51
|
Chown SL, Gaston KJ. Body size variation in insects: a macroecological perspective. Biol Rev Camb Philos Soc 2010; 85:139-69. [DOI: 10.1111/j.1469-185x.2009.00097.x] [Citation(s) in RCA: 455] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
52
|
Měráková E, Gvoždík L. Thermal acclimation of swimming performance in newt larvae: the influence of diel temperature fluctuations during embryogenesis. Funct Ecol 2009. [DOI: 10.1111/j.1365-2435.2009.01588.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
53
|
TERBLANCHE JS, KLEYNHANS E. Phenotypic plasticity of desiccation resistance inGlossinapuparia: are there ecotype constraints on acclimation responses? J Evol Biol 2009; 22:1636-48. [DOI: 10.1111/j.1420-9101.2009.01784.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- J. S. TERBLANCHE
- Department of Conservation Ecology and Entomology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa
| | - E. KLEYNHANS
- Department of Conservation Ecology and Entomology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
54
|
Steigenga MJ, Fischer K. Fitness consequences of variation in developmental temperature in a butterfly. J Therm Biol 2009. [DOI: 10.1016/j.jtherbio.2009.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
55
|
Craig Stillwell R, Fox CW. Geographic variation in body size, sexual size dimorphism and fitness components of a seed beetle: local adaptation versus phenotypic plasticity. OIKOS 2009. [DOI: 10.1111/j.1600-0706.2008.17327.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
56
|
Abstract
Environmental temperature strongly affects physiology of ectotherms. Small ectotherms, like Drosophila, cannot endogenously regulate body temperature so must rely on behavior to maintain body temperature within a physiologically permissive range. Here we review what is known about Drosophila thermal preference. Work on thermal behavior in this group is particularly exciting because it provides the opportunity to connect genes to neuromolecular mechanisms to behavior to fitness in the wild.
Collapse
Affiliation(s)
- Michael E Dillon
- Department of Biology, Box 351800, University of Washington, Seattle, WA 98195-1800 USA
| | | | | | | |
Collapse
|
57
|
Stillwell RC, Moya-Laraño J, Fox CW. Selection does not favor larger body size at lower temperature in a seed-feeding beetle. Evolution 2008; 62:2534-44. [PMID: 18647341 DOI: 10.1111/j.1558-5646.2008.00467.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Body size of many animals increases with increasing latitude, a phenomenon known as Bergmann's rule (Bergmann clines). Latitudinal gradients in mean temperature are frequently assumed to be the underlying cause of this pattern because temperature covaries systematically with latitude, but whether and how temperature mediates selection on body size is unclear. To test the hypothesis that the "relative" advantage of being larger is greatest at cooler temperatures we compare the fitness of replicate lines of the seed beetle, Stator limbatus, for which body size was manipulated via artificial selection ("Large,""Control," and "Small" lines), when raised at low (22 degrees C) and high (34 degrees C) temperatures. Large-bodied beetles (Large lines) took the longest to develop but had the highest lifetime fecundity, and highest fitness (r(C)), at both low and high temperatures. However, the relative difference between the Large and Small lines did not change with temperature (replicate 2) or was greatest at high temperature (replicate 1), contrary to the prediction that the fitness advantage of being large relative to being small will decline with increasing temperature. Our results are consistent with two previous studies of this seed beetle, but inconsistent with prior studies that suggest that temperature-mediated selection on body size is a major contributor to the production of Bergmann clines. We conclude that other environmental and ecological variables that covary with latitude are more likely to produce the gradient in natural selection responsible for generating Bergmann clines.
Collapse
Affiliation(s)
- R Craig Stillwell
- Department of Ecology and Evolutionary Biology, University of Arizona, BioSciences West 310, Tucson, Arizona 85721, USA.
| | | | | |
Collapse
|
58
|
Mensch J, Lavagnino N, Carreira VP, Massaldi A, Hasson E, Fanara JJ. Identifying candidate genes affecting developmental time in Drosophila melanogaster: pervasive pleiotropy and gene-by-environment interaction. BMC DEVELOPMENTAL BIOLOGY 2008; 8:78. [PMID: 18687152 PMCID: PMC2519079 DOI: 10.1186/1471-213x-8-78] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Accepted: 08/08/2008] [Indexed: 11/13/2022]
Abstract
Background Understanding the genetic architecture of ecologically relevant adaptive traits requires the contribution of developmental and evolutionary biology. The time to reach the age of reproduction is a complex life history trait commonly known as developmental time. In particular, in holometabolous insects that occupy ephemeral habitats, like fruit flies, the impact of developmental time on fitness is further exaggerated. The present work is one of the first systematic studies of the genetic basis of developmental time, in which we also evaluate the impact of environmental variation on the expression of the trait. Results We analyzed 179 co-isogenic single P[GT1]-element insertion lines of Drosophila melanogaster to identify novel genes affecting developmental time in flies reared at 25°C. Sixty percent of the lines showed a heterochronic phenotype, suggesting that a large number of genes affect this trait. Mutant lines for the genes Merlin and Karl showed the most extreme phenotypes exhibiting a developmental time reduction and increase, respectively, of over 2 days and 4 days relative to the control (a co-isogenic P-element insertion free line). In addition, a subset of 42 lines selected at random from the initial set of 179 lines was screened at 17°C. Interestingly, the gene-by-environment interaction accounted for 52% of total phenotypic variance. Plastic reaction norms were found for a large number of developmental time candidate genes. Conclusion We identified components of several integrated time-dependent pathways affecting egg-to-adult developmental time in Drosophila. At the same time, we also show that many heterochronic phenotypes may arise from changes in genes involved in several developmental mechanisms that do not explicitly control the timing of specific events. We also demonstrate that many developmental time genes have pleiotropic effects on several adult traits and that the action of most of them is sensitive to temperature during development. Taken together, our results stress the need to take into account the effect of environmental variation and the dynamics of gene interactions on the genetic architecture of this complex life-history trait.
Collapse
Affiliation(s)
- Julián Mensch
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina.
| | | | | | | | | | | |
Collapse
|
59
|
Abstract
Few studies have examined the extent to which phenotypic plasticity in a given trait might be influenced by behavioural responses to an environmental cue. Regulatory behaviour might eliminate environmental variation such that little selection for physiological change would take place. Here, to test this Bogert effect on acclimation, we use two life-stages of a kelp fly that inhabit the same habitat, but differ profoundly in their behaviour. We predicted that when denied opportunities for behavioural regulation, mobile, though brachypterous adults would show a performance advantage in most thermal environments following acclimation to their preferred temperature(s). By contrast, in the less mobile larvae, that have a broader thermal preference, beneficial acclimation would be more evident. Ordered factor anova with orthogonal polynomial contrasts revealed that adults recovered faster from chill coma following any one of six short-term temperature treatments if they had been acclimated at low temperature, whilst larvae showed beneficial acclimation.
Collapse
Affiliation(s)
- Elrike Marais
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland, 7602 Stellenbosch, South Africa.
| | | |
Collapse
|
60
|
Frazier MR, Harrison JF, Kirkton SD, Roberts SP. Cold rearing improves cold-flight performance inDrosophila viachanges in wing morphology. J Exp Biol 2008; 211:2116-22. [DOI: 10.1242/jeb.019422] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYWe use a factorial experimental design to test whether rearing at colder temperatures shifts the lower thermal envelope for flight of Drosophila melanogaster Meigen to colder temperatures. D. melanogaster that developed in colder temperatures (15°C) had a significant flight advantage in cold air compared to flies that developed in warmer temperatures(28°C). At 14°C, cold-reared flies failed to perform a take-off flight∼47% of the time whereas warm-reared flies failed ∼94% of the time. At 18°C, cold- and warm-reared flies performed equally well. We also compared several traits in cold- and warm-developing flies to determine if cold-developing flies had better flight performance at cold temperatures due to changes in body mass, wing length, wing loading, relative flight muscle mass or wing-beat frequency. The improved ability to fly at low temperatures was associated with a dramatic increase in wing area and an increase in wing length (after controlling for wing area). Flies that developed at 15°C had∼25% more wing area than similarly sized flies that developed at 28°C. Cold-reared flies had slower wing-beat frequencies than similarly sized flies from warmer developmental environments, whereas other traits did not vary with developmental temperature. These results demonstrate that developmental plasticity in wing dimensions contributes to the improved flight performance of D. melanogaster at cold temperatures, and ultimately, may help D. melanogaster live in a wide range of thermal environments.
Collapse
Affiliation(s)
- Melanie R. Frazier
- Department of Biology Box 351800, University of Washington, Seattle, WA 98195-1800, USA
| | - Jon F. Harrison
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501. USA
| | - Scott D. Kirkton
- Department of Biological Sciences, Union College, Schenectady, NY 12308,USA
| | - Stephen P. Roberts
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154-4004, USA
| |
Collapse
|
61
|
de Valpine P, Rosenheim JA. Field-scale roles of density, temperature, nitrogen, and predation on aphid population dynamics. Ecology 2008; 89:532-41. [PMID: 18409442 DOI: 10.1890/06-1996.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Robust analyses of noisy, stage-structured, irregularly spaced, field-scale data incorporating multiple sources of variability and nonlinear dynamics remain very limited, hindering understanding of how small-scale studies relate to large-scale population dynamics. We used a novel, complementary Bayesian and frequentist state-space model analysis to ask how density, temperature, plant nitrogen, and predators affect cotton aphid (Aphis gossypii) population dynamics in weekly data from 18 field-years and whether estimated effects are consistent with small-scale studies. We found clear roles of density and temperature but not of plant nitrogen or predators, for which Bayesian and frequentist evidence differed. However, overall predictability of field-scale dynamics remained low. This study demonstrates stage-structured state-space model analysis incorporating bottom-up, top-down, and density-dependent effects for within-season (nearly continuous time), nonlinear population dynamics. The analysis combines Bayesian posterior evidence with maximum-likelihood estimation and frequentist hypothesis testing using average one-step-ahead residuals.
Collapse
Affiliation(s)
- Perry de Valpine
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94720-3114, USA.
| | | |
Collapse
|
62
|
Punzalan D, Rodd FH, Rowe L. Sexual selection mediated by the thermoregulatory effects of male colour pattern in the ambush bug Phymata americana. Proc Biol Sci 2008; 275:483-92. [PMID: 18089533 DOI: 10.1098/rspb.2007.1585] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Sexual dimorphism in coloration is a taxonomically widespread phenomenon often attributed to sexual selection on visual signals. However, the ambush bug Phymata americana exhibits sexual dimorphism in coloration that has no apparent signalling function. Here we provide evidence that colour pattern in this species influences male mating success indirectly through its effect on thermoregulation. We demonstrate, using experimental manipulation, that individuals with dark colour pattern achieve higher thoracic temperatures under illumination. We also show that dark colour pattern predicted mate-searching success but only under thermally challenging conditions (i.e. cool ambient temperature). As far as we are aware, this is the first study to provide evidence that sexual dimorphism can be accounted for by sexual selection on thermoregulatory performance.
Collapse
Affiliation(s)
- David Punzalan
- Department of Ecology and Evolution, University of Toronto, Toronto, Ontario, Canada.
| | | | | |
Collapse
|
63
|
|
64
|
Stillwell RC, Morse GE, Fox CW. Geographic variation in body size and sexual size dimorphism of a seed-feeding beetle. Am Nat 2007; 170:358-69. [PMID: 17879187 DOI: 10.1086/520118] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Accepted: 04/11/2007] [Indexed: 11/03/2022]
Abstract
Body size of many animals varies with latitude: body size is either larger at higher latitudes (Bergmann's rule) or smaller at higher latitudes (converse Bergmann's rule). However, the causes underlying these patterns are poorly understood. Also, studies rarely explore how sexual size dimorphism varies with latitude. Here we investigate geographic variation in body size and sexual size dimorphism of the seed-feeding beetle Stator limbatus, collected from 95 locations along a 38 degrees range in latitude. We examine 14 variables to test whether clines in environmental factors are adequate to explain geographic patterns of body size. We found that body size and sexual size dimorphism of S. limbatus varied considerably with latitude; beetles were smaller but more dimorphic at lower latitudes. Body size was not correlated with a gradient in mean temperature, contrary to the commonly accepted hypothesis that clines are produced by latitudinal gradients in temperature. Instead, we found that three factors were adequate to explain the cline in body size: clinal variation in host plant seed size, moisture (humidity), and seasonality (variance in humidity, precipitation, and temperature). We also found that the cline in sexual size dimorphism was partially explainable by a gradient in moisture, though moisture alone was not sufficient to explain the cline. Other ecological or environmental variables must necessarily contribute to differences in selection on male versus female body size. The main implications of our study are that the sexes differ in the magnitude of clinal variation in body size, creating latitudinal variation in sexual size dimorphism, and that clines in body size of seed beetles are likely influenced by variation in host seed size, water availability, and seasonality.
Collapse
Affiliation(s)
- R Craig Stillwell
- Department of Entomology, University of Kentucky, Lexington, Kentucky 40546, USA.
| | | | | |
Collapse
|
65
|
Kingsolver JG, Massie KR, Ragland GJ, Smith MH. Rapid population divergence in thermal reaction norms for an invading species: breaking the temperature-size rule. J Evol Biol 2007; 20:892-900. [PMID: 17465900 DOI: 10.1111/j.1420-9101.2007.01318.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The temperature-size rule is a common pattern of phenotypic plasticity in which higher temperature during development results in a smaller adult body size (i.e. a thermal reaction norm with negative slope). Examples and exceptions to the rule are known in multiple groups of organisms, but rapid population differentiation in the temperature-size rule has not been explored. Here we examine the genetic and parental contributions to population differentiation in thermal reaction norms for size, development time and survival in the Cabbage White Butterfly Pieris rapae, for two geographical populations that have likely diverged within the past 150 years. We used split-sibship experiments with two temperature treatments (warm and cool) for P. rapae from Chapel Hill, NC, and from Seattle, WA. Mixed-effect model analyses demonstrate significant genetic differences between NC and WA populations for adult size and for thermal reaction norms for size. Mean adult mass was 12-24% greater in NC than in WA populations for both temperature treatments; mean size was unaffected or decreased with temperature (the temperature-size rule) for the WA population, but size increased with temperature for the NC population. Our study shows that the temperature-size rule and related thermal reaction norms can evolve rapidly within species in natural field conditions. Rapid evolutionary divergence argues against the existence of a simple, general mechanistic constraint as the underlying cause of the temperature-size rule.
Collapse
Affiliation(s)
- J G Kingsolver
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA.
| | | | | | | |
Collapse
|
66
|
|
67
|
Stillwell RC, Wallin WG, Hitchcock LJ, Fox CW. Phenotypic plasticity in a complex world: interactive effects of food and temperature on fitness components of a seed beetle. Oecologia 2007; 153:309-21. [PMID: 17486371 DOI: 10.1007/s00442-007-0748-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Accepted: 04/02/2007] [Indexed: 11/26/2022]
Abstract
Most studies of phenotypic plasticity investigate the effects of an individual environmental factor on organism phenotypes. However, organisms exist in an ecologically complex world where multiple environmental factors can interact to affect growth, development and life histories. Here, using a multifactorial experimental design, we examine the separate and interactive effects of two environmental factors, rearing host species (Vigna radiata, Vigna angularis and Vigna unguiculata) and temperature (20, 25, 30 and 35 degrees C), on growth and life history traits in two populations [Burkina Faso (BF) and South India (SI)] of the seed beetle, Callosobruchus maculatus. The two study populations of beetles responded differently to both rearing host and temperature. We also found a significant interaction between rearing host and temperature for body size, growth rate and female lifetime fecundity but not larval development time or larval survivorship. The interaction was most apparent for growth rate; the variance in growth rate among hosts increased with increasing temperature. However, the details of host differences differed between our two study populations; the degree to which V. unguiculata was a better host than V. angularis or V. radiata increased at higher temperatures for BF beetles, whereas the degree to which V. unguiculata was the worst host increased at higher temperatures for SI beetles. We also found that the heritabilities of body mass, growth rate and fecundity were similar among rearing hosts and temperatures, and that the cross-temperature genetic correlation was not affected by rearing host, suggesting that genetic architecture is generally stable across rearing conditions. The most important finding of our study is that multiple environmental factors can interact to affect organism growth, but the degree of interaction, and thus the degree of complexity of phenotypic plasticity, varies among traits and between populations.
Collapse
Affiliation(s)
- R Craig Stillwell
- Department of Entomology, University of Kentucky, S225 Agricultural Science Center North, Lexington, KY 40546-0091, USA.
| | | | | | | |
Collapse
|
68
|
Stillwell RC, Fox CW. Environmental effects on sexual size dimorphism of a seed-feeding beetle. Oecologia 2007; 153:273-80. [PMID: 17440751 DOI: 10.1007/s00442-007-0724-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2006] [Accepted: 03/08/2007] [Indexed: 10/23/2022]
Abstract
Sexual size dimorphism is widespread in animals but varies considerably among species and among populations within species. Much of this variation is assumed to be due to variance in selection on males versus females. However, environmental variables could affect the development of females and males differently, generating variation in dimorphism. Here we use a factorial experimental design to simultaneously examine the effects of rearing host and temperature on sexual dimorphism of the seed beetle, Callosobruchus maculatus. We found that the sexes differed in phenotypic plasticity of body size in response to rearing temperature but not rearing host, creating substantial temperature-induced variation in sexual dimorphism; females were larger than males at all temperatures, but the degree of this dimorphism was smallest at the lowest temperature. This change in dimorphism was due to a gender difference in the effect of temperature on growth rate and not due to sexual differences in plasticity of development time. Furthermore, the sex ratio (proportion males) decreased with decreasing temperature and became female-biased at the lowest temperature. This suggests that the temperature-induced change in dimorphism is potentially due to a change in non-random larval mortality of males versus females. This most important implication of this study is that rearing temperature can generate considerable intraspecific variation in the degree of sexual size dimorphism, though most studies assume that dimorphism varies little within species. Future studies should focus on whether sexual differences in phenotypic plasticity of body size are a consequence of adaptive canalization of one sex against environmental variation in temperature or whether they simply reflect a consequence of non-adaptive developmental differences between males and females.
Collapse
Affiliation(s)
- R Craig Stillwell
- Department of Entomology, University of Kentucky, S225 Agricultural Science Center North, Lexington, KY 40546-0091, USA.
| | | |
Collapse
|
69
|
GVOŽDÍK LUMÍR, PUKY MIKLÓS, ŠUGERKOVÁ MONIKA. Acclimation is beneficial at extreme test temperatures in the Danube crested newt, Triturus dobrogicus (Caudata, Salamandridae). Biol J Linn Soc Lond 2007. [DOI: 10.1111/j.1095-8312.2006.00752.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
70
|
Gagliano M, McCormick MI, Meekan MG. Temperature-induced shifts in selective pressure at a critical developmental transition. Oecologia 2007; 152:219-25. [PMID: 17242907 DOI: 10.1007/s00442-006-0647-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Accepted: 12/11/2006] [Indexed: 10/23/2022]
Abstract
Selective mortality within a population, based on the phenotype of individuals, is the foundation of the theory of natural selection. We examined temperature-induced shifts in the relationships among early life history traits and survivorship over the embryonic and larval stages of a tropical damselfish, Pomacentrus amboinensis. Our experiments show that temperature determines the intensity of selective mortality, and that this changes with ontogeny. The size of energy stores determined survival through to hatching, after which egg size became a good indicator of fitness as predicted by theoretical models. Yet, the benefits associated with egg size were not uniform among test temperatures. Initial egg size positively influenced larval survival at control temperature (29 degrees C). However, this embryonic trait had no effect on post-hatching longevity of individuals reared at the higher (31 degrees C) and lower (25 degrees C) end of the temperature range. Overall, our findings indicate that the outcome of selective mortality is strongly dependent on the interaction between environment conditions and intrinsic developmental schedules.
Collapse
Affiliation(s)
- Monica Gagliano
- Australian Research Council Centre of Excellence for Coral Reef Studies, School of Marine and Tropical Biology, James Cook University, Townsville, QLD 4811, Australia.
| | | | | |
Collapse
|
71
|
FOX CW, STILLWELL RC, WALLIN WG, HITCHCOCK LJ. Temperature and host species affect nuptial gift size in a seed-feeding beetle. Funct Ecol 2006. [DOI: 10.1111/j.1365-2435.2006.01197.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
72
|
Benton TG, Plaistow SJ, Coulson TN. Complex population dynamics and complex causation: devils, details and demography. Proc Biol Sci 2006; 273:1173-81. [PMID: 16720388 PMCID: PMC1560275 DOI: 10.1098/rspb.2006.3495] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Accepted: 01/23/2006] [Indexed: 11/12/2022] Open
Abstract
Population dynamics result from the interplay of density-independent and density-dependent processes. Understanding this interplay is important, especially for being able to predict near-term population trajectories for management. In recent years, the study of model systems-experimental, observational and theoretical-has shed considerable light on the way that the both density-dependent and -independent aspects of the environment affect population dynamics via impacting on the organism's life history and therefore demography. These model-based approaches suggest that (i) individuals in different states differ in their demographic performance, (ii) these differences generate structure that can fluctuate independently of current total population size and so can influence the dynamics in important ways, (iii) individuals are strongly affected by both current and past environments, even when the past environments may be in previous generations and (iv) dynamics are typically complex and transient due to environmental noise perturbing complex population structures. For understanding population dynamics of any given system, we suggest that 'the devil is in the detail'. Experimental dissection of empirical systems is providing important insights into the details of the drivers of demographic responses and therefore dynamics and should also stimulate theory that incorporates relevant biological mechanism.
Collapse
Affiliation(s)
- Tim G Benton
- University of Leeds Institute of Integrative and Comparative Biology Leeds LS2 9JT, UK.
| | | | | |
Collapse
|
73
|
|
74
|
Adaptive significance of egg size plasticity in response to temperature in the migrant skipper, Parnara guttata guttata (Lepidoptera: Hesperiidae). POPUL ECOL 2006. [DOI: 10.1007/s10144-006-0253-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
75
|
Chown SL, Terblanche JS. Physiological Diversity in Insects: Ecological and Evolutionary Contexts. ADVANCES IN INSECT PHYSIOLOGY 2006; 33:50-152. [PMID: 19212462 PMCID: PMC2638997 DOI: 10.1016/s0065-2806(06)33002-0] [Citation(s) in RCA: 313] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Affiliation(s)
- Steven L Chown
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, South Africa
| | | |
Collapse
|
76
|
Kaplan RH, Phillips PC. ECOLOGICAL AND DEVELOPMENTAL CONTEXT OF NATURAL SELECTION: MATERNAL EFFECTS AND THERMALLY INDUCED PLASTICITY IN THE FROG BOMBINA ORIENTALIS. Evolution 2006. [DOI: 10.1554/05-327r.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
77
|
Kaplan RH, Phillips PC. ECOLOGICAL AND DEVELOPMENTAL CONTEXT OF NATURAL SELECTION: MATERNAL EFFECTS AND THERMALLY INDUCED PLASTICITY IN THE FROG BOMBINA ORIENTALIS. Evolution 2006. [DOI: 10.1111/j.0014-3820.2006.tb01089.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
78
|
Plaistow SJ, Lapsley CT, Benton TG. Context-dependent intergenerational effects: the interaction between past and present environments and its effect on population dynamics. Am Nat 2005; 167:206-15. [PMID: 16670981 DOI: 10.1086/499380] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Accepted: 09/07/2005] [Indexed: 11/04/2022]
Abstract
Intergenerational effects arise when parents' actions influence the reproduction and survival of their offspring and possibly later descendants. Models suggest that intergenerational effects have important implications for both population dynamical patterns and the evolution of life-history traits. However, these will depend on the nature and duration of intergenerational effects. Here we show that manipulating parental food environments of soil mites produced intergenerational effects that were still detectable in the life histories of descendents three generations later. Intergenerational effects varied in different environments and from one generation to the next. In low-food environments, variation in egg size altered a trade-off between age and size at maturity and had little effect on the size of eggs produced in subsequent generations. Consequently, intergenerational effects decreased over time. In contrast, in high-food environments, variation in egg size predominantly influenced a trade-off between fecundity and adult survival and generated increasing variation in egg size. As a result, the persistence and significance of intergenerational effects varied between high- and low-food environments. Context-dependent intergenerational effects can therefore have complex but important effects on population dynamics.
Collapse
Affiliation(s)
- Stewart J Plaistow
- School of Biological Sciences, Zoology Building, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom.
| | | | | |
Collapse
|