51
|
Nonalcoholic Fatty Liver Disease (NAFLD) as Model of Gut-Liver Axis Interaction: From Pathophysiology to Potential Target of Treatment for Personalized Therapy. Int J Mol Sci 2021; 22:ijms22126485. [PMID: 34204274 PMCID: PMC8233936 DOI: 10.3390/ijms22126485] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the leading cause of liver disease worldwide, affecting both adults and children and will result, in the near future, as the leading cause of end-stage liver disease. Indeed, its prevalence is rapidly increasing, and NAFLD is becoming a major public health concern. For this reason, great efforts are needed to identify its pathogenetic factors and new therapeutic approaches. In the past decade, enormous advances understanding the gut-liver axis-the complex network of cross-talking between the gut, microbiome and liver through the portal circulation-have elucidated its role as one of the main actors in the pathogenesis of NAFLD. Indeed, evidence shows that gut microbiota is involved in the development and progression of liver steatosis, inflammation and fibrosis seen in the context of NAFLD, as well as in the process of hepatocarcinogenesis. As a result, gut microbiota is currently emerging as a non-invasive biomarker for the diagnosis of disease and for the assessment of its severity. Additionally, to its enormous diagnostic potential, gut microbiota is currently studied as a therapeutic target in NAFLD: several different approaches targeting the gut homeostasis such as antibiotics, prebiotics, probiotics, symbiotics, adsorbents, bariatric surgery and fecal microbiota transplantation are emerging as promising therapeutic options.
Collapse
|
52
|
Abstract
The precipitous increase in nonalcoholic steatohepatitis (NASH) is accompanied by a dramatic increase in the incidence of NASH-related hepatocellular carcinoma (HCC). HCC in NASH has a higher propensity to arise without pre-existing cirrhosis compared with other chronic liver diseases.
Collapse
|
53
|
Moreno-Gonzalez M, Beraza N. The Role of the Microbiome in Liver Cancer. Cancers (Basel) 2021; 13:2330. [PMID: 34066064 PMCID: PMC8150469 DOI: 10.3390/cancers13102330] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common malignancy occuring in the context of chronic liver disease and is one of the main causes of cancer-derived death worldwide. The lack of effective treatments, together with the poor prognosis, underlines the urge to develop novel and multidisciplinary therapeutics. An increasing body of evidence shows that HCC associates with changes in intestinal microbiota abundance and composition as well as with impaired barrier function, leading to the release of bacteria and their metabolites to the liver. These factors trigger a cascade of inflammatory responses contributing to liver cirrhosis and constituting an ideal environment for the progression of HCC. Interestingly, the use of bacteriotherapy in human and preclinical studies of chronic liver disease and HCC has been shown to successfully modify the microbiota composition, reducing overall inflammation and fibrosis. In this review, we explore the existing knowledge on the characterisation of the intestinal microbial composition in humans and experimental murine chronic liver disease and HCC, as well as the use of antibiotics and bacteriotherapy as therapeutic options.
Collapse
Affiliation(s)
- Mar Moreno-Gonzalez
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK;
| | - Naiara Beraza
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK;
- Food Innovation and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
| |
Collapse
|
54
|
The role of farnesoid X receptor in metabolic diseases, and gastrointestinal and liver cancer. Nat Rev Gastroenterol Hepatol 2021; 18:335-347. [PMID: 33568795 DOI: 10.1038/s41575-020-00404-2] [Citation(s) in RCA: 225] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/14/2020] [Indexed: 01/31/2023]
Abstract
Farnesoid X receptor (FXR) is a ligand-activated transcription factor involved in the control of bile acid (BA) synthesis and enterohepatic circulation. FXR can influence glucose and lipid homeostasis. Hepatic FXR activation by obeticholic acid is currently used to treat primary biliary cholangitis. Late-stage clinical trials investigating the use of obeticholic acid in the treatment of nonalcoholic steatohepatitis are underway. Mouse models of metabolic disease have demonstrated that inhibition of intestinal FXR signalling reduces obesity, insulin resistance and fatty liver disease by modulation of hepatic and gut bacteria-mediated BA metabolism, and intestinal ceramide synthesis. FXR also has a role in the pathogenesis of gastrointestinal and liver cancers. Studies using tissue-specific and global Fxr-null mice have revealed that FXR acts as a suppressor of hepatocellular carcinoma, mainly through regulating BA homeostasis. Loss of whole-body FXR potentiates progression of spontaneous colorectal cancer, and obesity-induced BA imbalance promotes intestinal stem cell proliferation by suppressing intestinal FXR in Apcmin/+ mice. Owing to altered gut microbiota and FXR signalling, changes in overall BA levels and specific BA metabolites probably contribute to enterohepatic tumorigenesis. Modulating intestinal FXR signalling and altering BA metabolites are potential strategies for gastrointestinal and liver cancer prevention and treatment. In this Review, studies on the role of FXR in metabolic diseases and gastrointestinal and liver cancer are discussed, and the potential for development of targeted drugs are summarized.
Collapse
|
55
|
Mirzaei R, Afaghi A, Babakhani S, Sohrabi MR, Hosseini-Fard SR, Babolhavaeji K, Khani Ali Akbari S, Yousefimashouf R, Karampoor S. Role of microbiota-derived short-chain fatty acids in cancer development and prevention. Biomed Pharmacother 2021; 139:111619. [PMID: 33906079 DOI: 10.1016/j.biopha.2021.111619] [Citation(s) in RCA: 177] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/01/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023] Open
Abstract
Following cancer, cells in a particular tissue can no longer respond to the factors involved in controlling cell survival, differentiation, proliferation, and death. In recent years, it has been indicated that alterations in the gut microbiota components, intestinal epithelium, and host immune system are associated with cancer incidence. Also, it has been demonstrated that the short-chain fatty acids (SCFAs) generated by gut microbiota are vitally crucial in cell homeostasis as they contribute to the modulation of histone deacetylases (HDACs), resulting effected cell attachment, immune cell immigration, cytokine production, chemotaxis, and the programmed cell death. Therefore, the manipulation of SCFA levels in the intestinal tract by alterations in the microbiota structure can be potentially taken into consideration for cancer treatment/prevention. In the current study, we will explain the most recent findings on the detrimental or protective roles of SFCA (particularly butyrate, propionate, and acetate) in several cancers, including bladder, colon, breast, stomach, liver, lung, pancreas, and prostate cancers.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Azam Afaghi
- Department of Biology, Sofian Branch, Islamic Azad University, Sofian, Iran
| | - Sajad Babakhani
- Department of Microbiology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Masoud Reza Sohrabi
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Hosseini-Fard
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kiandokht Babolhavaeji
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shabnam Khani Ali Akbari
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rasoul Yousefimashouf
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
56
|
Mechanisms by Which Probiotic Bacteria Attenuate the Risk of Hepatocellular Carcinoma. Int J Mol Sci 2021; 22:ijms22052606. [PMID: 33807605 PMCID: PMC7961993 DOI: 10.3390/ijms22052606] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer and the second leading cause of cancer-related deaths worldwide. Chronic infections with hepatitis B virus (HBV) and hepatitis C virus (HCV), alcoholic liver disease (ALD), and non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH) are the major extrinsic risk factors of HCC development. Genetic background is pivotal in HCC pathogenesis, and both germline mutations and single nucleotide polymorphism (SNP) are intrinsic risk factors of HCC. These HCC risk factors predispose to hepatic injury and subsequent activation of fibrogenesis that progresses into cirrhosis and HCC. Probiotic bacteria can mitigate HCC risk by modulating host gut microbiota (GM) to promote growth of beneficial microbes and inhibit HCC-associated dysbiosis, thus preventing pathogen-associated molecular patterns (PAMPs)-mediated hepatic inflammation. Probiotics have antiviral activities against HBV and HCV infections, ameliorate obesity and risk of NAFLD/NASH, and their antioxidant, anti-proliferative, anti-angiogenic, and anti-metastatic effects can prevent the HCC pathogenesis. Probiotics also upregulate the expression of tumor suppressor genes and downregulate oncogene expression. Moreover, metabolites generated by probiotics through degradation of dietary phytochemicals may mitigate the risk of HCC development. These multiple anticancer mechanisms illustrate the potential of probiotics as an adjuvant strategy for HCC risk management and treatment.
Collapse
|
57
|
Abstract
Hepatocellular carcinoma (HCC) occurs in patients with chronic liver damage, inflammation and cirrhosis. The facilitators involved in increasing the HCC risk in the damaged liver are yet to be discovered. Diet and lifestyle have a profound effect on the liver inflammation and HCC. The term “gut liver axis” describes the bidirectional relationship between the liver and the gut, which are both anatomically and functionally related. Chronic liver damage is characterised by increased intestinal permeability that allows the translocation of various components and metabolites from the gut microbiota to the liver, resulting in liver inflammation and fibrosis. In this review, we discuss how diet-induced changes in gut microbiome composition, such as lipopolysaccharide and lipoteichoic acid, and its metabolites, such as bile acids, play a role in the pathogenesis of liver fibrosis and HCC.
Collapse
|
58
|
Bile Acids and Microbiota: Multifaceted and Versatile Regulators of the Liver-Gut Axis. Int J Mol Sci 2021; 22:ijms22031397. [PMID: 33573273 PMCID: PMC7866539 DOI: 10.3390/ijms22031397] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 12/12/2022] Open
Abstract
After their synthesis from cholesterol in hepatic tissues, bile acids (BAs) are secreted into the intestinal lumen. Most BAs are subsequently re-absorbed in the terminal ileum and are transported back for recycling to the liver. Some of them, however, reach the colon and change their physicochemical properties upon modification by gut bacteria, and vice versa, BAs also shape the composition and function of the intestinal microbiota. This mutual interplay of both BAs and gut microbiota regulates many physiological processes, including the lipid, carbohydrate and energy metabolism of the host. Emerging evidence also implies an important role of this enterohepatic BA circuit in shaping mucosal colonization resistance as well as local and distant immune responses, tissue physiology and carcinogenesis. Subsequently, disrupted interactions of gut bacteria and BAs are associated with many disorders as diverse as Clostridioides difficile or Salmonella Typhimurium infection, inflammatory bowel disease, type 1 diabetes, asthma, metabolic syndrome, obesity, Parkinson’s disease, schizophrenia and epilepsy. As we cannot address all of these interesting underlying pathophysiologic mechanisms here, we summarize the current knowledge about the physiologic and pathogenic interplay of local site microbiota and the enterohepatic BA metabolism using a few selected examples of liver and gut diseases.
Collapse
|
59
|
Zhou J, Tripathi M, Sinha RA, Singh BK, Yen PM. Gut microbiota and their metabolites in the progression of non-alcoholic fatty liver disease. ACTA ACUST UNITED AC 2021; 7:11. [PMID: 33490737 PMCID: PMC7116620 DOI: 10.20517/2394-5079.2020.134] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most prevalent liver disorder worldwide. It comprises a spectrum of conditions that range from steatosis to non-alcoholic steatohepatitis, with progression to cirrhosis and hepatocellular carcinoma. Currently, there is no FDA-approved pharmacological treatment for NAFLD. The pathogenesis of NAFLD involves genetic and environmental/host factors, including those that cause changes in intestinal microbiota and their metabolites. In this review, we discuss recent findings on the relationship(s) of microbiota signature with severity of NAFLD and the role(s) microbial metabolites in NAFLD progression. We discuss how metabolites may affect NAFLD progression and their potential to serve as biomarkers for NAFLD diagnosis or therapeutic targets for disease management.
Collapse
Affiliation(s)
- Jin Zhou
- Program of Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Madhulika Tripathi
- Program of Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Rohit A Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Brijesh Kumar Singh
- Program of Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Paul M Yen
- Program of Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857, Singapore.,Duke Molecular Physiology Institute, Durham, NC 27701, USA.,Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
60
|
Elobixibat, an ileal bile acid transporter inhibitor, ameliorates non-alcoholic steatohepatitis in mice. Hepatol Int 2021; 15:392-404. [PMID: 33398776 DOI: 10.1007/s12072-020-10107-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Recent studies have suggested that several types of toxic bile acids (BAs) are involved in the pathogenesis of non-alcoholic steatohepatitis (NASH). In the present study, we aimed to determine whether elobixibat, an ileal bile acid transporter (IBAT) inhibitor, would ameliorate NASH in mice. METHODS C57BL/6N mice were fed a methionine and choline-deficient (MCD) to induce NASH or standard diet as control for 8 weeks (n = 5 per group). The MCD diet-fed mice were administered elobixibat 5 days a week for 4 weeks by gavage (n = 5). The effects of the treatments on liver histopathology, proinflammatory cytokine concentrations, intestinal epithelial tight junctions, and the intestinal microbial composition were then assessed. RESULTS In MCD-fed mice, hepatic fibrosis and inflammatory cell infiltration developed, and the serum aspartate transaminase activity and BA concentration were higher than the control. In addition, the proinflammatory cytokine concentrations were high in the liver and mesenteric lymph nodes (MLN), and the expression of intestinal epithelium tight junction proteins, claudin1, was increased. In the intestinal microbial composition, the abundance of the Lachnospiraceae and Ruminococcaeae were decreased, whereas that of the Enterobacteriaceae was increased. Treatment with elobixibat reduced the serum BA and increased the fecal BA concentration, and ameliorated the liver inflammation and fibrosis. It also reduced the expression of proinflammatory cytokines in the liver and MLNs, and transforming growth factor-β expression in the liver. Finally, elobixibat normalized intestinal tight junction protein level and the composition of the intestinal microbiota. CONCLUSION Elobixibat ameliorates NASH-related histopathology, reduces cytokine expression, and normalizes the intestinal microbial composition in MCD-fed mice, which suggests that it may represent a promising candidate for the therapy of NASH.
Collapse
|
61
|
Qi X, Yang M, Stenberg J, Dey R, Fogwe L, Alam MS, Kimchi ET, Staveley-O'Carroll KF, Li G. Gut microbiota mediated molecular events and therapy in liver diseases. World J Gastroenterol 2020; 26:7603-7618. [PMID: 33505139 PMCID: PMC7789060 DOI: 10.3748/wjg.v26.i48.7603] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/24/2020] [Accepted: 12/06/2020] [Indexed: 02/06/2023] Open
Abstract
Gut microbiota is a community of microorganisms that reside in the gastrointestinal tract. An increasing number of studies has demonstrated that the gut-liver axis plays a critical role in liver homeostasis. Dysbiosis of gut microbiota can cause liver diseases, including nonalcoholic fatty liver disease and alcoholic liver disease. Preclinical and clinical investigations have substantiated that the metabolites and other molecules derived from gut microbiota and diet interaction function as mediators to cause liver fibrosis, cirrhosis, and final cancer. This effect has been demonstrated to be associated with dysregulation of intrahepatic immunity and liver metabolism. Targeting these findings have led to the development of novel preventive and therapeutic strategies. Here, we review the cellular and molecular mechanisms underlying gut microbiota-mediated impact on liver disease. We also summarize the advancement of gut microbiota-based therapeutic strategies in the control of liver diseases.
Collapse
Affiliation(s)
- Xiaoqiang Qi
- Department of Surgery, University of Missouri, Columbia, MO 65212, United States
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO 65212, United States
- VA Hospital, Harry S Truman Memorial VA Hospital, Columbia, MO 65201, United States
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65212, United States
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO 65212, United States
- VA Hospital, Harry S Truman Memorial VA Hospital, Columbia, MO 65201, United States
| | - Joseph Stenberg
- Department of Surgery, University of Missouri, Columbia, MO 65212, United States
| | - Rahul Dey
- Department of Surgery, University of Missouri, Columbia, MO 65212, United States
| | - Leslie Fogwe
- Department of Surgery, University of Missouri, Columbia, MO 65212, United States
| | | | - Eric T Kimchi
- Department of Surgery, University of Missouri, Columbia, MO 65212, United States
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO 65212, United States
- VA Hospital, Harry S Truman Memorial VA Hospital, Columbia, MO 65201, United States
| | - Kevin F Staveley-O'Carroll
- Department of Surgery, University of Missouri, Columbia, MO 65212, United States
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO 65212, United States
- VA Hospital, Harry S Truman Memorial VA Hospital, Columbia, MO 65201, United States
| | - Guangfu Li
- Department of Surgery, University of Missouri, Columbia, MO 65212, United States
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO 65212, United States
- VA Hospital, Harry S Truman Memorial VA Hospital, Columbia, MO 65201, United States
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212, United States
| |
Collapse
|
62
|
Wu L, Feng J, Li J, Yu Q, Ji J, Wu J, Dai W, Guo C. The gut microbiome-bile acid axis in hepatocarcinogenesis. Biomed Pharmacother 2020; 133:111036. [PMID: 33378947 DOI: 10.1016/j.biopha.2020.111036] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/01/2020] [Accepted: 11/15/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and is a leading cause of cancer-related deaths globally, with few effective therapeutic options. Bile acids (BAs) are synthesized from cholesterol in the liver and can be modulated by farnesoid X receptor (FXR) and G-protein coupled BA receptor 1 (GPBAR1/TGR5). Alterations in BAs can affect hepatic metabolic homeostasis and contribute to the pathogenesis of liver cancer. Increasing evidence points to the key role of bacterial microbiota in the promotion and development of liver cancer. They are also involved in the regulation of BA synthesis and metabolism. The purpose of this review is to integrate related articles involving gut microbiota, BAs and HCC, and review how the gut microbiota-BA signaling axis can possibly influence the development of HCC.
Collapse
Affiliation(s)
- Liwei Wu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai 200060, China; Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jiao Feng
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jingjing Li
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai 200060, China; Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Qiang Yu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jie Ji
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jianye Wu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai 200060, China.
| | - Weiqi Dai
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai 200060, China; Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai 200032, China; Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai 200032, China; Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200336, China.
| | - Chuanyong Guo
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai 200060, China; Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| |
Collapse
|
63
|
Wei H, Wang L, An Z, Xie H, Liu W, Du Q, Guo Y, Wu X, Li S, Shi Y, Zhang X, Liu H. QiDiTangShen granules modulated the gut microbiome composition and improved bile acid profiles in a mouse model of diabetic nephropathy. Biomed Pharmacother 2020; 133:111061. [PMID: 33378964 DOI: 10.1016/j.biopha.2020.111061] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/11/2022] Open
Abstract
QiDiTangShen granules (QDTS), a traditional Chinese herbal medicine, have been used in clinical practice for treating diabetic kidney disease for several years. In our previous study, we have demonstrated that QDTS displayed good efficacy on reducing proteinuria in mice with diabetic nephropathy (DN). However, the exact mechanism by which QDTS exerts its reno-protection remains largely unknown. To ascertain whether QDTS could target the gut microbiota-bile acid axis, the db/db mice were adopted as a mouse model of DN. After a 12-week of treatment, we found that QDTS significantly reduced urinary albumin excretion (UAE), and attenuated the pathological injuries of kidney in the db/db mice, while the body weight and blood glucose levels of those mice were not affected. In addition, we found that QDTS significantly altered the gut microbiota composition, and decreased serum levels of total bile acid (TBA) and BA profiles such as β-muricholic acid (β-MCA), taurocholic acid (TCA), tauro β-muricholic acid (Tβ-MCA) and deoxycholic acid (DCA). These BAs are associated with the activation of farnesoid X receptor (FXR), which is highly expressed in kidney. However, there was no significant difference between QDTS-treated and -untreated db/db mice regarding the renal expression of FXR, indicating that other mechanisms may be involved. Conclusively, our study revealed that QDTS significantly alleviated renal injuries in mice with DN. The gut microbiota-bile acid axis may be an important target for the reno-protection of QDTS in DN, but the specific mechanism merits further study.
Collapse
Affiliation(s)
- Huili Wei
- Department of Endocrinology and Nephrology, Renal Research Institute of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Haiyuncang Road No. 5, Beijing, 100700, China
| | - Lin Wang
- Department of Endocrinology and Nephrology, Renal Research Institute of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Haiyuncang Road No. 5, Beijing, 100700, China
| | - Zhichao An
- Department of Endocrinology and Nephrology, Renal Research Institute of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Haiyuncang Road No. 5, Beijing, 100700, China
| | - Huidi Xie
- Department of Endocrinology and Nephrology, Renal Research Institute of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Haiyuncang Road No. 5, Beijing, 100700, China
| | - Weijing Liu
- Department of Endocrinology and Nephrology, Renal Research Institute of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Haiyuncang Road No. 5, Beijing, 100700, China; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Haiyuncang Road No. 5, Beijing, 100700, China
| | - Qing Du
- Department of Endocrinology and Nephrology, Renal Research Institute of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Haiyuncang Road No. 5, Beijing, 100700, China
| | - Yan Guo
- Department of Endocrinology and Nephrology, Renal Research Institute of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Haiyuncang Road No. 5, Beijing, 100700, China
| | - Xi Wu
- Department of Endocrinology and Nephrology, Renal Research Institute of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Haiyuncang Road No. 5, Beijing, 100700, China
| | - Sicheng Li
- Department of Endocrinology and Nephrology, Renal Research Institute of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Haiyuncang Road No. 5, Beijing, 100700, China
| | - Yang Shi
- Department of Endocrinology and Nephrology, Renal Research Institute of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Haiyuncang Road No. 5, Beijing, 100700, China
| | - Xianhui Zhang
- Department of Endocrinology and Nephrology, Renal Research Institute of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Haiyuncang Road No. 5, Beijing, 100700, China; Health Management Center, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Dongsibei Road No. 279, Dongcheng District, Beijing, 100700, China.
| | - Hongfang Liu
- Department of Endocrinology and Nephrology, Renal Research Institute of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Haiyuncang Road No. 5, Beijing, 100700, China; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Haiyuncang Road No. 5, Beijing, 100700, China.
| |
Collapse
|
64
|
Garcia-Lezana T, Lopez-Canovas JL, Villanueva A. Signaling pathways in hepatocellular carcinoma. Adv Cancer Res 2020; 149:63-101. [PMID: 33579428 DOI: 10.1016/bs.acr.2020.10.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite the recent introduction of new effective systemic agents, the survival of patients with hepatocellular carcinoma (HCC) at advanced stages remains dismal. This underscores the need for new therapies, which has spurred extensive research on the identification of the main drivers of pathway de-regulation as a source of novel therapeutic targets. Frequently altered pathways in HCC involve growth factor receptors (e.g., VEGFR, FGFR, TGFA, EGFR, IGFR) and/or its cytoplasmic intermediates (e.g., PI3K-AKT-mTOR, RAF/ERK/MAPK) as well as key pathways in cell differentiation (e.g., Wnt/β-catenin, JAK/STAT, Hippo, Hedgehog, Notch). Somatic mutations, chromosomal aberrations and epigenetic changes are common mechanisms for pathway deregulation in HCC. Aberrant pathway activation has also been explored as a biomarker to predict response to specific therapies, but currently, these strategies are not implemented when deciding systemic therapies in HCC patients. Beyond the well-established molecular cascades, there are numerous emerging signaling pathways also deregulated in HCC (e.g., tumor microenvironment, non-coding RNA, intestinal microbiota), which have opened new avenues for therapeutic exploration.
Collapse
Affiliation(s)
- Teresa Garcia-Lezana
- Division of Liver Diseases, Liver Cancer Program, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Juan Luis Lopez-Canovas
- Department of Cell Biology, Physiology and Immunology, Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), University of Córdoba, Córdoba, Spain
| | - Augusto Villanueva
- Division of Liver Diseases, Liver Cancer Program, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
65
|
Atypical immunometabolism and metabolic reprogramming in liver cancer: Deciphering the role of gut microbiome. Adv Cancer Res 2020; 149:171-255. [PMID: 33579424 DOI: 10.1016/bs.acr.2020.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related mortality worldwide. Much recent research has delved into understanding the underlying molecular mechanisms of HCC pathogenesis, which has revealed to be heterogenous and complex. Two major hallmarks of HCC include: (i) a hijacked immunometabolism and (ii) a reprogramming in metabolic processes. We posit that the gut microbiota is a third component in an entanglement triangle contributing to HCC progression. Besides metagenomic studies highlighting the diagnostic potential in the gut microbiota profile, recent research is pinpointing the gut microbiota as an instigator, not just a mere bystander, in HCC. In this chapter, we discuss mechanistic insights on atypical immunometabolism and metabolic reprogramming in HCC, including the examination of tumor-associated macrophages and neutrophils, tumor-infiltrating lymphocytes (e.g., T-cell exhaustion, regulatory T-cells, natural killer T-cells), the Warburg effect, rewiring of the tricarboxylic acid cycle, and glutamine addiction. We further discuss the potential involvement of the gut microbiota in these characteristics of hepatocarcinogenesis. An immediate highlight is that microbiota metabolites (e.g., short chain fatty acids, secondary bile acids) can impair anti-tumor responses, which aggravates HCC. Lastly, we describe the rising 'new era' of immunotherapies (e.g., immune checkpoint inhibitors, adoptive T-cell transfer) and discuss for the potential incorporation of gut microbiota targeted therapeutics (e.g., probiotics, fecal microbiota transplantation) to alleviate HCC. Altogether, this chapter invigorates for continuous research to decipher the role of gut microbiome in HCC from its influence on immunometabolism and metabolic reprogramming.
Collapse
|
66
|
Rattan P, Minacapelli CD, Rustgi V. The Microbiome and Hepatocellular Carcinoma. Liver Transpl 2020; 26:1316-1327. [PMID: 32564483 DOI: 10.1002/lt.25828] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/29/2020] [Accepted: 06/13/2020] [Indexed: 12/14/2022]
Abstract
The human microbiome is a vast and complex system encompassing all of the microbes and their genes that occupy the environmentally exposed surfaces of the human body. The gut microbiota and its associated microbiome play an integral role in mammalian metabolism and immune tolerance as well as in immunocompetence. Disruptions in the human gut microbiome are associated with a cycle of hepatocyte injury and regeneration characteristic of chronic liver disease. The persistence of this inflammation has been shown to induce the accumulation of genetic and epigenetic changes leading to hepatocellular carcinoma (HCC). Therefore, the importance and prognostic influence of the gut microbiome on hepatocarcinogenesis has been increasingly studied in recent years. This review discusses the mechanisms by which imbalances in the gut microbiome disturb the gut-liver axis to impact hepatocarcinogenesis, including disruption of the intestinal barrier, changes in bile acid metabolism, and reduction in tumor-suppressing microRNA. Furthermore, this review summarizes recent advances in potential microbiome-based therapeutic opportunities in HCC.
Collapse
Affiliation(s)
- Puru Rattan
- Division of Gastroenterology and Hepatology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
- Center for Liver Diseases and Masses, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Carlos D Minacapelli
- Division of Gastroenterology and Hepatology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
- Center for Liver Diseases and Masses, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Vinod Rustgi
- Division of Gastroenterology and Hepatology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
- Center for Liver Diseases and Masses, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| |
Collapse
|
67
|
Nguyen PT, Kanno K, Pham QT, Kikuchi Y, Kakimoto M, Kobayashi T, Otani Y, Kishikawa N, Miyauchi M, Arihiro K, Ito M, Tazuma S. Senescent hepatic stellate cells caused by deoxycholic acid modulates malignant behavior of hepatocellular carcinoma. J Cancer Res Clin Oncol 2020; 146:3255-3268. [PMID: 32870388 DOI: 10.1007/s00432-020-03374-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/21/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Deoxycholic acid (DCA), a secondary bile acid, is reportedly increased in the serum of patients with nonalcoholic steatohepatitis and animals with experimentally induced hepatocellular carcinoma (HCC), but its contribution to malignant behaviors of HCC has not been precisely clarified. This study aimed to examine the effect of DCA on hepatic stellate cells (HSCs), a major component of nonparenchymal cells in the liver, and its subsequent indirect effect on HCC cells. METHODS LX2 cells, a human HSC line, were treated with DCA in vitro. Then, HuH7 cells, a human hepatoma cell line, were incubated in conditioned media of DCA-treated LX2 to investigate the subsequent effect focusing on malignant behaviors. RESULTS DCA resulted in cellular senescence in LX2 with the decreased cell proliferation via cell cycle arrest at G0/1 phase, together with the induction of senescence-associated secretory phenotype (SASP) factors. To investigate the influence of SASP factors secreted by HSCs in response to DCA, HCC cells were treated with conditioned media that promoted cell migration and invasion via induction of epithelial mesenchymal transition. These changes were attenuated in the presence of neutralizing antibody against IL8 or TGFβ. Pathological analysis of surgical specimens from HCC patients revealed that senescent HSCs were detected in the stroma surrounding HCC. CONCLUSION Our data suggest an important role of HSC senescence caused by DCA for the malignant biological behaviors of HCC via induction of SASP factors, particularly IL8 and TGFβ.
Collapse
Affiliation(s)
- Phuong Thao Nguyen
- Department of General Internal Medicine, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Keishi Kanno
- Department of General Internal Medicine, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Quoc Thang Pham
- Department of General Internal Medicine, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
- Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
- Department of Pathology, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Viet Nam
| | - Yuka Kikuchi
- Department of General Internal Medicine, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Masaki Kakimoto
- Department of General Internal Medicine, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Tomoki Kobayashi
- Department of General Internal Medicine, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Yuichiro Otani
- Department of General Internal Medicine, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Nobusuke Kishikawa
- Department of General Internal Medicine, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Mutsumi Miyauchi
- Department of Oral Maxillo-Pathobiology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Koji Arihiro
- Department of Pathology, Hiroshima University Hospital, Hiroshima, Japan
| | - Masanori Ito
- Department of General Internal Medicine, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Susumu Tazuma
- Department of General Internal Medicine, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| |
Collapse
|
68
|
Microbiota-Associated Therapy for Non-Alcoholic Steatohepatitis-Induced Liver Cancer: A Review. Int J Mol Sci 2020; 21:ijms21175999. [PMID: 32825440 PMCID: PMC7504062 DOI: 10.3390/ijms21175999] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/14/2020] [Accepted: 08/19/2020] [Indexed: 12/24/2022] Open
Abstract
Even though advancement in medicine has contributed to the control of many diseases to date, cancer therapy continues to pose several challenges. Hepatocellular carcinoma (HCC) etiology is multifactorial. Recently, non-alcoholic fatty liver disease (NAFLD) has been considered as an important risk factor of HCC. NAFLD can be divided into non-alcoholic simple fatty liver (NAFL) and non-alcoholic steatohepatitis (NASH) based on histopathological features. Recently, studies have indicated that the gut microbiota is associated with NAFLD and HCC. Therefore, in this review, we have discussed the effects of gut microbiota-related mechanisms, including dysbiosis and gut barrier function, and gut microbiota-derived metabolites on NAFLD and HCC pathogenesis and the potential therapeutic strategies for NAFLD and HCC. With a better understanding of the gut microbiota composition and function, new and improved diagnostic, prognostic, and therapeutic strategies for common liver diseases can be developed.
Collapse
|
69
|
Chen JL, Wang L, Li R, Jiao YF, Yu WF. High expression of endothelial progenitor cell-induced angiogenic markers is associated with bile acid levels in HCC. Oncol Lett 2020; 20:2729-2738. [PMID: 32782589 PMCID: PMC7400775 DOI: 10.3892/ol.2020.11815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 06/02/2020] [Indexed: 01/18/2023] Open
Abstract
Endothelial progenitor cell (EPC)-induced angiogenesis activity is enhanced in hepatocellular carcinoma (HCC); however, the contributing factors remain unknown. The present study aimed to investigate the factors influencing the number of EPCs and circulating progenitor cells (CPCs), as well as the expression levels of vascular endothelial growth factor receptor 2 (VEGFR-2) and CD34, in patients with HCC. The expression levels of VEGFR-2 and CD34 were assessed in 72 HCC tumor and matched adjacent tissue microarrays by immunohistochemistry. The associations between VEGFR-2 or CD34 expression in tumors, clinicopathological characteristics and overall survival rates were analyzed. The number of EPCs and CPCs were analyzed in the peripheral blood of patients with HCC. In this study, high expression levels of VEGFR-2 and CD34 were detected in the tumor tissues of 41 (56.9%) and 44 (61.1%) patients, respectively. VEGFR-2 expression was significantly associated with tumor size (P<0.001), bile acid level (P=0.014) and α-fetoprotein level (P=0.011). However, CD34 expression was associated with tumor size (P=0.009), recrudescence (P<0.001) and bile acid (P=0.009). Next, the expression levels of VEGFR-2 and CD34 in tumor and adjacent tissues were compared according to the bile acid level. VEGFR-2 and CD34 expression levels were both higher in the high bile acid group, whereas expression levels of the markers were higher in adjacent tissues compared with tumor tissues. Kaplan-Meier curve analysis identified that patients with low CD34 expression had a longer overall survival compared with patients with high CD34 expression (P=0.029). Multivariate analysis also indicated that both VEGFR-2 (P=0.020) and CD34 (P=0.035) were independent prognostic risk factors. Moreover, flow cytometry demonstrated that the number of EPCs and CPCs was negatively related with the bile acid levels in patients with HCC. In conclusion, in patients with HCC, bile acid promotes EPC-induced angiogenesis. Furthermore, EPCs and CPCs may be activated by bile acid in tumors but are more so in adjacent tissues.
Collapse
Affiliation(s)
- Jiang-Long Chen
- Department of General Surgery, Children's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai 200062, P.R. China
| | - Long Wang
- Anesthesia and Operation Center, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Rong Li
- Department of Pathology, Eastern Hepatobiliary Surgical Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Ying-Fu Jiao
- Department of Anesthesiology, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Wei-Feng Yu
- Department of Anesthesiology, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| |
Collapse
|
70
|
Mercado-Mercado G, Blancas-Benítez FJ, Zamora-Gasga VM, Sáyago-Ayerdi SG. Mexican Traditional Plant-Foods: Polyphenols Bioavailability, Gut Microbiota Metabolism and Impact Human Health. Curr Pharm Des 2020; 25:3434-3456. [PMID: 31604412 DOI: 10.2174/1381612825666191011093753] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022]
Abstract
Functional foods have been used worldwide since ancient times, particularly, the prehispanic civilizations used several plants as medicinal foods. Nowadays, many Mexicans populations preserve their traditions and dietary patterns based on corn, beans, besides other endemic vegetables, mainly diverse varieties of chili, tomatoes and other plant-foods. It is well known that each species has a special complex mixture of bioactive compounds (BC) in which each component contributes to its overall bioactivity. These BC are plant metabolites that benefit human health by means of anti-inflammatory, immune-modulatory, and antioxidant effects. However, it becomes bioactive at human body when these BC must undergo diverse intestinal transformations, due to the action of digestive enzymes, but also by the action of microbiota metabolism. Thus, the intestinal microbiota is the key factor in the mediation of the physiological functions of dietary polyphenols. In fact, limited information is available, especially on dietary phytochemicals and metabolism in commonly available Mexican plant-foods. In this review, the bioaccesibility and bioavailability major BC from traditional Mexican plant-foods products and its potential health benefits will be discussed. Besides, we compile the scientific reports and the evidence of the impact of some Mexican plant-foods on the gut microbiota dynamic composition, specific microbial metabolites and its possible contributions to human health.
Collapse
Affiliation(s)
- Gilberto Mercado-Mercado
- Departamento de Ciencias Quimico Biologicas, Instituto de Ciencias Biomedicas, Universidad Autonoma de Ciudad Juarez, Ciudad Juarez, Chihuahua, Mexico
| | - Francisco J Blancas-Benítez
- Tecnologico Nacional de Mexico, Instituto Tecnologico de Tepic. Laboratorio Integral de Investigacion en Alimentos, Division de Estudios de Posgrado, Tepic, Nayarit, Mexico
| | - Victor M Zamora-Gasga
- Tecnologico Nacional de Mexico, Instituto Tecnologico de Tepic. Laboratorio Integral de Investigacion en Alimentos, Division de Estudios de Posgrado, Tepic, Nayarit, Mexico
| | - Sonia G Sáyago-Ayerdi
- Tecnologico Nacional de Mexico, Instituto Tecnologico de Tepic. Laboratorio Integral de Investigacion en Alimentos, Division de Estudios de Posgrado, Tepic, Nayarit, Mexico
| |
Collapse
|
71
|
Elsalem L, Jum'ah AA, Alfaqih MA, Aloudat O. The Bacterial Microbiota of Gastrointestinal Cancers: Role in Cancer Pathogenesis and Therapeutic Perspectives. Clin Exp Gastroenterol 2020; 13:151-185. [PMID: 32440192 PMCID: PMC7211962 DOI: 10.2147/ceg.s243337] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 04/13/2020] [Indexed: 12/24/2022] Open
Abstract
The microbiota has an essential role in the pathogenesis of many gastrointestinal diseases including cancer. This effect is mediated through different mechanisms such as damaging DNA, activation of oncogenic pathways, production of carcinogenic metabolites, stimulation of chronic inflammation, and inhibition of antitumor immunity. Recently, the concept of "pharmacomicrobiomics" has emerged as a new field concerned with exploring the interplay between drugs and microbes. Mounting evidence indicates that the microbiota and their metabolites have a major impact on the pharmacodynamics and therapeutic responses toward anticancer drugs including conventional chemotherapy and molecular-targeted therapeutics. In addition, microbiota appears as an attractive target for cancer prevention and treatment. In this review, we discuss the role of bacterial microbiota in the pathogenesis of different cancer types affecting the gastrointestinal tract system. We also scrutinize the evidence regarding the role of microbiota in anticancer drug responses. Further, we discuss the use of probiotics, fecal microbiota transplantation, and antibiotics, either alone or in combination with anticancer drugs for prevention and treatment of gastrointestinal tract cancers.
Collapse
Affiliation(s)
- Lina Elsalem
- Department of Pharmacology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Ahmad A Jum'ah
- Department of Conservative Dentistry, Faculty of Dentistry, Jordan University of Science and Technology, Irbid, Jordan
| | - Mahmoud A Alfaqih
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Osama Aloudat
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
72
|
Arab JP, Arrese M, Shah VH. Gut microbiota in non-alcoholic fatty liver disease and alcohol-related liver disease: Current concepts and perspectives. Hepatol Res 2020; 50:407-418. [PMID: 31840358 PMCID: PMC7187400 DOI: 10.1111/hepr.13473] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/05/2020] [Accepted: 12/10/2020] [Indexed: 12/17/2022]
Abstract
The term, gut-liver axis, is used to highlight the close anatomical and functional relationship between the intestine and the liver. It has been increasingly recognized that the gut-liver axis plays an essential role in the development and progression of liver disease. In particular, in non-alcoholic fatty liver disease and alcohol-related liver disease, the two most common causes of chronic liver disease, a dysbiotic gut microbiota can influence intestinal permeability, allowing some pathogens or bacteria-derived factors from the gut reaching the liver through the enterohepatic circulation contributing to liver injury, steatohepatitis, and fibrosis progression. Pathways involved are multiple, including changes in bile acid metabolism, intestinal ethanol production, generation of short-chain fatty acids, and other by-products. Bile acids act through dedicated bile acid receptors, farnesoid X receptor and TGR5, in both the ileum and the liver, influencing lipid metabolism, inflammation, and fibrogenesis. Currently, both non-alcoholic fatty liver disease and alcohol-related liver disease lack effective therapies, and therapeutic targeting of gut microbiota and bile acids enterohepatic circulation holds promise. In this review, we summarize current knowledge about the role of gut microbiota in the pathogenesis of non-alcoholic fatty liver disease and alcohol-related liver disease, as well as the relevance of microbiota or bile acid-based approaches in the management of those liver diseases.
Collapse
Affiliation(s)
- Juan P. Arab
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA.,Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marco Arrese
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile,Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Vijay H. Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
73
|
Inflammation in Primary and Metastatic Liver Tumorigenesis-Under the Influence of Alcohol and High-Fat Diets. Nutrients 2020; 12:nu12040933. [PMID: 32230953 PMCID: PMC7230665 DOI: 10.3390/nu12040933] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023] Open
Abstract
The liver plays an outsized role in oncology. Liver tumors are one of the most frequently found tumors in cancer patients and these arise from either primary or metastatic disease. Hepatocellular carcinoma (HCC), the most prevalent form of primary liver cancer and the 6th most common cancer type overall, is expected to become the 3rd leading cause of cancer mortality in the US by the year 2030. The liver is also the most common site of distant metastasis from solid tumors. For instance, colorectal cancer (CRC) metastasizes to the liver in two-thirds of cases, and CRC liver metastasis is the leading cause of mortality in these patients. The interplay between inflammation and cancer is unmistakably evident in the liver. In nearly every case, HCC is diagnosed in chronic liver disease (CLD) and cirrhosis background. The consumption of a Western-style high-fat diet is a major risk factor for the development of non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH), both of which are becoming more prevalent in parallel with the obesity epidemic. Excessive alcohol intake also contributes significantly to the CLD burden in the form of alcoholic liver disease (ALD). Inflammation is a key component in the development of all CLDs. Additionally, during the development of liver metastasis, pro-inflammatory signaling is crucial in eliminating invading cancer cells but ironically also helps foster a pro-metastatic environment that supports metastatic seeding and colonization. Here we review how Westernized high-fat diets and excessive alcohol intake can influence inflammation within the liver microenvironment, stimulating both primary and metastatic liver tumorigenesis.
Collapse
|
74
|
Jia ET, Liu ZY, Pan M, Lu JF, Ge QY. Regulation of bile acid metabolism-related signaling pathways by gut microbiota in diseases. J Zhejiang Univ Sci B 2020; 20:781-792. [PMID: 31489798 DOI: 10.1631/jzus.b1900073] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Over the past decade, there has been increasing attention on the interaction between microbiota and bile acid metabolism. Bile acids are not only involved in the metabolism of nutrients, but are also important in signal transduction for the regulation of host physiological activities. Microbial-regulated bile acid metabolism has been proven to affect many diseases, but there have not been many studies of disease regulation by microbial receptor signaling pathways. This review considers findings of recent research on the core roles of farnesoid X receptor (FXR), G protein-coupled bile acid receptor (TGR5), and vitamin D receptor (VDR) signaling pathways in microbial-host interactions in health and disease. Studying the relationship between these pathways can help us understand the pathogenesis of human diseases, and lead to new solutions for their treatments.
Collapse
Affiliation(s)
- Er-Teng Jia
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zhi-Yu Liu
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Min Pan
- School of Medicine, Southeast University, Nanjing 210097, China
| | - Jia-Feng Lu
- Center of Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou 215002, China
| | - Qin-Yu Ge
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
75
|
Ferrín G, Guerrero M, Amado V, Rodríguez-Perálvarez M, De la Mata M. Activation of mTOR Signaling Pathway in Hepatocellular Carcinoma. Int J Mol Sci 2020; 21:ijms21041266. [PMID: 32070029 PMCID: PMC7072933 DOI: 10.3390/ijms21041266] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most frequent primary liver cancer and occurs mainly in patients with liver cirrhosis. The mammalian target of rapamycin (mTOR) signaling pathway is involved in many hallmarks of cancer including cell growth, metabolism re-programming, proliferation and inhibition of apoptosis. The mTOR pathway is upregulated in HCC tissue samples as compared with the surrounding liver cirrhotic tissue. In addition, the activation of mTOR is more intense in the tumor edge, thus reinforcing its role in HCC proliferation and spreading. The inhibition of the mTOR pathway by currently available pharmacological compounds (i.e., sirolimus or everolimus) is able to hamper tumor progression both in vitro and in animal models. The use of mTOR inhibitors alone or in combination with other therapies is a very attractive approach, which has been extensively investigated in humans. However, results are contradictory and there is no solid evidence suggesting a true benefit in clinical practice. As a result, neither sirolimus nor everolimus are currently approved to treat HCC or to prevent tumor recurrence after curative surgery. In the present comprehensive review, we analyzed the most recent scientific evidence while providing some insights to understand the gap between experimental and clinical studies.
Collapse
Affiliation(s)
- Gustavo Ferrín
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba, 14004 Córdoba, Spain; (G.F.); (M.G.); (V.A.); (M.D.l.M.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 14004 Córdoba, Spain
| | - Marta Guerrero
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba, 14004 Córdoba, Spain; (G.F.); (M.G.); (V.A.); (M.D.l.M.)
- Department of Hepatology and Liver Transplantaton, Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Víctor Amado
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba, 14004 Córdoba, Spain; (G.F.); (M.G.); (V.A.); (M.D.l.M.)
- Department of Hepatology and Liver Transplantaton, Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Manuel Rodríguez-Perálvarez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba, 14004 Córdoba, Spain; (G.F.); (M.G.); (V.A.); (M.D.l.M.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 14004 Córdoba, Spain
- Department of Hepatology and Liver Transplantaton, Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
- Correspondence: ; Tel.: +34-617854692
| | - Manuel De la Mata
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba, 14004 Córdoba, Spain; (G.F.); (M.G.); (V.A.); (M.D.l.M.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 14004 Córdoba, Spain
- Department of Hepatology and Liver Transplantaton, Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| |
Collapse
|
76
|
Serum Fibroblast Growth Factor 19 and Total Bile Acid Concentrations Are Potential Biomarkers of Hepatocellular Carcinoma in Patients with Type 2 Diabetes Mellitus. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1751989. [PMID: 32104677 PMCID: PMC7036095 DOI: 10.1155/2020/1751989] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/30/2019] [Accepted: 01/13/2020] [Indexed: 12/14/2022]
Abstract
Purpose Type 2 diabetes mellitus (T2DM) carries a high risk of hepatocellular carcinoma (HCC). Both serum fibroblast growth factor 19 (FGF19) and bile acid concentrations are associated with T2DM and HCC. We aimed at evaluating the relationships between FGF19 and bile acid concentrations and HCC in patients with T2DM. Methods Twenty-seven healthy volunteers (control group), 27 patients with T2DM (T2DM group), 16 patients with newly diagnosed HCC (HCC group), and 10 T2DM patients with newly diagnosed HCC (T2DM-HCC group) were studied at the Affiliated Hospital of Nantong University between June 2016 and June 2017. The serum concentrations of serum FGF19 and total bile acids (TBA) were measured in all the participants. Correlation analysis and multiple stepwise regression analysis of the FGF19 and TBA concentrations were performed in all the participants and in the four groups. Results The concentrations of FGF19 were 220.5 pg/ml, 185.1 pg/ml, 115.8 pg/ml, and 70.4 pg/ml in the HCC, T2DM-HCC, control, and T2DM groups, respectively (p < 0.001), and the TBA concentrations were 21.75 μmol/l, 14.25 μmol/l, 14.25 μmol/l, 14.25 μmol/l, 14.25 p < 0.001), and the TBA concentrations were 21.75 r = 0.777; p < 0.001), and the TBA concentrations were 21.75 r = 0.777; p < 0.001), and the TBA concentrations were 21.75 r = 0.777; p < 0.001), and the TBA concentrations were 21.75 r = 0.777; p < 0.001), and the TBA concentrations were 21.75 r = 0.777; p < 0.001), and the TBA concentrations were 21.75 Conclusions Simultaneous increase of serum FGF19 and TBA levels may be used as indicators of HCC screening at early stage in patients with T2DM.
Collapse
|
77
|
Schwabe RF, Greten TF. Gut microbiome in HCC - Mechanisms, diagnosis and therapy. J Hepatol 2020; 72:230-238. [PMID: 31954488 DOI: 10.1016/j.jhep.2019.08.016] [Citation(s) in RCA: 224] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/14/2019] [Accepted: 08/16/2019] [Indexed: 02/07/2023]
Abstract
The microbiome exerts essential functions in health and disease, modulating key processes in metabolism, inflammation and immunity. Recent evidence has revealed a key role of the microbiome in carcinogenesis as well as anti-cancer immune responses in mouse models and patients. Herein, we will review functions of the gut microbiome in hepatocellular carcinoma (HCC), the third leading cause of worldwide cancer mortality. The majority of HCC develops in patients with chronic liver disease, caused by viral hepatitis, non-alcoholic fatty liver disease (NAFLD) and alcohol-related fatty liver disease. In this review, we will discuss mechanisms by which the gut-liver axis promotes the development of HCC in mouse models and patients, including dysbiosis, the leaky gut and bacterial metabolites, with a particular focus on NAFLD as the fastest growing cause of HCC development. Moreover, we will review recent progress in harnessing the gut microbiome as a potential diagnostic tool and novel therapeutic target in patients with HCC, in particular in the setting of immunotherapy.
Collapse
Affiliation(s)
- Robert F Schwabe
- Department of Medicine, Columbia University, New York, NY 10032, USA; Institute of Human Nutrition, Columbia University, New York, NY 10032, USA.
| | - Tim F Greten
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; NCI-CCR Liver Cancer Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
78
|
Yoshikawa N, Saito Y, Manabe H, Nakaoka T, Uchida R, Furukawa R, Muramatsu T, Sugiyama Y, Kimura M, Saito H. Glucose Depletion Enhances the Stem Cell Phenotype and Gemcitabine Resistance of Cholangiocarcinoma Organoids through AKT Phosphorylation and Reactive Oxygen Species. Cancers (Basel) 2019; 11:E1993. [PMID: 31835877 PMCID: PMC6966500 DOI: 10.3390/cancers11121993] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/24/2019] [Accepted: 10/26/2019] [Indexed: 12/18/2022] Open
Abstract
Cancer cells are strongly dependent on the glycolytic pathway for generation of energy even under aerobic condition through a phenomenon known as the Warburg effect. Rapid proliferation of cancer cells is often accompanied by high glucose consumption and abnormal angiogenesis, which may lead to glucose depletion. In the present study, we investigated how cholangiocarcinoma cells adapt to glucose depletion using a 3D organoid culture system. We cultured organoids derived from cholangiocarcinoma under glucose-free condition and investigated cell proliferation, expression of stem cell markers and resistance to gemcitabine. Cholangiocarcinoma organoids cultured under glucose-free condition showed reduced proliferation but were able to survive. We also observed an increase in the expression of stem cell markers including LGR5 and enhancement of stem cell phenotypic characteristics such as resistance to gemcitabine through AKT phosphorylation and reactive oxygen species. These findings indicate that cholangiocarcinoma cells are able to adapt to glucose depletion through enhancement of their stem cell phenotype in response to changes in microenvironmental conditions.
Collapse
Affiliation(s)
| | - Yoshimasa Saito
- Division of Pharmacotherapeutics, Keio University Faculty of Pharmacy, 1-5-30 Shiba-kohen, Minato-ku, Tokyo 105-8512, Japan; (N.Y.); (H.M.); (T.N.); (R.U.); (R.F.); (T.M.); (M.K.); (H.S.)
| | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Abenavoli L, Luzza F, Mendez-Sanchez N. Probiotics supplementation in the management of hepatocellular carcinoma. Hepatobiliary Surg Nutr 2019; 8:632-634. [PMID: 31929992 DOI: 10.21037/hbsn.2019.10.12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ludovico Abenavoli
- Department of Health Sciences, University Magna Graecia, Catanzaro, Italy
| | - Francesco Luzza
- Department of Health Sciences, University Magna Graecia, Catanzaro, Italy
| | - Nahum Mendez-Sanchez
- Liver Research Unit Medica Sur Clinic & Foundation and Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
80
|
Rossetto A, De Re V, Steffan A, Ravaioli M, Miolo G, Leone P, Racanelli V, Uzzau A, Baccarani U, Cescon M. Carcinogenesis and Metastasis in Liver: Cell Physiological Basis. Cancers (Basel) 2019; 11:E1731. [PMID: 31694274 PMCID: PMC6895858 DOI: 10.3390/cancers11111731] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/29/2019] [Accepted: 11/01/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) incidence is rising. This paper summarises the current state of knowledge and recent discoveries in the cellular and physiological mechanisms leading to the development of liver cancer, especially HCC, and liver metastases. After reviewing normal hepatic cytoarchitecture and immunological characteristics, the paper addresses the pathophysiological factors that cause liver damage and predispose to neoplasia. Particular attention is given to chronic liver diseases, metabolic syndrome and the impact of altered gut microbiota, disrupted circadian rhythm and psychological stress. Improved knowledge of the multifactorial aetiology of HCC has important implications for the prevention and treatment of this cancer and of liver metastases in general.
Collapse
Affiliation(s)
- Anna Rossetto
- Department of Organ Insufficiency and Transplantation, General Surgery and Transplantation, University Hospital of Bologna, Policlinico S. Orsola-Malpighi, 40138 Bologna, Italy; (M.R.); (M.C.)
| | - Valli De Re
- Immunopatologia e Biomarcatori Oncologici/Bio-proteomics Facility, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy;
| | - Agostino Steffan
- Immunopatologia e Biomarcatori Oncologici/Bio-proteomics Facility, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy;
| | - Matteo Ravaioli
- Department of Organ Insufficiency and Transplantation, General Surgery and Transplantation, University Hospital of Bologna, Policlinico S. Orsola-Malpighi, 40138 Bologna, Italy; (M.R.); (M.C.)
| | - Gianmaria Miolo
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy;
| | - Patrizia Leone
- Department of Biomedical Sciences and Human Oncology, G. Baccelli Section of Internal Medicine, University of Bari Medical School, 70124 Bari, Italy; (P.L.); (V.R.)
| | - Vito Racanelli
- Department of Biomedical Sciences and Human Oncology, G. Baccelli Section of Internal Medicine, University of Bari Medical School, 70124 Bari, Italy; (P.L.); (V.R.)
| | - Alessandro Uzzau
- Program of Oncology Surgery, Dipartimento di Area Medica, University of Udine, 33100 Udine, Italy;
| | - Umberto Baccarani
- Surgery and Transplantation, Dipartimento di Area Medica, University of Udine, 33100 Udine, Italy;
| | - Matteo Cescon
- Department of Organ Insufficiency and Transplantation, General Surgery and Transplantation, University Hospital of Bologna, Policlinico S. Orsola-Malpighi, 40138 Bologna, Italy; (M.R.); (M.C.)
| |
Collapse
|
81
|
Zhang Z, Tang H, Chen P, Xie H, Tao Y. Demystifying the manipulation of host immunity, metabolism, and extraintestinal tumors by the gut microbiome. Signal Transduct Target Ther 2019; 4:41. [PMID: 31637019 PMCID: PMC6799818 DOI: 10.1038/s41392-019-0074-5] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
The trillions of microorganisms in the gut microbiome have attracted much attention recently owing to their sophisticated and widespread impacts on numerous aspects of host pathophysiology. Remarkable progress in large-scale sequencing and mass spectrometry has increased our understanding of the influence of the microbiome and/or its metabolites on the onset and progression of extraintestinal cancers and the efficacy of cancer immunotherapy. Given the plasticity in microbial composition and function, microbial-based therapeutic interventions, including dietary modulation, prebiotics, and probiotics, as well as fecal microbial transplantation, potentially permit the development of novel strategies for cancer therapy to improve clinical outcomes. Herein, we summarize the latest evidence on the involvement of the gut microbiome in host immunity and metabolism, the effects of the microbiome on extraintestinal cancers and the immune response, and strategies to modulate the gut microbiome, and we discuss ongoing studies and future areas of research that deserve focused research efforts.
Collapse
Affiliation(s)
- Ziying Zhang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, 410078 Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078 Changsha, Hunan China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, 410011 Changsha, China
- Department of Oncology, Third Xiangya Hospital, Central South University, 410013 Changsha, China
| | - Haosheng Tang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, 410078 Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078 Changsha, Hunan China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, 410011 Changsha, China
| | - Peng Chen
- Department of Urology, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - Hui Xie
- Department of Thoracic and Cardiovascular Surgery, Second Xiangya Hospital of Central South University, 410011 Changsha, China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, 410078 Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078 Changsha, Hunan China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, 410011 Changsha, China
| |
Collapse
|
82
|
Pocha C, Xie C. Hepatocellular carcinoma in alcoholic and non-alcoholic fatty liver disease-one of a kind or two different enemies? Transl Gastroenterol Hepatol 2019; 4:72. [PMID: 31728429 DOI: 10.21037/tgh.2019.09.01] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/22/2019] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular cancer (HCC) is a cancer with an overall poor prognosis and an alarming globally rising incidence. While viral etiology of chronic liver disease and HCC is down-trending, alcohol and excess calorie intake have emerged as major culprits. Alcohol related liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD) share similar pathogenetic mechanism of hepatic injury and in promoting development of HCC; yet some genetic and epigenetic features are distinct and may promise clinical utility. Population based intervention are urgently needed to reduce alcohol use and improve metabolic factors such as obesity and diabetes. The goal is to identify at-risk patients, to link these patients to care and to provide effective management of chronic liver disease and HCC. This review focuses on the epidemiology, pathophysiology including genetic and epigenetic altercation as well as clinical aspects of ALD and NAFLD associated HCC.
Collapse
Affiliation(s)
- Christine Pocha
- Avera McKennnan Hospital and University Medical Center, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA.,Department of Gastroenterology and Hepatology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Chencheng Xie
- Avera McKennnan Hospital and University Medical Center, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA.,Department of Gastroenterology and Hepatology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
83
|
Jia B, Jeon CO. Promotion and induction of liver cancer by gut microbiome-mediated modulation of bile acids. PLoS Pathog 2019; 15:e1007954. [PMID: 31487329 PMCID: PMC6728016 DOI: 10.1371/journal.ppat.1007954] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Baolei Jia
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
84
|
Liu XN, Cui DN, Li YF, Liu YH, Liu G, Liu L. Multiple “Omics” data-based biomarker screening for hepatocellular carcinoma diagnosis. World J Gastroenterol 2019; 25:4199-4212. [PMID: 31435173 PMCID: PMC6700689 DOI: 10.3748/wjg.v25.i30.4199] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/28/2019] [Accepted: 07/03/2019] [Indexed: 02/06/2023] Open
Abstract
The huge prognostic difference between early and late stage hepatocellular carcinoma (HCC) is a challenging diagnostic problem. Alpha-fetoprotein is the mostly widely used biomarker for HCC used in the clinic, however it’s sensitivity and specificity of is not optimal. The development and application of multiple biotechnologies, including next generation sequencing, multiple “omics” data, that include genomics, epigenomics, transcriptomics, proteomics, metabolomics, metagenomics has been used for HCC diagnostic biomarker screening. Effective biomarkers/panels/models have been identified and validated at different clinical levels. A large proportion of these have a good diagnostic performance for HCC, especially for early HCC. In this article, we reviewed the various HCC biomarkers derived from “omics” data and discussed the advantages and disadvantages for diagnosis HCC.
Collapse
Affiliation(s)
- Xiao-Na Liu
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Dan-Ni Cui
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yu-Fang Li
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yun-He Liu
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Gang Liu
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Lei Liu
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
85
|
Liu XN, Cui DN, Li YF, Liu YH, Liu G, Liu L. Multiple “Omics” data-based biomarker screening for hepatocellular carcinoma diagnosis. World J Gastroenterol 2019. [DOI: 10.3748/wjg.v25.i29.4199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
86
|
Ponziani FR, Nicoletti A, Gasbarrini A, Pompili M. Diagnostic and therapeutic potential of the gut microbiota in patients with early hepatocellular carcinoma. Ther Adv Med Oncol 2019; 11:1758835919848184. [PMID: 31205505 PMCID: PMC6535703 DOI: 10.1177/1758835919848184] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/12/2019] [Indexed: 12/16/2022] Open
Abstract
The gut microbiota is involved in the maintenance of the homeostasis of the human body and its alterations are associated with the development of different pathological conditions. The liver is the organ most exposed to the influence of the gut microbiota, and recently important connections between the intestinal flora and hepatocellular carcinoma (HCC) have been described. In fact, HCC is commonly associated with liver cirrhosis and develops in a microenvironment where inflammation, immunological alterations, and cellular aberrations are dramatically evident. Prevention and diagnosis in the earliest stages are still the most effective weapons in fighting this tumor. Animal models show that the gut microbiota can be involved in the promotion and progression of HCC directly or through different pathogenic mechanisms. Recent data in humans have confirmed these preclinical findings, shedding new light on HCC pathogenesis. Limitations due to the different experimental design, the ethnic and hepatological setting make it difficult to compare the results and draw definitive conclusions, but these studies lay the foundations for a pathogenetic redefinition of HCC. Therefore, it is evident that the characterization of the gut microbiota and its modulation can have an enormous diagnostic, preventive, and therapeutic potential, especially in patients with early stage HCC.
Collapse
Affiliation(s)
- Francesca Romana Ponziani
- Division of Internal Medicine, Gastroenterology and Hepatology, Fondazione Policlinico Agostino Gemelli IRCCS, Largo Agostino Gemelli 8, Rome, 00168, Italy
| | - Alberto Nicoletti
- Internal Medicine, Gastroenterology and Hepatology, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - Antonio Gasbarrini
- Internal Medicine, Gastroenterology and Hepatology, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - Maurizio Pompili
- Internal Medicine, Gastroenterology and Hepatology, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| |
Collapse
|
87
|
Role of Gut Microbiota in Hepatocarcinogenesis. Microorganisms 2019; 7:microorganisms7050121. [PMID: 31060311 PMCID: PMC6560397 DOI: 10.3390/microorganisms7050121] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/23/2019] [Accepted: 05/03/2019] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC), one of the leading causes of death worldwide, has a causal nexus with liver injury, inflammation, and regeneration that accumulates over decades. Observations from recent studies have accounted for the involvement of the gut–liver axis in the pathophysiological mechanism responsible for HCC. The human intestine nurtures a diversified colony of microorganisms residing in the host ecosystem. The intestinal barrier is critical for conserving the normal physiology of the gut microbiome. Therefore, a rupture of this barrier or dysbiosis can cause the intestinal microbiome to serve as the main source of portal-vein endotoxins, such as lipopolysaccharide, in the progression of hepatic diseases. Indeed, increased bacterial translocation is a key sign of HCC. Considering the limited number of clinical studies on HCC with respect to the microbiome, we focus on clinical as well as animal studies involving the gut microbiota, with the current understandings of the mechanism by which the intestinal dysbiosis promotes hepatocarcinogenesis. Future research might offer mechanistic insights into the specific phyla targeting the leaky gut, as well as microbial dysbiosis, and their metabolites, which represent key pathways that drive HCC-promoting microbiome-mediated liver inflammation and fibrosis, thereby restoring the gut barrier function.
Collapse
|
88
|
Abstract
Liver cancer is the sixth most common cancer worldwide, and the third most common cause of cancer-related death. Hepatocellular carcinoma (HCC), which accounts for more than 90% of primary liver cancers, is an important public health problem. In addition to cirrhosis caused by hepatitis B viral (HBV) or hepatitis C viral (HCV) infection, non-alcoholic fatty liver disease (NAFLD) is becoming a major risk factor for liver cancer because of the prevalence of obesity. Non-alcoholic steatohepatitis (NASH) will likely become the leading indication for liver transplantation in the future. It is well recognized that gut microbiota is a key environmental factor in the pathogenesis of liver disease and cancer. The interplay between gut microbiota and liver disease has been investigated in animal and clinical studies. In this article, we summarize the roles of gut microbiota in the development of liver disease as well as gut microbiota-targeted therapies.
Collapse
Affiliation(s)
- Lijun Wang
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, USA,The College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Yu-Jui Yvonne Wan
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, USA,Corresponding author. Department of medical Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, USA. (Y.-J.Y. Wan)
| |
Collapse
|
89
|
Ohtani N, Kawada N. Role of the Gut-Liver Axis in Liver Inflammation, Fibrosis, and Cancer: A Special Focus on the Gut Microbiota Relationship. Hepatol Commun 2019; 3:456-470. [PMID: 30976737 PMCID: PMC6442695 DOI: 10.1002/hep4.1331] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/11/2019] [Indexed: 12/20/2022] Open
Abstract
The gut and the liver are anatomically and physiologically connected, and this “gut–liver axis” exerts various influences on liver pathology. The gut microbiota consists of various microorganisms that normally coexist in the human gut and have a role of maintaining the homeostasis of the host. However, once homeostasis is disturbed, metabolites and components derived from the gut microbiota translocate to the liver and induce pathologic effects in the liver. In this review, we introduce and discuss the mechanisms of liver inflammation, fibrosis, and cancer that are influenced by gut microbial components and metabolites; we include recent advances in molecular‐based therapeutics and novel mechanistic findings associated with the gut–liver axis and gut microbiota.
Collapse
Affiliation(s)
- Naoko Ohtani
- Department of Pathophysiology Osaka City University, Graduate School of Medicine Osaka Japan
| | - Norifumi Kawada
- Department of Hepatology Osaka City University, Graduate School of Medicine Osaka Japan
| |
Collapse
|
90
|
Ding Y, Yanagi K, Cheng C, Alaniz RC, Lee K, Jayaraman A. Interactions between gut microbiota and non-alcoholic liver disease: The role of microbiota-derived metabolites. Pharmacol Res 2019; 141:521-529. [PMID: 30660825 PMCID: PMC6392453 DOI: 10.1016/j.phrs.2019.01.029] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 02/07/2023]
Abstract
There is increasing evidence that the intestinal microbiota plays a mechanistic role in the etiology of non-alcoholic fatty liver disease (NAFLD). Animal and human studies have linked small molecule metabolites produced by commensal bacteria in the gut contribute to not only intestinal inflammation, but also to hepatic inflammation. These immunomodulatory metabolites are capable of engaging host cellular receptors, and may mediate the observed association between gut dysbiosis and NAFLD. This review focuses on the effects and potential mechanisms of three specific classes of metabolites that synthesized or modified by gut bacteria: short chain fatty acids, amino acid catabolites, and bile acids. In particular, we discuss their role as ligands for cell surface and nuclear receptors regulating metabolic and inflammatory pathways in the intestine and liver. Studies reveal that the metabolites can both agonize and antagonize their cognate receptors to reduce or exacerbate liver steatosis and inflammation, and that the effects are metabolite- and context-specific. Further studies are warranted to more comprehensively understand bacterial metabolite-mediated gut-liver in NAFLD. This understanding could help identify novel therapeutics and therapeutic targets to intervene in the disease through the gut microbiota.
Collapse
Affiliation(s)
- Yufang Ding
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Karin Yanagi
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA, 02155, USA
| | - Clint Cheng
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX, 77807, USA
| | - Robert C Alaniz
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX, 77807, USA
| | - Kyongbum Lee
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA, 02155, USA.
| | - Arul Jayaraman
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA; Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX, 77807, USA; Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, 77843, USA.
| |
Collapse
|
91
|
Ali MS, Hussein RM, Gaber Y, Hammam OA, Kandeil MA. Modulation of JNK-1/ β-catenin signaling byLactobacillus casei, inulin and their combination in 1,2-dimethylhydrazine-induced colon cancer in mice. RSC Adv 2019; 9:29368-29383. [PMID: 35528422 PMCID: PMC9071812 DOI: 10.1039/c9ra04388h] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/27/2019] [Indexed: 12/12/2022] Open
Abstract
Colon cancer is a complex disease that involves numerous genetic alterations that change the normal colonic mucosa into invasive adenocarcinoma. In the current study, the protective effects of inulin (prebiotic), Lactobacillus casei (L. casei, probiotic) and their combination (synbiotic) on 1,2-dimethylhydrazine (DMH)-induced colon cancer in male Swiss mice were evaluated. Animals were divided into: Control group, DMH-treated group, DMH plus inulin, DMH plus L. casei and DMH plus inulin plus L. casei-treated groups. Fecal microbiome analysis, biochemical measurements, histopathological examination of the colon tissues, immunostaining and Western blotting analysis of β-catenin, GSK3β and JNK-1 were performed. The prebiotic-, probiotic- and synbiotic-treated groups showed decreased levels of carcinoembryonic antigen and a lower number of aberrant crypt foci compared to the DMH-treated group with the synbiotic group exhibiting a superior effect. Furthermore, all treatments showed a body weight-reducing effect. Administration of inulin, L. casei or their combination increased the expression level of phospho-JNK-1 while they decreased the expression level of β-catenin and phospho-GSK3β. Remarkably, L. casei treatment resulted in enrichment of certain beneficial bacterial genera i.e. Akkermansia and Turicibacter. Therefore, administration of L. casei and inulin as a synbiotic combination protects against colon cancer in mice. The lactobacillus casei and inulin modulate the expression of JNK-1, GSK3β and β-catenin proteins and enrich the beneficial bacteria to protect from colon cancer in mice.![]()
Collapse
Affiliation(s)
- Mohammed S. Ali
- Department of Biochemistry
- Faculty of Pharmacy
- Beni-Suef University
- Beni-Suef
- Egypt
| | - Rasha M. Hussein
- Department of Biochemistry
- Faculty of Pharmacy
- Beni-Suef University
- Beni-Suef
- Egypt
| | - Yasser Gaber
- Department of Pharmaceutics and Pharmaceutical Technology
- College of Pharmacy
- Mutah University
- Al-Karak
- Jordan
| | - Olfat A. Hammam
- Pathology Department
- Theodor Bilharz Research Institute
- 12411 Giza
- Egypt
| | - Mohamed A. Kandeil
- Department of Biochemistry
- Faculty of Veterinary Medicine
- Beni-Suef University
- Egypt
| |
Collapse
|
92
|
Wang XQ, Zhang AH, Miao JH, Sun H, Yan GL, Wu FF, Wang XJ. Gut microbiota as important modulator of metabolism in health and disease. RSC Adv 2018; 8:42380-42389. [PMID: 35558413 PMCID: PMC9092240 DOI: 10.1039/c8ra08094a] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 12/02/2018] [Indexed: 12/12/2022] Open
Abstract
The human gastrointestinal tract colonizes a large number of microbial microflora, forms a host-microbiota co-metabolism structure with the host to participate in various metabolic processes in the human body, and plays a major role in the host immune response. In addition, the dysbiosis of intestinal microbial homeostasis is closely related to many diseases. Thus, an in-depth understanding of the relationship between them is of importance for disease pathogenesis, prevention and treatment. The combined use of metagenomics, transcriptomics, proteomics and metabolomics techniques for the analysis of gut microbiota can reveal the relationship between microbiota and the host in many ways, which has become a hot topic of analysis in recent years. This review describes the mechanism of co-metabolites in host health, including short-chain fatty acids (SCFA) and bile acid metabolism. The metabolic role of gut microbiota in obesity, liver diseases, gastrointestinal diseases and other diseases is also summarized, and the research methods for multi-omics combined application on gut microbiota are summarized. According to the studies of the interaction mechanism between gut microbiota and the host, we have a better understanding of the use of intestinal microflora in the treatment of related diseases. It is hoped that the gut microbiota can be utilized to maintain human health, providing a reference for future research.
Collapse
Affiliation(s)
- Xiang-Qian Wang
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant Nanning Guangxi China +86-451-82110818 +86-451-82110818
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine Heping Road 24 Harbin China
| | - Ai-Hua Zhang
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine Heping Road 24 Harbin China
| | - Jian-Hua Miao
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant Nanning Guangxi China +86-451-82110818 +86-451-82110818
| | - Hui Sun
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine Heping Road 24 Harbin China
| | - Guang-Li Yan
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine Heping Road 24 Harbin China
| | - Fang-Fang Wu
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant Nanning Guangxi China +86-451-82110818 +86-451-82110818
| | - Xi-Jun Wang
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant Nanning Guangxi China +86-451-82110818 +86-451-82110818
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine Heping Road 24 Harbin China
| |
Collapse
|
93
|
Aberrant Metabolism in Hepatocellular Carcinoma Provides Diagnostic and Therapeutic Opportunities. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7512159. [PMID: 30524660 PMCID: PMC6247426 DOI: 10.1155/2018/7512159] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/03/2018] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) accounts for over 80% of liver cancer cases and is highly malignant, recurrent, drug-resistant, and often diagnosed in the advanced stage. It is clear that early diagnosis and a better understanding of molecular mechanisms contributing to HCC progression is clinically urgent. Metabolic alterations clearly characterize HCC tumors. Numerous clinical parameters currently used to assess liver functions reflect changes in both enzyme activity and metabolites. Indeed, differences in glucose and acetate utilization are used as a valid clinical tool for stratifying patients with HCC. Moreover, increased serum lactate can distinguish HCC from normal subjects, and serum lactate dehydrogenase is used as a prognostic indicator for HCC patients under therapy. Currently, the emerging field of metabolomics that allows metabolite analysis in biological fluids is a powerful method for discovering new biomarkers. Several metabolic targets have been identified by metabolomics approaches, and these could be used as biomarkers in HCC. Moreover, the integration of different omics approaches could provide useful information on the metabolic pathways at the systems level. In this review, we provided an overview of the metabolic characteristics of HCC considering also the reciprocal influences between the metabolism of cancer cells and their microenvironment. Moreover, we also highlighted the interaction between hepatic metabolite production and their serum revelations through metabolomics researches.
Collapse
|
94
|
Singh V, Yeoh BS, Chassaing B, Xiao X, Saha P, Aguilera Olvera R, Lapek JD, Zhang L, Wang WB, Hao S, Flythe MD, Gonzalez DJ, Cani PD, Conejo-Garcia JR, Xiong N, Kennett MJ, Joe B, Patterson AD, Gewirtz AT, Vijay-Kumar M. Dysregulated Microbial Fermentation of Soluble Fiber Induces Cholestatic Liver Cancer. Cell 2018; 175:679-694.e22. [PMID: 30340040 PMCID: PMC6232850 DOI: 10.1016/j.cell.2018.09.004] [Citation(s) in RCA: 350] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 06/03/2018] [Accepted: 09/06/2018] [Indexed: 12/25/2022]
Abstract
Dietary soluble fibers are fermented by gut bacteria into short-chain fatty acids (SCFA), which are considered broadly health-promoting. Accordingly, consumption of such fibers ameliorates metabolic syndrome. However, incorporating soluble fiber inulin, but not insoluble fiber, into a compositionally defined diet, induced icteric hepatocellular carcinoma (HCC). Such HCC was microbiota-dependent and observed in multiple strains of dysbiotic mice but not in germ-free nor antibiotics-treated mice. Furthermore, consumption of an inulin-enriched high-fat diet induced both dysbiosis and HCC in wild-type (WT) mice. Inulin-induced HCC progressed via early onset of cholestasis, hepatocyte death, followed by neutrophilic inflammation in liver. Pharmacologic inhibition of fermentation or depletion of fermenting bacteria markedly reduced intestinal SCFA and prevented HCC. Intervening with cholestyramine to prevent reabsorption of bile acids also conferred protection against such HCC. Thus, its benefits notwithstanding, enrichment of foods with fermentable fiber should be approached with great caution as it may increase risk of HCC.
Collapse
Affiliation(s)
- Vishal Singh
- UT-Microbiome Consortium, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Beng San Yeoh
- Graduate Program in Immunology and Infectious Diseases, Pennsylvania State University, State College, PA 16802, USA
| | - Benoit Chassaing
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA; Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Xia Xiao
- Department of Nutritional Sciences, Pennsylvania State University, State College, PA 16802, USA
| | - Piu Saha
- UT-Microbiome Consortium, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Rodrigo Aguilera Olvera
- Department of Nutritional Sciences, Pennsylvania State University, State College, PA 16802, USA
| | - John D Lapek
- Department of Pharmacology, University of California, San Diego, CA 92093, USA
| | - Limin Zhang
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, State College, PA 16802, USA; CAS and State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan, China
| | - Wei-Bei Wang
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, State College, PA 16802, USA
| | - Sijie Hao
- Department of Biomedical Engineering, Pennsylvania State University, State College, PA 16802, USA
| | - Michael D Flythe
- USDA-Agriculture Research Service, University of Kentucky, Lexington, KY 40546, USA
| | - David J Gonzalez
- Department of Pharmacology, University of California, San Diego, CA 92093, USA
| | - Patrice D Cani
- WELBIO (Walloon Excellence in Life Sciences and Biotechnology), Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | | | - Na Xiong
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, State College, PA 16802, USA
| | - Mary J Kennett
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, State College, PA 16802, USA
| | - Bina Joe
- UT-Microbiome Consortium, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Andrew D Patterson
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, State College, PA 16802, USA
| | - Andrew T Gewirtz
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Matam Vijay-Kumar
- UT-Microbiome Consortium, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; Department of Medical Microbiology and Immunology, University of Toledo, Toledo, OH 43614, USA.
| |
Collapse
|
95
|
Meng X, Li S, Li Y, Gan RY, Li HB. Gut Microbiota's Relationship with Liver Disease and Role in Hepatoprotection by Dietary Natural Products and Probiotics. Nutrients 2018; 10:E1457. [PMID: 30297615 PMCID: PMC6213031 DOI: 10.3390/nu10101457] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/17/2018] [Accepted: 09/26/2018] [Indexed: 12/14/2022] Open
Abstract
A variety of dietary natural products have shown hepatoprotective effects. Increasing evidence has also demonstrated that gut microorganisms play an important role in the hepatoprotection contributed by natural products. Gut dysbiosis could increase permeability of the gut barrier, resulting in translocated bacteria and leaked gut-derived products, which can reach the liver through the portal vein and might lead to increased oxidative stress and inflammation, thereby threatening liver health. Targeting gut microbiota modulation represents a promising strategy for hepatoprotection. Many natural products could protect the liver from various injuries or mitigate hepatic disorders by reverting gut dysbiosis, improving intestinal permeability, altering the primary bile acid, and inhibiting hepatic fatty acid accumulation. The mechanisms underlying their beneficial effects also include reducing oxidative stress, suppressing inflammation, attenuating fibrosis, and decreasing apoptosis. This review discusses the hepatoprotective effects of dietary natural products via modulating the gut microbiota, mainly focusing on the mechanisms of action.
Collapse
Affiliation(s)
- Xiao Meng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangdong Engineering Technology Research Center of Nutrition Translation, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Sha Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China.
| | - Ya Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangdong Engineering Technology Research Center of Nutrition Translation, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Ren-You Gan
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangdong Engineering Technology Research Center of Nutrition Translation, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
- South China Sea Bioresource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
96
|
Saga K, Iwashita Y, Hidano S, Aso Y, Isaka K, Kido Y, Tada K, Takayama H, Masuda T, Hirashita T, Endo Y, Ohta M, Kobayashi T, Inomata M. Secondary Unconjugated Bile Acids Induce Hepatic Stellate Cell Activation. Int J Mol Sci 2018; 19:ijms19103043. [PMID: 30301191 PMCID: PMC6213941 DOI: 10.3390/ijms19103043] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/23/2018] [Accepted: 10/02/2018] [Indexed: 02/08/2023] Open
Abstract
Hepatic stellate cells (HSCs) are key players in liver fibrosis, cellular senescence, and hepatic carcinogenesis. Bile acids (BAs) are involved in the activation of HSCs, but the detailed mechanism of this process remains unclear. We conducted a comprehensive DNA microarray study of the human HSC line LX-2 treated with deoxycholic acid (DCA), a secondary unconjugated BA. Additionally, LX-2 cells were exposed to nine BAs and studied using immunofluorescence staining, enzyme-linked immunosorbent assay, and flow cytometry to examine the mechanisms of HSC activation. We focused on the tumor necrosis factor (TNF) pathway and revealed upregulation of genes related to nuclear factor kappa B (NF-κB) signaling and senescence-associated secretory phenotype factors. α-Smooth muscle actin (α-SMA) was highly expressed in cells treated with secondary unconjugated BAs, including DCA, and a morphological change associated with radial extension of subendothelial protrusion was observed. Interleukin-6 level in culture supernatant was significantly higher in cells treated with secondary unconjugated BAs. Flow cytometry showed that the proportion of cells highly expressing α-SMA was significantly increased in HSCs cultured with secondary unconjugated BAs. We demonstrated that secondary unconjugated BAs induced the activation of human HSCs.
Collapse
Affiliation(s)
- Kunihiro Saga
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita 879-5593, Japan.
| | - Yukio Iwashita
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita 879-5593, Japan.
| | - Shinya Hidano
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita 879-5593, Japan.
| | - Yuiko Aso
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita 879-5593, Japan.
| | - Kenji Isaka
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita 879-5593, Japan.
| | - Yasutoshi Kido
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita 879-5593, Japan.
| | - Kazuhiro Tada
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita 879-5593, Japan.
| | - Hiroomi Takayama
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita 879-5593, Japan.
| | - Takashi Masuda
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita 879-5593, Japan.
| | - Teijiro Hirashita
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita 879-5593, Japan.
| | - Yuichi Endo
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita 879-5593, Japan.
| | - Masayuki Ohta
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita 879-5593, Japan.
| | - Takashi Kobayashi
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita 879-5593, Japan.
| | - Masafumi Inomata
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita 879-5593, Japan.
| |
Collapse
|
97
|
Wahlström A. Outside the liver box: The gut microbiota as pivotal modulator of liver diseases. Biochim Biophys Acta Mol Basis Dis 2018; 1865:912-919. [PMID: 31007175 DOI: 10.1016/j.bbadis.2018.07.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/27/2018] [Accepted: 07/03/2018] [Indexed: 02/07/2023]
Abstract
The gut microbiota affects host physiology and has evolved as an important contributor to health and disease. Gut and liver are closely connected and communicate via the portal vein and the biliary system so the liver is constantly exposed to gut-derived bacterial products and metabolites. The intestinal barrier is important for maintaining physical and functional separation between microbes in the gut and the interior of the host and disruption of the barrier function can lead to bacterial translocation and increased leakage of bacterial metabolites. Liver diseases have been associated with dysbiotic changes in the gut microbiota and impaired gut barrier integrity, thus a future strategy to treat liver disease may be to target the gut microbiota and thereby restore the gut barrier function. This review will summarize and discuss studies that have shown a link between the gut microbiota and liver disease with the main focus on non-alcoholic fatty liver disease and alcoholic liver disease.
Collapse
Affiliation(s)
- Annika Wahlström
- Sahlgrenska Academy, Institute of Medicine, Department of Molecular and Clinical Medicine, Wallenberg Laboratory, University of Gothenburg, S-413 45 Gothenburg, Sweden.
| |
Collapse
|