51
|
Keyghobadi F, Mehdipour M, Nekoukar V, Firouzi J, Kheimeh A, Nobakht Lahrood F, Azimian Zavareh V, Azimi M, Mohammadi M, Sodeifi N, Ebrahimi M. Long-Term Inhibition of Notch in A-375 Melanoma Cells Enhances Tumor Growth Through the Enhancement of AXIN1, CSNK2A3, and CEBPA2 as Intermediate Genes in Wnt and Notch Pathways. Front Oncol 2020; 10:531. [PMID: 32695658 PMCID: PMC7338939 DOI: 10.3389/fonc.2020.00531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 03/25/2020] [Indexed: 12/14/2022] Open
Abstract
Notch suppression by gamma-secretase inhibitors is a valid approach against melanoma. However, most of studies have evaluated the short-term effect of DAPT on tumor cells or even cancer stem cells. In the present study, we surveyed the short-term and long-term effects of DAPT on the stem cell properties of A375 and NA8 as melanoma cell lines. The effects of DAPT were tested both in vitro and in vivo using xenograft models. In A375 with B-raf mutation, DAPT decreased the level of NOTCH1, NOTH2, and HES1 as downstream genes of the Notch pathway. This was accompanied by enhanced apoptosis after 24 h treatment, arrest in the G2−M phase, and impaired ability of colony and melanosphere formation at the short term. Moreover, tumor growth also reduced during 13 days of treatment. However, long-term treatment of DAPT promoted tumor growth in the xenograft model and enhanced the number and size of colonies and spheroids in vitro. The gene expression studies confirmed the up-regulation of Wnt and Notch downstream genes as well as AXIN1, CSNK2A3, and CEBPA2 following the removal of Notch inhibitor in vitro and in the xenograft model. Moreover, the Gompertz-based mathematical model determined a new drug resistance term in the present study. Our data supported that the long-term and not short-term inhibition of Notch by DAPT may enhance tumor growth and motility through up-regulation of AXIN1, CSNK2A3, and CEBPA2 genes in B-raf mutated A375 cells.
Collapse
Affiliation(s)
- Faezeh Keyghobadi
- Department of Developmental Biology, University of Science and Culture, ACECR, Tehran, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maryam Mehdipour
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Vahab Nekoukar
- School of Electrical Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Javad Firouzi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Abolfazl Kheimeh
- Animal Core Facility, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Tehran, Iran
| | - Fatemeh Nobakht Lahrood
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Vajihe Azimian Zavareh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Masoumeh Azimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mahsa Mohammadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Niloofar Sodeifi
- Department of Pathology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
52
|
Nawrot-Hadzik I, Choromańska A, Abel R, Preissner R, Saczko J, Matkowski A, Hadzik J. Cytotoxic Effect of Vanicosides A and B from Reynoutria sachalinensis Against Melanotic and Amelanotic Melanoma Cell Lines and in silico Evaluation for Inhibition of BRAFV600E and MEK1. Int J Mol Sci 2020; 21:ijms21134611. [PMID: 32610527 PMCID: PMC7370030 DOI: 10.3390/ijms21134611] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/21/2020] [Accepted: 06/25/2020] [Indexed: 12/20/2022] Open
Abstract
Vanicosides A and B are the esters of hydroxycinnamic acids with sucrose, occurring in a few plant species from the Polygonaceae family. So far, vanicosides A and B have not been evaluated for anticancer activity against human malignant melanoma. In this study, we tested these two natural products, isolated from Reynoutria sachalinensis rhizomes, against two human melanoma cell lines (amelanotic C32 cell line and melanotic A375 cell line, both bearing endogenous BRAFV600E mutation) and two normal human cell lines-keratinocytes (HaCaT) and the primary fibroblast line. Additionally, a molecular docking of vanicoside A and vanicoside B with selected targets involved in melanoma progression was performed. Cell viability was studied using an MTT assay. A RealTime-Glo™ Annexin V Apoptosis and Necrosis assay was used for monitoring programmed cell death (PCD). Vanicoside A demonstrated strong cytotoxicity against the amelanotic C32 cell line (viability of the C32 cell line was decreased to 55% after 72 h incubation with 5.0 µM of vanicoside A), significantly stronger than vanicoside B. This stronger cytotoxic activity can be attributed to an additional acetyl group in vanicoside A. No significant differences in the cytotoxicity of vanicosides were observed against the less sensitive A375 cell line. Moreover, vanicosides caused the death of melanoma cells at concentrations from 2.5 to 50 µM, without harming the primary fibroblast line. The keratinocyte cell line (HaCaT) was more sensitive to vanicosides than fibroblasts, showing a clear decrease in viability after incubation with 25 µM of vanicoside A as well as a significant phosphatidylserine (PS) exposure, but without a measurable cell death-associated fluorescence. Vanicosides induced an apoptotic death pathway in melanoma cell lines, but because of the initial loss of cell membrane integrity, an additional cell death mechanism might be involved like permeability transition pore (PTP)-mediated necrosis that needs to be explored in the future. Molecular docking indicated that both compounds bind to the active site of the BRAFV600E kinase and MEK-1 kinase; further experiments on their specific inhibitory activity of these targets should be considered.
Collapse
Affiliation(s)
- Izabela Nawrot-Hadzik
- Department of Pharmaceutical Biology and Botany, Wroclaw Medical University, 50556 Wroclaw, Poland;
| | - Anna Choromańska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50556 Wroclaw, Poland; (A.C.); (J.S.)
| | - Renata Abel
- Structural Bioinformatics Group, Institute for Physiology, Charité–University Medicine Berlin, 10115 Berlin, Germany; (R.A.); (R.P.)
| | - Robert Preissner
- Structural Bioinformatics Group, Institute for Physiology, Charité–University Medicine Berlin, 10115 Berlin, Germany; (R.A.); (R.P.)
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50556 Wroclaw, Poland; (A.C.); (J.S.)
| | - Adam Matkowski
- Department of Pharmaceutical Biology and Botany, Wroclaw Medical University, 50556 Wroclaw, Poland;
- Correspondence:
| | - Jakub Hadzik
- Department of Dental Surgery, Wroclaw Medical University, 50425 Wroclaw, Poland;
| |
Collapse
|
53
|
Borkowska A, Szumera-Ciećkiewicz A, Spałek M, Teterycz P, Czarnecka A, Kowalik A, Rutkowski P. Mutation profile of primary subungual melanomas in Caucasians. Oncotarget 2020; 11:2404-2413. [PMID: 32637031 PMCID: PMC7321700 DOI: 10.18632/oncotarget.27642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/01/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Specific genomic profile of cutaneous melanomas is related to UVR exposure, which exerts biological and therapeutic impact. Subungual melanoma (SUM) is an exceedingly rare disease; therefore, it is not well characterized. SUM pathogenesis is not related to UVR induced DNA damage and expected to differ from other melanoma subtypes. Our study aimed to define the mutation profile of SUM in Caucasians. Materials and Methods: Next-generation sequencing-based genomic analysis was used to identify frequently mutated loci in 50 cancer-related genes in 31 SUM primary tumors. Results: The most abundant mutations in SUM were found in KIT – in 13% of cases and NRAS – also in 13%, while BRAF - only in 3% of cases. Conclusions: Our findings confirmed a high frequency of KIT and NRAS mutations in SUM, as well as a low incidence of BRAF mutations. We reported novel KRAS, CTNNB1, TP53, ERBB2, and SMAD4 mutations in SUM. Our findings provide new insights into the molecular pathogenesis of SUM.
Collapse
Affiliation(s)
- Aneta Borkowska
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Anna Szumera-Ciećkiewicz
- Department of Pathology and Laboratory Medicine, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland.,Diagnostic Hematology Department, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Mateusz Spałek
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Paweł Teterycz
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Anna Czarnecka
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland.,Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Artur Kowalik
- Department of Molecular Diagnostics, Holy Cross Cancer Centre, Kielce, Poland.,Division of Medical Biology, Institute of Biology, Jan Kochanowski University, Kielce, Poland
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| |
Collapse
|
54
|
Targeting mitochondria in melanoma: Interplay between MAPK signaling pathway and mitochondrial dynamics. Biochem Pharmacol 2020; 178:114104. [PMID: 32562785 DOI: 10.1016/j.bcp.2020.114104] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/09/2020] [Accepted: 06/15/2020] [Indexed: 12/18/2022]
Abstract
Melanoma is a malignant proliferative disease originated in melanocytes, characterized by high metastatic activity and by the activation of oncogenes, such as B-RAF (40-60% of cases). Recent studies have shown that vemurafenib (a MAPK inhibitor) promoted disturbance of mitochondrial bioenergetics, although underlying mechanisms are not fully comprehended. Here we showed that MAPK inhibition by vemurafenib in B-RAFV600E-mutated human melanoma culminated in the inhibition of DRP1 phosphorylation, associated to a large mitochondrial network remodeling to the hyperfused phenotype, and increased oxidative phosphorylation capacity. Such alterations may be associated to melanoma resistance to vemurafenib, since the impairment of oxidative phosphorylation increased the vemurafenib cytotoxicity. These results point to the potential of mitochondrial dynamics as a targetable pathway in melanoma.
Collapse
|
55
|
Cytotoxic Activities and Molecular Mechanisms of the Beauvericin and Beauvericin G 1 Microbial Products against Melanoma Cells. Molecules 2020; 25:molecules25081974. [PMID: 32340351 PMCID: PMC7221855 DOI: 10.3390/molecules25081974] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/14/2022] Open
Abstract
Melanoma is the most serious type of skin cancer and remains highly drug-resistant. Therefore, the discovery of novel effective agents against melanoma is in high demand. Herein, we investigated the cytotoxic activities in melanoma cells and underlying molecular mechanisms of beauvericin (BEA) and its analogue beauvericin G1 (BEA G1), which are cyclohexadepsipeptides isolated from fungi. BEA and BEA G1 significantly suppressed the growth, clonogenicity, migration, and invasion of A375SM human melanoma cells and promoted caspase-dependent apoptosis through upregulation of death receptors, as well as modulation of pro- and anti-apoptotic Bcl-2 family members. Furthermore, the effects of BEA and BEA G1 were associated with the suppression of multiple molecular targets that play crucial roles in melanoma oncogenesis, including ERK, JNK, p38, NF-κB, STAT3, and MITF. Notably, the cytotoxic efficacy of BEA G1 against A375SM cells was stronger than that of BEA. These findings suggest that BEA and BEA G1 can be further investigated as potent cytotoxic natural compounds for the suppression of melanoma progression.
Collapse
|
56
|
Alqathama A. BRAF in malignant melanoma progression and metastasis: potentials and challenges. Am J Cancer Res 2020; 10:1103-1114. [PMID: 32368388 PMCID: PMC7191094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 03/05/2020] [Indexed: 06/11/2023] Open
Abstract
Recent advances in gene sequencing have shown that activated BRAF mutations are present in more than 50% of malignant melanomas and contribute to constitutive signals in the MAPK pathway. Besides the importance of its mutations in cell proliferation, BRAF is associated with lymph node, brain and liver metastasis, along with the loss of PTEN expression and ATG5. Knowledge of this genetic alteration has led to the development of personalized and targeted therapy strategies which block different pathways driving melanoma pathogenesis. Several targeted therapy agents such as vemurafenib, dabrafenib and encorafenib have been approved by the FDA as BRAF inhibitors, as well as other immunotherapies such as anti-CTLA-4 (ipilimumab). However, one of the main challenges is acquired resistance via reactivation of MAPK via CRAF/COT overexpression. Resistance to current BRAF inhibitors is a clinical challenge and one of the strategies to overcome this phenomenon is combination treatment, with the most recently approved combination being BRAF/MEK inhibitors (dabrafenib and trametinib) and BRAF or MEK inhibitors with immunocheckpoint blockers. This review delineates the current role of BRAF in melanoma progression and metastasis. It discusses targeted therapies and resistance mechanisms to BRAF inhibitors, and illustrates strategies to overcome this mechanism with recently approved agents.
Collapse
Affiliation(s)
- Aljawharah Alqathama
- Department of Pharmacognosy, Faculty of Pharmacy, Umm Al-Qura University Makkah, Saudi Arabia
| |
Collapse
|
57
|
Knuever J, Weiss J, Persa OD, Kreuzer K, Mauch C, Hallek M, Schlaak M. The use of circulating cell-free tumor DNA in routine diagnostics of metastatic melanoma patients. Sci Rep 2020; 10:4940. [PMID: 32188904 PMCID: PMC7080785 DOI: 10.1038/s41598-020-61818-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 03/02/2020] [Indexed: 11/09/2022] Open
Abstract
Modern advances in technology such as next-generation sequencing and digital PCR make detection of minor circulating cell-free tumor DNA amounts in blood from cancer patients possible. Samples can be obtained minimal-invasively, tested for treatment-determining genetic alterations and are considered to reflect the genetic constitution of the whole tumor mass. Furthermore, tumor development can be determined by a time course of the quantified circulating cell-free tumor DNA. However, systematic studies which prove the clinical relevance of monitoring patients using liquid biopsies are still lacking. In this study, we collected 115 samples from 47 late stage melanoma patients over 1.5 years alongside therapy-associated clinical routine monitoring. Mutation status was confirmed by molecular analysis of primary tumor material. We can show that detectable levels of circulating cell-free tumor DNA correlate with clinical development over time. Increasing levels of circulating cell-free tumor DNA during melanoma treatment with either targeted therapy (BRAF/MEK inhibitors) or immunotherapy, during recovery time or the intervals between last treatment cycle and second-line treatment point towards clinical progression before the progression becomes obvious in imaging. Therefore, this is a further possibility to closely screen our patients for tumor progression during therapy, in therapy-free phases and in earlier stages before therapy initiation.
Collapse
Affiliation(s)
- Jana Knuever
- Department of Dermatology and Venerology, University of Cologne, Cologne, Germany.
- Center of Integrated Oncology (CIO), Cologne, Germany.
| | - Jonathan Weiss
- Center of Integrated Oncology (CIO), Cologne, Germany
- Clinic I for Internal Medicine, University Hospital of Cologne, Cologne, Germany
| | - Oana-Diana Persa
- Department of Dermatology and Venerology, University of Cologne, Cologne, Germany
- Center of Integrated Oncology (CIO), Cologne, Germany
| | - Karl Kreuzer
- Center of Integrated Oncology (CIO), Cologne, Germany
- Clinic I for Internal Medicine, University Hospital of Cologne, Cologne, Germany
| | - Cornelia Mauch
- Department of Dermatology and Venerology, University of Cologne, Cologne, Germany
- Center of Integrated Oncology (CIO), Cologne, Germany
| | - Michael Hallek
- Center of Integrated Oncology (CIO), Cologne, Germany
- Clinic I for Internal Medicine, University Hospital of Cologne, Cologne, Germany
| | - Max Schlaak
- Department of Dermatology and Venerology, University of Cologne, Cologne, Germany
- Center of Integrated Oncology (CIO), Cologne, Germany
- Department of Dermatology and Allergology, Hospital of the Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| |
Collapse
|
58
|
Valenti MT, Marchetto G, Perduca M, Tiso N, Mottes M, Dalle Carbonare L. BEL β-Trefoil Reduces the Migration Ability of RUNX2 Expressing Melanoma Cells in Xenotransplanted Zebrafish. Molecules 2020; 25:molecules25061270. [PMID: 32168858 PMCID: PMC7143993 DOI: 10.3390/molecules25061270] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 03/01/2020] [Accepted: 03/09/2020] [Indexed: 01/24/2023] Open
Abstract
RUNX2, a master osteogenic transcript ion factor, is overexpressed in several cancer cells; in melanoma it promotes cells migration and invasion as well as neoangiogenesis. The annual mortality rates related to metastatic melanoma are high and novel agents are needed to improve melanoma patients’ survival. It has been shown that lectins specifically target malignant cells since they present the Thomsen–Friedenreich antigen. This disaccharide is hidden in normal cells, while it allows selective lectins binding in transformed cells. Recently, an edible lectin named BEL β-trefoil has been obtained from the wild mushroom Boletus edulis. Our previous study showed BEL β-trefoil effects on transcription factor RUNX2 downregulation as well as on the migration ability in melanoma cells treated in vitro. Therefore, to better understand the role of this lectin, we investigated the BEL β-trefoil effects in a zebrafish in vivo model, transplanted with human melanoma cells expressing RUNX2. Our data showed that BEL β-trefoil is able to spread in the tissues and to reduce the formation of metastases in melanoma xenotransplanted zebrafish. In conclusion, BEL β-trefoil can be considered an effective biomolecule to counteract melanoma disease.
Collapse
Affiliation(s)
- Maria Teresa Valenti
- Department of Medicine, University of Verona, University of Verona, Ple Scuro, 10, 37100 Verona, Italy; (G.M.); (L.D.C.)
- Correspondence: ; Tel.:+390-458-128-450
| | - Giulia Marchetto
- Department of Medicine, University of Verona, University of Verona, Ple Scuro, 10, 37100 Verona, Italy; (G.M.); (L.D.C.)
| | - Massimiliano Perduca
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy;
| | - Natascia Tiso
- Department of Biology, University of Padova, I-35131 Padova, Italy;
| | - Monica Mottes
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 10, 37100 Verona, Italy;
| | - Luca Dalle Carbonare
- Department of Medicine, University of Verona, University of Verona, Ple Scuro, 10, 37100 Verona, Italy; (G.M.); (L.D.C.)
| |
Collapse
|
59
|
Dedifferentiated Carcinoma of the Endometrium Associated With Low-grade Müllerian Adenosarcoma. Int J Gynecol Pathol 2020; 39:141-145. [DOI: 10.1097/pgp.0000000000000584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
60
|
Garg S, Grenier S, Misyura M, Sukhai MA, Thomas M, Kamel-Reid S, Stockley T. Assessing the Diagnostic Yield of Targeted Next-Generation Sequencing for Melanoma and Gastrointestinal Tumors. J Mol Diagn 2020; 22:467-475. [PMID: 32036084 DOI: 10.1016/j.jmoldx.2019.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 11/19/2019] [Accepted: 12/20/2019] [Indexed: 12/21/2022] Open
Abstract
A common rationale in molecular diagnostic laboratories is that implementation of next-generation sequencing (NGS) enables simultaneous multigene testing, allowing increased information benefit compared with non-NGS assays. However, minimal published data exist to support this justification. The current study compared clinical diagnostic yield of TruSight Tumor 26 Sequencing Panel (TST26) in melanoma, colorectal (CRC), and gastrointestinal stromal (GIST) tumors with non-NGS assays. A total of 1041 formalin-fixed, paraffin-embedded tumors, of melanoma, CRC, and GIST, were profiled. NGS results were compared with non-NGS single-gene or single-variant assays with respect to variant output and diagnostic yield. A total of 79% melanoma and 94% CRC tumors were variant positive by panel testing. TST26 panel improved serine/threonine-protein kinase B-raf (BRAF) variant detection in melanoma compared with single-variant BRAF Val600Glu/Lys (V600E/K) routine tests by 24% and detected variants in genes other than BRAF, NRAS, and KIT, which could impact patient management in 20% additional cases. NGS enhanced diagnostic yield in CRC by 36% when compared with routine single-gene assays. In contrast, no added benefit of NGS-based testing for GIST tumors was observed. TST26 panel either missed or inaccurately called complex insertion/deletion variants in KIT exon 11, which were accurately identified by non-NGS methods. Findings of this study demonstrate the differential impact of cancer site and variant type on diagnostic test information yield from NGS assays.
Collapse
Affiliation(s)
- Swati Garg
- Advanced Molecular Diagnostics Laboratory, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario
| | - Sylvie Grenier
- Division of Genome Diagnostics, Department of Clinical Laboratory Genetics, Laboratory Medicine Program, University Health Network, Toronto, Ontario; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Maksym Misyura
- Advanced Molecular Diagnostics Laboratory, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario
| | - Mahadeo A Sukhai
- Advanced Molecular Diagnostics Laboratory, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario
| | - Mariam Thomas
- Advanced Molecular Diagnostics Laboratory, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario
| | - Suzanne Kamel-Reid
- Advanced Molecular Diagnostics Laboratory, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario; Division of Genome Diagnostics, Department of Clinical Laboratory Genetics, Laboratory Medicine Program, University Health Network, Toronto, Ontario; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Tracy Stockley
- Advanced Molecular Diagnostics Laboratory, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario; Division of Genome Diagnostics, Department of Clinical Laboratory Genetics, Laboratory Medicine Program, University Health Network, Toronto, Ontario; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
61
|
The miRNAs Role in Melanoma and in Its Resistance to Therapy. Int J Mol Sci 2020; 21:ijms21030878. [PMID: 32013263 PMCID: PMC7037367 DOI: 10.3390/ijms21030878] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/20/2020] [Accepted: 01/26/2020] [Indexed: 12/11/2022] Open
Abstract
Melanoma is the less common but the most malignant skin cancer. Since the survival rate of melanoma metastasis is about 10–15%, many different studies have been carried out in order to find a more effective treatment. Although the development of target-based therapies and immunotherapeutic strategies has improved chances for patient survival, melanoma treatment still remains a big challenge for oncologists. Here, we collect recent data about the emerging role of melanoma-associated microRNAs (miRNAs) currently available treatments, and their involvement in drug resistance. We also reviewed miRNAs as prognostic factors, because of their chemical stability and resistance to RNase activity, in melanoma progression. Moreover, despite miRNAs being considered small conserved regulators with the limitation of target specificity, we outline the dual role of melanoma-associated miRNAs, as oncogenic and/or tumor suppressive factors, compared to other tumors.
Collapse
|
62
|
Zi Z, Zhang Y, Zhang P, Ding Q, Chu M, Chen Y, Minna JD, Yu Y. A Proteomic Connectivity Map for Characterizing the Tumor Adaptive Response to Small Molecule Chemical Perturbagens. ACS Chem Biol 2020; 15:140-150. [PMID: 31846293 DOI: 10.1021/acschembio.9b00694] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A powerful means to understand the cellular function of corrupt oncogenic signaling programs requires perturbing the system and monitoring the downstream consequences. Here, using a unique pair of non-small cell lung cancer (NSCLC)/normal lung epithelial patient-derived cell lines (HCC4017/HBEC30KT), we systematically interrogated the remodeling of the NSCLC proteome upon treatment with 35 chemical perturbagens targeting a diverse array of mechanistic classes. HCC4017 and HBEC30KT cells differ significantly in their proteomic response to the same compound treatment. Using protein covariance analyses, we identified a large number of functional protein networks. For example, we found that a poorly studied protein, C5orf22, is a novel component of the WBP11/PQBP1 splicing complex. Depletion of C5orf22 leads to the aberrant splicing and expression of genes involved in cell growth and immunomodulation. In summary, we show that by systematically measuring the tumor adaptive responses at the proteomic level, an understanding could be generated that provides critical circuit-level biological insights for these pharmacologic perturbagens.
Collapse
Affiliation(s)
- Zhenzhen Zi
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Yajie Zhang
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Peng Zhang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Qing Ding
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Michael Chu
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Yiwen Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - John D. Minna
- Hamon Center for Therapeutic Oncology Research, Departments of Internal Medicine and Pharmacology, Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Yonghao Yu
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas 75390, United States
| |
Collapse
|
63
|
Santos-Buitrago B, Hernández-Galilea E. Signaling Transduction Networks in Choroidal Melanoma: A Symbolic Model Approach. PRACTICAL APPLICATIONS OF COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 13TH INTERNATIONAL CONFERENCE 2020. [DOI: 10.1007/978-3-030-23873-5_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
64
|
Huang D, Roy IJ, Murray GF, Reed J, Zangle TA, Teitell MA. Identifying fates of cancer cells exposed to mitotic inhibitors by quantitative phase imaging. Analyst 2019; 145:97-106. [PMID: 31746831 PMCID: PMC6917840 DOI: 10.1039/c9an01346f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cell cycle deregulation is a cancer hallmark that has stimulated the development of mitotic inhibitors with differing mechanisms of action. Quantitative phase imaging (QPI) is an emerging approach for determining cancer cell sensitivities to chemotherapies in vitro. Cancer cell fates in response to mitotic inhibitors are agent- and dose-dependent. Fates that lead to chromosomal instabilities may result in a survival advantage and drug resistance. Conventional techniques for quantifying cell fates are incompatible with growth inhibition assays that produce binary live/dead results. Therefore, we used QPI to quantify post-mitotic fates of G0/G1 synchronized HeLa cervical adenocarcinoma and M202 melanoma cells during 24 h of escalating-dose exposures to mitotic inhibitors, including microtubule inhibitors paclitaxel and colchicine, and an Aurora kinase A inhibitor, VX-680. QPI determined cell fates by measuring changes in cell biomass, morphology, and mean phase-shift. Cell fates fell into three groups: (1) bipolar division from drug failure; (2) cell death or sustained mitotic arrest; and (3) aberrant endocycling or multipolar division. In this proof-of-concept study, colchicine was most effective in producing desirable outcomes of sustained mitotic arrest or death throughout its dosing range, whereas both paclitaxel and VX-680 yielded dose-dependent multipolar divisions or endocycling, respectively. Furthermore, rapid completion of mitosis associated with bipolar divisions whereas prolonged mitosis associated with multipolar divisions or cell death. Overall, QPI measurement of drug-induced cancer cell fates provides a tool to inform the development of candidate agents by quantifying the dosing ranges over which suboptimal inhibitor choices lead to undesirable, aberrant cancer cell fates.
Collapse
Affiliation(s)
- Dian Huang
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA.
| | | | | | | | | | | |
Collapse
|
65
|
Carr MJ, Sun J, Eroglu Z, Zager JS. An evaluation of encorafenib for the treatment of melanoma. Expert Opin Pharmacother 2019; 21:155-161. [PMID: 31790307 DOI: 10.1080/14656566.2019.1694664] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Introduction: In the treatment of advanced BRAF-mutant melanoma, selective regulation of the MAPK pathway with BRAF and MEK inhibition has emerged as one of the mainstays of therapy.Areas covered: The authors present the current data on encorafenib as a compound, its pharmacokinetic and pharmacodynamics properties. This review includes current data on encorafenib therapy as a single agent as well as in combination with the MEK-inhibitor binimetinib and other systemic therapies.Expert opinion: BRAF inhibition with encorafenib exhibits substantial antitumor activity with less paradoxical MAPK pathway activation leading to treatment resistance. Combination therapy with MEK inhibitors improves response rate, progression-free survival, and overall survival in patients with BRAF-mutant metastatic melanoma compared to prior treatment regimens. Serious adverse events, including the development of cutaneous malignancies, are reported at lower rates with combination therapy, while less severe events such as pyrexia can be more common. Existing data is lacking for a recommendation of triplet therapy, although results from multiple ongoing trials are highly anticipated.
Collapse
Affiliation(s)
- Michael J Carr
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - James Sun
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Zeynep Eroglu
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Jonathan S Zager
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|
66
|
Yang X, Zhu X, Yan Z, Li C, Zhao H, Ma L, Zhang D, Liu J, Liu Z, Du N, Ye Q, Xu X. miR-489-3p/SIX1 Axis Regulates Melanoma Proliferation and Glycolytic Potential. MOLECULAR THERAPY-ONCOLYTICS 2019; 16:30-40. [PMID: 32258386 PMCID: PMC7109510 DOI: 10.1016/j.omto.2019.11.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 11/13/2019] [Indexed: 12/24/2022]
Abstract
Sine oculis homeobox 1 (SIX1), a key transcription factor for regulating aerobic glycolysis, participates in the occurrence of various cancer types. However, the role of SIX1 in melanoma and the upstream regulating mechanisms of SIX1 remain to be further investigated. MicroRNAs (miRNAs) have emerged as key regulators in tumorigenesis and progression. Here, we show that miR-489-3p suppresses SIX1 expression by directly targeting its 3′ untranslated region (3′ UTR) in melanoma cells. miR-489-3p suppressed melanoma cell proliferation, migration, and invasion through inhibition of SIX1. Mechanistically, by targeting SIX1, miR-489-3p dampens glycolysis, with decreased glucose uptake, lactate production, ATP generation, and extracellular acidification rate (ECAR), as well as an increased oxygen consumption rate (OCR). Importantly, glycolysis regulated by the miR-489-3p/SIX1 axis is critical for its regulation of melanoma growth and metastasis both in vitro and in vivo. In melanoma patients, miR-489-3p expression is negatively correlated with SIX1 expression. In addition, patients who had increased glucose uptake in tumors and with metastasis assessed by positron emission tomography (PET) scans showed decreased miR-489-3p expression and increased expression of SIX1. Collectively, our study demonstrates the importance of the miR-489-3p/SIX1 axis in melanoma, which can be a potential and a promising therapeutic target in melanoma.
Collapse
Affiliation(s)
- Xuhui Yang
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, No. 27 Taiping Road, Beijing 100850, China.,Department of Oncology, the 4th Medical Centre, PLA General Hospital, No. 51 Fucheng Road, Beijing 100191, China
| | - Xiang Zhu
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, No. 27 Taiping Road, Beijing 100850, China
| | - Zhifeng Yan
- Department of Oncology, the 4th Medical Centre, PLA General Hospital, No. 51 Fucheng Road, Beijing 100191, China
| | - Chenxi Li
- Department of Oncology, the 4th Medical Centre, PLA General Hospital, No. 51 Fucheng Road, Beijing 100191, China
| | - Hui Zhao
- Department of Oncology, the 4th Medical Centre, PLA General Hospital, No. 51 Fucheng Road, Beijing 100191, China
| | - Luyuan Ma
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, No. 27 Taiping Road, Beijing 100850, China
| | - Deyu Zhang
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, No. 27 Taiping Road, Beijing 100850, China
| | - Juan Liu
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, No. 27 Taiping Road, Beijing 100850, China
| | - Zihao Liu
- Department of Oncology, the 4th Medical Centre, PLA General Hospital, No. 51 Fucheng Road, Beijing 100191, China
| | - Nan Du
- Department of Oncology, the 4th Medical Centre, PLA General Hospital, No. 51 Fucheng Road, Beijing 100191, China
| | - Qinong Ye
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, No. 27 Taiping Road, Beijing 100850, China.,The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan Province 450052, China
| | - Xiaojie Xu
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, No. 27 Taiping Road, Beijing 100850, China
| |
Collapse
|
67
|
Garzón-Orjuela N, Prieto-Pinto L, Lasalvia P, Herrera D, Castrillón J, González-Bravo D, Castañeda-Cardona C, Rosselli D. Efficacy and safety of dabrafenib-trametinib in the treatment of unresectable advanced/metastatic melanoma with BRAF-V600 mutation: A systematic review and network meta-analysis. Dermatol Ther 2019; 33:e13145. [PMID: 31664762 DOI: 10.1111/dth.13145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/18/2019] [Accepted: 10/26/2019] [Indexed: 12/19/2022]
Abstract
The current systematic review aimed to evaluate and compare the efficacy and safety of dabrafenib-trametinib with those of other therapeutic alternatives in the treatment of patients with unresectable advanced/metastatic melanoma with BRAF-V600 mutation. The search was carried out on four databases up to July 2018. Two separate network meta-analyses (NMA) were performed using the frequentist method (random effects): one with an exclusive population with BRAF-V600 mutation (NMA-pBRAFV600) and another with mixed population (with or without the mutation: NMA-pMixed). An evidence profile was included using the GRADE method for NMA. The validity of the final estimator in the NMA-pMixed was assessed via a sensitivity analysis. Nine clinical trials were included in the NMA-pBRAFV600. Dabrafenib-trametinib was found to have a favorable effect on overall survival (OS) and progression-free survival (PFS) compared with dabrafenib, vemurafenib, and dacarbazine and on partial response rate (PRR) and overall response rate compared with dacarbazine and vemurafenib. In the NMA-pMixed, dabrafenib-trametinib was found to have a positive effect on OS versus ipilimumab 3 mg/kg and on PFS and PRR versus ipilimumab, nivolumab, and pembrolizumab. However, dabrafenib-trametinib and vemurafenib-cobimetinib significantly differed in terms of efficacy. In addition, dabrafenib-trametinib has a favorable effect on Grades 3 and 4 adverse events.
Collapse
Affiliation(s)
| | | | | | - Daniel Herrera
- Department of Medical - Oncology Unit, Novartis, Bogotá, Colombia
| | | | | | | | - Diego Rosselli
- Department of Evidence-Based Medicine, NeuroEconomix, Bogotá, Colombia.,Clinical Epidemiology and Biostatistics Department, Pontificia Universidad Javeriana, Medical School, Bogotá, Colombia
| |
Collapse
|
68
|
Abstract
Targeted BRAF and MEK inhibition has become an appropriate first-line treatment of BRAF-mutant advanced cutaneous melanoma. The authors present an overview of the MAPK pathway as well as the other major pathways implicated in melanoma development. Melanoma brain metastases are a devastating complication of melanoma that can be traced to derangements in cell signaling pathways, and the current evidence for targeted therapy is reviewed. Finally, activating KIT mutations are rarely found to cause melanomas and may provide an actionable target for therapy. The authors review the current evidence for targeted KIT therapy and summarize the ongoing clinical trials.
Collapse
Affiliation(s)
- James Sun
- Department of Cutaneous Oncology, Moffitt Cancer Center, 10920 North McKinley Drive, 4th Floor, Tampa, FL 33612, USA
| | - Michael J Carr
- Department of Cutaneous Oncology, Moffitt Cancer Center, 10920 North McKinley Drive, 4th Floor, Tampa, FL 33612, USA
| | - Nikhil I Khushalani
- Department of Cutaneous Oncology, Moffitt Cancer Center, 10920 North McKinley Drive, 4th Floor, Tampa, FL 33612, USA.
| |
Collapse
|
69
|
Li L, Zhang S, Li H, Chou H. FGFR3 promotes the growth and malignancy of melanoma by influencing EMT and the phosphorylation of ERK, AKT, and EGFR. BMC Cancer 2019; 19:963. [PMID: 31619201 PMCID: PMC6796326 DOI: 10.1186/s12885-019-6161-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 09/13/2019] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Overexpression of fibroblast growth factor receptor 3 (FGFR3) has been linked to tumor progression in many types of cancer. The role of FGFR3 in melanoma remains unclear. In this study, we aimed to uncover the role of FGFR3 in the growth and metastasis of melanoma. METHODS FGFR3 knockdown and overexpression strategies were employed to investigate the effects of FGFR3 on colony formation, cell apoptosis, proliferation, migration, and in vitro invasion, along with the growth and metastasis of melanoma in a xenografts mouse model. The protein expression levels of extracellular signal-regulated kinase (ERK), protein kinase B (AKT), epidermal growth factor receptor (EGFR), and epithelial-mesenchymal transition (EMT) markers were determined by Western blot analysis. RESULTS The mRNA expression of FGFR3 was higher in melanoma tissues than normal healthy tissues. FGFR3 expression in cutaneous malignant melanoma (CMM) tissues was positively correlated with the Breslow thickness and lymph node metastasis. In A357 cells, knockdown of the FGFR3 gene decreased the colony formation ability, cell proliferation, invasion, and migration, but increased the caspase 3 activity and the apoptosis rate; overexpression of FGFR3 increased the colony formation ability, cell proliferation, invasion, and migration, but decreased the caspase 3 activity and apoptosis rates. FGFR3 knockdown also upregulated E-cadherin, downregulated N-cadherin and vimentin, and decreased the phosphorylation levels of ERK, AKT, and EGFR. In the MCC xenografts mice, knockdown of FGFR3 decreased tumor growth and metastasis. CONCLUSIONS FGFR3, which is highly expressed in CMM tissues, is correlated with increased Breslow thickness and lymph node metastasis. FGFR3 promotes melanoma growth, metastasis, and EMT behaviors, likely by affecting the phosphorylation levels of ERK, AKT, and EGFR.
Collapse
MESH Headings
- Animals
- Antigens, CD/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cadherins/metabolism
- Cell Line, Tumor
- Cell Movement/genetics
- Cell Proliferation/genetics
- Epithelial-Mesenchymal Transition/genetics
- ErbB Receptors/metabolism
- Heterografts
- Humans
- MAP Kinase Signaling System
- Male
- Melanoma/metabolism
- Melanoma/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasm Invasiveness/genetics
- Phosphorylation
- Proto-Oncogene Proteins c-akt/metabolism
- Receptor, Fibroblast Growth Factor, Type 3/genetics
- Receptor, Fibroblast Growth Factor, Type 3/metabolism
- Skin Neoplasms/metabolism
- Skin Neoplasms/pathology
- Transfection
- Vimentin/metabolism
- Melanoma, Cutaneous Malignant
Collapse
Affiliation(s)
- Lei Li
- Department of Plastic and Cosmetic Surgery, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, 450003 Henan China
| | - Shuai Zhang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan China
| | - Hao Li
- Department of Plastic and Cosmetic Surgery, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, 450003 Henan China
| | - Haiyan Chou
- Department of Plastic and Cosmetic Surgery, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, 450003 Henan China
| |
Collapse
|
70
|
Benitez MLR, Bender CB, Oliveira TL, Schachtschneider KM, Collares T, Seixas FK. Mycobacterium bovis BCG in metastatic melanoma therapy. Appl Microbiol Biotechnol 2019; 103:7903-7916. [PMID: 31402426 DOI: 10.1007/s00253-019-10057-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/22/2019] [Accepted: 07/26/2019] [Indexed: 12/13/2022]
Abstract
Melanoma is the most aggressive form of skin cancer, with a high mortality rate and with 96,480 new cases expected in 2019 in the USS. BRAFV600E, the most common driver mutation, is found in around 50% of melanomas, contributing to tumor growth, angiogenesis, and metastatic progression. Dacarbazine (DTIC), an alkylate agent, was the first chemotherapeutic agent approved by the US Food and Drug Administration (FDA) used as a standard treatment. Since then, immunotherapies have been approved for metastatic melanoma (MM) including ipilimumab and pembrolizumab checkpoint inhibitors that help decrease the risk of progression. Moreover, Mycobacterium bovis Bacillus Calmette-Guerin (BCG) serves as an adjuvant therapy that induces the recruitment of natural killer NK, CD4+, and CD8+ T cells and contributes to antitumor immunity. BCG can be administered in combination with chemotherapeutic and immunotherapeutic agents and can be genetically manipulated to produce recombinant BCG (rBCG) strains that express heterologous proteins or overexpress immunogenic proteins, increasing the immune response and improving patient survival. In this review, we highlight several studies utilizing rBCG immunotherapy for MM in combination with other therapeutic agents.
Collapse
Affiliation(s)
- Martha Lucia Ruiz Benitez
- Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Camila Bonnemann Bender
- Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Thaís Larré Oliveira
- Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Kyle M Schachtschneider
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA.,Department of Biochemistry & Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA.,National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Tiago Collares
- Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Fabiana Kömmling Seixas
- Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil.
| |
Collapse
|
71
|
Pedini F, De Luca G, Felicetti F, Puglisi R, Boe A, Arasi MB, Fratini F, Mattia G, Spada M, Caporali S, Biffoni M, Giuliani A, Carè A, Felli N. Joint action of miR-126 and MAPK/PI3K inhibitors against metastatic melanoma. Mol Oncol 2019; 13:1836-1854. [PMID: 31115969 PMCID: PMC6717748 DOI: 10.1002/1878-0261.12506] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 04/17/2019] [Accepted: 05/20/2019] [Indexed: 02/03/2023] Open
Abstract
Emerging data support the rationale of combined therapies in advanced melanoma. Specifically, the combined use of drugs with different mechanisms of action can reduce the probability of selecting resistant clones. To identify agents active against melanoma cells, we screened a library of 349 anti‐cancer compounds, currently in clinical use or trials, and selected PIK‐75, an inhibitor of the phosphatidylinositol 3‐kinase/protein kinase B (PI3K/AKT) pathway, as the ‘top active’ drug. PIK‐75 was then used alone or in combination with vemurafenib, the first BRAF inhibitor approved for patients with melanoma harboring BRAF mutations. We identified a combined dose of PIK‐75 and vemurafenib that inhibited both the PI3K/AKT and mitogen‐activated protein kinase pathways, thereby overcoming any compensatory activation. In view of the important tumor suppressor function induced by restoring expression of microRNA (miR)‐126 in metastatic melanoma cells, we examined whether miR‐126 has a synergistic role when included in a triple combination alongside PIK‐75 and vemurafenib. We found that enforced expression of miR‐126 (which alone can reduce tumorigenicity) significantly increased PIK‐75 activity when used as either a single agent or in combination with vemurafenib. Interestingly, PIK‐75 proved to be effective against early passage cell lines derived from patients’ biopsies and on melanoma cell lines resistant to either vemurafenib or dabrafenib, thus suggesting that it potentially has the capability to overcome drug resistance. Finally, the synergistic role played by miR‐126 in combination with vemurafenib and/or PIK‐75 was demonstrated in vivo in mouse xenograft models, in which tumor growth inhibition was associated with increased apoptosis. These results not only show the efficacy of PIK‐75 and vemurafenib co‐treatment but also indicate that restoration of miR‐126 expression in advanced melanoma can enhance their antitumor activity, which may possibly allow dose reduction to decrease adverse events without reducing the therapeutic benefits.
Collapse
Affiliation(s)
- Francesca Pedini
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Gabriele De Luca
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Federica Felicetti
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Rossella Puglisi
- Center for Gender Medicine, Oncology Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Alessandra Boe
- Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Beatrice Arasi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | - Gianfranco Mattia
- Center for Gender Medicine, Oncology Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Massimo Spada
- Center of Animal Research and Welfare, Istituto Superiore di Sanità, Rome, Italy
| | - Simona Caporali
- Laboratory of Molecular Oncology, Istituto Dermopatico dell'Immacolata-IRCCS, Rome, Italy
| | - Mauro Biffoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Alessandro Giuliani
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Alessandra Carè
- Center for Gender Medicine, Oncology Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Nadia Felli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
72
|
Systemic therapy for brain metastases. Crit Rev Oncol Hematol 2019; 142:44-50. [PMID: 31357143 DOI: 10.1016/j.critrevonc.2019.07.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 06/30/2019] [Accepted: 07/14/2019] [Indexed: 02/07/2023] Open
Abstract
Metastases from cells outside of the central nervous system are the most common cancer found in the brain and are commonly associated with poor prognosis. Although cancer treatment is improving overall, central nervous system metastases are becoming more prevalent and require finesse to properly treat. Physicians must consider the biology of the primary tumor and the complex neurological environment that the metastasis resides in. This can be further complicated by the fact that the practice of cancer management is constantly evolving and therapy that works outside of the blood-brain barrier may not be effective inside of it. Therefore, this review seeks to update the reader on recent advancements made on the three most common sources of brain metastases: lung cancer, breast cancer, and melanoma. Each of these malignancies has been the subject of intriguing and novel avenues of therapy which are reviewed here.
Collapse
|
73
|
Hu H, Dong Z, Wang X, Bai L, Lei Q, Yang J, Li L, Li Q, Liu L, Zhang Y, Ji Y, Guo L, Liu Y, Cui H. Dehydrocorydaline inhibits cell proliferation, migration and invasion via suppressing MEK1/2-ERK1/2 cascade in melanoma. Onco Targets Ther 2019; 12:5163-5175. [PMID: 31456643 PMCID: PMC6620435 DOI: 10.2147/ott.s183558] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 05/01/2019] [Indexed: 12/20/2022] Open
Abstract
Purpose: Alkaloids are naturally occurring chemical compounds that are widely distributed in plants, and have pharmaceutical values and low toxicity. In recent years, some of them have been demonstrated to be promising therapeutic drug candidates for cancer treatment. Herein, we tried to explore the antitumor effect of dehydrocorydaline (DHC), a natural alkaloid isolated from Corydalis, on malignant melanoma. Methods: We treated two malignant metastatic melanoma cell lines, A375 and MV3, and a normal melanocyte cell line, PIG1, with various concentrations of DHC for set amounts of time, and detected cell proliferation, migration, and invasion by using MTT, BrdU, transwell, Western blot and soft agar assay in vitro and tumorigenicity in the xenografts in vivo. Results: Our results showed that DHC dramatically blocked cell proliferation and led to cell cycle arrest at G0/G1 phase and downregulated the expressions of cell cycle regulators CDK6 and Cyclin D1 in melanoma cells. However, DHC had little inhibitory effect on normal melanocyte cell line PIG-1. Meanwhile, DHC suppressed cell invasion and migration through modulating the epithelial–mesenchymal transition (EMT) markers including E-cadherin, vimentin, as well as β-catenin. In addition, DHC also significantly attenuated tumor growth in vivo. The expressions of cell cycle-related and metastasis-related proteins were further confirmed by immunohistochemical staining in the xenografts. Importantly, MEK1/2-ERK1/2 cascade was inactivated after DHC treatment and ERK activator t-butylhydroquinone (tBHQ) treatment rescued DHC-induced cell proliferation inhibition. Conclusions: Our results indicated that DHC inhibited cell proliferation and migration/invasion via inactivating MAPK signaling, and showed that DHC might be a potential novel drug to treat malignant melanoma.
Collapse
Affiliation(s)
- Huanrong Hu
- Department of Dermatology, the Third Hospital of Hebei Medical University, Shijiazhuang 050000, People's Republic of China.,State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, People's Republic of China
| | - Zhen Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, People's Republic of China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing 400715, People's Republic of China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing 400715, People's Republic of China
| | - Xianxing Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, People's Republic of China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing 400715, People's Republic of China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing 400715, People's Republic of China
| | - Longchang Bai
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, People's Republic of China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing 400715, People's Republic of China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing 400715, People's Republic of China
| | - Qian Lei
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, People's Republic of China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing 400715, People's Republic of China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing 400715, People's Republic of China
| | - Jie Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, People's Republic of China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing 400715, People's Republic of China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing 400715, People's Republic of China
| | - Lin Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, People's Republic of China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing 400715, People's Republic of China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing 400715, People's Republic of China
| | - Qian Li
- Department of Dermatology, the Third Hospital of Hebei Medical University, Shijiazhuang 050000, People's Republic of China.,State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, People's Republic of China
| | - Lichao Liu
- Department of Dermatology, the Third Hospital of Hebei Medical University, Shijiazhuang 050000, People's Republic of China.,State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, People's Republic of China
| | - Yanli Zhang
- Department of Dermatology, the Third Hospital of Hebei Medical University, Shijiazhuang 050000, People's Republic of China
| | - Yacong Ji
- Department of Dermatology, the Third Hospital of Hebei Medical University, Shijiazhuang 050000, People's Republic of China
| | - Leiyang Guo
- Department of Dermatology, the Third Hospital of Hebei Medical University, Shijiazhuang 050000, People's Republic of China
| | - Yaling Liu
- Department of Dermatology, the Third Hospital of Hebei Medical University, Shijiazhuang 050000, People's Republic of China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, People's Republic of China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing 400715, People's Republic of China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing 400715, People's Republic of China
| |
Collapse
|
74
|
Primary malignant melanoma of esophagus: clinicopathologic characterization of 20 cases including molecular genetic profiling of 15 tumors. Mod Pathol 2019; 32:957-966. [PMID: 30760858 PMCID: PMC8210848 DOI: 10.1038/s41379-018-0163-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/01/2018] [Accepted: 10/01/2018] [Indexed: 02/08/2023]
Abstract
Primary malignant melanoma of esophagus is very rare, and its clinicopathologic and genetic features have not been extensively investigated. In this study, 20 tumors from 14 male and 6 female patients (40-79 years old) were evaluated. Dysphagia, chest pain, and weight loss were frequent symptoms. Thirteen melanomas, including two with multiple lesions, involved the distal third of esophagus. The median tumor diameter was 6 cm. Epithelioid morphology, moderate atypia, and pigmentation were typical findings. None of the patients had melanoma elsewhere, and all tumors exhibited a junctional peri-epithelial component consistent with a primary lesion. The median mitotic activity was 11 per 10 high-power fields (range, 0-31). Nine patients died of tumor within 4-22 months, however, two showed long-term (96 and 104 months) survival. In 15 cases, tissue for further immunohistochemical and molecular studies were available. BRAF, KIT, and NRAS mutation status was assessed by Sanger sequencing in all 15 tumors. The next-generation sequencing of 50 or 409 genes was performed in five and three cases, respectively. IGF1R expression indicating activation of the IGF axis was seen in 82% (9/11) of tumors. However, no BRAF mutations were identified. In 33% (5/15) of tumors, NRAS mutations were detected. KIT expression was seen in 50% (7/14) of melanomas including single KIT mutant. Two of three tumors evaluated with 409 genes panel revealed multiple driver mutations indicating sub-clonal expansion, whereas a single mutation (TSC1 p.H371Q) was the sole change in the third case. SF3B1 p.K666T and p.R625C mutations were detected in two cases. However, no co-occurrence of SF3B1 and GNAQ or GNA11 mutations, seen in uveal melanoma, was detected. FBXW7 p.R465C and p.R479G mutations, linked to cancer progression, were found in two of eight tumors. In summary, esophageal melanoma mutation profile indicates complexity of molecular mechanisms underlying its pathogenesis.
Collapse
|
75
|
Meister KS, Godse NR, Khan NI, Hedberg ML, Kemp C, Kulkarni S, Alvarado D, LaVallee T, Kim S, Grandis JR, Duvvuri U. HER3 targeting potentiates growth suppressive effects of the PI3K inhibitor BYL719 in pre-clinical models of head and neck squamous cell carcinoma. Sci Rep 2019; 9:9130. [PMID: 31235758 PMCID: PMC6591241 DOI: 10.1038/s41598-019-45589-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 06/06/2019] [Indexed: 12/28/2022] Open
Abstract
BYL719 is a PI3K inhibitor that has demonstrated efficacy in the treatment of head and neck squamous cell carcinoma. BYL719 exerts its therapeutic effect by suppressing AKT and other proliferative signaling mechanisms. Despite PI3K inhibition and AKT suppression, residual activity of protein S6, a core marker of proliferative activation, has been observed. HER3, either via dimerization or activation by its ligand neurgeulin (NRG), is known to activate PI3K. Thus, we hypothesized that co-targeting HER3 and PI3K would lead to greater suppression of the PI3K-AKT signaling pathway and greater tumor suppression than with BYL719 alone. We investigated biochemical expression and activation of the HER3-PI3K-AKT-S6 pathway in HNSCC cell lines and patient-derived xenografts (PDXs). Antitumor effects of HER3 and PI3K inhibitors alone and in combination were evaluated in cell culture and murine models. Treatment of HNSCC cell lines with BYL719 significantly reduced AKT activation and suppressed tumor growth. However, S6 was persistently activated despite suppression of AKT. Combination treatment with KTN3379, a monoclonal antibody targeted against HER3, and BYL719 led to enhanced suppression of in vitro and in vivo cancer growth and durable suppression of AKT and S6. Therefore, inhibition of HER3 with KTN3379 enhanced the effects of PI3K inhibition in pre-clinical HNSCC models. These data support co-targeting HER3 and PI3K for the treatment of HSNCC.
Collapse
Affiliation(s)
- Kara S Meister
- Department of Otolaryngology-Head & Neck Surgery, University of Pittsburgh Medical Center, Eye and Ear Institute, Suite 500, 200 Lothrop St., Pittsburgh, PA, 15213, USA
| | - Neal R Godse
- Department of Otolaryngology-Head & Neck Surgery, University of Pittsburgh Medical Center, Eye and Ear Institute, Suite 500, 200 Lothrop St., Pittsburgh, PA, 15213, USA
| | - Nayel I Khan
- Department of Otolaryngology-Head & Neck Surgery, University of Pittsburgh Medical Center, Eye and Ear Institute, Suite 500, 200 Lothrop St., Pittsburgh, PA, 15213, USA
| | - Matthew L Hedberg
- Department of Otolaryngology-Head & Neck Surgery, University of Pittsburgh Medical Center, Eye and Ear Institute, Suite 500, 200 Lothrop St., Pittsburgh, PA, 15213, USA
| | - Carolyn Kemp
- Department of Otolaryngology-Head & Neck Surgery, University of Pittsburgh Medical Center, Eye and Ear Institute, Suite 500, 200 Lothrop St., Pittsburgh, PA, 15213, USA
| | - Sucheta Kulkarni
- Department of Otolaryngology-Head & Neck Surgery, University of Pittsburgh Medical Center, Eye and Ear Institute, Suite 500, 200 Lothrop St., Pittsburgh, PA, 15213, USA
| | | | | | - Seungwon Kim
- Department of Otolaryngology-Head & Neck Surgery, University of Pittsburgh Medical Center, Eye and Ear Institute, Suite 500, 200 Lothrop St., Pittsburgh, PA, 15213, USA
| | - Jennifer R Grandis
- Department of Otolaryngology-Head & Neck Surgery, University of California-San Francisco, San Francisco, CA, USA
| | - Umamaheswar Duvvuri
- Department of Otolaryngology-Head & Neck Surgery, University of Pittsburgh Medical Center, Eye and Ear Institute, Suite 500, 200 Lothrop St., Pittsburgh, PA, 15213, USA.
| |
Collapse
|
76
|
Pereira GJV, Tavares MT, Azevedo RA, Martins BB, Cunha MR, Bhardwaj R, Cury Y, Zambelli VO, Barbosa EG, Hediger MA, Parise-Filho R. Capsaicin-like analogue induced selective apoptosis in A2058 melanoma cells: Design, synthesis and molecular modeling. Bioorg Med Chem 2019; 27:2893-2904. [PMID: 31104785 DOI: 10.1016/j.bmc.2019.05.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/13/2019] [Accepted: 05/12/2019] [Indexed: 01/19/2023]
Abstract
The use of molecules inspired by natural scaffolds has proven to be a very promising and efficient method of drug discovery. In this work, capsaicin, a natural product from Capsicum peppers with antitumor properties, was used as a prototype to obtain urea and thiourea analogues. Among the most promising compounds, the thiourea compound 6g exhibited significant cytotoxic activity against human melanoma A2058 cells that was twice as high as that of capsaicin. Compound 6g induced significant and dose-dependent G0/G1 cell cycle arrest in A2058 cells triggering cell death by apoptosis. Our results suggest that 6g modulates the RAF/MEK/ERK pathway, inducing important morphological changes, such as formation of apoptotic bodies and increased levels of cleaved caspase-3. Compared to capsaicin, 6g had no significant TRPV1/6 agonist effect or irritant effects on mice. Molecular modeling studies corroborate the biological findings and suggest that 6g, besides being a more reactive molecule towards its target, may also present a better pharmacokinetic profile than capsaicin. Inverse virtual screening strategy found MEK1 as a possible biological target for 6g. Consistent with these findings, our observations suggested that 6g could be developed as a potential anticancer agent.
Collapse
Affiliation(s)
- Gustavo José Vasco Pereira
- Laboratory of Design and Synthesis of Bioactive Substances (LAPESSB), Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maurício Temotheo Tavares
- Laboratory of Design and Synthesis of Bioactive Substances (LAPESSB), Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ricardo Alexandre Azevedo
- Experimental Oncology Unit (UNONEX), Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | | | - Micael Rodrigues Cunha
- Laboratory of Design and Synthesis of Bioactive Substances (LAPESSB), Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil; Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Rajesh Bhardwaj
- Institute of Biochemistry and Molecular Medicine, National Center for Competence in Research, NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | - Yara Cury
- Laboratory of Pain and Signaling, Butantan Institute, São Paulo, Brazil
| | | | | | - Matthias A Hediger
- Institute of Biochemistry and Molecular Medicine, National Center for Competence in Research, NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | - Roberto Parise-Filho
- Laboratory of Design and Synthesis of Bioactive Substances (LAPESSB), Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
77
|
Mitsiogianni M, Koutsidis G, Mavroudis N, Trafalis DT, Botaitis S, Franco R, Zoumpourlis V, Amery T, Galanis A, Pappa A, Panayiotidis MI. The Role of Isothiocyanates as Cancer Chemo-Preventive, Chemo-Therapeutic and Anti-Melanoma Agents. Antioxidants (Basel) 2019; 8:E106. [PMID: 31003534 PMCID: PMC6523696 DOI: 10.3390/antiox8040106] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/03/2019] [Accepted: 04/12/2019] [Indexed: 12/11/2022] Open
Abstract
Many studies have shown evidence in support of the beneficial effects of phytochemicals in preventing chronic diseases, including cancer. Among such phytochemicals, sulphur-containing compounds (e.g., isothiocyanates (ITCs)) have raised scientific interest by exerting unique chemo-preventive properties against cancer pathogenesis. ITCs are the major biologically active compounds capable of mediating the anticancer effect of cruciferous vegetables. Recently, many studies have shown that a higher intake of cruciferous vegetables is associated with reduced risk of developing various forms of cancers primarily due to a plurality of effects, including (i) metabolic activation and detoxification, (ii) inflammation, (iii) angiogenesis, (iv) metastasis and (v) regulation of the epigenetic machinery. In the context of human malignant melanoma, a number of studies suggest that ITCs can cause cell cycle growth arrest and also induce apoptosis in human malignant melanoma cells. On such basis, ITCs could serve as promising chemo-therapeutic agents that could be used in the clinical setting to potentiate the efficacy of existing therapies.
Collapse
Affiliation(s)
- Melina Mitsiogianni
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK.
| | - Georgios Koutsidis
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK.
| | - Nikos Mavroudis
- Department of Food and Nutritional Sciences, University of Reading, Reading RG6 6AP, UK.
| | - Dimitrios T Trafalis
- Laboratory of Pharmacology, Unit of Clinical Pharmacology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Sotiris Botaitis
- Second Department of Surgery, Democritus University of Thrace, 68100 Alexandroupolis, Greece.
| | - Rodrigo Franco
- Redox Biology Centre, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| | - Vasilis Zoumpourlis
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece.
| | - Tom Amery
- The Watrercress Company / The Wasabi Company, Waddock, Dorchester, Dorset DT2 8QY, UK.
| | - Alex Galanis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece.
| | - Aglaia Pappa
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece.
| | - Mihalis I Panayiotidis
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK.
| |
Collapse
|
78
|
Baldea I, Giurgiu L, Teacoe ID, Olteanu DE, Olteanu FC, Clichici S, Filip GA. Photodynamic Therapy in Melanoma - Where do we Stand? Curr Med Chem 2019; 25:5540-5563. [PMID: 29278205 DOI: 10.2174/0929867325666171226115626] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 11/21/2017] [Accepted: 11/29/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Malignant melanoma is one of the most aggressive malignant tumors, with unpredictable evolution. Despite numerous therapeutic options, like chemotherapy, BRAF inhibitors and immunotherapy, advanced melanoma prognosis remains severe. Photodynamic therapy (PDT) has been successfully used as the first line or palliative therapy for the treatment of lung, esophageal, bladder, non melanoma skin and head and neck cancers. However, classical PDT has shown some drawbacks that limit its clinical application in melanoma. OBJECTIVE The most important challenge is to overcome melanoma resistance, due to melanosomal trapping, presence of melanin, enhanced oxidative stress defense, defects in the apoptotic pathways, immune evasion, neoangiogenesis stimulation. METHOD In this review we considered: (1) main signaling molecular pathways deregulated in melanoma as potential targets for personalized therapy, including PDT, (2) results of the clinical studies regarding PDT of melanoma, especially advanced metastatic stage, (3) progresses made in the design of anti-melanoma photosensitizers (4) inhibition of tumor neoangiogenesis, as well as (5) advantages of the derived therapies like photothermal therapy, sonodynamic therapy. RESULTS PDT represents a promising alternative palliative treatment for advanced melanoma patients, mainly due to its minimal invasive character and low side effects. Efficient melanoma PDT requires: (1) improved, tumor targeted, NIR absorbing photosensitizers, capable of inducing high amounts of different ROS inside tumor and vasculature cells, possibly allowing a theranostic approach; (2) an efficient adjuvant immune therapy. CONCLUSION Combination of PDT with immune stimulation might be the key to overcome the melanoma resistance and to obtain better, sustainable clinical results.
Collapse
Affiliation(s)
- Ioana Baldea
- Physiology Department, University of Medicine and Pharmacy, Iuliu Hatieganu, Cluj-Napoca, Romania
| | - Lorin Giurgiu
- Physiology Department, University of Medicine and Pharmacy, Iuliu Hatieganu, Cluj-Napoca, Romania
| | - Ioana Diana Teacoe
- Physiology Department, University of Medicine and Pharmacy, Iuliu Hatieganu, Cluj-Napoca, Romania
| | - Diana Elena Olteanu
- Physiology Department, University of Medicine and Pharmacy, Iuliu Hatieganu, Cluj-Napoca, Romania
| | - Florin Catalin Olteanu
- Industrial Engineering and Management Department, Transylvania University, Brasov, Romania
| | - Simona Clichici
- Physiology Department, University of Medicine and Pharmacy, Iuliu Hatieganu, Cluj-Napoca, Romania
| | - Gabriela Adriana Filip
- Physiology Department, University of Medicine and Pharmacy, Iuliu Hatieganu, Cluj-Napoca, Romania
| |
Collapse
|
79
|
Kim SH, Roszik J, Cho SN, Ogata D, Milton DR, Peng W, Menter DG, Ekmekcioglu S, Grimm EA. The COX2 Effector Microsomal PGE2 Synthase 1 is a Regulator of Immunosuppression in Cutaneous Melanoma. Clin Cancer Res 2019; 25:1650-1663. [PMID: 30538110 PMCID: PMC6397703 DOI: 10.1158/1078-0432.ccr-18-1163] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 08/16/2018] [Accepted: 12/07/2018] [Indexed: 12/11/2022]
Abstract
PURPOSE Microsomal prostaglandin E2 synthase 1 (mPGES1) was evaluated as an important downstream effector of the COX2 pathway responsible for tumor-mediated immunosuppression in melanoma. EXPERIMENTAL DESIGN The analysis of a stage III melanoma tissue microarray (n = 91) was performed to assess the association between mPGES1, COX2, CD8, and patient survival. Pharmacologic inhibitors and syngeneic mouse models using PTGES-knockout (KO) mouse melanoma cell lines were used to evaluate the mPGES1-mediated immunosuppressive function. RESULTS We observed correlations in expression and colocalization of COX2 and mPGES1, which are associated with increased expression of immunosuppressive markers in human melanoma. In a syngeneic melanoma mouse model, PTGES KO increased melanoma expression of PD-L1, increased infiltration of CD8a+ T cells, and CD8a+ dendritic cells into tumors and suppressed tumor growth. Durable tumor regression was observed in mice bearing PTGES KO tumors that were given anti-PD-1 therapy. Analysis of a stage III melanoma tissue microarray revealed significant associations between high mPGES1 expression and low CD8+ infiltration, which correlated with a shorter patient survival. CONCLUSIONS Our results are the first to illustrate a potential role for mPGES1 inhibition in melanoma immune evasion and selective targeting in supporting the durability of response to PD-1 checkpoint immunotherapy. More research effort in this drug development space is needed to validate the use of mPGES1 inhibitors as safe treatment options.
Collapse
Affiliation(s)
- Sun-Hee Kim
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jason Roszik
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sung-Nam Cho
- Department of Thoracic Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Dai Ogata
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Denái R Milton
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Weiyi Peng
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David G Menter
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Suhendan Ekmekcioglu
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elizabeth A Grimm
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
80
|
Ayachi O, Barlin M, Broxtermann PN, Kashkar H, Mauch C, Zigrino P. The X-linked inhibitor of apoptosis protein (XIAP) is involved in melanoma invasion by regulating cell migration and survival. Cell Oncol (Dordr) 2019; 42:319-329. [PMID: 30778852 DOI: 10.1007/s13402-019-00427-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The X-linked inhibitor of apoptosis (XIAP) is a potent cellular inhibitor of apoptosis, based on its unique capability to bind and to inhibit caspases. However, XIAP is also involved in a number of additional cellular activities independent of its caspase inhibitory function. The aim of this study was to investigate whether modulation of XIAP expression affects apoptosis-independent functions of XIAP in melanoma cells, restores their sensitivity to apoptosis and/or affects their invasive and metastatic capacities. METHODS XIAP protein levels were analyzed by immunohistochemical staining of human tissues and by Western blotting of melanoma cell lysates. The effects of pharmacological inhibition or of XIAP down-regulation were investigated using ex-vivo and transwell invasion assays. The biological effects of XIAP down-regulation on melanoma cells were analyzed in vitro using BrdU/PI, nucleosome quantification, adhesion and migration assays. In addition, new XIAP binding partners were identified by co-immunoprecipitation followed by mass spectrometry. RESULTS Here we found that the expression of XIAP is increased in metastatic melanomas and in invasive melanoma-derived cell lines. We also found that the bivalent IAP antagonist birinapant significantly reduced the invasive capability of melanoma cells. This reduction could be reproduced by downregulating XIAP in melanoma cells. Furthermore, we found that the migration of melanoma cells and the formation of focal adhesions at cellular borders on fibronectin-coated surfaces were significantly reduced upon XIAP knockdown. This reduction may depend on an altered vimentin-XIAP association, since we identified vimentin as a new binding partner of XIAP. As a corollary of these molecular alterations, we found that XIAP down-regulation in melanoma cells led to a significant decrease in invasion of dermal skin equivalents. CONCLUSION From our data we conclude that XIAP acts as a multifunctional pro-metastatic protein in skin melanomas and, as a consequence, that XIAP may serve as a therapeutic target for these melanomas.
Collapse
Affiliation(s)
- Ouissam Ayachi
- Department of Dermatology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Meltem Barlin
- Department of Dermatology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Pia Nora Broxtermann
- Institute for Medical Microbiology, Immunology and Hygiene (IMMIH), Center for Molecular Medicine Cologne (CMMC), CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Hamid Kashkar
- Institute for Medical Microbiology, Immunology and Hygiene (IMMIH), Center for Molecular Medicine Cologne (CMMC), CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Cornelia Mauch
- Department of Dermatology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Paola Zigrino
- Department of Dermatology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
- Department of Dermatology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Strasse 62, 50937, Cologne, Germany.
| |
Collapse
|
81
|
Mikheil DM, Prabhakar K, Arshad A, Rodriguez CI, Newton MA, Setaluri V. Notch signaling activation induces cell death in MAPKi-resistant melanoma cells. Pigment Cell Melanoma Res 2019; 32:528-539. [PMID: 30614626 DOI: 10.1111/pcmr.12764] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/09/2018] [Accepted: 12/20/2018] [Indexed: 01/12/2023]
Abstract
The role of Notch signaling in melanoma drug resistance is not well understood. In this study, we show that although NOTCH proteins are upregulated in metastatic melanoma cell lines, Notch signaling inhibition had no effect on cell survival, growth, migration or the sensitivity of BRAFV600E-melanoma cells to MAPK inhibition (MAPKi). We found that NOTCH1 is downregulated in melanoma cell lines with intrinsic and acquired resistance to MAPKi. Forced expression of NICD1, the active form of Notch1, caused apoptosis of the NOTCHlo , MAPKi-resistant cells, but not the NOTCHhi , MAPKi-sensitive melanoma cell lines. Whole transcriptome-sequencing analyses of NICD1-transduced MAPKi-sensitive and MAPKi-resistant cells revealed differential regulation of endothelin 1 (EDN1) by NICD1, that is, downregulation in MAPKi-resistant cells and upregulation in MAPKi-sensitive cells. Knockdown of EDN1 partially mimicked the effect of NICD1 on the survival of MAPKi-resistant cells. We show that the opposite regulation of EDN1 by Notch signaling is mediated by the differential regulation of c-JUN by NICD1. Our data show that MAPKi-resistant melanoma cells acquire vulnerability to Notch signaling activation and suggest that Notch-c-JUN-EDN1 axis is a potential therapeutic target in MAPKi-resistant melanoma.
Collapse
Affiliation(s)
- Dareen M Mikheil
- Comparative Biomedical Sciences Graduate Program, University of Wisconsin, Madison, Wisconsin.,Department of Dermatology, University of Wisconsin, Madison, Wisconsin.,William S. Middleton Veterans Hospital, Madison, Wisconsin
| | | | - Ayyan Arshad
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin
| | | | - Michael A Newton
- Department of Biostatistics & Medical Informatics, University of Wisconsin, Madison, Wisconsin
| | - Vijayasaradhi Setaluri
- Comparative Biomedical Sciences Graduate Program, University of Wisconsin, Madison, Wisconsin.,Department of Dermatology, University of Wisconsin, Madison, Wisconsin.,William S. Middleton Veterans Hospital, Madison, Wisconsin
| |
Collapse
|
82
|
Yun CY, Hong SD, Lee YH, Lee J, Jung DE, Kim GH, Kim SH, Jung JK, Kim KH, Lee H, Hong JT, Han SB, Kim Y. Nuclear Entry of CRTC1 as Druggable Target of Acquired Pigmentary Disorder. Am J Cancer Res 2019; 9:646-660. [PMID: 30809299 PMCID: PMC6376463 DOI: 10.7150/thno.30276] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/21/2018] [Indexed: 12/29/2022] Open
Abstract
Rationale: SOX10 (SRY-related HMG-box 10) and MITF-M (microphthalmia-associated transcription factor M) restrict the expression of melanogenic genes, such as TYR (tyrosinase), in melanocytes. DACE (diacetylcaffeic acid cyclohexyl ester) inhibits melanin production in α-MSH (α-melanocyte stimulating hormone)-activated B16-F0 melanoma cells. In this study, we evaluated the antimelanogenic activity of DACE in vivo and elucidated the molecular basis of its action. Methods: We employed melanocyte cultures and hyperpigmented skin samples for pigmentation assays, and applied chromatin immunoprecipitation, immunoblotting, RT-PCR or siRNA-based knockdown for mechanistic analyses. Results: Topical treatment with DACE mitigated UV-B-induced hyperpigmentation in the skin with attenuated expression of MITF-M and TYR. DACE also inhibited melanin production in α-MSH- or ET-1 (endothelin 1)-activated melanocyte cultures. As a mechanism, DACE blocked the nuclear import of CRTC1 (CREB-regulated co-activator 1) in melanocytes. DACE resultantly inhibited SOX10 induction, and suppressed the transcriptional abilities of CREB/CRTC1 heterodimer and SOX10 at MITF-M promoter, thereby ameliorating facultative melanogenesis. Furthermore, this study unveiled new issues in melanocyte biology that i) KPNA1 (Impα5) escorted CRTC1 as a cargo across the nuclear envelope, ii) SOX10 was inducible in the melanogenic process, and iii) CRTC1 could direct SOX10 induction at the transcription level. Conclusion: We propose the targeting of CRTC1 as a unique strategy in the treatment of acquired pigmentary disorders.
Collapse
|
83
|
Chen P, Chen F, Zhou B. Systematic review and meta-analysis of prevalence of dermatological toxicities associated with vemurafenib treatment in patients with melanoma. Clin Exp Dermatol 2018; 44:243-251. [PMID: 30280426 DOI: 10.1111/ced.13751] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2017] [Indexed: 12/12/2022]
Affiliation(s)
- P. Chen
- Department of Pharmacy; Renmin Hospital of Wuhan University; Wuhan China
| | - F. Chen
- Department of Pharmacy; Dongfeng Hospital; Hubei University of Medicine; Shiyan China
| | - B. Zhou
- Department of Pharmacy; Renmin Hospital of Wuhan University; Wuhan China
- School of Pharmaceutical Sciences; Wuhan University; Wuhan China
| |
Collapse
|
84
|
Mitsiogianni M, Amery T, Franco R, Zoumpourlis V, Pappa A, Panayiotidis MI. From chemo-prevention to epigenetic regulation: The role of isothiocyanates in skin cancer prevention. Pharmacol Ther 2018; 190:187-201. [DOI: 10.1016/j.pharmthera.2018.06.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
85
|
Davis EJ, Johnson DB, Sosman JA, Chandra S. Melanoma: What do all the mutations mean? Cancer 2018; 124:3490-3499. [PMID: 29663336 PMCID: PMC6191351 DOI: 10.1002/cncr.31345] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/06/2018] [Accepted: 02/13/2018] [Indexed: 12/28/2022]
Abstract
Melanoma is one of the most highly mutated malignancies, largely as a function of its generation through ultraviolet light and other mutational processes. The wide array of mutations in both "driver" and "passenger" genes can present a confusing array of data for practitioners, particularly within the context of the recent revolutions in targeted and immune therapy. Although mutations in BRAF V600 clearly confer sensitivity to BRAF and mitogen-activated protein kinase kinase (MEK) inhibitors, the clinical implications of most other mutations are less often discussed and understood. In this review, we provide an overview of the high-frequency genomic alterations and their prognostic and therapeutic relevance in melanoma.
Collapse
Affiliation(s)
- Elizabeth J. Davis
- Department of Medicine, Vanderbilt University Medical Center and Vanderbilt Ingram Cancer Center
| | - Douglas B. Johnson
- Department of Medicine, Vanderbilt University Medical Center and Vanderbilt Ingram Cancer Center
| | - Jeffrey A. Sosman
- Department of Medicine, Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center
| | - Sunandana Chandra
- Department of Medicine, Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center
| |
Collapse
|
86
|
Borland MG, Yao PL, Kehres EM, Lee C, Pritzlaff AM, Ola E, Wagner AL, Shannon BE, Albrecht PP, Zhu B, Kang BH, Robertson GP, Gonzalez FJ, Peters JM. Editor's Highlight: PPARβ/δ and PPARγ Inhibit Melanoma Tumorigenicity by Modulating Inflammation and Apoptosis. Toxicol Sci 2018; 159:436-448. [PMID: 28962521 DOI: 10.1093/toxsci/kfx147] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Skin tumorigenesis results from DNA damage, increased inflammation, and evasion of apoptosis. The peroxisome proliferator-activated receptors (PPARs) can modulate these mechanisms in non-melanoma skin cancer. However, limited data exists regarding the role of PPARs in melanoma. This study examined the effect of proliferator-activated receptor-β/δ (PPARβ/δ) and PPARγ on cell proliferation, anchorage-dependent clonogenicity, and ectopic xenografts in the UACC903 human melanoma cell line. Stable overexpression of either PPARβ/δ or PPARγ enhanced ligand-induced expression of a PPARβ/δ/PPARγ target gene in UACC903 cell lines as compared with controls. The induction of target gene expression by ligand activation of PPARγ was not altered by overexpression of PPARβ/δ, or vice versa. Stable overexpression of either PPARβ/δ or PPARγ reduced the percentage of cells in the G1 and S phase of the cell cycle, and increased the percentage of cells in the G2/M phase of the cell cycle in UACC903 cell lines as compared with controls. Ligand activation of PPARβ/δ did not further alter the distribution of cells within each phase of the cell cycle. By contrast, ligand activation of PPARγ enhanced these changes in stable UACC903 cells overexpressing PPARγ compared with controls. Stable overexpression of either PPARβ/δ or PPARγ and/or ligand activation of either PPARβ/δ or PPARγ inhibited cell proliferation, and anchorage-dependent clonogenicity of UACC903 cell lines as compared with controls. Further, overexpression of either PPARβ/δ or PPARγ and/or ligand activation of either PPARβ/δ or PPARγ inhibited ectopic xenograft tumorigenicity derived from UACC903 melanoma cells as compared with controls, and this was likely due in part to induction of apoptosis. Results from these studies demonstrate the antitumorigenic effects of both PPARβ/δ and PPARγ and suggest that targeting these receptors may be useful for primary or secondary melanoma chemoprevention.
Collapse
Affiliation(s)
- Michael G Borland
- Department of Veterinary and Biomedical Sciences, The Center of Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania 16802.,Department of Chemistry and Biochemistry, Bloomsburg University of Pennsylvania, Bloomsburg, Pennsylvania 17815
| | - Pei-Li Yao
- Department of Veterinary and Biomedical Sciences, The Center of Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Ellen M Kehres
- Department of Chemistry and Biochemistry, Bloomsburg University of Pennsylvania, Bloomsburg, Pennsylvania 17815
| | - Christina Lee
- Department of Veterinary and Biomedical Sciences, The Center of Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Amanda M Pritzlaff
- Department of Chemistry and Biochemistry, Bloomsburg University of Pennsylvania, Bloomsburg, Pennsylvania 17815
| | - Elizabeth Ola
- Department of Chemistry and Biochemistry, Bloomsburg University of Pennsylvania, Bloomsburg, Pennsylvania 17815
| | - Ashley L Wagner
- Department of Chemistry and Biochemistry, Bloomsburg University of Pennsylvania, Bloomsburg, Pennsylvania 17815
| | - Brooke E Shannon
- Department of Chemistry and Biochemistry, Bloomsburg University of Pennsylvania, Bloomsburg, Pennsylvania 17815
| | - Prajakta P Albrecht
- Department of Veterinary and Biomedical Sciences, The Center of Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Bokai Zhu
- Department of Veterinary and Biomedical Sciences, The Center of Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Boo-Hyon Kang
- Non-clinical Research Institute, Chemon, Yangji-Myeon, Cheoin-Gu, Yongin-Si, Gyeonggi-Do 17162, Korea
| | - Gavin P Robertson
- Departments of Pharmacology, Pathology, Dermatology, Surgery, The Melanoma and Skin Cancer Center, and The Melanoma Therapeutics Program, The Pennsylvania State University, Hershey, Pennsylvania 17033
| | - Frank J Gonzalez
- Laboratory of Metabolism, National Cancer Institute, Bethesda, Maryland 20892
| | - Jeffrey M Peters
- Department of Veterinary and Biomedical Sciences, The Center of Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
87
|
Itamura H, Ide M, Sato A, Sueoka-Aragane N, Sueoka E, Nishida A, Masunari T, Aoki S, Takizawa J, Suzumiya J, Kimura S. Identification of the BRAF V600E mutation in Japanese patients with hairy cell leukemia and related diseases using a quenching probe method. Int J Hematol 2018; 108:416-422. [PMID: 30043333 DOI: 10.1007/s12185-018-2506-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 07/10/2018] [Accepted: 07/10/2018] [Indexed: 01/11/2023]
Abstract
Hairy cell leukemia (HCL) is a rare B-cell lymphoid malignancy that is difficult to distinguish from other morphological variants. The frequency of HCL has not been determined accurately in Japan. Recent studies revealed that the BRAF V600E mutation is the causal genetic event in HCL. We assessed the BRAF mutation in Japanese patients with HCL and related diseases using the quenching probe (QP) method, a single-nucleotide polymorphism detection system, and evaluated the incidence rate of HCL among Japanese patients with chronic lymphocytic leukemia, and related diseases. We identified 18 cases (33.3%) harboring the BRAF mutation among 54 patients diagnosed with, or suspected of having HCL. Of BRAF V600E-positive patients, 7 were only detected using the QP method, not by direct sequencing, whereas 11 were positive using both tests. In a larger cohort of Japanese patients diagnosed with chronic lymphoid leukemia or related diseases, the frequency of HCL was 4%. Patients with the BRAF V600E mutation had a significantly higher frequency of neutropenia, thrombocytopenia, and elevated soluble interleukin-2 receptor and common B-cell surface markers than patients without the mutation. Our results confirm that BRAF V600E-positive HCL is a relatively rare disorder in the Japanese leukemia patient population.
Collapse
Affiliation(s)
- Hidekazu Itamura
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Masaru Ide
- Department of Internal Medicine, Oda Hospital, Kashima, Japan
| | - Akemi Sato
- Department of Clinical Laboratory Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Naoko Sueoka-Aragane
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Eisaburo Sueoka
- Department of Clinical Laboratory Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Aya Nishida
- Department of Hematology, Toranomon Hospital, Tokyo, Japan
| | - Taro Masunari
- Department of Hematology, Chugoku Central Hospital, Hiroshima, Japan
| | - Sadao Aoki
- Department of Pathophysiology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Jun Takizawa
- Department of Hematology, Endocrinology and Metabolism, Faculty of Medicine, Niigata University, Niigata, Japan
| | - Junji Suzumiya
- Department of Oncology/Hematology, School of Medicine, Shimane University, Izumo, Japan
| | - Shinya Kimura
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan.
| |
Collapse
|
88
|
Synthesis and antimetastatic activity evaluation of cinnamic acid derivatives containing 1,2,3-triazolic portions. Toxicol In Vitro 2018; 53:1-9. [PMID: 30048736 DOI: 10.1016/j.tiv.2018.07.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/25/2018] [Accepted: 07/20/2018] [Indexed: 11/20/2022]
Abstract
It is herein described the preparation and evaluation of antimetastatic activity of twenty-six cinnamic acid derivatives containing 1,2,3-triazolic portions. The compounds were prepared using as the key step the Copper(I)-catalyzed azide (A)-alkyne (A) cycloaddition (C) (CuAAC reaction), also known as click reaction, between alkynylated cinnamic acid derivatives and different benzyl azides. The reactions were carried in CH2Cl2/H2O (1:1 v/v) at room temperature, and the triazole derivatives were obtained in yields ranging from 73%99%. Reaction times varied from 5 to 40 min. The identity of the synthesized compounds was confirmed by IR and NMR (1H and 13C) spectroscopic techniques. They were then submitted to in vitro bioassays to investigate how they act over metastatic behavior of murine melanoma. The most potent compound, namely 3-(1-benzyl-1H-1,2,3-triazol-4-yl)propyl cinnamate (9a), showed significant antimetastatic and antiproliferative activities against B16-F10 cells. In addition, gelatin zymography and molecular docking analyses pointed to the fact that this compound has potential to interact with matrix metalloproteinase 9 (MMP-9) and MMP-2, which are directly involved in melanoma progression. Therefore, these findings suggest that cinnamic acid derivatives containing 1,2,3-triazolic portions may have potential for development of novel candidates for controlling malignant metastatic melanoma.
Collapse
|
89
|
Pinzi L, Anighoro A, Bajorath J, Rastelli G. Identification of 4-aryl-1 H-pyrrole[2,3-b]pyridine derivatives for the development of new B-Raf inhibitors. Chem Biol Drug Des 2018; 92:1382-1386. [DOI: 10.1111/cbdd.13185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/20/2017] [Accepted: 02/10/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Luca Pinzi
- Department of Life Sciences; University of Modena and Reggio Emilia; Modena Italy
| | - Andrew Anighoro
- Department of Life Science Informatics, B-IT; LIMES Program Unit Chemical Biology and Medicinal Chemistry; Rheinische Friedrich-Wilhelms-Universität; Bonn Germany
| | - Jürgen Bajorath
- Department of Life Science Informatics, B-IT; LIMES Program Unit Chemical Biology and Medicinal Chemistry; Rheinische Friedrich-Wilhelms-Universität; Bonn Germany
| | - Giulio Rastelli
- Department of Life Sciences; University of Modena and Reggio Emilia; Modena Italy
| |
Collapse
|
90
|
Pasqual-Melo G, Gandhirajan RK, Stoffels I, Bekeschus S. Targeting malignant melanoma with physical plasmas. CLINICAL PLASMA MEDICINE 2018. [DOI: 10.1016/j.cpme.2018.03.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
91
|
Herraiz C, Jiménez-Cervantes C, Sánchez-Laorden B, García-Borrón JC. Functional interplay between secreted ligands and receptors in melanoma. Semin Cell Dev Biol 2018; 78:73-84. [PMID: 28676423 DOI: 10.1016/j.semcdb.2017.06.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 06/26/2017] [Indexed: 12/11/2022]
Abstract
Melanoma, the most aggressive form of skin cancer, results from the malignant transformation of melanocytes located in the basement membrane separating the epidermal and dermal skin compartments. Cutaneous melanoma is often initiated by solar ultraviolet radiation (UVR)-induced mutations. Melanocytes intimately interact with keratinocytes, which provide growth factors and melanocortin peptides acting as paracrine regulators of proliferation and differentiation. Keratinocyte-derived melanocortins activate melanocortin-1 receptor (MC1R) to protect melanocytes from the carcinogenic effect of UVR. Accordingly, MC1R is a major determinant of susceptibility to melanoma. Despite extensive phenotypic heterogeneity and high mutation loads, the molecular basis of melanomagenesis and the molecules mediating the crosstalk between melanoma and stromal cells are relatively well understood. Mutations of intracellular effectors of receptor tyrosine kinase (RTK) signalling, notably NRAS and BRAF, are major driver events more frequent than mutations in RTKs. Nevertheless, melanomas often display aberrant signalling from RTKs such as KIT, ERRB1-4, FGFR, MET and PDGFR, which contribute to disease progression and resistance to targeted therapies. Progress has also been made to unravel the role of the tumour secretome in preparing the metastatic niche. However, key aspects of the melanoma-stroma interplay, such as the molecular determinants of dormancy, remain poorly understood.
Collapse
Affiliation(s)
- Cecilia Herraiz
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Murcia, and Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, El Palmar, Murcia, Spain
| | - Celia Jiménez-Cervantes
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Murcia, and Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, El Palmar, Murcia, Spain
| | - Berta Sánchez-Laorden
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, San Juan de Alicante, Spain
| | - José C García-Borrón
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Murcia, and Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, El Palmar, Murcia, Spain.
| |
Collapse
|
92
|
Cutaneous Melanoma-A Long Road from Experimental Models to Clinical Outcome: A Review. Int J Mol Sci 2018; 19:ijms19061566. [PMID: 29795011 PMCID: PMC6032347 DOI: 10.3390/ijms19061566] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 02/07/2023] Open
Abstract
Cutaneous melanoma is a complex disorder characterized by an elevated degree of heterogeneity, features that place it among the most aggressive types of cancer. Although significant progress was recorded in both the understanding of melanoma biology and genetics, and in therapeutic approaches, this malignancy still represents a major problem worldwide due to its high incidence and the lack of a curative treatment for advanced stages. This review offers a survey of the most recent information available regarding the melanoma epidemiology, etiology, and genetic profile. Also discussed was the topic of cutaneous melanoma murine models outlining the role of these models in understanding the molecular pathways involved in melanoma initiation, progression, and metastasis.
Collapse
|
93
|
Genetics of metastasis: melanoma and other cancers. Clin Exp Metastasis 2018; 35:379-391. [PMID: 29722002 DOI: 10.1007/s10585-018-9893-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 04/18/2018] [Indexed: 12/13/2022]
Abstract
Melanoma is a malignant neoplasm of melanocytes that accounts for the majority of skin cancer deaths despite comprising less than 5% of all cutaneous malignancies. Its incidence has increased faster than that of any other cancer over the past half-century and the annual costs of treatment in the United States alone have risen rapidly. Although the majority of primary melanomas are cured with local excision, metastatic melanoma historically carries a grim prognosis, with a median survival of 9 months and a long-term survival rate of 10%. Given the urgent need to develop treatment strategies for metastatic melanoma and the explosion of genetic technologies over the past 20 years, there has been extensive research into the genetic alterations that cause melanocytes to become malignant. More recently, efforts have focused on the genetic changes that drive melanoma metastasis. This review aims to summarize the current knowledge of the genetics of primary cutaneous and ocular melanoma, the genetic changes associated with metastasis in melanoma and other cancer types, and non-genetic factors that may contribute to metastasis.
Collapse
|
94
|
Prevalence of BRAF, NRAS and c-KIT mutations in Slovenian patients with advanced melanoma. Radiol Oncol 2018; 52:289-295. [PMID: 30210039 PMCID: PMC6137366 DOI: 10.2478/raon-2018-0017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/27/2018] [Indexed: 01/03/2023] Open
Abstract
Background BRAF, NRAS and c-KIT mutations are characteristics of tumour tissues that influence on treatment decisions in metastatic melanoma patients. Mutation frequency and their correlation with histological characteristics in Slovenian population have not been investigated yet. Patients and methods In our retrospective analysis we analysed mutational status of BRAF, NRAS and c-KIT in 230 pathological samples of patients who were intended to be treated with systemic therapy due to metastatic disease at the Institute of Oncology Ljubljana between 2013 and 2016. We collected also histological characteristics of primary tumours and clinical data of patients and correlated them with mutational status of tumour samples. Results The study population consisted of 230 patients with a mean age 59 years (range 25−85). 141 (61.3%) were males and 89 (38.7%) females. BRAF mutations were identified in 129 (56.1%), NRAS in 31 (13.5%) and c-KIT in 3 (1.3%) tissue samples. Among the 129 patients with BRAF mutations, 114 (88.4%) patients had V600E mutation and 15 (11.6%) had V600K mutation. Patients with BRAF mutations tended to be younger at diagnosis (52 vs. 59 years, p < 0.05), patients with NRAS mutations older (61 vs. 55 years, p < 0.05). Number of c-KIT mutations were too low for any statistical correlation, but there was one out of 3 melanoma located in mucus membranes. Conclusions The analysis detected high rate of BRAF mutations, low NRAS mutations and low c-KIT mutations compared to previously published studies in Europe and North America. One of the main reasons for this observation is specific characteristics of study population.
Collapse
|
95
|
Marchetti P, Trinh A, Khamari R, Kluza J. Melanoma metabolism contributes to the cellular responses to MAPK/ERK pathway inhibitors. Biochim Biophys Acta Gen Subj 2018; 1862:999-1005. [PMID: 29413908 DOI: 10.1016/j.bbagen.2018.01.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 01/19/2018] [Accepted: 01/23/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Besides its influence on survival, growth, proliferation, invasion and metastasis, cancer cell metabolism also greatly influences the cellular responses to molecular-targeted therapies. SCOPE OF THE REVIEW To review the recent advances in elucidating the metabolic effects of BRAF and MEK inhibitors (clinical inhibitors of the MAPK/ERK pathway) in melanoma and discuss the underlying mechanisms involved in the way metabolism can influence melanoma cell death and resistance to BRAF and MEK inhibitors. We also underlined the therapeutic perspectives in terms of innovative drug combinations. MAJOR CONCLUSION BRAF and MEK inhibitors inhibit aerobic glycolysis and induce high levels of metabolic stress leading to effective cell death by apoptosis in BRAF-mutated cancer cells. An increase in mitochondrial metabolism is required to survive to MAPK/ERK pathway inhibitors and the sub-population of cells that survives to these inhibitors are characterized by mitochondrial OXPHOS phenotype. Consequently, mitochondrial inhibition could be combined with oncogenic "drivers" inhibitors of the MAPK/ERK pathway for improving the efficacy of molecular-targeted therapy. GENERAL SIGNIFICANCE Metabolism is a key component of the melanoma response to BRAF and/or MEK inhibitors. Mitochondrial targeting may offer novel therapeutic approaches to overwhelm the mitochondrial addiction that limits the efficacy of BRAF and/or MEK inhibitors. These therapeutic approaches might be quickly applicable to the clinical situation.
Collapse
Affiliation(s)
- Philippe Marchetti
- Inserm UMR-S 1172, Faculté de Médecine, Université de Lille, 1, Place Verdun, 59045 Cedex, France; SIRIC ONCOLILLE, France; Banque de Tissus Centre Hospitalier Régional et Universitaire CHRU Lille, Lille Cedex, France.
| | - Anne Trinh
- Inserm UMR-S 1172, Faculté de Médecine, Université de Lille, 1, Place Verdun, 59045 Cedex, France; SIRIC ONCOLILLE, France
| | - Raeeka Khamari
- Inserm UMR-S 1172, Faculté de Médecine, Université de Lille, 1, Place Verdun, 59045 Cedex, France; SIRIC ONCOLILLE, France
| | - Jerome Kluza
- Inserm UMR-S 1172, Faculté de Médecine, Université de Lille, 1, Place Verdun, 59045 Cedex, France; SIRIC ONCOLILLE, France
| |
Collapse
|
96
|
Abstract
A large variety of molecular pathways in melanoma progression suggests that no individual molecular alteration is crucial in itself. Our aim was to define the molecular alterations underlying metastasis formation. Gene expression profiling was performed using microarray and qRT-PCR to define alterations between matched primary and metastatic melanoma cell lines. These data were integrated with publicly available unmatched tissue data. The invasiveness of cell lines was determined by Matrigel invasion assays and invasive clones from primary melanoma-derived cell lines were also selected. Two metastatic cell line models were created: the regional lymph node WM983A-WM983A-WM983B and the distant lung WM793B-WM793B-1205Lu metastatic models. The majority of metastasis genes were downregulated and enriched in adhesion and ITGA6-B4 pathways. Upregulation of immune pathways was characteristic of distant metastases, whereas increased Rap1 signaling was specific for regional (sub)cutaneous metastases. qRT-PCR analysis of selected integrins (A2, A3, A4, A9, B5, B8, A6, B1, and B3) highlighted the possible importance of ITGA3/4 and B8 in the metastatic process, distinguishing regional and distant metastases. We identified functionally relevant gene clusters that influenced metastasis formation. Our data provide further evidence that integrin expression patterns may be important in distant metastasis formation.
Collapse
|
97
|
Huang D, Leslie KA, Guest D, Yeshcheulova O, Roy IJ, Piva M, Moriceau G, Zangle TA, Lo RS, Teitell MA, Reed J. High-Speed Live-Cell Interferometry: A New Method for Quantifying Tumor Drug Resistance and Heterogeneity. Anal Chem 2018; 90:3299-3306. [PMID: 29381859 DOI: 10.1021/acs.analchem.7b04828] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We report the development of high-speed live-cell interferometry (HSLCI), a new multisample, multidrug testing platform for directly measuring tumor therapy response via real-time optical cell biomass measurements. As a proof of concept, we show that HSLCI rapidly profiles changes in biomass in BRAF inhibitor (BRAFi)-sensitive parental melanoma cell lines and in their isogenic BRAFi-resistant sublines. We show reproducible results from two different HSLCI platforms at two institutions that generate biomass kinetic signatures capable of discriminating between BRAFi-sensitive and -resistant melanoma cells within 24 h. Like other quantitative phase imaging (QPI) modalities, HSLCI is well-suited to noninvasive measurements of single cells and cell clusters, requiring no fluorescence or dye labeling. HSLCI is substantially faster and more sensitive than field-standard growth inhibition assays, and in terms of the number of cells measured simultaneously, the number of drugs tested in parallel, and temporal measurement range, it exceeds the state of the art by more than 10-fold. The accuracy and speed of HSLCI in profiling tumor cell heterogeneity and therapy resistance are promising features of potential tools to guide patient therapeutic selections.
Collapse
Affiliation(s)
| | - Kevin A Leslie
- Department of Physics , Virginia Commonwealth University , Richmond , Virginia 23284 , United States
| | - Daniel Guest
- Department of Physics , Virginia Commonwealth University , Richmond , Virginia 23284 , United States
| | - Olga Yeshcheulova
- Department of Physics , Virginia Commonwealth University , Richmond , Virginia 23284 , United States
| | | | | | | | - Thomas A Zangle
- Department of Chemical Engineering , University of Utah , Salt Lake City , Utah 84112 , United States
| | | | | | - Jason Reed
- Department of Physics , Virginia Commonwealth University , Richmond , Virginia 23284 , United States.,Massey Cancer Center , Virginia Commonwealth University , Richmond , Virginia 23298 , United States
| |
Collapse
|
98
|
Lei Z, Shi H, Li W, Yu D, Shen F, Yu X, Lu D, Sun C, Liao K. miR‑185 inhibits non‑small cell lung cancer cell proliferation and invasion through targeting of SOX9 and regulation of Wnt signaling. Mol Med Rep 2018; 17:1742-1752. [PMID: 29138830 PMCID: PMC5780119 DOI: 10.3892/mmr.2017.8050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 10/10/2017] [Indexed: 12/15/2022] Open
Abstract
SRY-box 9 (SOX9) is an important transcription factor required for development, which has additionally been reported to be an independent prognostic indicator for the survival of patients with non‑small cell lung cancer (NSCLC). Accumulating evidence has indicated that dysregulation of microRNAs (miRNAs/miRs) may contribute to the initiation and progression of cancer. SOX9 may be regulated by a number of miRNAs in different types of cancer, including in NSCLC. The present study sought to identify novel candidate miRNAs associated with SOX9 in NSCLC using online tools, and investigated the detailed functions of miR‑185, which suppressed SOX9 mRNA expression most strongly out of the candidate miRNAs. It was observed that ectopic miR‑185 expression significantly suppressed NSCLC cell proliferation, invasion and migration. Using luciferase reporter gene and RNA immunoprecipitation assays, SOX9 was confirmed to be a direct target of miR‑185. In addition, the downstream Wnt signaling‑associated factors β‑catenin and c‑Myc proto‑oncogene protein (Myc) were demonstrated to be inhibited by miR‑185 overexpression. SOX9, β‑catenin and c‑Myc mRNA expression was significantly upregulated in NSCLC tissues, and was inversely correlated with miR‑185 expression. The results of the present study demonstrated that rescuing miR‑185 expression in NSCLC, thereby inhibiting SOX9 expression and the downstream Wnt signaling, and leading to the suppression of NSCLC cell proliferation, invasion and migration, may be a promising strategy for the treatment of NSCLC.
Collapse
Affiliation(s)
- Zhengwen Lei
- Department of Cardiac-Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
- Center of Translational Medicine, Medical School of Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
- Department of Cardiac-Thoracic Surgery, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu 225000, P.R. China
| | - Hongcan Shi
- Center of Translational Medicine, Medical School of Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
- Department of Cardiac-Thoracic Surgery, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu 225000, P.R. China
- Correspondence to: Professor Hongcan Shi, Center of Translational Medicine, Medical School of Yangzhou University, 11 Huaihai Road, Yangzhou, Jiangsu 225000, P.R. China, E-mail:
| | - Wei Li
- Center of Translational Medicine, Medical School of Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
| | - Duonan Yu
- Center of Translational Medicine, Medical School of Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
| | - Feiyang Shen
- Center of Translational Medicine, Medical School of Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
| | - Xi Yu
- Center of Translational Medicine, Medical School of Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
| | - Dan Lu
- Department of Obstetrical, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu 225000, P.R. China
| | - Chao Sun
- Department of Cardiac-Thoracic Surgery, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu 225000, P.R. China
| | - Kai Liao
- Center of Translational Medicine, Medical School of Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
| |
Collapse
|
99
|
Capobianco E, Valdes C, Sarti S, Jiang Z, Poliseno L, Tsinoremas NF. Ensemble Modeling Approach Targeting Heterogeneous RNA-Seq data: Application to Melanoma Pseudogenes. Sci Rep 2017; 7:17344. [PMID: 29229974 PMCID: PMC5725464 DOI: 10.1038/s41598-017-17337-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 11/23/2017] [Indexed: 01/28/2023] Open
Abstract
We studied the transcriptome landscape of skin cutaneous melanoma (SKCM) using 103 primary tumor samples from TCGA, and measured the expression levels of both protein coding genes and non-coding RNAs (ncRNAs). In particular, we emphasized pseudogenes potentially relevant to this cancer. While cataloguing the profiles based on the known biotypes, all the employed RNA-Seq methods generated just a small consensus of significant biotypes. We thus designed an approach to reconcile the profiles from all methods following a simple strategy: we selected genes that were confirmed as differentially expressed by the ensemble predictions obtained in a regression model. The main advantages of this approach are: 1) Selection of a high-confidence gene set identifying relevant pathways; 2) Use of a regression model whose covariates embed all method-driven outcomes to predict an averaged profile; 3) Method-specific assessment of prediction power and significance. Furthermore, the approach can be generalized to any biological system for which noisy RNA-Seq profiles are computed. As our analyses concerned bio-annotations of both high-quality protein coding genes and ncRNAs, we considered the associations between pseudogenes and parental genes (targets). Among the candidate targets that were validated, we identified PINK1, which is studied in patients with Parkinson and cancer (especially melanoma).
Collapse
Affiliation(s)
- Enrico Capobianco
- Center for Computational Science, University of Miami, Miami, FL, USA.
| | - Camilo Valdes
- Center for Computational Science, University of Miami, Miami, FL, USA
| | | | - Zhijie Jiang
- Center for Computational Science, University of Miami, Miami, FL, USA
| | - Laura Poliseno
- Istituto Toscano Tumori Oncogenomics Unit, Institute of Clinical Physiology-National Research Council, Pisa, Italy
| | - Nicolas F Tsinoremas
- Center for Computational Science, University of Miami, Miami, FL, USA
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
100
|
Bad phosphorylation as a target of inhibition in oncology. Cancer Lett 2017; 415:177-186. [PMID: 29175460 DOI: 10.1016/j.canlet.2017.11.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/13/2017] [Accepted: 11/17/2017] [Indexed: 12/19/2022]
Abstract
Bcl-2 agonist of cell death (BAD) is a BH3-only member of the Bcl-2 family which possesses important regulatory function in apoptosis. BAD has also been shown to possess many non-apoptotic functions closely linked to cancer including regulation of glycolysis, autophagy, cell cycle progression and immune system development. Interestingly, BAD can be either pro-apoptotic or pro-survival depending on the phosphorylation state of three specific serine residues (human S75, S99 and S118). Expression of BAD and BAD phosphorylation patterns have been shown to influence tumor initiation and progression and play a predictive role in disease prognosis, drug response and chemosensitivity in various cancers. This review aims to summarize the current evidence on the functional role of BAD phosphorylation in human cancer and evaluate the potential utility of modulating BAD phosphorylation in cancer.
Collapse
|