, hepatic Toll-like receptor 4 (TLR4) and tumor necrosis factor-α (TNFα ) expression increased markedly and high mobility group box-1 (HMGB1), an endogenous damage-associated molecular pattern molecule (DAMP), was released from QSG into the blood. IP blunted TLR4 and TNFα expression and HMGB1 release from QSG. In the lungs of QSG recipients without IP treatment, nuclear factor-κB (NF-κB) activation and intercellular adhesion molecule (ICAM)-1 expression increased; alveolar septal walls thickened with increased cellularity as neutrophils, monocytes/macrophage and T lymphocytes infiltrated into alveolar septa and alveolar spaces; and pulmonary cleaved caspase-8 and -3 and TUNEL-positive cells increased. In contrast, in the lungs of recipients of ischemic-preconditioned QSG, NF-κB activation and ICAM-1 expression were blunted; leukocyte infiltration was decreased; and alveolar septal wall thickening, caspase activation, and cell apoptosis were attenuated. IP did not increase heat-shock proteins in the lungs of QSG recipients. In conclusion, toxic cytokine and HMGB1 released from failing small-for-size grafts leads to pulmonary adhesion molecule expression, leukocyte infiltration and injury. IP prevents DAMP release and toxic cytokine formation in small-for-size grafts, thereby attenuating ALI.
Collapse
Affiliation(s)
- Qinlong Liu
- Department of Drug Discovery & Biomedical Sciences, Medical University of South CarolinaCharleston, SC 29425, USA
- The Second Affiliated Hospital of Dalian Medical UniversityDalian, Liaoning Province, China
| | - Hasibur Rehman
- Department of Drug Discovery & Biomedical Sciences, Medical University of South CarolinaCharleston, SC 29425, USA
| | - Yasodha Krishnasamy
- Department of Drug Discovery & Biomedical Sciences, Medical University of South CarolinaCharleston, SC 29425, USA
| | - John J Lemasters
- Department of Drug Discovery & Biomedical Sciences, Medical University of South CarolinaCharleston, SC 29425, USA
- Department of Biochemistry & Molecular Biology, Medical University of South CarolinaCharleston, SC 29425, USA
| | - Zhi Zhong
- Department of Drug Discovery & Biomedical Sciences, Medical University of South CarolinaCharleston, SC 29425, USA
| |
Collapse
|
76
|
Endogenous DAMPs, Category I: Constitutively Expressed, Native Molecules (Cat. I DAMPs). DAMAGE-ASSOCIATED MOLECULAR PATTERNS IN HUMAN DISEASES 2018. [PMCID: PMC7122936 DOI: 10.1007/978-3-319-78655-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This chapter provides the reader with a collection of endogenous DAMPs in terms of constitutively expressed native molecules. The first class of this category refers to DAMPs, which are passively released from necrotic cells, and includes the most prominent subclasses of high mobility group box I and heat shock proteins. Further subclasses of DAMPs that are passively released from necrotic cells include S100 proteins, nucleic acids, histones, pro-forms of interleukin-1-family members, mitochondria-derived N-formylated peptides, F-actin, and heme. A particular subclass of these passively released DAMPs are molecules, which indirectly activate the inflammasome, including adenosine-5′-triphosphate, monosodium urate crystals, cholesterol crystals, some lipolytic species, and beta-amyloid. All these passively released DAMPs are characterized by their capability to promote necroinflammatory responses. The second class of this Category I refers to molecules, which are exposed on the surface of stressed cells. They include the subclass of phagocytosis-facilitating molecules such as calreticulin, as well as the subclass of MHC-I-related molecules such as MHC-I-related molecule A and B. These DAMPs are capable of inducing the activation of innate lymphoid cells and unconventional T cells. One of these DAMPs, the major histocompatibility complex I-related molecule A, is shown to act as a bona fide transplantation antigen. In sum, the endogenous constitutively expressed native molecules represent an impressive category of DAMPs with extraordinary properties, which play a critical role in the pathogenesis of many human diseases.
Collapse
|
77
|
Svensson A, Sandberg T, Siesjö P, Eriksson H. Sequestering of damage-associated molecular patterns (DAMPs): a possible mechanism affecting the immune-stimulating properties of aluminium adjuvants. Immunol Res 2017; 65:1164-1175. [PMID: 29181774 PMCID: PMC5712329 DOI: 10.1007/s12026-017-8972-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Aluminium-based adjuvants (ABAs) have been used in human and veterinary vaccines for decades, and for a long time, the adjuvant properties were believed to be mediated by an antigen depot at the injection site, prolonging antigen exposure to the immune system. The depot hypothesis is today more or less abandoned, and instead replaced by the assumption that ABAs induce an inflammation at the injection site. Induction of an inflammatory response is consistent with immune activation initiated by recognition of molecular patterns associated with danger or damage (DAMPs), and the latter are derived from endogenous molecules that normally reside intracellularly. When extracellularly expressed, because of damage, stress or cell death, a sterile inflammation is induced. In this paper, we report the induction of DAMP release by viable cells after phagocytosis of aluminium-based adjuvants. Two of the most commonly used ABAs in pharmaceutical vaccine formulations, aluminium oxyhydroxide and aluminium hydroxyphosphate, induced a vigorous extracellular expression of the two DAMP molecules calreticulin and HMGB1. Concomitantly, extracellular adjuvant particles adsorbed the DAMP molecules released by the cells whereas IL-1β, a previously reported inflammatory mediator induced by ABAs, was not absorbed by the adjuvants. Induction of extracellular expression of the two DAMP molecules was more prominent using aluminium hydroxyphosphate compared to aluminium oxyhydroxide, whereas the extracellular adsorption of the DAMP molecules was more pronounced with the latter. Furthermore, it is hypothesised how induction of DAMP expression by ABAs and their concomitant adsorption by extracellular adjuvants may affect the inflammatory properties of ABAs.
Collapse
Affiliation(s)
| | - Tove Sandberg
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, SE-205 06, Malmö, Sweden
| | - Peter Siesjö
- Glioma Immunotherapy Group, Neurosurgery, Department of Clinical Sciences, BMC D14, Lund University, SE-221 84, Lund, Sweden
| | - Håkan Eriksson
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, SE-205 06, Malmö, Sweden.
| |
Collapse
|
78
|
Oliveira ERA, Póvoa TF, Nuovo GJ, Allonso D, Salomão NG, Basílio-de-Oliveira CA, Geraldo LHM, Fonseca CG, Lima FRS, Mohana-Borges R, Paes MV. Dengue fatal cases present virus-specific HMGB1 response in peripheral organs. Sci Rep 2017; 7:16011. [PMID: 29167501 PMCID: PMC5700165 DOI: 10.1038/s41598-017-16197-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/08/2017] [Indexed: 12/27/2022] Open
Abstract
Dengue is an important infectious disease that presents high incidence and yields a relevant number of fatal cases (about 20,000) every year worldwide. Despite its epidemiological relevance, there are many knowledge gaps concerning dengue pathogenesis, especially with regards to the circumstances that drive a mild clinical course to a severe disease. In this work, we investigated the participation of high mobility group box 1 (HMGB1), an important modulator of inflammation, in dengue fatal cases. Histopathological and ultrastructural analyses revealed that liver, lung and heart post-mortem samples were marked by tissue abnormalities, such as necrosis and apoptotic cell death. These observations go in line with an HMGB1-mediated response and raised concerns regarding the participation of this cytokine in promoting/perpetuating inflammation in severe dengue. Further experiments of immunohistochemistry (IHC) showed increased expression of cytoplasmic HMGB1 in dengue-extracted tissues when compared to non-dengue controls. Co-staining of DENV RNA and HMGB1 in the host cell cytoplasm, as found by in situ hybridization and IHC, confirmed the virus specific induction of the HMGB1-mediated response in these peripheral tissues. This report brings the first in-situ evidence of the participation of HMGB1 in severe dengue and highlights novel considerations in the development of dengue immunopathogenesis.
Collapse
Affiliation(s)
- Edson R A Oliveira
- Laboratóio de Modelagem Molecular, Instituto de Química Orgânica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | | | - Gerard J Nuovo
- Ohio State University Comprehensive Cancer Center, Columbus, Ohio, United States of America
- Phylogeny Inc, Powell, Ohio, United States of America
| | - Diego Allonso
- Laboratório de Genômica Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Natália G Salomão
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Carlos A Basílio-de-Oliveira
- Anatomia Patológica, Hospital Gaffrée Guinle, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz H M Geraldo
- Laboratório de Biologia das Células Gliais, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Celina G Fonseca
- Laboratório de Biologia das Células Gliais, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Flávia R S Lima
- Laboratório de Biologia das Células Gliais, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ronaldo Mohana-Borges
- Laboratório de Genômica Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marciano V Paes
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
79
|
Zhang Y, Mou J, Cao L, Zhen S, Huang H, Bao H. MicroRNA-142-3p relieves neuropathic pain by targeting high mobility group box 1. Int J Mol Med 2017; 41:501-510. [PMID: 29115575 DOI: 10.3892/ijmm.2017.3222] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 10/06/2017] [Indexed: 11/06/2022] Open
Abstract
MicroRNA (miRNA) are emerging as critical regulators of neuropathic pain development. Neuroinflammation contributes to the development of neuropathic pain. miR‑142‑3p has been characterized as an inflammation‑related miRNA in various pathological processes. However, little is known about the role of miR‑142‑3p in neuroinflammation and neuropathic pain. The present study aimed to investigate the function of miR‑142‑3p in neuropathic pain by creating a murine model using spinal nerve ligation (SNL). A significant reduction in miR‑142‑3p expression was observed in the dorsal root ganglion of mice with SNL (P<0.05) compared with control mice. Overexpression of miR‑142‑3p significantly inhibited neuropathic pain and neuroinflammation in mice with SNL (P<0.05). High mobility group box 1 (HMGB1) was identified as a direct target gene of miR‑142‑3p by bioinformatic analysis and dual‑luciferase reporter assays. Overexpression of miR‑142‑3p significantly reduced the mRNA and protein expression levels of HMGB1 in vitro and in vivo (P<0.05). In addition, HMGB1 mRNA expression and miR‑142‑3p expression were inversely correlated in mice with SNL. Furthermore, overexpression of HMGB1 significantly reversed the inhibitory effect of miR‑142‑3p on neuroinflammation and neuropathic pain development (P<0.05). Overall, these results suggest that miR‑142‑3p functions as a negative regulator of neuropathic pain development through the downregulation of HMGB1, indicating that miR‑142‑3p may serve as a potential therapeutic target for neuropathic pain.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Anesthesiology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Junying Mou
- Department of Anesthesiology, The Central Hospital of Enshi Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi, Hubei 445000, P.R. China
| | - Li Cao
- Department of Internal Medicine, Suizhou Zengdu Hospital, Suizhou, Hubei 441300, P.R. China
| | - Su Zhen
- Department of Anesthesiology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Hongjuan Huang
- Department of Neurology, Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu 223002, P.R. China
| | - Hongguang Bao
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| |
Collapse
|
80
|
NMI and IFP35 serve as proinflammatory DAMPs during cellular infection and injury. Nat Commun 2017; 8:950. [PMID: 29038465 PMCID: PMC5643540 DOI: 10.1038/s41467-017-00930-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 08/07/2017] [Indexed: 01/29/2023] Open
Abstract
Damage-associated molecular patterns (DAMP) trigger innate immune response and exacerbate inflammation to combat infection and cellular damage. Identifying DAMPs and revealing their functions are thus of crucial importance. Here we report that two molecules, N-myc and STAT interactor (NMI) and interferon-induced protein 35 (IFP35) act as DAMPs and are released by activated macrophages during lipopolysaccharide-induced septic shock or acetaminophen-induced liver injury. We show that extracellular NMI and IFP35 activate macrophages to release proinflammatory cytokines by activating nuclear factor-κB through the Toll-like receptor 4 pathway. In addition, the serum levels of NMI are increased in patients who succumbed to severe inflammation. NMI deficiency reduces inflammatory responses and mortality in mouse models of sepsis and liver injury. We therefore propose that extracellular NMI and IFP35 exacerbate inflammation as DAMPs, making them potential therapeutic targets for clinical intervention.Damage-associated molecular patterns (DAMP) are important mediators of innate immunity. Here the authors show that N-myc and STAT interactor (NMI) and interferon-induced protein 35 (IFP35) act as DAMPs to promote inflammation by activating macrophages via the Toll-like receptor 4 and NF-κB pathways.
Collapse
|
81
|
Affiliation(s)
- Thaiz Rivera Vargas
- Centre de Recherche; INSERM U1231; Facultés de Médecine et de Pharmacie; Dijon France
- Faculté de Médecine; Université de Bourgogne Franche comté; Dijon France
| | - Lionel Apetoh
- Centre de Recherche; INSERM U1231; Facultés de Médecine et de Pharmacie; Dijon France
- Faculté de Médecine; Université de Bourgogne Franche comté; Dijon France
- Centre Georges François Leclerc; Dijon France
| |
Collapse
|
82
|
Walker LE, Frigerio F, Ravizza T, Ricci E, Tse K, Jenkins RE, Sills GJ, Jorgensen A, Porcu L, Thippeswamy T, Alapirtti T, Peltola J, Brodie MJ, Park BK, Marson AG, Antoine DJ, Vezzani A, Pirmohamed M. Molecular isoforms of high-mobility group box 1 are mechanistic biomarkers for epilepsy. J Clin Invest 2017; 127:2118-2132. [PMID: 28504645 PMCID: PMC5451237 DOI: 10.1172/jci92001] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/16/2017] [Indexed: 01/09/2023] Open
Abstract
Approximately 30% of epilepsy patients do not respond to antiepileptic drugs, representing an unmet medical need. There is evidence that neuroinflammation plays a pathogenic role in drug-resistant epilepsy. The high-mobility group box 1 (HMGB1)/TLR4 axis is a key initiator of neuroinflammation following epileptogenic injuries, and its activation contributes to seizure generation in animal models. However, further work is required to understand the role of HMGB1 and its isoforms in epileptogenesis and drug resistance. Using a combination of animal models and sera from clinically well-characterized patients, we have demonstrated that there are dynamic changes in HMGB1 isoforms in the brain and blood of animals undergoing epileptogenesis. The pathologic disulfide HMGB1 isoform progressively increased in blood before epilepsy onset and prospectively identified animals that developed the disease. Consistent with animal data, we observed early expression of disulfide HMGB1 in patients with newly diagnosed epilepsy, and its persistence was associated with subsequent seizures. In contrast with patients with well-controlled epilepsy, patients with chronic, drug-refractory epilepsy persistently expressed the acetylated, disulfide HMGB1 isoforms. Moreover, treatment of animals with antiinflammatory drugs during epileptogenesis prevented both disease progression and blood increase in HMGB1 isoforms. Our data suggest that HMGB1 isoforms are mechanistic biomarkers for epileptogenesis and drug-resistant epilepsy in humans, necessitating evaluation in larger-scale prospective studies.
Collapse
Affiliation(s)
- Lauren Elizabeth Walker
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | | | | | - Emanuele Ricci
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Karen Tse
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Rosalind E Jenkins
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Graeme John Sills
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Andrea Jorgensen
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Luca Porcu
- Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| | - Thimmasettappa Thippeswamy
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Tiina Alapirtti
- Department of Neurology and Rehabilitation, Tampere University Hospital, Tampere, Finland
| | - Jukka Peltola
- Department of Neurology and Rehabilitation, Tampere University Hospital, Tampere, Finland
| | | | - Brian Kevin Park
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Anthony Guy Marson
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Daniel James Antoine
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | | | - Munir Pirmohamed
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
83
|
Zhao P, Ye T, Yan X, Hu X, Liu P, Wang X. HMGB1 release by H 2O 2-induced hepatocytes is regulated through calcium overload and 58-F interference. Cell Death Discov 2017; 3:17008. [PMID: 28417016 PMCID: PMC5385391 DOI: 10.1038/cddiscovery.2017.8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/10/2017] [Indexed: 12/14/2022] Open
Abstract
HMGB1 is passively released by injured or dying cells and aggravates inflammatory processes. The release of HMGB1 and calcium overload have each been reported to be important mediators of H2O2-induced injury. However, a potential connection between these two processes remains to be elucidated. In the present study, we employed H2O2-induced hepatocytes to investigate how calcium overload takes place during cellular injury and how the extracellular release of HMGB1 is regulated by this overload. In addition, we investigated the use of 58-F, a flavanone extracted from Ophiopogon japonicus, as a potential therapeutic drug. We show that the PLCγ1-IP3R-SOC signalling pathway participates in the H2O2-induced disturbance of calcium homoeostasis and leads to calcium overload in hepatocytes. After a rise in intracellular calcium, two calcium-dependent enzymes, PKCα and CaMKIV, are activated and translocated from the cytoplasm to the nucleus to modify HMGB1 phosphorylation. In turn, this promotes HMGB1 translocation from the nucleus to the cytoplasm and subsequent extracellular release. 58-F effectively rescued the hepatocytes by suppressing the PLCγ1-IP3R-SOC signalling pathway and decreasing the calcium concentration in cells, thus reducing HMGB1 release.
Collapse
Affiliation(s)
- Pei Zhao
- The Public Experiment Platform, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tingjie Ye
- Department of Biology, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaofeng Yan
- Department of Biology, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xudong Hu
- Department of Biology, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ping Liu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.,E-institute of Shanghai Municipal Education Commission, Shanghai 201203, China
| | - Xiaoling Wang
- Department of Biology, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
84
|
HMGB1-TLR4-IL23-IL17A axis promotes paraquat-induced acute lung injury by mediating neutrophil infiltration in mice. Sci Rep 2017; 7:597. [PMID: 28377603 PMCID: PMC5429653 DOI: 10.1038/s41598-017-00721-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 03/09/2017] [Indexed: 12/18/2022] Open
Abstract
Paraquat is a poisoning herbicide that primarily targets lung, leading to severe acute lung injury characterized by extensive neutrophil infiltration. However, the mechanisms underlying the neutrophil infiltration is not clear. In this study, we demonstrated the significance of the signaling cascade from high-mobility group box 1 (HMGB1), to Toll-like receptor 4 (TLR4), interleukin-23 (IL-23), and lastly to IL-17A during the paraquat-induced neutrophil infiltration and the subsequent lung injury in mice. Paraquat challenge significantly elevated serum levels of IL-17A and IL-23, the percentage of IL-17A-producing γδT cells in the lung, and the level of HMGB1 in bronchoalveolar lavage fluid. Reducing IL-17A production using an anti-γδT antibody, targeting IL-23 with the neutralizing antibody against IL-23p19, and blocking HMGB1 signaling by using glycyrrhizin or TLR4-/- mice all dramatically inhibited the infiltration of neutrophils and attenuated lung injury. These novel findings not only reveal the critical role of HMGB1-TLR4-IL-23-IL-17A axis in the pathogenesis of paraquat-induced acute lung injury, but also provide promising therapeutic targets for treating paraquat poisoning.
Collapse
|
85
|
Wang X, Liu C, Wang G. Propofol Protects Rats and Human Alveolar Epithelial Cells Against Lipopolysaccharide-Induced Acute Lung Injury via Inhibiting HMGB1 Expression. Inflammation 2017; 39:1004-16. [PMID: 26956470 DOI: 10.1007/s10753-016-0330-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
High-mobility group box 1 (HMGB1) plays a key role in the development of acute lung injury (ALI). Propofol, a general anesthetic with anti-inflammatory properties, has been suggested to be able to modulate lipopolysaccharide (LPS)-induced ALI. In this study, we investigated the effects of propofol on the expression of HMGB1 in a rat model of LPS-induced ALI. Rats underwent intraperitoneal injection of LPS to mimic sepsis-induced ALI. Propofol bolus (1, 5, or 10 mg/kg) was infused continuously 30 min after LPS administration, followed by infusion at 5 mg/(kg · h) through the left femoral vein cannula. LPS increased wet to dry weight ratio and myeloperoxidase activity in lung tissues and caused the elevation of total protein and cells, neutrophils, macrophages, and neutrophils in bronchoalveolar lavage fluid (BALF). Moreover, HMGB1 and other cytokine levels were increased in BALF and lung tissues and pathological changes of lung tissues were excessively aggravated in rats after LPS administration. Propofol inhibited all the above effects. It also inhibited LPS-induced toll-like receptor (TLR)2/4 protein upexpression and NF-κB activation in lung tissues and human alveolar epithelial cells. Propofol protects rats and human alveolar epithelial cells against HMGB1 expression in a rat model of LPS-induced ALI. These effects may partially result from reductions in TLR2/4 and NF-κB activation.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong University, No. 324 Jingwu Road, Jinan, Shandong, China
| | - Chengxiao Liu
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong University, No. 324 Jingwu Road, Jinan, Shandong, China
| | - Gongming Wang
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong University, No. 324 Jingwu Road, Jinan, Shandong, China.
| |
Collapse
|
86
|
Anggayasti WL, Mancera RL, Bottomley S, Helmerhorst E. The self-association of HMGB1 and its possible role in the binding to DNA and cell membrane receptors. FEBS Lett 2017; 591:282-294. [PMID: 28027393 DOI: 10.1002/1873-3468.12545] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/04/2016] [Accepted: 12/22/2016] [Indexed: 01/09/2023]
Abstract
High mobility group box 1 (HMGB1), a chromatin protein, interacts with DNA and controls gene expression. However, when HMGB1 is released from apoptotic or damaged cells, it triggers proinflammatory reactions by interacting with various receptors, mainly receptor for advanced glycation end-products (RAGE) and toll-like receptors (TLRs). The self-association of HMGB1 has been found to be crucial for its DNA-related biological functions. It is influenced by several factors, such as ionic strength, pH, specific divalent metal cations, redox environment and acetylation. This self-association may also play a role in the interaction with RAGE and TLRs and the concomitant inflammatory responses. Future studies should address the potential role of HMGB1 self-association on its interactions with DNA, RAGE and TLRs, as well as the influence of physicochemical factors in different cellular environments on these interactions.
Collapse
Affiliation(s)
- Wresti L Anggayasti
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
| | - Ricardo L Mancera
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
| | - Steve Bottomley
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
| | - Erik Helmerhorst
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
| |
Collapse
|
87
|
Ding J, Cui X, Liu Q. Emerging role of HMGB1 in lung diseases: friend or foe. J Cell Mol Med 2016; 21:1046-1057. [PMID: 28039939 PMCID: PMC5431121 DOI: 10.1111/jcmm.13048] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/30/2016] [Indexed: 12/11/2022] Open
Abstract
Lung diseases remain a serious problem for public health. The immune status of the body is considered to be the main influencing factor for the progression of lung diseases. HMGB1 (high‐mobility group box 1) emerges as an important molecule of the body immune network. Accumulating data have demonstrated that HMGB1 is crucially implicated in lung diseases and acts as independent biomarker and therapeutic target for related lung diseases. This review provides an overview of updated understanding of HMGB1 structure, release styles, receptors and function. Furthermore, we discuss the potential role of HMGB1 in a variety of lung diseases. Further exploration of molecular mechanisms underlying the function of HMGB1 in lung diseases will provide novel preventive and therapeutic strategies for lung diseases.
Collapse
Affiliation(s)
- Junying Ding
- Beijing Key Lab of Basic Study on Traditional Chinese Medicine (TCM) Infectious Diseases, Beijing Research Institute of TCM, Beijing Hospital of TCM affiliated to Capital Medical University, Beijing, China
| | - Xuran Cui
- Beijing Key Lab of Basic Study on Traditional Chinese Medicine (TCM) Infectious Diseases, Beijing Research Institute of TCM, Beijing Hospital of TCM affiliated to Capital Medical University, Beijing, China
| | - Qingquan Liu
- Beijing Key Lab of Basic Study on Traditional Chinese Medicine (TCM) Infectious Diseases, Beijing Research Institute of TCM, Beijing Hospital of TCM affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
88
|
Chi JH, Seo GS, Cheon JH, Lee SH. Isoliquiritigenin inhibits TNF-α-induced release of high-mobility group box 1 through activation of HDAC in human intestinal epithelial HT-29 cells. Eur J Pharmacol 2016; 796:101-109. [PMID: 28012970 DOI: 10.1016/j.ejphar.2016.12.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 12/16/2016] [Accepted: 12/19/2016] [Indexed: 01/27/2023]
Abstract
The suppression of pro-inflammatory cytokine-induced inflammation responses is an attractive pharmacological target for the development of therapeutic strategies for inflammatory bowel disease (IBD). In the present study, we evaluated the anti-inflammatory properties of flavonoid isoliquiritigenin (ISL) in intestinal epithelial cells and determined its mechanism of action. ISL suppressed the expression of inflammatory molecules, including IL-8, IL-1β and COX-2, in TNF-α-stimulated HT-29 cells. Moreover, ISL induced activation of Nrf2 and expression of its target genes, such as HO-1 and NQO1. ISL also inhibited the TNF-α-induced NF-κB activation in HT-29 cells. High-mobility group box 1 (HMGB1), which is one of the critical mediators of inflammation, is actively secreted from inflammatory cytokine-stimulated immune or non-immune cells. ISL inhibited HMGB1 secretion by preventing TNF-α-stimulated HMGB1 relocation, whereas the RNA and protein expression levels of cellular HMGB1 did not change in response to TNF-α or ISL. Moreover, we found that HMGB1 acetylation was associated with HMGB1 translocation to the cytoplasm and the extracellular release in TNF-α-stimulated HT-29 cells; however, ISL significantly decreased the amount of acetylated HMGB1 in both the cytoplasm and extracellular space of HT-29 cells. Histone deacetylase (HDAC) inhibition by Scriptaid abrogated ISL-induced HDAC activity and reversed the ISL-mediated decrease in acetylated HMGB1 release in TNF-α-stimulated HT-29 cells, suggesting that, at least in TNF-α-stimulated HT-29 cells, ISL suppresses acetylated HMGB1 release via the induction of HDAC activity. Together, the current results suggest that inhibition of HMGB1 release via the induction of HDAC activity using ISL may be a promising therapeutic intervention for IBD.
Collapse
Affiliation(s)
- Jin-Hua Chi
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan, Jeonbuk, South Korea
| | - Geom Seog Seo
- Digestive Disease Research Institute, Wonkwang University College of Medicine, Jeonbuk, South Korea
| | - Jae Hee Cheon
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea; Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul, South Korea.
| | - Sung Hee Lee
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan, Jeonbuk, South Korea.
| |
Collapse
|
89
|
Luo Y, Che W, Zhao M. Ulinastatin post-treatment attenuates lipopolysaccharide-induced acute lung injury in rats and human alveolar epithelial cells. Int J Mol Med 2016; 39:297-306. [PMID: 27959396 PMCID: PMC5358699 DOI: 10.3892/ijmm.2016.2828] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 11/16/2016] [Indexed: 01/11/2023] Open
Abstract
Ulinastatin (UTI), a serine protease inhibitor, possesses anti-inflammatory properties and has been suggested to modulate lipopolysaccharide (LPS)-induced acute lung injury (ALI). High-mobility group box 1 (HMGB1), a nuclear DNA-binding protein, plays a key role in the development of ALI. The aim of this study was to investigate whether UTI attenuates ALI through the inhibition of HMGB1 expression and to elucidate the underlying molecular mechanisms. ALI was induced in male rats by the intratracheal instillation of LPS (5 mg/kg). UTI was administered intraperitoneally 30 min following exposure to LPS. A549 alveolar epithelial cells were incubated with LPS in the presence or absence of UTI. An enzyme-linked immunosorbent assay was used to detect the levels of inflammatory cytokines. Western blot analysis was performed to detect the changes in the expression levels of Toll-like receptor 2/4 (TLR2/4) and the activation of nuclear factor-κB (NF-κB). The results revealed that UTI significantly protected the animals from LPS-induced ALI, as evidenced by the decrease in the lung wet to dry weight ratio, total cells, neutrophils, macrophages and myeloperoxidase activity, associated with reduced lung histological damage. We also found that UTI post-treatment markedly inhibited the release of HMGB1 and other pro-inflammatory cytokines. Furthermore, UTI significantly inhibited the LPS-induced increase in TLR2/4 protein expression and NF-κB activation in lung tissues. In vitro, UTI markedly inhibited the expression of TLR2/4 and the activation of NF-κB in LPS-stimulated A549 alveolar epithelial cells. The findings of our study indicate that UTI attenuates LPS-induced ALI through the inhibition of HMGB1 expression in rats. These benefits are associated with the inhibition of the activation of the TLR2/4-NF-κB pathway by UTI.
Collapse
Affiliation(s)
- Yunpeng Luo
- Department of Intensive Care Unit, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Wen Che
- Department of Intensive Care Unit, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Mingyan Zhao
- Department of Intensive Care Unit, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
90
|
Shao Y, Sha M, Chen L, Li D, Lu J, Xia S. HMGB1/TLR4 signaling induces an inflammatory response following high-pressure renal pelvic perfusion in a porcine model. Am J Physiol Renal Physiol 2016; 311:F915-F925. [PMID: 27358057 DOI: 10.1152/ajprenal.00480.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 06/26/2016] [Indexed: 11/22/2022] Open
Abstract
Percutaneous nephrolithotomy (PCNL) causes a rapid increase in renal pelvic pressure in the kidney, which induces an inflammatory response. High-mobility group box-1 (HMGB1) is known to trigger the recruitment of inflammatory cells and the release of proinflammatory cytokines following ischemia reperfusion injury in the kidney, but the contribution of HMGB1 to the inflammatory response following high-pressure renal pelvic perfusion has not been investigated. In this study, high-pressure renal pelvic perfusion was induced in anesthetized pigs to examine the effect of HMGB1 on the inflammatory response. HMGB1 levels in the kidney increased following high-pressure renal pelvic perfusion, together with elevated levels of inflammatory cytokines in the plasma and kidney and an accumulation of neutrophils and macrophages. Inhibition of HMGB1 alleviated this inflammatory response while perfusion with recombinant HMGB1 had an augmentative effect, confirming the involvement of HMGB1 in the inflammatory response to high-pressure renal pelvic perfusion. HMGB1 regulated the inflammatory response by activating Toll-like receptor 4 (TLR4) signaling. In conclusion, this study has demonstrated that HMGB1/TLR4 signaling contributes to the inflammatory response following high-pressure renal pelvic perfusion in a porcine model and has implications for the management of inflammation after PCNL.
Collapse
Affiliation(s)
- Yi Shao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minglei Sha
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Chen
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Deng Li
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Lu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shujie Xia
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
91
|
Papatheodorou A, Stein A, Bank M, Sison CP, Gibbs K, Davies P, Bloom O. High-Mobility Group Box 1 (HMGB1) Is Elevated Systemically in Persons with Acute or Chronic Traumatic Spinal Cord Injury. J Neurotrauma 2016; 34:746-754. [PMID: 27673428 DOI: 10.1089/neu.2016.4596] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Inflammation in traumatic spinal cord injury (SCI) has been proposed to promote damage acutely and oppose functional recovery chronically. However, we do not yet understand the signals that initiate or prolong inflammation in persons with SCI. High-Mobility Group Box 1 (HMGB1) is a potent systemic inflammatory cytokine-or damage-associated molecular pattern molecule (DAMP)-studied in a variety of clinical settings. It is elevated in pre-clinical models of traumatic spinal cord injury (SCI), where it promotes secondary injury, and strategies that block HMGB1 improve functional recovery. To investigate the potential translational relevance of these observations, we measured HMGB1 in plasma from adults with acute (≤ 1 week post-SCI, n = 16) or chronic (≥ 1 year post-SCI, n = 47) SCI. Plasma from uninjured persons (n = 51) served as controls for comparison. In persons with acute SCI, average HMGB1 levels were significantly elevated within 0-3 days post-injury (6.00 ± 1.8 ng/mL, mean ± standard error of the mean [SEM]) or 4-7 (6.26 ± 1.3 ng/mL, mean ± SEM), compared with controls (1.26 ± 0.24 ng/mL, mean ± SEM; p ≤ 0.001 and p ≤ 0.01, respectively). In persons with chronic SCI who were injured for 15 ± 1.5 years (mean ± SEM), HMGB1 also was significantly elevated, compared with uninjured persons (3.7 ± 0.69 vs. 1.26 ± 0.24 ng/mL, mean ± SEM; p ≤ 0.0001). Together, these data suggest that HMGB1 may be a common, early, and persistent danger signal promoting inflammation in individuals with SCI.
Collapse
Affiliation(s)
- Angelos Papatheodorou
- 1 Department of Autoimmune and Musculoskeletal Disorders, North Shore University Hospital , Northwell Health, Manhasset, New York
| | - Adam Stein
- 2 Department of Physical Medicine and Rehabilitation, North Shore University Hospital , Northwell Health, Manhasset, New York
| | - Matthew Bank
- 3 Department of Surgery, North Shore University Hospital , Northwell Health, Manhasset, New York
| | - Cristina P Sison
- 4 Department of Molecular Medicine, Hofstra Northwell School of Medicine, North Shore University Hospital , Northwell Health, Manhasset, New York
| | - Katie Gibbs
- 2 Department of Physical Medicine and Rehabilitation, North Shore University Hospital , Northwell Health, Manhasset, New York
| | - Peter Davies
- 5 Litwin-Zucker Research Center for the Study of Alzheimer's Disease, the Feinstein Institute for Medical Research, North Shore University Hospital , Northwell Health, Manhasset, New York
| | - Ona Bloom
- 1 Department of Autoimmune and Musculoskeletal Disorders, North Shore University Hospital , Northwell Health, Manhasset, New York.,2 Department of Physical Medicine and Rehabilitation, North Shore University Hospital , Northwell Health, Manhasset, New York.,4 Department of Molecular Medicine, Hofstra Northwell School of Medicine, North Shore University Hospital , Northwell Health, Manhasset, New York
| |
Collapse
|
92
|
Gebremeskel S, Johnston B. Concepts and mechanisms underlying chemotherapy induced immunogenic cell death: impact on clinical studies and considerations for combined therapies. Oncotarget 2016; 6:41600-19. [PMID: 26486085 PMCID: PMC4747176 DOI: 10.18632/oncotarget.6113] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 09/22/2015] [Indexed: 01/12/2023] Open
Abstract
Chemotherapy has historically been thought to induce cancer cell death in an immunogenically silent manner. However, recent studies have demonstrated that therapeutic outcomes with specific chemotherapeutic agents (e.g. anthracyclines) correlate strongly with their ability to induce a process of immunogenic cell death (ICD) in cancer cells. This process generates a series of signals that stimulate the immune system to recognize and clear tumor cells. Extensive studies have revealed that chemotherapy-induced ICD occurs via the exposure/release of calreticulin (CALR), ATP, chemokine (C–X–C motif) ligand 10 (CXCL10) and high mobility group box 1 (HMGB1). This review provides an in-depth look into the concepts and mechanisms underlying CALR exposure, activation of the Toll-like receptor 3/IFN/CXCL10 axis, and the release of ATP and HMGB1 from dying cancer cells. Factors that influence the impact of ICD in clinical studies and the design of therapies combining chemotherapy with immunotherapy are also discussed.
Collapse
Affiliation(s)
- Simon Gebremeskel
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, Canada.,Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| | - Brent Johnston
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada.,Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| |
Collapse
|
93
|
Schmitz M, Douxfils J, Mandiki SNM, Morana C, Baekelandt S, Kestemont P. Chronic hyperosmotic stress interferes with immune homeostasis in striped catfish (Pangasianodon hypophthalmus, S.) and leads to excessive inflammatory response during bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2016; 55:550-558. [PMID: 27346159 DOI: 10.1016/j.fsi.2016.06.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 06/11/2016] [Accepted: 06/22/2016] [Indexed: 06/06/2023]
Abstract
Hyperosmotic stress has often been investigated from osmoregulation perspectives while the effects of such stress on the immune capacity remain largely unexplored. In this study, striped catfish were submitted to three salinity profiles (freshwater, low saline water, saline water) during 20 days, followed by infection with a virulent bacteria, Edwardsiella ictaluri, responsible for the enteric septicaemia of catfish. Osmoregulatory (plasma osmolality, gill Na(+)K(+)ATPase), immune (blood cells, lysozyme activity, complement activity, respiratory burst) parameters and mortality rate were investigated. In addition, abundances of heat shock protein 70 and high mobility group box 1 were explored. With elevated salinity, plasma osmolality severely increased while gill Na(+)K(+)ATPase slightly increased. Salinity alone stimulated the number of granulocytes, lysozyme activity and respiratory burst but depleted the number of thrombocytes. Salinity in combination with infection stimulated the number of monocytes and ACH50. On the contrary, erythrocytes, hematocrit, heat shock protein 70 and high mobility group box 1 did not significantly vary with salinity profiles. Then, salinity induced earlier onset on mortalities after E. ictaluri inoculation whereas cumulative mortality reach 79.2%, 67.0% and 91.7% respectively in freshwater, low saline water and saline water. In conclusion, salinity stimulates several immune functions in striped catfish but prolonged exposure to excessive hyperosmotic condition may lead to excessive inflammatory response and death.
Collapse
Affiliation(s)
- Mélodie Schmitz
- University of Namur, Research Unit in Environmental and Evolutionary Biology, Namur, Belgium.
| | - Jessica Douxfils
- University of Namur, Research Unit in Environmental and Evolutionary Biology, Namur, Belgium
| | - Syaghalirwa N M Mandiki
- University of Namur, Research Unit in Environmental and Evolutionary Biology, Namur, Belgium
| | - Cédric Morana
- Katholieke Universiteit Leuven, Department of Earth and Environmental Sciences, Leuven, Belgium
| | - Sébastien Baekelandt
- University of Namur, Research Unit in Environmental and Evolutionary Biology, Namur, Belgium
| | - Patrick Kestemont
- University of Namur, Research Unit in Environmental and Evolutionary Biology, Namur, Belgium
| |
Collapse
|
94
|
Wang X, Guo Y, Wang C, Yu H, Yu X, Yu H. MicroRNA-142-3p Inhibits Chondrocyte Apoptosis and Inflammation in Osteoarthritis by Targeting HMGB1. Inflammation 2016; 39:1718-28. [DOI: 10.1007/s10753-016-0406-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
95
|
Xu L, Zhao K, Shen X, Fan XX, Ding K, Liu RM, Wang F. Blockade of Extracellular High-Mobility Group Box 1 Attenuates Systemic Inflammation and Coagulation Abnormalities in Rats with Acute Traumatic Coagulopathy. Med Sci Monit 2016; 22:2561-70. [PMID: 27436061 PMCID: PMC4965062 DOI: 10.12659/msm.900018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND As an extracellularly released mediator, high-mobility group box 1 (HMGB1) initiates sterile inflammation following severe trauma. Serum HMGB1 levels correlate well with acute traumatic coagulopathy (ATC) in trauma patients, which is independently associated with higher mortality. We investigated the involvement of HMGB1 in ATC through blocking extracellular HMGB1. MATERIAL AND METHODS The ATC model was induced by polytrauma and hemorrhage in male Sprague-Dawley rats, which were randomly assigned to sham, ATC, and ATCH (ATC with HMGB1 blockade) groups. Thrombelastography (TEG) was performed to monitor changes in coagulation function. Serum levels of HMGB1, TNF-α, and IL-6 were measured, as well as lung levels of HMGB1 and nuclear factor (NF)-κB and expression of receptor for advanced glycation end-products (RAGE). RESULTS Compared with the sham group, HMGB1 increased the serum levels of TNF-α and IL-6, whereas HMGB1 blockade inhibited the induction of TNF-α and IL-6. HMGB1 also induced elevated serum soluble P-selectin and fibrinolysis markers plasmin-antiplasmin complex, which both were reduced by HMGB1 blockade. Thrombelastography revealed the hypocoagulability status in the ATC group, which was attenuated by anti-HMGB1 antibody. Furthermore, the lung level of NF-κB and expression of RAGE were decreased by anti-HMGB1 antibody, suggesting the role of RAGE/NF-κB pathway in ATC. CONCLUSIONS HMGB1 blockade can attenuate inflammation and coagulopathy in ATC rats. Anti-HMGB1 antibody might exert protective effects partly through the RAGE/NF-κB pathway. Thus, HMGB1 has potential as a therapeutic target in ATC.
Collapse
Affiliation(s)
- Lin Xu
- Department of General Surgery, Bayi Hospital Affiliated Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| | - Kun Zhao
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China (mainland)
| | - Xiao Shen
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China (mainland)
| | - Xin-Xin Fan
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China (mainland)
| | - Kai Ding
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China (mainland)
| | - Ren-Min Liu
- Department of General Surgery, Bayi Hospital Affiliated Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| | - Feng Wang
- Department of General Surgery, Bayi Hospital Affiliated Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| |
Collapse
|
96
|
Venereau E, De Leo F, Mezzapelle R, Careccia G, Musco G, Bianchi ME. HMGB1 as biomarker and drug target. Pharmacol Res 2016; 111:534-544. [PMID: 27378565 DOI: 10.1016/j.phrs.2016.06.031] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 12/27/2022]
Abstract
High Mobility Group Box 1 protein was discovered as a nuclear protein, but it has a "second life" outside the cell where it acts as a damage-associated molecular pattern. HMGB1 is passively released or actively secreted in a number of diseases, including trauma, chronic inflammatory disorders, autoimmune diseases and cancer. Extracellular HMGB1 triggers and sustains the inflammatory response by inducing cytokine release and by recruiting leucocytes. These characteristics make extracellular HMGB1 a key molecular target in multiple diseases. A number of strategies have been used to prevent HMGB1 release or to inhibit its activities. Current pharmacological strategies include antibodies, peptides, decoy receptors and small molecules. Noteworthy, salicylic acid, a metabolite of aspirin, has been recently found to inhibit HMGB1. HMGB1 undergoes extensive post-translational modifications, in particular acetylation and oxidation, which modulate its functions. Notably, high levels of serum HMGB1, in particular of the hyper-acetylated and disulfide isoforms, are sensitive disease biomarkers and are associated with different disease stages. In the future, the development of isoform-specific HMGB1 inhibitors may potentiate and fine-tune the pharmacological control of inflammation. We review here the current therapeutic strategies targeting HMGB1, in particular the emerging and relatively unexplored small molecules-based approach.
Collapse
Affiliation(s)
- Emilie Venereau
- Chromatin Dynamics Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; HMGBiotech s.r.l., Milan, Italy
| | - Federica De Leo
- Biomolecular NMR Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Rosanna Mezzapelle
- Chromatin Dynamics Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giorgia Careccia
- Chromatin Dynamics Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; University of Milano Bicocca, Milan, Italy
| | - Giovanna Musco
- Biomolecular NMR Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco E Bianchi
- Chromatin Dynamics Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; San Raffaele University, Milan, Italy.
| |
Collapse
|
97
|
van der Meer AJ, Achouiti A, van der Ende A, Soussan AA, Florquin S, de Vos A, Zeerleder SS, van der Poll T. Toll-like receptor 9 enhances bacterial clearance and limits lung consolidation in murine pneumonia caused by methicillin resistant Staphylococcus aureus. Mol Med 2016; 22:292-299. [PMID: 27508882 DOI: 10.2119/molmed.2015.00242] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 05/18/2016] [Indexed: 12/21/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is an important pathogen in pneumonia, associated with severe lung damage. Tissue injury causes release of Damage Associated Molecular Patterns (DAMPs), which may perpetuate inflammation. DNA has been implicated as a DAMP that activates inflammation through Toll-like receptor (TLR)9. The aim of this study was to evaluate the role of TLR9 in MRSA pneumonia. Wild-type (Wt) and TLR9 knockout (tlr9-/-) mice were infected intranasally with MRSA USA300 (BK 11540) (5E7CFU) and euthanized at 6,24,48 or 72 hours for analyses. MRSA pneumonia was associated with profound release of cell-free host DNA in the airways, as reflected by increases in nucleosome and DNA levels in bronchoalveolar lavage fluid (BALF), accompanied by transient detection of pathogen DNA in MRSA-free BALF supernatants. In BALF, as compared to Wt -mice tlr9-/- mice showed reduced TNFα and IL-6 levels at 6 hours and reduced bacterial clearance at 6 and 24 hours post infection. Furthermore, tlr9-/- mice exhibited a greater influx of neutrophils in BALF and increased lung consolidation at 24 and 48 hours. This study demonstrates the release of host- and pathogen-derived TLR9 ligands (DNA) into the alveolar space after infection with MRSA via the airways and suggests that TLR9 has pro-inflammatory effects during MRSA pneumonia associated with enhanced bacterial clearance and limitation of lung consolidation.
Collapse
Affiliation(s)
- Anne Jan van der Meer
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Achmed Achouiti
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Arie van der Ende
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Aicha A Soussan
- Department of Immunopathology, Sanquin Research, Amsterdam, The Netherlands
| | - Sandrine Florquin
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Alex de Vos
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Sacha S Zeerleder
- Department of Hematology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Immunopathology, Sanquin Research, Amsterdam, The Netherlands
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Division of Infectious Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
98
|
Jia H, Sodhi CP, Yamaguchi Y, Lu P, Martin LY, Good M, Zhou Q, Sung J, Fulton WB, Nino DF, Prindle T, Ozolek JA, Hackam DJ. Pulmonary Epithelial TLR4 Activation Leads to Lung Injury in Neonatal Necrotizing Enterocolitis. THE JOURNAL OF IMMUNOLOGY 2016; 197:859-71. [PMID: 27307558 DOI: 10.4049/jimmunol.1600618] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 05/20/2016] [Indexed: 12/14/2022]
Abstract
We seek to define the mechanisms leading to the development of lung disease in the setting of neonatal necrotizing enterocolitis (NEC), a life-threatening gastrointestinal disease of premature infants characterized by the sudden onset of intestinal necrosis. NEC development in mice requires activation of the LPS receptor TLR4 on the intestinal epithelium, through its effects on modulating epithelial injury and repair. Although NEC-associated lung injury is more severe than the lung injury that occurs in premature infants without NEC, the mechanisms leading to its development remain unknown. In this study, we now show that TLR4 expression in the lung gradually increases during postnatal development, and that mice and humans with NEC-associated lung inflammation express higher levels of pulmonary TLR4 than do age-matched controls. NEC in wild-type newborn mice resulted in significant pulmonary injury that was prevented by deletion of TLR4 from the pulmonary epithelium, indicating a role for pulmonary TLR4 in lung injury development. Mechanistically, intestinal epithelial TLR4 activation induced high-mobility group box 1 release from the intestine, which activated pulmonary epithelial TLR4, leading to the induction of the neutrophil recruiting CXCL5 and the influx of proinflammatory neutrophils to the lung. Strikingly, the aerosolized administration of a novel carbohydrate TLR4 inhibitor prevented CXCL5 upregulation and blocked NEC-induced lung injury in mice. These findings illustrate the critical role of pulmonary TLR4 in the development of NEC-associated lung injury, and they suggest that inhibition of this innate immune receptor in the neonatal lung may prevent this devastating complication of NEC.
Collapse
Affiliation(s)
- Hongpeng Jia
- Division of General Pediatric Surgery, Johns Hopkins University and Bloomberg Children's Center, Johns Hopkins Hospital, Baltimore, MD 21287
| | - Chhinder P Sodhi
- Division of General Pediatric Surgery, Johns Hopkins University and Bloomberg Children's Center, Johns Hopkins Hospital, Baltimore, MD 21287
| | - Yukihiro Yamaguchi
- Division of General Pediatric Surgery, Johns Hopkins University and Bloomberg Children's Center, Johns Hopkins Hospital, Baltimore, MD 21287
| | - Peng Lu
- Division of General Pediatric Surgery, Johns Hopkins University and Bloomberg Children's Center, Johns Hopkins Hospital, Baltimore, MD 21287
| | - Laura Y Martin
- Division of General Pediatric Surgery, Johns Hopkins University and Bloomberg Children's Center, Johns Hopkins Hospital, Baltimore, MD 21287
| | - Misty Good
- Division of Newborn Medicine, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, Pittsburgh, PA 15224; and
| | - Qinjie Zhou
- Division of General Pediatric Surgery, Johns Hopkins University and Bloomberg Children's Center, Johns Hopkins Hospital, Baltimore, MD 21287
| | - Jungeun Sung
- Division of General Pediatric Surgery, Johns Hopkins University and Bloomberg Children's Center, Johns Hopkins Hospital, Baltimore, MD 21287
| | - William B Fulton
- Division of General Pediatric Surgery, Johns Hopkins University and Bloomberg Children's Center, Johns Hopkins Hospital, Baltimore, MD 21287
| | - Diego F Nino
- Division of General Pediatric Surgery, Johns Hopkins University and Bloomberg Children's Center, Johns Hopkins Hospital, Baltimore, MD 21287
| | - Thomas Prindle
- Division of General Pediatric Surgery, Johns Hopkins University and Bloomberg Children's Center, Johns Hopkins Hospital, Baltimore, MD 21287
| | - John A Ozolek
- Division of Pediatric Pathology, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, Pittsburgh, PA 15224
| | - David J Hackam
- Division of General Pediatric Surgery, Johns Hopkins University and Bloomberg Children's Center, Johns Hopkins Hospital, Baltimore, MD 21287;
| |
Collapse
|
99
|
Takahashi Y, Yu Z, Sakai M, Tomita H. Linking Activation of Microglia and Peripheral Monocytic Cells to the Pathophysiology of Psychiatric Disorders. Front Cell Neurosci 2016; 10:144. [PMID: 27375431 PMCID: PMC4891983 DOI: 10.3389/fncel.2016.00144] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 05/16/2016] [Indexed: 11/17/2022] Open
Abstract
A wide variety of studies have identified microglial activation in psychiatric disorders, such as schizophrenia, bipolar disorder, and major depressive disorder. Relatively fewer, but robust, studies have detected activation of peripheral monocytic cells in psychiatric disorders. Considering the origin of microglia, as well as neuropsychoimmune interactions in the context of the pathophysiology of psychiatric disorders, it is reasonable to speculate that microglia interact with peripheral monocytic cells in relevance with the pathogenesis of psychiatric disorders; however, these interactions have drawn little attention. In this review, we summarize findings relevant to activation of microglia and monocytic cells in psychiatric disorders, discuss the potential association between these cell types and disease pathogenesis, and propose perspectives for future research on these processes.
Collapse
Affiliation(s)
- Yuta Takahashi
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku UniversitySendai, Japan; Department of Disaster Psychiatry, Graduate School of Medicine, Tohoku UniversitySendai, Japan; Department of Psychiatry, Graduate School of Medicine, Tohoku UniversitySendai, Japan
| | - Zhiqian Yu
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku UniversitySendai, Japan; Department of Disaster Psychiatry, Graduate School of Medicine, Tohoku UniversitySendai, Japan; Group of Mental Health Promotion, Tohoku Medical Megabank Organization, Tohoku UniversitySendai, Japan
| | - Mai Sakai
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku UniversitySendai, Japan; Department of Disaster Psychiatry, Graduate School of Medicine, Tohoku UniversitySendai, Japan
| | - Hiroaki Tomita
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku UniversitySendai, Japan; Department of Disaster Psychiatry, Graduate School of Medicine, Tohoku UniversitySendai, Japan; Group of Mental Health Promotion, Tohoku Medical Megabank Organization, Tohoku UniversitySendai, Japan
| |
Collapse
|
100
|
Guo D, Li K, Yang M, Zhang H, Miao Y. Levobupivacaine attenuates lipopolysaccharide-induced acute lung injury. Fundam Clin Pharmacol 2016; 30:307-15. [PMID: 26991027 DOI: 10.1111/fcp.12197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/08/2016] [Accepted: 03/15/2016] [Indexed: 01/04/2023]
Affiliation(s)
- Dan Guo
- Department of Anesthesiology; First Affiliated Hospital of Henan University of Science and Technology; Luoyang Henan China 471000
| | - Kehan Li
- Department of Anesthesiology; First Affiliated Hospital of Henan University of Science and Technology; Luoyang Henan China 471000
| | - Muqiang Yang
- Department of Anesthesiology; First Affiliated Hospital of Henan University of Science and Technology; Luoyang Henan China 471000
| | - Hongjun Zhang
- Department of Anesthesiology; First Affiliated Hospital of Henan University of Science and Technology; Luoyang Henan China 471000
| | - Yafei Miao
- Department of Anesthesiology; First Affiliated Hospital of Henan University of Science and Technology; Luoyang Henan China 471000
| |
Collapse
|