51
|
Yi JH, Choe SY, Jung MW. Variations in Commissural Input Processing Across Different Types of Cortical Projection Neurons. Cereb Cortex 2021; 32:2508-2520. [PMID: 34607355 DOI: 10.1093/cercor/bhab361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 11/14/2022] Open
Abstract
To understand how incoming cortical inputs are processed by different types of cortical projection neurons in the medial prefrontal cortex, we compared intrinsic physiological properties of and commissural excitatory/inhibitory influences on layer 5 intratelencephalic (IT), layer 5 pyramidal tract (PT), and layers 2/3 IT projection neurons. We found that intrinsic physiological properties and commissural synaptic transmission varied across the three types of projection neurons. The rank order of intrinsic excitability was layer 5 PT > layer 5 IT > layers 2/3 IT neurons. Commissural connectivity was higher in layers 2/3 than layer 5 projection neurons, but commissural excitatory influence was stronger on layer 5 than layers 2/3 pyramidal neurons. Paired-pulse ratio was also greater in PT than IT neurons. These results indicate that commissural inputs activate deep layer PT neurons most preferentially and superficial layer IT neurons least preferentially. Deep layer PT neurons might faithfully transmit cortical input signals to downstream subcortical structures for reliable control of behavior, whereas superficial layer IT neurons might integrate cortical input signals from diverse sources in support of higher-order cognitive functions.
Collapse
Affiliation(s)
- Jee Hyun Yi
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon 34141, Korea
| | - Seo Yeon Choe
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon 34141, Korea
| | - Min Whan Jung
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon 34141, Korea.,Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| |
Collapse
|
52
|
Subramaniyan M, Manivannan S, Chelur V, Tsetsenis T, Jiang E, Dani JA. Fear conditioning potentiates the hippocampal CA1 commissural pathway in vivo and increases awake phase sleep. Hippocampus 2021; 31:1154-1175. [PMID: 34418215 PMCID: PMC9290090 DOI: 10.1002/hipo.23381] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/10/2021] [Accepted: 07/24/2021] [Indexed: 11/24/2022]
Abstract
The hippocampus is essential for spatial learning and memory. To assess learning we used contextual fear conditioning (cFC), where animals learn to associate a place with aversive events like foot‐shocks. Candidate memory mechanisms for cFC are long‐term potentiation (LTP) and long‐term depression (LTD), but there is little direct evidence of them operating in the hippocampus in vivo following cFC. Also, little is known about the behavioral state changes induced by cFC. To address these issues, we recorded local field potentials in freely behaving mice by stimulating in the left dorsal CA1 region and recording in the right dorsal CA1 region. Synaptic strength in the commissural pathway was monitored by measuring field excitatory postsynaptic potentials (fEPSPs) before and after cFC. After cFC, the commissural pathway's synaptic strength was potentiated. Although recordings occurred during the wake phase of the light/dark cycle, the mice slept more in the post‐conditioning period than in the pre‐conditioning period. Relative to awake periods, in non‐rapid eye movement (NREM) sleep the fEPSPs were larger in both pre‐ and post‐conditioning periods. We also found a significant negative correlation between the animal's speed and fEPSP size. Therefore, to avoid confounds in the fEFSP potentiation estimates, we controlled for speed‐related and sleep‐related fEPSP changes and still found that cFC induced long‐term potentiation, but no significant long‐term depression. Synaptic strength changes were not found in the control group that simply explored the fear‐conditioning chamber, indicating that exploration of the novel place did not produce the measurable effects caused by cFC. These results show that following cFC, the CA1 commissural pathway is potentiated, likely contributing to the functional integration of the left and right hippocampi in fear memory consolidation. In addition, the cFC paradigm produces significant changes in an animal's behavioral state, which are observable as proximal changes in sleep patterns.
Collapse
Affiliation(s)
- Manivannan Subramaniyan
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sumithrra Manivannan
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Vikas Chelur
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Theodoros Tsetsenis
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Evan Jiang
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John A Dani
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
53
|
Shah A, Jhawar S, Goel A, Goel A. Corpus Callosum and Its Connections: A Fiber Dissection Study. World Neurosurg 2021; 151:e1024-e1035. [PMID: 34033953 DOI: 10.1016/j.wneu.2021.05.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE We performed a fine white fiber dissection to demonstrate the extensive connections of the corpus callosum. MATERIAL AND METHODS Three formalin-fixed frozen cadaveric human brain specimens were dissected using Klingler's technique. On one half of each hemisphere, the superior connections of the corpus callosum were dissected and in the other half the inferior connections of the corpus callosum were dissected. RESULTS The mean length of the corpus callosum from the rostrum to the splenium was 7.8 cm. The fibers of the corpus callosum were classified as superior/dorsal radiations, inferior/ventral radiations, anterior radiations, and posterior radiations. The entire transverse length of the dorsal callosal radiation from one hemisphere to the other was 8.1 cm. For anterior interhemispheric approaches, an incision in the anterior part of the body not extending beyond 3.5 cm from the genu was found to be safe with regards to crossing motor fibers. CONCLUSIONS The corpus callosum was found to have intricate connections with all the lobes of the cerebral hemispheres, including the insular region and the limbic and paralimbic areas. Based on the course and traverse of the callosal fibers, a transverse incision in the corpus callosum should be preferred when performing a callosotomy to access intraventricular lesions as this splits the callosal fibers instead of transecting them. The analysis of the course of the callosal radiations enhances understanding of the growth pattern of primary corpus callosal gliomas and helps to design a safe surgical strategy.
Collapse
Affiliation(s)
- Abhidha Shah
- Department of Neurosurgery, K.E.M. Hospital and Seth G.S. Medical College, Parel, Mumbai
| | - Sukhdeep Jhawar
- Department of Neurosurgery, K.E.M. Hospital and Seth G.S. Medical College, Parel, Mumbai
| | - Aimee Goel
- University Hospitals of North Midlands NHS Trust, Stoke-on-Trent, United Kingdom
| | - Atul Goel
- Department of Neurosurgery, K.E.M. Hospital and Seth G.S. Medical College, Parel, Mumbai.
| |
Collapse
|
54
|
Kar P, Reynolds JE, Grohs MN, Gibbard WB, McMorris C, Tortorelli C, Lebel C. White matter alterations in young children with prenatal alcohol exposure. Dev Neurobiol 2021; 81:400-410. [PMID: 33829663 DOI: 10.1002/dneu.22821] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/15/2021] [Accepted: 04/03/2021] [Indexed: 12/28/2022]
Abstract
Prenatal alcohol exposure (PAE) can lead to cognitive, behavioural, and social-emotional challenges. Previous neuroimaging research has identified structural brain alterations in newborns, older children, adolescents, and adults with PAE; however, little is known about brain structure in young children. Extensive brain development occurs during early childhood; therefore, understanding the neurological profiles of young children with PAE is critical for early identification and effective intervention. We studied 54 children (5.21 ± 1.11 years; 27 males) with confirmed PAE (94% also had other prenatal exposures, 74% had adverse postnatal experiences) compared with 54 age- and sex-matched children without PAE. Children underwent diffusion tensor imaging between 2 and 7 years of age. Mean fractional anisotropy (FA) and mean diffusivity (MD) were obtained for 10 major white matter tracts. Univariate analyses of covariance were used to test group differences (PAE vs. control) controlling for age and sex. The PAE group had higher FA in the genu of the corpus callosum and lower MD in the bilateral uncinate fasciculus. The PAE group also had lower tract volume in the corpus callosum, the bilateral inferior fronto-occipital fasciculi, and the right superior longitudinal fasciculus. Our findings align with studies of newborns with PAE reporting lower diffusivity, but contrast those in older populations with PAE, which consistently report lower FA and higher MD. Further research is needed to understand trajectories of white matter development and how our results of higher FA/lower MD in young children connect with lower FA/higher MD observed at older ages.
Collapse
Affiliation(s)
- Preeti Kar
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Jess E Reynolds
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Radiology, University of Calgary, Calgary, AB, Canada
| | - Melody N Grohs
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - W Ben Gibbard
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Department of Pediatrics, University of Calgary, Calgary, AB, Canada
| | - Carly McMorris
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Werklund School of Education, University of Calgary, Calgary, AB, Canada
| | | | - Catherine Lebel
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Radiology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
55
|
Kar P, Reynolds JE, Grohs MN, Bell RC, Jarman M, Dewey D, Lebel C. Association between breastfeeding during infancy and white matter microstructure in early childhood. Neuroimage 2021; 236:118084. [PMID: 33882345 DOI: 10.1016/j.neuroimage.2021.118084] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/04/2021] [Accepted: 04/07/2021] [Indexed: 11/15/2022] Open
Abstract
INTRODUCTION Associations between breastfeeding and brain development, in the context of child, perinatal, and sociodemographic variables, remain unclear. This study investigated whether exclusive breastfeeding for the first 6 months and total duration of breastfeeding were associated with brain white matter microstructure in young children. METHODS This study included 85 typically developing children (42 males) born to 83 mothers that were predominantly white, highly educated, and in high income households. Children underwent their first diffusion tensor imaging scan between ages 2.34 and 6.97 years; some children returned multiple times, providing a total of 331 datasets. Feeding information was collected from mothers at 3, 6, and 12 months postpartum and at their child's scan to calculate breastfeeding status at 6 months (exclusive or not) as well as total duration of any breastfeeding. Linear regression was used to investigate associations between breastfeeding exclusivity/duration and fractional anisotropy (FA) for the whole brain and 10 individual white matter tracts. RESULTS Breastfeeding exclusivity and duration were associated with global and regional white matter microstructure, even after controlling for perinatal and sociodemographic factors. Greater exclusivity was associated with higher FA in females and lower FA in males. CONCLUSIONS These findings suggest white matter differences associated with breastfeeding that differ by sex. These may stem from different trajectories in white matter development between males and females in early childhood and suggest possible long-term white matter differences associated with breastfeeding.
Collapse
Affiliation(s)
- Preeti Kar
- Alberta Children's Hospital Research Institute, Canada; Hotchkiss Brain Institute, University of Calgary, Canada.
| | - Jess E Reynolds
- Alberta Children's Hospital Research Institute, Canada; Hotchkiss Brain Institute, University of Calgary, Canada; Departments of Radiology, University of Calgary, Canada.
| | - Melody N Grohs
- Alberta Children's Hospital Research Institute, Canada; Hotchkiss Brain Institute, University of Calgary, Canada.
| | - Rhonda C Bell
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Canada.
| | - Megan Jarman
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Canada.
| | - Deborah Dewey
- Alberta Children's Hospital Research Institute, Canada; Hotchkiss Brain Institute, University of Calgary, Canada; Department of Pediatrics, University of Calgary, Canada; Department of Community Health Sciences, University of Calgary, Canada.
| | - Catherine Lebel
- Alberta Children's Hospital Research Institute, Canada; Hotchkiss Brain Institute, University of Calgary, Canada; Departments of Radiology, University of Calgary, Canada.
| |
Collapse
|
56
|
Abstract
BACKGROUND A genetic disorder should be considered when an infant presents with multiple congenital anomalies. Because of the acute presentation of an infant with multiple life-threatening defects, a genetic diagnosis of a rare disorder took weeks to delineate. CLINICAL FINDINGS This case describes a late preterm infant who presented at birth with congenital diaphragmatic hernia, tetralogy of Fallot, cleft lip, low-set ears, and hypertelorism. PRIMARY DIAGNOSIS Donnai-Barrow syndrome was the final diagnosis confirmed by a defect observed on the LRP2 (2q31.1) gene using sequence analysis. This is a rare disorder that presents with a variety of phenotypic features in infants. INTERVENTIONS Initial neonatal resuscitation in the delivery room included intubation, positive pressure ventilation, and oxygen supplementation. Extracorporeal membrane oxygenation therapy was initiated from day of life 3 to 15. Initial surgery included correction of the congenital diaphragmatic hernia, and further surgical procedures included tracheostomy, gastrostomy tube, circumcision, ventricular septal defect repair, and cleft lip repair. Physical, occupational, and speech therapies were also initiated. OUTCOMES The infant was transported to a pediatric rehabilitation facility at 6 months of life for further management of his chronic lung disease requiring tracheostomy with ventilator dependence. PRACTICE RECOMMENDATIONS Early recognition and diagnosis of genetic syndromes can improve family education and guide treatment interventions. An underlying syndrome should be suspected when an infant presents with multiple congenital defects. Infants with Donnai-Barrow syndrome should have thorough cardiac, neurologic, ophthalmologic, audiologic, and renal examinations due to the gene mutation effects on those systems.
Collapse
|
57
|
Lorenzi T, Sagrati A, Montanari E, Senzacqua M, Morroni M, Fabri M. Hypoxia-induced expression of neuronal nitric oxide synthase in astrocytes of human corpus callosum. Brain Struct Funct 2021; 226:1353-1361. [PMID: 33709161 DOI: 10.1007/s00429-021-02244-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 02/22/2021] [Indexed: 10/22/2022]
Abstract
Nitric oxide (NO) is a gaseous neurotransmitter largely diffused in the brain; among other functions, it regulates the cerebral blood flow in response to hypoxia. NO can be synthetized by three different isoforms of the enzyme NO synthase: neuronal (nNOS), typical of neurons, endothelial and inducible. The aim of this study was to assess nNOS expression in human corpus callosum (CC) astrocytes, and its relationship with the hypoxia duration. Autoptic samples of CC from adult human subjects have been processed with immunohistochemistry and immunofluorescence using antibodies anti-nNOS and anti-glial fibrillary acidic protein (GFAP), the astrocyte marker. Results demonstrated for the first time the presence of nNOS-immunopositive astrocytes in the human CC. In particular, nNOS-positive astrocytes were absent in subjects deceased after a short hypoxia; their number and labeling intensity, however, increased with hypoxia prolongation. Neuronal NOS immunopositivity of CC astrocytes seems thus related to the hypoxia duration and the consequent brain damage.
Collapse
Affiliation(s)
- Teresa Lorenzi
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, School of Medicine, Università Politecnica delle Marche, Via Tronto 10/A, 60126, Ancona, Italy
| | - Andrea Sagrati
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, School of Medicine, Università Politecnica delle Marche, Via Tronto 10/A, 60126, Ancona, Italy
| | - Eva Montanari
- Department of Biomedical Sciences and Public Health, Section of Legal Medicine, Università Politecnica delle Marche, Via Tronto 10/A, 60126, Ancona, Italy
| | - Martina Senzacqua
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, School of Medicine, Università Politecnica delle Marche, Via Tronto 10/A, 60126, Ancona, Italy
| | - Manrico Morroni
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, School of Medicine, Università Politecnica delle Marche, Via Tronto 10/A, 60126, Ancona, Italy.,Electron Microscopy Unit, United Hospitals, Via Conca 71, 60020, Ancona, Italy
| | - Mara Fabri
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, School of Medicine, Università Politecnica delle Marche, Via Tronto 10/A, 60126, Ancona, Italy.
| |
Collapse
|
58
|
Music Playing and Interhemispheric Communication: Older Professional Musicians Outperform Age-Matched Non-Musicians in Fingertip Cross-Localization Test. J Int Neuropsychol Soc 2021; 27:282-292. [PMID: 32967757 DOI: 10.1017/s1355617720000946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Numerous investigations have documented that age-related changes in the integrity of the corpus callosum are associated with age-related decline in the interhemispheric transfer of information. Conversely, there is accumulating evidence for more efficient white matter organization of the corpus callosum in individuals with extensive musical training. However, the relationship between making music and accuracy in interhemispheric transfer remains poorly explored. METHODS To test the hypothesis that musicians show enhanced functional connectivity between the two hemispheres, 65 professional musicians (aged 56-90 years) and 65 age- and sex-matched non-musicians performed the fingertip cross-localization test. In this task, subjects must respond to a tactile stimulus presented to one hand using the ipsilateral (intra-hemispheric test) or contralateral (inter-hemispheric test) hand. Because the transfer of information from one hemisphere to another may imply a loss of accuracy, the value of the difference between the intrahemispheric and interhemispheric tests can be utilized as a reliable measure of the effectiveness of hemispheric interactions. RESULTS Older professional musicians show significantly greater accuracy in tactile interhemispheric transfer than non-musicians who suffer from age-related decline. CONCLUSIONS Musicians have more efficient interhemispheric communication than age-matched non-musicians. This finding is in keeping with studies showing that individuals with extensive musical training have a larger corpus callosum. The results are discussed in relation to relevant data suggesting that music positively influences aging brain plasticity.
Collapse
|
59
|
Kitazawa M, Sutani A, Kaneko‐Ishino T, Ishino F. The role of eutherian-specific RTL1 in the nervous system and its implications for the Kagami-Ogata and Temple syndromes. Genes Cells 2021; 26:165-179. [PMID: 33484574 PMCID: PMC7986171 DOI: 10.1111/gtc.12830] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/08/2021] [Accepted: 01/19/2021] [Indexed: 12/27/2022]
Abstract
RTL1 (also termed paternal expressed 11 (PEG11)) is considered the major imprinted gene responsible for the placental and fetal/neonatal muscle defects that occur in the Kagami-Ogata and Temple syndromes (KOS14 and TS14, respectively). However, it remains elusive whether RTL1 is also involved in their neurological symptoms, such as behavioral and developmental delay/intellectual disability, feeding difficulties, motor delay, and delayed speech. Here, we demonstrate that the mouse RTL1 protein is widely expressed in the central nervous system (CNS), including the limbic system. Importantly, two disease model mice with over- and under-expression of Rtl1 exhibited reduced locomotor activity, increased anxiety, and impaired amygdala-dependent cued fear, demonstrating that Rtl1 also plays an important role in the CNS. These results indicate that the KOS14 and TS14 are neuromuscular as well as neuropsychiatric diseases caused by irregular CNS RTL1 expression, presumably leading to impaired innervation of motor neurons to skeletal muscles as well as malfunction of the hippocampus-amygdala complex. It is of considerable interest that eutherian-specific RTL1 is expressed in mammalian- and eutherian-specific brain structures, that is, the corticospinal tract and corpus callosum, respectively, suggesting that RTL1 might have contributed to the acquisition of both these structures themselves and fine motor skill in eutherian brain evolution.
Collapse
Affiliation(s)
- Moe Kitazawa
- Department of EpigeneticsMedical Research InstituteTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Akito Sutani
- Department of EpigeneticsMedical Research InstituteTokyo Medical and Dental University (TMDU)TokyoJapan
- Department of Pediatrics and Developmental BiologyTokyo Medical and Dental University (TMDU)TokyoJapan
| | | | - Fumitoshi Ishino
- Department of EpigeneticsMedical Research InstituteTokyo Medical and Dental University (TMDU)TokyoJapan
| |
Collapse
|
60
|
Xiao Q, Güntürkün O. The commissura anterior compensates asymmetries of visual representation in pigeons. Laterality 2021; 26:213-237. [PMID: 33622187 DOI: 10.1080/1357650x.2021.1889577] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
This study was undertaken to understand what is transferred between hemispheres through the commissura anterior during a colour discrimination task in pigeons. We transiently blocked neuronal activity of the arcopallium of one hemisphere to interrupt interhemispheric communication. Before and during this intervention, we recorded from arcopallial neurons of the non-anaesthetized side while the animals discriminated stimuli ipsilateral to the recorded neurons. Due to the complete crossover of optic nerves in birds, we assumed that these neurons were at least in part requiring information from the other hemisphere to properly run the task. While lidocaine injections in both hemispheres caused some performance reductions, deficits of right arcopallial neurons were much larger when blocking interhemispheric transfer. Our results make it likely that visual information is exchanged through the commissura anterior in an asymmetrical manner with the left hemisphere providing the other side more information about the right visual half-field than vice versa.
Collapse
Affiliation(s)
- Qian Xiao
- Faculty of Psychology, Department of Biopsychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany.,Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Onur Güntürkün
- Faculty of Psychology, Department of Biopsychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
61
|
Franchini LF. Genetic Mechanisms Underlying Cortical Evolution in Mammals. Front Cell Dev Biol 2021; 9:591017. [PMID: 33659245 PMCID: PMC7917222 DOI: 10.3389/fcell.2021.591017] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
The remarkable sensory, motor, and cognitive abilities of mammals mainly depend on the neocortex. Thus, the emergence of the six-layered neocortex in reptilian ancestors of mammals constitutes a fundamental evolutionary landmark. The mammalian cortex is a columnar epithelium of densely packed cells organized in layers where neurons are generated mainly in the subventricular zone in successive waves throughout development. Newborn cells move away from their site of neurogenesis through radial or tangential migration to reach their specific destination closer to the pial surface of the same or different cortical area. Interestingly, the genetic programs underlying neocortical development diversified in different mammalian lineages. In this work, I will review several recent studies that characterized how distinct transcriptional programs relate to the development and functional organization of the neocortex across diverse mammalian lineages. In some primates such as the anthropoids, the neocortex became extremely large, especially in humans where it comprises around 80% of the brain. It has been hypothesized that the massive expansion of the cortical surface and elaboration of its connections in the human lineage, has enabled our unique cognitive capacities including abstract thinking, long-term planning, verbal language and elaborated tool making capabilities. I will also analyze the lineage-specific genetic changes that could have led to the modification of key neurodevelopmental events, including regulation of cell number, neuronal migration, and differentiation into specific phenotypes, in order to shed light on the evolutionary mechanisms underlying the diversity of mammalian brains including the human brain.
Collapse
Affiliation(s)
- Lucía Florencia Franchini
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
62
|
Neuroanatomy for the Neuroradiologist. Clin Neuroradiol 2021. [DOI: 10.1007/978-3-319-61423-6_18-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
63
|
Wu J, Guo T, Zhou C, Guan X, Gao T, Xuan M, Gu Q, Huang P, Song Z, Pu J, Yan Y, Tian J, Zhang B, Xu X, Zhang M. Longitudinal Macro/Microstructural Alterations of Different Callosal Subsections in Parkinson's Disease Using Connectivity-Based Parcellation. Front Aging Neurosci 2020; 12:572086. [PMID: 33328954 PMCID: PMC7672016 DOI: 10.3389/fnagi.2020.572086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/24/2020] [Indexed: 12/30/2022] Open
Abstract
Background The corpus callosum (CC) is an important feature of Parkinson’s disease (PD) not only in motor but also in non-motor functions. However, CC is not a homogeneous component, and the damage of specific subsection may contribute to corresponding clinical deficit. Objective The objective of the study is to investigate the structural alterations of different callosal subsections cross-sectionally and longitudinally in PD and evaluate their relationships to clinical performance. Methods Thirty-nine PD patients who had been longitudinally reexamined and 82 normal controls (NC) were employed. According to their specific callosal–cortical connectivity, 3D CC was divided into five subsections (including prefrontal, premotor, motor, somatosensory, and temporal–parietal–occipital subsection). The fractional anisotropy (FA), mean diffusivity (MD), and volume of whole CC and its subsections were computed and compared between groups. Regression model was constructed to explore the relationships between callosal structure and clinical performance. Results At baseline, PD did not show any significant macro/microstructural difference compared with NC. During disease course, there was a decreased FA and increased MD of whole CC as well as its subsections (except temporal–parietal–occipital subsection), and the volume of motor subsection was decreased. Moreover, the FA of temporal–parietal–occipital subsection and volume of motor subsection were correlated with the mood domain at baseline, and the MD of somatosensory subsection was associated with the motor domain at follow-up. Conclusion The structure of CC and its connectivity-specific subsections remain preserved at a relatively early stage in PD and are progressively disrupted during disease course. Besides, different callosal subsections possess specific associations with clinical performance in PD.
Collapse
Affiliation(s)
- Jingjing Wu
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Tao Guo
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Cheng Zhou
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaojun Guan
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ting Gao
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Min Xuan
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Quanquan Gu
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhe Song
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiali Pu
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yaping Yan
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jun Tian
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Baorong Zhang
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaojun Xu
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
64
|
Friedrich P, Forkel SJ, Thiebaut de Schotten M. Mapping the principal gradient onto the corpus callosum. Neuroimage 2020; 223:117317. [PMID: 32882387 PMCID: PMC7116113 DOI: 10.1016/j.neuroimage.2020.117317] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/31/2020] [Accepted: 08/26/2020] [Indexed: 11/25/2022] Open
Abstract
Gradients capture some of the variance of the resting-state functional magnetic resonance imaging (rsfMRI) signal. Amongst these, the principal gradient depicts a functional processing hierarchy that spans from sensory-motor cortices to regions of the default-mode network. While the cortex has been well characterised in terms of gradients little is known about its underlying white matter. For instance, comprehensive mapping of the principal gradient on the largest white matter tract, the corpus callosum, is still missing. Here, we mapped the principal gradient onto the midsection of the corpus callosum using the 7T human connectome project dataset. We further explored how quantitative measures and variability in callosal midsection connectivity relate to the principal gradient values. In so doing, we demonstrated that the extreme values of the principal gradient are located within the callosal genu and the posterior body, have lower connectivity variability but a larger spatial extent along the midsection of the corpus callosum than mid-range values. Our results shed light on the relationship between the brain's functional hierarchy and the corpus callosum. We further speculate about how these results may bridge the gap between functional hierarchy, brain asymmetries, and evolution.
Collapse
Affiliation(s)
- Patrick Friedrich
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France; Groupe d'Imagerie Neurofonctionelle, CEA, Univ. Bordeaux, CNRS, IMN, UMR 5293, Bordeaux F-33000, France.
| | - Stephanie J Forkel
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France; Groupe d'Imagerie Neurofonctionelle, CEA, Univ. Bordeaux, CNRS, IMN, UMR 5293, Bordeaux F-33000, France; Centre for Neuroimaging Sciences, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Michel Thiebaut de Schotten
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France; Groupe d'Imagerie Neurofonctionelle, CEA, Univ. Bordeaux, CNRS, IMN, UMR 5293, Bordeaux F-33000, France
| |
Collapse
|
65
|
Kim HJ, Bang M, Lee KS, Choi TK, Park CI, Lee SH. Effects of BDNF Val66Met Polymorphism on White Matter Microalterations of the Corpus Callosum in Patients with Panic Disorder in Korean Populations. Psychiatry Investig 2020; 17:967-975. [PMID: 33017888 PMCID: PMC7596279 DOI: 10.30773/pi.2020.0186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/05/2020] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVE The brain-derived neurotrophic factor (BDNF) Val66Met (rs6265) polymorphism is suggested to be associated with the pathophysiology of anxiety disorders, including panic disorder (PD). Although the fronto-limbic white matter (WM) microstructures have been investigated, the corpus callosum (CC) has not yet been studied regarding its relationship with BDNF Val66Met polymorphism in PD. METHODS Ninety-five PD patients were enrolled. The Neuroticism, the Anxiety Sensitivity Inventory-Revised, Panic Disorder Severity Scale, and Beck Depression Inventory-II (BDI-II) were administered. Voxel-wise statistical analysis of diffusion tensor imaging data was performed within the CC regions using Tract-Based Spatial Statistics. RESULTS The GG genotype in BDNF Val66Met polymorphism has significantly higher fractional anisotropy (FA) values of the body and splenium of the CC, neuroticism and depressive symptom scale scores than the non-GG genotype in PD. The FA values of the body of the CC in the two groups were significantly different independent of age, sex, neuroticism, and BDI-II. CONCLUSION Our findings demonstrate that the BDNF Val66Met polymorphism is associated with WM connectivity of the body and splenium of the CC, and may be related to neuroticism and depressive symptoms in PD. Additionally, the CC connectivity according to BDNF polymorphism may play a role in the pathophysiology of PD.
Collapse
Affiliation(s)
- Hyun-Ju Kim
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Minji Bang
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Kang Soo Lee
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Tai Kiu Choi
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Chun Il Park
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Sang-Hyuk Lee
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea.,Department of Clinical Pharmacology and Therapeutics, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| |
Collapse
|
66
|
De León Reyes NS, Bragg-Gonzalo L, Nieto M. Development and plasticity of the corpus callosum. Development 2020; 147:147/18/dev189738. [PMID: 32988974 DOI: 10.1242/dev.189738] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The corpus callosum (CC) connects the cerebral hemispheres and is the major mammalian commissural tract. It facilitates bilateral sensory integration and higher cognitive functions, and is often affected in neurodevelopmental diseases. Here, we review the mechanisms that contribute to the development of CC circuits in animal models and humans. These species comparisons reveal several commonalities. First, there is an early period of massive axonal projection. Second, there is a postnatal temporal window, varying between species, in which early callosal projections are selectively refined. Third, sensory-derived activity influences axonal refinement. We also discuss how defects in CC formation can lead to mild or severe CC congenital malformations.
Collapse
Affiliation(s)
- Noelia S De León Reyes
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, (CNB-CSIC) Campus de Cantoblanco, Darwin 3, 28049 Madrid, Spain
| | - Lorena Bragg-Gonzalo
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, (CNB-CSIC) Campus de Cantoblanco, Darwin 3, 28049 Madrid, Spain
| | - Marta Nieto
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, (CNB-CSIC) Campus de Cantoblanco, Darwin 3, 28049 Madrid, Spain
| |
Collapse
|
67
|
Abstract
Comparative studies on brain asymmetry date back to the 19th century but then largely disappeared due to the assumption that lateralization is uniquely human. Since the reemergence of this field in the 1970s, we learned that left-right differences of brain and behavior exist throughout the animal kingdom and pay off in terms of sensory, cognitive, and motor efficiency. Ontogenetically, lateralization starts in many species with asymmetrical expression patterns of genes within the Nodal cascade that set up the scene for later complex interactions of genetic, environmental, and epigenetic factors. These take effect during different time points of ontogeny and create asymmetries of neural networks in diverse species. As a result, depending on task demands, left- or right-hemispheric loops of feedforward or feedback projections are then activated and can temporarily dominate a neural process. In addition, asymmetries of commissural transfer can shape lateralized processes in each hemisphere. It is still unclear if interhemispheric interactions depend on an inhibition/excitation dichotomy or instead adjust the contralateral temporal neural structure to delay the other hemisphere or synchronize with it during joint action. As outlined in our review, novel animal models and approaches could be established in the last decades, and they already produced a substantial increase of knowledge. Since there is practically no realm of human perception, cognition, emotion, or action that is not affected by our lateralized neural organization, insights from these comparative studies are crucial to understand the functions and pathologies of our asymmetric brain.
Collapse
Affiliation(s)
- Onur Güntürkün
- Department of Biopsychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Felix Ströckens
- Department of Biopsychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Sebastian Ocklenburg
- Department of Biopsychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
68
|
Ji-Ping Z, Chun-Xiao C, Chong-Feng D, Lei N, Xue-Jun L. The Value of Corpus Callosum Measurement in the Diagnosis of Cerebral Atrophy. Curr Med Imaging 2020; 16:682-687. [PMID: 32723239 DOI: 10.2174/1573405615666190724092047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 06/13/2019] [Accepted: 06/27/2019] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The study aimed to investigate the relationship between the corpus callosum area (CCa) and the degree of cerebral atrophy in patients with cerebral atrophy. METHODS 119 patients with brain atrophy were grouped according to the degree of brain atrophy. Median sagittal CCa and intracranial area (ICa) were measured, and the ratio of corpus callosum to the intracranial area (CCa-ICa ratio) was calculated. The data were analyzed using ANOVA. RESULTS CCa significantly reduced in patients with cerebral atrophy, and the degree of cerebral atrophy was found to be positively correlated with the degree of reduction in the CCa. CONCLUSION The reduction in the CCa and the CCa-ICa ratio in the median sagittal can be used as a reference indicator for the diagnosis and grading of brain atrophy in clinical practice.
Collapse
Affiliation(s)
- Zhao Ji-Ping
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Cui Chun-Xiao
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Duan Chong-Feng
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Niu Lei
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Liu Xue-Jun
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| |
Collapse
|
69
|
Abstract
The development and persistence of laterality is a key feature of human motor behavior, with the asymmetry of hand use being the most prominent. The idea that asymmetrical functions of the hands reflect asymmetries in terms of structural and functional brain organization has been tested many times. However, despite advances in laterality research and increased understanding of this population-level bias, the neural basis of handedness remains elusive. Recent developments in diffusion magnetic resonance imaging enabled the exploration of lateralized motor behavior also in terms of white matter and connectional neuroanatomy. Despite incomplete and partly inconsistent evidence, structural connectivity of both intrahemispheric and interhemispheric white matter seems to differ between left and right-handers. Handedness was related to asymmetry of intrahemispheric pathways important for visuomotor and visuospatial processing (superior longitudinal fasciculus), but not to projection tracts supporting motor execution (corticospinal tract). Moreover, the interindividual variability of the main commissural pathway corpus callosum seems to be associated with handedness. The review highlights the importance of exploring new avenues for the study of handedness and presents the latest state of knowledge that can be used to guide future neuroscientific and genetic research.
Collapse
Affiliation(s)
- Sanja Budisavljevic
- Department of General Psychology, University of Padova, Padova, Italy.,The School of Medicine, University of St. Andrews, St. Andrews, UK
| | - Umberto Castiello
- Department of General Psychology, University of Padova, Padova, Italy
| | - Chiara Begliomini
- Department of General Psychology, University of Padova, Padova, Italy
| |
Collapse
|
70
|
Yu X, Zuk J, Perdue MV, Ozernov‐Palchik O, Raney T, Beach SD, Norton ES, Ou Y, Gabrieli JDE, Gaab N. Putative protective neural mechanisms in prereaders with a family history of dyslexia who subsequently develop typical reading skills. Hum Brain Mapp 2020; 41:2827-2845. [PMID: 32166830 PMCID: PMC7294063 DOI: 10.1002/hbm.24980] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 01/18/2020] [Accepted: 02/26/2020] [Indexed: 01/16/2023] Open
Abstract
Developmental dyslexia affects 40-60% of children with a familial risk (FHD+) compared to a general prevalence of 5-10%. Despite the increased risk, about half of FHD+ children develop typical reading abilities (FHD+Typical). Yet the underlying neural characteristics of favorable reading outcomes in at-risk children remain unknown. Utilizing a retrospective, longitudinal approach, this study examined whether putative protective neural mechanisms can be observed in FHD+Typical at the prereading stage. Functional and structural brain characteristics were examined in 47 FHD+ prereaders who subsequently developed typical (n = 35) or impaired (n = 12) reading abilities and 34 controls (FHD-Typical). Searchlight-based multivariate pattern analyses identified distinct activation patterns during phonological processing between FHD+Typical and FHD-Typical in right inferior frontal gyrus (RIFG) and left temporo-parietal cortex (LTPC) regions. Follow-up analyses on group-specific classification patterns demonstrated LTPC hypoactivation in FHD+Typical compared to FHD-Typical, suggesting this neural characteristic as an FHD+ phenotype. In contrast, RIFG showed hyperactivation in FHD+Typical than FHD-Typical, and its activation pattern was positively correlated with subsequent reading abilities in FHD+ but not controls (FHD-Typical). RIFG hyperactivation in FHD+Typical was further associated with increased interhemispheric functional and structural connectivity. These results suggest that some protective neural mechanisms are already established in FHD+Typical prereaders supporting their typical reading development.
Collapse
Affiliation(s)
- Xi Yu
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of MedicineBoston Children's HospitalBostonMassachusettsUSA
| | - Jennifer Zuk
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of MedicineBoston Children's HospitalBostonMassachusettsUSA
| | - Meaghan V. Perdue
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of MedicineBoston Children's HospitalBostonMassachusettsUSA
- Department of Psychological SciencesUniversity of ConnecticutStorrsConnecticutUSA
- Haskins LaboratoriesNew HavenConnecticutUSA
| | - Ola Ozernov‐Palchik
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of MedicineBoston Children's HospitalBostonMassachusettsUSA
- McGovern Institute for Brain Research, Massachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Talia Raney
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of MedicineBoston Children's HospitalBostonMassachusettsUSA
| | - Sara D. Beach
- McGovern Institute for Brain Research, Massachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Division of Medical SciencesHarvard UniversityCambridgeMassachusettsUSA
| | - Elizabeth S. Norton
- Department of Communication Sciences and DisordersNorthwestern UniversityEvanstonIllinoisUSA
| | - Yangming Ou
- Division of Newborn MedicineBoston Children’s HospitalBostonMassachusettsUSA
- Fetal‐Neonatal Neuroimaging and Developmental Science CenterBoston Children’s HospitalBostonMassachusettsUSA
- Department of RadiologyBoston Children’s HospitalBostonMassachusettsUSA
| | - John D. E. Gabrieli
- McGovern Institute for Brain Research, Massachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Nadine Gaab
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of MedicineBoston Children's HospitalBostonMassachusettsUSA
- Department of PediatricsHarvard Medical SchoolBostonMassachusettsUSA
- Harvard Graduate School of EducationCambridgeMassachusettsUSA
| |
Collapse
|
71
|
Di Domenico M, Benevenuto SGDM, Tomasini PP, Yariwake VY, de Oliveira Alves N, Rahmeier FL, da Cruz Fernandes M, Moura DJ, Nascimento Saldiva PH, Veras MM. Concentrated ambient fine particulate matter (PM 2.5) exposure induce brain damage in pre and postnatal exposed mice. Neurotoxicology 2020; 79:127-141. [PMID: 32450181 DOI: 10.1016/j.neuro.2020.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 12/20/2022]
Abstract
Air pollution is a public health concern that has been associated with adverse effects on the development and functions of the central nervous system (CNS). However, studies on the effects of exposure to pollutants on the CNS across the entire developmental period still remain scarce. In this study, we investigated the impacts of prenatal and/or postnatal exposure to fine particulate matter (PM2.5) from São Paulo city, on the brain structure and behavior of juvenile male mice. BALB/c mice were exposed to PM2.5 concentrated ambient particles (CAP) at a daily concentration of 600 μg/m³ during the gestational [gestational day (GD) 1.5-18.5] and the postnatal periods [postnatal day (PND) 22-90] to filtered air (FA) in both periods (FA/FA), to CAP only in the postnatal period (FA/CAP), to CAP only in the gestational period (CAP/FA), and to CAP in both periods (CAP/CAP). Behavioral tests were performed when animals were at PND 30 and PND 90. Glial activation, brain volume, cortical neuron number, serotonergic and GABAergic receptors, as well as oxidative stress, were measured. Mice at PND 90 presented greater behavioral changes in the form of greater locomotor activity in the FA-CAP and CAP-CAP groups. In general, these same groups explored objects longer and the CAP-FA group presented anxiolytic behavior. There was no difference in total brain volume among groups, but a lower corpus callosum (CC) volume was observed in the CAP-FA group. Also, the CAP-CAP group presented an increase in microglia in the cortex and an increased in astrocytes in the cortex, CC, and C1A and dentate gyrus of hippocampus regions. Gene expression analysis showed a decrease in BDNF in the hippocampus of CAP-CAP group. Treatment of immortalized glial cells with non-cytotoxic doses of ambient PM2.5 increased micronuclei frequencies, indicating genomic instability. These findings highlight the potential for negative neurodevelopmental outcomes induced by exposure to moderate levels of PM2.5 in Sao Paulo city.
Collapse
Affiliation(s)
- Marlise Di Domenico
- Department of Pathology, LIM05-HCFMUSP, Laboratory of Experimental Air Pollution, School of Medicine, University of São Paulo, São Paulo, Brazil.
| | | | - Paula Pellenz Tomasini
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Victor Yuji Yariwake
- Department of Pathology, LIM05-HCFMUSP, Laboratory of Experimental Air Pollution, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Nilmara de Oliveira Alves
- Department of Pathology, LIM05-HCFMUSP, Laboratory of Experimental Air Pollution, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Francine Luciano Rahmeier
- Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Marilda da Cruz Fernandes
- Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Dinara Jaqueline Moura
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Paulo Hilário Nascimento Saldiva
- Department of Pathology, LIM05-HCFMUSP, Laboratory of Experimental Air Pollution, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Mariana Matera Veras
- Department of Pathology, LIM05-HCFMUSP, Laboratory of Experimental Air Pollution, School of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
72
|
Dimond D, Rohr CS, Smith RE, Dhollander T, Cho I, Lebel C, Dewey D, Connelly A, Bray S. Early childhood development of white matter fiber density and morphology. Neuroimage 2020; 210:116552. [DOI: 10.1016/j.neuroimage.2020.116552] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 12/13/2022] Open
|
73
|
Charvet CJ, Das A, Song JW, Tindal-Burgess DJ, Kabaria P, Dai G, Kane T, Takahashi E. High Angular Resolution Diffusion MRI Reveals Conserved and Deviant Programs in the Paths that Guide Human Cortical Circuitry. Cereb Cortex 2020; 30:1447-1464. [PMID: 31667494 PMCID: PMC7132938 DOI: 10.1093/cercor/bhz178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/13/2019] [Accepted: 07/10/2019] [Indexed: 02/07/2023] Open
Abstract
Diffusion magnetic resonance (MR) tractography represents a novel opportunity to investigate conserved and deviant developmental programs between humans and other species such as mice. To that end, we acquired high angular resolution diffusion MR scans of mice [embryonic day (E) 10.5 to postnatal week 4] and human brains [gestational week (GW) 17-30] at successive stages of fetal development to investigate potential evolutionary changes in radial organization and emerging pathways between humans and mice. We compare radial glial development as well as commissural development (e.g., corpus callosum), primarily because our findings can be integrated with previous work. We also compare corpus callosal growth trajectories across primates (i.e., humans and rhesus macaques) and rodents (i.e., mice). One major finding is that the developing cortex of humans is predominated by pathways likely associated with a radial glial organization at GW 17-20, which is not as evident in age-matched mice (E 16.5, 17.5). Another finding is that, early in development, the corpus callosum follows a similar developmental timetable in primates (i.e., macaques and humans) as in mice. However, the corpus callosum grows for an extended period of time in primates compared with rodents. Taken together, these findings highlight deviant developmental programs underlying the emergence of cortical pathways in the human brain.
Collapse
Affiliation(s)
| | - Avilash Das
- Medical Sciences in the College of Arts and Sciences, Boston University, Boston, MA 02215, USA
- Division of Newborn Medicine, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02215, USA
- Fetal-Neonatal Brain Imaging and Developmental Science Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Jae W Song
- Division of Neuroradiology, Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | - Priya Kabaria
- Department of Behavioral Neuroscience, Northeastern University, Boston, MA 02115, USA
| | - Guangping Dai
- Science Center, Wellesley College, Wellesley, MA 02481, USA
| | - Tara Kane
- Department of Behavioral Neuroscience, Northeastern University, Boston, MA 02115, USA
| | - Emi Takahashi
- Division of Newborn Medicine, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02215, USA
- Fetal-Neonatal Brain Imaging and Developmental Science Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02215, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
74
|
Smieja DA, Dunkley BT, Papsin BC, Easwar V, Yamazaki H, Deighton M, Gordon KA. Interhemispheric auditory connectivity requires normal access to sound in both ears during development. Neuroimage 2020; 208:116455. [DOI: 10.1016/j.neuroimage.2019.116455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/21/2019] [Accepted: 12/09/2019] [Indexed: 10/25/2022] Open
|
75
|
Lynch KM, Cabeen RP, Toga AW, Clark KA. Magnitude and timing of major white matter tract maturation from infancy through adolescence with NODDI. Neuroimage 2020; 212:116672. [PMID: 32092432 PMCID: PMC7224237 DOI: 10.1016/j.neuroimage.2020.116672] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/19/2020] [Accepted: 02/18/2020] [Indexed: 01/11/2023] Open
Abstract
White matter maturation is a nonlinear and heterogeneous phenomenon characterized by axonal packing, increased axon caliber, and a prolonged period of myelination. While current in vivo diffusion MRI (dMRI) methods, like diffusion tensor imaging (DTI), have successfully characterized the gross structure of major white matter tracts, these measures lack the specificity required to unravel the distinct processes that contribute to microstructural development. Neurite orientation dispersion and density imaging (NODDI) is a dMRI approach that probes tissue compartments and provides biologically meaningful measures that quantify neurite density index (NDI) and orientation dispersion index (ODI). The purpose of this study was to characterize the magnitude and timing of major white matter tract maturation with NODDI from infancy through adolescence in a cross-sectional cohort of 104 subjects (0.6–18.8 years). To probe the regional nature of white matter development, we use an along-tract approach that partitions tracts to enable more fine-grained analysis. Major white matter tracts showed exponential age-related changes in NDI with distinct maturational patterns. Overall, analyses revealed callosal fibers developed before association fibers. Our along-tract analyses elucidate spatially varying patterns of maturation with NDI that are distinct from those obtained with DTI. ODI was not significantly associated with age in the majority of tracts. Our results support the conclusion that white matter tract maturation is heterochronous process and, furthermore, we demonstrate regional variability in the developmental timing within major white matter tracts. Together, these results help to disentangle the distinct processes that contribute to and more specifically define the time course of white matter maturation.
Collapse
Affiliation(s)
- Kirsten M Lynch
- Laboratory of Neuro Imaging (LONI), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Ryan P Cabeen
- Laboratory of Neuro Imaging (LONI), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Arthur W Toga
- Laboratory of Neuro Imaging (LONI), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kristi A Clark
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
76
|
Mostajo-Radji MA, Schmitz MT, Montoya ST, Pollen AA. Reverse engineering human brain evolution using organoid models. Brain Res 2020; 1729:146582. [PMID: 31809699 PMCID: PMC7058376 DOI: 10.1016/j.brainres.2019.146582] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 11/25/2019] [Accepted: 11/29/2019] [Indexed: 02/06/2023]
Abstract
Primate brains vary dramatically in size and organization, but the genetic and developmental basis for these differences has been difficult to study due to lack of experimental models. Pluripotent stem cells and brain organoids provide a potential opportunity for comparative and functional studies of evolutionary differences, particularly during the early stages of neurogenesis. However, many challenges remain, including isolating stem cell lines from additional great ape individuals and species to capture the breadth of ape genetic diversity, improving the reproducibility of organoid models to study evolved differences in cell composition and combining multiple brain regions to capture connectivity relationships. Here, we describe strategies for identifying evolved developmental differences between humans and non-human primates and for isolating the underlying cellular and genetic mechanisms using comparative analyses, chimeric organoid culture, and genome engineering. In particular, we focus on how organoid models could ultimately be applied beyond studies of progenitor cell evolution to decode the origin of recent changes in cellular organization, connectivity patterns, myelination, synaptic development, and physiology that have been implicated in human cognition.
Collapse
Affiliation(s)
- Mohammed A Mostajo-Radji
- Department of Neurology, University of California San Francisco, San Francisco, CA 94143, USA; The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA
| | - Matthew T Schmitz
- Department of Neurology, University of California San Francisco, San Francisco, CA 94143, USA; The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA
| | - Sebastian Torres Montoya
- Health Co-creation Laboratory, Medellin General Hospital, Medellin, Antioquia, Colombia; Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Alex A Pollen
- Department of Neurology, University of California San Francisco, San Francisco, CA 94143, USA; The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
77
|
Friedrich P, Fraenz C, Schlüter C, Ocklenburg S, Mädler B, Güntürkün O, Genç E. The Relationship Between Axon Density, Myelination, and Fractional Anisotropy in the Human Corpus Callosum. Cereb Cortex 2020; 30:2042-2056. [DOI: 10.1093/cercor/bhz221] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/26/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023] Open
Abstract
Abstract
The corpus callosum serves the functional integration and interaction between the two hemispheres. Many studies investigate callosal microstructure via diffusion tensor imaging (DTI) fractional anisotropy (FA) in geometrically parcellated segments. However, FA is influenced by several different microstructural properties such as myelination and axon density, hindering a neurobiological interpretation. This study explores the relationship between FA and more specific measures of microstructure within the corpus callosum in a sample of 271 healthy participants. DTI tractography was used to assess 11 callosal segments and gain estimates of FA. We quantified axon density and myelination via neurite orientation dispersion and density imaging (NODDI) to assess intra-neurite volume fraction and a multiecho gradient spin-echo sequence estimating myelin water fraction. The results indicate three common factors in the distribution of FA, myelin content and axon density, indicating potentially shared rules of topographical distribution. Moreover, the relationship between measures varied across the corpus callosum, suggesting that FA should not be interpreted uniformly. More specific magnetic resonance imaging-based quantification techniques, such as NODDI and multiecho myelin water imaging, may thus play a key role in future studies of clinical trials and individual differences.
Collapse
Affiliation(s)
- Patrick Friedrich
- Department of Psychology, Institute of Cognitive Neuroscience, Biopsychology, Ruhr University Bochum, 44801 Bochum, Germany
- Brain Connectivity and Behaviour Laboratory (BCBLab), Sorbonne Universities, 75013 Paris, France
| | - Christoph Fraenz
- Department of Psychology, Institute of Cognitive Neuroscience, Biopsychology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Caroline Schlüter
- Department of Psychology, Institute of Cognitive Neuroscience, Biopsychology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Sebastian Ocklenburg
- Department of Psychology, Institute of Cognitive Neuroscience, Biopsychology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Burkhard Mädler
- Health Systems Department, Philips GmBH, 22335 Hamburg, Germany
| | - Onur Güntürkün
- Department of Psychology, Institute of Cognitive Neuroscience, Biopsychology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Erhan Genç
- Department of Psychology, Institute of Cognitive Neuroscience, Biopsychology, Ruhr University Bochum, 44801 Bochum, Germany
| |
Collapse
|
78
|
Bayram AK, Kütük MS, Doganay S, Özgün MT, Gümüş H, Başbuğ M, Kumandaş S, Canpolat M, Per H. An analysis of 109 fetuses with prenatal diagnosis of complete agenesis of corpus callosum. Neurol Sci 2020; 41:1521-1529. [PMID: 31970575 DOI: 10.1007/s10072-019-04224-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/22/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Agenesis of the corpus callosum (ACC) is the most frequent commissural malformation of the brain. It continues to be an important cause of the pregnancy termination associated with the central nervous system (CNS). OBJECTIVE The aim of the study is to provide a comprehensive assessment of fetuses with diagnosis of complete ACC, as well as postnatal neurodevelopmental outcomes. METHODS The data of 75,843 fetuses were screened for evaluation of complete ACC between 2003 and 2017, and a total of 109 cases with complete ACC were included in the study. ACC was considered isolated when no additional anomalies were detected, and ACC was considered complex when additional anomalies were present. RESULTS The prevalence of complete ACC was 9.4 per 10,000 live births, and the incidence was ranged from 1.8 to 16.6 per 10,000 person-years. Patients with isolated ACC had a significantly higher survival when compared with patients with complex ACC (97.4%, n = 38/39 vs. 68.8%, n = 22/32, P = 0.001).The most important cause of death were congenital heart disease and/or respiratory failure during neonatal period. Developmental and intellectual disabilities were significantly higher in the complex ACC cases (P < 0.001). Postnatal neurodevelopmental outcomes were completely normal in 79.4% of cases with isolated ACC. CONCLUSIONS Isolated complete ACC is usually associated with a favorable outcome. The most important prognostic factors are the presence or absence of associated congenital anomalies.
Collapse
Affiliation(s)
- Ayşe Kaçar Bayram
- Department of Pediatrics, Division of Pediatric Neurology, Faculty of Medicine, Erciyes University, 38039, Melikgazi, Kayseri, Turkey
| | - Mehmet Serdar Kütük
- Department of Obstetrics and Gynecology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Selim Doganay
- Pediatric Radiologist, Specialist, Kayseri, 38039, Kayseri, Turkey
| | - Mahmut Tuncay Özgün
- Department of Obstetrics and Gynecology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Hakan Gümüş
- Department of Pediatrics, Division of Pediatric Neurology, Faculty of Medicine, Erciyes University, 38039, Melikgazi, Kayseri, Turkey
| | - Mustafa Başbuğ
- Department of Obstetrics and Gynecology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Sefer Kumandaş
- Department of Pediatrics, Division of Pediatric Neurology, Faculty of Medicine, Erciyes University, 38039, Melikgazi, Kayseri, Turkey
| | - Mehmet Canpolat
- Department of Pediatrics, Division of Pediatric Neurology, Faculty of Medicine, Erciyes University, 38039, Melikgazi, Kayseri, Turkey
| | - Hüseyin Per
- Department of Pediatrics, Division of Pediatric Neurology, Faculty of Medicine, Erciyes University, 38039, Melikgazi, Kayseri, Turkey.
| |
Collapse
|
79
|
Tétreault P, Harkins KD, Baron CA, Stobbe R, Does MD, Beaulieu C. Diffusion time dependency along the human corpus callosum and exploration of age and sex differences as assessed by oscillating gradient spin-echo diffusion tensor imaging. Neuroimage 2020; 210:116533. [PMID: 31935520 DOI: 10.1016/j.neuroimage.2020.116533] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 12/19/2022] Open
Abstract
Conventional diffusion imaging uses pulsed gradient spin echo (PGSE) waveforms with diffusion times of tens of milliseconds (ms) to infer differences of white matter microstructure. The combined use of these long diffusion times with short diffusion times (<10 ms) enabled by oscillating gradient spin echo (OGSE) waveforms can enable more sensitivity to changes of restrictive boundaries on the scale of white matter microstructure (e.g. membranes reflecting the axon diameters). Here, PGSE and OGSE images were acquired at 4.7 T from 20 healthy volunteers aged 20-73 years (10 males). Mean, radial, and axial diffusivity, as well as fractional anisotropy were calculated in the genu, body and splenium of the corpus callosum (CC). Monte Carlo simulations were also conducted to examine the relationship of intra- and extra-axonal radial diffusivity with diffusion time over a range of axon diameters and distributions. The results showed elevated diffusivities with OGSE relative to PGSE in the genu and splenium (but not the body) in both males and females, but the OGSE-PGSE difference was greater in the genu for males. Females showed positive correlations of OGSE-PGSE diffusivity difference with age across the CC, whereas there were no such age correlations in males. Simulations of radial diffusion demonstrated that for axon sizes in human brain both OGSE and PGSE diffusivities were dominated by extra-axonal water, but the OGSE-PGSE difference nonetheless increased with area-weighted outer-axon diameter. Therefore, the lack of OGSE-PGSE difference in the body is not entirely consistent with literature that suggests it is composed predominantly of axons with large diameter. The greater OGSE-PGSE difference in the genu of males could reflect larger axon diameters than females. The OGSE-PGSE difference correlation with age in females could reflect loss of smaller axons at older ages. The use of OGSE with short diffusion times to sample the microstructural scale of restriction implies regional differences of axon diameters along the corpus callosum with preliminary results suggesting a dependence on age and sex.
Collapse
Affiliation(s)
- Pascal Tétreault
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Kevin D Harkins
- Institute of Imaging Science and Department of Biomedical Engineering, Vanderbilt, University, Nashville, TN, USA
| | - Corey A Baron
- Department of Medical Biophysics, Western University, London, ON, Canada
| | - Rob Stobbe
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Mark D Does
- Institute of Imaging Science and Department of Biomedical Engineering, Vanderbilt, University, Nashville, TN, USA
| | - Christian Beaulieu
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
80
|
Yang C, Zhang W, Yao L, Liu N, Shah C, Zeng J, Yang Z, Gong Q, Lui S. Functional Alterations of White Matter in Chronic Never-Treated and Treated Schizophrenia Patients. J Magn Reson Imaging 2019; 52:752-763. [PMID: 31859423 DOI: 10.1002/jmri.27028] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/28/2019] [Accepted: 12/02/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Schizophrenia is one of the most severe psychiatric disorders and dysfunction of gray matter (GM) has been usually investigated by resting-state functional (f)MRI. However, functional organization of white matter (WM) in chronic schizophrenia remains unclear. PURPOSE To investigate the WM functional alterations in chronic never-treated schizophrenia and the effects of long-term antipsychotic treatment. STUDY TYPE Prospective. SUBJECTS Twenty-five never-treated, 41 matched antipsychotic-treated schizophrenia, and 25 healthy comparison subjects. FIELD STRENGTH/SEQUENCE Resting state (rs)-fMRI, T1 -weighted images (T1 WI), and diffusion tensor imaging (DTI) covering the whole brain were acquired with a 3.0T scanner. ASSESSMENT Amplitude of low-frequency fluctuations (ALFF) in WM and the correlation coefficients between WM and GM were examined and compared among the three participant groups by two reviewers independently. Independent component analysis (ICA) was added to evaluate WM-fMRI signals. Statistical Tests: Analysis of covariance (ANCOVA); Pearson correlation analysis. RESULTS Never-treated patients demonstrated lower ALFF in splenium of corpus callosum (SCC) relative to treated patients and controls (P < 0.001, false discovery rate [FDR]-corrected). While the extracted independent component also located in SCC and showed significantly decreased connectivity in never-treated patients when compared to controls (P < 0.05, FDR-corrected). The correlation coefficients of WM-GM displayed greater reductions in the genu of corpus callosum (GCC), pontine crossing tract (PC), bilateral cingulum (hippocampus) (CGH), and bilateral corticospinal tract (CST) in treated patients relative to controls (P < 0.05, FDR-corrected). DATA CONCLUSION These findings provide new insight into WM functional alterations over the long-term course of schizophrenia with and without the potential effects of antipsychotic medication. Functional change and abnormal connectivity in SCC were both found greater in untreated patients than treated patients relative to healthy controls, suggesting that long-term antipsychotic treatment may show some protective effects on WM functional organization. LEVEL OF EVIDENCE 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2020;52:752-763.
Collapse
Affiliation(s)
- Chengmin Yang
- Huaxi MR Research Center (HMRRC), Functional and molecular imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Wenjing Zhang
- Huaxi MR Research Center (HMRRC), Functional and molecular imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Li Yao
- Huaxi MR Research Center (HMRRC), Functional and molecular imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Naici Liu
- Huaxi MR Research Center (HMRRC), Functional and molecular imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Chandan Shah
- Huaxi MR Research Center (HMRRC), Functional and molecular imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Jiaxin Zeng
- Huaxi MR Research Center (HMRRC), Functional and molecular imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhipeng Yang
- College of Electronic Engineering, Chengdu University of Information Technology, Chengdu, P.R. China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Functional and molecular imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Functional and molecular imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
81
|
Özdemir S, Tuncer Ü, Sürmelioğlu Ö, Tarkan Ö, Çelik F, Kıroğlu M, Dağkıran M, Şahin P, Tezer N, Akar F. Cochlear Implantation Outcomes in Children with Agenesis of the Corpus Callosum: A Retrospective Study and A Review of the Literature. J Int Adv Otol 2019; 15:364-367. [PMID: 31846912 DOI: 10.5152/iao.2019.6577] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES The aim of the present study was to analyze the outcomes of cochlear implantation (CI) in patients with agenesis of the corpus callosum (CCA). A literature review and a retrospective analysis of our cochlear implant database were performed. MATERIALS AND METHODS To the best of our knowledge, in the English literature, there was only one case reported with CCA who had undergone CI surgery. This case had Donnai-Barrow syndrome. In the Cukurova University School of Medicine Department of Otorhinolaryngology database, 5 of the 1317 patients who underwent CI surgery who had CCA were selected. The patients' demographic characteristics, operative findings, surgical outcomes, and additional disabilities were investigated. The patients' preoperative and postoperative Listening Progress Profile (LiP) and Meaningful Auditory Integration Scale (MAIS) tests were done to analyze the auditory performances. RESULTS The participants of the study were 5 (0.38%) individuals (2 male and 3 female patients; ages 5.5, 7.5, 8, 9, and 12 years). Two of the patients had total agenesis, and the other three had partial agenesis of the CCA. In the histories of the patients, one patient had parental consanguinity, and one had febrile convulsion. No patient had an additional disability. None had experienced device failure. No patients were non-users or limited users of cochlear implants. Postoperative LiP and MAIS test scores were improved for all patients nearly as the patients without any deformity. They showed normal auditory performance in the analysis in their postoperative 48 months of follow-up. CONCLUSION Patients who had CCA are good candidates for CI surgery.
Collapse
Affiliation(s)
- Süleyman Özdemir
- Department of Otorhinolaryngology Head-Neck Surgery, Cukurova University School of Medicine, Adana, Turkey
| | - Ülkü Tuncer
- Department of Otorhinolaryngology Head-Neck Surgery, Cukurova University School of Medicine, Adana, Turkey
| | - Özgür Sürmelioğlu
- Department of Otorhinolaryngology Head-Neck Surgery, Cukurova University School of Medicine, Adana, Turkey
| | - Özgür Tarkan
- Department of Otorhinolaryngology Head-Neck Surgery, Cukurova University School of Medicine, Adana, Turkey
| | - Fikret Çelik
- Department of Otorhinolaryngology Head-Neck Surgery, Cukurova University School of Medicine, Adana, Turkey
| | - Mete Kıroğlu
- Department of Otorhinolaryngology Head-Neck Surgery, Cukurova University School of Medicine, Adana, Turkey
| | - Muhammed Dağkıran
- Department of Otorhinolaryngology Head-Neck Surgery, Cukurova University School of Medicine, Adana, Turkey
| | - Poyraz Şahin
- Department of Otorhinolaryngology Head-Neck Surgery, Cukurova University School of Medicine, Adana, Turkey
| | - Nilay Tezer
- Department of Otorhinolaryngology Head-Neck Surgery, Cukurova University School of Medicine, Adana, Turkey
| | - Funda Akar
- Department of Otorhinolaryngology Head-Neck Surgery, Cukurova University School of Medicine, Adana, Turkey
| |
Collapse
|
82
|
Anand C, Brandmaier AM, Arshad M, Lynn J, Stanley JA, Raz N. White-matter microstructural properties of the corpus callosum: test-retest and repositioning effects in two parcellation schemes. Brain Struct Funct 2019; 224:3373-3385. [PMID: 31734773 PMCID: PMC9732928 DOI: 10.1007/s00429-019-01981-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/07/2019] [Indexed: 12/13/2022]
Abstract
We investigated test-retest reliability of two MRI-derived indices of white-matter microstructural properties in the human corpus callosum (CC): myelin water fraction (MWF) and geometric mean T2 relaxation time of intra/extracellular water (geomT2IEW), using a 3D gradient and multi spin-echo sequence in 20 healthy adults (aged 24-69 years, 10 men). For each person, we acquired two back-to-back acquisitions in a single session, and the third after a break and repositioning the participant in the scanner. We assessed the contribution of session-related variance to reliability, using intra-class effect decomposition (ICED) while comparing two CC parcellation schemes that divided the CC into five and ten regions. We found high construct-level reliability of MWF and geomT2IEW in all regions of both schemes, except the posterior body-a slender region with a smaller number of large myelinated fibers. Only in that region, we observed significant session-specific variance in the MWF, interpreted as an effect of repositioning in the scanner. The geomT2IEW demonstrated higher reliability than MWF across both parcellation schemes and all CC regions. Thus, in both CC parcellation approaches, MWF and geomT2IEW have good test-retest reliability and are, therefore, suitable for longitudinal investigations in healthy adults. However, the five-region scheme appears more appropriate for MWF, whereas both schemes are suitable for geomT2IEW studies. Given the lower reliability in the posterior body, which may reflect sensitivity to the repositioning of the participant in the scanner, caution should be exercised in interpreting differential findings in that region.
Collapse
Affiliation(s)
- Chaitali Anand
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, USA,Institute of Gerontology, Wayne State University, Detroit, MI, USA
| | - Andreas M. Brandmaier
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany,Max Planck, UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany,Max Planck, UCL Centre for Computational Psychiatry and Ageing Research, London, UK
| | - Muzamil Arshad
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, USA
| | - Jonathan Lynn
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, USA,Institute of Gerontology, Wayne State University, Detroit, MI, USA
| | - Jeffrey A. Stanley
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, USA
| | - Naftali Raz
- Institute of Gerontology, Wayne State University, Detroit, MI, USA,Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany,Department of Psychology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
83
|
Anterior and posterior commissures in agenesis of the corpus callosum: Alternative pathways for attention processes? Cortex 2019; 121:454-467. [DOI: 10.1016/j.cortex.2019.09.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 04/18/2019] [Accepted: 09/24/2019] [Indexed: 11/20/2022]
|
84
|
Meloche J, Brunet V, Gagnon PA, Lavoie MÈ, Bouchard JB, Nadaf J, Majewski J, Morin C, Laprise C. Exome sequencing study of partial agenesis of the corpus callosum in men with developmental delay, epilepsy, and microcephaly. Mol Genet Genomic Med 2019; 8:e992. [PMID: 31578829 PMCID: PMC6978259 DOI: 10.1002/mgg3.992] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 08/28/2019] [Accepted: 09/03/2019] [Indexed: 12/24/2022] Open
Abstract
Background This study reports the genetic features of four Caucasian males from the Saguenay‒Lac‐St‐Jean region affected by partial agenesis of the corpus callosum (ACC) with hypotonia, epilepsy, developmental delay, microcephaly, hypoplasia, and autistic behavior. Methods We performed whole exome sequencing (WES) to identify new genes involved in this pathological phenotype. The regions of interest were subsequently sequenced for family members. Results Single‐nucleotide variations (SNVs) and insertions or deletions were detected in genes potentially implicated in brain defects observed in these patients. One patient did not have mutations in genes related to ACC, but carried a de novo pathogenic mutation in Mucolipin‐1 (MCOLN1) and was diagnosed with mucolipidosis type IV. Among the other probands, missense SNVs were observed in DCLK2 (Doublecortin Like Kinase 2), HERC2 (HECT And RLD Domain Containing E3 Ubiquitin Protein Ligase 2), and KCNH3 (Potassium channel, voltage‐gated, subfamily H, member 3). One patient also carried a non‐frameshift insertion in CACNA1A (Cav2.1(P/Q‐type) calcium channels). Conclusion Although no common genetic defect was observed in this study, we provide evidence for new avenues of investigation for ACC, such as molecular pathways involving HERC2, CACNA1A, KCNH3, and more importantly DCLK2. We also allowed to diagnose an individual with mucolipidosis type IV.
Collapse
Affiliation(s)
- Jolyane Meloche
- Centre intersectoriel en santé durable, Université du Québec à Chicoutimi, Saguenay, QC, Canada.,Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Saguenay, QC, Canada
| | - Vanessa Brunet
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Saguenay, QC, Canada
| | - Pierre-Alexandre Gagnon
- Centre intersectoriel en santé durable, Université du Québec à Chicoutimi, Saguenay, QC, Canada.,Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Saguenay, QC, Canada
| | - Marie-Ève Lavoie
- Centre intersectoriel en santé durable, Université du Québec à Chicoutimi, Saguenay, QC, Canada.,Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Saguenay, QC, Canada
| | | | - Javad Nadaf
- Department of Human Genetics, McGill University and Genome Quebec Innovation Centre, Montreal, QC, Canada
| | - Jacek Majewski
- Department of Human Genetics, McGill University and Genome Quebec Innovation Centre, Montreal, QC, Canada
| | - Charles Morin
- Centre de Santé et de Services Sociaux de Chicoutimi, Saguenay, QC, Canada
| | - Catherine Laprise
- Centre intersectoriel en santé durable, Université du Québec à Chicoutimi, Saguenay, QC, Canada.,Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Saguenay, QC, Canada
| |
Collapse
|
85
|
Kaur R, Surala M, Hoger S, Grössmann N, Grimm A, Timaeus L, Kallina W, Hummel T. Pioneer interneurons instruct bilaterality in the Drosophila olfactory sensory map. SCIENCE ADVANCES 2019; 5:eaaw5537. [PMID: 31681838 PMCID: PMC6810332 DOI: 10.1126/sciadv.aaw5537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 09/28/2019] [Indexed: 06/10/2023]
Abstract
Interhemispheric synaptic connections, a prominent feature in animal nervous systems for the rapid exchange and integration of neuronal information, can appear quite suddenly during brain evolution, raising the question about the underlying developmental mechanism. Here, we show in the Drosophila olfactory system that the induction of a bilateral sensory map, an evolutionary novelty in dipteran flies, is mediated by a unique type of commissural pioneer interneurons (cPINs) via the localized activity of the cell adhesion molecule Neuroglian. Differential Neuroglian signaling in cPINs not only prepatterns the olfactory contralateral tracts but also prevents the targeting of ingrowing sensory axons to their ipsilateral synaptic partners. These results identified a sensitive cellular interaction to switch the sequential assembly of diverse neuron types from a unilateral to a bilateral brain circuit organization.
Collapse
Affiliation(s)
- Rashmit Kaur
- Department of Neurobiology, University of Vienna, Althanstrasse 14A, 1090 Vienna, Austria
| | - Michael Surala
- Department of Neurobiology, University of Vienna, Althanstrasse 14A, 1090 Vienna, Austria
| | - Sebastian Hoger
- Department of Neurobiology, University of Vienna, Althanstrasse 14A, 1090 Vienna, Austria
| | - Nicole Grössmann
- Ludwig Boltzmann Institute, Health Technology Assessment (LBI-HTA), Garnisongasse7/20, 1090 Vienna, Austria
- Department of Health Economics, Center for Public Health, Medical University of Vienna, Vienna, Austria
| | - Alexandra Grimm
- Department of Neurobiology, University of Vienna, Althanstrasse 14A, 1090 Vienna, Austria
| | - Lorin Timaeus
- Department of Neurobiology, University of Vienna, Althanstrasse 14A, 1090 Vienna, Austria
| | - Wolfgang Kallina
- Department of Neurobiology, University of Vienna, Althanstrasse 14A, 1090 Vienna, Austria
| | - Thomas Hummel
- Department of Neurobiology, University of Vienna, Althanstrasse 14A, 1090 Vienna, Austria
| |
Collapse
|
86
|
Mancuso L, Uddin LQ, Nani A, Costa T, Cauda F. Brain functional connectivity in individuals with callosotomy and agenesis of the corpus callosum: A systematic review. Neurosci Biobehav Rev 2019; 105:231-248. [DOI: 10.1016/j.neubiorev.2019.07.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 06/30/2019] [Accepted: 07/04/2019] [Indexed: 02/05/2023]
|
87
|
Huang TN, Hsu TT, Lin MH, Chuang HC, Hu HT, Sun CP, Tao MH, Lin JY, Hsueh YP. Interhemispheric Connectivity Potentiates the Basolateral Amygdalae and Regulates Social Interaction and Memory. Cell Rep 2019; 29:34-48.e4. [PMID: 31577954 DOI: 10.1016/j.celrep.2019.08.082] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/30/2019] [Accepted: 08/26/2019] [Indexed: 12/21/2022] Open
Abstract
Impaired interhemispheric connectivity is commonly found in various psychiatric disorders, although how interhemispheric connectivity regulates brain function remains elusive. Here, we use the mouse amygdala, a brain region that is critical for social interaction and fear memory, as a model to demonstrate that contralateral connectivity intensifies the synaptic response of basolateral amygdalae (BLA) and regulates amygdala-dependent behaviors. Retrograde tracing and c-FOS expression indicate that contralateral afferents widely innervate BLA non-randomly and that some BLA neurons innervate both contralateral BLA and the ipsilateral central amygdala (CeA). Our optogenetic and electrophysiological studies further suggest that contralateral BLA input results in the synaptic facilitation of BLA neurons, thereby intensifying the responses to cortical and thalamic stimulations. Finally, pharmacological inhibition and chemogenetic disconnection demonstrate that BLA contralateral facilitation is required for social interaction and memory. Our study suggests that interhemispheric connectivity potentiates the synaptic dynamics of BLA neurons and is critical for the full activation and functionality of amygdalae.
Collapse
Affiliation(s)
- Tzyy-Nan Huang
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, ROC
| | - Tsan-Ting Hsu
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, ROC
| | - Ming-Hui Lin
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, ROC
| | - Hsiu-Chun Chuang
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, ROC
| | - Hsiao-Tang Hu
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, ROC
| | - Cheng-Pu Sun
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan, ROC
| | - Mi-Hua Tao
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan, ROC
| | - John Y Lin
- School of Medicine, University of Tasmania, TAS 7000, Australia
| | - Yi-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, ROC.
| |
Collapse
|
88
|
Culjat M, Milošević NJ. Callosal septa express guidance cues and are paramedian guideposts for human corpus callosum development. J Anat 2019; 235:670-686. [PMID: 31070791 PMCID: PMC6704273 DOI: 10.1111/joa.13011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2019] [Indexed: 12/18/2022] Open
Abstract
The early development and growth of the corpus callosum are supported by several midline transient structures in mammals that include callosal septa (CS), which are present only in the second half of gestation in humans. Here we provide new data that support the guidance role of CS in corpus callosum development, derived from the analysis of 46 postmortem fetal brains, ranging in age from 16 to 40 post conception weeks (PCW). Using immunohistochemical methods, we show the expression pattern of guidance cues ephrinA4 and neogenin, extracellular protein fibronectin, as well as non-activated microglia in the CS. We found that the dynamic changes in expression of guidance cues, cellular and extracellular matrix constituents in the CS correlate well with the growth course of the corpus callosum at midsagittal level. The CS reach and maintain their developmental maximum between 20 and 26 PCW and can be visualized as hypointense structures in the ventral callosal portion with ex vivo (in vitro) T2-weighted 3T magnetic resonance imaging (MRI). The maximum of septal development overlaps with an increase in the callosal midsagittal area, whereas the slow, gradual resolution of CS coincides with a plateau of midsagittal callosal growth. The recognition of CS existence in human fetal brain and the ability to visualize them by ex vivoMRI attributes a potential diagnostic value to these transient structures, as advancement in imaging technologies will likely also enable in vivoMRI visualization of the CS in the near future.
Collapse
Affiliation(s)
- Marko Culjat
- MedStar Georgetown University HospitalWashingtonDCUSA
| | | |
Collapse
|
89
|
Mills M, Pelling V, Harris LM, Smith J, Aiton N, Rabe H, Fernandez-Alvarez JR. Comparison of MRI and neurosonogram 1- and 2-dimensional morphological measurements of the newborn corpus callosum. Pediatr Res 2019; 86:355-359. [PMID: 30965354 DOI: 10.1038/s41390-019-0386-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 03/05/2019] [Accepted: 03/15/2019] [Indexed: 11/09/2022]
Abstract
BACKGROUND Developmental abnormalities of the corpus callosum (CC) are linked to multiple neuro-developmental disorders, for which neonatal neuroimaging may allow earlier diagnosis and intervention. MRI is often considered the most sensitive imaging modality to white matter changes, while neurosonogram (NS) remains the clinical staple. This study assesses the correlation between MRI and US measurements of the neonatal CC using a protocol derived from established methodologies. METHODS MR and NS images from an existing cohort of term infants (≥37 weeks gestational age) were studied. Length and area measurements of the CC made with linear (LUS) and phased array US (PUS) data were compared to those from MRI. Intra-observer reliabilities were estimated. RESULTS Moderate-to-strong correlation strengths were observed for length measurements and the total area of the CC. Sectional area measurements showed poorer correlations. Bland-Altman plots support improved correspondence of length and total area measurements. LUS data appeared to correspond closer to MRI. All three modalities showed comparable repeatability. CONCLUSION NS correlates well with some MRI measurements of the CC and shows similar levels of repeatability, making them possibly interchangeable. Use of LUS, a technique rarely used for NS, may be preferable to the standard approach for morphological studies.
Collapse
Affiliation(s)
- Michael Mills
- Department of Radiological Sciences, Brighton & Sussex University Hospitals NHS Trust, Brighton, UK.
| | - Vincent Pelling
- Department of Radiological Sciences, Brighton & Sussex University Hospitals NHS Trust, Brighton, UK
| | - Lisa M Harris
- Department of Radiological Sciences, Brighton & Sussex University Hospitals NHS Trust, Brighton, UK
| | - Joely Smith
- Department of Imaging, Imperial College Healthcare NHS Trust, London, UK
| | - Neil Aiton
- Brighton and Sussex Medical School, Brighton, UK.,Department of Neonatology, Brighton & Sussex University Hospitals NHS Trust, Brighton, UK
| | - Heike Rabe
- Brighton and Sussex Medical School, Brighton, UK.,Department of Neonatology, Brighton & Sussex University Hospitals NHS Trust, Brighton, UK
| | - Jose Ramon Fernandez-Alvarez
- Brighton and Sussex Medical School, Brighton, UK.,Department of Neonatology, Brighton & Sussex University Hospitals NHS Trust, Brighton, UK
| |
Collapse
|
90
|
Diene LD, Costa-Ferro ZSM, Barbosa S, Milanesi BB, Lazzari GZ, Neves LT, Paz LV, Neves PFR, Battisti V, Martins LA, Gehlen G, Mestriner RG, Da Costa JC, Xavier LL. Selective brain neuronal and glial losses without changes in GFAP immunoreactivity: Young versus mature adult Wistar rats. Mech Ageing Dev 2019; 182:111128. [PMID: 31404554 DOI: 10.1016/j.mad.2019.111128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/18/2019] [Accepted: 08/06/2019] [Indexed: 10/26/2022]
Abstract
Normal ageing results in brain selective neuronal and glial losses. In the present study we analyze neuronal and glial changes in Wistar rats at two different ages, 45 days (young) and 420 days (mature adult), using Nissl staining and glial fibrillary acidic protein (GFAP) immunohistochemistry associated to the Sholl analysis. Comparing mature adults with young rats we noted the former present a decrease in neuronal density in the cerebral cortex, corpus callosum, pyriform cortex, L.D.D.M., L.D.V.L., central medial thalamic nucleus and zona incerta. A decrease in glial density was found in the dorsomedial and ventromedial hypothalamic nuclei. Additionally, the neuron/glia ratio was reduced in the central medial thalamic nucleus and increased in the habenula. No changes were found in the neuronal and glial densities or neuron/glia ratio in the other studied regions. The number of astrocytic primary processes and the number of intersections counted in the Sholl analysis presented no significant difference in any of the studied regions. Overall, neither GFAP positive astrocytic density nor GFAP immunoreactivity showed alteration.
Collapse
Affiliation(s)
- Leonardo D Diene
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Silvia Barbosa
- Laboratório de Histofisiologia Comparada, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Bruna Bueno Milanesi
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gabriele Zenato Lazzari
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Laura Tartari Neves
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lisiê Valéria Paz
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Paula Fernanda Ribas Neves
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Vanessa Battisti
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lucas A Martins
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Régis Gemerasca Mestriner
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Jaderson C Da Costa
- Instituto do Cérebro do Rio Grande do Sul (InsCer/RS), Porto Alegre, RS, Brazil
| | - Léder L Xavier
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
91
|
Reynolds JE, Grohs MN, Dewey D, Lebel C. Global and regional white matter development in early childhood. Neuroimage 2019; 196:49-58. [DOI: 10.1016/j.neuroimage.2019.04.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 03/08/2019] [Accepted: 04/01/2019] [Indexed: 12/31/2022] Open
|
92
|
Layden EA, Schertz KE, London SE, Berman MG. Interhemispheric functional connectivity in the zebra finch brain, absent the corpus callosum in normal ontogeny. Neuroimage 2019; 195:113-127. [PMID: 30940612 DOI: 10.1016/j.neuroimage.2019.03.064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/19/2019] [Accepted: 03/27/2019] [Indexed: 11/25/2022] Open
Abstract
Bilaterally symmetric intrinsic brain activity (homotopic functional connectivity; FC) is a fundamental feature of the mammalian brain's functional architecture. In mammals, homotopic FC is primarily mediated by the corpus callosum (CC), a large interhemispheric white matter tract thought to balance the bilateral coordination and hemispheric specialization critical for many complex brain functions, including human language. The CC first emerged with the Eutherian (placental) mammals ∼160 MYA and is not found among other vertebrates. Despite this, other vertebrates also exhibit complex brain functions requiring hemispheric specialization and coordination. For example, the zebra finch (Taeniopygia guttata) songbird learns to sing from tutors much as humans acquire speech and must balance hemispheric specialization and coordination to successfully learn and produce song. We therefore tested whether the zebra finch also exhibits homotopic FC, despite lacking the CC. Resting-state fMRI analyses demonstrated widespread homotopic FC throughout the zebra finch brain across development, including within a network required for learned song that lacks direct interhemispheric structural connectivity. The presence of homotopic FC in a non-Eutherian suggests that ancestral pathways, potentially including indirect connectivity via the anterior commissure, are sufficient for maintaining a homotopic functional architecture, an insight with broad implications for understanding interhemispheric coordination across phylogeny.
Collapse
Affiliation(s)
- Elliot A Layden
- Department of Psychology, The University of Chicago, Chicago, IL, 60637, USA.
| | - Kathryn E Schertz
- Department of Psychology, The University of Chicago, Chicago, IL, 60637, USA
| | - Sarah E London
- Department of Psychology, The University of Chicago, Chicago, IL, 60637, USA; Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, 60637, USA; The Institute for Mind and Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Marc G Berman
- Department of Psychology, The University of Chicago, Chicago, IL, 60637, USA; Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
93
|
Kellmeyer P, Vry MS, Ball T. A transcallosal fibre system between homotopic inferior frontal regions supports complex linguistic processing. Eur J Neurosci 2019; 50:3544-3556. [PMID: 31209927 PMCID: PMC6899774 DOI: 10.1111/ejn.14486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/20/2019] [Accepted: 05/30/2019] [Indexed: 12/31/2022]
Abstract
Inferior frontal regions in the left and right hemisphere support different aspects of language processing. In the canonical model, left inferior frontal regions are mostly involved in processing based on phonological, syntactic and semantic features of language, whereas the right inferior frontal regions process paralinguistic aspects like affective prosody. Using diffusion tensor imaging (DTI)‐based probabilistic fibre tracking in 20 healthy volunteers, we identify a callosal fibre system connecting left and right inferior frontal regions that are involved in linguistic processing of varying complexity. Anatomically, we show that the interhemispheric fibres are highly aligned and distributed along a rostral to caudal gradient in the body and genu of the corpus callosum to connect homotopic inferior frontal regions. In the light of converging data, taking previous DTI‐based tracking studies and clinical case studies into account, our findings suggest that the right inferior frontal cortex not only processes paralinguistic aspects of language (such as affective prosody), as purported by the canonical model, but also supports the computation of linguistic aspects of varying complexity in the human brain. Our model may explain patterns of right‐hemispheric contribution to stroke recovery as well as disorders of prosodic processing. Beyond language‐related brain function, we discuss how inter‐species differences in interhemispheric connectivity and fibre density, including the system we described here may also explain differences in transcallosal information transfer and cognitive abilities across different mammalian species.
Collapse
Affiliation(s)
- Philipp Kellmeyer
- Neuromedical Artificial Intelligence Lab, Department of Neurosurgery, Medical Center-University of Freiburg, Freiburg im Breisgau, Germany.,Cluster of Excellence BrainLinks-BrainTools, University of Freiburg, Freiburg im Breisgau, Germany
| | - Magnus-Sebastian Vry
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg im Breisgau, Germany
| | - Tonio Ball
- Neuromedical Artificial Intelligence Lab, Department of Neurosurgery, Medical Center-University of Freiburg, Freiburg im Breisgau, Germany.,Cluster of Excellence BrainLinks-BrainTools, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
94
|
Ansado J, Blunt A, Chen JK, Koski L, Ptito A. Impact of non-invasive brain stimulation on transcallosal modulation in mild traumatic brain injury: a multimodal pilot investigation. Brain Inj 2019; 33:1021-1031. [DOI: 10.1080/02699052.2019.1605620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jennyfer Ansado
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Aaron Blunt
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Jen-Kai Chen
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Lisa Koski
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Alain Ptito
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Department of Psychology, McGill University Health Centre, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| |
Collapse
|
95
|
Abstract
The corpus callosum is the largest of the 3 telencephalic commissures in eutherian (placental) mammals. Although the anterior commissure, and the hippocampal commissure before being pushed dorsally by the expanding frontal lobes, cross through the lamina reuniens (upper part of the lamina terminalis), the callosal fibers need a transient interhemispheric cellular bridge to cross. This review describes the molecular pathways that initiate the specification of the cells comprising this bridge, the specification of the callosal neurons, and the repulsive and attractive guidance molecules that convey the callosal axons toward, across, and away from the midline to connect with their targets.
Collapse
|
96
|
Santirocco M, Rodó C, Illescas T, Vázquez É, Garrido M, Higueras T, Arévalo S, Maiz N, Carreras E. Accuracy of prenatal ultrasound in the diagnosis of corpus callosum anomalies. J Matern Fetal Neonatal Med 2019; 34:439-444. [PMID: 31035852 DOI: 10.1080/14767058.2019.1609931] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Objectives: The main objective of this study was to evaluate the accuracy of prenatal ultrasound to diagnose corpus callosum alterations, compared to prenatal magnetic resonance imaging (MRI), postnatal image techniques (ultrasound and/or MRI), and post-mortem examination in terminated pregnancies.Methods: Retrospective review of 86 cases of prenatal ultrasound diagnosis of corpus callosum anomalies between January 2007 and December 2015 at a third level Maternal Fetal Medicine center. The study reviewed the findings of prenatal ultrasound and MRI, post-mortem examination in cases of termination of pregnancy (TOP) or stillbirths and postnatal ultrasound, and MRI in neonates. The anomalies of corpus callosum (CC) were classified as complete agenesis of the corpus callosum (ACC), partial ACC, or dysgenesis of CC.Results: Fifty-eight (67.4%) cases resulted in TOP, 26 (30.2%) cases opted to continue with the pregnancy and two (2.3%) cases were lost to follow up. Among the 26 cases that continued with the pregnancy, 24 (92.3%) were live births and two (7.7%) were stillborn. All cases in which a third trimester MRI was performed (n = 46) confirmed the prenatal ultrasound diagnosis of CC anomaly. In seven (15.2%) of them, the MRI found additional intracranial findings and in three cases (6.5%) the type of CC anomaly (complete, partial, or dysgenesis) was reclassified (Kappa index: 0.86, 95% CI: 0.71-1.00). CC anomalies were confirmed in 46 (95.8%) of the 48 cases in which a post-mortem examination was available, the type of anomaly being reclassified in three cases (6.3%) (Kappa index: 0.88, 95% CI: 0.75-1.00). Among the 10 cases in which a postnatal ultrasound was performed, the CC anomaly was confirmed in all and the type of anomaly was reclassified in 1 (10%) of them (Kappa index: 0.75, 95% CI: 0.32-1.00).Conclusion: Corpus callosum agenesis can be detected on the routine mid-trimester ultrasound scan. Prenatal ultrasound and MRI can accurately classify the type of CC abnormality. Moreover, third trimester MRI can detect additional intracranial anomalies in 15% of cases.
Collapse
Affiliation(s)
- Maddalena Santirocco
- Department of Maternal-Fetal Medicine, Hospital Universitari Vall d'Hebron, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Carlota Rodó
- Department of Maternal-Fetal Medicine, Hospital Universitari Vall d'Hebron, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Tamara Illescas
- Department of Maternal-Fetal Medicine, Hospital Universitari Vall d'Hebron, Universitat Autónoma de Barcelona, Barcelona, Spain.,Department of Obstetrics and Gynecology, Hospital Universitario La Paz, Madrid, Spain
| | - Élida Vázquez
- Department of Paediatric Radiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Marta Garrido
- Department of Pathology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Teresa Higueras
- Department of Maternal-Fetal Medicine, Hospital Universitari Vall d'Hebron, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Silvia Arévalo
- Department of Maternal-Fetal Medicine, Hospital Universitari Vall d'Hebron, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Nerea Maiz
- Department of Maternal-Fetal Medicine, Hospital Universitari Vall d'Hebron, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Elena Carreras
- Department of Maternal-Fetal Medicine, Hospital Universitari Vall d'Hebron, Universitat Autónoma de Barcelona, Barcelona, Spain
| |
Collapse
|
97
|
Vijaykumar M, Mogily S, Dutta-Gupta A, Joseph J. Evidence for absence of bilateral transfer of olfactory learned information in Apis dorsata and Apis mellifera. ACTA ACUST UNITED AC 2019; 222:jeb.196584. [PMID: 30936270 DOI: 10.1242/jeb.196584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 03/27/2019] [Indexed: 11/20/2022]
Abstract
The capacity and condition under which the lateral transfer of olfactory memory is possible in insects is still debated. Here, we present evidence in two species of honeybees, Apis mellifera and Apis dorsata, consistent with the lack of ability to transfer olfactory associative memory in a proboscis extension response (PER) associative conditioning paradigm, where the untrained antenna is blocked by an insulating coat. We show that the olfactory system on each side of the bee can learn and retrieve information independently and the retrieval using the antenna on the side contralateral to the trained one is not affected by the training. Using the setup in which the memory on the contralateral side has been reported at 3 h after training, we see that the memory is available on the contralateral side immediately after training. In the same setup, coating the antenna with an insulator on the training side does not prevent learning, pointing to a possible insufficiency of the block of odor stimuli in this setup. Moreover, the behavior of the bee as a whole can be predicted if the sides are assumed to learn and store independently, and the organism as a whole is able to retrieve the memory if either of the sides have the memory.
Collapse
Affiliation(s)
- Meenakshi Vijaykumar
- Centre for Neural and Cognitive Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, India.,Department of Animal Biology, University of Hyderabad, Gachibowli, Hyderabad 500046, India
| | - Sandhya Mogily
- Centre for Neural and Cognitive Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, India
| | - Aparna Dutta-Gupta
- Department of Animal Biology, University of Hyderabad, Gachibowli, Hyderabad 500046, India
| | - Joby Joseph
- Centre for Neural and Cognitive Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, India
| |
Collapse
|
98
|
Young DA, Neylan TC, Chao LL, O'Donovan A, Metzler TJ, Inslicht SS. Child abuse interacts with hippocampal and corpus callosum volume on psychophysiological response to startling auditory stimuli in a sample of veterans. J Psychiatr Res 2019; 111:16-23. [PMID: 30660809 PMCID: PMC6467732 DOI: 10.1016/j.jpsychires.2019.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/05/2019] [Accepted: 01/10/2019] [Indexed: 12/21/2022]
Abstract
Child abuse (CA), which is linked to posttraumatic stress disorder (PTSD), has been associated with a reduction in both hippocampal and corpus callosum (CC) volume. However, few studies have explored these relationships on psychophysiological variables related to trauma exposure. Therefore, we assessed whether the interaction between CA and hippocampal and CC volume were associated with enhanced fear potentiated psychophysiological response patterns in a sample of Veterans. 147 Veteran participants who were part of a larger study of Gulf War Illness were exposed to startling sounds in no, ambiguous, and high threat conditions and also provided MRI data. The Clinician Administered PTSD Scale and Trauma History Questionnaire were used to measure PTSD and CA respectively. Psychophysiological response was measured by EMG, SCR, and heart rate. Repeated-measures mixed linear models were used to assess the significance of CA by neural structure interactions. CA interacted with both hippocampal and CC volume on psychophysiological response magnitudes, where participants with CA and smaller hippocampal volume had greater EMG (p < 0.01) and SCR (p < 0.05) magnitudes across trials and over threat conditions. Participants with CA and smaller CC volume had greater SCR magnitudes across trials and over threat conditions (p < 0.01). Hippocampal and genu volume mediated CA and psychophysiological response magnitude. CA may impact psychophysiological response via a reduction in hippocampal and CC volume. Volumetric reduction in these structures may indicate a neurofunctional, CA-related increase in threat sensitivity, which could portend increased PTSD susceptibility and adverse interpersonal and social consequences across the lifespan.
Collapse
Affiliation(s)
- Dmitri A Young
- San Francisco VA Health Care System, 4150 Clement St. (116P), San Francisco, CA, 94121, USA; Northern California Institute for Research and Education (NCIRE), The Veterans Health Research Institute, San Francisco, CA, 94121, USA; Department of Psychiatry, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, 94143, USA.
| | - Thomas C Neylan
- San Francisco VA Health Care System, 4150 Clement St. (116P), San Francisco, CA, 94121, USA; Northern California Institute for Research and Education (NCIRE), The Veterans Health Research Institute, San Francisco, CA, 94121, USA; Department of Psychiatry, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, 94143, USA.
| | - Linda L Chao
- San Francisco VA Health Care System, 4150 Clement St. (116P), San Francisco, CA, 94121, USA; Northern California Institute for Research and Education (NCIRE), The Veterans Health Research Institute, San Francisco, CA, 94121, USA; Department of Psychiatry, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, 94143, USA; Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA, 94143, USA.
| | - Aoife O'Donovan
- San Francisco VA Health Care System, 4150 Clement St. (116P), San Francisco, CA, 94121, USA; Northern California Institute for Research and Education (NCIRE), The Veterans Health Research Institute, San Francisco, CA, 94121, USA; Department of Psychiatry, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, 94143, USA.
| | - Thomas J Metzler
- San Francisco VA Health Care System, 4150 Clement St. (116P), San Francisco, CA, 94121, USA; Northern California Institute for Research and Education (NCIRE), The Veterans Health Research Institute, San Francisco, CA, 94121, USA; Department of Psychiatry, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, 94143, USA.
| | - Sabra S Inslicht
- San Francisco VA Health Care System, 4150 Clement St. (116P), San Francisco, CA, 94121, USA; Northern California Institute for Research and Education (NCIRE), The Veterans Health Research Institute, San Francisco, CA, 94121, USA; Department of Psychiatry, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
99
|
Palermo S, Andò A, Salatino A, Sirgiovanni S, De Faveri L, Carassa A, Valentini MC, Morese R. Selective Emotional Dysregulation in Splenium Agenesis. A Case Report of a Patient With Normal Cognitive Profile. Front Psychol 2019; 10:631. [PMID: 30967819 PMCID: PMC6438861 DOI: 10.3389/fpsyg.2019.00631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 03/06/2019] [Indexed: 11/13/2022] Open
Abstract
Objective: Patients with lesions of the corpus callosum are rare and may present different symptoms of the disconnection syndrome. However, to-date studies on callosotomized patients have not been conclusive, likely because of the non-uniform nature of clinical features, the extent of resection, and methods used to investigate specific and related deficits. Agenesis of the corpus callosum (AgCC) may be asymptomatic and discovered incidentally or associated with very slight deficits diagnosed during neurological examinations. In this study, we reported a case of an apparently completely asymptomatic 23-year-old woman with appreciable agenesis of the splenium of the corpus callosum. Methods: She underwent a neurological evaluation, a comprehensive battery of neuropsychological tests to identify any subclinical dysfunction that may affect the functionality of the subject in the daily life. Specifically, the possible presence of emotion dysregulation was examined by using a self-report questionnaire. Results: She showed normal neuropsychological and emotional functioning, performing efficiently on tests measuring acquired brain impairment. Discussion: The present case is discussed in terms of neuroplasticity - with a focus on putative compensatory mechanisms - emphasizing the variegated clinical feature patterns of brain defects present from birth.
Collapse
Affiliation(s)
- Sara Palermo
- Department of Psychology, University of Turin, Turin, Italy
- Neuroradiology Division, Azienda Ospedaliera-Universitaria Città della Salute e della Scienza di Torino, Turin, Italy
| | - Agata Andò
- Department of Psychology, University of Turin, Turin, Italy
| | | | - Stefano Sirgiovanni
- Neuroradiology Division, Azienda Ospedaliera-Universitaria Città della Salute e della Scienza di Torino, Turin, Italy
| | - Luana De Faveri
- Neuroradiology Division, Azienda Ospedaliera-Universitaria Città della Salute e della Scienza di Torino, Turin, Italy
| | - Antonella Carassa
- Faculty of Communication Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Maria C. Valentini
- Neuroradiology Division, Azienda Ospedaliera-Universitaria Città della Salute e della Scienza di Torino, Turin, Italy
| | - Rosalba Morese
- Faculty of Communication Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| |
Collapse
|
100
|
Friocourt F, Kozulin P, Belle M, Suárez R, Di‐Poï N, Richards LJ, Giacobini P, Chédotal A. Shared and differential features of Robo3 expression pattern in amniotes. J Comp Neurol 2019; 527:2009-2029. [DOI: 10.1002/cne.24648] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 12/19/2018] [Accepted: 01/21/2019] [Indexed: 12/11/2022]
Affiliation(s)
| | - Peter Kozulin
- The Queensland Brain Institute The University of Queensland Brisbane Queensland Australia
| | - Morgane Belle
- Sorbonne Université, INSERM, CNRS Institut de la Vision Paris France
| | - Rodrigo Suárez
- The Queensland Brain Institute The University of Queensland Brisbane Queensland Australia
| | - Nicolas Di‐Poï
- Research Program in Developmental Biology, Institute of Biotechnology University of Helsinki Helsinki Finland
| | - Linda J. Richards
- The Queensland Brain Institute The University of Queensland Brisbane Queensland Australia
- The School of Biomedical Sciences The University of Queensland Brisbane Queensland Australia
| | - Paolo Giacobini
- University of Lille, UMR‐S 1172, Centre de Recherche Jean‐Pierre AUBERT Lille France
- Laboratory of Development and Plasticity of the Neuroendocrine Brain INSERM, UMR‐S 1172 Lille France
- FHU 1,000 Days for Health School of Medicine Lille France
| | - Alain Chédotal
- Sorbonne Université, INSERM, CNRS Institut de la Vision Paris France
| |
Collapse
|