51
|
Castaño C, Novials A, Párrizas M. Exosomes and diabetes. Diabetes Metab Res Rev 2019; 35:e3107. [PMID: 30513130 DOI: 10.1002/dmrr.3107] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/08/2018] [Accepted: 11/28/2018] [Indexed: 12/20/2022]
Abstract
Diabetes is a group of metabolic diseases characterized by elevated blood glucose levels that drive the development of life-threatening complications. Diabetes results from a situation of insufficient insulin action, either by deficient production of the hormone by the pancreas, or by the development of insulin resistance in peripheral tissues such as liver, muscle, or the adipose depots. Communication between organs is thus central to the maintenance of glucose homoeostasis. Recently, several studies are evidencing that small vesicles called exosomes released by, amongst other, the adipose tissue can regulate gene expression in other tissues, hence modulating interorgan crosstalk. Therefore, exosomes participate in the development of diabetes and its associated complications. Their study holds the potential of providing us with novel biomarkers for the early diagnosis and stratification of patients at risk of developing diabetes, hence allowing the timely implementation of more personalized therapies. On the other hand, the molecular dissection of the pathways initiated by exosomes under situations of metabolic stress could help to gain a deeper knowledge of the pathophysiology of diabetes and its associated metabolic diseases.
Collapse
Affiliation(s)
- Carlos Castaño
- Diabetes and Obesity Research Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Barcelona, Spain
| | - Anna Novials
- Diabetes and Obesity Research Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Barcelona, Spain
| | - Marcelina Párrizas
- Diabetes and Obesity Research Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Barcelona, Spain
| |
Collapse
|
52
|
Javeed N. Shedding Perspective on Extracellular Vesicle Biology in Diabetes and Associated Metabolic Syndromes. Endocrinology 2019; 160:399-408. [PMID: 30624638 PMCID: PMC6349001 DOI: 10.1210/en.2018-01010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/02/2019] [Indexed: 12/11/2022]
Abstract
The etiology of diabetes and associated metabolic derailments is a complex process that relies on crosstalk between metabolically active tissues. Dysregulation of secreted factors and metabolites from islets, adipose tissue, liver, and skeletal muscle contributes to the overall progression of diabetes and metabolic syndrome. Extracellular vesicles (EVs) are circulating nanovesicles secreted by most cell types and are comprised of bioactive cargoes that are horizontally transferred to targeted cells/tissues. Accumulating evidence from the past decade implicates the role of EVs as mediators of islet cell dysfunction, inflammation, insulin resistance, and other metabolic consequences associated with diabetes. This review covers a broad spectrum of basic EV biology (i.e., biogenesis, secretion, and uptake), including a comprehensive investigation of the emerging role of EVs in β-cell autocrine/paracrine interactions and the multidirectional crosstalk in metabolically active tissues. Understanding the utility of this novel means of intercellular communication could impart insight into the development of new treatment regimens and biomarker detection to treat diabetes.
Collapse
Affiliation(s)
- Naureen Javeed
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
- Correspondence: Naureen Javeed, PhD, Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905. E-mail:
| |
Collapse
|
53
|
Baghaei K, Tokhanbigli S, Asadzadeh H, Nmaki S, Reza Zali M, Hashemi SM. Exosomes as a novel cell‐free therapeutic approach in gastrointestinal diseases. J Cell Physiol 2018; 234:9910-9926. [DOI: 10.1002/jcp.27934] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/09/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Samaneh Tokhanbigli
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Hamid Asadzadeh
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Saeed Nmaki
- Department of Immunology School of Medicine, Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology School of Medicine, Shahid Beheshti University of Medical Sciences Tehran Iran
- Department of Applied Cell Sciences School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences Tehran Iran
| |
Collapse
|
54
|
Dai YD, Dias P. Exosomes or Microvesicles, a Secreted Subcellular Organelle Contributing to Inflammation and Diabetes. Diabetes 2018; 67:2154-2156. [PMID: 30348822 DOI: 10.2337/dbi18-0021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Yang D Dai
- Biomedical Research Institute of Southern California, San Diego, CA
- The Scripps Research Institute, La Jolla, CA
| | - Peter Dias
- Biomedical Research Institute of Southern California, San Diego, CA
| |
Collapse
|
55
|
Rutman AK, Negi S, Gasparrini M, Hasilo CP, Tchervenkov J, Paraskevas S. Immune Response to Extracellular Vesicles From Human Islets of Langerhans in Patients With Type 1 Diabetes. Endocrinology 2018; 159:3834-3847. [PMID: 30307543 DOI: 10.1210/en.2018-00649] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/01/2018] [Indexed: 12/14/2022]
Abstract
The autoimmune response that characterizes type 1 diabetes (T1D) has no clear cause. Extracellular vesicles (EVs) play an important role in triggering the immune response in other contexts. Here, we propose a model by which EVs isolated from human islets stimulate proinflammatory immune responses and lead to peripheral blood mononuclear cell (PBMC) activation. We show that human islet EVs are internalized by monocytes and B cells and lead to an increase in T-helper 1, 2, and 17 cytokine expression, as well as T and B cell proliferation. Importantly, we demonstrate memory T and B cell activation by EVs selectively in PBMCs of patients with T1D. Additionally, human islet EVs induce an increase in antibodies against glutamic acid decarboxylase 65 (GAD65) in T1D PBMCs. Furthermore, pretreatment of T1D PBMCs with ibrutinib, an inhibitor of Bruton tyrosine kinase, dampens EV-induced memory B cell activation and GAD65 antibody production. Collectively, our findings indicate a role for human islet EVs in mediating activation of B and T cells and GAD65 autoantibody production.
Collapse
Affiliation(s)
- Alissa K Rutman
- Human Islet Transplant Laboratory, Department of Surgery, McGill University Health Centre, Montréal, Québec, Canada
- Center of Excellence in Translational Immunology, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- Canadian National Transplant Research Program, Edmonton, Alberta, Canada
| | - Sarita Negi
- Human Islet Transplant Laboratory, Department of Surgery, McGill University Health Centre, Montréal, Québec, Canada
- Center of Excellence in Translational Immunology, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- Canadian National Transplant Research Program, Edmonton, Alberta, Canada
| | - Marco Gasparrini
- Human Islet Transplant Laboratory, Department of Surgery, McGill University Health Centre, Montréal, Québec, Canada
- Center of Excellence in Translational Immunology, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- Canadian National Transplant Research Program, Edmonton, Alberta, Canada
| | - Craig P Hasilo
- Human Islet Transplant Laboratory, Department of Surgery, McGill University Health Centre, Montréal, Québec, Canada
- Canadian National Transplant Research Program, Edmonton, Alberta, Canada
| | - Jean Tchervenkov
- Human Islet Transplant Laboratory, Department of Surgery, McGill University Health Centre, Montréal, Québec, Canada
- Center of Excellence in Translational Immunology, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- Canadian National Transplant Research Program, Edmonton, Alberta, Canada
| | - Steven Paraskevas
- Human Islet Transplant Laboratory, Department of Surgery, McGill University Health Centre, Montréal, Québec, Canada
- Center of Excellence in Translational Immunology, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- Canadian National Transplant Research Program, Edmonton, Alberta, Canada
| |
Collapse
|
56
|
Cesselli D, Parisse P, Aleksova A, Veneziano C, Cervellin C, Zanello A, Beltrami AP. Extracellular Vesicles: How Drug and Pathology Interfere With Their Biogenesis and Function. Front Physiol 2018; 9:1394. [PMID: 30327618 PMCID: PMC6174233 DOI: 10.3389/fphys.2018.01394] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 09/13/2018] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EV) are at the center of an intense activity of investigation, both for their possible employment as biomarkers of ongoing pathologic processes and for their broad range of biological activities. EV can promote tissue repair in very different pathologic settings, including hindlimb and myocardial ischemia. Importantly, the exact mode of action of EV is still partly understood, since they may act by modulating growth factors and cytokines, signaling pathways, and by transferring non-coding RNAs to target cells. However, the term EV identifies cell derived, enveloped particles very heterogeneous in size, composition, and biogenesis. Therefore, part of the controversies on the biological effects exerted by EV is a consequence of differences in methods of separation that result in the enrichment of different entities. Since technical challenges still hamper the highly specific sorting of different EV subpopulations, up to now only few investigators have tried to verify differences in the biological effects of specific EV subtypes. This review summarizes the current state of the art on the comprehension of mechanisms involved in EV biogenesis and release, which is a prerequisite for understanding and investigating the impact that pathology and drug therapy may exert on the secretion and composition of EV. Finally, we described both the mechanism involved in the modulation of EV secretion by drugs commonly used in patients affected by heart failure, and how pathophysiological mechanisms involved in heart disease modify EV secretion.
Collapse
Affiliation(s)
| | | | - Aneta Aleksova
- Cardiovascular Department, Azienda Sanitaria Universitaria Integrata di Trieste - University of Trieste, Trieste, Italy
| | | | | | - Andrea Zanello
- Department of Medicine, University of Udine, Udine, Italy
| | | |
Collapse
|
57
|
Yao ZY, Chen WB, Shao SS, Ma SZ, Yang CB, Li MZ, Zhao JJ, Gao L. Role of exosome-associated microRNA in diagnostic and therapeutic applications to metabolic disorders. J Zhejiang Univ Sci B 2018; 19:183-198. [PMID: 29504312 DOI: 10.1631/jzus.b1600490] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Metabolic disorders are classified clinically as a complex and varied group of diseases including metabolic syndrome, obesity, and diabetes mellitus. Fat toxicity, chronic inflammation, and oxidative stress, which may change cellular functions, are considered to play an essential role in the pathogenetic progress of metabolic disorders. Recent studies have found that cells secrete nanoscale vesicles containing proteins, lipids, nucleic acids, and membrane receptors, which mediate signal transduction and material transport to neighboring and distant cells. Exosomes, one type of such vesicles, are reported to participate in multiple pathological processes including tumor metastasis, atherosclerosis, chronic inflammation, and insulin resistance. Research on exosomes has focused mainly on the proteins they contain, but recently the function of exosome-associated microRNA has drawn a lot of attention. Exosome-associated microRNAs regulate the physiological function and pathological processes of metabolic disorders. They may also be useful as novel diagnostics and therapeutics given their special features of non-immunogenicity and quick extraction. In this paper, we summarize the structure, content, and functions of exosomes and the potential diagnostic and therapeutic applications of exosome-associated microRNAs in the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Zhen-Yu Yao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University / Shandong Key Laboratory of Endocrinology and Lipid Metabolism / Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan 250021, China
| | - Wen-Bin Chen
- Scientific Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Shan-Shan Shao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University / Shandong Key Laboratory of Endocrinology and Lipid Metabolism / Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan 250021, China
| | - Shi-Zhan Ma
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University / Shandong Key Laboratory of Endocrinology and Lipid Metabolism / Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan 250021, China
| | - Chong-Bo Yang
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University / Shandong Key Laboratory of Endocrinology and Lipid Metabolism / Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan 250021, China
| | - Meng-Zhu Li
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University / Shandong Key Laboratory of Endocrinology and Lipid Metabolism / Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan 250021, China
| | - Jia-Jun Zhao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University / Shandong Key Laboratory of Endocrinology and Lipid Metabolism / Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan 250021, China
| | - Ling Gao
- Scientific Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| |
Collapse
|
58
|
Exosomal microRNA-194 causes cardiac injury and mitochondrial dysfunction in obese mice. Biochem Biophys Res Commun 2018; 503:3174-3179. [DOI: 10.1016/j.bbrc.2018.08.113] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 08/17/2018] [Indexed: 12/20/2022]
|
59
|
Nojehdehi S, Soudi S, Hesampour A, Rasouli S, Soleimani M, Hashemi SM. Immunomodulatory effects of mesenchymal stem cell-derived exosomes on experimental type-1 autoimmune diabetes. J Cell Biochem 2018; 119:9433-9443. [PMID: 30074271 DOI: 10.1002/jcb.27260] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 06/22/2018] [Indexed: 12/13/2022]
Abstract
Exosomes derived from adipose tissue-derived mesenchymal stem cells (AD-MSCs) have immunomodulatory effects of T-cell inflammatory response and reduction of clinical symptoms on streptozotocin-induced of the type-1 diabetes mellitus (T1DM). Beside control group and untreated T1DM mice, a group of T1DM mice was treated with intraperitoneal injections of characterized exosomes derived from autologous AD-MSCs. Body weight and blood glucose levels were measured during the procedure. Histopathology and immunohistochemistry were used for evaluation of pancreatic islets using hemotoxylin and eosin (H&E) staining and anti-insulin antibody. Isolated splenic mononuclear cells (MNCs) were subjected to splenocytes proliferation assay using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, immunophenotyping of regulatory T cells and cytokines. A significant increase in the levels of interleukin-4 (IL-4), IL-10, and transforming growth factor-β, and a decrease in the levels of IL-17 and interferon-γ in concordance with the significant increase in the Treg cell ratio in splenic MNCs (P < 0.05) was shown in T1DM mice treated with AD-MSC's exosomes as compared to T1DM untreated mice. This amelioration of autoimmune reaction after treatment of T1DM mice with the AD-MSC exosomes was confirmed with a significant increase in islets using H&E staining and Immunohistochemistry analyses. As expected, body weight, blood glucose levels in a survival of T1DM mice treated with AD-MSC's exosomes were maintained stable in comparison to untreated T1DM mice. It can be concluded that AD-MSC's exosomes exert ameliorative effects on autoimmune T1DM through increasing regulatory T-cell population and their products without a change in the proliferation index of lymphocytes, which makes them more effective and practical candidates.
Collapse
Affiliation(s)
- Shahrzad Nojehdehi
- Department of Biology, Islamic Azad University Central Tehran Branch, Tehran, Iran.,Stem Cell Technology Research Center, Tehran, Iran
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ardeshir Hesampour
- Department of Biology, Islamic Azad University Central Tehran Branch, Tehran, Iran
| | - Shima Rasouli
- Department of Immunology, Student's Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
60
|
van den Akker F, Vrijsen KR, Deddens JC, Buikema JW, Mokry M, van Laake LW, Doevendans PA, Sluijter JPG. Suppression of T cells by mesenchymal and cardiac progenitor cells is partly mediated via extracellular vesicles. Heliyon 2018; 4:e00642. [PMID: 30003150 PMCID: PMC6040605 DOI: 10.1016/j.heliyon.2018.e00642] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/11/2018] [Accepted: 05/29/2018] [Indexed: 01/14/2023] Open
Abstract
Adverse remodeling after myocardial infarction (MI) is strongly influenced by T cells. Stem cell therapy after MI, using mesenchymal stem cells (MSC) or cardiomyocyte progenitor cells (CMPC), improved cardiac function, despite low cell retention and limited differentiation. As MSC secrete many factors affecting T cell proliferation and function, we hypothesized the immune response could be affected as one of the targets of stem cell therapy. Therefore, we studied the immunosuppressive properties of human BM-MSC and CMPC and their extracellular vesicles (EVs) in co-culture with activated T cells. Proliferation of T cells, measured by carboxyfluorescein succinimidyl ester dilution, was significantly reduced in the presence of BM-MSC and CMPC. The inflammatory cytokine panel of the T cells in co-culture, measured by Luminex assay, changed, with strong downregulation of IFN-gamma and TNF-alpha. The effect on proliferation was observed in both direct cell contact and transwell co-culture systems. Transfer of conditioned medium to unrelated T cells abrogated proliferation in these cells. EVs isolated from the conditioned medium of BM-MSC and CMPC prevented T cell proliferation in a dose-dependent fashion. Progenitor cells presence induces up- and downregulation of multiple previously unreported pathways in T cells. In conclusion, both BM-MSC and CMPC have a strong capacity for in vitro immunosuppression. This effect is mediated by paracrine factors, such as extracellular vesicles. Besides proliferation, many additional pathways are influenced by both BM-MSC and CMPC.
Collapse
Affiliation(s)
- F van den Akker
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, The Netherlands
| | - K R Vrijsen
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, The Netherlands
| | - J C Deddens
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, The Netherlands
| | - J W Buikema
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, The Netherlands
| | - M Mokry
- Division of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, The Netherlands
| | - L W van Laake
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, The Netherlands
| | - P A Doevendans
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, The Netherlands.,ICIN - Netherlands Heart Institute, Utrecht, The Netherlands
| | - J P G Sluijter
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, The Netherlands.,ICIN - Netherlands Heart Institute, Utrecht, The Netherlands.,UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, The Netherlands
| |
Collapse
|
61
|
Lakhter AJ, Pratt RE, Moore RE, Doucette KK, Maier BF, DiMeglio LA, Sims EK. Beta cell extracellular vesicle miR-21-5p cargo is increased in response to inflammatory cytokines and serves as a biomarker of type 1 diabetes. Diabetologia 2018; 61:1124-1134. [PMID: 29445851 PMCID: PMC5878132 DOI: 10.1007/s00125-018-4559-5] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/09/2018] [Indexed: 02/08/2023]
Abstract
AIMS/HYPOTHESIS Improved biomarkers are acutely needed for the detection of developing type 1 diabetes, prior to critical loss of beta cell mass. We previously demonstrated that elevated beta cell microRNA 21-5p (miR-21-5p) in rodent and human models of type 1 diabetes increased beta cell apoptosis. We hypothesised that the inflammatory milieu of developing diabetes may also increase miR-21-5p in beta cell extracellular vesicle (EV) cargo and that circulating EV miR-21-5p would be increased during type 1 diabetes development. METHODS MIN6 and EndoC-βH1 beta cell lines and human islets were treated with IL-1β, IFN-γ and TNF-α to mimic the inflammatory milieu of early type 1 diabetes. Serum was collected weekly from 8-week-old female NOD mice until diabetes onset. Sera from a cross-section of 19 children at the time of type 1 diabetes diagnosis and 16 healthy children were also analysed. EVs were isolated from cell culture media or serum using sequential ultracentrifugation or ExoQuick precipitation and EV miRNAs were assayed. RESULTS Cytokine treatment in beta cell lines and human islets resulted in a 1.5- to threefold increase in miR-21-5p. However, corresponding EVs were further enriched for this miRNA, with a three- to sixfold EV miR-21-5p increase in response to cytokine treatment. This difference was only partially reduced by pre-treatment of beta cells with Z-VAD-FMK to inhibit cytokine-induced caspase activity. Nanoparticle tracking analysis showed cytokines to have no effect on the number of EVs, implicating specific changes within EV cargo as being responsible for the increase in beta cell EV miR-21-5p. Sequential ultracentrifugation to separate EVs by size suggested that this effect was mostly due to cytokine-induced increases in exosome miR-21-5p. Longitudinal serum collections from NOD mice showed that EVs displayed progressive increases in miR-21-5p beginning 3 weeks prior to diabetes onset. To validate the relevance to human diabetes, we assayed serum from children with new-onset type 1 diabetes compared with healthy children. While total serum miR-21-5p and total serum EVs were reduced in diabetic participants, serum EV miR-21-5p was increased threefold compared with non-diabetic individuals. By contrast, both serum and EV miR-375-5p were increased in parallel among diabetic participants. CONCLUSIONS/INTERPRETATION We propose that circulating EV miR-21-5p may be a promising marker of developing type 1 diabetes. Additionally, our findings highlight that, for certain miRNAs, total circulating miRNA levels are distinct from circulating EV miRNA content.
Collapse
Affiliation(s)
- Alexander J Lakhter
- Department of Pediatrics, Section of Pediatric Endocrinology and Diabetology, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, 635 Barnhill Dr., Rm 2031, Indianapolis, IN, 46202, USA
- Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rachel E Pratt
- Department of Pediatrics, Section of Pediatric Endocrinology and Diabetology, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, 635 Barnhill Dr., Rm 2031, Indianapolis, IN, 46202, USA
- Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rachel E Moore
- Department of Pediatrics, Section of Pediatric Endocrinology and Diabetology, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, 635 Barnhill Dr., Rm 2031, Indianapolis, IN, 46202, USA
- Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kaitlin K Doucette
- Department of Pediatrics, Section of Pediatric Endocrinology and Diabetology, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, 635 Barnhill Dr., Rm 2031, Indianapolis, IN, 46202, USA
- Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Bernhard F Maier
- Department of Pediatrics, Section of Pediatric Endocrinology and Diabetology, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, 635 Barnhill Dr., Rm 2031, Indianapolis, IN, 46202, USA
| | - Linda A DiMeglio
- Department of Pediatrics, Section of Pediatric Endocrinology and Diabetology, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, 635 Barnhill Dr., Rm 2031, Indianapolis, IN, 46202, USA
- Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Emily K Sims
- Department of Pediatrics, Section of Pediatric Endocrinology and Diabetology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, 635 Barnhill Dr., Rm 2031, Indianapolis, IN, 46202, USA.
- Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
62
|
Kim YS, Ahn JS, Kim S, Kim HJ, Kim SH, Kang JS. The potential theragnostic (diagnostic+therapeutic) application of exosomes in diverse biomedical fields. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2018; 22:113-125. [PMID: 29520164 PMCID: PMC5840070 DOI: 10.4196/kjpp.2018.22.2.113] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/21/2017] [Accepted: 01/27/2018] [Indexed: 01/07/2023]
Abstract
Exosomes are membranous vesicles of 30-150 nm in diameter that are derived from the exocytosis of the intraluminal vesicles of many cell types including immune cells, stem cells, cardiovascular cells and tumor cells. Exosomes participate in intercellular communication by delivering their contents to recipient cells, with or without direct contact between cells, and thereby influence physiological and pathological processes. They are present in various body fluids and contain proteins, nucleic acids, lipids, and microRNAs that can be transported to surrounding cells. Theragnosis is a concept in next-generation medicine that simultaneously combines accurate diagnostics with therapeutic effects. Molecular components in exosomes have been found to be related to certain diseases and treatment responses, indicating that they may have applications in diagnosis via molecular imaging and biomarker detection. In addition, recent studies have reported that exosomes have immunotherapeutic applications or can act as a drug delivery system for targeted therapies with drugs and biomolecules. In this review, we describe the formation, structure, and physiological roles of exosomes. We also discuss their roles in the pathogenesis and progression of diseases including neurodegenerative diseases, cardiovascular diseases, and cancer. The potential applications of exosomes for theragnostic purposes in various diseases are also discussed. This review summarizes the current knowledge about the physiological and pathological roles of exosomes as well as their diagnostic and therapeutic uses, including emerging exosome-based therapies that could not be applied until now.
Collapse
Affiliation(s)
- Yong-Seok Kim
- Department of Biochemistry and Molecular Biology, College of Medicine, Seoul 04763, Korea
| | - Jae-Sung Ahn
- Department of Pharmacology and Clinical Pharmacology Laboratory, College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Semi Kim
- Department of Pharmacology and Clinical Pharmacology Laboratory, College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Hyun-Jin Kim
- Department of Pharmacology and Clinical Pharmacology Laboratory, College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Shin-Hee Kim
- Department of Pharmacology and Clinical Pharmacology Laboratory, College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Ju-Seop Kang
- Department of Pharmacology and Clinical Pharmacology Laboratory, College of Medicine, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
63
|
Zhao H, Shang Q, Pan Z, Bai Y, Li Z, Zhang H, Zhang Q, Guo C, Zhang L, Wang Q. Exosomes From Adipose-Derived Stem Cells Attenuate Adipose Inflammation and Obesity Through Polarizing M2 Macrophages and Beiging in White Adipose Tissue. Diabetes 2018; 67:235-247. [PMID: 29133512 DOI: 10.2337/db17-0356] [Citation(s) in RCA: 432] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 11/04/2017] [Indexed: 12/15/2022]
Abstract
Adipose-derived stem cells (ADSCs) play critical roles in controlling obesity-associated inflammation and metabolic disorders. Exosomes from ADSCs exert protective effects in several diseases, but their roles in obesity and related pathological conditions remain unclear. In this study, we showed that treatment of obese mice with ADSC-derived exosomes facilitated their metabolic homeostasis, including improved insulin sensitivity (27.8% improvement), reduced obesity, and alleviated hepatic steatosis. ADSC-derived exosomes drove alternatively activated M2 macrophage polarization, inflammation reduction, and beiging in white adipose tissue (WAT) of diet-induced obese mice. Mechanistically, exosomes from ADSCs transferred into macrophages to induce anti-inflammatory M2 phenotypes through the transactivation of arginase-1 by exosome-carried active STAT3. Moreover, M2 macrophages induced by ADSC-derived exosomes not only expressed high levels of tyrosine hydroxylase responsible for catecholamine release, but also promoted ADSC proliferation and lactate production, thereby favoring WAT beiging and homeostasis in response to high-fat challenge. These findings delineate a novel exosome-mediated mechanism for ADSC-macrophage cross talk that facilitates immune and metabolic homeostasis in WAT, thus providing potential therapy for obesity and diabetes.
Collapse
MESH Headings
- Adipocytes, Beige/immunology
- Adipocytes, Beige/metabolism
- Adipocytes, Beige/pathology
- Adipocytes, White/immunology
- Adipocytes, White/metabolism
- Adipocytes, White/pathology
- Adipogenesis
- Adult Stem Cells/immunology
- Adult Stem Cells/metabolism
- Adult Stem Cells/pathology
- Animals
- Biomarkers/metabolism
- Cell Communication
- Cell Polarity
- Cell Proliferation
- Cells, Cultured
- Diet, High-Fat/adverse effects
- Exosomes/immunology
- Exosomes/metabolism
- Exosomes/pathology
- Exosomes/transplantation
- Insulin Resistance
- Macrophage Activation
- Macrophages, Peritoneal/immunology
- Macrophages, Peritoneal/metabolism
- Macrophages, Peritoneal/pathology
- Macrophages, Peritoneal/transplantation
- Male
- Mice, Inbred C57BL
- Microscopy, Electron, Transmission
- Microscopy, Fluorescence
- Non-alcoholic Fatty Liver Disease/etiology
- Non-alcoholic Fatty Liver Disease/prevention & control
- Obesity/immunology
- Obesity/pathology
- Obesity/physiopathology
- Obesity/therapy
- Phagocytosis
Collapse
Affiliation(s)
- Hui Zhao
- Department of Immunology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Qianwen Shang
- Department of Immunology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Zhenzhen Pan
- Department of Immunology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Yang Bai
- Department of Immunology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Zequn Li
- Department of Immunology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Huiying Zhang
- Department of Immunology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Qiu Zhang
- School of Environmental Science and Engineering, Shandong University, Jinan, Shandong, China
| | - Chun Guo
- Department of Immunology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Lining Zhang
- Department of Immunology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Qun Wang
- Department of Immunology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| |
Collapse
|
64
|
Newton WC, Kim JW, Luo JZQ, Luo L. Stem cell-derived exosomes: a novel vector for tissue repair and diabetic therapy. J Mol Endocrinol 2017; 59:R155-R165. [PMID: 28835418 DOI: 10.1530/jme-17-0080] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 08/23/2017] [Indexed: 12/15/2022]
Abstract
Exosomes are extracellular vesicles (EVs) secreted from a majority of cell types. Exosomes play a role in healthy and pathogenic intercellular interactions via the transfer of proteins, lipids and RNA. The contents and effects of exosomes vary depending on the properties of the originating cell. Exosomes secreted from some cell types, including stem cells, carry biological factors implicated in the protection, regeneration and angiogenesis of damaged tissues. Due to these properties, exosomes have attracted attention as a novel vector for regenerative therapies. Exosomes as a therapeutic tool could have applications for the treatment of many disorders characterized by chronic tissue damage. Exosomes derived from stem cells could be applied to repair or prevent damage from the complications of diabetes mellitus. The immunomodulatory and reparative properties of stem cell-derived exosomes could protect or even restore an early-stage type 1 diabetic patient's original islets from autoimmune destruction. Exosomes could also possibly suppress graft rejection of pancreatic islet transplants. Therefore, it is our recommendation that the treatment of diabetes mellitus using exosome-based therapies be further explored. Development of novel therapies using exosomes is slowed by a limited understanding of their mechanisms. This hurdle must be overcome to pave the way for clinical trials and ultimately the adaptation of exosomes as a therapeutic vector.
Collapse
Affiliation(s)
- William C Newton
- Department of MedicineThe Center of Stem Cell Biology, Roger Williams Hospital, Boston University, School of Medicine, Providence, Rhode Island, USA
| | - Joseph W Kim
- Department of MedicineThe Center of Stem Cell Biology, Roger Williams Hospital, Boston University, School of Medicine, Providence, Rhode Island, USA
| | - John Z Q Luo
- Department of MedicineThe Center of Stem Cell Biology, Roger Williams Hospital, Boston University, School of Medicine, Providence, Rhode Island, USA
- Insure HealthInc., Warwick, Rhode Island, USA
| | - LuGuang Luo
- Department of MedicineThe Center of Stem Cell Biology, Roger Williams Hospital, Boston University, School of Medicine, Providence, Rhode Island, USA
| |
Collapse
|
65
|
Dai YD, Sheng H, Dias P, Jubayer Rahman M, Bashratyan R, Regn D, Marquardt K. Autoimmune Responses to Exosomes and Candidate Antigens Contribute to Type 1 Diabetes in Non-Obese Diabetic Mice. Curr Diab Rep 2017; 17:130. [PMID: 29080983 DOI: 10.1007/s11892-017-0962-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW The initial autoimmune trigger of type 1 diabetes (T1D) remains unclear. In non-obese diabetic (NOD) mice, islet inflammation starts early in life, suggesting the presence of an endogenous trigger for the spontaneous autoimmune response in this T1D mouse model. In this review, we argue that abnormal release of exosomes might be the trigger of the early inflammatory and autoimmune responses in the islets. RECENT FINDINGS Exosomes are nano-sized membrane complexes that are secreted by cells following fusion of late endosomes and/or multivesicular bodies with the plasma membrane. They are known extracellular messengers, communicating among neighboring cells via transporting large molecules from parent cells to recipient cells. Recent evidence demonstrates that these extracellular vesicles can modulate immune responses. It has been shown that insulinoma and islet mesenchymal stem cell-released exosomes are potent immune stimuli that can induce autoreactive B and T cells. Searching for candidate antigens in the exosomes identified endogenous retrovirus (ERV) Env and Gag antigens, which are homologous to an endogenous murine leukemia retrovirus. Autoantibodies and autoreactive T cells spontaneously developed in NOD mice can react to these retroviral antigens. More importantly, expression of the retroviral antigens in the islet mesenchymal stem cells is associated with disease susceptibility, and the expression is restricted to T1D-susceptible but not resistant mouse strains. Exosomes are novel autoimmune targets, carrying autoantigens that can stimulate innate and adaptive immune responses. An abnormal or excess release of exosomes, particularly those ones containing endogenous retroviral antigens might be responsible for triggering tissue-specific inflammatory and autoimmune responses.
Collapse
Affiliation(s)
- Yang D Dai
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA.
- Biomedical Research Institute of Southern California, San Diego, CA, USA.
| | - Huiming Sheng
- Torrey Pines Institute for Molecular Studies, San Diego, CA, USA
- Tongren Hospital Affiliated to SJTU, School of Medicine, Shanghai, China
| | - Peter Dias
- Biomedical Research Institute of Southern California, San Diego, CA, USA
| | - M Jubayer Rahman
- Torrey Pines Institute for Molecular Studies, San Diego, CA, USA
| | - Roman Bashratyan
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA
| | - Danielle Regn
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA
| | - Kristi Marquardt
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
66
|
Okada E, Nakata H, Yamamoto M, Kasugai S, Kuroda S. Indirect osteoblast differentiation by liposomal clodronate. J Cell Mol Med 2017; 22:1127-1137. [PMID: 29063674 PMCID: PMC5783836 DOI: 10.1111/jcmm.13366] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 07/28/2017] [Indexed: 12/18/2022] Open
Abstract
Bisphosphonates impair function of osteoclasts and prevent bone resorption, the mechanism of which has been studied extensively. However, the possible effects of bisphosphonates on chondroblast differentiation and calcium deposition by osteoblasts have only been demonstrated recently. Moreover, cells from monocytic lineage are capable of stimulating osteoblast proliferation. Hence, susceptibility of osteoblasts to various factors requires further investigation. A primary culture of bone marrow‐derived stromal cells was treated with liposomal clodronate (0.1, 0.5, or 1.0 mg/ml) or conditioned medium from liposomal clodronate. Liposomal clodronate (0.25 mg) was injected into mouse femur for in vivo experiments. The effects of liposomal clodronate were examined by alkaline phosphatase staining and/or activity assay, and real‐time RT‐PCR was used for studying the effect on osteogenic gene expression. Administration of liposomal clodronate to bone marrow‐derived mesenchymal stromal cell culture enhanced alkaline phosphatase activity and mRNA levels of Runx2 and Dlx5. In addition, conditioned medium from liposomal clodronate also stimulated osteogenic characteristics similar to those of observed in vitro, and the number of exosomes in the conditioned medium was highest when pre‐treated with liposomal clodronate. Western blot analysis revealed the presence of RANK proteins in exosomes collected from conditioned medium of liposomal clodronate. Identical observations were obtained in vivo, as liposomal clodronate‐injected mouse femur showed increased alkaline phosphatase activity and Runx2 and Dlx5 mRNA expressions, even though the numbers of monocytes and macrophages were reduced. In conclusion, osteoblast differentiation was promoted via soluble RANK‐containing exosomes in response to clodronates.
Collapse
Affiliation(s)
- Emi Okada
- Department of Oral Implantology and Regenerative Dental Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hidemi Nakata
- Department of Oral Implantology and Regenerative Dental Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Maiko Yamamoto
- Department of Oral Implantology and Regenerative Dental Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shohei Kasugai
- Department of Oral Implantology and Regenerative Dental Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shinji Kuroda
- Department of Oral Implantology and Regenerative Dental Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
67
|
Zazzeroni L, Lanzoni G, Pasquinelli G, Ricordi C. Considerations on the harvesting site and donor derivation for mesenchymal stem cells-based strategies for diabetes. CELLR4-- REPAIR, REPLACEMENT, REGENERATION, & REPROGRAMMING 2017; 5:e2435. [PMID: 30505879 PMCID: PMC6267851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mesenchymal Stem Cells (MSCs) possess important characteristics that could be exploited in therapeutic strategies for Type 1 Diabetes (T1D) and for certain complications of Type 2 Diabetes (T2D). MSCs can inhibit autoimmune, alloimmune and inflammatory processes. Moreover, they can promote the function of endogenous and transplanted pancreatic islets. Furthermore, they can stimulate angiogenesis. MSC functions are largely mediated by their secretome, which includes growth factors, exosomes, and other extracellular vesicles. MSCs have shown a good safety profile in clinical trials. MSC-derived exosomes are emerging as an alternative to the transplantation of live MSCs. MSCs harvested from different anatomical locations (e.g. bone marrow, umbilical cord, placenta, adipose tissue, and pancreas) have shown differences in gene expression profiles and function. Data from clinical trials suggest that umbilical cord-derived MSCs could be superior to bone marrow-derived MSCs for the treatment of T1D. Autologous MSCs from diabetic patients may present abnormal functions. BM-MSCs from T1D patients exhibit gene expression differences that may impact in vivo function. BM-MSCs from T2D patients seem to be significantly impaired due to the T2D diabetic milieu. In this review, we highlight how the harvesting site and donor derivation can affect the efficacy of MSC-based treatments for T1D and T2D.
Collapse
Affiliation(s)
- L Zazzeroni
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - G Lanzoni
- Diabetes Research Institute, University of Miami, Miami, FL, USA
| | - G Pasquinelli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - C Ricordi
- Diabetes Research Institute, University of Miami, Miami, FL, USA
| |
Collapse
|
68
|
Guay C, Regazzi R. Exosomes as new players in metabolic organ cross-talk. Diabetes Obes Metab 2017; 19 Suppl 1:137-146. [PMID: 28880477 DOI: 10.1111/dom.13027] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/22/2017] [Accepted: 05/24/2017] [Indexed: 12/11/2022]
Abstract
Blood glucose homeostasis requires a constant communication between insulin-secreting and insulin-sensitive cells. A wide variety of circulating factors, including hormones, cytokines and chemokines work together to orchestrate the systemic response of metabolic organs to changes in the nutritional state. Failure in the coordination between these organs can lead to a rise in blood glucose levels and to the appearance of metabolic disorders such as diabetes mellitus. Exosomes are small extracellular vesicles (EVs) that are produced via the endosomal pathway and are released from the cells upon fusion of multivesicular bodies with the plasma membrane. There is emerging evidence indicating that these EVs play a central role in cell-to-cell communication. The interest in exosomes exploded when they were found to transport bioactive proteins, messenger RNA (mRNAs) and microRNA (miRNAs) that can be transferred in active form to adjacent cells or to distant organs. In this review, we will first outline the mechanisms governing the biogenesis, the cargo upload and the release of exosomes by donor cells as well as the uptake by recipient cells. We will then summarize the studies that support the novel concept that miRNAs and other exosomal cargo components are new important vehicles for metabolic organ cross-talk.
Collapse
Affiliation(s)
- Claudiane Guay
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Romano Regazzi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
69
|
Hasilo CP, Negi S, Allaeys I, Cloutier N, Rutman AK, Gasparrini M, Bonneil É, Thibault P, Boilard É, Paraskevas S. Presence of diabetes autoantigens in extracellular vesicles derived from human islets. Sci Rep 2017; 7:5000. [PMID: 28694505 PMCID: PMC5504025 DOI: 10.1038/s41598-017-04977-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 05/23/2017] [Indexed: 12/29/2022] Open
Abstract
Beta-cell (β-cell) injury is the hallmark of autoimmune diabetes. However, the mechanisms by which autoreactive responses are generated in susceptible individuals are not well understood. Extracellular vesicles (EV) are produced by mammalian cells under normal and stressed physiological states. They are an important part of cellular communication, and may serve a role in antigen processing and presentation. We hypothesized that isolated human islets in culture produce EV that contain diabetes autoantigens (DAA) from these otherwise normal, non-diabetic donors. Here we report the caspase-independent production of EV by human islets in culture, and the characterization of DAA glutamic acid decarboxylase 65 (GAD65) and zinc transporter 8 (ZnT8), as well as the β-cell resident glucose transporter 2 (Glut2), present within the EV.
Collapse
Affiliation(s)
- Craig P Hasilo
- Human Islet Transplant Laboratory, McGill University Health Centre, Montréal, Québec, Canada.,Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Canadian National Transplant Research Program, Edmonton, Alberta, Canada
| | - Sarita Negi
- Human Islet Transplant Laboratory, McGill University Health Centre, Montréal, Québec, Canada.,Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Canadian National Transplant Research Program, Edmonton, Alberta, Canada
| | - Isabelle Allaeys
- Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Faculté de Médecine de l'Université Laval, Québec, Québec, Canada
| | - Nathalie Cloutier
- Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Faculté de Médecine de l'Université Laval, Québec, Québec, Canada
| | - Alissa K Rutman
- Human Islet Transplant Laboratory, McGill University Health Centre, Montréal, Québec, Canada.,Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Canadian National Transplant Research Program, Edmonton, Alberta, Canada
| | - Marco Gasparrini
- Human Islet Transplant Laboratory, McGill University Health Centre, Montréal, Québec, Canada.,Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Éric Bonneil
- Institut de Recherche en Immunologie et en Cancérologie, Université de Montréal, Montréal, Québec, Canada
| | - Pierre Thibault
- Institut de Recherche en Immunologie et en Cancérologie, Université de Montréal, Montréal, Québec, Canada.,Canadian National Transplant Research Program, Edmonton, Alberta, Canada
| | - Éric Boilard
- Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Faculté de Médecine de l'Université Laval, Québec, Québec, Canada.,Canadian National Transplant Research Program, Edmonton, Alberta, Canada
| | - Steven Paraskevas
- Human Islet Transplant Laboratory, McGill University Health Centre, Montréal, Québec, Canada. .,Research Institute of the McGill University Health Centre, Montréal, Québec, Canada. .,Canadian National Transplant Research Program, Edmonton, Alberta, Canada.
| |
Collapse
|
70
|
Bai L, Shao H, Wang H, Zhang Z, Su C, Dong L, Yu B, Chen X, Li X, Zhang X. Effects of Mesenchymal Stem Cell-Derived Exosomes on Experimental Autoimmune Uveitis. Sci Rep 2017; 7:4323. [PMID: 28659587 PMCID: PMC5489510 DOI: 10.1038/s41598-017-04559-y] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 05/17/2017] [Indexed: 12/20/2022] Open
Abstract
We previously demonstrated that mesenchymal stem cells (MSCs) ameliorated experimental autoimmune uveoretinitis (EAU) in rats. Recently, MSC-derived exosomes (MSC-Exo) were thought to carry functions of MSCs. In this study, we tested the effect of local administration of human MSC-Exo on established EAU in the same species. Rats with EAU induced by immunization with interphotoreceptor retinol-binding protein 1177–1191 peptide were treated by periocular injections of increasing doses of MSC-Exo starting at the disease onset for 7 consecutive days. The in vitro effects of MSC-Exo on immune cell migration and responder T cell proliferation were examined by chemotactic assays and lymphocyte proliferation assays, respectively. We found that MSC-Exo greatly reduced the intensity of ongoing EAU as their parent cells by reducing the infiltration of T cell subsets, and other inflammatory cells, in the eyes. Furthermore, the chemoattractive effects of CCL2 and CCL21 on inflammatory cells were inhibited by MSC-Exo. However, no inhibitory effect of MSC-Exo on IRBP-specific T cell proliferation was observed. These results suggest that MSC-Exo effectively ameliorate EAU by inhibiting the migration of inflammatory cells, indicating a potential novel therapy of MSC-Exo for uveitis.
Collapse
Affiliation(s)
- Lingling Bai
- Tianjin Medical University Eye Hospital, Eye Institute &School of Optometry and Ophthalmology, Tianjin, 300384, P.R. China
| | - Hui Shao
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, KY, 40202, USA
| | - Hongxing Wang
- Department of Ophthalmology, Chuiyangliu Hospital, Beijing, China
| | - Zhihui Zhang
- Tianjin Medical University Eye Hospital, Eye Institute &School of Optometry and Ophthalmology, Tianjin, 300384, P.R. China
| | - Chang Su
- Tianjin Medical University Eye Hospital, Eye Institute &School of Optometry and Ophthalmology, Tianjin, 300384, P.R. China
| | - Lijie Dong
- Tianjin Medical University Eye Hospital, Eye Institute &School of Optometry and Ophthalmology, Tianjin, 300384, P.R. China
| | - Bo Yu
- Tianjin Medical University Eye Hospital, Eye Institute &School of Optometry and Ophthalmology, Tianjin, 300384, P.R. China
| | - Xiteng Chen
- Tianjin Medical University Eye Hospital, Eye Institute &School of Optometry and Ophthalmology, Tianjin, 300384, P.R. China
| | - Xiaorong Li
- Tianjin Medical University Eye Hospital, Eye Institute &School of Optometry and Ophthalmology, Tianjin, 300384, P.R. China.
| | - Xiaomin Zhang
- Tianjin Medical University Eye Hospital, Eye Institute &School of Optometry and Ophthalmology, Tianjin, 300384, P.R. China.
| |
Collapse
|
71
|
Engineered Exosomes as Vehicles for Biologically Active Proteins. Mol Ther 2017; 25:1269-1278. [PMID: 28412169 DOI: 10.1016/j.ymthe.2017.03.030] [Citation(s) in RCA: 228] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 03/20/2017] [Accepted: 03/20/2017] [Indexed: 12/23/2022] Open
Abstract
Exosomes represent an attractive vehicle for the delivery of biomolecules. However, mechanisms for loading functional molecules into exosomes are relatively unexplored. Here we report the use of the evolutionarily conserved late-domain (L-domain) pathway as a mechanism for loading exogenous proteins into exosomes. We demonstrate that labeling of a target protein, Cre recombinase, with a WW tag leads to recognition by the L-domain-containing protein Ndfip1, resulting in ubiquitination and loading into exosomes. Our results show that Ndfip1 expression acts as a molecular switch for exosomal packaging of WW-Cre that can be suppressed using the exosome inhibitor GW4869. When taken up by floxed reporter cells, exosomes containing WW-Cre were capable of inducing DNA recombination, indicating functional delivery of the protein to recipient cells. Engineered exosomes were administered to the brain of transgenic reporter mice using the nasal route to test for intracellular protein delivery in vivo. This resulted in the transport of engineered exosomes predominantly to recipient neurons in a number of brain regions, including the olfactory bulb, cortex, striatum, hippocampus, and cerebellum. The ability to engineer exosomes to deliver biologically active proteins across the blood-brain barrier represents an important step for the development of therapeutics to treat brain diseases.
Collapse
|
72
|
Abstract
Virtually all cells in the organism secrete extracellular vesicles (EVs), a heterogeneous population of lipid bilayer membrane-enclosed vesicles that transport and deliver payloads of proteins and nucleic acids to recipient cells, thus playing central roles in cell-cell communications. Exosomes, nanosized EVs of endosomal origin, regulate many pathophysiological processes including immune responses and inflammation, tumour growth, and infection. Healthy subjects and patients with different diseases release exosomes with different RNA and protein contents into the circulation, which can be measured as biomarkers. The discovery of exosomes as natural carriers of functional small RNA and proteins has raised great interest in the drug delivery field, as it may be possible to harness these vesicles for therapeutic delivery of miRNA, siRNA, mRNA, lncRNA, peptides, and synthetic drugs. However, systemically delivered exosomes accumulate in liver, kidney, and spleen. Targeted exosomes can be obtained by displaying targeting molecules, such as peptides or antibody fragments recognizing target antigens, on the outer surface of exosomes. Display of glycosylphosphatidylinositol (GPI)-anchored nanobodies on EVs is a novel technique that enables EV display of a variety of proteins including antibodies, reporter proteins, and signaling molecules. However, naturally secreted exosomes show limited pharmaceutical acceptability. Engineered exosome mimetics that incorporate desirable components of natural exosomes into synthetic liposomes or nanoparticles, and are assembled using controllable procedures may be more acceptable pharmaceutically. In this communication, we review the current understanding of physiological and pathophysiological roles of exosomes, their potential applications as diagnostic markers, and current efforts to develop improved exosome-based drug delivery systems.
Collapse
Affiliation(s)
- Lucio Barile
- Laboratory of Cellular and Molecular Cardiology, Cardiocentro Ticino Foundation, Lugano, Swiss Institute for Regenerative Medicine (SIRM), Taverne, Switzerland.
| | - Giuseppe Vassalli
- Laboratory of Cellular and Molecular Cardiology, Cardiocentro Ticino Foundation, Lugano, Swiss Institute for Regenerative Medicine (SIRM), Taverne, Switzerland; Dept. of Cardiology, University of Lausanne Medical Hospital (CHUV), Lausanne, Switzerland.
| |
Collapse
|
73
|
Bashratyan R, Regn D, Rahman MJ, Marquardt K, Fink E, Hu WY, Elder JH, Binley J, Sherman LA, Dai YD. Type 1 diabetes pathogenesis is modulated by spontaneous autoimmune responses to endogenous retrovirus antigens in NOD mice. Eur J Immunol 2017; 47:575-584. [PMID: 28083937 DOI: 10.1002/eji.201646755] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/20/2016] [Accepted: 01/11/2017] [Indexed: 12/16/2022]
Abstract
Secreted microvesicles (MVs) are potent inflammatory triggers that stimulate autoreactive B and T cells, causing Type 1 Diabetes in non-obese diabetic (NOD) mice. Proteomic analysis of purified MVs released from islet cells detected the presence of endogenous retrovirus (ERV) antigens, including Env and Gag sequences similar to the well-characterized murine leukemia retroviruses. This raises the possibility that ERV antigens may be expressed in the pancreatic islets via MV secretion. Using virus-like particles produced by co-expressing ERV Env and Gag antigens, and a recombinant gp70 Env protein, we demonstrated that NOD but not diabetes-resistant mice developed anti-Env autoantibodies that increase in titer as disease progresses. A lentiviral-based RNA interference knockdown of Gag revealed that Gag contributes to the MV-induced T-cell response, whose diabetogenic function can be demonstrated via cell-transfer into immune-deficient mice. Finally, we observed that Gag and Env are expressed in NOD islet-derived primary mesenchymal stem cells (MSCs). However, MSCs derived from the islets of diabetes-resistant mice do not express the antigens. Taken together, abnormal ERV activation and secretion of MVs may induce anti-retroviral responses to trigger autoimmunity.
Collapse
Affiliation(s)
- Roman Bashratyan
- Department of Immunology & Microbial Science, The Scripps Research Institute, La Jolla, CA, USA
| | - Danielle Regn
- Department of Immunology & Microbial Science, The Scripps Research Institute, La Jolla, CA, USA
| | - M Jubayer Rahman
- Torrey Pines Institute for Molecular Studies, San Diego, CA, USA
| | - Kristi Marquardt
- Department of Immunology & Microbial Science, The Scripps Research Institute, La Jolla, CA, USA
| | - Elizabeth Fink
- Department of Immunology & Microbial Science, The Scripps Research Institute, La Jolla, CA, USA
| | - Wen-Yuan Hu
- Department of Immunology & Microbial Science, The Scripps Research Institute, La Jolla, CA, USA.,Biosettia Inc., San Diego, CA, USA
| | - John H Elder
- Department of Immunology & Microbial Science, The Scripps Research Institute, La Jolla, CA, USA
| | - James Binley
- San Diego Biomedical Research Institute, San Diego, CA, USA
| | - Linda A Sherman
- Department of Immunology & Microbial Science, The Scripps Research Institute, La Jolla, CA, USA
| | - Yang D Dai
- Department of Immunology & Microbial Science, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
74
|
Taverna S, Pucci M, Alessandro R. Extracellular vesicles: small bricks for tissue repair/regeneration. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:83. [PMID: 28275628 DOI: 10.21037/atm.2017.01.53] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Extracellular vesicles (EVs) are nano-sized membrane vesicles involved in intercellular communication. EVs have pleiotropic actions in physiological and pathological conditions. The ability of EVs to transports proteins, drugs and nucleic acid, to target specific cells and to increase the stability of therapeutic cargo, make EVs interesting as new devices for the treatment of human disease. In a recently published issue of European journal of pharmaceutical sciences, Silva and colleagues reviewed the ability of EVs to modulate tissue repair and regeneration, focusing on their roles and therapeutic potential as immunomodulatory messengers. In this perspective, we discussed the open questions regarding the dual role of EVs in immune system, as well as the technical limitation of the procedure for EVs isolation and administration in clinical practices. EV-based therapies require further studies to consider EVs as promising candidate for a novel cell-free therapy in the context of regeneration medicine.
Collapse
Affiliation(s)
- Simona Taverna
- Biopathology and Biomedical Methodology, Biology and Genetic Section, University of Palermo, Palermo, Italy
| | - Marzia Pucci
- Biopathology and Biomedical Methodology, Biology and Genetic Section, University of Palermo, Palermo, Italy
| | - Riccardo Alessandro
- Biopathology and Biomedical Methodology, Biology and Genetic Section, University of Palermo, Palermo, Italy
| |
Collapse
|
75
|
Cianciaruso C, Phelps EA, Pasquier M, Hamelin R, Demurtas D, Alibashe Ahmed M, Piemonti L, Hirosue S, Swartz MA, De Palma M, Hubbell JA, Baekkeskov S. Primary Human and Rat β-Cells Release the Intracellular Autoantigens GAD65, IA-2, and Proinsulin in Exosomes Together With Cytokine-Induced Enhancers of Immunity. Diabetes 2017; 66:460-473. [PMID: 27872147 DOI: 10.2337/db16-0671] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 10/31/2016] [Indexed: 02/02/2023]
Abstract
The target autoantigens in several organ-specific autoimmune diseases, including type 1 diabetes (T1D), are intracellular membrane proteins, whose initial encounter with the immune system is poorly understood. Here we propose a new model for how these proteins can initiate autoimmunity. We found that rat and human pancreatic islets release the intracellular β-cell autoantigens in human T1D, GAD65, IA-2, and proinsulin in exosomes, which are taken up by and activate dendritic cells. Accordingly, the anchoring of GAD65 to exosome-mimetic liposomes strongly boosted antigen presentation and T-cell activation in the context of the human T1D susceptibility haplotype HLA-DR4. Cytokine-induced endoplasmic reticulum stress enhanced exosome secretion by β-cells; induced exosomal release of the immunostimulatory chaperones calreticulin, Gp96, and ORP150; and increased exosomal stimulation of antigen-presenting cells. We propose that stress-induced exosomal release of intracellular autoantigens and immunostimulatory chaperones may play a role in the initiation of autoimmune responses in T1D.
Collapse
Affiliation(s)
- Chiara Cianciaruso
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Graduate Program in Biotechnology and Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Edward A Phelps
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Miriella Pasquier
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Romain Hamelin
- Proteomics Core Facility, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Davide Demurtas
- Bio-Electron Microscopy Core Facility, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Mohamed Alibashe Ahmed
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Lorenzo Piemonti
- Diabetes Research Institute, Istituto di Ricovero e Cura a Carattere Scientifico, San Raffaele Scientific Institute, Milan, Italy
| | - Sachiko Hirosue
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Melody A Swartz
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Graduate Program in Biotechnology and Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Institute of Molecular Engineering, University of Chicago, Chicago, IL
| | - Michele De Palma
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jeffrey A Hubbell
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Graduate Program in Biotechnology and Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Institute of Molecular Engineering, University of Chicago, Chicago, IL
| | - Steinunn Baekkeskov
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Graduate Program in Biotechnology and Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
76
|
Exosomes from Human Umbilical Cord Mesenchymal Stem Cells: Identification, Purification, and Biological Characteristics. Stem Cells Int 2016; 2016:1929536. [PMID: 28105054 PMCID: PMC5220513 DOI: 10.1155/2016/1929536] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 07/19/2016] [Accepted: 07/20/2016] [Indexed: 12/14/2022] Open
Abstract
Our and other groups have discovered that mesenchymal stem cells (MSCs) derived exosomes are a novel therapeutical modality for many diseases. In this study, we summarized a method to extract and purify hucMSCs-exosomes using ultrafiltration and gradient centrifugation in our laboratory and proved that hucMSCs-exosomes prepared according to our procedure were stable and bioactive. Results showed that exosomes derived from hucMSC were 40~100 nm and CD9 and CD81 positive. Functionally, hucMSCs-exosomes promoted cell proliferation and protected against oxidative stress-induced cell apoptosis in vitro by activation of ERK1/2 and p38. Interestingly, UV exposure abrogated the regulatory roles of exosomes under oxidative stress, indicating that hucMSCs-exosomes may regulate cell growth and apoptosis by exosomal shuttle of RNA. Furthermore, cytokine profile analysis revealed that hucMSCs-exosomes contained high dose of IL-6, IL-8, and other cytokines. The established method is practical and efficient, which provides a basis for further evaluating the potential of hucMSCs-exosomes as therapeutic agents.
Collapse
|
77
|
Guay C, Regazzi R. New emerging tasks for microRNAs in the control of β-cell activities. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:2121-2129. [DOI: 10.1016/j.bbalip.2016.05.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/22/2016] [Accepted: 05/02/2016] [Indexed: 12/26/2022]
|
78
|
Wang X, Gu H, Huang W, Peng J, Li Y, Yang L, Qin D, Essandoh K, Wang Y, Peng T, Fan GC. Hsp20-Mediated Activation of Exosome Biogenesis in Cardiomyocytes Improves Cardiac Function and Angiogenesis in Diabetic Mice. Diabetes 2016; 65:3111-28. [PMID: 27284111 PMCID: PMC5033265 DOI: 10.2337/db15-1563] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 05/25/2016] [Indexed: 12/12/2022]
Abstract
Decreased heat shock protein (Hsp) expression in type 1 and type 2 diabetes has been implicated as a primary factor contributing to diabetes-induced organ damage. We recently showed that diabetic cardiomyocytes could release detrimental exosomes, which contain lower levels of Hsp20 than normal ones. To investigate whether such detrimental exosomes could be modified in cardiomyocytes by raising Hsp20 levels to become protective, we used a transgenic (TG) mouse model with cardiac-specific overexpression of Hsp20. TG and control wild-type (WT) mice were injected with streptozotocin (STZ) to induce diabetes. We observed that overexpression of Hsp20 significantly attenuated STZ-caused cardiac dysfunction, hypertrophy, apoptosis, fibrosis, and microvascular rarefaction. Moreover, Hsp20-TG cardiomyocytes exhibited an increased generation/secretion of exosomes by direct interaction of Hsp20 with Tsg101. Of importance, exosomes derived from TG cardiomyocytes encased higher levels of Hsp20, p-Akt, survivin, and SOD1 than WT exosomes and protected against in vitro hyperglycemia-triggered cell death, as well as in vivo STZ-induced cardiac adverse remodeling. Last, blockade of exosome generation by GW4869 remarkably offset Hsp20-mediated cardioprotection in diabetic mice. Our results indicate that elevation of Hsp20 in cardiomyocytes can offer protection in diabetic hearts through the release of instrumental exosomes. Thus, Hsp20-engineered exosomes might be a novel therapeutic agent for diabetic cardiomyopathy.
Collapse
MESH Headings
- Aniline Compounds/pharmacology
- Animals
- Benzylidene Compounds/pharmacology
- Cell Movement/drug effects
- Cell Movement/physiology
- Cell Proliferation/drug effects
- Cell Proliferation/physiology
- Cells, Cultured
- Collagen Type I/metabolism
- Collagen Type III/metabolism
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/physiopathology
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Exosomes/drug effects
- Exosomes/metabolism
- HSP20 Heat-Shock Proteins/genetics
- HSP20 Heat-Shock Proteins/metabolism
- Heart/drug effects
- Male
- Mice
- Mice, Transgenic
- Myocardium/metabolism
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/physiology
- Neovascularization, Physiologic/drug effects
- Neovascularization, Physiologic/genetics
- Neovascularization, Physiologic/physiology
- Platelet Endothelial Cell Adhesion Molecule-1/metabolism
- Protein Binding
- Reactive Oxygen Species/metabolism
- Superoxide Dismutase-1/metabolism
Collapse
Affiliation(s)
- Xiaohong Wang
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Haitao Gu
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Wei Huang
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Jiangtong Peng
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH Department of Cardiovascular Diseases, Tongji Medical College Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yutian Li
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Liwang Yang
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Dongze Qin
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Kobina Essandoh
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Yigang Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Tianqing Peng
- Critical Illness Research, Lawson Health Research Institute, Ontario, Canada
| | - Guo-Chang Fan
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
79
|
Zhang J, Liu X, Li H, Chen C, Hu B, Niu X, Li Q, Zhao B, Xie Z, Wang Y. Exosomes/tricalcium phosphate combination scaffolds can enhance bone regeneration by activating the PI3K/Akt signaling pathway. Stem Cell Res Ther 2016; 7:136. [PMID: 27650895 PMCID: PMC5028974 DOI: 10.1186/s13287-016-0391-3] [Citation(s) in RCA: 282] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 07/06/2016] [Accepted: 08/23/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Recently, accumulating evidence has shown that exosomes, the naturally secreted nanocarriers of cells, can exert therapeutic effects in various disease models in the absence of parent cells. However, application of exosomes in bone defect repair and regeneration has been rarely reported, and little is known regarding their underlying mechanisms. METHODS Exosomes derived from human-induced pluripotent stem cell-derived mesenchymal stem cells (hiPS-MSC-Exos) were combined with tricalcium phosphate (β-TCP) to repair critical-sized calvarial bone defects, and the efficacy was assessed by histological examination. We evaluated the in vitro effects of hiPSC-MSC-Exos on the proliferation, migration, and osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (hBMSCs) by cell-counting, scratch assays, and qRT-PCR, respectively. Gene expression profiling and bioinformatics analyses were also used to identify the underlying mechanisms in the repair. RESULTS We found that the exosome/β-TCP combination scaffolds could enhance osteogenesis as compared to pure β-TCP scaffolds. In vitro assays showed that the exosomes could release from β-TCP and could be internalized by hBMSCs. In addition, the internalization of exosomes into hBMSCs could profoundly enhance the proliferation, migration, and osteogenic differentiation of hBMSCs. Furthermore, gene expression profiling and bioinformatics analyses demonstrated that exosome/β-TCP combination scaffolds significantly altered the expression of a network of genes involved in the PI3K/Akt signaling pathway. Functional studies further confirmed that the PI3K/Akt signaling pathway was the critical mediator during the exosome-induced osteogenic responses of hBMSCs. CONCLUSIONS We propose that the exosomes can enhance the osteoinductivity of β-TCP through activating the PI3K/Akt signaling pathway of hBMSCs, which means that the exosome/β-TCP combination scaffolds possess better osteogenesis activity than pure β-TCP scaffolds. These results indicate that naturally secreted nanocarriers-exosomes can be used as a bioactive material to improve the bioactivity of the biomaterials, and that hiPS-MSC-Exos combined with β-TCP scaffolds can be potentially used for repairing bone defects.
Collapse
Affiliation(s)
- Jieyuan Zhang
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600 Yishan Road, Shanghai, 200233 China
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600 Yishan Road, Shanghai, 200233 China
| | - Xiaolin Liu
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600 Yishan Road, Shanghai, 200233 China
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600 Yishan Road, Shanghai, 200233 China
| | - Haiyan Li
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030 China
| | - Chunyuan Chen
- Graduate School of Nanchang University, 461 Bayi Road, Nanchang, 330006 China
| | - Bin Hu
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600 Yishan Road, Shanghai, 200233 China
| | - Xin Niu
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600 Yishan Road, Shanghai, 200233 China
| | - Qing Li
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600 Yishan Road, Shanghai, 200233 China
| | - Bizeng Zhao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600 Yishan Road, Shanghai, 200233 China
| | - Zongping Xie
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600 Yishan Road, Shanghai, 200233 China
| | - Yang Wang
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600 Yishan Road, Shanghai, 200233 China
| |
Collapse
|
80
|
Safdar A, Saleem A, Tarnopolsky MA. The potential of endurance exercise-derived exosomes to treat metabolic diseases. Nat Rev Endocrinol 2016; 12:504-17. [PMID: 27230949 DOI: 10.1038/nrendo.2016.76] [Citation(s) in RCA: 271] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Endurance exercise-mediated multisystemic adaptations are known to mitigate metabolism-related disorders such as obesity and type 2 diabetes mellitus (T2DM). However, the underlying molecular mechanisms that promote crosstalk between organs and orchestrate the pro-metabolic effects of endurance exercise remain unclear. Exercise-induced release of peptides and nucleic acids from skeletal muscle and other organs (collectively termed 'exerkines') has been implicated in mediating these systemic adaptations. Given that the extracellular milieu is probably not a hospitable environment for labile exerkines, a lipid vehicle-based mode of delivery has originated over the course of evolution. Two types of extracellular vesicles, exosomes and microvesicles, have been shown to contain proteins and nucleic acids that participate in a variety of physiological and pathological processes. Exosomes, in particular, have been shown to facilitate the exchange of peptides, microRNA, mRNA and mitochondrial DNA between cells and tissues. Intriguingly, circulatory extracellular vesicle content increases in an intensity-dependant manner in response to endurance exercise. We propose that the systemic benefits of exercise are modulated by exosomes and/or microvesicles functioning in an autocrine, paracrine and/or endocrine manner. Furthermore, we posit that native or modified exosomes, and/or microvesicles enriched with exerkines will have therapeutic utility in the treatment of obesity and T2DM.
Collapse
Affiliation(s)
- Adeel Safdar
- Department of Pediatrics, McMaster University, 1200 Main Street West, Hamilton, Ontario L8N 3Z5, Canada
| | - Ayesha Saleem
- Department of Pediatrics, McMaster University, 1200 Main Street West, Hamilton, Ontario L8N 3Z5, Canada
| | - Mark A Tarnopolsky
- Department of Pediatrics, McMaster University, 1200 Main Street West, Hamilton, Ontario L8N 3Z5, Canada
- Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
81
|
Hu J, Wang Y, Gong H, Yu C, Guo C, Wang F, Yan S, Xu H. Long term effect and safety of Wharton's jelly-derived mesenchymal stem cells on type 2 diabetes. Exp Ther Med 2016; 12:1857-1866. [PMID: 27588104 DOI: 10.3892/etm.2016.3544] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 04/18/2016] [Indexed: 12/14/2022] Open
Abstract
Cellular therapies offer novel opportunities for the treatment of type 2 diabetes mellitus (T2DM). The present study evaluated the long-term efficacy and safety of infusion of Wharton's jelly-derived mesenchymal stem cells (WJ-MSC) on T2DM. A total of 61 patients with T2DM were randomly divided into two groups on the basis of basal therapy; patients in group I were administered WJ-MSC intravenous infusion twice, with a four-week interval, and patients in group II were treated with normal saline as control. During the 36-month follow-up period, the occurrence of any adverse effects and the results of clinical and laboratory examinations were recorded and evaluated. The lack of acute or chronic adverse effects in group I was consistent with group II.. Blood glucose, glycosylated hemoglobin, C-peptide, homeostasis model assessment of pancreatic islet β-cell function and incidence of diabetic complications in group I were significantly improved, as compared with group II during the 36-month follow-up. The results of the present study demonstrated that infusion of WJ-MSC improved the function of islet β-cells and reduced the incidence of diabetic complications, although the precise mechanisms are yet to be elucidated. The infusion of WJ-MSC may be an effective option for the treatment of patients with type 2 diabetes.
Collapse
Affiliation(s)
- Jianxia Hu
- Stem Cell Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Yangang Wang
- Stem Cell Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Huimin Gong
- Department of Ophthalmology, Qingdao Municipal Hospital, Qingdao, Shandong 266000, P.R. China
| | - Chundong Yu
- Department of Clinical Laboratory, Women and Children's Hospital of Qingdao, Shandong 266034, P.R. China
| | - Caihong Guo
- Department of Respiratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Fang Wang
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Shengli Yan
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Hongmei Xu
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
82
|
Tan L, Wu H, Liu Y, Zhao M, Li D, Lu Q. Recent advances of exosomes in immune modulation and autoimmune diseases. Autoimmunity 2016; 49:357-365. [PMID: 27259064 DOI: 10.1080/08916934.2016.1191477] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Lina Tan
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, P.R. China,
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, P.R. China, and
| | - Haijing Wu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, P.R. China, and
| | - Ying Liu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, P.R. China, and
| | - Ming Zhao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, P.R. China, and
| | - Duo Li
- Department of Pathology, Second Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, P.R. China, and
| |
Collapse
|
83
|
Qi X, Zhang J, Yuan H, Xu Z, Li Q, Niu X, Hu B, Wang Y, Li X. Exosomes Secreted by Human-Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells Repair Critical-Sized Bone Defects through Enhanced Angiogenesis and Osteogenesis in Osteoporotic Rats. Int J Biol Sci 2016; 12:836-49. [PMID: 27313497 PMCID: PMC4910602 DOI: 10.7150/ijbs.14809] [Citation(s) in RCA: 376] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 03/25/2016] [Indexed: 12/20/2022] Open
Abstract
Bone defects caused by trauma, severe infection, tumor resection and skeletal abnormalities are common osteoporotic conditions and major challenges in orthopedic surgery, and there is still no effective solution to this problem. Consequently, new treatments are needed to develop regeneration procedures without side effects. Exosomes secreted by mesenchymal stem cells (MSCs) derived from human induced pluripotent stem cells (hiPSCs, hiPSC-MSC-Exos) incorporate the advantages of both MSCs and iPSCs with no immunogenicity. However, there are no reports on the application of hiPSC-MSC-Exos to enhance angiogenesis and osteogenesis under osteoporotic conditions. HiPSC-MSC-Exos were isolated and identified before use. The effect of hiPSC-MSC-Exos on the proliferation and osteogenic differentiation of bone marrow MSCs derived from ovariectomized (OVX) rats (rBMSCs-OVX) in vitro were investigated. In vivo, hiPSC-MSC-Exos were implanted into critical size bone defects in ovariectomized rats, and bone regeneration and angiogenesis were examined by microcomputed tomography (micro-CT), sequential fluorescent labeling analysis, microfil perfusion and histological and immunohistochemical analysis. The results in vitro showed that hiPSC-MSC-Exos enhanced cell proliferation and alkaline phosphatase (ALP) activity, and up-regulated mRNA and protein expression of osteoblast-related genes in rBMSCs-OVX. In vivo experiments revealed that hiPSC-MSC-Exos dramatically stimulated bone regeneration and angiogenesis in critical-sized calvarial defects in ovariectomized rats. The effect of hiPSC-MSC-Exos increased with increasing concentration. In this study, we showed that hiPSC-MSC-Exos effectively stimulate the proliferation and osteogenic differentiation of rBMSCs-OVX, with the effect increasing with increasing exosome concentration. Further analysis demonstrated that the application of hiPSC-MSC-Exos+β-TCP scaffolds promoted bone regeneration in critical-sized calvarial defects by enhancing angiogenesis and osteogenesis in an ovariectomized rat model.
Collapse
Affiliation(s)
- Xin Qi
- 1. Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jieyuan Zhang
- 1. Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.; 2. Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Hong Yuan
- 3. Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhengliang Xu
- 1. Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qing Li
- 2. Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xin Niu
- 2. Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Bin Hu
- 2. Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yang Wang
- 2. Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiaolin Li
- 1. Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
84
|
Meng Y, Ji J, Tan W, Guo G, Xia Y, Cheng C, Gu Z, Wang Z. Involvement of autophagy in the procedure of endoplasmic reticulum stress introduced apoptosis in bone marrow mesenchymal stem cells from nonobese diabetic mice. Cell Biochem Funct 2016; 34:25-33. [PMID: 26800376 DOI: 10.1002/cbf.3161] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 10/28/2015] [Accepted: 12/02/2015] [Indexed: 12/17/2022]
Abstract
UNLABELLED Recent studies showed that bone marrow mesenchymal stem cells (BM-MSCs) from nonobese diabetic (NOD) mice exhibited the phenomenon of apoptosis. However, the mechanisms of apoptosis remained largely unknown. In this study, endoplasmic reticulum (ER) stress and autophagy were evidenced in BM-MSCs from NOD mice for the first time. We found the ER stress-mediated apoptosis was supported by the up-regulation of ER stress markers including augmented phosphorylation of phosphorylated protein kinase RNA-like ER kinase and eukaryotic translation initiator factor 2α as well as cleavage of caspase-3. Evidence of autophagy included the formation of the acidic vesicular organelles and increase of LC3 accumulation. Intriguingly, blockage of ER stress could reduce the apoptosis of BM-MSCs from NOD mice and alleviated accumulation of LC3, which indicated that ER stress induced apoptosis and autophagy. Furthermore, our results showed that the mechanism of ER stress-induced autophagy was associated with the decrease of p-S6 (a marker of mTOR activity). Here, we demonstrated that ER stress-induced cell death was mediated by autophagy that was partly attributed to the inactivation of the mammalian target of rapamycin. SIGNIFICANCE PARAGRAPH We report for the first time that endoplasmic reticulum (ER) stress mediated apoptosis of bone marrow mesenchymal stem cells (BM-MSCs) from nonobese diabetic (NOD) mice. The evidence of autophagy was also found in BM-MSCs from NOD mice, included the formation of the acidic vesicular organelles and increase of LC3 accumulation. Furthermore, we demonstrated that ER stress-induced cell death was mediated by autophagy that was partly attributed to the inactivation of the mammalian target of rapamycin. Deciphering the mechanisms of ER stress signalling involved in the apoptosis of BM-MSCs from NOD mice will help improve transplantation efficacy of BM-MSCs in type 1 diabetes patients.
Collapse
Affiliation(s)
- Yan Meng
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, China.,Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Juan Ji
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Wei Tan
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Genkai Guo
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yunfei Xia
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Chun Cheng
- Department of Immunology, Medical College, Nantong University, Nantong, China
| | - Zhifeng Gu
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Zhiwei Wang
- Department of Surgery, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
85
|
Stem Cell-Derived Exosomes: A Potential Alternative Therapeutic Agent in Orthopaedics. Stem Cells Int 2016; 2016:5802529. [PMID: 26904130 PMCID: PMC4745815 DOI: 10.1155/2016/5802529] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/20/2015] [Accepted: 10/21/2015] [Indexed: 01/08/2023] Open
Abstract
Within the field of regenerative medicine, many have sought to use stem cells as a promising way to heal human tissue; however, in the past few years, exosomes (packaged vesicles released from cells) have shown more exciting promise. Specifically, stem cell-derived exosomes have demonstrated great ability to provide therapeutical benefits. Exosomal products can include miRNA, other genetic products, proteins, and various factors. They are released from cells in a paracrine fashion in order to combat local cellular stress. Because of this, there are vast benefits that medicine can obtain from stem cell-derived exosomes. If exosomes could be extracted from stem cells in an efficient manner and packaged with particular regenerative products, then diseases such as rheumatoid arthritis, osteoarthritis, bone fractures, and other maladies could be treated with cell-free regenerative medicine via exosomes. Many advances must be made to get to this point, and the following review highlights the current advances of stem cell-derived exosomes with particular attention to regenerative medicine in orthopaedics.
Collapse
|
86
|
Coulson-Thomas VJ, Coulson-Thomas YM, Gesteira TF, Kao WWY. Extrinsic and Intrinsic Mechanisms by Which Mesenchymal Stem Cells Suppress the Immune System. Ocul Surf 2016; 14:121-34. [PMID: 26804815 DOI: 10.1016/j.jtos.2015.11.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 11/12/2015] [Accepted: 11/23/2015] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) are a group of fibroblast-like multipotent mesenchymal stromal cells that have the ability to differentiate into osteoblasts, adipocytes, and chondrocytes. Recent studies have demonstrated that MSCs possess a unique ability to exert suppressive and regulatory effects on both adaptive and innate immunity in an autologous and allogeneic manner. A vital step in stem cell transplantation is overcoming the potential graft-versus-host disease, which is a limiting factor to transplantation success. Given that MSCs attain powerful differentiation capabilities and also present immunosuppressive properties, which enable them to survive host immune rejection, MSCs are of great interest. Due to their ability to differentiate into different cell types and to suppress and modulate the immune system, MSCs are being developed for treating a plethora of diseases, including immune disorders. Moreover, in recent years, MSCs have been genetically engineered to treat and sometimes even cure some diseases, and the use of MSCs for cell therapy presents new perspectives for overcoming tissue rejection. In this review, we discuss the potential extrinsic and intrinsic mechanisms that underlie MSCs' unique ability to modulate inflammation, and both innate and adaptive immunity.
Collapse
Affiliation(s)
- Vivien J Coulson-Thomas
- Department of Ophthalmology, University of Cincinnati, Ohio, USA; John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK.
| | | | | | - Winston W-Y Kao
- Department of Ophthalmology, University of Cincinnati, Ohio, USA.
| |
Collapse
|
87
|
Munagala R, Aqil F, Jeyabalan J, Gupta RC. Bovine milk-derived exosomes for drug delivery. Cancer Lett 2015; 371:48-61. [PMID: 26604130 DOI: 10.1016/j.canlet.2015.10.020] [Citation(s) in RCA: 592] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/21/2015] [Accepted: 10/21/2015] [Indexed: 12/20/2022]
Abstract
Exosomes are biological nanovesicles that are involved in cell-cell communication via the functionally-active cargo (such as miRNA, mRNA, DNA and proteins). Because of their nanosize, exosomes are explored as nanodevices for the development of new therapeutic applications. However, bulk, safe and cost-effective production of exosomes is not available. Here, we show that bovine milk can serve as a scalable source of exosomes that can act as a carrier for chemotherapeutic/chemopreventive agents. Drug-loaded exosomes showed significantly higher efficacy compared to free drug in cell culture studies and against lung tumor xenografts in vivo. Moreover, tumor targeting ligands such as folate increased cancer-cell targeting of the exosomes resulting in enhanced tumor reduction. Milk exosomes exhibited cross-species tolerance with no adverse immune and inflammatory response. Thus, we show the versatility of milk exosomes with respect to the cargo it can carry and ability to achieve tumor targetability. This is the first report to identify a biocompatible and cost-effective means of exosomes to enhance oral bioavailability, improve efficacy and safety of drugs.
Collapse
Affiliation(s)
- Radha Munagala
- Department of Medicine, University of Louisville, Louisville, KY 40202.,James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202
| | - Farrukh Aqil
- Department of Medicine, University of Louisville, Louisville, KY 40202.,James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202
| | | | - Ramesh C Gupta
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202.,Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202
| |
Collapse
|
88
|
Extracellular Vesicles: Evolving Factors in Stem Cell Biology. Stem Cells Int 2015; 2016:1073140. [PMID: 26649044 PMCID: PMC4663346 DOI: 10.1155/2016/1073140] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/09/2015] [Accepted: 07/16/2015] [Indexed: 12/18/2022] Open
Abstract
Stem cells are proposed to continuously secrete trophic factors that potentially serve as mediators of autocrine and paracrine activities, associated with reprogramming of the tumor microenvironment, tissue regeneration, and repair. Hitherto, significant efforts have been made to understand the level of underlying paracrine activities influenced by stem cell secreted trophic factors, as little is known about these interactions. Recent findings, however, elucidate this role by reporting the effects of stem cell derived extracellular vesicles (EVs) that mimic the phenotypes of the cells from which they originate. Exchange of genetic information utilizing persistent bidirectional communication mediated by stem cell-EVs could regulate stemness, self-renewal, and differentiation in stem cells and their subpopulations. This review therefore discusses stem cell-EVs as evolving communication factors in stem cell biology, focusing on how they regulate cell fates by inducing persistent and prolonged genetic reprogramming of resident cells in a paracrine fashion. In addition, we address the role of stem cell-secreted vesicles in shaping the tumor microenvironment and immunomodulation and in their ability to stimulate endogenous repair processes during tissue damage. Collectively, these functions ensure an enormous potential for future therapies.
Collapse
|
89
|
Lakhter AJ, Sims EK. Minireview: Emerging Roles for Extracellular Vesicles in Diabetes and Related Metabolic Disorders. Mol Endocrinol 2015; 29:1535-48. [PMID: 26393296 PMCID: PMC4627606 DOI: 10.1210/me.2015-1206] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 09/15/2015] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs), membrane-contained vesicles released by most cell types, have attracted a large amount of research interest over the past decade. Because of their ability to transfer cargo via regulated processes, causing functional impacts on recipient cells, these structures may play important roles in cell-cell communication and have implications in the physiology of numerous organ systems. In addition, EVs have been described in most human biofluids and have wide potential as relatively noninvasive biomarkers of various pathologic conditions. Specifically, EVs produced by the pancreatic β-cell have been demonstrated to regulate physiologic and pathologic responses to β-cell stress, including β-cell proliferation and apoptosis. β-Cell EVs are also capable of interacting with immune cells and may contribute to the activation of autoimmune processes that trigger or propagate β-cell inflammation and destruction during the development of diabetes. EVs from adipose tissue have been shown to contribute to the development of the chronic inflammation and insulin resistance associated with obesity and metabolic syndrome via interactions with other adipose, liver, and muscle cells. Circulating EVs may also serve as biomarkers for metabolic derangements and complications associated with diabetes. This minireview describes the properties of EVs in general, followed by a more focused review of the literature describing EVs affecting the β-cell, β-cell autoimmunity, and the development of insulin resistance, which all have the potential to affect development of type 1 or type 2 diabetes.
Collapse
Affiliation(s)
- Alexander J Lakhter
- Department of Pediatrics (A.J.L., E.K.S.), Center for Diabetes and Metabolic Diseases, and Section of Pediatric Endocrinology and Diabetology (E.K.S.), Indiana University, Indianapolis, Indiana 46202
| | - Emily K Sims
- Department of Pediatrics (A.J.L., E.K.S.), Center for Diabetes and Metabolic Diseases, and Section of Pediatric Endocrinology and Diabetology (E.K.S.), Indiana University, Indianapolis, Indiana 46202
| |
Collapse
|
90
|
Tomiyama T, Yang GX, Zhao M, Zhang W, Tanaka H, Wang J, Leung PS, Okazaki K, He XS, Lu Q, Coppel RL, Bowlus CL, Gershwin ME. The modulation of co-stimulatory molecules by circulating exosomes in primary biliary cirrhosis. Cell Mol Immunol 2015; 14:276-284. [PMID: 26388238 DOI: 10.1038/cmi.2015.86] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 08/15/2015] [Accepted: 08/16/2015] [Indexed: 12/18/2022] Open
Abstract
Exosomes are nanoparticles of endocytic origin, secreted by a myriad of cell populations that are attracting increased attention by virtue of their ability to modulate cell-to-cell communications. They are also attracting attention in a variety of immunological issues, including autoimmunity and, in particular, their ability to regulate cytokine and chemokine activation. Primary biliary cirrhosis (PBC) is considered a model autoimmune disease, which has a highly focused cytotoxic response against biliary epithelial cells. We have isolated exosomes from plasma from 29 patients with PBC and 30 healthy controls (HCs), and studied the effect of these exosomes on co-stimulatory molecule expression and cytokine production in mononuclear cell populations using an ex vivo system. We also identified the microRNA (miRNA) populations in PBC compared to HC exosomes. We report herein that although exosomes do not change cytokine production, they do significantly alter co-stimulatory molecule expression on antigen-presenting populations. Further, we demonstrated that CD86 up-regulated expression on CD14+ monocytes, whereas CD40 up-regulated on CD11c+ dendritic cells by exosomes from patients with PBC. In addition, there were differences of miRNA expression of circulating exosomes in patients with PBC. These data have significant importance based on observations that co-stimulatory molecules play a differential role in the regulation of T-cell activation. Our observation indicated that aberrant exosomes from PBC selectively induce expression of co-stimulatory molecules in different subset of antigen-presenting cells. These alterations may involve in pathogenesis of autoimmune liver disease.Cellular & Molecular Immunology advance online publication, 21 September 2015; doi:10.1038/cmi.2015.86.
Collapse
Affiliation(s)
- Takashi Tomiyama
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA 95616, USA.,Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, Osaka 573-1191, Japan
| | - Guo-Xiang Yang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA 95616, USA
| | - Ming Zhao
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Weici Zhang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA 95616, USA
| | - Hajime Tanaka
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA 95616, USA.,Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Jing Wang
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Patrick Sc Leung
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA 95616, USA
| | - Kazuichi Okazaki
- Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, Osaka 573-1191, Japan
| | - Xiao-Song He
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA 95616, USA
| | - Qianjin Lu
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Ross L Coppel
- Department of Microbiology, Monash University, Melbourne, Australia
| | - Christopher L Bowlus
- Division of Gastroenterology and Hepatology, University of California at Davis School of Medicine, Sacramento, CA 95817, USA
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA 95616, USA
| |
Collapse
|
91
|
Fatima F, Nawaz M. Stem cell-derived exosomes: roles in stromal remodeling, tumor progression, and cancer immunotherapy. CHINESE JOURNAL OF CANCER 2015; 34:541-53. [PMID: 26369565 PMCID: PMC4593342 DOI: 10.1186/s40880-015-0051-5] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 07/27/2015] [Indexed: 12/18/2022]
Abstract
Stem cells are known to maintain stemness at least in part through secreted factors that promote stem-like phenotypes in resident cells. Accumulating evidence has clarified that stem cells release nano-vesicles, known as exosomes, which may serve as mediators of cell-to-cell communication and may potentially transmit stem cell phenotypes to recipient cells, facilitating stem cell maintenance, differentiation, self-renewal, and repair. It has become apparent that stem cell-derived exosomes mediate interactions among stromal elements, promote genetic instability in recipient cells, and induce malignant transformation. This review will therefore discuss the potential of stem cell-derived exosomes in the context of stromal remodeling and their ability to generate cancer-initiating cells in a tumor niche by inducing morphologic and functional differentiation of fibroblasts into tumor-initiating fibroblasts. In addition, the immunosuppressive potential of stem cell-derived exosomes in cancer immunotherapy and their prospective applications in cell-free therapies in future translational medicine is discussed.
Collapse
Affiliation(s)
- Farah Fatima
- Department of Pathology and Forensic Medicine, Faculty of Medicine Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes, 3900, Ribeirao Preto, Sao Paulo, Brazil. .,Department of Rheumatology and Inflammation Research, University of Gothenburg, 480, 40530, Gothenburg, Sweden.
| | - Muhammad Nawaz
- Department of Pathology and Forensic Medicine, Faculty of Medicine Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes, 3900, Ribeirao Preto, Sao Paulo, Brazil. .,Department of Rheumatology and Inflammation Research, University of Gothenburg, 480, 40530, Gothenburg, Sweden.
| |
Collapse
|
92
|
Momen-Heravi F, Bala S, Kodys K, Szabo G. Exosomes derived from alcohol-treated hepatocytes horizontally transfer liver specific miRNA-122 and sensitize monocytes to LPS. Sci Rep 2015; 5:9991. [PMID: 25973575 PMCID: PMC4650752 DOI: 10.1038/srep09991] [Citation(s) in RCA: 259] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 03/23/2015] [Indexed: 12/12/2022] Open
Abstract
Hepatocyte damage and inflammation in monocytes/macrophages are central to the pathogenesis of alcoholic hepatitis (AH). MicroRNAs (miRNAs) regulate all of these processes. MiRNA-122 is abundantly expressed in hepatocytes while monocytes/macrophages have low levels. The role of exosomes in AH and possible cross talk between hepatocyte-derived exosomes and immune cells is not explored yet. Here, we show that the number of exosomes significantly increases in the sera of healthy individuals after alcohol binge drinking and in mice after binge or chronic alcohol consumption. Exosomes isolated from sera after alcohol consumption or from in vitro ethanol-treated hepatocytes contained miRNA-122. Exosomes derived from ethanol-treated Huh7.5 cells were taken up by the recipients THP1 monocytes and horizontally transferred a mature form of liver-specific miRNA-122. In vivo, liver mononuclear cells and Kupffer cells from alcohol-fed mice had increased miRNA-122 levels. In monocytes, miRNA-122 transferred via exosomes inhibited the HO-1 pathway and sensitized to LPS stimulation and increased levels of pro-inflammatory cytokines. Finally, inflammatory effects of exosomes from ethanol-treated hepatocytes were prevented by using RNA interference via exosome-mediated delivery of a miRNA-122 inhibitor. These results demonstrate that first, exosomes mediate communication between hepatocytes and monocytes/macrophages and second, hepatocyte-derived miRNA-122 can reprogram monocytes inducing sensitization to LPS.
Collapse
Affiliation(s)
- Fatemeh Momen-Heravi
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Shashi Bala
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Karen Kodys
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Gyongyi Szabo
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
93
|
Tran TH, Mattheolabakis G, Aldawsari H, Amiji M. Exosomes as nanocarriers for immunotherapy of cancer and inflammatory diseases. Clin Immunol 2015; 160:46-58. [PMID: 25842185 DOI: 10.1016/j.clim.2015.03.021] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 12/11/2022]
Abstract
Cell secreted exosomes (30-100nm vesicles) play a major role in intercellular communication due to their ability to transfer proteins and nucleic acids from one cell to another. Depending on the originating cell type and the cargo, exosomes can have immunosuppressive or immunostimulatory effects, which have potential application as immunotherapies for cancer and autoimmune diseases. Cellular components shed from tumor cells or antigen presenting cells (APCs), such as dendritic cells, macrophages and B cells, have been shown to be efficiently packaged in exosomes. In this review, we focus on the application of exosomes as nanocarriers and immunological agents for cancer and autoimmune immunotherapy. APC-derived exosomes demonstrate effective therapeutic efficacy for the treatment of cancer and experimental autoimmune diseases such as rheumatoid arthritis, inflammatory bowel disease, and multiple sclerosis. In addition to their intrinsic immunomodulating activity, exosomes have many advantages over conventional nanocarriers for drug and gene delivery.
Collapse
Affiliation(s)
- Thanh-Huyen Tran
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, MA 02115, USA
| | - George Mattheolabakis
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, MA 02115, USA
| | - Hibah Aldawsari
- Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mansoor Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, MA 02115, USA; Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
94
|
Exosomes derived from mesenchymal stem cells. Int J Mol Sci 2014; 15:4142-57. [PMID: 24608926 PMCID: PMC3975389 DOI: 10.3390/ijms15034142] [Citation(s) in RCA: 526] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 02/14/2014] [Accepted: 02/26/2014] [Indexed: 12/12/2022] Open
Abstract
The functional mechanisms of mesenchymal stem cells (MSCs) have become a research focus in recent years. Accumulating evidence supports the notion that MSCs act in a paracrine manner. Therefore, the biological factors in conditioned medium, including exosomes and soluble factors, derived from MSC cultures are being explored extensively. The results from most investigations show that MSC-conditioned medium or its components mediate some biological functions of MSCs. Several studies have reported that MSC-derived exosomes have functions similar to those of MSCs, such as repairing tissue damage, suppressing inflammatory responses, and modulating the immune system. However, the mechanisms are still not fully understood and the results remain controversial. Compared with cells, exosomes are more stable and reservable, have no risk of aneuploidy, a lower possibility of immune rejection following in vivo allogeneic administration, and may provide an alternative therapy for various diseases. In this review, we summarize the properties and biological functions of MSC-derived exosomes and discuss the related mechanisms.
Collapse
|
95
|
Lukic ML, Pejnovic N, Lukic A. New insight into early events in type 1 diabetes: role for islet stem cell exosomes. Diabetes 2014; 63:835-7. [PMID: 24556861 DOI: 10.2337/db13-1786] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Miodrag L Lukic
- Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
| | | | | |
Collapse
|
96
|
Abstract
The discovery that submicron-sized extracellular vesicles (EVs) are generated by both prokaryotic and eukaryotic cells might have a profound effect on experimental and clinical sciences, and could pave the way for new strategies to combat various diseases. EVs are carriers of pathogen-associated and damage-associated molecular patterns, cytokines, autoantigens and tissue-degrading enzymes. In addition to a possible role in the pathogenesis of a number of inflammatory conditions, such as infections and autoimmune diseases, EVs, including microvesicles (also known as microparticles), exosomes and apoptotic vesicles, have therapeutic potential and might be used as biomarkers for inflammatory diseases. Therefore, molecular diagnostics and targeted therapy could benefit from expanding knowledge in the field. In this Review, we summarize important developments and propose that extracellular vesicles could be used as therapeutic vehicles and as targets for the treatment and prevention of inflammatory diseases.
Collapse
|