51
|
Hernandez-Diaz I, Pan J, Ricciardi CA, Bai X, Ke J, White KE, Flaquer M, Fouli GE, Argunhan F, Hayward AE, Hou FF, Mann GE, Miao RQ, Long DA, Gnudi L. Overexpression of Circulating Soluble Nogo-B Improves Diabetic Kidney Disease by Protecting the Vasculature. Diabetes 2019; 68:1841-1852. [PMID: 31217174 PMCID: PMC6706276 DOI: 10.2337/db19-0157] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/10/2019] [Indexed: 12/12/2022]
Abstract
Damage to the vasculature is the primary mechanism driving chronic diabetic microvascular complications such as diabetic nephropathy, which manifests as albuminuria. Therefore, treatments that protect the diabetic vasculature have significant therapeutic potential. Soluble neurite outgrowth inhibitor-B (sNogo-B) is a circulating N-terminus isoform of full-length Nogo-B, which plays a key role in vascular remodeling following injury. However, there is currently no information on the role of sNogo-B in the context of diabetic nephropathy. We demonstrate that overexpression of sNogo-B in the circulation ameliorates diabetic kidney disease by reducing albuminuria, hyperfiltration, and abnormal angiogenesis and protecting glomerular capillary structure. Systemic sNogo-B overexpression in diabetic mice also associates with dampening vascular endothelial growth factor-A signaling and reducing endothelial nitric oxide synthase, AKT, and GSK3β phosphorylation. Furthermore, sNogo-B prevented the impairment of tube formation, which occurred when human endothelial cells were exposed to sera from patients with diabetic kidney disease. Collectively, these studies provide the first evidence that sNogo-B protects the vasculature in diabetes and may represent a novel therapeutic target for diabetic vascular complications.
Collapse
Affiliation(s)
- Ivan Hernandez-Diaz
- School of Cardiovascular Medicine & Sciences, British Heart Foundation Centre of Research Excellence, King's College London, London, U.K
| | - Jiaqi Pan
- School of Cardiovascular Medicine & Sciences, British Heart Foundation Centre of Research Excellence, King's College London, London, U.K
| | - Carlo Alberto Ricciardi
- School of Cardiovascular Medicine & Sciences, British Heart Foundation Centre of Research Excellence, King's College London, London, U.K
| | - Xiaoyan Bai
- Division of Nephrology, State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jianting Ke
- School of Cardiovascular Medicine & Sciences, British Heart Foundation Centre of Research Excellence, King's College London, London, U.K
| | - Kathryn E White
- Electron Microscopy Unit, Newcastle University, Newcastle upon Tyne, U.K
| | - Maria Flaquer
- School of Cardiovascular Medicine & Sciences, British Heart Foundation Centre of Research Excellence, King's College London, London, U.K
| | - Georgia E Fouli
- School of Cardiovascular Medicine & Sciences, British Heart Foundation Centre of Research Excellence, King's College London, London, U.K
| | - Fulye Argunhan
- School of Cardiovascular Medicine & Sciences, British Heart Foundation Centre of Research Excellence, King's College London, London, U.K
| | - Anthea E Hayward
- School of Cardiovascular Medicine & Sciences, British Heart Foundation Centre of Research Excellence, King's College London, London, U.K
| | - Fan Fan Hou
- Division of Nephrology, State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Giovanni E Mann
- School of Cardiovascular Medicine & Sciences, British Heart Foundation Centre of Research Excellence, King's College London, London, U.K
| | | | - David A Long
- Developmental Biology and Cancer Programme, Great Ormond Street Institute of Child Health, University College London, London, U.K
| | - Luigi Gnudi
- School of Cardiovascular Medicine & Sciences, British Heart Foundation Centre of Research Excellence, King's College London, London, U.K.
| |
Collapse
|
52
|
Stevens M, Star E, Lee M, Innes E, Li L, Bowler E, Harper S, Bates DO, Oltean S. The VEGF-A exon 8 splicing-sensitive fluorescent reporter mouse is a novel tool to assess the effects of splicing regulatory compounds in vivo. RNA Biol 2019; 16:1672-1681. [PMID: 31432737 PMCID: PMC6844573 DOI: 10.1080/15476286.2019.1652522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Vascular endothelial growth factor (VEGF)-A is differentially spliced to give two functionally different isoform families; pro-angiogenic, pro-permeability VEGF-Axxx and anti-angiogenic, anti-permeability VEGF-Axxxb. VEGF-A splicing is dysregulated in several pathologies, including cancer, diabetes, and peripheral arterial disease. The bichromatic VEGF-A splicing-sensitive fluorescent reporter harboured in a transgenic mouse is a novel approach to investigate the splicing patterns of VEGF-A in vivo. We generated a transgenic mouse harbouring a splicing-sensitive fluorescent reporter designed to mimic VEGF-A terminal exon splicing (VEGF8ab) by insertion into the ROSA26 genomic locus. dsRED expression denotes proximal splice site selection (VEGF-Axxx) and eGFP expression denotes distal splice site selection (VEGF-Axxxb). We investigated the tissue-specific expression patterns in the eye, skeletal muscle, cardiac muscle, kidney, and pancreas, and determined whether the splicing pattern could be manipulated in the same manner as endogenous VEGF-A by treatment with the SRPK1 inhibitor SPHINX 31. We confirmed expression of both dsRED and eGFP in the eye, skeletal muscle, cardiac muscle, kidney, and pancreas, with the highest expression of both fluorescent proteins observed in the exocrine pancreas. The ratio of dsRED and eGFP matched that of endogenous VEGF-Axxx and VEGF-Axxxb. Treatment of the VEGF8ab mice with SPHINX 31 increased the mRNA and protein eGFP/dsRED ratio in the exocrine pancreas, mimicking endogenous VEGF-A splicing. The VEGF-A exon 8 splicing-sensitive fluorescent reporter mouse is a novel tool to assess splicing regulation in the individual cell-types and tissues, which provides a useful screening process for potentially therapeutic splicing regulatory compounds in vivo.
Collapse
Affiliation(s)
- M Stevens
- Institute of Biomedical and Clinical Science, Medical School, College of Medicine and Health, University of Exeter, Exeter, UK
| | - E Star
- Bristol Renal, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - M Lee
- Bristol Renal, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - E Innes
- Institute of Biomedical and Clinical Science, Medical School, College of Medicine and Health, University of Exeter, Exeter, UK
| | - L Li
- Institute of Biomedical and Clinical Science, Medical School, College of Medicine and Health, University of Exeter, Exeter, UK
| | - E Bowler
- Institute of Biomedical and Clinical Science, Medical School, College of Medicine and Health, University of Exeter, Exeter, UK
| | - S Harper
- Institute of Biomedical and Clinical Science, Medical School, College of Medicine and Health, University of Exeter, Exeter, UK.,School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
| | - D O Bates
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - S Oltean
- Institute of Biomedical and Clinical Science, Medical School, College of Medicine and Health, University of Exeter, Exeter, UK
| |
Collapse
|
53
|
Abstract
Objective: The endothelial glycocalyx (eGC) is a dynamic and multicomponent layer of macromolecules found at the surface of vascular endothelium, which is largely underappreciated. It has recently been recognized that eGC is a major regulator of endothelial function and may have therapeutic value in organ injuries. This study aimed to explore the role of the eGC in various pathologic and physiologic conditions, by reviewing the basic research findings pertaining to the detection of the eGC and its clinical significance. We also explored different pharmacologic agents used to protect and rebuild the eGC. Data sources: An in-depth search was performed in the PubMed database, focusing on research published after 2003 with keywords including eGC, permeability, glycocalyx and injuries, and glycocalyx protection. Study selection: Several authoritative reviews and original studies were identified and reviewed to summarize the characteristics of the eGC under physiologic and pathologic conditions as well as the detection and protection of the eGC. Results: The eGC degradation is closely associated with pathophysiologic changes such as vascular permeability, edema formation, mechanotransduction, and clotting cascade, together with neutrophil and platelet adhesion in diverse injury and disease states including inflammation (sepsis and trauma), ischemia-reperfusion injury, shock, hypervolemia, hypertension, hyperglycemia, and high Na+ as well as diabetes and atherosclerosis. Therapeutic strategies for protecting and rebuilding the eGC should be explored through experimental test and clinical verifications. Conclusions: Disturbance of the eGC usually occurs at early stages of various clinical pathophysiologies which can be partly prevented and reversed by protecting and restoring the eGC. The eGC seems to be a promising diagnostic biomarker and therapeutic target in clinical settings.
Collapse
|
54
|
Xie RY, Fang XL, Zheng XB, Lv WZ, Li YJ, Ibrahim Rage H, He QL, Zhu WP, Cui TX. Salidroside and FG-4592 ameliorate high glucose-induced glomerular endothelial cells injury via HIF upregulation. Biomed Pharmacother 2019; 118:109175. [PMID: 31351423 DOI: 10.1016/j.biopha.2019.109175] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 12/17/2022] Open
Abstract
Increasing research indicates that hyperglycemia plays a crucial role in the progression of diabetic nephropathy (DN); however, effective treatment for preventing or slowing DN progression are seriously lacking. Although salidroside (SAL) has been demonstrated to have a positive anti-diabetic effect, the cellular mechanisms remain unclear. FG-4592, a novel prolyl hydroxylase inhibitor, was used to regulate HIF-1α and HIF-2α expression. The present study aimed to explore the underlying mechanisms of SAL and FG-4592 on high glucose (HG)-induced rat glomerular endothelial cells (rGECs) injury. HG-cultured rGECs were used to induce a diabetic environment. An MTT assay, RT-qPCR, Western blot, flow cytometry, and immunofluorescent staining were performed to investigate the effects of SAL on HG-induced rGECs injury. FG-4592 and SAL protected rGECs against HG-induced injury by increasing cellular viability and reducing the cell apoptosis rate. SAL and FG-4592 downregulated PHD-2 expression and upregulated HIF-1α and HIF-2α expression. In conclusion, our findings suggest that SAL and FG-4592 ameliorate HG-induced rGEC injury by upregulating HIF expression, indicating that SAL and FG-4592 might be favorable for further DN-treatment.
Collapse
Affiliation(s)
- Rui-Yan Xie
- Department of Nephrology, the Fifth Affiliated Hospital of Sun Yat-sen University, No.52 Meihua Road, Zhuhai, 519000, China
| | - Xue-Ling Fang
- Department of Nephrology, the Fifth Affiliated Hospital of Sun Yat-sen University, No.52 Meihua Road, Zhuhai, 519000, China
| | - Xiao-Bin Zheng
- Department of Respiratory Medicine, the Fifth Affiliated Hospital of Sun Yat-sen University, No.52 Meihua Road, Zhuhai, 519000, China
| | - Wei-Ze Lv
- Department of Oncology, the Fifth Affiliated Hospital of Sun Yat-sen University, No.52 Meihua Road, Zhuhai, 519000, China
| | - Yi-Jie Li
- Second Department of General Surgery, the Fifth Affiliated Hospital of Sun Yat-sen University, No.52 Meihua Road, Zhuhai, 519000, China
| | - Hamze Ibrahim Rage
- Department of Nephrology, the Fifth Affiliated Hospital of Sun Yat-sen University, No.52 Meihua Road, Zhuhai, 519000, China
| | - Qiao-Lan He
- Department of Nephrology, the Fifth Affiliated Hospital of Sun Yat-sen University, No.52 Meihua Road, Zhuhai, 519000, China
| | - Wei-Ping Zhu
- Department of Nephrology, the Fifth Affiliated Hospital of Sun Yat-sen University, No.52 Meihua Road, Zhuhai, 519000, China.
| | - Tong-Xia Cui
- Department of Nephrology, the Fifth Affiliated Hospital of Sun Yat-sen University, No.52 Meihua Road, Zhuhai, 519000, China.
| |
Collapse
|
55
|
Endothelin receptor-A mediates degradation of the glomerular endothelial surface layer via pathologic crosstalk between activated podocytes and glomerular endothelial cells. Kidney Int 2019; 96:957-970. [PMID: 31402170 DOI: 10.1016/j.kint.2019.05.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 04/08/2019] [Accepted: 05/02/2019] [Indexed: 12/15/2022]
Abstract
Emerging evidence of crosstalk between glomerular cells in pathological settings provides opportunities for novel therapeutic discovery. Here we investigated underlying mechanisms of early events leading to filtration barrier defects of podocyte and glomerular endothelial cell crosstalk in the mouse models of primary podocytopathy (podocyte specific transforming growth factor-β receptor 1 signaling activation) or Adriamycin nephropathy. We found that glomerular endothelial surface layer degradation and albuminuria preceded podocyte foot process effacement. These abnormalities were prevented by endothelin receptor-A antagonism and mitochondrial reactive oxygen species scavenging. Additional studies confirmed increased heparanase and hyaluronoglucosaminidase gene expression in glomerular endothelial cells in response to podocyte-released factors and to endothelin-1. Atomic force microscopy measurements showed a significant reduction in the endothelial surface layer by endothelin-1 and podocyte-released factors, which could be prevented by endothelin receptor-A but not endothelin receptor-B antagonism. Thus, our studies provide evidence of early crosstalk between activated podocytes and glomerular endothelial cells resulting in loss of endothelial surface layer, glomerular endothelial cell injury and albuminuria. Hence, activation of endothelin-1-endothelin receptor-A and mitochondrial reactive oxygen species contribute to the pathogenesis of primary podocytopathies in experimental focal segmental glomerulosclerosis.
Collapse
|
56
|
Yilmaz O, Afsar B, Ortiz A, Kanbay M. The role of endothelial glycocalyx in health and disease. Clin Kidney J 2019; 12:611-619. [PMID: 31583086 PMCID: PMC6768294 DOI: 10.1093/ckj/sfz042] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Indexed: 12/20/2022] Open
Abstract
The endothelium is the largest organ in the body and recent studies have shown that the endothelial glycocalyx (eGCX) plays a major role in health and disease states. The integrity of eGCX is vital for homoeostasis and disruption of its structure and function plays a major role in several pathologic conditions. An increased understanding of the numerous pathophysiological roles of eGCX may lead to the development of potential surrogate markers for endothelial injury or novel therapeutic targets. This review provides a state-of-the-art update on the structure and function of the eGCX, emphasizing the current understanding of interorgan crosstalk between the eGCX and other organs that might also contribute to the pathogenesis of kidney diseases.
Collapse
Affiliation(s)
- Onur Yilmaz
- Department of Medicine, Koç University School of Medicine, Istanbul, Turkey
| | - Baris Afsar
- Department of Medicine, Division of Nephrology, Suleyman Demirel University School of Medicine, Isparta, Turkey
| | - Alberto Ortiz
- Dialysis Unit, School of Medicine, IIS-Fundacion Jimenez Diaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Mehmet Kanbay
- Department of Medicine, Division of Nephrology, Koc University School of Medicine, Istanbul, Turkey
| |
Collapse
|
57
|
Modulation of Receptor Tyrosine Kinase Activity through Alternative Splicing of Ligands and Receptors in the VEGF-A/VEGFR Axis. Cells 2019; 8:cells8040288. [PMID: 30925751 PMCID: PMC6523102 DOI: 10.3390/cells8040288] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 12/14/2022] Open
Abstract
Vascular endothelial growth factor A (VEGF-A) signaling is essential for physiological and pathological angiogenesis. Alternative splicing of the VEGF-A pre-mRNA gives rise to a pro-angiogenic family of isoforms with a differing number of amino acids (VEGF-Axxxa), as well as a family of isoforms with anti-angiogenic properties (VEGF-Axxxb). The biological functions of VEGF-A proteins are mediated by a family of cognate protein tyrosine kinase receptors, known as the VEGF receptors (VEGFRs). VEGF-A binds to both VEGFR-1, largely suggested to function as a decoy receptor, and VEGFR-2, the predominant signaling receptor. Both VEGFR-1 and VEGFR-2 can also be alternatively spliced to generate soluble isoforms (sVEGFR-1/sVEGFR-2). The disruption of the splicing of just one of these genes can result in changes to the entire VEGF-A/VEGFR signaling axis, such as the increase in VEGF-A165a relative to VEGF-A165b resulting in increased VEGFR-2 signaling and aberrant angiogenesis in cancer. Research into this signaling axis has recently focused on manipulating the splicing of these genes as a potential therapeutic avenue in disease. Therefore, further research into understanding the mechanisms by which the splicing of VEGF-A/VEGFR-1/VEGFR-2 is regulated will help in the development of drugs aimed at manipulating splicing or inhibiting specific splice isoforms in a therapeutic manner.
Collapse
|
58
|
Complement-mediated Damage to the Glycocalyx Plays a Role in Renal Ischemia-reperfusion Injury in Mice. Transplant Direct 2019; 5:e341. [PMID: 30993186 PMCID: PMC6445655 DOI: 10.1097/txd.0000000000000881] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 02/05/2019] [Indexed: 12/11/2022] Open
Abstract
Background Complement activation plays an important role in the pathogenesis of renal ischemia-reperfusion (IR) injury (IRI), but whether this involves damage to the vasculoprotective endothelial glycocalyx is not clear. We investigated the impact of complement activation on glycocalyx integrity and renal dysfunction in a mouse model of renal IRI. Methods Right nephrectomized male C57BL/6 mice were subjected to 22 minutes left renal ischemia and sacrificed 24 hours after reperfusion to analyze renal function, complement activation, glycocalyx damage, endothelial cell activation, inflammation, and infiltration of neutrophils and macrophages. Results Ischemia-reperfusion induced severe renal injury, manifested by significantly increased serum creatinine and urea, complement activation and deposition, loss of glycocalyx, endothelial activation, inflammation, and innate cell infiltration. Treatment with the anti-C5 antibody BB5.1 protected against IRI as indicated by significantly lower serum creatinine (P = 0.04) and urea (P = 0.003), tissue C3b/c and C9 deposition (both P = 0.004), plasma C3b (P = 0.001) and C5a (P = 0.006), endothelial vascular cell adhesion molecule-1 expression (P = 0.003), glycocalyx shedding (tissue heparan sulfate [P = 0.001], plasma syndecan-1 [P = 0.007], and hyaluronan [P = 0.02]), inflammation (high mobility group box-1 [P = 0.0003]), and tissue neutrophil (P = 0.0009) and macrophage (P = 0.004) infiltration. Conclusions Together, our data confirm that the terminal pathway of complement activation plays a key role in renal IRI and demonstrate that the mechanism of injury involves shedding of the glycocalyx.
Collapse
|
59
|
Stevens M, Neal CR, Craciun EC, Dronca M, Harper SJ, Oltean S. The natural drug DIAVIT is protective in a type II mouse model of diabetic nephropathy. PLoS One 2019; 14:e0212910. [PMID: 30865689 PMCID: PMC6415805 DOI: 10.1371/journal.pone.0212910] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 02/10/2019] [Indexed: 02/06/2023] Open
Abstract
There is evidence to suggest that abnormal angiogenesis, inflammation, and fibrosis drive diabetic nephropathy (DN). However, there is no specific treatment to counteract these processes. We aimed to determine whether DIAVIT, a natural Vaccinium myrtillus (blueberry) and Hippophae Rhamnoides (sea buckthorn) extract, is protective in a model of type II DN. Diabetic db/db mice were administered DIAVIT in their drinking water for 14 weeks. We assessed the functional, structural, and ultra-structural phenotype of three experimental groups (lean+vehicle, db/db+vehicle, db/db+DIAVIT). We also investigated the angiogenic and fibrotic pathways involved in the mechanism of action of DIAVIT. Diabetic db/db mice developed hyperglycaemia, albuminuria, and an increased glomerular water permeability; the latter two were prevented by DIAVIT. db/db mice developed fibrotic glomeruli, endothelial insult, and glomerular ultra-structural changes, which were not present in DIAVIT-treated mice. Vascular endothelial growth factor A (VEGF-A) splicing was altered in the db/db kidney cortex, increasing the pro-angiogenic VEGF-A165 relative to the anti-angiogenic VEGF-A165b. This was partially prevented with DIAVIT treatment. Delphinidin, an anthocyanin abundant in DIAVIT, increased the VEGF-A165b expression relative to total VEGF-A165 in cultured podocytes through phosphorylation of the splice factor SRSF6. DIAVIT, in particular delphinidin, alters VEGF-A splicing in type II DN, rescuing the DN phenotype. This study highlights the therapeutic potential of natural drugs in DN through the manipulation of gene splicing and expression.
Collapse
Affiliation(s)
- Megan Stevens
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, United Kingdom
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
- Bristol Renal, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
- * E-mail: (MS); (SO)
| | - Christopher R. Neal
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
- Bristol Renal, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - Elena C. Craciun
- Department of Pharmaceutical Biochemistry and Clinical Laboratory, School of Pharmacy, University of Medicine and Pharmacy “Iuliu Hatieganu” Cluj-Napoca, Romania
| | - Maria Dronca
- Department of Medical Biochemistry, School of Medicine, University of Medicine and Pharmacy “Iuliu Hatieganu” Cluj-Napoca, Romania
| | - Steven J. Harper
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
- Bristol Renal, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - Sebastian Oltean
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, United Kingdom
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
- Bristol Renal, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
- * E-mail: (MS); (SO)
| |
Collapse
|
60
|
Abstract
The vascular endothelial surface is coated by the glycocalyx, a ubiquitous gel-like layer composed of a membrane-binding domain that contains proteoglycans, glycosaminoglycan side-chains, and plasma proteins such as albumin and antithrombin. The endothelial glycocalyx plays a critical role in maintaining vascular homeostasis. However, this component is highly vulnerable to damage and is also difficult to examine. Recent advances in analytical techniques have enabled biochemical, visual and computational investigation of this vascular component. The glycocalyx modulates leukocyte-endothelial interactions, thrombus formation and other processes that lead to microcirculatory dysfunction and critical organ injury in sepsis. It also acts as a regulator of vascular permeability and contains mechanosensors as well as receptors for growth factors and anticoagulants. During the initial onset of sepsis, the glycocalyx is damaged and circulating levels of glycocalyx components, including syndecans, heparan sulfate and hyaluronic acid, can be measured and are reportedly useful as biomarkers for sepsis. Also, a new methodology using side-stream dark-field imaging is now clinically available for assessing the glycocalyx. Multiple factors including hypervolemia and hyperglycemia are toxic to the glycocalyx, and several agents have been proposed as therapeutic modalities, although no single treatment has been proven to be clinically effective. In this article, we review the derangement of the glycocalyx in sepsis. Despite the accumulated knowledge regarding the important roles of the glycocalyx, the relationship between derangement of the endothelial glycocalyx and severity of sepsis or disseminated intravascular coagulation has not been adequately elucidated and further work is needed.
Collapse
Affiliation(s)
- T Iba
- Department of Emergency and Disaster Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - J H Levy
- Department of Anesthesiology, Critical Care, and Surgery, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
61
|
Kikuchi R, Stevens M, Harada K, Oltean S, Murohara T. Anti-angiogenic isoform of vascular endothelial growth factor-A in cardiovascular and renal disease. Adv Clin Chem 2019; 88:1-33. [PMID: 30612603 DOI: 10.1016/bs.acc.2018.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Accumulating evidence suggests that pathologic interactions between the heart and the kidney can contribute to the progressive dysfunction of both organs. Recently, there has been an increase in the prevalence of cardiovascular disease (CVD) and chronic kidney disease (CKD) due to increasing obesity rates. It has been reported that obesity causes various heart and renal disorders and appears to accelerate their progression. Vascular endothelial growth factor-A (VEGF-A) is a major regulator of angiogenesis and vessel permeability, and is associated with CVD and CKD. It is now recognized that alternative VEGF-A gene splicing generates VEGF-A isoforms that differ in their biological actions. Proximal splicing that includes an exon 8a sequence results in pro-angiogenic VEGF-A165a, whereas distal splicing inclusive of exon 8b yields the anti-angiogenic isoform of VEGF-A (VEGF-A165b). This review highlights several recent preclinical and clinical studies on the role of VEGF-A165b in CVD and CKD as a novel function of VEGF-A. This review also discusses potential therapeutic approaches of the use of VEGF-A in clinical settings as a potential circulating biomarker for CVD and CKD.
Collapse
Affiliation(s)
- Ryosuke Kikuchi
- Department of Medical Technique, Nagoya University Hospital, Nagoya, Japan.
| | - Megan Stevens
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, United Kingdom
| | - Kazuhiro Harada
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sebastian Oltean
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, United Kingdom
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
62
|
Onions KL, Gamez M, Buckner NR, Baker SL, Betteridge KB, Desideri S, Dallyn BP, Ramnath RD, Neal CR, Farmer LK, Mathieson PW, Gnudi L, Alitalo K, Bates DO, Salmon AHJ, Welsh GI, Satchell SC, Foster RR. VEGFC Reduces Glomerular Albumin Permeability and Protects Against Alterations in VEGF Receptor Expression in Diabetic Nephropathy. Diabetes 2019; 68:172-187. [PMID: 30389746 DOI: 10.2337/db18-0045] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 10/19/2018] [Indexed: 11/13/2022]
Abstract
Elevated levels of vascular endothelial growth factor (VEGF) A are thought to cause glomerular endothelial cell (GEnC) dysfunction and albuminuria in diabetic nephropathy. We hypothesized that VEGFC could counteract these effects of VEGFA to protect the glomerular filtration barrier and reduce albuminuria. Isolated glomeruli were stimulated ex vivo with VEGFC, which reduced VEGFA- and type 2 diabetes-induced glomerular albumin solute permeability (Ps'alb). VEGFC had no detrimental effect on glomerular function in vivo when overexpression was induced locally in podocytes (podVEGFC) in otherwise healthy mice. Further, these mice had reduced glomerular VEGFA mRNA expression, yet increased glomerular VEGF receptor heterodimerization, indicating differential signaling by VEGFC. In a model of type 1 diabetes, the induction of podVEGFC overexpression reduced the development of hypertrophy, albuminuria, loss of GEnC fenestrations and protected against altered VEGF receptor expression. In addition, VEGFC protected against raised Ps'alb by endothelial glycocalyx disruption in glomeruli. In summary, VEGFC reduced the development of diabetic nephropathy, prevented VEGF receptor alterations in the diabetic glomerulus, and promoted both glomerular protection and endothelial barrier function. These important findings highlight a novel pathway for future investigation in the treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Karen L Onions
- Bristol Renal, Bristol Heart Institute, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, U.K
| | - Monica Gamez
- Bristol Renal, Bristol Heart Institute, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, U.K
| | - Nicola R Buckner
- Bristol Renal, Bristol Heart Institute, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, U.K
| | - Siân L Baker
- Bristol Renal, Bristol Heart Institute, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, U.K
| | - Kai B Betteridge
- Bristol Renal, Bristol Heart Institute, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, U.K
| | - Sara Desideri
- Bristol Renal, Bristol Heart Institute, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, U.K
| | - Benjamin P Dallyn
- Bristol Renal, Bristol Heart Institute, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, U.K
| | - Raina D Ramnath
- Bristol Renal, Bristol Heart Institute, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, U.K
| | - Chris R Neal
- Bristol Renal, Bristol Heart Institute, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, U.K
| | - Louise K Farmer
- Bristol Renal, Bristol Heart Institute, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, U.K
| | - Peter W Mathieson
- Bristol Renal, Bristol Heart Institute, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, U.K
| | - Luigi Gnudi
- School of Cardiovascular Medicine and Science, British Heart Foundation Centre of Excellence, King's College London, London, U.K
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - David O Bates
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Queen's Medical Centre, Nottingham, U.K
| | - Andrew H J Salmon
- Bristol Renal, Bristol Heart Institute, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, U.K
| | - Gavin I Welsh
- Bristol Renal, Bristol Heart Institute, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, U.K
| | - Simon C Satchell
- Bristol Renal, Bristol Heart Institute, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, U.K
| | - Rebecca R Foster
- Bristol Renal, Bristol Heart Institute, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, U.K.
| |
Collapse
|
63
|
A Network Pharmacology Approach to Uncover the Mechanisms of Shen-Qi-Di-Huang Decoction against Diabetic Nephropathy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:7043402. [PMID: 30519269 PMCID: PMC6241231 DOI: 10.1155/2018/7043402] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 09/15/2018] [Accepted: 10/11/2018] [Indexed: 12/16/2022]
Abstract
Shen-Qi-Di-Huang decoction (SQDHD), a well-known herbal formula from China, has been widely used in the treatment of diabetic nephropathy (DN). However, the pharmacological mechanisms of SQDHD have not been entirely elucidated. At first, we conducted a comprehensive literature search to identify the active constituents of SQDHD, determined their corresponding targets, and obtained known DN targets from several databases. A protein-protein interaction network was then built to explore the complex relations between SQDHD targets and those known to treat DN. Following the topological feature screening of each node in the network, 400 major targets of SQDHD were obtained. The pathway enrichment analysis results acquired from DAVID showed that the significant bioprocesses and pathways include oxidative stress, response to glucose, regulation of blood pressure, regulation of cell proliferation, cytokine-mediated signaling pathway, and the apoptotic signaling pathway. More interestingly, five key targets of SQDHD, named AKT1, AR, CTNNB1, EGFR, and ESR1, were significant in the regulation of the above bioprocesses and pathways. This study partially verified and predicted the pharmacological and molecular mechanisms of SQDHD on DN from a holistic perspective. This has laid the foundation for further experimental research and has expanded the rational application of SQDHD in clinical practice.
Collapse
|
64
|
Zhang H, Jia E, Xia W, Lu C, Zhu W. VEGF165b mutant with a prolonged half-life and enhanced anti-tumor potency in a mouse model. J Biotechnol 2018; 284:84-90. [DOI: 10.1016/j.jbiotec.2018.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 08/04/2018] [Accepted: 08/06/2018] [Indexed: 01/26/2023]
|
65
|
Ved N, Da Vitoria Lobo ME, Bestall SM, L Vidueira C, Beazley-Long N, Ballmer-Hofer K, Hirashima M, Bates DO, Donaldson LF, Hulse RP. Diabetes-induced microvascular complications at the level of the spinal cord: a contributing factor in diabetic neuropathic pain. J Physiol 2018; 596:3675-3693. [PMID: 29774557 PMCID: PMC6092307 DOI: 10.1113/jp275067] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/08/2018] [Indexed: 02/06/2023] Open
Abstract
KEY POINTS Diabetes is thought to induce neuropathic pain through activation of dorsal horn sensory neurons in the spinal cord. Here we explore the impact of hyperglycaemia on the blood supply supporting the spinal cord and chronic pain development. In streptozotocin-induced diabetic rats, neuropathic pain is accompanied by a decline in microvascular integrity in the dorsal horn. Hyperglycaemia-induced degeneration of the endothelium in the dorsal horn was associated with a loss in vascular endothelial growth factor (VEGF)-A165 b expression. VEGF-A165 b treatment prevented diabetic neuropathic pain and degeneration of the endothelium in the spinal cord. Using an endothelial-specific VEGFR2 knockout transgenic mouse model, the loss of endothelial VEGFR2 signalling led to a decline in vascular integrity in the dorsal horn and the development of hyperalgesia in VEGFR2 knockout mice. This highlights that vascular degeneration in the spinal cord could be a previously unidentified factor in the development of diabetic neuropathic pain. ABSTRACT Abnormalities of neurovascular interactions within the CNS of diabetic patients is associated with the onset of many neurological disease states. However, to date, the link between the neurovascular network within the spinal cord and regulation of nociception has not been investigated despite neuropathic pain being common in diabetes. We hypothesised that hyperglycaemia-induced endothelial degeneration in the spinal cord, due to suppression of vascular endothelial growth factor (VEGF)-A/VEGFR2 signalling, induces diabetic neuropathic pain. Nociceptive pain behaviour was investigated in a chemically induced model of type 1 diabetes (streptozotocin induced, insulin supplemented; either vehicle or VEGF-A165 b treated) and an inducible endothelial knockdown of VEGFR2 (tamoxifen induced). Diabetic animals developed mechanical allodynia and heat hyperalgesia. This was associated with a reduction in the number of blood vessels and reduction in Evans blue extravasation in the lumbar spinal cord of diabetic animals versus age-matched controls. Endothelial markers occludin, CD31 and VE-cadherin were downregulated in the spinal cord of the diabetic group versus controls, and there was a concurrent reduction of VEGF-A165 b expression. In diabetic animals, VEGF-A165 b treatment (biweekly i.p., 20 ng g-1 ) restored normal Evans blue extravasation and prevented vascular degeneration, diabetes-induced central neuron activation and neuropathic pain. Inducible knockdown of VEGFR2 (tamoxifen treated Tie2CreERT2 -vegfr2flfl mice) led to a reduction in blood vessel network volume in the lumbar spinal cord and development of heat hyperalgesia. These findings indicate that hyperglycaemia leads to a reduction in the VEGF-A/VEGFR2 signalling cascade, resulting in endothelial dysfunction in the spinal cord, which could be an undiscovered contributing factor to diabetic neuropathic pain.
Collapse
Affiliation(s)
- N Ved
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine University of Nottingham, Nottingham, NG7 2UH, UK.,Institute of Ophthalmology, 11-43 Bath St, London, EC1V 9EL, UK.,Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - M E Da Vitoria Lobo
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine University of Nottingham, Nottingham, NG7 2UH, UK
| | - S M Bestall
- Arthritis Research UK Pain Centre and School of Life Sciences, The Medical School QMC, University of Nottingham, Nottingham, NG7 2UH, UK
| | - C L Vidueira
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine University of Nottingham, Nottingham, NG7 2UH, UK
| | - N Beazley-Long
- Arthritis Research UK Pain Centre and School of Life Sciences, The Medical School QMC, University of Nottingham, Nottingham, NG7 2UH, UK
| | | | - M Hirashima
- Division of Vascular Biology, Kobe University, Japan
| | - D O Bates
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine University of Nottingham, Nottingham, NG7 2UH, UK.,Centre of Membrane and Protein and Receptors (COMPARE), University of Birmingham, Birmingham and University of Nottingham, Nottingham, UK
| | - L F Donaldson
- Institute of Ophthalmology, 11-43 Bath St, London, EC1V 9EL, UK
| | - R P Hulse
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine University of Nottingham, Nottingham, NG7 2UH, UK.,School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| |
Collapse
|
66
|
Abstract
The use of murine models to mimic human kidney disease is becoming increasingly common. Our research is focused on the assessment of glomerular function in diabetic nephropathy and podocyte-specific VEGF-A knock-out mice; therefore, this protocol describes the full kidney work-up used in our lab to assess these mouse models of glomerular disease, enabling a vast amount of information regarding kidney and glomerular function to be obtained from a single mouse. In comparison to alternative methods presented in the literature to assess glomerular function, the use of the method outlined in this paper enables the glomerular phenotype to be fully evaluated from multiple aspects. By using this method, the researcher can determine the kidney phenotype of the model and assess the mechanism as to why the phenotype develops. This vital information on the mechanism of disease is required when examining potential therapeutic avenues in these models. The methods allow for detailed functional assessment of the glomerular filtration barrier through measurement of the urinary albumin creatinine ratio and individual glomerular water permeability, as well as both structural and ultra-structural examination using the Periodic Acid Schiff stain and electron microscopy. Furthermore, analysis of the genes dysregulated at the mRNA and protein level enables mechanistic analysis of glomerular function. This protocol outlines the generic but adaptable methods that can be applied to all mouse models of glomerular disease.
Collapse
Affiliation(s)
- Megan Stevens
- Institute of Biomedical and Clinical Sciences, Medical School, University of Exeter; School of Physiology, Pharmacology and Neurosciences, University of Bristol; Bristol Renal, School of Clinical Sciences, University of Bristol;
| | - Sebastian Oltean
- Institute of Biomedical and Clinical Sciences, Medical School, University of Exeter; School of Physiology, Pharmacology and Neurosciences, University of Bristol; Bristol Renal, School of Clinical Sciences, University of Bristol;
| |
Collapse
|
67
|
Endogenous Antiangiogenic Factors in Chronic Kidney Disease: Potential Biomarkers of Progression. Int J Mol Sci 2018; 19:ijms19071859. [PMID: 29937525 PMCID: PMC6073618 DOI: 10.3390/ijms19071859] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 06/17/2018] [Accepted: 06/22/2018] [Indexed: 12/17/2022] Open
Abstract
Chronic kidney disease (CKD) is a major global health problem. Unless intensive intervention is initiated, some patients can rapidly progress to end-stage kidney disease. However, it is often difficult to predict renal outcomes using conventional laboratory tests in individuals with CKD. Therefore, many researchers have been searching for novel biomarkers to predict the progression of CKD. Angiogenesis is involved in physiological and pathological processes in the kidney and is regulated by the balance between a proangiogenic factor, vascular endothelial growth factor (VEGF)-A, and various endogenous antiangiogenic factors. In recent reports using genetically engineered mice, the roles of these antiangiogenic factors in the pathogenesis of kidney disease have become increasingly clear. In addition, recent clinical studies have demonstrated associations between circulating levels of antiangiogenic factors and renal dysfunction in CKD patients. In this review, we summarize recent advances in the study of representative endogenous antiangiogenic factors, including soluble fms-related tyrosine kinase 1, soluble endoglin, pigment epithelium-derived factor, VEGF-A165b, endostatin, and vasohibin-1, in associations with kidney diseases and discuss their predictive potentials as biomarkers of progression of CKD.
Collapse
|
68
|
Bates DO, Beazley-Long N, Benest AV, Ye X, Ved N, Hulse RP, Barratt S, Machado MJ, Donaldson LF, Harper SJ, Peiris-Pages M, Tortonese DJ, Oltean S, Foster RR. Physiological Role of Vascular Endothelial Growth Factors as Homeostatic Regulators. Compr Physiol 2018; 8:955-979. [PMID: 29978898 DOI: 10.1002/cphy.c170015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The vascular endothelial growth factor (VEGF) family of proteins are key regulators of physiological systems. Originally linked with endothelial function, they have since become understood to be principal regulators of multiple tissues, both through their actions on vascular cells, but also through direct actions on other tissue types, including epithelial cells, neurons, and the immune system. The complexity of the five members of the gene family in terms of their different splice isoforms, differential translation, and specific localizations have enabled tissues to use these potent signaling molecules to control how they function to maintain their environment. This homeostatic function of VEGFs has been less intensely studied than their involvement in disease processes, development, and reproduction, but they still play a substantial and significant role in healthy control of blood volume and pressure, interstitial volume and drainage, renal and lung function, immunity, and signal processing in the peripheral and central nervous system. The widespread expression of VEGFs in healthy adult tissues, and the disturbances seen when VEGF signaling is inhibited support this view of the proteins as endogenous regulators of normal physiological function. This review summarizes the evidence and recent breakthroughs in understanding of the physiology that is regulated by VEGF, with emphasis on the role they play in maintaining homeostasis. © 2017 American Physiological Society. Compr Physiol 8:955-979, 2018.
Collapse
Affiliation(s)
- David O Bates
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | | | - Andrew V Benest
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | - Xi Ye
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Nikita Ved
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Richard P Hulse
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | - Shaney Barratt
- Academic Respiratory Unit, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - Maria J Machado
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | - Lucy F Donaldson
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Steven J Harper
- School of Physiology, Pharmacology & Neuroscience, Medical School, University of Bristol, Bristol, United Kingdom
| | - Maria Peiris-Pages
- Cancer Research UK Manchester Institute, The University of Manchester, Manchester, United Kingdom
| | - Domingo J Tortonese
- Centre for Comparative and Clinical Anatomy, University of Bristol, Bristol, United Kingdom
| | - Sebastian Oltean
- Institute of Biomedical & Clinical Sciences, University of Exeter Medical School, Exeter, United Kingdom
| | - Rebecca R Foster
- Bristol Renal, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
69
|
Dogné S, Flamion B, Caron N. Endothelial Glycocalyx as a Shield Against Diabetic Vascular Complications: Involvement of Hyaluronan and Hyaluronidases. Arterioscler Thromb Vasc Biol 2018; 38:1427-1439. [PMID: 29880486 PMCID: PMC6039403 DOI: 10.1161/atvbaha.118.310839] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/21/2018] [Indexed: 12/24/2022]
Abstract
The endothelial glycocalyx (EG), which covers the apical surface of the endothelial cells and floats into the lumen of the vessels, is a key player in vascular integrity and cardiovascular homeostasis. The EG is composed of PGs (proteoglycans), glycoproteins, glycolipids, and glycosaminoglycans, in particular hyaluronan (HA). HA seems to be implicated in most of the functions described for EG such as creating a space between blood and the endothelium, controlling vessel permeability, restricting leukocyte and platelet adhesion, and allowing an appropriate endothelial response to flow variation through mechanosensing. The amount of HA in the EG may be regulated by HYAL (hyaluronidase) 1, the most active somatic hyaluronidase. HYAL1 seems enriched in endothelial cells through endocytosis from the bloodstream. The role of the other main somatic hyaluronidase, HYAL2, in the EG is uncertain. Damage to the EG, accompanied by shedding of one or more of its components, is an early sign of various pathologies including diabetes mellitus. Shedding increases the blood or plasma concentration of several EG components, such as HA, heparan sulfate, and syndecan. The plasma levels of these molecules can then be used as sensitive markers of EG degradation. This has been shown in type 1 and type 2 diabetic patients. Recent experimental studies suggest that preserving the size and amount of EG HA in the face of diabetic insults could be a useful novel therapeutic strategy to slow diabetic complications. One way to achieve this goal, as suggested by a murine model of HYAL1 deficiency, may be to inhibit the function of HYAL1. The same approach may succeed in other pathological situations involving endothelial dysfunction and EG damage.
Collapse
Affiliation(s)
- Sophie Dogné
- From the Molecular Physiology Research Unit-URPhyM, Namur Research Institute for Life Sciences (NARILIS), University of Namur (Unamur), Belgium.
| | - Bruno Flamion
- From the Molecular Physiology Research Unit-URPhyM, Namur Research Institute for Life Sciences (NARILIS), University of Namur (Unamur), Belgium
| | - Nathalie Caron
- From the Molecular Physiology Research Unit-URPhyM, Namur Research Institute for Life Sciences (NARILIS), University of Namur (Unamur), Belgium
| |
Collapse
|
70
|
Wu R, Liu X, Yin J, Wu H, Cai X, Wang N, Qian Y, Wang F. IL-6 receptor blockade ameliorates diabetic nephropathy via inhibiting inflammasome in mice. Metabolism 2018; 83:18-24. [PMID: 29336982 DOI: 10.1016/j.metabol.2018.01.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 12/24/2017] [Accepted: 01/08/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND OBJECTIVE Interleukin 6 (IL-6) has been identified as a key mediator in inflammation, immune responses and glucose metabolism. In this study, we assessed the effects of an IL-6 receptor antibody on diabetic nephropathy in a mouse model of type 2 diabetes mellitus. METHODS Twelve week old male db/db mice were treated with Tocilizumab (an IL-6 receptor antibody), normal IgG1 control antibody, insulin or normal saline for 12 weeks. Renal injury, inflammation and insulin resistance were assessed. RESULTS Db/db mice treated with Tocilizumab exhibited reduced proteinuria and glomerular mesangial matrix accumulation compared to db/db + IgG controls. Additionally, Tocilizumab suppressed inflammatory response, oxidative stress and the IL-6 signaling pathway in the diabetic kidneys. It is noteworthy that blockade of IL-6 receptor blunted the activation of NLRP3 inflammasome partly through inhibition of IL-17A. Furthermore, insulin resistance assessed by glucose tolerance test, was ameliorated by Tocilizumab treatment. CONCLUSIONS The protective effects of an IL-6 receptor blockade against diabetic renal injury may be due to decreased insulin resistance and inhibition of the inflammasome.
Collapse
Affiliation(s)
- Rui Wu
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Xuanchen Liu
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Jiangsu University Affiliated Shanghai Eighth People's Hospital, Shanghai 200233, China
| | - Jianyong Yin
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Huijuan Wu
- Department of Pathology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiulei Cai
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Niansong Wang
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Youcun Qian
- Key Laboratory of Stem Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai 200031, China
| | - Feng Wang
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Jiangsu University Affiliated Shanghai Eighth People's Hospital, Shanghai 200233, China.
| |
Collapse
|
71
|
Betteridge KB, Arkill KP, Neal CR, Harper SJ, Foster RR, Satchell SC, Bates DO, Salmon AHJ. Sialic acids regulate microvessel permeability, revealed by novel in vivo studies of endothelial glycocalyx structure and function. J Physiol 2018; 595:5015-5035. [PMID: 28524373 PMCID: PMC5538239 DOI: 10.1113/jp274167] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/08/2017] [Indexed: 12/15/2022] Open
Abstract
Key points We have developed novel techniques for paired, direct, real‐time in vivo quantification of endothelial glycocalyx structure and associated microvessel permeability. Commonly used imaging and analysis techniques yield measurements of endothelial glycocalyx depth that vary by over an order of magnitude within the same vessel. The anatomical distance between maximal glycocalyx label and maximal endothelial cell plasma membrane label provides the most sensitive and reliable measure of endothelial glycocalyx depth. Sialic acid residues of the endothelial glycocalyx regulate glycocalyx structure and microvessel permeability to both water and albumin.
Abstract The endothelial glycocalyx forms a continuous coat over the luminal surface of all vessels, and regulates multiple vascular functions. The contribution of individual components of the endothelial glycocalyx to one critical vascular function, microvascular permeability, remains unclear. We developed novel, real‐time, paired methodologies to study the contribution of sialic acids within the endothelial glycocalyx to the structural and functional permeability properties of the same microvessel in vivo. Single perfused rat mesenteric microvessels were perfused with fluorescent endothelial cell membrane and glycocalyx labels, and imaged with confocal microscopy. A broad range of glycocalyx depth measurements (0.17–3.02 μm) were obtained with different labels, imaging techniques and analysis methods. The distance between peak cell membrane and peak glycocalyx label provided the most reliable measure of endothelial glycocalyx anatomy, correlating with paired, numerically smaller values of endothelial glycocalyx depth (0.078 ± 0.016 μm) from electron micrographs of the same portion of the same vessel. Disruption of sialic acid residues within the endothelial glycocalyx using neuraminidase perfusion decreased endothelial glycocalyx depth and increased apparent solute permeability to albumin in the same vessels in a time‐dependent manner, with changes in all three true vessel wall permeability coefficients (hydraulic conductivity, reflection coefficient and diffusive solute permeability). These novel technologies expand the range of techniques that permit direct studies of the structure of the endothelial glycocalyx and dependent microvascular functions in vivo, and demonstrate that sialic acid residues within the endothelial glycocalyx are critical regulators of microvascular permeability to both water and albumin. We have developed novel techniques for paired, direct, real‐time in vivo quantification of endothelial glycocalyx structure and associated microvessel permeability. Commonly used imaging and analysis techniques yield measurements of endothelial glycocalyx depth that vary by over an order of magnitude within the same vessel. The anatomical distance between maximal glycocalyx label and maximal endothelial cell plasma membrane label provides the most sensitive and reliable measure of endothelial glycocalyx depth. Sialic acid residues of the endothelial glycocalyx regulate glycocalyx structure and microvessel permeability to both water and albumin.
Collapse
Affiliation(s)
- Kai B Betteridge
- Bristol Renal, Schools of Clinical Sciences and Physiology & Pharmacology, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - Kenton P Arkill
- School of Medicine, Faculty of Medicine and Health Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK.,Biofisika Institute (CSIC UPV/EHU) and Research Centre for Experimental Marine Biology and Biotechnology (PiE), University of the Basque Country, Spain
| | - Christopher R Neal
- Bristol Renal, Schools of Clinical Sciences and Physiology & Pharmacology, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - Steven J Harper
- Bristol Renal, Schools of Clinical Sciences and Physiology & Pharmacology, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - Rebecca R Foster
- Bristol Renal, Schools of Clinical Sciences and Physiology & Pharmacology, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - Simon C Satchell
- Bristol Renal, Schools of Clinical Sciences and Physiology & Pharmacology, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - David O Bates
- School of Medicine, Faculty of Medicine and Health Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK
| | - Andrew H J Salmon
- Bristol Renal, Schools of Clinical Sciences and Physiology & Pharmacology, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK.,Renal Service, Specialist Medicine and Health of Older People, Waitemata DHB, Auckland, New Zealand
| |
Collapse
|
72
|
Abstract
PURPOSE OF REVIEW The kidney is a highly complex organ and renal function depends on many factors, both extrinsic to the kidney and intrinsic. The kidney responds both to systemic hormonal and neuronal signals and to autocrine and paracrine factors produced within the renal tissue. Recently, there has been an increased emphasis on crosstalk in and between different compartments in the kidney. RECENT FINDINGS Crosstalk in the kidney between different cellular compartments has added new and important understanding of renal function and the development of kidney disease. SUMMARY Most of the literature cited concern glomerular crosstalk but also tubular and interstitial crosstalk are being reviewed. Mechanistic insight into the communication between the cells may help us find new targets for treating kidney disease.
Collapse
|
73
|
Yu SMW, Bonventre JV. Acute Kidney Injury and Progression of Diabetic Kidney Disease. Adv Chronic Kidney Dis 2018; 25:166-180. [PMID: 29580581 DOI: 10.1053/j.ackd.2017.12.005] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 12/15/2017] [Accepted: 12/22/2017] [Indexed: 12/23/2022]
Abstract
Diabetic kidney disease, commonly termed diabetic nephropathy (DN), is the most common cause of end-stage kidney disease (ESKD) worldwide. The characteristic histopathology of DN includes glomerular basement membrane thickening, mesangial expansion, nodular glomerular sclerosis, and tubulointerstitial fibrosis. Diabetes is associated with a number of metabolic derangements, such as reactive oxygen species overproduction, hypoxic state, mitochondrial dysfunction, and inflammation. In the past few decades, our knowledge of DN has advanced considerably although much needs to be learned. The traditional paradigm of glomerulus-centered pathophysiology has expanded to the tubule-interstitium, the immune response and inflammation. Biomarkers of proximal tubule injury have been shown to correlate with DN progression, independent of traditional glomerular injury biomarkers such as albuminuria. In this review, we summarize mechanisms of increased susceptibility to acute kidney injury in diabetes mellitus and the roles played by many kidney cell types to facilitate maladaptive responses leading to chronic and end-stage kidney disease.
Collapse
|
74
|
Modulation of VEGF-A Alternative Splicing as a Novel Treatment in Chronic Kidney Disease. Genes (Basel) 2018; 9:genes9020098. [PMID: 29462869 PMCID: PMC5852594 DOI: 10.3390/genes9020098] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 01/05/2023] Open
Abstract
Vascular endothelial growth factor A (VEGF-A) is a prominent pro-angiogenic and pro-permeability factor in the kidney. Alternative splicing of the terminal exon of VEGF-A through the use of an alternative 3' splice site gives rise to a functionally different family of isoforms, termed VEGF-Axxxb, known to have anti-angiogenic and anti-permeability properties. Dysregulation of the VEGF-Axxx/VEGF-Axxxb isoform balance has recently been reported in several kidney pathologies, including diabetic nephropathy (DN) and Denys-Drash syndrome. Using mouse models of kidney disease where the VEGF-A isoform balance is disrupted, several reports have shown that VEGF-A165b treatment/over-expression in the kidney is therapeutically beneficial. Furthermore, inhibition of certain splice factor kinases involved in the regulation of VEGF-A terminal exon splicing has provided some mechanistic insight into how VEGF-A splicing could be regulated in the kidney. This review highlights the importance of further investigation into the novel area of VEGF-A splicing in chronic kidney disease pathogenesis and how future studies may allow for the development of splicing-modifying therapeutic drugs.
Collapse
|
75
|
Desideri S, Onions KL, Qiu Y, Ramnath RD, Butler MJ, Neal CR, King MLR, Salmon AE, Saleem MA, Welsh GI, Michel CC, Satchell SC, Salmon AHJ, Foster RR. A novel assay provides sensitive measurement of physiologically relevant changes in albumin permeability in isolated human and rodent glomeruli. Kidney Int 2018; 93:1086-1097. [PMID: 29433915 PMCID: PMC5912930 DOI: 10.1016/j.kint.2017.12.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 12/05/2017] [Accepted: 12/13/2017] [Indexed: 01/06/2023]
Abstract
Increased urinary albumin excretion is a key feature of glomerular disease but has limitations as a measure of glomerular permeability. Here we describe a novel assay to measure the apparent albumin permeability of single capillaries in glomeruli, isolated from perfused kidneys cleared of red blood cells. The rate of decline of the albumin concentration within the capillary lumen was quantified using confocal microscopy and used to calculate apparent permeability. The assay was extensively validated and provided robust, reproducible estimates of glomerular albumin permeability. These values were comparable with previous in vivo data, showing this assay could be applied to human as well as rodent glomeruli. To confirm this, we showed that targeted endothelial glycocalyx disruption resulted in increased glomerular albumin permeability in mice. Furthermore, incubation with plasma from patients with post-transplant recurrence of nephrotic syndrome increased albumin permeability in rat glomeruli compared to remission plasma. Finally, in glomeruli isolated from rats with early diabetes there was a significant increase in albumin permeability and loss of endothelial glycocalyx, both of which were ameliorated by angiopoietin-1. Thus, a glomerular permeability assay, producing physiologically relevant values with sufficient sensitivity to measure changes in glomerular permeability and independent of tubular function, was developed and validated. This assay significantly advances the ability to study biology and disease in rodent and human glomeruli.
Collapse
Affiliation(s)
- Sara Desideri
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | - Karen L Onions
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | - Yan Qiu
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | - Raina D Ramnath
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | - Matthew J Butler
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | - Christopher R Neal
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | - Matthew L R King
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | - Andrew E Salmon
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | - Moin A Saleem
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | - Gavin I Welsh
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | | | - Simon C Satchell
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | - Andrew H J Salmon
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | - Rebecca R Foster
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK.
| |
Collapse
|
76
|
Stevens M, Neal CR, Salmon AHJ, Bates DO, Harper SJ, Oltean S. Vascular Endothelial Growth Factor-A165b Restores Normal Glomerular Water Permeability in a Diphtheria-Toxin Mouse Model of Glomerular Injury. Nephron Clin Pract 2018; 139:51-62. [PMID: 29393270 DOI: 10.1159/000485664] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 11/24/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND/AIMS Genetic cell ablation using the human diphtheria toxin receptor (hDTR) is a new strategy used for analysing cellular function. Diphtheria toxin (DT) is a cytotoxic protein that leaves mouse cells relatively unaffected, but upon binding to hDTR it ultimately leads to cell death. We used a podocyte-specific hDTR expressing (Pod-DTR) mouse to assess the anti-permeability and cyto-protective effects of the splice isoform vascular endothelial growth factor (VEGF-A165b). METHODS The Pod-DTR mouse was crossed with a mouse that over-expressed VEGF-A165b specifically in the podocytes (Neph-VEGF-A165b). Wild type (WT), Pod-DTR, Neph-VEGF-A165b and Pod-DTR X Neph-VEGF-A165b mice were treated with several doses of DT (1, 5, 100, and 1,000 ng/g bodyweight). Urine was collected and the glomerular water permeability (LpA/Vi) was measured ex vivo after 14 days. Structural analysis and podocyte marker expression were also assessed. RESULTS Pod-DTR mice developed an increased glomerular LpA/Vi 14 days after administration of DT (all doses), which was prevented when the mice over-expressed VEGF-A165b. No major structural abnormalities, podocyte ablation or albuminuria was observed in Pod-DTR mice, indicating this to be a mild model of podocyte disease. However, a change in expression and localisation of nephrin within the podocytes was observed, indicating disruption of the slit diaphragm in the Pod-DTR mice. This was prevented in the Pod-DTR X Neph-VEGF-A165b mice. CONCLUSION Although only a mild model of podocyte injury, over-expression of the anti-permeability VEGF-A165b isoform in the podocytes of Pod-DTR mice had a protective effect. Therefore, this study further highlights the therapeutic potential of VEGF-A165b in glomerular disease.
Collapse
Affiliation(s)
- Megan Stevens
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, United Kingdom.,School of Physiology, Pharmacology and Neurosciences, Bristol, United Kingdom.,Bristol Renal, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - Christopher R Neal
- School of Physiology, Pharmacology and Neurosciences, Bristol, United Kingdom.,Bristol Renal, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - Andrew H J Salmon
- School of Physiology, Pharmacology and Neurosciences, Bristol, United Kingdom.,Bristol Renal, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - David O Bates
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | - Steven J Harper
- School of Physiology, Pharmacology and Neurosciences, Bristol, United Kingdom.,Bristol Renal, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - Sebastian Oltean
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, United Kingdom.,School of Physiology, Pharmacology and Neurosciences, Bristol, United Kingdom.,Bristol Renal, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
77
|
|
78
|
Urinary and circulating levels of the anti-angiogenic isoform of vascular endothelial growth factor-A in patients with chronic kidney disease. Clin Chim Acta 2017; 475:102-108. [DOI: 10.1016/j.cca.2017.10.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/15/2017] [Accepted: 10/15/2017] [Indexed: 11/20/2022]
|
79
|
Liew H, Roberts MA, MacGinley R, McMahon LP. Endothelial glycocalyx in health and kidney disease: Rising star or false Dawn? Nephrology (Carlton) 2017; 22:940-946. [DOI: 10.1111/nep.13161] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2017] [Indexed: 01/14/2023]
Affiliation(s)
- Hui Liew
- Department of Renal Medicine, Eastern Health Clinical School; Monash University; Box Hill Victoria Australia
| | - Matthew A Roberts
- Department of Renal Medicine, Eastern Health Clinical School; Monash University; Box Hill Victoria Australia
| | - Robert MacGinley
- Department of Renal Medicine, Eastern Health Clinical School; Monash University; Box Hill Victoria Australia
| | - Lawrence P McMahon
- Department of Renal Medicine, Eastern Health Clinical School; Monash University; Box Hill Victoria Australia
| |
Collapse
|
80
|
Molecular Mechanisms and Treatment Strategies in Diabetic Nephropathy: New Avenues for Calcium Dobesilate-Free Radical Scavenger and Growth Factor Inhibition. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1909258. [PMID: 29082239 PMCID: PMC5634607 DOI: 10.1155/2017/1909258] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/21/2017] [Indexed: 01/15/2023]
Abstract
Diabetic nephropathy is one of the most important microvascular complications of diabetes mellitus and is responsible for 40–50% of all cases of end stage renal disease. The therapeutic strategies in diabetic nephropathy need to be targeted towards the pathophysiology of the disease. The earlier these therapeutic strategies can bring about positive effects on vascular changes and prevent the vasculature in patients with diabetes from deteriorating, the better the renal function can be preserved. Studies evaluating anti-inflammatory and antioxidative strategies in diabetic nephropathy demonstrate the need and value of these novel treatment avenues. CaD is an established vasoactive and angioprotective drug that has shown a unique, multitarget mode of action in several experimental studies and in different animal models of diabetic microvascular complications. On the molecular level, CaD reduces oxidative stress and inhibits growth factors such as fibroblast growth factor and vascular endothelial growth factors. Recent findings have demonstrated a strong rationale for its use in reducing urine albumin excretion rate and markers of inflammation as well as improving endothelial function. Its beneficial effects make it an attractive therapeutic compound especially in the early stages of the disease. These findings, although promising, need further confirmation in prospective clinical trials with CaD.
Collapse
|
81
|
Lu CC, Ma KL, Ruan XZ, Liu BC. The Emerging Roles of Microparticles in Diabetic Nephropathy. Int J Biol Sci 2017; 13:1118-1125. [PMID: 29104503 PMCID: PMC5666327 DOI: 10.7150/ijbs.21140] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/23/2017] [Indexed: 12/24/2022] Open
Abstract
Microparticles (MPs) are a type of extracellular vesicles (EVs) shed from the outward budding of plasma membranes during cell apoptosis and/or activation. These microsized particles then release specific contents (e.g., lipids, proteins, microRNAs) which are active participants in a wide range of both physiological and pathological processes at the molecular level, e.g., coagulation and angiogenesis, inflammation, immune responses. Research limitations, such as confusing nomenclature and overlapping classification, have impeded our comprehension of these tiny molecules. Diabetic nephropathy (DN) is currently the greatest contributor to end-stage renal diseases (ESRD) worldwide, and its public health impact will continue to grow due to the persistent increase in the prevalence of diabetes mellitus (DM). MPs have recently been considered as potentially involved in DN onset and progression, and this review juxtaposes some of the research updates about the possible mechanisms from several relevant aspects and insights into the therapeutic perspectives of MPs in clinical management and pharmacological treatment of DN patients.
Collapse
Affiliation(s)
- Chen Chen Lu
- Institute of Nephrology, Zhong Da Hospital, School of Medicine, Southeast University, Nanjing City, Jiangsu Province, China
| | - Kun Ling Ma
- Institute of Nephrology, Zhong Da Hospital, School of Medicine, Southeast University, Nanjing City, Jiangsu Province, China
| | - Xiong Zhong Ruan
- Centre for Nephrology, University College London (UCL) Medical School, Royal Free Campus, UK
| | - Bi Cheng Liu
- Institute of Nephrology, Zhong Da Hospital, School of Medicine, Southeast University, Nanjing City, Jiangsu Province, China
| |
Collapse
|
82
|
Han Q, Zhu H, Chen X, Liu Z. Non-genetic mechanisms of diabetic nephropathy. Front Med 2017; 11:319-332. [PMID: 28871454 DOI: 10.1007/s11684-017-0569-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/22/2017] [Indexed: 12/12/2022]
Abstract
Diabetic nephropathy (DN) is one of the most common microvascular complications in diabetes mellitus patients and is characterized by thickened glomerular basement membrane, increased extracellular matrix formation, and podocyte loss. These phenomena lead to proteinuria and altered glomerular filtration rate, that is, the rate initially increases but progressively decreases. DN has become the leading cause of end-stage renal disease. Its prevalence shows a rapid growth trend and causes heavy social and economic burden in many countries. However, this disease is multifactorial, and its mechanism is poorly understood due to the complex pathogenesis of DN. In this review, we highlight the new molecular insights about the pathogenesis of DN from the aspects of immune inflammation response, epithelial-mesenchymal transition, apoptosis and mitochondrial damage, epigenetics, and podocyte-endothelial communication. This work offers groundwork for understanding the initiation and progression of DN, as well as provides ideas for developing new prevention and treatment measures.
Collapse
Affiliation(s)
- Qiuxia Han
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, 100853, China
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hanyu Zhu
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, 100853, China.
| | - Xiangmei Chen
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, 100853, China
| | - Zhangsuo Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
83
|
Antiangiogenic Therapy for Diabetic Nephropathy. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5724069. [PMID: 28835895 PMCID: PMC5556994 DOI: 10.1155/2017/5724069] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/16/2017] [Accepted: 06/13/2017] [Indexed: 12/28/2022]
Abstract
Angiogenesis has been shown to be a potential therapeutic target for early stages of diabetic nephropathy in a number of animal experiments. Vascular endothelial growth factor (VEGF) is the main mediator for abnormal angiogenesis in diabetic glomeruli. Although beneficial effects of anti-VEGF antibodies have previously been demonstrated in diabetic animal experiments, recent basic and clinical evidence has revealed that the blockade of VEGF signaling resulted in proteinuria and renal thrombotic microangiopathy, suggesting the importance of maintaining normal levels of VEGF in the kidneys. Therefore, antiangiogenic therapy for diabetic nephropathy should eliminate excessive glomerular angiogenic response without accelerating endothelial injury. Some endogenous antiangiogenic factors such as endostatin and tumstatin inhibit overactivation of endothelial cells but do not specifically block VEGF signaling. In addition, the novel endothelium-derived antiangiogenic factor vasohibin-1 enhances stress tolerance and survival of the endothelial cells, while inhibiting excess angiogenesis. These factors have been demonstrated to suppress albuminuria and glomerular alterations in a diabetic mouse model. Thus, antiangiogenic therapy with promising candidates will possibly improve renal prognosis in patients with early stages of diabetic nephropathy.
Collapse
|
84
|
Stevens M, Neal CR, Salmon AHJ, Bates DO, Harper SJ, Oltean S. VEGF-A 165 b protects against proteinuria in a mouse model with progressive depletion of all endogenous VEGF-A splice isoforms from the kidney. J Physiol 2017; 595:6281-6298. [PMID: 28574576 PMCID: PMC5621502 DOI: 10.1113/jp274481] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 05/17/2017] [Indexed: 01/25/2023] Open
Abstract
Key points Progressive depletion of all vascular endothelial growth factor A (VEGF‐A) splice isoforms from the kidney results in proteinuria and increased glomerular water permeability, which are both rescued by over‐expression of VEGF‐A165b only. VEGF‐A165b rescues the increase in glomerular basement membrane and podocyte slit width, as well as the decrease in sub‐podocyte space coverage, produced by VEGF‐A depletion. VEGF‐A165b restores the expression of platelet endothelial cell adhesion molecule in glomerular endothelial cells and glomerular capillary circumference. VEGF‐A165b has opposite effects to VEGF‐A165 on the expression of genes involved in endothelial cell migration and proliferation.
Abstract Chronic kidney disease is strongly associated with a decrease in the expression of vascular endothelial growth factor A (VEGF‐A). However, little is known about the contribution of VEGF‐A splice isoforms to kidney physiology and pathology. Previous studies suggest that the splice isoform VEGF‐A165b (resulting from alternative usage of a 3′ splice site in the terminal exon) is protective for kidney function. In the present study, we show, in a quad‐transgenic model, that over‐expression of VEGF‐A165b alone is sufficient to rescue the increase in proteinuria, as well as glomerular water permeability, in the context of progressive depletion of all VEGF‐A isoforms from the podocytes. Ultrastructural studies show that the glomerular basement membrane is thickened, podocyte slit width is increased and sub‐podocyte space coverage is reduced when VEGF‐A is depleted, all of which are rescued in VEGF‐A165b over‐expressors. VEGF‐A165b restores the expression of platelet endothelial cell adhesion molecule‐1 in glomerular endothelial cells and glomerular capillary circumference. Mechanistically, it increases VEGF receptor 2 expression both in vivo and in vitro and down‐regulates genes involved in migration and proliferation of endothelial cells, otherwise up‐regulated by the canonical isoform VEGF‐A165. The results of the present study indicate that manipulation of VEGF‐A splice isoforms could be a novel therapeutic avenue in chronic glomerular disease. Progressive depletion of all vascular endothelial growth factor A (VEGF‐A) splice isoforms from the kidney results in proteinuria and increased glomerular water permeability, which are both rescued by over‐expression of VEGF‐A165b only. VEGF‐A165b rescues the increase in glomerular basement membrane and podocyte slit width, as well as the decrease in sub‐podocyte space coverage, produced by VEGF‐A depletion. VEGF‐A165b restores the expression of platelet endothelial cell adhesion molecule in glomerular endothelial cells and glomerular capillary circumference. VEGF‐A165b has opposite effects to VEGF‐A165 on the expression of genes involved in endothelial cell migration and proliferation.
Collapse
Affiliation(s)
- Megan Stevens
- School of Physiology, Pharmacology and Neurosciences, University of Bristol, UK.,Bristol Renal, School of Clinical Sciences, University of Bristol, Bristol, UK.,Present address: Institute of Biomedical & Clinical Sciences, University of Exeter Medical School, Exeter, UK
| | - Christopher R Neal
- Bristol Renal, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Andrew H J Salmon
- School of Physiology, Pharmacology and Neurosciences, University of Bristol, UK.,Bristol Renal, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - David O Bates
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Steven J Harper
- School of Physiology, Pharmacology and Neurosciences, University of Bristol, UK.,Bristol Renal, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Sebastian Oltean
- School of Physiology, Pharmacology and Neurosciences, University of Bristol, UK.,Bristol Renal, School of Clinical Sciences, University of Bristol, Bristol, UK.,Present address: Institute of Biomedical & Clinical Sciences, University of Exeter Medical School, Exeter, UK
| |
Collapse
|
85
|
Assady S, Wanner N, Skorecki KL, Huber TB. New Insights into Podocyte Biology in Glomerular Health and Disease. J Am Soc Nephrol 2017; 28:1707-1715. [PMID: 28404664 DOI: 10.1681/asn.2017010027] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Podocyte and glomerular research is center stage for the development of improved preventive and therapeutic strategies for chronic progressive kidney diseases. Held April 3-6, 2016, the 11th International Podocyte Conference took place in Haifa and Jerusalem, Israel, where participants from all over the world presented their work on new developments in podocyte research. In this review, we briefly highlight the advances made in characterizing the mechanisms involved in podocyte development, metabolism, acquired injury, and repair, including progress in determining the roles of genetic variants and microRNA in particular, as well as the advances made in diagnostic techniques and therapeutics.
Collapse
Affiliation(s)
- Suheir Assady
- Department of Nephrology and Hypertension, Rambam Health Care Campus, Haifa, Israel.,Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Nicola Wanner
- Department of Medicine IV, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Karl L Skorecki
- Department of Nephrology and Hypertension, Rambam Health Care Campus, Haifa, Israel; .,Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Tobias B Huber
- Department of Medicine IV, Faculty of Medicine, University of Freiburg, Freiburg, Germany; .,BIOSS-Centre for Biological Signalling Studies and.,III. Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.,ZBSA-Center for Biological Systems Analysis, Albert Ludwigs University, Freiburg, Germany; and
| |
Collapse
|
86
|
Vascular endothelial growth factor-A 165b ameliorates outer-retinal barrier and vascular dysfunction in the diabetic retina. Clin Sci (Lond) 2017; 131:1225-1243. [PMID: 28341661 PMCID: PMC5450016 DOI: 10.1042/cs20170102] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/09/2017] [Accepted: 03/24/2017] [Indexed: 01/11/2023]
Abstract
Diabetic retinopathy (DR) is one of the leading causes of blindness in the developed world. Characteristic features of DR are retinal neurodegeneration, pathological angiogenesis and breakdown of both the inner and outer retinal barriers of the retinal vasculature and retinal pigmented epithelial (RPE)–choroid respectively. Vascular endothelial growth factor (VEGF-A), a key regulator of angiogenesis and permeability, is the target of most pharmacological interventions of DR. VEGF-A can be alternatively spliced at exon 8 to form two families of isoforms, pro- and anti-angiogenic. VEGF-A165a is the most abundant pro-angiogenic isoform, is pro-inflammatory and a potent inducer of permeability. VEGF-A165b is anti-angiogenic, anti-inflammatory, cytoprotective and neuroprotective. In the diabetic eye, pro-angiogenic VEGF-A isoforms are up-regulated such that they overpower VEGF-A165b. We hypothesized that this imbalance may contribute to increased breakdown of the retinal barriers and by redressing this imbalance, the pathological angiogenesis, fluid extravasation and retinal neurodegeneration could be ameliorated. VEGF-A165b prevented VEGF-A165a and hyperglycaemia-induced tight junction (TJ) breakdown and subsequent increase in solute flux in RPE cells. In streptozotocin (STZ)-induced diabetes, there was an increase in Evans Blue extravasation after both 1 and 8 weeks of diabetes, which was reduced upon intravitreal and systemic delivery of recombinant human (rh)VEGF-A165b. Eight-week diabetic rats also showed an increase in retinal vessel density, which was prevented by VEGF-A165b. These results show rhVEGF-A165b reduces DR-associated blood–retina barrier (BRB) dysfunction, angiogenesis and neurodegeneration and may be a suitable therapeutic in treating DR.
Collapse
|
87
|
Mechanisms regulating angiogenesis underlie seasonal control of pituitary function. Proc Natl Acad Sci U S A 2017; 114:E2514-E2523. [PMID: 28270617 DOI: 10.1073/pnas.1618917114] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Seasonal changes in mammalian physiology, such as those affecting reproduction, hibernation, and metabolism, are controlled by pituitary hormones released in response to annual environmental changes. In temperate zones, the primary environmental cue driving seasonal reproductive cycles is the change in day length (i.e., photoperiod), encoded by the pattern of melatonin secretion from the pineal gland. However, although reproduction relies on hypothalamic gonadotrophin-releasing hormone output, and most cells producing reproductive hormones are in the pars distalis (PD) of the pituitary, melatonin receptors are localized in the pars tuberalis (PT), a physically and functionally separate part of the gland. How melatonin in the PT controls the PD is not understood. Here we show that melatonin time-dependently acts on its receptors in the PT to alter splicing of vascular endothelial growth factor (VEGF). Outside the breeding season (BS), angiogenic VEGF-A stimulates vessel growth in the infundibulum, aiding vascular communication among the PT, PD, and brain. This also acts on VEGF receptor 2 (VEGFR2) expressed in PD prolactin-producing cells known to impair gonadotrophin secretion. In contrast, in the BS, melatonin releases antiangiogenic VEGF-Axxxb from the PT, inhibiting infundibular angiogenesis and diminishing lactotroph (LT) VEGFR2 expression, lifting reproductive axis repression in response to shorter day lengths. The time-dependent, melatonin-induced differential expression of VEGF-A isoforms culminates in alterations in gonadotroph function opposite to those of LTs, with up-regulation and down-regulation of gonadotrophin gene expression during the breeding and nonbreeding seasons, respectively. These results provide a mechanism by which melatonin can control pituitary function in a seasonal manner.
Collapse
|
88
|
Castrop H, Schießl IM. Novel routes of albumin passage across the glomerular filtration barrier. Acta Physiol (Oxf) 2017; 219:544-553. [PMID: 27452481 DOI: 10.1111/apha.12760] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/13/2016] [Accepted: 07/20/2016] [Indexed: 12/20/2022]
Abstract
Albuminuria is a hallmark of kidney diseases of various aetiologies and an unambiguous symptom of the compromised integrity of the glomerular filtration barrier. Furthermore, there is increasing evidence that albuminuria per se aggravates the development and progression of chronic kidney disease. This review covers new aspects of the movement of large plasma proteins across the glomerular filtration barrier in health and disease. Specifically, this review focuses on the role of endocytosis and transcytosis of albumin by podocytes, which constitutes a new pathway of plasma proteins across the filtration barrier. Thus, we summarize what is known about the mechanisms of albumin endocytosis by podocytes and address the fate of the endocytosed albumin, which is directed to lysosomal degradation or transcellular movement with subsequent vesicular release into the urinary space. We also address the functional consequences of overt albumin endocytosis by podocytes, such as the formation of pro-inflammatory cytokines, which might eventually result in a deterioration of podocyte function. Finally, we consider the diagnostic potential of podocyte-derived albumin-containing vesicles in the urine as an early marker of a compromised glomerular barrier function. In terms of new technical approaches, the review covers how our knowledge of the movement of albumin across the glomerular filtration barrier has expanded by the use of new intravital imaging techniques.
Collapse
Affiliation(s)
- H. Castrop
- Institute of Physiology; University of Regensburg; Regensburg Germany
| | - I. M. Schießl
- Institute of Physiology; University of Regensburg; Regensburg Germany
| |
Collapse
|
89
|
Abstract
Purpose of review Glomerular filtration occurs in specialized, microscopic organelles. Each glomerulus contains unique cells and these cooperate to maintain normal filtration. Phenomenal adaptation is required for the glomerulus to respond to variable mechanical loads and this adaptation requires efficient communication between the resident cells. This review will focus on the latest discoveries related to signalling events that mediate the crosstalk between glomerular cells, and detail how disease processes can influence normal regulation. Recent findings New data indicate that the crosstalk between glomerular cells involves an increasing number of secreted signalling ligands that act in an autocrine or paracrine fashion. Furthermore, extended roles for some of the classical signalling molecules have been described and there is emerging evidence of therapeutic strategies to manipulate cellular crosstalk. The glomerular extracellular matrix harbours many of these signalling ligands, acting as a reservoir and presenting ligands to cell surface receptors. Signals can also be transferred between cells by extracellular vesicles and this is an emerging concept in cellular crosstalk. Summary Recent discoveries are building our understanding about glomerular cell crosstalk, and this review focuses on growth factors and signalling peptides, methods of delivery to target cells, and the potential for developing new therapies for glomerular disease.
Collapse
|
90
|
Fakhruddin S, Alanazi W, Jackson KE. Diabetes-Induced Reactive Oxygen Species: Mechanism of Their Generation and Role in Renal Injury. J Diabetes Res 2017; 2017:8379327. [PMID: 28164134 PMCID: PMC5253173 DOI: 10.1155/2017/8379327] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/07/2016] [Indexed: 02/07/2023] Open
Abstract
Diabetes induces the onset and progression of renal injury through causing hemodynamic dysregulation along with abnormal morphological and functional nephron changes. The most important event that precedes renal injury is an increase in permeability of plasma proteins such as albumin through a damaged glomerular filtration barrier resulting in excessive urinary albumin excretion (UAE). Moreover, once enhanced UAE begins, it may advance renal injury from progression of abnormal renal hemodynamics, increased glomerular basement membrane (GBM) thickness, mesangial expansion, extracellular matrix accumulation, and glomerulosclerosis to eventual end-stage renal damage. Interestingly, all these pathological changes are predominantly driven by diabetes-induced reactive oxygen species (ROS) and abnormal downstream signaling molecules. In diabetic kidney, NADPH oxidase (enzymatic) and mitochondrial electron transport chain (nonenzymatic) are the prominent sources of ROS, which are believed to cause the onset of albuminuria followed by progression to renal damage through podocyte depletion. Chronic hyperglycemia and consequent ROS production can trigger abnormal signaling pathways involving diverse signaling mediators such as transcription factors, inflammatory cytokines, chemokines, and vasoactive substances. Persistently, increased expression and activation of these signaling molecules contribute to the irreversible functional and structural changes in the kidney resulting in critically decreased glomerular filtration rate leading to eventual renal failure.
Collapse
Affiliation(s)
- Selim Fakhruddin
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe (ULM), Pharmacy Building, 1800 Bienville Dr., Monroe, LA 71201, USA
| | - Wael Alanazi
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe (ULM), Pharmacy Building, 1800 Bienville Dr., Monroe, LA 71201, USA
| | - Keith E. Jackson
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe (ULM), Pharmacy Building, 1800 Bienville Dr., Monroe, LA 71201, USA
| |
Collapse
|
91
|
Majumder S, Advani A. VEGF and the diabetic kidney: More than too much of a good thing. J Diabetes Complications 2017; 31:273-279. [PMID: 27836681 DOI: 10.1016/j.jdiacomp.2016.10.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 10/18/2016] [Indexed: 02/06/2023]
Abstract
Over a decade and a half has passed since the publication of early reports hinting at a pathogenetic role for vascular endothelial growth factor ("VEGF") in the development of diabetic kidney disease. In diabetic rats, renal mRNA levels of the VEGF-A isoform were upregulated and administration of a VEGF-A neutralizing antibody attenuated albuminuria: VEGF was "bad" in diabetic nephropathy. Since that time, our understanding of the complexity of the renal VEGF system has advanced. Unlike its experimental counterpart, human diabetic nephropathy is associated with diminished VEGF-A levels and experience in the oncological setting has taught us that VEGF blocking therapy can cause adverse renal effects in patients. Correspondingly, investigational studies in cultured cells and rodent models have demonstrated that the biological effects of the VEGF system are dependent not only on the amount of VEGF, but also the type of VEGF, its sites of action and the prevailing milieu. Here we reflect back on the discoveries that have been made since those initial reports that shone the spotlight on the importance of the VEGF system in the diabetic kidney and we consider that the role of VEGF in diabetic nephropathy extends well beyond being "too much of a good thing".
Collapse
Affiliation(s)
- Syamantak Majumder
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Andrew Advani
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada.
| |
Collapse
|
92
|
Liu N, Xu L, Shi Y, Zhuang S. Podocyte Autophagy: A Potential Therapeutic Target to Prevent the Progression of Diabetic Nephropathy. J Diabetes Res 2017; 2017:3560238. [PMID: 28512641 PMCID: PMC5420432 DOI: 10.1155/2017/3560238] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/20/2017] [Indexed: 01/08/2023] Open
Abstract
Diabetic nephropathy (DN), a leading cause of end-stage renal disease (ESRD), becomes a worldwide problem. Ultrastructural changes of the glomerular filtration barrier, especially the pathological changes of podocytes, lead to proteinuria in patients with diabetes. Podocytes are major components of glomerular filtration barrier, lining outside of the glomerular basement membrane (GBM) to maintain the permeability of the GBM. Autophagy is a high conserved cellular process in lysosomes including impaired protein, cell organelles, and other contents in the cytoplasm. Recent studies suggest that activation of autophagy in podocytes may be a potential therapy to prevent the progression of DN. Here, we review the mechanisms of autophagy in podocytes and discuss the current studies about alleviating proteinuria via activating podocyte autophagy.
Collapse
Affiliation(s)
- Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liuqing Xu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yingfeng Shi
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, USA
- *Shougang Zhuang:
| |
Collapse
|
93
|
Abstract
The glomerulus is a highly specialized microvascular bed that filters blood to form primary urinary filtrate. It contains four cell types: fenestrated endothelial cells, specialized vascular support cells termed podocytes, perivascular mesangial cells, and parietal epithelial cells. Glomerular cell-cell communication is critical for the development and maintenance of the glomerular filtration barrier. VEGF, ANGPT, EGF, SEMA3A, TGF-β, and CXCL12 signal in paracrine fashions between the podocytes, endothelium, and mesangium associated with the glomerular capillary bed to maintain filtration barrier function. In this review, we summarize the current understanding of these signaling pathways in the development and maintenance of the glomerulus and the progression of disease.
Collapse
Affiliation(s)
- Christina S Bartlett
- Feinberg Cardiovascular Research Institute and Division of Nephrology and Hypertension, Northwestern University, Chicago, Illinois 60611; ,
| | - Marie Jeansson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 751 85, Sweden;
| | - Susan E Quaggin
- Feinberg Cardiovascular Research Institute and Division of Nephrology and Hypertension, Northwestern University, Chicago, Illinois 60611; ,
| |
Collapse
|
94
|
Gnudi L, Coward RJM, Long DA. Diabetic Nephropathy: Perspective on Novel Molecular Mechanisms. Trends Endocrinol Metab 2016; 27:820-830. [PMID: 27470431 DOI: 10.1016/j.tem.2016.07.002] [Citation(s) in RCA: 219] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 07/04/2016] [Accepted: 07/07/2016] [Indexed: 02/07/2023]
Abstract
Diabetes mellitus (DM) is the major cause of end-stage renal disease (ESRD) globally, and novel treatments are urgently needed. Current therapeutic approaches for diabetic nephropathy (DN) are focussing on blood pressure control with inhibitors of the renin-angiotensin-aldosterone system, on glycaemic and lipid control, and life-style changes. In this review, we highlight new molecular insights aiding our understanding of the initiation and progression of DN, including glomerular insulin resistance, dysregulation of cellular substrate utilisation, podocyte-endothelial communication, and inhibition of tubular sodium coupled glucose reabsorption. We believe that these mechanisms offer new therapeutic targets that can be exploited to develop important renoprotective treatments for DN over the next decade.
Collapse
Affiliation(s)
- Luigi Gnudi
- Cardiovascular Division, King's College London, London, SE1 9NH, UK.
| | - Richard J M Coward
- Academic Renal Unit, Dorothy Hodgkin Building, University of Bristol, Whitson Street, Bristol BS1 3NY, UK
| | - David A Long
- Developmental Biology and Cancer Programme, Institute of Child Health, University College London, London, WC1N 1EH, UK.
| |
Collapse
|
95
|
Leung WK, Gao L, Siu PM, Lai CW. Diabetic nephropathy and endothelial dysfunction: Current and future therapies, and emerging of vascular imaging for preclinical renal-kinetic study. Life Sci 2016; 166:121-130. [PMID: 27765534 DOI: 10.1016/j.lfs.2016.10.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 02/07/2023]
Abstract
An explosion in global epidemic of type 2 diabetes mellitus poses major rise in cases with vascular endothelial dysfunction ranging from micro- (retinopathy, nephropathy and neuropathy) to macro-vascular (atherosclerosis and cardiomyopathy) conditions. Functional destruction of endothelium is regarded as an early event that lays the groundwork for the development of renal microangiopathy and subsequent clinical manifestation of nephropathic symptoms. Recent research has shed some light on the molecular mechanisms of type 2 diabetes-associated comorbidity of endothelial dysfunction and nephropathy. Stemming from currently proposed endothelium-centered therapeutic strategies for diabetic nephropathy, this review highlighted some most exploited pathways that involve the intricate coordination of vasodilators, vasoconstrictors and vaso-modulatory molecules in the pathogenesis of diabetic nephropathy. We also emphasized the emerging roles of oxidative and epigenetic modifications of microvasculature as our prospective therapeutics for diabetic renal diseases. Finally, this review in particular addressed the potential use of multispectral optoacoustic tomography in real-time, minimally-invasive vascular imaging of small experimental animals for preclinical renal-kinetic drug trials.
Collapse
Affiliation(s)
- Wilson Kc Leung
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hung Hom, HKSAR, China
| | - L Gao
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hung Hom, HKSAR, China
| | - Parco M Siu
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hung Hom, HKSAR, China
| | - Christopher Wk Lai
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hung Hom, HKSAR, China.
| |
Collapse
|
96
|
Hulse RP, Drake RAR, Bates DO, Donaldson LF. The control of alternative splicing by SRSF1 in myelinated afferents contributes to the development of neuropathic pain. Neurobiol Dis 2016; 96:186-200. [PMID: 27616424 PMCID: PMC5113660 DOI: 10.1016/j.nbd.2016.09.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/24/2016] [Accepted: 09/06/2016] [Indexed: 02/07/2023] Open
Abstract
Neuropathic pain results from neuroplasticity in nociceptive neuronal networks. Here we demonstrate that control of alternative pre-mRNA splicing, through the splice factor serine-arginine splice factor 1 (SRSF1), is integral to the processing of nociceptive information in the spinal cord. Neuropathic pain develops following a partial saphenous nerve ligation injury, at which time SRSF1 is activated in damaged myelinated primary afferent neurons, with minimal found in small diameter (IB4 positive) dorsal root ganglia neurons. Serine arginine protein kinase 1 (SRPK1) is the principal route of SRSF1 activation. Spinal SRPK1 inhibition attenuated SRSF1 activity, abolished neuropathic pain behaviors and suppressed central sensitization. SRSF1 was principally expressed in large diameter myelinated (NF200-rich) dorsal root ganglia sensory neurons and their excitatory central terminals (vGLUT1+ve) within the dorsal horn of the lumbar spinal cord. Expression of pro-nociceptive VEGF-Axxxa within the spinal cord was increased after nerve injury, and this was prevented by SRPK1 inhibition. Additionally, expression of anti-nociceptive VEGF-Axxxb isoforms was elevated, and this was associated with reduced neuropathic pain behaviors. Inhibition of VEGF receptor-2 signaling in the spinal cord attenuated behavioral nociceptive responses to mechanical, heat and formalin stimuli, indicating that spinal VEGF receptor-2 activation has potent pro-nociceptive actions. Furthermore, intrathecal VEGF-A165a resulted in mechanical and heat hyperalgesia, whereas the sister inhibitory isoform VEGF-A165b resulted in anti-nociception. These results support a role for myelinated fiber pathways, and alternative pre-mRNA splicing of factors such as VEGF-A in the spinal processing of neuropathic pain. They also indicate that targeting pre-mRNA splicing at the spinal level could lead to a novel target for analgesic development.
Collapse
Affiliation(s)
- Richard P Hulse
- Cancer Biology, School of Medicine, University of Nottingham, Nottingham, NG7 7UH, United Kingdom; School of Physiology and Pharmacology, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom.
| | - Robert A R Drake
- School of Physiology and Pharmacology, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | - David O Bates
- Cancer Biology, School of Medicine, University of Nottingham, Nottingham, NG7 7UH, United Kingdom; School of Physiology and Pharmacology, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | - Lucy F Donaldson
- School of Physiology and Pharmacology, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom; School of Life Sciences and Arthritis Research UK Pain Centre, University of Nottingham, Nottingham NG7 7UH, United Kingdom.
| |
Collapse
|
97
|
Turner RJ, Eikmans M, Bajema IM, Bruijn JA, Baelde HJ. Stability and Species Specificity of Renal VEGF-A Splicing Patterns in Kidney Disease. PLoS One 2016; 11:e0162166. [PMID: 27598902 PMCID: PMC5012578 DOI: 10.1371/journal.pone.0162166] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 07/08/2016] [Indexed: 12/29/2022] Open
Abstract
Vascular endothelial growth factor A (VEGF-A) is essential for maintaining the glomerular filtration barrier. Absolute renal levels of VEGF-A change in patients with diabetic nephropathy and inflammatory kidney diseases, but whether changes in the renal splicing patterns of VEGF-A play a role remains unclear. In this study, we investigated mRNA splicing patterns of pro-angiogenic isoforms of VEGF-A in glomeruli and whole kidney samples from human patients with kidney disease and from mouse models of kidney disease. Kidney biopsies were obtained from patients with acute rejection following kidney transplantation, patients with diabetic nephropathy, and control subjects. In addition, kidney samples were obtained from mice with lupus nephritis, mice with diabetes mellitus, and control mice. The relative expression of each VEGF-A splice variant was measured using RT-PCR followed by quantitative fragment analysis. The pattern of renal VEGF-A splice variants was unchanged in diabetic nephropathy and lupus nephritis and was stable throughout disease progression in acute transplant rejection and diabetic nephropathy; these results suggest renal VEGF-A splicing stability during kidney disease. The splicing patterns were species-specific; in the control human kidney samples, VEGF-A 121 was the dominant isoform, whereas VEGF-A 164 was the dominant isoform measured in the mouse kidney samples.
Collapse
Affiliation(s)
- R. J. Turner
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
- * E-mail:
| | - M. Eikmans
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - I. M. Bajema
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - J. A. Bruijn
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - H. J. Baelde
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
98
|
Logue OC, McGowan JWD, George EM, Bidwell GL. Therapeutic angiogenesis by vascular endothelial growth factor supplementation for treatment of renal disease. Curr Opin Nephrol Hypertens 2016; 25:404-9. [PMID: 27367910 PMCID: PMC4974125 DOI: 10.1097/mnh.0000000000000256] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW Vascular endothelial growth factors (VEGFs) influence renal function through angiogenesis, with VEGF-A being the most potent inducer of vascular formation. In the normal glomerulus, tight homeostatic balance is maintained between the levels of VEGF-A isoforms produced by podocyte cells, and the VEGF receptors (VEGFRs) expressed by glomerular endothelial, mesangial, and podocyte cells. Renal disease occurs when this homeostatic balance is lost, manifesting in the abnormal autocrine and paracrine VEGF-A/VEGFR signaling, ultrastructural glomerular and tubular damage, and impaired filtration. RECENT FINDINGS Preclinical disease models of ischemic renal injury, including acute ischemia/reperfusion, thrombotic microangiopathy, and chronic renovascular disease, treated with exogenous VEGF supplementation demonstrated therapeutic efficacy. These results suggest a therapeutic VEGF-A paracrine effect on endothelial cells in the context of acute or chronic obstructive ischemia. Conversely, renal dysfunction in diabetic nephropathy appears to occur through an upregulated VEGF autocrine effect on podocyte cells, which is exacerbated by hyperglycemia. Therefore, VEGF supplementation therapy may be contraindicated for treatment of diabetic nephropathy, but specific results will depend on dose and on the specific site of VEGF delivery. A drug delivery system that demonstrates cell specificity for glomerular or peritubular capillaries could be employed to restore balance to VEGF-A/VEGFR2 signaling, and by doing so, prevent the progression to end-stage renal disease. SUMMARY The review discusses the preclinical data available for VEGF supplementation therapy in models of renal disease.
Collapse
Affiliation(s)
- Omar C. Logue
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS
| | | | - Eric M. George
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS
| | - Gene L. Bidwell
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS
| |
Collapse
|
99
|
Cao S, Bian Z, Zhu X, Shen SR. Effect of Epac1 on pERK and VEGF Activation in Postoperative Persistent Pain in Rats. J Mol Neurosci 2016; 59:554-64. [DOI: 10.1007/s12031-016-0776-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 06/02/2016] [Indexed: 02/01/2023]
|
100
|
Lenoir O, Jasiek M, Hénique C, Guyonnet L, Hartleben B, Bork T, Chipont A, Flosseau K, Bensaada I, Schmitt A, Massé JM, Souyri M, Huber TB, Tharaux PL. Endothelial cell and podocyte autophagy synergistically protect from diabetes-induced glomerulosclerosis. Autophagy 2016; 11:1130-45. [PMID: 26039325 DOI: 10.1080/15548627.2015.1049799] [Citation(s) in RCA: 221] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The glomerulus is a highly specialized capillary tuft, which under pressure filters large amounts of water and small solutes into the urinary space, while retaining albumin and large proteins. The glomerular filtration barrier (GFB) is a highly specialized filtration interface between blood and urine that is highly permeable to small and midsized solutes in plasma but relatively impermeable to macromolecules such as albumin. The integrity of the GFB is maintained by molecular interplay between its 3 layers: the glomerular endothelium, the glomerular basement membrane and podocytes, which are highly specialized postmitotic pericytes forming the outer part of the GFB. Abnormalities of glomerular ultrafiltration lead to the loss of proteins in urine and progressive renal insufficiency, underlining the importance of the GFB. Indeed, albuminuria is strongly predictive of the course of chronic nephropathies especially that of diabetic nephropathy (DN), a leading cause of renal insufficiency. We found that high glucose concentrations promote autophagy flux in podocyte cultures and that the abundance of LC3B II in podocytes is high in diabetic mice. Deletion of Atg5 specifically in podocytes resulted in accelerated diabetes-induced podocytopathy with a leaky GFB and glomerulosclerosis. Strikingly, genetic alteration of autophagy on the other side of the GFB involving the endothelial-specific deletion of Atg5 also resulted in capillary rarefaction and accelerated DN. Thus autophagy is a key protective mechanism on both cellular layers of the GFB suggesting autophagy as a promising new therapeutic strategy for DN.
Collapse
Key Words
- BUN, blood urea nitrogen
- CASP3, caspase 3, apoptosis-related cysteine peptidase
- Cdh5, cadherin 5
- DM, diabetes mellitus
- DN, diabetic nephropathy
- ESRD, end-stage renal disease
- GBM, glomerular basement membrane
- GEC, glomerular endothelial cells
- GFB, glomerular filtration barrier
- MAP1LC3A/B/LC3A/B), microtubule-associated protein 1 light chain 3 α/β
- MTOR, mechanistic target of rapamycin
- Nphs2, nephrosis 2, podocin
- SQSTM1, sequestosome 1
- STZ, streptozotocin
- TEM, transmission electron microscopy
- TUBA, tubulin
- autophagy
- diabetic nephropathy
- endothelial cells
- podocytes
- proteinuria
- sclerosis
- α, WT1, Wilms tumor 1
Collapse
Affiliation(s)
- Olivia Lenoir
- a Paris Cardiovascular Research Center; Institut National de la Santé et de la Recherche Médicale (INSERM) ; Paris , France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|