51
|
Targeting Nrf2 may reverse the drug resistance in ovarian cancer. Cancer Cell Int 2021; 21:116. [PMID: 33596893 PMCID: PMC7890806 DOI: 10.1186/s12935-021-01822-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/06/2021] [Indexed: 12/11/2022] Open
Abstract
Background Acquired resistance to therapeutic drugs has become an important issue in treating ovarian cancer. Studies have shown that the prevalent chemotherapy resistance (cisplatin, paclitaxel etc.) for ovarian cancer occurs partly because of decreased production of reactive oxygen species within the mitochondria of ovarian cancer cells. Main Body Nuclear erythroid-related factor-2 (Nrf2) mainly controls the regulation of transcription of genes through the Keap1-Nrf2-ARE signaling pathway and protects cells by fighting oxidative stress and defending against harmful substances. This protective effect is reflected in the promotion of tumor cell growth and their resistance to chemotherapy drugs. Therefore, inhibition of the Nrf2 pathway may reverse drug resistance. In this review, we describe the functions of Nrf2 in drug resistance based on Nrf2-associated signaling pathways determined in previous studies. Conclusions Further studies on the relevant mechanisms of Nrf2 may help improve the outcomes of ovarian cancer therapy.
Collapse
|
52
|
Hamada S, Matsumoto R, Tanaka Y, Taguchi K, Yamamoto M, Masamune A. Nrf2 Activation Sensitizes K-Ras Mutant Pancreatic Cancer Cells to Glutaminase Inhibition. Int J Mol Sci 2021; 22:1870. [PMID: 33672789 PMCID: PMC7918355 DOI: 10.3390/ijms22041870] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 12/16/2022] Open
Abstract
Pancreatic cancer remains intractable owing to the lack of effective therapy for unresectable cases. Activating mutations of K-ras are frequently found in pancreatic cancers, but these have not yet been targeted by cancer therapies. The Keap1-Nrf2 system plays a crucial role in mediating the oxidative stress response, which also contributes to cancer progression. Nrf2 activation reprograms the metabolic profile to promote the proliferation of cancer cells. A recent report suggested that K-ras- and Nrf2-active lung cancer cells are sensitive to glutamine depletion. This finding led to the recognition of glutaminase inhibitors as novel anticancer agents. In the current study, we used murine pancreatic cancer tissues driven by mutant K-ras and p53 to establish cell lines expressing constitutively activated Nrf2. Genetic or pharmacological Nrf2 activation in cells via Keap1 deletion or Nrf2 activation sensitized cells to glutaminase inhibition. This phenomenon was confirmed to be dependent on K-ras activation in human pancreatic cancer cell lines harboring mutant K-ras, i.e., Panc-1 and MiaPaCa-2 in response to DEM pretreatment. This phenomenon was not observed in BxPC3 cells harboring wildtype K-ras. These results indicate the possibility of employing Nrf2 activation and glutaminase inhibition as novel therapeutic interventions for K-ras mutant pancreatic cancers.
Collapse
Affiliation(s)
- Shin Hamada
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan; (R.M.); (Y.T.); (A.M.)
| | - Ryotaro Matsumoto
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan; (R.M.); (Y.T.); (A.M.)
| | - Yu Tanaka
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan; (R.M.); (Y.T.); (A.M.)
| | - Keiko Taguchi
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan; (K.T.); (M.Y.)
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan; (K.T.); (M.Y.)
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan; (R.M.); (Y.T.); (A.M.)
| |
Collapse
|
53
|
NRF2/ACSS2 axis mediates the metabolic effect of alcohol drinking on esophageal squamous cell carcinoma. Biochem J 2021; 477:3075-3089. [PMID: 32776152 DOI: 10.1042/bcj20200452] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/01/2020] [Accepted: 08/07/2020] [Indexed: 12/24/2022]
Abstract
Alcohol drinking is a leading risk factor for the development of esophageal squamous cell carcinoma (ESCC). However, the molecular mechanisms of alcohol-associated ESCC remain poorly understood. One of the most commonly mutated genes in ESCC is nuclear factor erythroid 2 like 2 (NFE2L2 or NRF2), which is a critical transcription factor regulating oxidative stress response and drug detoxification. When NRF2 is hyperactive in cancer cells, however, it leads to metabolic reprogramming, cell proliferation, chemoradioresistance, and poor prognosis. In this study, hyperactive NRF2 was found to up-regulate acetyl-CoA synthetase short-chain family members 2 (ACSS2), an enzyme that converts acetate to acetyl-CoA, in ESCC cells and mouse esophagus. We also showed that knockdown of NRF2 or ACSS2 led to decreased ACSS2 expression, which in turn reduced the levels of acetyl-CoA and ATP with or without ethanol exposure. In addition, ethanol exposure enhanced lipid synthesis in ESCC cells. Moreover, we observed a change in the metabolic profile of ESCC cells exposed to ethanol as a result of their NRF2 or ACSS2 status. We further showed that ACSS2 contributed to the invasive capability of NRF2high ESCC cells exposed to ethanol. In conclusion, the NRF2/ACSS2 axis mediates the metabolic effect of alcohol drinking on ESCC.
Collapse
|
54
|
Baird L, Yamamoto M. NRF2-Dependent Bioactivation of Mitomycin C as a Novel Strategy To Target KEAP1-NRF2 Pathway Activation in Human Cancer. Mol Cell Biol 2021; 41:e00473-20. [PMID: 33139492 PMCID: PMC8093492 DOI: 10.1128/mcb.00473-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/04/2020] [Accepted: 10/27/2020] [Indexed: 12/23/2022] Open
Abstract
Activating mutations in the KEAP1-NRF2 pathway are found in approximately 25% of lung tumors, where the hijacking of NRF2's cytoprotective functions results in aggressive tumor growth, chemoresistance, and a poor prognosis for patients. There are currently no approved drugs which target aberrant NRF2 activation, which means that there is an urgent clinical need to target this orphan oncogenic pathway in human tumors. In this study, we used an isogenic pair of wild-type and Keap1 knockout cells to screen a range of chemotherapeutic and pathway-targeted anticancer drugs in order to identify compounds which display enhanced toxicity toward cells with high levels of Nrf2 activity. Through this approach, complemented by validation across a panel of eight human cancer cell lines from a range of different tissues, we identified the DNA-damaging agent mitomycin C to be significantly more toxic in cells with aberrant Nrf2 activation. Mechanistically, we found that the NRF2 target genes for cytochrome P450 reductase, NQO1, and enzymes in the pentose phosphate pathway are all responsible for the NRF2-dependent enhanced bioactivation of mitomycin C. As mitomycin C is already approved for clinical use, it represents as excellent drug repositioning candidate to target the currently untreatable NRF2 activation in human tumors.
Collapse
Affiliation(s)
- Liam Baird
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| |
Collapse
|
55
|
Horiuchi M, Taguchi K, Hirose W, Tsuchida K, Suzuki M, Taniyama Y, Kamei T, Yamamoto M. Cellular Nrf2 Levels Determine Cell Fate during Chemical Carcinogenesis in Esophageal Epithelium. Mol Cell Biol 2021; 41:e00536-20. [PMID: 33257504 PMCID: PMC8093497 DOI: 10.1128/mcb.00536-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/02/2020] [Accepted: 11/16/2020] [Indexed: 12/26/2022] Open
Abstract
Nrf2 is essential for cytoprotection against carcinogens, and through systemic Nrf2 knockout mice, Nrf2-deficient cells were shown to be susceptible to chemical carcinogens and prone to developing cancers. However, the oncogenic potential of Nrf2-deficient epithelial cells surrounded by normal cells in the esophagus could not be assessed by previous models, and the fate of Nrf2-deficient cells in such situations remains elusive. In this study, therefore, we generated mice that harbor almost equal levels of cells with Nrf2 deleted and those with Nrf2 intact in the basal layer of the esophageal epithelium, utilizing inducible Cre-mediated recombination of Nrf2 alleles in adults through moderate use of tamoxifen. In this mouse model, epithelial cells with Nrf2 deleted were maintained with no obvious decrease or phenotypic changes for 12 weeks under unstressed conditions. Upon exposure to the carcinogen 4-nitroquinoline-1-oxide (4NQO), the cells with Nrf2 deleted accumulated DNA damage and selectively disappeared from the epithelium, so almost all 4NQO-induced tumors originated from cells with Nrf2 intact and not from those with Nrf2 deleted. We propose that cells with Nrf2 deleted do not undergo carcinogenesis due to selective elimination upon exposure to 4NQO, indicating that cellular Nrf2 abundance and the epithelial environment determine the cell fate or oncogenic potential of esophageal epithelial cells in 4NQO-induced carcinogenesis.
Collapse
Affiliation(s)
- Makoto Horiuchi
- Department of Medical Biochemistry, Tohoku University, Sendai, Japan
- Department of Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Keiko Taguchi
- Department of Medical Biochemistry, Tohoku University, Sendai, Japan
- Department of Medical Biochemistry, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine (INGEM), Tohoku University, Sendai, Japan
| | - Wataru Hirose
- Department of Medical Biochemistry, Tohoku University, Sendai, Japan
- Department of Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Kouhei Tsuchida
- Department of Medical Biochemistry, Tohoku University, Sendai, Japan
| | - Mikiko Suzuki
- Center for Radioisotope Sciences, Tohoku University, Sendai, Japan
| | - Yusuke Taniyama
- Department of Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Takashi Kamei
- Department of Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University, Sendai, Japan
- Department of Medical Biochemistry, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine (INGEM), Tohoku University, Sendai, Japan
| |
Collapse
|
56
|
Li Y, Li Y, Chen X. NOTCH and Esophageal Squamous Cell Carcinoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1287:59-68. [PMID: 33034026 PMCID: PMC7895477 DOI: 10.1007/978-3-030-55031-8_5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a deadly disease that requires extensive research on its mechanisms, prevention, and therapy. Recent studies have shown that NOTCH mutations are commonly seen in human ESCC. This chapter summarizes our current understanding of the NOTCH pathway in normal esophagus and in ESCC. In normal esophagus, NOTCH pathway regulates the development of esophageal squamous epithelium, in particular, squamous differentiation. Exposure to extrinsic and intrinsic factors, such as gastroesophageal reflux, alcohol drinking, and inflammation, downregulates the NOTCH pathway and thus inhibits squamous differentiation of esophageal squamous epithelial cells. In ESCC, NOTCH plays a dual role as both a tumor suppressor pathway and an oncogenic pathway. In summary, further studies are warranted to develop NOTCH activators for the prevention of ESCC and NOTCH inhibitors for targeted therapy of a subset of ESCC with activated NOTCH pathway.
Collapse
Affiliation(s)
- Yong Li
- Department of Thoracic Surgery, National Cancer Center, Cancer Hospital of Chinese Academy of Medical Sciences, Beijing, China
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC, USA
| | - Yahui Li
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC, USA
| | - Xiaoxin Chen
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC, USA.
- Center for Gastrointestinal Biology and Disease, Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
57
|
Fabrizio FP, Sparaneo A, Muscarella LA. NRF2 Regulation by Noncoding RNAs in Cancers: The Present Knowledge and the Way Forward. Cancers (Basel) 2020; 12:cancers12123621. [PMID: 33287295 PMCID: PMC7761714 DOI: 10.3390/cancers12123621] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/23/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The NRF2 pathway represents one of the most intriguing pathways that promotes chemo- and radioresistance of neoplastic cells. Increasing findings suggest that the NRF2 signaling can be modulated by multiple epigenetic factors such as noncoding RNAs, which influence a large number of oncogenic mechanisms, both at transcriptional and at post-transcriptional levels. As a consequence, the identification and characterization of specific noncoding RNAs as biomarkers related to oxidative stress may help to clarify the relationship between them and NRF2 signaling in the tumor context, in terms of positive and negative modulation, also referring to their intersection with other NRF2 crosstalking pathways. In this review, we summarize the recent updates on NRF2 network regulation by noncoding RNAs in tumors, thus paving the way toward the potential translational role of these small RNAs as key tumor biomarkers of neoplastic processes. Abstract Nuclear factor erythroid 2-related factor 2 (NRF2) is the key transcription factor triggered by oxidative stress that moves in cells of the antioxidant response element (ARE)-antioxidant gene network against reactive oxygen species (ROS) cellular damage. In tumors, the NRF2 pathway represents one of the most intriguing pathways that promotes chemo- and radioresistance of neoplastic cells and its activity is regulated by genetic and epigenetic mechanisms; some of these being poorly investigated in cancer. The noncoding RNA (ncRNA) network is governed by microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) and modulates a variety of cellular mechanisms linked to cancer onset and progression, both at transcriptional and post-transcriptional levels. In recent years, the scientific findings about the effects of ncRNA landscape variations on NRF2 machines are rapidly increasing and need to be continuously updated. Here, we review the latest knowledge about the link between NRF2 and ncRNA networks in cancer, thus focusing on their potential translational significance as key tumor biomarkers.
Collapse
|
58
|
Robertson H, Dinkova-Kostova AT, Hayes JD. NRF2 and the Ambiguous Consequences of Its Activation during Initiation and the Subsequent Stages of Tumourigenesis. Cancers (Basel) 2020; 12:E3609. [PMID: 33276631 PMCID: PMC7761610 DOI: 10.3390/cancers12123609] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/19/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023] Open
Abstract
NF-E2 p45-related factor 2 (NRF2, encoded in the human by NFE2L2) mediates short-term adaptation to thiol-reactive stressors. In normal cells, activation of NRF2 by a thiol-reactive stressor helps prevent, for a limited period of time, the initiation of cancer by chemical carcinogens through induction of genes encoding drug-metabolising enzymes. However, in many tumour types, NRF2 is permanently upregulated. In such cases, its overexpressed target genes support the promotion and progression of cancer by suppressing oxidative stress, because they constitutively increase the capacity to scavenge reactive oxygen species (ROS), and they support cell proliferation by increasing ribonucleotide synthesis, serine biosynthesis and autophagy. Herein, we describe cancer chemoprevention and the discovery of the essential role played by NRF2 in orchestrating protection against chemical carcinogenesis. We similarly describe the discoveries of somatic mutations in NFE2L2 and the gene encoding the principal NRF2 repressor, Kelch-like ECH-associated protein 1 (KEAP1) along with that encoding a component of the E3 ubiquitin-ligase complex Cullin 3 (CUL3), which result in permanent activation of NRF2, and the recognition that such mutations occur frequently in many types of cancer. Notably, mutations in NFE2L2, KEAP1 and CUL3 that cause persistent upregulation of NRF2 often co-exist with mutations that activate KRAS and the PI3K-PKB/Akt pathway, suggesting NRF2 supports growth of tumours in which KRAS or PKB/Akt are hyperactive. Besides somatic mutations, NRF2 activation in human tumours can occur by other means, such as alternative splicing that results in a NRF2 protein which lacks the KEAP1-binding domain or overexpression of other KEAP1-binding partners that compete with NRF2. Lastly, as NRF2 upregulation is associated with resistance to cancer chemotherapy and radiotherapy, we describe strategies that might be employed to suppress growth and overcome drug resistance in tumours with overactive NRF2.
Collapse
Affiliation(s)
- Holly Robertson
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK; (H.R.); (A.T.D.-K.)
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Albena T. Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK; (H.R.); (A.T.D.-K.)
| | - John D. Hayes
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK; (H.R.); (A.T.D.-K.)
| |
Collapse
|
59
|
George S, Abrahamse H. Redox Potential of Antioxidants in Cancer Progression and Prevention. Antioxidants (Basel) 2020; 9:antiox9111156. [PMID: 33233630 PMCID: PMC7699713 DOI: 10.3390/antiox9111156] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/26/2020] [Accepted: 10/30/2020] [Indexed: 12/11/2022] Open
Abstract
The benevolent and detrimental effects of antioxidants are much debated in clinical trials and cancer research. Several antioxidant enzymes and molecules are overexpressed in oxidative stress conditions that can damage cellular proteins, lipids, and DNA. Natural antioxidants remove excess free radical intermediates by reducing hydrogen donors or quenching singlet oxygen and delaying oxidative reactions in actively growing cancer cells. These reducing agents have the potential to hinder cancer progression only when administered at the right proportions along with chemo-/radiotherapies. Antioxidants and enzymes affect signal transduction and energy metabolism pathways for the maintenance of cellular redox status. A decline in antioxidant capacity arising from genetic mutations may increase the mitochondrial flux of free radicals resulting in misfiring of cellular signalling pathways. Often, a metabolic reprogramming arising from these mutations in metabolic enzymes leads to the overproduction of so called ’oncometabolites’ in a state of ‘pseudohypoxia’. This can inactivate several of the intracellular molecules involved in epigenetic and redox regulations, thereby increasing oxidative stress giving rise to growth advantages for cancerous cells. Undeniably, these are cell-type and Reactive Oxygen Species (ROS) specific, which is manifested as changes in the enzyme activation, differences in gene expression, cellular functions as well as cell death mechanisms. Photodynamic therapy (PDT) using light-activated photosensitizing molecules that can regulate cellular redox balance in accordance with the changes in endogenous ROS production is a solution for many of these challenges in cancer therapy.
Collapse
Affiliation(s)
- Sajan George
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India;
- Laser Research Centre, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa
- Correspondence:
| |
Collapse
|
60
|
Jaganjac M, Milkovic L, Sunjic SB, Zarkovic N. The NRF2, Thioredoxin, and Glutathione System in Tumorigenesis and Anticancer Therapies. Antioxidants (Basel) 2020; 9:E1151. [PMID: 33228209 PMCID: PMC7699519 DOI: 10.3390/antiox9111151] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer remains an elusive, highly complex disease and a global burden. Constant change by acquired mutations and metabolic reprogramming contribute to the high inter- and intratumor heterogeneity of malignant cells, their selective growth advantage, and their resistance to anticancer therapies. In the modern era of integrative biomedicine, realizing that a personalized approach could benefit therapy treatments and patients' prognosis, we should focus on cancer-driving advantageous modifications. Namely, reactive oxygen species (ROS), known to act as regulators of cellular metabolism and growth, exhibit both negative and positive activities, as do antioxidants with potential anticancer effects. Such complexity of oxidative homeostasis is sometimes overseen in the case of studies evaluating the effects of potential anticancer antioxidants. While cancer cells often produce more ROS due to their increased growth-favoring demands, numerous conventional anticancer therapies exploit this feature to ensure selective cancer cell death triggered by excessive ROS levels, also causing serious side effects. The activation of the cellular NRF2 (nuclear factor erythroid 2 like 2) pathway and induction of cytoprotective genes accompanies an increase in ROS levels. A plethora of specific targets, including those involved in thioredoxin (TRX) and glutathione (GSH) systems, are activated by NRF2. In this paper, we briefly review preclinical research findings on the interrelated roles of the NRF2 pathway and TRX and GSH systems, with focus given to clinical findings and their relevance in carcinogenesis and anticancer treatments.
Collapse
Affiliation(s)
| | | | | | - Neven Zarkovic
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia; (M.J.); (L.M.); (S.B.S.)
| |
Collapse
|
61
|
Smolková K, Mikó E, Kovács T, Leguina-Ruzzi A, Sipos A, Bai P. Nuclear Factor Erythroid 2-Related Factor 2 in Regulating Cancer Metabolism. Antioxid Redox Signal 2020; 33:966-997. [PMID: 31989830 PMCID: PMC7533893 DOI: 10.1089/ars.2020.8024] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: Nuclear factor erythroid 2 (NFE2)-related factor 2 (NFE2L2, or NRF2) is a transcription factor predominantly affecting the expression of antioxidant genes. NRF2 plays a significant role in the control of redox balance, which is crucial in cancer cells. NRF2 activation regulates numerous cancer hallmarks, including metabolism, cancer stem cell characteristics, tumor aggressiveness, invasion, and metastasis formation. We review the molecular characteristics of the NRF2 pathway and discuss its interactions with the cancer hallmarks previously listed. Recent Advances: The noncanonical activation of NRF2 was recently discovered, and members of this pathway are involved in carcinogenesis. Further, cancer-related changes (e.g., metabolic flexibility) that support cancer progression were found to be redox- and NRF2 dependent. Critical Issues: NRF2 undergoes Janus-faced behavior in cancers. The pro- or antineoplastic effects of NRF2 are context dependent and essentially based on the specific molecular characteristics of the cancer in question. Therefore, systematic investigation of NRF2 signaling is necessary to clarify its role in cancer etiology. The biggest challenge in the NRF2 field is to determine which cancers can be targeted for better clinical outcomes. Further, large-scale genomic and transcriptomic studies are missing to correlate the clinical outcome with the activity of the NRF2 system. Future Directions: To exploit NRF2 in a clinical setting in the future, the druggable members of the NRF2 pathway should be identified. In addition, it will be important to study how the modulation of the NRF2 system interferes with cytostatic drugs and their combinations.
Collapse
Affiliation(s)
- Katarína Smolková
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences (IPHYS CAS), Prague, Czech Republic
| | - Edit Mikó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, Hungary
| | - Tünde Kovács
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Alberto Leguina-Ruzzi
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences (IPHYS CAS), Prague, Czech Republic
| | - Adrienn Sipos
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Péter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, Hungary.,Faculty of Medicine, Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
62
|
Geldanamycin-Derived HSP90 Inhibitors Are Synthetic Lethal with NRF2. Mol Cell Biol 2020; 40:MCB.00377-20. [PMID: 32868290 DOI: 10.1128/mcb.00377-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 08/24/2020] [Indexed: 12/30/2022] Open
Abstract
Activating mutations in KEAP1-NRF2 are frequently found in tumors of the lung, esophagus, and liver, where they are associated with aggressive growth, resistance to cancer therapies, and low overall survival. Despite the fact that NRF2 is a validated driver of tumorigenesis and chemotherapeutic resistance, there are currently no approved drugs which can inhibit its activity. Therefore, there is an urgent clinical need to identify NRF2-selective cancer therapies. To this end, we developed a novel synthetic lethal assay, based on fluorescently labeled isogenic wild-type and Keap1 knockout cell lines, in order to screen for compounds which selectively kill cells in an NRF2-dependent manner. Through this approach, we identified three compounds based on the geldanamycin scaffold which display synthetic lethality with NRF2. Mechanistically, we show that products of NRF2 target genes metabolize the quinone-containing geldanamycin compounds into more potent HSP90 inhibitors, which enhances their cytotoxicity while simultaneously restricting the synthetic lethal effect to cells with aberrant NRF2 activity. As all three of the geldanamycin-derived compounds have been used in clinical trials, they represent ideal candidates for drug repositioning to target the currently untreatable NRF2 activity in cancer.
Collapse
|
63
|
Liao H, Zhu D, Bai M, Chen H, Yan S, Yu J, Zhu H, Zheng W, Fan G. Stigmasterol sensitizes endometrial cancer cells to chemotherapy by repressing Nrf2 signal pathway. Cancer Cell Int 2020; 20:480. [PMID: 33041661 PMCID: PMC7541302 DOI: 10.1186/s12935-020-01470-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/31/2020] [Indexed: 02/07/2023] Open
Abstract
Background Chemoresistance reduces the 5-year survival rate of endometrial cancer patient, which is the current major obstacle for cancer therapy. Increasing evidence state that Nrf2 contributes to chemoresistance in several kinds of cancer. However, its role in endometrial cancer cells remains unclarified. Methods Immunohistochemistry staining was used to detect the expression of Nrf2 in normal patient and endometrial cancer patient. Stable transfection Ishikawa cell line with high level of Nrf2 was established to evaluate its role in chemoresistance. Dot blot assays were used to assess global hydroxymethylation level after stigmasterol treatment. Cellular growth profile was detected by CCK8 assay. Western blot was used to evaluate the changes of the target molecules after various treatments. Results Nrf2 is overexpressed in endometrial cancer tissues compared with the normal endometrium. Overexpression of Nrf2 resulted in decrease sensitivity to cisplatin. In addition, stigmasterol has been identified as a novel Nrf2 inhibitor. It enhanced the sensitivity of endometrial cancer cells to cisplatin, and the underlying mechanism is that stigmasterol declines the Nrf2 protein level. Conclusions Our findings identified stigmasterol as a new potential inhibitor of Nrf2 and highlight a critical role of stigmasterol in overcoming chemoresistance in endometrial cancer therapy.
Collapse
Affiliation(s)
- Hong Liao
- Department of Clinical Laboratory Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200040 China.,The Graduate School, Tongji University School of Medicine, Shanghai, 200040 China
| | - Dan Zhu
- College of Pharmacy, Guangxi Medical University, Nanning, 530021 China
| | - Mingzhu Bai
- Department of Gynecology and Obstetrics, Shanghai General Hospital, Shanghai Jiaotong University, 100 Haining Road, Shanghai, 200080 China
| | - Huifen Chen
- Department of Clinical Laboratory Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200040 China
| | - Shihuan Yan
- College of Pharmacy, Guangxi Medical University, Nanning, 530021 China
| | - Jing Yu
- Department of Pathology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200040 China
| | - Huiting Zhu
- Department of Pathology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200040 China
| | - Wenxin Zheng
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA.,Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Guorong Fan
- The Graduate School, Tongji University School of Medicine, Shanghai, 200040 China.,Department of Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University, 100 Haining Road, Shanghai, 200080 China
| |
Collapse
|
64
|
Role of Nrf2 and mitochondria in cancer stem cells; in carcinogenesis, tumor progression, and chemoresistance. Biochimie 2020; 179:32-45. [PMID: 32946993 DOI: 10.1016/j.biochi.2020.09.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 08/05/2020] [Accepted: 09/04/2020] [Indexed: 02/06/2023]
Abstract
Cancer stem cells (CSCs) are rare sub-population in tumor mass with self-renewal and differentiation abilities; CSCs are considered as the main cells which are responsible for tumor metastasis, cancer recurrence, and chemo/radio-resistance. CSCs are believed to contain low mitochondria in quantity, high concentration of nuclear factor erythroid 2-related factor 2 (Nrf2), and low reactive oxygen species (ROS) levels. Mitochondria regulate certain cellular functions, including controlling of cellular energetics, calcium signaling, cell growth and cell differentiation, cell cycle regulation, and cell death. Also, mitochondria are the main sources of intrinsic ROS production. Dysfunction of CSCs mitochondria due to oxidative phosphorylation is reported in several pathological conditions, including metabolic disorders, age-related diseases, and various types of cancers. ROS levels play a significant role in cellular signal transduction and CSCs' identity and differentiation capability. Nrf2 is a master transcription factor that plays critical functions in maintaining cellular redox hemostasis by regulating several antioxidant and detoxification pathways. Recently, the critical function of Nrf2 in CSCs has been revealed by several studies. Nrf2 is an essential molecule in the maintenance of CSCs' stemness and self-renewal in response to different oxidative stresses such as chemotherapy-induced elevation of ROS. Nrf2 enables these cells to recover from chemotherapy damages, and promotes establishment of invasion and dissemination. In this study, we have summarized the role of Nrf2 and mitochondria function CSCs, which promote cancer development. The significant role of Nrf2 in the regulation of mitochondrial function and ROS levels suggests this molecule as a potential target to eradicate CSCs.
Collapse
|
65
|
He W, Leng X, Yang Y, Peng L, Shao Y, Li X, Han Y. Genetic Heterogeneity of Esophageal Squamous Cell Carcinoma with Inherited Family History. Onco Targets Ther 2020; 13:8795-8802. [PMID: 32943884 PMCID: PMC7481280 DOI: 10.2147/ott.s262512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/08/2020] [Indexed: 12/24/2022] Open
Abstract
Background Esophageal squamous cell carcinoma (ESCC) is a common malignant tumor with significant geographical variation and familial aggregation. However, the potentially different mechanisms underlying tumorigenesis in patients with ESCC with and without a family history of the disease remain unclear. In this study, the genes mutated in familial and nonfamilial ESCC were analyzed. Further, we aimed to explore the genes related to ESCC and attempt to identify potential patients in families with a history of ESCC. Methods Next-generation sequencing technology was used to examine germline mutations and mutation profiles in 36 matched tumor-normal ESCC specimens. Additionally, tumor mutational burden (TMB) values were measured in two cohorts. Results We identified four novel germline mutations in patients with familial ESCC, in BAX (c.121dupG: p.E41G), CDKN2A (c.374dupA: p.D125E), TP53 (c.856G>A: p.E286K), and CHEK1 (c.923+1G>A). Mutation profiles revealed that patients with and without a family history of ESCC had similar high-frequency gene mutation profiles, among which TP53 was the most commonly mutated gene. Additionally, tumor-specific mutated genes in patients with a positive family history of ESCC were APC, AKT3, DPYD, EP300, NFE2L2, PPP2R1A, RUNX1, and VEGFA, while those in patients without a family history of ESCC were CXCR4, PIK3R2, SMARCA4, and TTF1. Moreover, patients with positive family history had significantly higher TMB values (7.8 ± 4.1 vs 5.0 ± 2.4, for patients with and without a family history, respectively; P = 0.038). Conclusion Our results identified mutation profiles in patients with familial and nonfamilial ESCC, and identified germline mutations in patients with positive history. TMB values may be informative for immunotherapy approaches in familial ESCC.
Collapse
Affiliation(s)
- Wenwu He
- Department of Thoracic Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, People's Republic of China
| | - Xuefeng Leng
- Department of Thoracic Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, People's Republic of China
| | - Yanyu Yang
- Department of Radiology, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Lin Peng
- Department of Thoracic Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, People's Republic of China
| | - Yang Shao
- Department of Medicine, Nanjing Geneseeq Technology, Inc, Nanjing, Jiangsu, People's Republic of China.,School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Xue Li
- Department of Medicine, Nanjing Geneseeq Technology, Inc, Nanjing, Jiangsu, People's Republic of China
| | - Yongtao Han
- Department of Thoracic Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
66
|
Hayashi M, Guida E, Inokawa Y, Goldberg R, Reis LO, Ooki A, Pilli M, Sadhukhan P, Woo J, Choi W, Izumchenko E, Gonzalez LM, Marchionni L, Zhavoronkov A, Brait M, Bivalacqua T, Baras A, Netto GJ, Koch W, Singh A, Hoque MO. GULP1 regulates the NRF2-KEAP1 signaling axis in urothelial carcinoma. Sci Signal 2020; 13:13/645/eaba0443. [PMID: 32817372 DOI: 10.1126/scisignal.aba0443] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Disruption of the KEAP1-NRF2 pathway results in the transactivation of NRF2 target genes, consequently inducing cell proliferation and other phenotypic changes in cancer cells. Here, we demonstrated that GULP1 was a KEAP1-binding protein that maintained actin cytoskeleton architecture and helped KEAP1 to sequester NRF2 in the cytoplasm. In urothelial carcinoma of the bladder (UCB), silencing of GULP1 facilitated the nuclear accumulation of NRF2, led to constitutive activation of NRF2 signaling, and conferred resistance to the platinum drug cisplatin. Knockdown of GULP1 in UCB cells promoted tumor cell proliferation in vitro and enhanced tumor growth in vivo. In primary UCB, GULP1 silencing was more prevalent in muscle-invasive UCB compared to nonmuscle-invasive UCB. GULP1 knockdown cells showed resistance to cisplatin treatment. In parallel with decreased GULP1 expression, we observed increased expression of NRF2, HMOX1, and other candidate antioxidant genes in cisplatin-resistant cells. Furthermore, low or no expression of GULP1 was observed in most cisplatin nonresponder cases. Silencing of GULP1 was associated with GULP1 promoter hypermethylation in cell lines and primary tumors, and a high frequency of GULP1 promoter methylation was observed in multiple sets of primary clinical UCB samples. Together, our findings demonstrate that GULP1 is a KEAP1-binding protein that regulates KEAP1-NRF2 signaling in UCB and that promoter hypermethylation of GULP1 is a potential mechanism of GULP1 silencing.
Collapse
Affiliation(s)
- Masamichi Hayashi
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.,Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Elisa Guida
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Yoshikuni Inokawa
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.,Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Rachel Goldberg
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Leonardo O Reis
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Akira Ooki
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Manohar Pilli
- Department of Environmental Health Sciences, School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Pritam Sadhukhan
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Juhyung Woo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Woonyoung Choi
- Johns Hopkins Greenberg Bladder Cancer Institute, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Evgeny Izumchenko
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.,Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Leonel Maldonado Gonzalez
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.,Department of Gynecology and Obstetrics-Gynecologic Specialties, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Luigi Marchionni
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Alex Zhavoronkov
- Insilico Medicine Inc., Emerging Technology Centers, Johns Hopkins University at Eastern, B301, 1101 33rd Street, Baltimore, MD 21218, USA
| | - Mariana Brait
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Trinity Bivalacqua
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Alexander Baras
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - George J Netto
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Wayne Koch
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Anju Singh
- Department of Environmental Health Sciences, School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Mohammad O Hoque
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA. .,Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
67
|
Xia D, Zhang XR, Ma YL, Zhao ZJ, Zhao R, Wang YY. Nrf2 promotes esophageal squamous cell carcinoma (ESCC) resistance to radiotherapy through the CaMKIIα-associated activation of autophagy. Cell Biosci 2020; 10:90. [PMID: 32760495 PMCID: PMC7392680 DOI: 10.1186/s13578-020-00456-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/25/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND NF-E2-related factor 2 (Nrf2) is involved in the radiation resistance of esophageal squamous cell carcinoma (ESCC), but the underlying molecular mechanism is unclear. The purpose of our study was to explore the role of Nrf2 in the radiation resistance of ESCC and the potential molecular mechanism. RESULTS Nrf2 expression was introduced into Ec109 and KYSE-30 ESCC cells with lentivirus. CCK-8 and colony formation assays were used to evaluate the effect of Nrf2 on radioresistance in culture. The autophagy level was assessed by western blotting, flow cytometry, and confocal fluorescence microscopy. The effect of Nrf2 on the transcription of Ca2 +/calmodulin-dependent protein kinase II α (CaMKIIα) was studied by chromatin immunoprecipitation. We found that the overexpression of Nrf2 increased the radiation resistance of ESCC cells. Mechanistically, Nrf2 triggered the radiation resistance of ESCC cells by targeting CaMKIIα and subsequently activating autophagy. In addition, we found that Nrf2 directly regulated the transcription of CaMKIIα by binding to its promoter region. The effect of Nrf2 on radiation resistance was also explored in both a xenograft mouse model and ESCC patient samples. Consistent with the results of the in vitro study, high Nrf2 expression level resulted in in vivo radioresistance in an Ec109-derived xenograft mouse model. Furthermore, we also demonstrated that upregulations of both Nrf2 and CaMKIIα was closely related to lower survival rates of ESCC patients. CONCLUSIONS Our study reveals that Nrf2 promotes the radiation resistance of ESCC by targeting CaMKIIα and subsequently activating autophagy, which is characterized by the suppression of phosphorylated mTOR and p62, activation of Beclin 1, and transformation of LC3-I to LC3-II.
Collapse
Affiliation(s)
- Di Xia
- Graduate School, Ningxia Medical University, Yinchuan, 750004 Ningxia China
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430023 Hubei China
| | - Xiao-Ran Zhang
- Graduate School, Ningxia Medical University, Yinchuan, 750004 Ningxia China
| | - Yan-Li Ma
- Graduate School, Ningxia Medical University, Yinchuan, 750004 Ningxia China
| | - Zhi-Jun Zhao
- Dept. of Laboratory Medicine, General Hospital of Ningxia Medical University, Yinchuan, 750004 Ningxia China
| | - Ren Zhao
- Dept. of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, 750004 Ningxia China
- Cancer Institute, Ningxia Medical University, Yinchuan, 750004 Ningxia China
| | - Yan-Yang Wang
- Dept. of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, 750004 Ningxia China
- Cancer Institute, Ningxia Medical University, Yinchuan, 750004 Ningxia China
| |
Collapse
|
68
|
Molecular Mechanisms Underlying Hepatocellular Carcinoma Induction by Aberrant NRF2 Activation-Mediated Transcription Networks: Interaction of NRF2-KEAP1 Controls the Fate of Hepatocarcinogenesis. Int J Mol Sci 2020; 21:ijms21155378. [PMID: 32751080 PMCID: PMC7432811 DOI: 10.3390/ijms21155378] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/19/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022] Open
Abstract
NF-E2-related factor 2 (NRF2) is a basic leucine zipper transcription factor, a master regulator of redox homeostasis regulating a variety of genes for antioxidant and detoxification enzymes. NRF2 was, therefore, initially thought to protect the liver from oxidative stress. Recent studies, however, have revealed that mutations in NRF2 cause aberrant accumulation of NRF2 in the nucleus and exert the upregulation of NRF2 target genes. Moreover, among all molecular changes in hepatocellular carcinoma (HCC), NRF2 activation has been revealed as a more prominent pathway contributing to the progression of precancerous lesions to malignancy. Nevertheless, how its activation leads to poor prognosis in HCC patients remains unclear. In this review, we provide an overview of how aberrant activation of NRF2 triggers HCC development. We also summarize the emerging roles of other NRF family members in liver cancer development.
Collapse
|
69
|
Abstract
Covering: up to 2020The transcription factor NRF2 is one of the body's major defense mechanisms, driving transcription of >300 antioxidant response element (ARE)-regulated genes that are involved in many critical cellular processes including redox regulation, proteostasis, xenobiotic detoxification, and primary metabolism. The transcription factor NRF2 and natural products have an intimately entwined history, as the discovery of NRF2 and much of its rich biology were revealed using natural products both intentionally and unintentionally. In addition, in the last decade a more sinister aspect of NRF2 biology has been revealed. NRF2 is normally present at very low cellular levels and only activated when needed, however, it has been recently revealed that chronic, high levels of NRF2 can lead to diseases such as diabetes and cancer, and may play a role in other diseases. Again, this "dark side" of NRF2 was revealed and studied largely using a natural product, the quassinoid, brusatol. In the present review, we provide an overview of NRF2 structure and function to orient the general reader, we will discuss the history of NRF2 and NRF2-activating compounds and the biology these have revealed, and we will delve into the dark side of NRF2 and contemporary issues related to the dark side biology and the role of natural products in dissecting this biology.
Collapse
Affiliation(s)
- Donna D Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA.
| | | |
Collapse
|
70
|
Li R, Li P, Xing W, Qiu H. Heterogeneous genomic aberrations in esophageal squamous cell carcinoma: a review. Am J Transl Res 2020; 12:1553-1568. [PMID: 32509161 PMCID: PMC7269976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 04/25/2020] [Indexed: 06/11/2023]
Abstract
Esophageal cancer (EC) causes hundreds of thousands of deaths a year worldwide, especially the major subtype esophageal squamous cell carcinoma (ESCC). With the advent of next-generation sequencing and the availability of commercial microarrays, abnormities in genetic levels have been revealed in various independent researches. High frequencies of structure variations (SVs), single nucleotide variations (SNVs) and copy-number alterations (CNAs) in ESCCs are uncovered, and ESCC shows high levels of inter- and intratumor heterogeneity, implying diverse evolutionary trajectories. This review tries to explain the pathogenesis of ESCC on the scope of most often mutated genes based on prior studies, hopes to offer some hints for diagnosis and therapy in clinic.
Collapse
Affiliation(s)
- Renling Li
- Quality and Standards Academy, Shenzhen Technology UniversityShenzhen 518060, China
| | - Peng Li
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer HospitalZhengzhou 450008, China
| | - Wenqun Xing
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer HospitalZhengzhou 450008, China
| | - Huiling Qiu
- Quality and Standards Academy, Shenzhen Technology UniversityShenzhen 518060, China
| |
Collapse
|
71
|
Whole-genome sequencing of 508 patients identifies key molecular features associated with poor prognosis in esophageal squamous cell carcinoma. Cell Res 2020; 30:902-913. [PMID: 32398863 PMCID: PMC7608103 DOI: 10.1038/s41422-020-0333-6] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 04/17/2020] [Indexed: 12/24/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a poor-prognosis cancer type with limited understanding of its molecular etiology. Using 508 ESCC genomes, we identified five novel significantly mutated genes and uncovered mutational signature clusters associated with metastasis and patients' outcomes. Several functional assays implicated that NFE2L2 may act as a tumor suppressor in ESCC and that mutations in NFE2L2 probably impaired its tumor-suppressive function, or even conferred oncogenic activities. Additionally, we found that the NFE2L2 mutations were significantly associated with worse prognosis of ESCC. We also identified potential noncoding driver mutations including hotspot mutations in the promoter region of SLC35E2 that were correlated with worse survival. Approximately 5.9% and 15.2% of patients had high tumor mutation burden or actionable mutations, respectively, and may benefit from immunotherapy or targeted therapies. We found clinically relevant coding and noncoding genomic alterations and revealed three major subtypes that robustly predicted patients' outcomes. Collectively, we report the largest dataset of genomic profiling of ESCC useful for developing ESCC-specific biomarkers for diagnosis and treatment.
Collapse
|
72
|
Treatment-related complications in patients with esophageal cancer: A systematic review and network meta-analysis. Surgeon 2020; 19:37-48. [PMID: 32209308 DOI: 10.1016/j.surge.2020.01.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 01/22/2020] [Indexed: 01/30/2023]
Abstract
BACKGROUND The aim of this review was to compare the available treatments of esophageal cancer, in terms of pulmonary, cardiovascular complications, anastomotic leakage, and esophagitis after treatment in patients with esophageal squamous cell carcinoma (SCC). METHODS Medline, Web of Science, Scopus, the Cochrane Library and Embase were searched. The randomized controlled trials (RCT) that had compared the treatment -related complications of treatments for esophageal SCC were included. We included 39 randomized control trials in a network meta-analysis. The Chi2-test was used to assess of heterogeneity. The loop-specific and design-by-treatment interaction methods were used for assessment of consistency assumption. The risk ratio with 95% confidence interval (CI) was used to report the effect-sizes in the network meta-analysis. RESULTS The pulmonary complication, cardiac complication, anastomotic leakage, and esophagitis were reported in 31, 11, 17, and 15 RCTs respectively. Video-assisted thoracoscopy + laparoscopy (VATS) was rank as the first and second treatment in terms of lower risk for pulmonary complication and anastomotic leakage. There was no statistically significant difference between treatments in terms of lower risk of cardiovascular complications. However, Surgery + Cisplatin + Fluorouracil (SCF) was ranked as better treatment. 3-dimensional conformal radiotherapy + Docetaxel + Cisplatin (3DCRTDC) was the best treatment in terms of lower risk for esophagitis. CONCLUSION According to the results of this study, it seems the risk of pulmonary, cardiovascular, anastomotic leakage and esophagitis complications for VATS, SCF, surgery + radiotherapy (SRT), and 3DCRTDC was lower than other treatments respectively in the networks.
Collapse
|
73
|
Nabeshima T, Hamada S, Taguchi K, Tanaka Y, Matsumoto R, Yamamoto M, Masamune A. Keap1 deletion accelerates mutant K-ras/ p53-driven cholangiocarcinoma. Am J Physiol Gastrointest Liver Physiol 2020; 318:G419-G427. [PMID: 31961719 DOI: 10.1152/ajpgi.00296.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The activation of the Kelch-like ECH-associated protein 1 (Keap1)-NF-E2-related factor 2 (Nrf2) pathway contributes to cancer progression in addition to oxidative stress responses. Loss-of-function Keap1 mutations were reported to activate Nrf2, leading to cancer progression. We examined the effects of Keap1 deletion in a cholangiocarcinoma mouse model using a mutant K-ras/p53 mouse. Introduction of the Keap1 deletion into liver-specific mutant K-ras/p53 expression resulted in the formation of invasive cholangiocarcinoma. Comprehensive analyses of the gene expression profiles identified broad upregulation of Nrf2-target genes such as Nqo1 and Gstm1 in the Keap1-deleted mutant K-ras/p53 expressing livers, accompanied by upregulation of cholangiocyte-related genes. Among these genes, the transcriptional factor Sox9 was highly expressed in the dysplastic bile duct. The Keap-Nrf2-Sox9 axis might serve as a novel therapeutic target for cholangiocarcinoma.NEW & NOTEWORTHY The Keap1-Nrf2 system has a wide variety of effects in addition to the oxidative stress response in cancer cells. Addition of the liver-specific Keap1 deletion to mice harboring mutant K-ras and p53 accelerated cholangiocarcinoma formation, together with the hallmarks of Nrf2 activation. This process involved the expansion of Sox9-positive cells, indicating increased differentiation toward the cholangiocyte phenotype.
Collapse
Affiliation(s)
- Tatsuhide Nabeshima
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shin Hamada
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Keiko Taguchi
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yu Tanaka
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryotaro Matsumoto
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
74
|
Okazaki K, Papagiannakopoulos T, Motohashi H. Metabolic features of cancer cells in NRF2 addiction status. Biophys Rev 2020; 12:435-441. [PMID: 32112372 PMCID: PMC7242251 DOI: 10.1007/s12551-020-00659-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 02/19/2020] [Indexed: 12/26/2022] Open
Abstract
The KEAP1-NRF2 system is a sulfur-employing defense mechanism against oxidative and electrophilic stress. NRF2 is a potent transcription activator for genes mediating sulfur-involving redox reactions, and KEAP1 controls the NRF2 activity in response to the stimuli by utilizing reactivity of sulfur atoms. In many human cancer cells, the KEAP1-mediated regulation of NRF2 activity is abrogated, resulting in the persistent activation of NRF2. Persistently activated NRF2 drives malignant progression of cancers by increasing therapeutic resistance and promoting aggressive tumorigenesis, a state termed as NRF2 addiction. In NRF2-addicted cancer cell, NRF2 contributes to metabolic reprogramming in cooperation with other oncogenic pathways. In particular, NRF2 strongly activates cystine uptake coupled with glutamate excretion and glutathione synthesis, which increases consumption of intracellular glutamate. Decreased availability of glutamate limits anaplerosis of the TCA cycle, resulting in low mitochondrial respiration, and nitrogen source, resulting in the high dependency on exogenous non-essential amino acids. The highly enhanced glutathione synthesis is also likely to alter sulfur metabolism, which can contribute to the maintenance of the mitochondrial membrane potential in normal cells. The potent antioxidant and detoxification capacity supported by abundant production of glutathione is achieved at the expense of central carbon metabolism and requires skewed metabolic flow of sulfur. These metabolic features of NRF2 addiction status provide clues for novel therapeutic strategies to target NRF2-addicted cancer cells.
Collapse
Affiliation(s)
- Keito Okazaki
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575, Japan
| | - Thales Papagiannakopoulos
- Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA
| | - Hozumi Motohashi
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575, Japan.
| |
Collapse
|
75
|
Abstract
Cullin 3 (Cul3) family of ubiquitin ligases comprises three components, the RING finger protein RBX1, the Cul3 scaffold, and a Bric-a-brac/Tramtrack/Broad complex (BTB) protein. The BTB protein serves as a bridge to connect Cul3 to substrate and is functionally equivalent to the combination of substrate adaptor and linker in other Cullin complexes. Human genome encodes for ~180 BTB proteins, implying a broad spectrum of ubiquitination signals and substrate repertoire. Accordingly, Cul3 ubiquitin ligases are involved in diverse cellular processes, including cell division, differentiation, cytoskeleton remodeling, stress responses, and nerve cell functions. Emerging evidence has pointed to the prominent role of Cul3 ubiquitin ligases in cancer. This chapter will describe recent advances on the roles of Cul3 E3 ligase complexes in regulating various cancer hallmarks and therapeutic responses and the mutation/dysregulation of Cul3 substrate adaptors in cancer. In particular, we will focus on several extensively studied substrate adaptors, such as Keap1, SPOP, KLHL20, and LZTR1, and will also discuss other recently identified Cul3 adaptors with oncogenic or tumor-suppressive functions. We conclude that Cul3 ubiquitin ligases represent master regulators of human malignancies and highlight the importance of developing modulating agents for oncogenic/tumor-suppressive Cul3 E3 ligase complexes to prevent or intervene tumorigenesis.
Collapse
Affiliation(s)
- Ruey-Hwa Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
76
|
Genome-wide global identification of NRF2 binding sites in A549 non-small cell lung cancer cells by ChIP-Seq reveals NRF2 regulation of genes involved in focal adhesion pathways. Aging (Albany NY) 2019; 11:12600-12623. [PMID: 31884422 PMCID: PMC6949066 DOI: 10.18632/aging.102590] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/26/2019] [Indexed: 12/24/2022]
Abstract
Nuclear factor erythroid-derived-2-like 2(NRF2) regulates its downstream genes through binding with antioxidant responsive elements in their promoter regions. Hyperactivation of NRF2 results in oncogenesis and drug resistance in various cancers including non-small cell lung cancer (NSCLC). However, identification of the genes and pathways regulated by NRF2 in NSCLC warrants further investigation. We investigated the global NRF2 genomic binding sites using the high-throughput ChIP-Seq technique in KEAP1 (Kelch-like ECH-associated protein 1)-mutated A549 (NSCLC) cells. We next carried out an integrated analysis of the ChIP-Seq data with transcriptomic data from A549 cells with NRF2-knockdown and RNA-Seq data from TCGA patients with altered KEAP1 to identify downstream and clinically-correlated genes respectively. Furthermore, we applied transcription factor enrichment analysis, generated a protein-protein interaction network, and used kinase enrichment analysis. Moreover, functional annotation of NRF2 binding sites using DAVID v7 identified the genes involved in focal adhesion. Putative focal adhesion genes regulated by NRF2 were validated using qRT-PCR. Further, we selected one novel conserved focal adhesion gene regulated by NRF2–LAMC1 (laminin subunit gamma 1) and validated it using a reporter assay. Overall, the identification of NRF2 target genes paves the way for identifying the molecular mechanism of NRF2 signaling in NSCLC development and therapy. Moreover, our data highlight the complexity of the pathways regulated by NRF2 in lung tumorigenesis.
Collapse
|
77
|
Taguchi K, Masui S, Itoh T, Miyajima A, Yamamoto M. Nrf2 Activation Ameliorates Hepatotoxicity Induced by a Heme Synthesis Inhibitor. Toxicol Sci 2019; 167:227-238. [PMID: 30215777 DOI: 10.1093/toxsci/kfy233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Transcription factor Nrf2 protects hepatocytes against various toxicants by upregulating cytoprotective genes. The heme synthesis inhibitor 3, 5-diethoxycarbonyl-1, 4-dihydrocollidine (DDC) leads to liver injury around the portal vein, unlike other groups of toxicants that cause hemorrhage and necrosis in the centrilobular area. To examine whether and how Nrf2 protects livers from the injury, we fed DDC to Nrf2 knockout (Nrf2KO), wild-type (WT), Keap1flox/flox (Keap1-knockdown; Keap1KD), and liver-specific Keap1 knockout (Keap1-Alb) mice, as these lines of mice exhibit stepwise increases in Nrf2 protein expression levels. Liver-specific Keap1::Nrf2 double-knockout (Keap1::Nrf2-Alb) mice were also exploited to examine the contribution of Nrf2. Two weeks after DDC feeding, Keap1-Alb mice were fully recovered from body weight loss, but the WT and Nrf2KO mice were not. The liver-to-body-weight ratio of Keap1-Alb mice was significantly larger than that of WT and Nrf2KO mice. Two indicators of hepatotoxicity, alanine aminotransferase and bilirubin in plasma, were both elevated in WT mice, but downregulated in Keap1-Alb mice after the DDC-feeding. DDC-induced porphyrin accumulation was reduced in the livers of Keap1-Alb and Keap1KD mice compared with that of WT mice. When assessed by the Nqo1 level, Nrf2 expression was further enhanced by DDC in Keap1-Alb mice, suggesting that DDC may have a Keap1 independent potential to activate Nrf2. Genetic activation of Nrf2 in Keap1-Alb mice increased the extracellular excretion of porphyrins, but contrary to our expectation, hepatic damages in Nrf2KO mice appeared to be similar to that of WT mice. Based on these observations, we conclude that Nrf2 activation protects livers against DDC-elicited hepatotoxicity.
Collapse
Affiliation(s)
- Keiko Taguchi
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Aoba, Sendai 980-8575, Japan
| | - Saho Masui
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Aoba, Sendai 980-8575, Japan
| | - Tohru Itoh
- Laboratory of Stem Cell Therapy, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo, Tokyo 113-0032, Japan
| | - Atsushi Miyajima
- Laboratory of Stem Cell Therapy, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo, Tokyo 113-0032, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Aoba, Sendai 980-8575, Japan
| |
Collapse
|
78
|
Fatehi Hassanabad A, Chehade R, Breadner D, Raphael J. Esophageal carcinoma: Towards targeted therapies. Cell Oncol (Dordr) 2019; 43:195-209. [PMID: 31848929 DOI: 10.1007/s13402-019-00488-2] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Patients with esophageal cancer are confronted with high mortality rates. Whether it is esophageal squamous cell carcinoma (ESCC) or esophageal adenocarcinoma (EAC), patients usually present at advanced stages, with treatment options traditionally involving chemotherapy in metastatic settings. With the comprehensive genomic characterization of esophageal cancers, targeted therapies are gaining interest and agents such as ramucirumab, trastuzumab and pembrolizumab are already being used for the treatment of EAC. CONCLUSIONS Pembrolizumab has recently been FDA-approved for PD-L1 positive, locally advanced or metastatic ESCC. Despite comprehensive molecular characterization, however, available targed therapies for ESCC are still lagging behind. Herein, we discuss current trends towards more targeted therapies in esophageal cancers, taking into consideration unique features of ESCCs and EACs. Patients progressing on standard therapies should be subjected to genomic profiling and considered for clinical trials aimed at testing targeted therapies. Future targeted therapies may include CDK4/6 inhibitors, PARP inhibitors and inhibitors targeting the NRF2 and Wnt signaling pathways. Ultimately, optimized biomarker assays and next generation sequencing platforms may allow for the identification of subcategories of ESCC and EAC patients that will benefit from selective targeted therapies and/or combinations thereof.
Collapse
Affiliation(s)
| | - Rania Chehade
- Department of Medicine, Schulich School of Medicine and Dentistry, Schulich School of Medicine and Dentistry at Western University, London, ON, Canada
| | - Daniel Breadner
- Department of Oncology, Division of Medical Oncology, London Regional Cancer Program, Schulich School of Medicine and Dentistry at Western University, London, ON, Canada
| | - Jacques Raphael
- Department of Oncology, Division of Medical Oncology, London Regional Cancer Program, Schulich School of Medicine and Dentistry at Western University, London, ON, Canada
| |
Collapse
|
79
|
Wang Z, Zhang J, Li M, Kong L, Yu J. The expression of p-p62 and nuclear Nrf2 in esophageal squamous cell carcinoma and association with radioresistance. Thorac Cancer 2019; 11:130-139. [PMID: 31755241 PMCID: PMC6938765 DOI: 10.1111/1759-7714.13252] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/25/2019] [Accepted: 10/27/2019] [Indexed: 12/16/2022] Open
Abstract
Background The roles of p62‐Keap1‐Nrf2 pathway in the radioresistance of esophageal squamous cell carcinoma (ESCC) have not yet been revealed. This study aimed to clarify the expression and correlation of p‐p62 and nuclear Nrf2 and their association with radioresistance in ESCC. Methods This study included 164 cases of inoperable locally advanced ESCC. All patients received concurrent chemoradiotherapy (CCRT). Immunohistochemical staining was used to detect the expression of p‐p62 and nuclear Nrf2. The results were analyzed independently by two pathologists. Results There was no significant relationship between p‐p62 or nuclear Nrf2 and patients' clinical characteristics. Compared to patients with low expression of p‐p62, patients with high expression of p‐p62 showed lower objective response rate (ORR). Similarly, patients with high expression of nuclear Nrf2 exhibited lower ORR compared to those with low expression of nuclear Nrf2. The expression of p‐p62 was positively correlated with that of nuclear Nrf2. Moreover, the correlation coefficient between them was higher among patients showing no response to CCRT. Univariate analysis revealed that higher expression of p‐p62 or nuclear Nrf2 was significantly associated with poorer PFS and OS. Multivariate analysis indicated that the expression of nuclear Nrf2 and treatment response were independent prognostic factors for PFS. Sex, treatment response, expression of p‐p62 and nuclear Nrf2 were independent prognostic factors for OS. Conclusion Higher expression of p‐p62 and nuclear Nrf2 are associated with lower ORR as well as poorer prognosis, which indicates that p62‐Keap1‐Nrf2 pathway might play an essential role in the radioresistance of ESCC. Key points The expression of p‐p62 and nuclear Nrf2 in ESCC show a significant relationship with patients' responses to CCRT and influence the prognosis of ESCC. p62‐Keap1‐Nrf2 pathway might be a new target for radiosensitization in ESCC.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jingze Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Minghuan Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Li Kong
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
80
|
Fouad S, Wells OS, Hill MA, D'Angiolella V. Cullin Ring Ubiquitin Ligases (CRLs) in Cancer: Responses to Ionizing Radiation (IR) Treatment. Front Physiol 2019; 10:1144. [PMID: 31632280 PMCID: PMC6781834 DOI: 10.3389/fphys.2019.01144] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 08/22/2019] [Indexed: 12/19/2022] Open
Abstract
Treatment with ionizing radiation (IR) remains the cornerstone of therapy for multiple cancer types, including disseminated and aggressive diseases in the palliative setting. Radiotherapy efficacy could be improved in combination with drugs that regulate the ubiquitin-proteasome system (UPS), many of which are currently being tested in clinical trials. The UPS operates through the covalent attachment of ATP-activated ubiquitin molecules onto substrates following the transfer of ubiquitin from an E1, to an E2, and then to the substrate via an E3 enzyme. The specificity of ubiquitin ligation is dictated by E3 ligases, which select substrates to be ubiquitylated. Among the E3s, cullin ring ubiquitin ligases (CRLs) represent prototypical multi-subunit E3s, which use the cullin subunit as a central assembling scaffold. CRLs have crucial roles in controlling the cell cycle, hypoxia signaling, reactive oxygen species clearance and DNA repair; pivotal factors regulating the cancer and normal tissue response to IR. Here, we summarize the findings on the involvement of CRLs in the response of cancer cells to IR, and we discuss the therapeutic approaches to target the CRLs which could be exploited in the clinic.
Collapse
Affiliation(s)
- Shahd Fouad
- Medical Research Council Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Owen S Wells
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Mark A Hill
- Medical Research Council Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Vincenzo D'Angiolella
- Medical Research Council Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
81
|
Kerins MJ, Liu P, Tian W, Mannheim W, Zhang DD, Ooi A. Genome-Wide CRISPR Screen Reveals Autophagy Disruption as the Convergence Mechanism That Regulates the NRF2 Transcription Factor. Mol Cell Biol 2019; 39:e00037-19. [PMID: 31010806 PMCID: PMC6580702 DOI: 10.1128/mcb.00037-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/13/2019] [Accepted: 04/14/2019] [Indexed: 02/06/2023] Open
Abstract
The nuclear factor (erythroid 2)-like 2 (NRF2 or NFE2L2) transcription factor regulates the expression of many genes that are critical in maintaining cellular homeostasis. Its deregulation has been implicated in many diseases, including cancer and metabolic and neurodegenerative diseases. While several mechanisms by which NRF2 can be activated have gradually been identified over time, a more complete regulatory network of NRF2 is still lacking. Here we show through a genome-wide clustered regularly interspaced short palindromic repeat (CRISPR) screen that a total of 273 genes, when knocked out, will lead to sustained NRF2 activation. Pathway analysis revealed a significant overrepresentation of genes (18 of the 273 genes) involved in autophagy. Molecular validation of a subset of the enriched genes identified 8 high-confidence genes that negatively regulate NRF2 activity irrespective of cell type: ATG12, ATG7, GOSR1, IFT172, NRXN2, RAB6A, VPS37A, and the well-known negative regulator of NRF2, KEAP1 Of these, ATG12, ATG7, KEAP1, and VPS37A are known to be involved in autophagic processes. Our results present a comprehensive list of NRF2 negative regulators and reveal an intimate link between autophagy and NRF2 regulation.
Collapse
Affiliation(s)
- Michael J Kerins
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
| | - Pengfei Liu
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
| | - Wang Tian
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
| | - William Mannheim
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
| | - Donna D Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
- University of Arizona Cancer Center, University of Arizona, Tucson, Arizona, USA
| | - Aikseng Ooi
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
- University of Arizona Cancer Center, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
82
|
Park S, Joung JG, Min YW, Nam JY, Ryu D, Oh D, Park WY, Lee SH, Choi YL, Ahn JS, Ahn MJ, Park K, Sun JM. Paired whole exome and transcriptome analyses for the Immunogenomic changes during concurrent chemoradiotherapy in esophageal squamous cell carcinoma. J Immunother Cancer 2019; 7:128. [PMID: 31097034 PMCID: PMC6524245 DOI: 10.1186/s40425-019-0609-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 05/02/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The immunogenomic changes triggered by concurrent chemoradiation therapy (CCRT), a standard neoadjuvant treatment for locally advanced esophageal squamous cell carcinoma (ESCC), are unknown. We aimed to analyze the early immunogenomic changes in ESCC induced by CCRT and to correlate them with clinical outcomes. METHODS We collected biopsy samples from 40 patients with ESCC and the surgical candidates were treated with 5-fluorouracil (5-FU)/Cisplatin and concurrent radiation therapy. Endoscopic biopsy was performed before and after one treatment cycle of 5-FU/Cisplatin and 5 to 18 fractions of radiation. We analyzed immunogenomic changes using paired whole-exome sequencing (n = 29) and paired whole-transcriptome sequencing (WTS, n = 23). Multiplex immunohistochemistry (IHC) was conducted in four representative pair samples. RESULTS Fourteen out of 23 WTS samples (60.8%) showed increased immune scores after CCRT, as calculated by ESTIMATE. The rate of progression-free survival was higher in patients with increased immune scores compared with the remaining patients (83.1% vs. 57.1%, p = 0.25). Tumor mutation burden and neoantigen load were significantly reduced after CCRT (p < 0.001). We observed no specific correlation with non-synonymous mutations and no changes in the single-nucleotide variant spectrum after CCRT. Post-CCRT samples were enriched in gene sets related to immune signaling pathways, such as interferon gamma signaling and CD28 co-stimulation. Multiplex IHC showed an incremental trend in the proportion of CD4 positive cells in cytokeratin positive region after CCRT. However, CD8, CD20, FOXP1, PD-L1 showed no definitive trend. Proportion of immune cells calculated by CIBERSORT, showed that significant increase in neutrophils after CCRT. CONCLUSIONS We have comprehensively analyzed the early immunogenomic changes induced in ESCC by CCRT and correlated them with clinical outcomes. Our results provide a potential basis for combining immunotherapy with CCRT for the treatment of ESCC.
Collapse
Affiliation(s)
- Sehhoon Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-Gu, Seoul, 60351, Republic of Korea
| | - Je-Gun Joung
- Samsung Genome Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yang Won Min
- Division of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jae-Yong Nam
- Samsung Genome Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Daeun Ryu
- Samsung Genome Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Dongryul Oh
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Se-Hoon Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-Gu, Seoul, 60351, Republic of Korea
| | - Yoon La Choi
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jin Seok Ahn
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-Gu, Seoul, 60351, Republic of Korea
| | - Myung-Ju Ahn
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-Gu, Seoul, 60351, Republic of Korea
| | - Keunchil Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-Gu, Seoul, 60351, Republic of Korea
| | - Jong-Mu Sun
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-Gu, Seoul, 60351, Republic of Korea.
| |
Collapse
|
83
|
Potential Applications of NRF2 Inhibitors in Cancer Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8592348. [PMID: 31097977 PMCID: PMC6487091 DOI: 10.1155/2019/8592348] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/10/2019] [Accepted: 02/28/2019] [Indexed: 02/07/2023]
Abstract
The NRF2/KEAP1 pathway represents one of the most important cell defense mechanisms against exogenous or endogenous stressors. Indeed, by increasing the expression of several cytoprotective genes, the transcription factor NRF2 can shelter cells and tissues from multiple sources of damage including xenobiotic, electrophilic, metabolic, and oxidative stress. Importantly, the aberrant activation or accumulation of NRF2, a common event in many tumors, confers a selective advantage to cancer cells and is associated to malignant progression, therapy resistance, and poor prognosis. Hence, in the last years, NRF2 has emerged as a promising target in cancer treatment and many efforts have been made to identify therapeutic strategies aimed at disrupting its prooncogenic role. By summarizing the results from past and recent studies, in this review, we provide an overview concerning the NRF2/KEAP1 pathway, its biological impact in solid and hematologic malignancies, and the molecular mechanisms causing NRF2 hyperactivation in cancer cells. Finally, we also describe some of the most promising therapeutic approaches that have been successfully employed to counteract NRF2 activity in tumors, with a particular emphasis on the development of natural compounds and the adoption of drug repurposing strategies.
Collapse
|
84
|
Manda G, Hinescu ME, Neagoe IV, Ferreira LF, Boscencu R, Vasos P, Basaga SH, Cuadrado A. Emerging Therapeutic Targets in Oncologic Photodynamic Therapy. Curr Pharm Des 2019; 24:5268-5295. [DOI: 10.2174/1381612825666190122163832] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 01/18/2019] [Indexed: 12/20/2022]
Abstract
Background:Reactive oxygen species sustain tumorigenesis and cancer progression through deregulated redox signalling which also sensitizes cancer cells to therapy. Photodynamic therapy (PDT) is a promising anti-cancer therapy based on a provoked singlet oxygen burst, exhibiting a better toxicological profile than chemo- and radiotherapy. Important gaps in the knowledge on underlining molecular mechanisms impede on its translation towards clinical applications.Aims and Methods:The main objective of this review is to critically analyse the knowledge lately gained on therapeutic targets related to redox and inflammatory networks underlining PDT and its outcome in terms of cell death and resistance to therapy. Emerging therapeutic targets and pharmaceutical tools will be documented based on the identified molecular background of PDT.Results:Cellular responses and molecular networks in cancer cells exposed to the PDT-triggered singlet oxygen burst and the associated stresses are analysed using a systems medicine approach, addressing both cell death and repair mechanisms. In the context of immunogenic cell death, therapeutic tools for boosting anti-tumor immunity will be outlined. Finally, the transcription factor NRF2, which is a major coordinator of cytoprotective responses, is presented as a promising pharmacologic target for developing co-therapies designed to increase PDT efficacy.Conclusion:There is an urgent need to perform in-depth molecular investigations in the field of PDT and to correlate them with clinical data through a systems medicine approach for highlighting the complex biological signature of PDT. This will definitely guide translation of PDT to clinic and the development of new therapeutic strategies aimed at improving PDT.
Collapse
Affiliation(s)
| | | | | | - Luis F.V. Ferreira
- CQFM-Centro de Fisica Molecular and IN-Institute for Nanosciences and Nanotechnologies and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Tecnico, Universidade de Lisboa, Lisbon, Portugal
| | | | - Paul Vasos
- Research Centre of the University of Bucharest, Bucharest, Romania
| | - Selma H. Basaga
- Molecular Biology Genetics & Program, Faculty of Engineering & Natural Sciences, Sabanci University, Istanbul, Turkey
| | | |
Collapse
|
85
|
Moaven O, Wang TN. Combined Modality Therapy for Management of Esophageal Cancer: Current Approach Based on Experiences from East and West. Surg Clin North Am 2019; 99:479-499. [PMID: 31047037 DOI: 10.1016/j.suc.2019.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Human evolutionary genetic divergence and distinctive environmental exposures have contributed to the development of clinicopathologic variations of esophageal cancer in Eastern and Western countries. Different treatment strategies have derived from the disparate regional experiences. Treatment strategy is more standardized in the West. Trimodality treatment with neoadjuvant chemoradiation followed by surgery is widely accepted as the standard treatment of locally advanced esophageal adenocarcinoma and esophageal squamous cell carcinoma. Trimodality treatment has not been adopted in many Eastern countries, and standard treatment is neoadjuvant chemotherapy. Several randomized trials are ongoing that may alter the standard management of esophageal cancer worldwide.
Collapse
Affiliation(s)
- Omeed Moaven
- Division of Surgical Oncology, Department of Surgery, Wake Forest University, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Thomas N Wang
- Division of Surgical Oncology, Department of Surgery, University of Alabama at Birmingham, BDB 609, 1808 7th Avenue South, Birmingham, AL 35294-3411, USA.
| |
Collapse
|
86
|
Hori R, Yamaguchi K, Sato H, Watanabe M, Tsutsumi K, Iwamoto S, Abe M, Onodera H, Nakamura S, Nakai R. The discovery and characterization of K-563, a novel inhibitor of the Keap1/Nrf2 pathway produced by Streptomyces sp. Cancer Med 2019; 8:1157-1168. [PMID: 30735010 PMCID: PMC6434342 DOI: 10.1002/cam4.1949] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/06/2018] [Accepted: 12/10/2018] [Indexed: 12/18/2022] Open
Abstract
Keap1/Nrf2 pathway regulates the antioxidant stress response, detoxification response, and energy metabolism. Previous reports found that aberrant Keap1/Nrf2 pathway activation due to Kelch‐like ECH‐associated protein 1 (Keap1) mutations or Nuclear factor E2‐related factor 2 (Nrf2) mutations induced resistance of cancer cells to chemotherapy and accelerated cell growth via the supply of nutrients. Therefore, Keap1/Nrf2 pathway activation is associated with a poor prognosis in many cancers. These previous findings suggested that inhibition of Keap1/Nrf2 pathway could be a target for anti‐cancer therapies. To discover a small‐molecule Keap1/Nrf2 pathway inhibitor, we conducted high‐throughput screening in Keap1 mutant human lung cancer A549 cells using a transcriptional reporter assay. Through this screening, we identified the novel Keap1/Nrf2 pathway inhibitor K‐563, which was isolated from actinomycete Streptomyces sp. K‐563 suppressed the expression of Keap1/Nrf2 pathway downstream target genes or the downstream target protein, which induced suppression of GSH production, and activated reactive oxygen species production in A549 cells. K‐563 also inhibited the expression of downstream target genes in other Keap1‐ or Nrf2‐mutated cancer cells. Furthermore, K‐563 exerted anti‐proliferative activities in these mutated cancer cells. These in vitro analyses showed that K‐563 was able to inhibit cell growth in Keap1‐ or Nrf2‐mutated cancer cells by Keap1/Nrf2 pathway inhibition. K‐563 also exerted synergistic combinational effects with lung cancer chemotherapeutic agents. An in vivo study in mice xenotransplanted with A549 cells to further explore the therapeutic potential of K‐563 revealed that it also inhibited Keap1/Nrf2 pathway in lung cancer tumors. K‐563, a novel Keap1/Nrf2 pathway inhibitor, may be a lead compound for development as an anti‐cancer agent.
Collapse
Affiliation(s)
- Ran Hori
- R&D Division, Kyowa Hakko Kirin Co., Ltd., Sunto, Shizuoka, Japan.,School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Kozo Yamaguchi
- R&D Division, Kyowa Hakko Kirin Co., Ltd., Sunto, Shizuoka, Japan
| | - Hidetaka Sato
- R&D Division, Kyowa Hakko Kirin Co., Ltd., Sunto, Shizuoka, Japan
| | - Miwa Watanabe
- R&D Division, Kyowa Hakko Kirin Co., Ltd., Sunto, Shizuoka, Japan
| | - Kyoko Tsutsumi
- R&D Division, Kyowa Hakko Kirin Co., Ltd., Sunto, Shizuoka, Japan
| | - Susumu Iwamoto
- R&D Division, Kyowa Hakko Kirin Co., Ltd., Sunto, Shizuoka, Japan
| | - Masayuki Abe
- R&D Division, Kyowa Hakko Kirin Co., Ltd., Sunto, Shizuoka, Japan
| | - Hideyuki Onodera
- R&D Division, Kyowa Hakko Kirin Co., Ltd., Sunto, Shizuoka, Japan
| | - Satoshi Nakamura
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Ryuichiro Nakai
- R&D Division, Kyowa Hakko Kirin Co., Ltd., Sunto, Shizuoka, Japan
| |
Collapse
|
87
|
Deng Y, Wu Y, Zhao P, Weng W, Ye M, Sun H, Xu M, Wang C. The Nrf2/HO-1 axis can be a prognostic factor in clear cell renal cell carcinoma. Cancer Manag Res 2019; 11:1221-1230. [PMID: 30799949 PMCID: PMC6369848 DOI: 10.2147/cmar.s188046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE To study the protein expression level of Nrf2/HO-1 in clear cell renal cell carcinoma (ccRCC) and adjacent normal tissue and to explore its relationship with clinicopathological characteristics and prognosis in ccRCC patients. MATERIALS AND METHODS In total, 152 ccRCC patients with available follow-up and clinical data were enrolled, and sample microarrays were prepared for immunohistochemistry studies. The human ccRCC cell lines 786-O, OS-RC-2, A498, and ACHN were cultured for immunofluorescence. The protein concentrations of five ccRCC patients' tumor and adjacent normal renal tissues were prepared for Western blotting. Chi-squared tests, Fisher's exact test, Kaplan-Meier analyses, log-rank tests, and Cox regression were performed for statistical analyses. RESULTS The immunoreactivity results showed that the Nrf2 and HO-1 proteins were found in consistent locations in vitro and were expressed both in ccRCC and adjacent normal tissues. The two proteins were localized in the cytoplasm and nucleus of RCC tumor cells and in adjacent normal tissue cells. The expression levels of Nrf2 and HO-1 were significantly higher in ccRCC tissues than in the adjacent normal tissues. The Nrf2 protein level was found to be significantly correlated with the tumor size. Additionally, higher protein expression levels of Nrf2 and HO-1 were also correlated with worse overall survival outcomes and could potentially be used to predict the prognosis of ccRCC patients. CONCLUSION Our study provides an important theoretical basis for evaluating the clinical prognosis of ccRCC patients, which implies that the Nrf2/HO-1 axis can be a prognostic factor in ccRCC.
Collapse
Affiliation(s)
- Yu Deng
- Department of Pathology, Fudan University Shanghai Cancer Centre, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yong Wu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Gynaecologic Oncology, Fudan University Shanghai Cancer Centre, Shanghai, China
| | - Ping Zhao
- Department of Pathology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,
| | - Weiwei Weng
- Department of Pathology, Fudan University Shanghai Cancer Centre, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Min Ye
- Department of Pathology, Fudan University Shanghai Cancer Centre, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hui Sun
- Department of Pathology, Fudan University Shanghai Cancer Centre, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Midie Xu
- Department of Pathology, Fudan University Shanghai Cancer Centre, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chaofu Wang
- Department of Pathology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,
| |
Collapse
|
88
|
Lee SB, Sellers BN, DeNicola GM. The Regulation of NRF2 by Nutrient-Responsive Signaling and Its Role in Anabolic Cancer Metabolism. Antioxid Redox Signal 2018; 29:1774-1791. [PMID: 28899208 DOI: 10.1089/ars.2017.7356] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
SIGNIFICANCE The stress responsive transcription factor nuclear factor erythroid 2 p45-related factor 2, or NRF2, regulates the expression of many cytoprotective enzymes to mitigate oxidative stress under physiological conditions. NRF2 is activated in response to oxidative stress, growth factor signaling, and changes in nutrient status. In addition, somatic mutations that disrupt the interaction between NRF2 and its negative regulator Kelch-like erythroid cell-derived protein with CNC homology (ECH)-associated 1 (KEAP1) commonly occur in cancer and are thought to promote tumorigenesis. Recent Advances: While it is well established that aberrant NRF2 activation results in enhanced antioxidant capacity in cancer cells, recent exciting findings demonstrate a role for NRF2-mediated metabolic deregulation that supports cancer cell proliferation. CRITICAL ISSUES In this review, we describe how the NRF2-KEAP1 signaling pathway is altered in cancer, how NRF2 is regulated by changes in cellular metabolism, and how NRF2 reprograms cellular metabolism to support proliferation. FUTURE DIRECTIONS Future studies will delineate the NRF2-regulated processes critical for metabolic adaptation to nutrient availability, cellular proliferation, and tumorigenesis. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Sae Bom Lee
- Department of Cancer Imaging and Metabolism, Moffitt Cancer Center and Research Institute , Tampa, Florida
| | - Brianna N Sellers
- Department of Cancer Imaging and Metabolism, Moffitt Cancer Center and Research Institute , Tampa, Florida
| | - Gina M DeNicola
- Department of Cancer Imaging and Metabolism, Moffitt Cancer Center and Research Institute , Tampa, Florida
| |
Collapse
|
89
|
Talukdar FR, di Pietro M, Secrier M, Moehler M, Goepfert K, Lima SSC, Pinto LFR, Hendricks D, Parker MI, Herceg Z. Molecular landscape of esophageal cancer: implications for early detection and personalized therapy. Ann N Y Acad Sci 2018; 1434:342-359. [PMID: 29917250 DOI: 10.1111/nyas.13876] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/08/2018] [Accepted: 05/14/2018] [Indexed: 12/12/2022]
Abstract
Esophageal cancer (EC) is one of the most lethal cancers and a public health concern worldwide, owing to late diagnosis and lack of efficient treatment. Esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC) are main histopathological subtypes of EC that show striking differences in geographical distribution, possibly due to differences in exposure to risk factors and lifestyles. ESCC and EAC are distinct diseases in terms of cell of origin, epidemiology, and molecular architecture of tumor cells. Past efforts aimed at translating potential molecular candidates into clinical practice proved to be challenging, underscoring the need for identifying novel candidates for early diagnosis and therapy of EC. Several major international efforts have brought about important advances in identifying molecular landscapes of ESCC and EAC toward understanding molecular mechanisms and critical molecular events driving the progression and pathological features of the disease. In our review, we summarize recent advances in the areas of genomics and epigenomics of ESCC and EAC, their mutational signatures and immunotherapy. We also discuss implications of recent advances in characterizing the genome and epigenome of EC for the discovery of diagnostic/prognostic biomarkers and development of new targets for personalized treatment and prevention.
Collapse
Affiliation(s)
- Fazlur Rahman Talukdar
- Section of Mechanisms of Carcinogenesis, International Agency for Research on Cancer (WHO), Lyon, France
| | | | - Maria Secrier
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Markus Moehler
- First Department of Internal Medicine, Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Katrin Goepfert
- First Department of Internal Medicine, Johannes Gutenberg-University of Mainz, Mainz, Germany
| | | | | | - Denver Hendricks
- Division of Medical Biochemistry & Structural Biology, University of Cape Town, Cape Town, South Africa
| | - Mohamed Iqbal Parker
- Division of Medical Biochemistry & Structural Biology, University of Cape Town, Cape Town, South Africa
| | - Zdenko Herceg
- Section of Mechanisms of Carcinogenesis, International Agency for Research on Cancer (WHO), Lyon, France
| |
Collapse
|
90
|
Fu J, Xiong Z, Huang C, Li J, Yang W, Han Y, Paiboonrungruan C, Major MB, Chen KN, Kang X, Chen X. Hyperactivity of the transcription factor Nrf2 causes metabolic reprogramming in mouse esophagus. J Biol Chem 2018; 294:327-340. [PMID: 30409900 DOI: 10.1074/jbc.ra118.005963] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 11/03/2018] [Indexed: 12/17/2022] Open
Abstract
Mutations in the genes encoding nuclear factor (erythroid-derived 2)-like 2 (NRF2), Kelch-like ECH-associated protein 1 (KEAP1), and cullin 3 (CUL3) are commonly observed in human esophageal squamous cell carcinoma (ESCC) and result in activation of the NRF2 signaling pathway. Moreover, hyperactivity of the transcription factor Nrf2 has been found to cause esophageal hyperproliferation and hyperkeratosis in mice. However, the underlying mechanism is unclear. In this study, we aimed to understand the molecular mechanisms of esophageal hyperproliferation in mice due to hyperactive Nrf2. Esophageal tissues were obtained from genetically modified mice that differed in the status of the Nrf2 gene and genes in the same pathway (Nrf2 -/-, Keap1 -/-, K5Cre;Pkm2fl/fl;Keap1 -/-, and WT) and analyzed for metabolomic profiles, Nrf2 ChIP-seq, and gene expression. We found that hyperactive Nrf2 causes metabolic reprogramming and up-regulation of metabolic genes in the mouse esophagus. One of the glycolysis genes encoding pyruvate kinase M2 (Pkm2) was not only differentially up-regulated, but also glycosylated and oligomerized, resulting in increased ATP biosynthesis. However, constitutive knockout of Pkm2 failed to inhibit this esophageal phenotype in vivo, and this failure may have been due to compensation by Pkm1 up-regulation. Transient inhibition of NRF2 or glycolysis inhibited the growth of human ESCC cells in which NRF2 is hyperactive in vitro In summary, hyperactive Nrf2 causes metabolic reprogramming in the mouse esophagus through its transcriptional regulation of metabolic genes. Blocking glycolysis transiently inhibits cell proliferation and may therefore have therapeutically beneficial effects on NRF2high ESCC in humans.
Collapse
Affiliation(s)
- Junsheng Fu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province 350002, China; Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina 27707
| | - Zhaohui Xiong
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina 27707
| | - Caizhi Huang
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina 27707
| | - Jing Li
- Department of Thoracic Surgery, Ningxia Medical University General Hospital, Yinchuan, Ningxia 750004, China
| | - Wenjun Yang
- Key Laboratory of Fertility Preservation and Maintenance (Ministry of Education), Cancer Institute of the General Hospital, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Yuning Han
- Department of Thoracic Surgery, Ningxia Medical University General Hospital, Yinchuan, Ningxia 750004, China
| | - Chorlada Paiboonrungruan
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina 27707
| | - Michael B Major
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Ke-Neng Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), The First Department of Thoracic Surgery, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Xiaozheng Kang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), The First Department of Thoracic Surgery, Peking University Cancer Hospital and Institute, Beijing 100142, China.
| | - Xiaoxin Chen
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina 27707; Center for Esophageal Disease and Swallowing, Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599.
| |
Collapse
|
91
|
Lin DC, Dinh HQ, Xie JJ, Mayakonda A, Silva TC, Jiang YY, Ding LW, He JZ, Xu XE, Hao JJ, Wang MR, Li C, Xu LY, Li EM, Berman BP, Phillip Koeffler H. Identification of distinct mutational patterns and new driver genes in oesophageal squamous cell carcinomas and adenocarcinomas. Gut 2018; 67:1769-1779. [PMID: 28860350 PMCID: PMC5980794 DOI: 10.1136/gutjnl-2017-314607] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/10/2017] [Accepted: 07/13/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Oesophageal squamous cell carcinoma (OSCC) and adenocarcinoma (OAC) are distinct cancers in terms of a number of clinical and epidemiological characteristics, complicating the design of clinical trials and biomarker developments. We analysed 1048 oesophageal tumour-germline pairs from both subtypes, to characterise their genomic features, and biological and clinical significance. DESIGN Previously exome-sequenced samples were re-analysed to identify significantly mutated genes (SMGs) and mutational signatures. The biological functions of novel SMGs were investigated using cell line and xenograft models. We further performed whole-genome bisulfite sequencing and chromatin immunoprecipitation (ChIP)-seq to characterise epigenetic alterations. RESULTS OSCC and OAC displayed nearly mutually exclusive sets of driver genes, indicating that they follow independent developmental paths. The combined sample size allowed the statistical identification of a number of novel subtype-specific SMGs, mutational signatures and prognostic biomarkers. Particularly, we identified a novel mutational signature similar to Catalogue Of Somatic Mutations In Cancer (COSMIC)signature 16, which has prognostic value in OSCC. Two newly discovered SMGs, CUL3 and ZFP36L2, were validated as important tumour-suppressors specific to the OSCC subtype. We further identified their additional loss-of-function mechanisms. CUL3 was homozygously deleted specifically in OSCC and other squamous cell cancers (SCCs). Notably, ZFP36L2 is associated with super-enhancer in healthy oesophageal mucosa; DNA hypermethylation in its super-enhancer reduced active histone markers in squamous cancer cells, suggesting an epigenetic inactivation of a super-enhancer-associated SCC suppressor. CONCLUSIONS These data comprehensively contrast differences between OSCC and OAC at both genomic and epigenomic levels, and reveal novel molecular features for further delineating the pathophysiological mechanisms and treatment strategies for these cancers.
Collapse
Affiliation(s)
- De-Chen Lin
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Huy Q Dinh
- Center for Bioinformatics and Functional Genomics, Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jian-Jun Xie
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Biochemistry and Molecular Biology, Medical College of Shantou University, Shantou, China
| | - Anand Mayakonda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Tiago Chedraoui Silva
- Center for Bioinformatics and Functional Genomics, Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Yan-Yi Jiang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Ling-Wen Ding
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Jian-Zhong He
- Department of Biochemistry and Molecular Biology, Medical College of Shantou University, Shantou, China
| | - Xiu-E Xu
- Department of Biochemistry and Molecular Biology, Medical College of Shantou University, Shantou, China
| | - Jia-Jie Hao
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming-Rong Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunquan Li
- Department of Biochemistry and Molecular Biology, Medical College of Shantou University, Shantou, China
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| | - Li-Yan Xu
- Department of Biochemistry and Molecular Biology, Medical College of Shantou University, Shantou, China
| | - En-Min Li
- Department of Biochemistry and Molecular Biology, Medical College of Shantou University, Shantou, China
| | - Benjamin P Berman
- Center for Bioinformatics and Functional Genomics, Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - H Phillip Koeffler
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- National University Cancer Institute, National University Hospital Singapore, Singapore
| |
Collapse
|
92
|
Sova M, Saso L. Design and development of Nrf2 modulators for cancer chemoprevention and therapy: a review. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:3181-3197. [PMID: 30288023 PMCID: PMC6161735 DOI: 10.2147/dddt.s172612] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A major cell defense mechanism against oxidative and xenobiotic stress is mediated by the Nrf2/Keap1 signaling pathway. The Nrf2/Keap1 pathway regulates gene expression of many cytoprotective and detoxifying enzymes, thus playing a pivotal role in maintaining redox cellular homeostasis. Many diseases including cancer have been closely related to impaired Nrf2 activity. Targeting Nrf2 and modulating its activity represents a novel modern strategy for cancer chemoprevention and therapy. In this review, different design strategies used for the development of Nrf2 modulators are described in detail. Moreover, the main focus is on important and recently developed Nrf2 activators and inhibitors, their in vitro and in vivo studies, and their potential use as chemopreventive agents and/or cancer therapeutics.
Collapse
Affiliation(s)
- Matej Sova
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia,
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University, Rome, Italy
| |
Collapse
|
93
|
Chatterjee P, Yadav M, Chauhan N, Huang Y, Luo Y. Cancer Cell Metabolism Featuring Nrf2. Curr Drug Discov Technol 2018; 17:263-271. [PMID: 30207221 DOI: 10.2174/1570163815666180911092443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/14/2018] [Accepted: 08/31/2018] [Indexed: 11/22/2022]
Abstract
Although the major role of Nrf2 has long been established as a transcription factor for providing cellular protection against oxidative stress, multiple pieces of research and reviews now claim exactly the opposite. The dilemma - "to activate or inhibit" the protein requires an immediate answer, which evidently links cellular metabolism to the causes and purpose of cancer. Profusely growing cancerous cells have prolific energy requirements, which can only be fulfilled by modulating cellular metabolism. This review highlights the cause and effect of Nrf2 modulation in cancer that in turn channelize cellular metabolism, thereby fulfilling the energy requirements of cancer cells. The present work also highlights the purpose of genetic mutations in Nrf2, in relation to cellular metabolism in cancer cells, thus pointing out a newer approach where parallel mutations may be the key factor to decide whether to activate or inhibit Nrf2.
Collapse
Affiliation(s)
- Payal Chatterjee
- Department of Pharmaceutical Sciences, Softvision College, Indore, MP 452010, India.,Department of Pharmaceutical Sciences, Western University of Health Sciences, Pomona, CA 91766, United States
| | - Mukesh Yadav
- Department of Pharmaceutical Sciences, Softvision College, Indore, MP 452010, India
| | - Namrata Chauhan
- Department of Pharmaceutical Sciences, Softvision College, Indore, MP 452010, India
| | - Ying Huang
- Department of Pharmaceutical Sciences, Western University of Health Sciences, Pomona, CA 91766, United States
| | - Yun Luo
- Department of Pharmaceutical Sciences, Western University of Health Sciences, Pomona, CA 91766, United States
| |
Collapse
|
94
|
A catalogue of somatic NRF2 gain-of-function mutations in cancer. Sci Rep 2018; 8:12846. [PMID: 30150714 PMCID: PMC6110754 DOI: 10.1038/s41598-018-31281-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 08/10/2018] [Indexed: 12/20/2022] Open
Abstract
Identification and characterization of somatic mutations in cancer have important prognostication and treatment implications. Genes encoding the Nuclear factor (erythroid-derived 2)-like 2 (NRF2) transcription factor and its negative regulator, Kelch-like ECH-associated protein 1 (KEAP1), are frequently mutated in cancer. These mutations drive constitutive NRF2 activation and correlate with poor prognosis. Despite its apparent significance, a comprehensive catalogue of somatic NRF2 mutations across different tumor types is still lacking. Here, we catalogue NRF2 mutations in The Cancer Genome Atlas (TCGA) database. 226 unique NRF2-mutant tumors were identified from 10,364 cases. NRF2 mutations were found in 21 out of the 33 tumor types. A total of 11 hotspots were identified. Of these, mutation to the R34 position was most frequent. Notably, R34 and D29 mutations were overrepresented in bladder, lung, and uterine cancers. Analyses of corresponding RNA sequencing data using a de novo derived gene expression classifier showed that the R34 mutations drive constitutive NRF2 activation with a selection pressure biased against the formation of R34L. Of all R34 mutants, R34L conferred the least degree of protein stabilization, suggesting a pro-tumor NRF2 half-life threshold. Our findings offer a comprehensive catalogue of NRF2 mutations in cancer that can help prognostication and NRF2 research.
Collapse
|
95
|
Cobler L, Zhang H, Suri P, Park C, Timmerman LA. xCT inhibition sensitizes tumors to γ-radiation via glutathione reduction. Oncotarget 2018; 9:32280-32297. [PMID: 30190786 PMCID: PMC6122354 DOI: 10.18632/oncotarget.25794] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 07/08/2018] [Indexed: 01/13/2023] Open
Abstract
About 3 million US cancer patients and 1.7 million EU cancer patients received multiple doses of radiation therapy (RT) in 2012, with treatment duration limited by normal adjacent tissue damage. Tumor-specific sensitization could allow treatment with lower radiation doses, reducing normal tissue damage. This is a longstanding, largely unrealized therapeutic goal. The cystine:glutamate exchanger xCT is expressed on poor prognosis subsets of most solid tumors, but not on most normal cells. xCT provides cells with environmental cystine for enhanced glutathione synthesis. Glutathione is used to control reactive oxygen species (ROS), which are therapeutic effectors of RT. We tested whether xCT inhibition would sensitize xCT+ tumor cells to ionizing radiation. We found that pretreatment with the xCT inhibitor erastin potently sensitized xCT+ but not xCT- cells, in vitro and in xenograft. Similarly, targeted gene inactivation also sensitized cells, and both modes of sensitization were overcome by glutathione supplementation. Sensitization prolongs DNA damage signaling, increases genome instability, and enhances cell death, revealing an unforeseen role for cysteine in genome integrity maintenance. We conclude that an xCT-specific therapeutic would provide tumor-specific sensitization to RT, allowing treatment with lower radiation doses, and producing far fewer side effects than other proposed sensitizers. Our data speaks to the need for the rapid development of such a drug.
Collapse
Affiliation(s)
- Lara Cobler
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Hui Zhang
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA.,Department of Radiation Oncology, University of California, San Francisco, CA, USA
| | - Poojan Suri
- University of California, San Francisco, CA, USA
| | - Catherine Park
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA.,Department of Radiation Oncology, University of California, San Francisco, CA, USA
| | - Luika A Timmerman
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| |
Collapse
|
96
|
Fujigaki S, Nishiumi S, Kobayashi T, Suzuki M, Iemoto T, Kojima T, Ito Y, Daiko H, Kato K, Shouji H, Honda K, Azuma T, Yoshida M. Identification of serum biomarkers of chemoradiosensitivity in esophageal cancer via the targeted metabolomics approach. Biomark Med 2018; 12:827-840. [PMID: 30043633 DOI: 10.2217/bmm-2017-0449] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
AIM To identify the serum metabolomics signature that is correlated with the chemoradiosensitivity of esophageal squamous cell carcinoma (ESCC). MATERIALS & METHODS Untargeted and targeted metabolomics analysis of serum samples from 26 ESCC patients, which were collected before the neoadjuvant chemoradiotherapy, was performed. RESULTS On receiving the results of untargeted metabolomics analysis, we performed the targeted metabolomics analysis of the six metabolites (arabitol, betaine, glycine, L-serine, L-arginine and L-aspartate). The serum levels of the four metabolites (arabitol, glycine, L-serine and L-arginine) were significantly lower in the patients who achieved pathological complete response with neoadjuvant chemoradiotherapy compared with the patients who did not achieve pathological complete response (p = 0.0086, 0.0345, 0.0106 and 0.0373, respectively). CONCLUSION The serum levels of metabolites might be useful for predicting the chemoradiosensitivity of ESCC patients.
Collapse
Affiliation(s)
- Seiji Fujigaki
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Shin Nishiumi
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Takashi Kobayashi
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Makoto Suzuki
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Takao Iemoto
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Takashi Kojima
- Department of Gastrointestinal Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - Yoshinori Ito
- Department of Radiation Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Hiroyuki Daiko
- Department of Esophageal Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Ken Kato
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Hirokazu Shouji
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Kazufumi Honda
- Department of Biomarkers for Early Detection of Cancer, National Cancer Center Research Institute, Tokyo, Japan
| | - Takeshi Azuma
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Masaru Yoshida
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Hyogo, Japan.,Division of Metabolomics Research, Department of Internal Related, Kobe University Graduate School of Medicine, Kobe, Japan.,AMED-CREST, AMED, Kobe, Japan
| |
Collapse
|
97
|
Yamamoto M, Kensler TW, Motohashi H. The KEAP1-NRF2 System: a Thiol-Based Sensor-Effector Apparatus for Maintaining Redox Homeostasis. Physiol Rev 2018; 98:1169-1203. [PMID: 29717933 PMCID: PMC9762786 DOI: 10.1152/physrev.00023.2017] [Citation(s) in RCA: 1109] [Impact Index Per Article: 184.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Kelch-like ECH-associated protein 1-NF-E2-related factor 2 (KEAP1-NRF2) system forms the major node of cellular and organismal defense against oxidative and electrophilic stresses of both exogenous and endogenous origins. KEAP1 acts as a cysteine thiol-rich sensor of redox insults, whereas NRF2 is a transcription factor that robustly transduces chemical signals to regulate a battery of cytoprotective genes. KEAP1 represses NRF2 activity under quiescent conditions, whereas NRF2 is liberated from KEAP1-mediated repression on exposure to stresses. The rapid inducibility of a response based on a derepression mechanism is an important feature of the KEAP1-NRF2 system. Recent studies have unveiled the complexities of the functional contributions of the KEAP1-NRF2 system and defined its broader involvement in biological processes, including cell proliferation and differentiation, as well as cytoprotection. In this review, we describe historical milestones in the initial characterization of the KEAP1-NRF2 system and provide a comprehensive overview of the molecular mechanisms governing the functions of KEAP1 and NRF2, as well as their roles in physiology and pathology. We also refer to the clinical significance of the KEAP1-NRF2 system as an important prophylactic and therapeutic target for various diseases, particularly aging-related disorders. We believe that controlled harnessing of the KEAP1-NRF2 system is a key to healthy aging and well-being in humans.
Collapse
|
98
|
Mehta A, Awah CU, Sonabend AM. Topoisomerase II Poisons for Glioblastoma; Existing Challenges and Opportunities to Personalize Therapy. Front Neurol 2018; 9:459. [PMID: 29988316 PMCID: PMC6019456 DOI: 10.3389/fneur.2018.00459] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 05/30/2018] [Indexed: 01/03/2023] Open
Abstract
Despite advances in surgery, radiotherapy, and chemotherapy, glioblastoma (GBM) remains a malignancy with poor prognosis. The molecular profile of GBM is diverse across patients, and individual responses to therapy are highly variable. Yet, patients diagnosed with GBM are treated with a rather uniform paradigm. Exploiting these molecular differences and inter-individual responses to therapy may present an opportunity to improve the otherwise bleak prognosis of patients with GBM. This review aims to examine one group of chemotherapeutics: Topoisomerase 2 (TOP2) poisons, a class of drugs that enables TOP2 to induce DNA damage, but interferes with its ability to repair it. These potent chemotherapeutic agents are currently used for a number of malignancies and have shown promise in the treatment of GBM. Despite their robust efficacy in vitro, some of these agents have fallen short of achieving similar results in clinical trials for this tumor. In this review, we explore reasons for this discrepancy, focusing on drug delivery and individual susceptibility differences as challenges for effective TOP2-targeting for GBM. We critically review the evidence implicating genes in susceptibility to TOP2 poisons and categorize this evidence as experimental, correlative or both. This is important as mere experimental evidence does not necessarily lead to identification of genes that serve as good biomarkers of susceptibility for personalizing the use of these drugs.
Collapse
Affiliation(s)
- Amol Mehta
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Chidiebere U Awah
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Adam M Sonabend
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
99
|
Yi X, Zhao Y, Xue L, Zhang J, Qiao Y, Jin Q, Li H. Expression of Keap1 and Nrf2 in diffuse large B-cell lymphoma and its clinical significance. Exp Ther Med 2018; 16:573-578. [PMID: 30112024 PMCID: PMC6090442 DOI: 10.3892/etm.2018.6208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 03/16/2018] [Indexed: 12/30/2022] Open
Abstract
The present study investigated the expression and clinical significance of kelch-like ECH-associated protein 1 (Keap1) and nuclear factor erythroid-2-related factor-2 (Nrf2) expression in diffuse large B-cell lymphoma (DLBCL). These proteins were detected by immunohistochemistry in 39 DLBCL cases and 17 cases of reactive lymph node hyperplasia, and their association with the clinicopathological features of DLBCL patients was analyzed. In DLBCL, the percentage of cells with positive staining for Keap1 and Nrf2 was 46.2 and 35.9%, respectively, which was significantly higher than that in reactive lymph node hyperplasia (17.7 and 5.9%, respectively). There was no correlation between Keap1 and Nrf2 expression according to a Spearman rank correlation analysis (r=0.272; P>0.05). Keap1 and Nrf2 expression was associated with the international prognostic index and Ann-Arbor clinical stage (P<0.05), and Keap1 and Nrf2 expression was higher in DLBCL patients with stage III–IV (68.4 and 52.6%, respectively) compared with in those with stage I–II (25.0 and 20.0%, respectively). The aberrant expression of Keap1 and Nrf2 in DLBCL suggests that these factors may have crucial roles in the development and progression of the disease, and may therefore be used as prognostic indicators.
Collapse
Affiliation(s)
- Xuemei Yi
- Department of Oncology, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Yajun Zhao
- Department of Oncology, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Li Xue
- Department of Oncology, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Jing Zhang
- Department of Oncology, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Yujie Qiao
- Department of Oncology, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Qianqian Jin
- Department of Oncology, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Hongling Li
- Department of Oncology, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
100
|
Doosti-Irani A, Holakouie-Naieni K, Rahimi-Foroushani A, Mansournia MA, Haddad P. A network meta-analysis of the treatments for esophageal squamous cell carcinoma in terms of survival. Crit Rev Oncol Hematol 2018; 127:80-90. [PMID: 29891115 DOI: 10.1016/j.critrevonc.2018.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/18/2018] [Accepted: 05/09/2018] [Indexed: 01/30/2023] Open
Abstract
We aimed to compare treatments for patients with esophageal squamous cell carcinoma (SCC) in terms of survival. Medline, Web of Science, Scopus, the Cochrane Library and Embase were searched. Randomized controlled trials (RCT) that had compared esophageal SCC treatments were included. The hazard ratio (HR) with 95% credible interval (CrI) was used to summarize the effect measures in the Bayesian network meta-analysis. Out of 23,256 references, 43 RCTs with 34 treatments were included. Carboplatin and paclitaxel plus radiotherapy plus surgery (carbo-pacli + RT + S) compared with surgery alone decreased risk of death (HR = 0.49; 95% CrI: 0.26, 0.90). The HRs for carbo-pacli + RT + S versus surgery plus cisplatin and fluorouracil and surgery plus cisplatin and vindesine were 0.44 (0.22, 0.86) and 0.41 (0.20, 0.83), respectively. Among all treatments in network, carbo-pacli + RT + S ranked as first treatment. It seems carbo-pacli + RT + S was a better treatment among available treatments in network in terms of survival in patients with esophageal SCC.
Collapse
Affiliation(s)
- Amin Doosti-Irani
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Department of Epidemiology, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Kourosh Holakouie-Naieni
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Abbas Rahimi-Foroushani
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Ali Mansournia
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Peiman Haddad
- Radiation Oncology Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|