51
|
Zhu Y, Lu L, Liao X, Li W, Zhang L, Ji C, Lin X, Liu HC, Odle J, Luo X. Maternal dietary manganese protects chick embryos against maternal heat stress via epigenetic-activated antioxidant and anti-apoptotic abilities. Oncotarget 2017; 8:89665-89680. [PMID: 29163779 PMCID: PMC5685700 DOI: 10.18632/oncotarget.20804] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/17/2017] [Indexed: 01/05/2023] Open
Abstract
Maternal heat stress induced the aberrant epigenetic patterns resulting in the abnormal development of offspring embryos. It is unclear whether maternal dietary manganese supplementation as an epigenetic modifier could protect the chick embryonic development against maternal heat stress via epigenetic mechanisms. To test this hypothesis using an avian model, a completely randomized design with a 2 (maternal normal and high environmental temperatures of 21 and 32°C, respectively) × 3 (maternal dietary manganese sources, the control diet without manganese supplementation and the control diet + 120 mg/kg as either inorganic or organic manganese) factorial arrangement was adopted. Maternal environmental hyperthermia increased mRNA expressions of heat shock proteins 90 and 70, cyclin-dependent kinase 6 and B-cell CLL/lymphoma 2-associated X protein displaying oxidative damage and apoptosis in the embryonic heart. Maternal environmental hyperthermia impaired the embryonic development associated with the alteration of epigenetic status, as evidenced by global DNA hypomethylation and histone 3 lysine 9 hypoacetylation in the embryonic heart. Maternal dietary manganese supplementation increased the heart anti-apoptotic gene B-cell CLL/lymphoma 2 expressions under maternal environmental hyperthermia and manganese superoxide dismutase enzyme activity in the embryonic heart. Maternal dietary organic Mn supplementation effectively eliminated the impairment of maternal environmental hyperthermia on the embryonic development. Maternal dietary manganese supplementation up-regulated manganese superoxide dismutase mRNA expression by reducing DNA methylation and increasing histone 3 lysine 9 acetylation of its promoter. It is suggested that maternal dietary manganese addition could protect the chick embryonic development against maternal heat stress via enhancing epigenetic-activated antioxidant and anti-apoptotic abilities.
Collapse
Affiliation(s)
- Yongwen Zhu
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.,College of Animal Science, South China Agricultural University, Guangzhou 510000, China.,College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lin Lu
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiudong Liao
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wenxiang Li
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Liyang Zhang
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Cheng Ji
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xi Lin
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Hsiao-Ching Liu
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Jack Odle
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Xugang Luo
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
52
|
Attenuation of oxidative stress and cardioprotective effects of zinc supplementation in experimental diabetic rats. Br J Nutr 2017; 117:335-350. [DOI: 10.1017/s0007114517000174] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AbstractOxidative stress plays a major role in the pathogenesis of diabetes mellitus, which further exacerbates damage of cardiac, hepatic and other tissues. We have recently reported that Zn supplementation beneficially modulates hyperglycaemia and hypoinsulinaemia, with attendant reduction of associated metabolic abnormalities in diabetic rats. The present study assessed the potential of Zn supplementation in modulating oxidative stress and cardioprotective effects in diabetic rats. Diabetes was induced in Wistar rats with streptozotocin, and groups of diabetic rats were treated with 5- and 10-fold dietary Zn interventions (0·19 and 0·38 g Zn/kg diet) for 6 weeks. The markers of oxidative stress, antioxidant enzyme activities and concentrations of antioxidant molecules, lipid profile, and expressions of fibrosis and pro-apoptotic factors in the cardiac tissue were particularly assessed. Supplemental Zn showed significant attenuation of diabetes-induced oxidative stress in terms of altered antioxidant enzyme activities and increased the concentrations of antioxidant molecules. Hypercholesterolaemia and hyperlipidaemia were also significantly countered by Zn supplementation. Along with attenuated oxidative stress, Zn supplementation also showed significant cardioprotective effects by altering the mRNA expressions of fibrosis and pro-apoptotic factors (by >50 %). The expression of lipid oxidative marker 4-hydroxy-2-nonenal (4-HNE) protein in cardiac tissue of diabetic animals was rectified (68 %) by Zn supplementation. Elevated cardiac and hepatic markers in circulation and pathological abnormalities in cardiac and hepatic tissue architecture of diabetic animals were ameliorated by dietary Zn intervention. The present study indicates that Zn supplementation can attenuate diabetes-induced oxidative stress in circulation as well as in cardiac and hepatic tissues.
Collapse
|
53
|
Soleymaninejad M, Joursaraei SG, Feizi F, Jafari Anarkooli I. The Effects of Lycopene and Insulin on Histological Changes and the Expression Level of Bcl-2 Family Genes in the Hippocampus of Streptozotocin-Induced Diabetic Rats. J Diabetes Res 2017; 2017:4650939. [PMID: 28656152 PMCID: PMC5471551 DOI: 10.1155/2017/4650939] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 04/09/2017] [Accepted: 04/19/2017] [Indexed: 01/11/2023] Open
Abstract
The aim of this study was to evaluate the effects of antioxidants lycopene and insulin on histological changes and expression of Bcl-2 family genes in the hippocampus of streptozotocin-induced type 1 diabetic rats. Forty-eight Wistar rats were divided into six groups of control (C), control treated with lycopene (CL), diabetic (D), diabetic treated with insulin (DI), diabetic treated with lycopene (DL), and diabetic treated with insulin and lycopene (DIL). Diabetes was induced by an injection of streptozotocin (60 mg/kg, IP), lycopene (4 mg/kg/day) was given to the lycopene treated groups as gavages, and insulin (Sc, 1-2 U/kg/day) was injected to the groups treated with insulin. The number of hippocampus neurons undergoing cell death in group D had significant differences with groups C and DIL (p < 0.001). Furthermore, insulin and lycopene alone or together reduced the expression of Bax, but increased Bcl-2 and Bcl-xL levels in DI, DL, and DIL rats, especially when compared to group D (p < 0.001). The ratios of Bax/Bcl-2 and Bax/Bcl-xL in DI, DL, and DIL rats were also reduced (p < 0.001). Our results indicate that treatment with insulin and/or lycopene contribute to the prevention of cell death by reducing the expression of proapoptotic genes and increasing the expression of antiapoptotic genes in the hippocampus.
Collapse
Affiliation(s)
- Masoume Soleymaninejad
- Department of Anatomy, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | | | - Farideh Feizi
- Department of Anatomy, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Iraj Jafari Anarkooli
- Department of Anatomy, School of Medicine, Zanjan University of Medical Sciences (ZUMS), Zanjan, Iran
- *Iraj Jafari Anarkooli:
| |
Collapse
|
54
|
Rauskolb S, Dombert B, Sendtner M. Insulin-like growth factor 1 in diabetic neuropathy and amyotrophic lateral sclerosis. Neurobiol Dis 2017; 97:103-113. [DOI: 10.1016/j.nbd.2016.04.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 03/29/2016] [Accepted: 04/29/2016] [Indexed: 12/12/2022] Open
|
55
|
Sango K, Mizukami H, Horie H, Yagihashi S. Impaired Axonal Regeneration in Diabetes. Perspective on the Underlying Mechanism from In Vivo and In Vitro Experimental Studies. Front Endocrinol (Lausanne) 2017; 8:12. [PMID: 28203223 PMCID: PMC5285379 DOI: 10.3389/fendo.2017.00012] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 01/16/2017] [Indexed: 12/21/2022] Open
Abstract
Axonal regeneration after peripheral nerve injury is impaired in diabetes, but its precise mechanisms have not been elucidated. In this paper, we summarize the progress of research on altered axonal regeneration in animal models of diabetes and cultured nerve tissues exposed to hyperglycemia. Impaired nerve regeneration in animal diabetes can be attributed to dysfunction of neurons and Schwann cells, unfavorable stromal environment supportive of regenerating axons, and alterations of target tissues receptive to reinnervation. In particular, there are a number of factors such as enhanced activity of the negative regulators of axonal regeneration (e.g., phosphatase and tensin homolog deleted on chromosome 10 and Rho/Rho kinase), delayed Wallerian degeneration, alterations of the extracellular matrix components, enhanced binding of advanced glycation endproducts (AGEs) with the receptor for AGE, and delayed muscle reinnervation that can be obstacles to functional recovery after an axonal injury. It is also noteworthy that we and others have observed excessive neurite outgrowth from peripheral sensory ganglion explants from streptozotocin (STZ)-diabetic mice in culture and enhanced regeneration of small nerve fibers after sciatic nerve injury in STZ-induced diabetic rats. The excess of abortive neurite outgrowth may lead to misconnections of axons and target organs, which may interfere with appropriate target reinnervation and functional repair. Amelioration of perturbed nerve regeneration may be crucial for the future management of diabetic neuropathy.
Collapse
Affiliation(s)
- Kazunori Sango
- Diabetic Neuropathy Project, Department of Sensory and Motor Systems, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- *Correspondence: Kazunori Sango,
| | - Hiroki Mizukami
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | | | - Soroku Yagihashi
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
56
|
4-Hydroxyisoleucine from Fenugreek (Trigonella foenum-graecum): Effects on Insulin Resistance Associated with Obesity. Molecules 2016; 21:molecules21111596. [PMID: 27879673 PMCID: PMC6273931 DOI: 10.3390/molecules21111596] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/31/2016] [Accepted: 11/10/2016] [Indexed: 01/22/2023] Open
Abstract
Obesity and insulin resistance (IR) are interdependent multifactorial processes that cannot be understood separately. Obesity leads to systemic inflammation and increased levels of free fatty acids that provoke IR and lipotoxicity. At the same time, IR exacerbates adipose cell dysfunction, resulting in chronic inflammation and major lipotoxic effects on nonadipose tissues. 4-Hydroxyisoleucine (4-OHIle), a peculiar nonprotein amino acid isolated from fenugreek (Trigonella foenum-graecum) seeds, exhibits interesting effects on IR related to obesity. 4-OHIle increases glucose-induced insulin release, and the insulin response mediated by 4-OHIle depends on glucose concentration. The beneficial effects observed are related to the regulation of blood glucose, plasma triglycerides, total cholesterol, free fatty acid levels, and the improvement of liver function. The mechanism of action is related to increased Akt phosphorylation and reduced activation of Jun N-terminal kinase (JNK)1/2, extracellular signal-regulated kinase (ERK)1/2, p38 mitogen-activated protein kinase (MAPK), and nuclear factor (NF)-κB. Here, we present a review of the research regarding the insulinotropic and insulin-sensitising activity of 4-OHIle in in vitro and in vivo models.
Collapse
|
57
|
Rusu MC, Mănoiu VS, Vrapciu AD, Hostiuc S, Mirancea N. Altered Mitochondrial Anatomy of Trigeminal Ganglia Neurons in Diabetes. Anat Rec (Hoboken) 2016; 299:1561-1570. [PMID: 27615558 DOI: 10.1002/ar.23475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 05/27/2016] [Accepted: 07/02/2016] [Indexed: 11/11/2022]
Abstract
Neurons from sensory ganglia are exposed to oxidative attack in diabetes. Altered mitochondrial morphologies are due to impaired dynamics (fusion, fission) and to cristae remodeling. This study aimed to evaluate using transmission electron microscopy mitochondrial changes in diabetic trigeminal ganglia suggestive for ignition of apoptosis, in absence of "classical" morphological signs of apoptosis. We used samples of trigeminal ganglia (from six type 2 diabetes human donors and five streptozotocin (STZ)-induced diabetic rats). In human diabetic samples we found three main distributions of mitochondria: (a) small "dark" normal mitochondria, seemingly resulted from fission processes; (b) small "dark" damaged mitochondria, with side-vesiculations (single- and double-coated), large matrix vesicles and cytosolic leakage of reactive species, mixed with larger "light" mitochondria, swollen, and with crystolysis; (c) prevailing "light" mitochondria. In STZ-treated rats a type (c) distribution prevailed, except for nociceptive neurons where we found a different distribution: large and giant mitochondria, suggestive for impaired mitochondrial fission, mitochondrial fenestrations, matrix vesicles interconnected by lamellar cristae, and mitochondrial leakage into the cytosol. Thus, the ultrastructural pattern of mitochondria damage in diabetic samples of sensory neurons may provide clues on the initiation of intrinsic apoptosis, even if the classical morphological signs of apoptosis are not present. Further studies, combining use of biochemical and ultrastructural techniques, may allow a better quantification of the degree in which mitochondrial damage, with membrane alterations and cytosolic leaks, may be used as morphological signs suggesting the point-of-no return for apoptosis. Anat Rec, 299:1561-1570, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- M C Rusu
- Division of Anatomy, Faculty of Dental Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.
| | - V S Mănoiu
- Department of Cellular and Molecular Biology, National Institute of Research and Development for Biological Sciences, Bucharest, Romania
| | - A D Vrapciu
- Division of Anatomy, Faculty of Dental Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - S Hostiuc
- Division of Legal Medicine, Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania; "Mina Minovici" National Institute of Legal Medicine, Bucharest, Romania
| | - N Mirancea
- Institute of Biology of Bucharest, Romanian Academy, Bucharest, Romania
| |
Collapse
|
58
|
Kim S, Kim C, Park S. Ghrelin gene products rescue cultured adult rat hippocampal neural stem cells from high glucose insult. J Mol Endocrinol 2016; 57:171-84. [PMID: 27530317 DOI: 10.1530/jme-16-0096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 08/16/2016] [Indexed: 12/30/2022]
Abstract
Adult hippocampal neurogenesis is decreased in type 2 diabetes, and this impairment appears to be important in cognitive dysfunction. Previous studies suggest that ghrelin gene products (acylated ghrelin (AG), unacylated ghrelin (UAG) and obestatin (OB)) promote neurogenesis. Therefore, we hypothesize that ghrelin gene products may reduce the harmful effects of high glucose (HG) on hippocampal neural stem cells (NSCs). The aim of this study was to investigate the role of these peptides on the survival of cultured hippocampal NSCs exposed to HG insult. Treatment of hippocampal NSCs with AG, UAG or OB inhibited HG-induced cell death and apoptosis. Exposure of cells to the growth hormone secretagogue receptor 1a antagonist abolished the protective effects of AG against HG toxicity, whereas those of UAG or OB were preserved. All three peptides attenuated HG-induced decrease in BrdU-labeled and phosphohistone-H3-labeled cells. We also investigated the effects of ghrelin gene products on the regulation of apoptosis at the mitochondrial level. AG, UAG or OB rescued hippocampal NSCs from HG insult by inhibiting intracellular and mitochondrial reactive oxygen species generation and stabilizing mitochondrial transmembrane potential. In addition, cells treated with ghrelin gene products showed an increased Bcl-2 and decreased Bax levels, thereby increasing the Bcl-2/Bax ratio, inhibiting cytochrome c release and preventing caspase-3 activation. Finally, AG-, UAG- or OB-mediated protection was dependent on the activities of adenosine monophosphate-activated protein kinase/uncoupling protein 2 pathway. Our data indicate that ghrelin gene products may act as survival factors that preserve mitochondrial function and inhibit oxidative stress-induced apoptosis.
Collapse
Affiliation(s)
- Sehee Kim
- Department of Biomedical ScienceGraduate School, Kyung Hee University, Seoul, Korea
| | - Chanyang Kim
- Department of Biomedical ScienceGraduate School, Kyung Hee University, Seoul, Korea
| | - Seungjoon Park
- Department of Pharmacology and Medical Research Center for Bioreaction to ROS and Biomedical Science InstituteSchool of Medicine, Kyung Hee University, Seoul, Korea
| |
Collapse
|
59
|
Madias JE. An animal model of diabetic peripheral neuropathy and the pathophysiology of takotsubo syndrome: A proposal of an experiment. Int J Cardiol 2016; 222:882-884. [PMID: 27522393 DOI: 10.1016/j.ijcard.2016.08.108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 08/05/2016] [Indexed: 12/26/2022]
Affiliation(s)
- John E Madias
- Icahn School of Medicine at Mount Sinai, New York, NY, United States; Division of Cardiology, Elmhurst Hospital Center, Elmhurst, NY, United States.
| |
Collapse
|
60
|
The Possible Role of Flavonoids in the Prevention of Diabetic Complications. Nutrients 2016; 8:nu8050310. [PMID: 27213445 PMCID: PMC4882722 DOI: 10.3390/nu8050310] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/11/2016] [Accepted: 05/16/2016] [Indexed: 12/23/2022] Open
Abstract
Type 2 diabetes mellitus is a disease that affects many metabolic pathways. It is associated with insulin resistance, impaired insulin signaling, β-cell dysfunction, abnormal glucose levels, altered lipid metabolism, sub-clinical inflammation and increased oxidative stress. These and other unknown mechanisms lead to micro- and macro-complications, such as neuropathy, retinopathy, nephropathy and cardiovascular disease. Based on several in vitro animal models and some human studies, flavonoids appear to play a role in many of the metabolic processes involved in type 2 diabetes mellitus. In this review, we seek to highlight the most recent papers focusing on the relationship between flavonoids and main diabetic complications.
Collapse
|
61
|
Erbaş O, Oltulu F, Yılmaz M, Yavaşoğlu A, Taşkıran D. Neuroprotective effects of chronic administration of levetiracetam in a rat model of diabetic neuropathy. Diabetes Res Clin Pract 2016; 114:106-16. [PMID: 26795972 DOI: 10.1016/j.diabres.2015.12.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 12/04/2015] [Accepted: 12/28/2015] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Diabetic neuropathy (DNP) is a frequent and serious complication of diabetes mellitus (DM) that leads to progressive and length-dependent loss of peripheral nerve axons. The purpose of the present study is to assess the neuroprotective effects of levetiracetam (LEV) on DNP in a streptozotocin (STZ)-induced DM model in rats. METHODS Adult Sprague-Dawley rats were administered with STZ (60mg/kg) to induce diabetes. DNP was confirmed by electromyography (EMG) and motor function test on 21st day following STZ injection. Study groups were assigned as follows; Group 1: Naïve control (n=8), Group 2: DM+1mL/kg saline (n=12), Group 3: DM+300mg/kg LEV (n=10), Group 4: DM+600mg/kg LEV (n=10). LEV was administered i.p. for 30 consecutive days. Then, EMG, motor function test, biochemical analysis (plasma lipid peroxides and total anti-oxidant capacity), histological and immunohistochemical analysis of sciatic nerves (TUNEL assay, bax, caspase 3, caspase 8 and NGF) were performed to evaluate the efficacy of LEV. RESULTS Treatment of diabetic rats with LEV significantly attenuated the inflammation and fibrosis in sciatic nerves and prevented electrophysiological alterations. Immunohistochemistry of sciatic nerves showed a considerable increase in bax, caspase 3 and caspase 8 and a decrease in NGF expression in saline-treated rats whereas LEV significantly suppressed apoptosis markers and prevented the reduction in NGF expression. Besides, LEV considerably reduced plasma lipid peroxides and increased total anti-oxidant capacity in diabetic rats. CONCLUSIONS The results of the present study suggest that LEV may have therapeutic effects in DNP through modulation of anti-oxidant and anti-apoptotic pathways.
Collapse
Affiliation(s)
- Oytun Erbaş
- Istanbul Bilim University School of Medicine, Department of Physiology, Istanbul, Turkey
| | - Fatih Oltulu
- Ege University School of Medicine, Department of Histology and Embryology, Izmir, Turkey
| | - Mustafa Yılmaz
- Mugla University School of Medicine, Department of Neurology, Mugla, Turkey
| | - Altuğ Yavaşoğlu
- Ege University School of Medicine, Department of Histology and Embryology, Izmir, Turkey
| | - Dilek Taşkıran
- Ege University School of Medicine, Department of Physiology, Izmir, Turkey.
| |
Collapse
|
62
|
Yang P, Pei Q, Yu T, Chang Q, Wang D, Gao M, Zhang X, Liu Y. Compromised Wound Healing in Ischemic Type 2 Diabetic Rats. PLoS One 2016; 11:e0152068. [PMID: 27028201 PMCID: PMC4814123 DOI: 10.1371/journal.pone.0152068] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 03/07/2016] [Indexed: 02/06/2023] Open
Abstract
Ischemia is one of the main epidemic factors and characteristics of diabetic chronic wounds, and exerts a profound effect on wound healing. To explore the mechanism of and the cure for diabetic impaired wound healing, we established a type 2 diabetic rat model. We used an 8weeks high fat diet (HFD) feeding regimen followed by multiple injections of streptozotocin (STZ) at a dose of 10mg/kg to induce Wister rat to develop type 2 diabetes. Metabolic characteristics were assessed at the 5th week after the STZ injections to confirm the establishment of diabetes mellitus on the rodent model. A bipedicle flap, with length to width ratio 1.5, was performed on the back of the rat to make the flap area ischemic. Closure of excisional wounds on this bipedicle flap and related physiological and pathological changes were studied using histological, immunohistochemical, real time PCR and protein immunoblot approaches. Our results demonstrated that a combination of HFD feeding and a low dose of STZ is capable of inducing the rats to develop type 2 diabetes with noticeable insulin resistance, persistent hyperglycemia, moderate degree of insulinemia, as well as high serum cholesterol and high triglyceride levels. The excision wounds on the ischemic double pedicle flap showed deteriorative healing features comparing with non-ischemic diabetic wounds, including: delayed healing, exorbitant wound inflammatory response, excessive and prolonged ROS production and excessive production of MMPs. Our study suggested that HFD feeding combined with STZ injection could induce type 2 diabetes in rat. Our ischemic diabetic wound model is suitable for the investigation of human diabetic related wound repair; especically for diabetic chronic wounds.
Collapse
Affiliation(s)
- Peilang Yang
- Department of Burn and Plastic Surgery, Shanghai Jiao Tong University School of Medicine, Ruijin Hospital, Shanghai 200025, China
| | - Qing Pei
- Department of Burn and Plastic Surgery, Shanghai Jiao Tong University School of Medicine, Ruijin Hospital, Shanghai 200025, China
| | - Tianyi Yu
- Department of Burn and Plastic Surgery, Shanghai Jiao Tong University School of Medicine, Ruijin Hospital, Shanghai 200025, China
| | - Qingxuan Chang
- Department of Burn and Plastic Surgery, Shanghai Jiao Tong University School of Medicine, Ruijin Hospital, Shanghai 200025, China
| | - Di Wang
- Department of Burn and Plastic Surgery, Shanghai Jiao Tong University School of Medicine, Ruijin Hospital, Shanghai 200025, China
| | - Min Gao
- Department of Burn and Plastic Surgery, Shanghai Jiao Tong University School of Medicine, Ruijin Hospital, Shanghai 200025, China
| | - Xiong Zhang
- Department of Burn and Plastic Surgery, Shanghai Jiao Tong University School of Medicine, Ruijin Hospital, Shanghai 200025, China
| | - Yan Liu
- Department of Burn and Plastic Surgery, Shanghai Jiao Tong University School of Medicine, Ruijin Hospital, Shanghai 200025, China
- * E-mail:
| |
Collapse
|
63
|
Assessment of the Protective Role of Prenatal Zinc versus Insulin Supplementation on Fetal Cardiac Damage Induced by Maternal Diabetes in Rat Using Caspase-3 and KI67 Immunohistochemical Stains. Cardiol Res Pract 2016; 2016:7469549. [PMID: 26925289 PMCID: PMC4748104 DOI: 10.1155/2016/7469549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/23/2015] [Accepted: 12/24/2015] [Indexed: 12/03/2022] Open
Abstract
Maternal diabetes mellitus (DM) affects early organogenesis. Metabolic disorders of DM are associated with a depleted zinc status. This study evaluated the effect of maternal DM on cardiac development of rat fetuses and protective roles of prenatal zinc versus insulin supplementation. Pregnant rats were divided into 4 groups ((I) control, (II) STZ-induced DM, (III) STZ-induced DM treated with Zn, and (IV) STZ induced DM treated with insulin), all sacrificed on GD 20. Fetal heart weight of diabetic rats showed significant decrease compared to controls (P < 0.05). H&E stained section of controls had normal appearance of the myocardium, compared to diabetics that showed myocardial disarray with characteristic degenerative changes. Sections of zinc treated group showed restored architecture of normal myofibrils with minimal degenerative changes, while those of insulin treated group show partial restoration of the normal architecture of cardiomyocytes with focal improvement of cardiac tissue. Caspase-3 immunostained slides showed positive cytoplasmic immunoreactivity in diabetic group. But KI67 immunostained slides revealed negative nuclear immunoreaction in diabetics. We observed that gestational diabetes was associated with increased risk of fetal myocardial damage that might be caused by increased apoptotic level. Treating diabetic pregnant subjects with zinc and insulin was associated with improvement in myocardial integrity.
Collapse
|
64
|
Association Between Tumor Necrosis Factor-α and Diabetic Peripheral Neuropathy in Patients with Type 2 Diabetes: a Meta-Analysis. Mol Neurobiol 2016; 54:983-996. [PMID: 26797519 DOI: 10.1007/s12035-016-9702-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 01/05/2016] [Indexed: 12/13/2022]
Abstract
Tumor necrosis factor-α (TNF-α) is a cell signaling protein involved in systemic inflammation, and is also an important cytokine in the acute phase reaction. Several studies suggested a possible association between TNF-α and diabetic peripheral neuropathy (DPN) in type 2 diabetic patients, but no accurate conclusion was available. A systematic review and meta-analysis of observational studies was performed to comprehensively assess the association between serum TNF-α levels and DPN in type 2 diabetic patients. We searched Pubmed, Web of Science, Embase, and China Biology Medicine (CMB) databases for eligible studies. Study-specific data were combined using meta-analysis. Fourteen studies were finally included into the meta-analysis, which involved a total of 2650 participants. Meta-analysis showed that there were obviously increased serum TNF-α levels in DPN patients compared with type 2 diabetic patients without DPN (standard mean difference [SMD] = 1.203, 95 % CI 0.795-1.611, P < 0.001). There were also obviously increased levels of serum TNF-α in diabetic patients with DPN when compared with healthy controls (SMD = 2.364, 95 % CI 1.333-3.394, P < 0.001). In addition, there were increased serum TNF-α levels in painful DPN patients compared with painless DPN patients (SMD = 0.964, 95 % CI 0.237-1.690, P = 0.009). High level of serum TNF-α was significantly associated with increased risk of DPN in patients with type 2 diabetes (odds ratio [OR] = 2.594, 95 % CI 1.182-5.500, P = 0.017). Increased serum levels of TNF-α was not associated with increased risk of painful DPN in patients with type 2 diabetes (OR = 2.486, 95 % CI 0.672-9.193, P = 0.172). Sensitivity analysis showed that there was no obvious change in the pooled estimates when omitting single study by turns. Type 2 diabetic patients with peripheral neuropathy have obviously increased serum TNF-α levels than type 2 diabetic patients without peripheral neuropathy and healthy controls, and high level of serum TNF-α may be associated with increased risk of peripheral neuropathy independently. Further prospective cohort studies are needed to assess the association between TNF-α and DPN.
Collapse
|
65
|
Xu XF, Zhang DD, Liao JC, Xiao L, Wang Q, Qiu W. Galanin and its receptor system promote the repair of injured sciatic nerves in diabetic rats. Neural Regen Res 2016; 11:1517-1526. [PMID: 27857760 PMCID: PMC5090859 DOI: 10.4103/1673-5374.191228] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Various studies have reported that galanin can promote axonal regeneration of dorsal root ganglion neurons in vitro and inhibit neuropathic pain. However, little is known about its effects on diabetic peripheral neuropathy, and in vivo experimental data are lacking. We hypothesized that repeated applications of exogenous galanin over an extended time frame may also repair nerve damage in diabetic peripheral neuropathy, and relieve pain in vivo. We found that neuropathic pain occurred in streptozotocin-induced diabetic rats and was more severe after sciatic nerve pinch injury at 14 and 28 days than in diabetic sham-operated rats. Treatment with exogenous galanin alleviated the neuropathic pain and promoted sciatic nerve regeneration more effectively in diabetic rats than in non-diabetic rats after sciatic nerve pinch injury. This was accompanied by changes in the levels of endogenous galanin, and its receptors galanin receptor 1 and galanin receptor 2 in the dorsal root ganglia and the spinal dorsal horn when compared with nerve pinch normal rats. Our results show that application of exogenous galanin daily for 28 days can promote the regeneration of injured sciatic nerves, and alleviate neuropathic pain in diabetic rats.
Collapse
Affiliation(s)
- Xiao-Feng Xu
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Dan-Dan Zhang
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong Province, China
| | - Jin-Chi Liao
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Li Xiao
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Qing Wang
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Wei Qiu
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
66
|
Yerra VG, Gundu C, Bachewal P, Kumar A. Autophagy: The missing link in diabetic neuropathy? Med Hypotheses 2016; 86:120-8. [DOI: 10.1016/j.mehy.2015.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/26/2015] [Accepted: 11/01/2015] [Indexed: 12/22/2022]
|
67
|
Alipour M, Adineh F, Mosatafavi H, Aminabadi A, Monirinasab H, Jafari MR. Effect of chronic intraperitoneal aminoguanidine on memory and expression of Bcl-2 family genes in diabetic rats. Can J Physiol Pharmacol 2015; 94:669-75. [PMID: 27210113 DOI: 10.1139/cjpp-2015-0357] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Long-term hyperglycemia associates with memory defects via hippocampal cells damaging. The aim of the present study was to examine the effect of 1 month of i.p. injections of AG on passive avoidance learning (PAL) and hippocampal apoptosis in rat. Eighty male rats were divided into 10 groups: control, nondiabetics and STZ-induced diabetics treated with AG (50, 100, 200, and 400 mg/kg, i.p.). PAL and the Bcl-2 family gene expressions were determined. Diabetes resulted in memory and Bcl-2 family gene expression deficits. AG (50 and 100 mg/kg) significantly improved the learning and Bcl-2, Bcl-xl, Bax, and Bak impairment in diabetic rats. However, negative effects were indicated by higher doses of the drug (200 and 400 mg/kg). Present study suggests that 1 month of i.p. injections of lower doses of AG, may improve the impaired cognitive tasks in STZ-induced diabetic rats possibly by modulating Bcl-2 family gene expressions.
Collapse
Affiliation(s)
- Mohsen Alipour
- a Department of Physiology and Pharmacology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Fatemeh Adineh
- a Department of Physiology and Pharmacology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hossein Mosatafavi
- a Department of Physiology and Pharmacology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Azam Aminabadi
- a Department of Physiology and Pharmacology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hananeh Monirinasab
- b Department of Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohammad Reza Jafari
- a Department of Physiology and Pharmacology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
68
|
Abstract
Diabetic neuropathy is a dying back neurodegenerative disease of the peripheral nervous system where mitochondrial dysfunction has been implicated as an etiological factor. Diabetes (type 1 or type 2) invokes an elevation of intracellular glucose concentration simultaneously with impaired growth factor support by insulin, and this dual alteration triggers a maladaptation in metabolism of adult sensory neurons. The energy sensing pathway comprising the AMP-activated protein kinase (AMPK)/sirtuin (SIRT)/peroxisome proliferator-activated receptor-γ coactivator α (PGC-1α) signaling axis is the target of these damaging changes in nutrient levels, e.g., induction of nutrient stress, and loss of insulin-dependent growth factor support and instigates an aberrant metabolic phenotype characterized by a suppression of mitochondrial oxidative phosphorylation and shift to anaerobic glycolysis. There is discussion of how this loss of mitochondrial function and transition to overreliance on glycolysis contributes to the diminishment of collateral sprouting and axon regeneration in diabetic neuropathy in the context of the highly energy-consuming nerve growth cone.
Collapse
Affiliation(s)
- Paul Fernyhough
- Division of Neurodegenerative Disorders, St Boniface Hospital Research Centre, R4046-351 Taché Ave, Winnipeg, Manitoba, R2H 2A6, Canada.
- Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB, R3E 0T6, Canada.
| |
Collapse
|
69
|
Abraham NG, Junge JM, Drummond GS. Translational Significance of Heme Oxygenase in Obesity and Metabolic Syndrome. Trends Pharmacol Sci 2015; 37:17-36. [PMID: 26515032 DOI: 10.1016/j.tips.2015.09.003] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/10/2015] [Accepted: 09/17/2015] [Indexed: 01/04/2023]
Abstract
The global epidemic of obesity continues unabated with sequelae of diabetes and metabolic syndrome. This review reflects the dramatic increase in research on the role of increased expression of heme oxygenase (HO)-1/HO-2, biliverdin reductase, and HO activity on vascular disease. The HO system engages with other systems to mitigate the deleterious effects of oxidative stress in obesity and cardiovascular disease (CVD). Recent reports indicate that HO-1/HO-2 protein expression and HO activity have several important roles in hemostasis and reactive oxygen species (ROS)-dependent perturbations associated with metabolic syndrome. HO-1 protects tissue during inflammatory stress in obesity through the degradation of pro-oxidant heme and the production of carbon monoxide (CO) and bilirubin, both of which have anti-inflammatory and anti-apoptotic properties. By contrast, repression of HO-1 is associated with increases of cellular heme and inflammatory conditions including hypertension, stroke, and atherosclerosis. HO-1 is a major focus in the development of potential therapeutic strategies to reverse the clinical complications of obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Nader G Abraham
- Departments of Medicine and Pharmacology, New York Medical College, School of Medicine, Valhalla, NY 10595, USA; Marshall University, Joan C. Edwards School of Medicine, Huntington, WV 25701, USA.
| | - Joshua M Junge
- Departments of Medicine and Pharmacology, New York Medical College, School of Medicine, Valhalla, NY 10595, USA
| | - George S Drummond
- Departments of Medicine and Pharmacology, New York Medical College, School of Medicine, Valhalla, NY 10595, USA
| |
Collapse
|
70
|
Jia Y, Tong Y, Min L. Significance of functional GRP78 polymorphisms in predicting the onset of type 2 diabetic peripheral neuropathy in Chinese population. Neurol Res 2015; 37:683-7. [PMID: 26005757 DOI: 10.1179/1743132815y.0000000054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE The objective of this study is to investigate the significance of functional GRP78 polymorphisms in predicting the risk of type 2 diabetic peripheral neuropathy in Chinese population. METHODS Between the years of 2006 and 2010, a total of 295 definitely diagnosed type 2 diabetes mellitus (T2DM) patients were included into our study cohort and followed for 3 years. At baseline and annual re-examinations, the patients underwent physical examinations, laboratory tests and evaluation of Michigan diabetic neuropathy score (MDNS). Age, gender, disease course, waist-hip circumference ratio (WHR), body mass index (BMI), triglycerine (TG), total cholesterol (Tch), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), glycosylated haemoglobin (HbA1c), uric acid elimination rate (UAER) and uric acid (UA) were recorded and GRP78 polymorphisms were tested by direct sequencing. The prognostic significance of GRP78 polymorphisms were analysed using monovariate and multivariate logistic regression. RESULTS Three years after baseline, 32.9% (97/295) of the T2DM patients had suffered the development of diabetic peripheral neuropathy and GRP78 rs391957 promoter polymorphism is a significant risk factor for the onset of type 2 diabetic peripheral neuropathy. In monovariate regression model, the OR values of GRP78 rs391957 promoter polymorphism were 2.233 (C/T) and 2.734 (T/T). As for the model calibrated with demographic and laboratory indexes, the OR values were, respectively, 2.124 (C/T) and 2.423 (T/T). CONCLUSION Our study suggested that the GRP78 rs391957 promoter polymorphism is a potential risk factor for type 2 diabetic peripheral neuropathy.
Collapse
|
71
|
Vichaya EG, Chiu GS, Krukowski K, Lacourt TE, Kavelaars A, Dantzer R, Heijnen CJ, Walker AK. Mechanisms of chemotherapy-induced behavioral toxicities. Front Neurosci 2015; 9:131. [PMID: 25954147 PMCID: PMC4404721 DOI: 10.3389/fnins.2015.00131] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 04/01/2015] [Indexed: 11/13/2022] Open
Abstract
While chemotherapeutic agents have yielded relative success in the treatment of cancer, patients are often plagued with unwanted and even debilitating side-effects from the treatment which can lead to dose reduction or even cessation of treatment. Common side effects (symptoms) of chemotherapy include (i) cognitive deficiencies such as problems with attention, memory and executive functioning; (ii) fatigue and motivational deficit; and (iii) neuropathy. These symptoms often develop during treatment but can remain even after cessation of chemotherapy, severely impacting long-term quality of life. Little is known about the underlying mechanisms responsible for the development of these behavioral toxicities, however, neuroinflammation is widely considered to be one of the major mechanisms responsible for chemotherapy-induced symptoms. Here, we critically assess what is known in regards to the role of neuroinflammation in chemotherapy-induced symptoms. We also argue that, based on the available evidence, neuroinflammation is unlikely the only mechanism involved in the pathogenesis of chemotherapy-induced behavioral toxicities. We evaluate two other putative candidate mechanisms. To this end we discuss the mediating role of damage-associated molecular patterns (DAMPs) activated in response to chemotherapy-induced cellular damage. We also review the literature with respect to possible alternative mechanisms such as a chemotherapy-induced change in the bioenergetic status of the tissue involving changes in mitochondrial function in relation to chemotherapy-induced behavioral toxicities. Understanding the mechanisms that underlie the emergence of fatigue, neuropathy, and cognitive difficulties is vital to better treatment and long-term survival of cancer patients.
Collapse
Affiliation(s)
- Elisabeth G Vichaya
- Laboratory of Neuroimmunology, Division of Internal Medicine, Department of Symptom Research, The University of Texas MD Anderson Cancer Center Houston, TX, USA
| | - Gabriel S Chiu
- Laboratory of Neuroimmunology, Division of Internal Medicine, Department of Symptom Research, The University of Texas MD Anderson Cancer Center Houston, TX, USA
| | - Karen Krukowski
- Laboratory of Neuroimmunology, Division of Internal Medicine, Department of Symptom Research, The University of Texas MD Anderson Cancer Center Houston, TX, USA
| | - Tamara E Lacourt
- Laboratory of Neuroimmunology, Division of Internal Medicine, Department of Symptom Research, The University of Texas MD Anderson Cancer Center Houston, TX, USA
| | - Annemieke Kavelaars
- Laboratory of Neuroimmunology, Division of Internal Medicine, Department of Symptom Research, The University of Texas MD Anderson Cancer Center Houston, TX, USA
| | - Robert Dantzer
- Laboratory of Neuroimmunology, Division of Internal Medicine, Department of Symptom Research, The University of Texas MD Anderson Cancer Center Houston, TX, USA
| | - Cobi J Heijnen
- Laboratory of Neuroimmunology, Division of Internal Medicine, Department of Symptom Research, The University of Texas MD Anderson Cancer Center Houston, TX, USA
| | - Adam K Walker
- Laboratory of Neuroimmunology, Division of Internal Medicine, Department of Symptom Research, The University of Texas MD Anderson Cancer Center Houston, TX, USA
| |
Collapse
|
72
|
Salem MAEK, Adly AAM, Ismail EAR, Darwish YW, Kamel HA. Platelets microparticles as a link between micro- and macro-angiopathy in young patients with type 1 diabetes. Platelets 2015; 26:682-8. [DOI: 10.3109/09537104.2015.1018880] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
73
|
Targeting prostate cancer cell metabolism: impact of hexokinase and CPT-1 enzymes. Tumour Biol 2014; 36:2893-905. [PMID: 25501281 DOI: 10.1007/s13277-014-2919-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 11/28/2014] [Indexed: 10/24/2022] Open
Abstract
Glycolysis has been shown to be required for the cell growth and proliferation in several cancer cells. However, prostate cancer cells were accused of using more fatty acid than glucose to meet their bioenergetic demands. The present study was designed to evaluate the involvement of hexokinase and CPT-1 in the cell growth and proliferation of human prostate cancer cell lines, PC3, and LNCaP-FGC-10. Hexokinase and CPT-1 activities were examined in the presence of different concentrations of their inhibitors, lonidamine and etomoxir, to find the concentration of maximum inhibition ([I max]). To assess cell viability and proliferation, dimethylthiazol (MTT) assay was carried out using [I max] for 24, 48, and 72 h on PC3 and LNCaP cells. Apoptosis was determined using annexin-V, caspase-3 activity assay, Hoechst 33258 staining, and evaluation of mitochondrial membrane potential (MMP). Moreover, ATP levels were measured following lonidamine and etomoxir exposure. In addition, to define the impact of exogenous fatty acid on the cell growth and proliferation, CPT-1 activity was evaluated in the presence of palmitate (50 μM). Hexokinase and CPT-1 activities were significantly inhibited by lonidamine [600 μM] and etomoxir [100 μM] in both cell lines. Treatment of the cells with lonidamine [600 μM] resulted in a significant ATP reduction, cell viability and apoptosis, caspase-3 activity elevation, MMP reduction, and appearance of apoptosis-related morphological changes in the cells. In contrast, etomoxir [100 μM] just decreased ATP levels in both cell lines without significant cell death and apoptosis. Compared with glucose (2 g/L), palmitate intensified CPT-1 activity in both cell lines, especially in LNCaP cells. In addition, activity of CPT-1 was higher in LNCaP than PC3 cells. Our results suggest that prostate cancer cells may metabolize glucose as a source of bioenergetic pathways. ATP could also be produced by long-chain fatty acid oxidation. In addition, these data might suggest that LNCaP is more compatible with palmitate.
Collapse
|
74
|
Calcium signalling in sensory neurones and peripheral glia in the context of diabetic neuropathies. Cell Calcium 2014; 56:362-71. [PMID: 25149565 DOI: 10.1016/j.ceca.2014.07.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/11/2014] [Accepted: 07/12/2014] [Indexed: 12/14/2022]
Abstract
Peripheral sensory nervous system is comprised of neurones with their axons and neuroglia that includes satellite glial cells in sensory ganglia, myelinating, non-myelinating and perisynaptic Schwann cells. Pathogenesis of peripheral diabetic polyneuropathies is associated with aberrant function of both neurones and glia. Deregulated Ca(2+) homoeostasis and aberrant Ca(2+) signalling in neuronal and glial elements contributes to many forms of neuropathology and is fundamental to neurodegenerative diseases. In diabetes both neurones and glia experience metabolic stress and mitochondrial dysfunction which lead to deregulation of Ca(2+) homeostasis and Ca(2+) signalling, which in their turn lead to pathological cellular reactions contributing to development of diabetic neuropathies. Molecular cascades responsible for Ca(2+) homeostasis and signalling, therefore, can be regarded as potential therapeutic targets.
Collapse
|
75
|
Abstract
SIGNIFICANCE Mitochondrial dynamics describes the continuous change in the position, size, and shape of mitochondria within cells. The morphological and functional complexity of neurons, the remarkable length of their processes, and the rapid changes in metabolic requirements arising from their intrinsic excitability render these cells particularly dependent on effective mitochondrial function and positioning. The rules that govern these changes and their functional significance are not fully understood, yet the dysfunction of mitochondrial dynamics has been implicated as a pathogenetic factor in a number of diseases, including disorders of the central and peripheral nervous systems. RECENT ADVANCES In recent years, a number of mutations of genes encoding proteins that play important roles in mitochondrial dynamics and function have been discovered in patients with Charcot-Marie-Tooth (CMT) disease, a hereditary peripheral neuropathy. These findings have directly linked mitochondrial pathology to the pathology of peripheral nerve and have identified certain aspects of mitochondrial dynamics as potential early events in the pathogenesis of CMT. In addition, mitochondrial dysfunction has now been implicated in the pathogenesis of noninherited neuropathies, including diabetic and inflammatory neuropathies. CRITICAL ISSUES The role of mitochondria in peripheral nerve diseases has been mostly examined in vitro, and less so in animal models. FUTURE DIRECTIONS This review examines available evidence for the role of mitochondrial dynamics in the pathogenesis of peripheral neuropathies, their relevance in human diseases, and future challenges for research in this field.
Collapse
Affiliation(s)
- Marija Sajic
- Department of Neuroinflammation, UCL Institute of Neurology , Queen Square, London, United Kingdom
| |
Collapse
|
76
|
Premkumar LS, Pabbidi RM. Diabetic peripheral neuropathy: role of reactive oxygen and nitrogen species. Cell Biochem Biophys 2014; 67:373-83. [PMID: 23722999 DOI: 10.1007/s12013-013-9609-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The prevalence of diabetes has reached epidemic proportions. There are two forms of diabetes: type 1 diabetes mellitus is due to auto-immune-mediated destruction of pancreatic β-cells resulting in absolute insulin deficiency and type 2 diabetes mellitus is due to reduced insulin secretion and or insulin resistance. Both forms of diabetes are characterized by chronic hyperglycemia, leading to the development of diabetic peripheral neuropathy (DPN) and microvascular pathology. DPN is characterized by enhanced or reduced thermal, chemical, and mechanical pain sensitivities. In the long-term, DPN results in peripheral nerve damage and accounts for a substantial number of non-traumatic lower-limb amputations. This review will address the mechanisms, especially the role of reactive oxygen and nitrogen species in the development and progression of DPN.
Collapse
Affiliation(s)
- Louis S Premkumar
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA,
| | | |
Collapse
|
77
|
Rouq FA, Hammad D, Meo SA. Protection of neuronal cell death against diabetes-induced apoptosis by Fas blocker ZB4. J Int Med Res 2014; 42:949-57. [DOI: 10.1177/0300060513510656] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 10/06/2013] [Indexed: 12/31/2022] Open
Abstract
Objective To determine the role of apoptosis inhibition in the prevention of diabetic neuropathy using the antiFas cell surface death receptor (Fas) antagonistic monoclonal antibody ZB4. Methods This prospective study enrolled patients with type 2 diabetes with and without neuropathy and a group of healthy controls. The serum concentrations of Fas and Fas ligand (FasL) were measured in all study participants using an enzyme-linked immunosorbent assay. The ability of serum from study participants to induce apoptosis was evaluated in a human neuronal cell line using flow cytometry. Results A total of 28 healthy subjects and 57 patients with diabetes were enrolled in the study. Serum Fas concentrations were significantly increased in diabetes patients with and without neuropathy compared with the controls. Cells treated with the serum from diabetes patients with neuropathy had significantly higher rates of early apoptosis compared with cells treated with control serum. Monoclonal antibody ZB4 was able to block serum-induced apoptosis. Conclusions Serum-induced apoptosis of a human neuronal cell line appeared to be mediated via Fas, which suggests that targeting and inhibiting Fas might offer a therapeutic target for diabetic neuropathy.
Collapse
Affiliation(s)
- Fawzia Al Rouq
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Durdana Hammad
- Department of Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Sultan Ayoub Meo
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
78
|
Jafari Anarkooli I, Barzegar Ganji H, Pourheidar M. The protective effects of insulin and natural honey against hippocampal cell death in streptozotocin-induced diabetic rats. J Diabetes Res 2014; 2014:491571. [PMID: 24745031 PMCID: PMC3976855 DOI: 10.1155/2014/491571] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 02/05/2014] [Accepted: 02/09/2014] [Indexed: 11/18/2022] Open
Abstract
We investigated the effects of insulin and honey as antioxidants to prevent the hippocampal cell death in streptozotocin-induced diabetic rats. We selected sixty Wister rats (5 groups of 12 animals each), including the control group (C), and four diabetic groups (control (D) and 3 groups treated with insulin (I), honey (H), and insulin plus honey (I + H)). Diabetes was induced by streptozotocin injection (IP, 60 mg/kg). Six weeks after the induction of diabetes, the group I received insulin (3-4 U/kg/day, SC), group H received honey (5 mg/kg/day, IP), and group I + H received a combination of the above at the same dose. Groups C and D received normal saline. Two weeks after treatment, rats were sacrificed and the hippocampus was extracted. Neuronal cell death in the hippocampal region was examined using trypan blue assay, "H & E" staining, and TUNEL assay. Cell viability assessment showed significantly lower number of living cells in group D than in group C. Besides, the mean number of living cells was significantly higher in group I, H, and I + H compared to group D. Therefore, it can be concluded that the treatment of the diabetic rats with insulin, honey, and a combination of insulin and honey can prevent neuronal cell death in different hippocampal areas of the studied samples.
Collapse
Affiliation(s)
- Iraj Jafari Anarkooli
- Department of Anatomy, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan 4513956111, Iran
| | - Hossein Barzegar Ganji
- Department of Anatomy, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan 4513956111, Iran
| | - Maryam Pourheidar
- Department of Histology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
79
|
|
80
|
|
81
|
Sandireddy R, Yerra VG, Areti A, Komirishetty P, Kumar A. Neuroinflammation and oxidative stress in diabetic neuropathy: futuristic strategies based on these targets. Int J Endocrinol 2014; 2014:674987. [PMID: 24883061 PMCID: PMC4021687 DOI: 10.1155/2014/674987] [Citation(s) in RCA: 224] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 03/14/2014] [Indexed: 02/06/2023] Open
Abstract
In Diabetes, the chronic hyperglycemia and associated complications affecting peripheral nerves are one of the most commonly occurring microvascular complications with an overall prevalence of 50-60%. Among the vascular complications of diabetes, diabetic neuropathy is the most painful and disabling, fatal complication affecting the quality of life in patients. Several theories of etiologies surfaced down the lane, amongst which the oxidative stress mediated damage in neurons and surrounding glial cell has gained attention as one of the vital mechanisms in the pathogenesis of neuropathy. Mitochondria induced ROS and other oxidants are responsible for altering the balance between oxidants and innate antioxidant defence of the body. Oxidative-nitrosative stress not only activates the major pathways namely, polyol pathway flux, advanced glycation end products formation, activation of protein kinase C, and overactivity of the hexosamine pathway, but also initiates and amplifies neuroinflammation. The cross talk between oxidative stress and inflammation is due to the activation of NF- κ B and AP-1 and inhibition of Nrf2, peroxynitrite mediate endothelial dysfunction, altered NO levels, and macrophage migration. These all culminate in the production of proinflammatory cytokines which are responsible for nerve tissue damage and debilitating neuropathies. This review focuses on the relationship between oxidative stress and neuroinflammation in the development and progression of diabetic neuropathy.
Collapse
Affiliation(s)
- Reddemma Sandireddy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Bala Nagar, Hyderabad 500037, India
| | - Veera Ganesh Yerra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Bala Nagar, Hyderabad 500037, India
| | - Aparna Areti
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Bala Nagar, Hyderabad 500037, India
| | - Prashanth Komirishetty
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Bala Nagar, Hyderabad 500037, India
| | - Ashutosh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Bala Nagar, Hyderabad 500037, India
- *Ashutosh Kumar:
| |
Collapse
|
82
|
Abstract
As ensheathing and secretory cells, Schwann cells are a ubiquitous and vital component of the endoneurial microenvironment of peripheral nerves. The interdependence of axons and their ensheathing Schwann cells predisposes each to the impact of injury in the other. Further, the dependence of the blood-nerve interface on trophic support from Schwann cells during development, adulthood, and after injury suggests these glial cells promote the structural and functional integrity of nerve trunks. Here, the developmental origin, injury-induced changes, and mature myelinating and nonmyelinating phenotypes of Schwann cells are reviewed prior to a description of nerve fiber pathology and consideration of pathogenic mechanisms in human and experimental diabetic neuropathy. A fundamental role for aldose-reductase-containing Schwann cells in the pathogenesis of diabetic neuropathy, as well as the interrelationship of pathogenic mechanisms, is indicated by the sensitivity of hyperglycemia-induced biochemical alterations, such as polyol pathway flux, formation of reactive oxygen species, generation of advanced glycosylation end products (AGEs) and deficient neurotrophic support, to blocking polyol pathway flux.
Collapse
Affiliation(s)
- Andrew P Mizisin
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
83
|
Ding Y, Dai X, Jiang Y, Zhang Z, Li Y. Functional and morphological effects of grape seed proanthocyanidins on peripheral neuropathy in rats with type 2 diabetes mellitus. Phytother Res 2013; 28:1082-7. [PMID: 24343984 DOI: 10.1002/ptr.5104] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 11/20/2013] [Accepted: 11/21/2013] [Indexed: 12/29/2022]
Abstract
Grape seed proanthocyanidins (GSPs) possess a broad spectrum of pharmacological and therapeutic properties. The aim of this study was to examine the effect of GSPs on functional and morphological abnormalities in the peripheral nerves of rats with type 2 diabetes mellitus. Diabetic rats were induced by two injections of 25 mg streptozotocin/kg body weight and 8 weeks of a high-carbohydrate/high-fat diet. GSPs were then administrated to the rats for 16 weeks. Thermal and mechanical sensitivity thresholds and nerve conductive velocity were measured to evaluate peripheral nerve function. Light microscopy was used with special stains to observe the morphological changes in the central and peripheral nervous systems. Calcium (Ca(2+)) homeostasis and ATPase activities in the sciatic nerves were also determined. In diabetic rats receiving GSP treatment (especially at the 500 mg/kg dose), the abnormal peripheral nerve function and impaired nervous tissues (L4 to L5 spinal cord segments, L5 dorsal root ganglion, and sciatic nerves) were improved to a significant extent. Moreover, 500 mg/kg GSP treatment significantly reduced the concentration of free Ca(2+) and elevated Ca(2+)-ATPase activity in sciatic nerves. These results suggest that GSPs may prevent early functional and morphological abnormalities in the peripheral nerves of rats with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Ye Ding
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, PR China
| | | | | | | | | |
Collapse
|
84
|
Kotulska K, Marcol W, Larysz-Brysz M, Barski JJ, Fus Z, Lewin-Kowalik J. Impaired regeneration of bcl-2 lacking peripheral nerves. Neurol Res 2013; 27:843-9. [PMID: 16354545 DOI: 10.1179/016164105x48815] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECT The outcome of peripheral nerve damage in still not satisfactory, despite the general capacity of peripheral nervous system to regenerate. The molecular mechanisms underlying nerve regeneration are still not clear, but it is likely that apoptosis regulating genes plays a crucial role in these processes. The aim of the present study was to establish the role of the anti-apoptotic gene bcl-2 in peripheral nerve repair. MATERIAL AND METHODS Sciatic nerves of bcl-2-deficient and wild type mice were transected, and immediately re-sutured. The regeneration was assessed functionally and morphologically throughout the 4-week follow-up. RESULTS We found markedly worse sciatic function index outcome, as well as more significant atrophy of denervated muscles in bcl-2 knock-out animals when compared with wild-type ones. The intensity of histological regeneration features, including GAP-43-positive growth cones, Schwann cells and macrophages in the distal stump of the transected nerve, was also decreased. The number of motor and sensory neurons in the relevant cross-sections of spinal cord was similar in both groups of mice. CONCLUSION We concluded that the bcl-2 gene plays an important role in peripheral nerve regeneration, influencing nerve injury site clearing, fiber regrowth and myelination.
Collapse
Affiliation(s)
- Katarzyna Kotulska
- Department of Neurology and Epileptology, The Children's Memorial Health Institute, Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
85
|
Wang L, Lu K, Hao H, Li X, Wang J, Wang K, Wang J, Yan Z, Zhang S, Du Y, Liu H. Decreased autophagy in rat heart induced by anti-β1-adrenergic receptor autoantibodies contributes to the decline in mitochondrial membrane potential. PLoS One 2013; 8:e81296. [PMID: 24278413 PMCID: PMC3835737 DOI: 10.1371/journal.pone.0081296] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 10/21/2013] [Indexed: 12/19/2022] Open
Abstract
It has been recognized that changes in mitochondrial structure plays a key role in development of cardiac dysfunction, and autophagy has been shown to exert maintenance of mitochondrial homeostasis effects. Our previous study found that anti-β1-adrenergic receptor autoantibodies (β1-AABs) could lead to cardiac dysfunction along with abnormalities in mitochondrial structure. The present study tested the hypothesis that β1-AABs may induce the decline in mitochondrial membrane potential (ΔΨm) by suppression of cardiac autophagy, which contributed to cardiac dysfunction. Male adult rats were randomized to receive a vehicle or peptide corresponding to the second extracellular loop of the β1 adrenergic receptor (β1-AAB group, 0.4 μg/g every two weeks for 12 weeks) and treated with rapamycin (RAPA, an autophagy agonist) at 5 mg/kg/day for two days before detection. At the 4th week, 8th week and 12th week of active immunization, the rats were sacrificed and cardiac function and the levels of cardiac LC3 and Beclin-1 were detected. ΔΨm in cardiac myocytes was determined by myocardial radionuclide imaging technology and JC-1 staining. In the present study, β1-AABs caused cardiac dysfunction, reduced ΔΨm and decreased cardiac autophagy. Treatment with RAPA markedly attenuated β1-AABs-induced cardiac injury evidenced by recovered ΔΨm. Taken together, these results suggested that β1-AABs exerted significant decreased ΔΨm, which may contribute to cardiac dysfunction, most likely by decreasing cardiac autophagy in vivo. Moreover, myocardial radionuclide imaging technology may be needed to assess the risk in developing cardiac dysfunction for the people who have β1-AABs in their blood.
Collapse
Affiliation(s)
- Li Wang
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, P. R. China
| | - Keyi Lu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, P. R. China
| | - Haihu Hao
- Department of Orthopaedics, Shanxi Dayi Hospital (Shanxi Academy of Medical Sciences), Taiyuan, Shanxi, P. R. China
| | - Xiaoyu Li
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, P. R. China
| | - Jie Wang
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, P. R. China
| | - Ke Wang
- Department of Pathophysiology, Capital Medical University, School of Basic Medical Sciences, Beijing, P. R. China
| | - Jin Wang
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, P. R. China
| | - Zi Yan
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, P. R. China
| | - Suli Zhang
- Department of Pathophysiology, Capital Medical University, School of Basic Medical Sciences, Beijing, P. R. China
| | - Yunhui Du
- Department of Pathophysiology, Capital Medical University, School of Basic Medical Sciences, Beijing, P. R. China
| | - Huirong Liu
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, P. R. China
- Department of Pathophysiology, Capital Medical University, School of Basic Medical Sciences, Beijing, P. R. China
- * E-mail:
| |
Collapse
|
86
|
Trea F, Ouali K, Baba-Ahmed F, Kadi Y. La Glisodin®, un extrait de melon, atténue l’apoptose des cardiomyocytes via la suppression du stress oxydant cardiaque au cours du diabète chronique expérimental. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s10298-013-0818-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
87
|
Tronchini EA, Trevizan AR, Tashima CM, De Freitas P, Bazotte RB, Pereira MAS, Zanoni JN. Effect of l-glutamine on myenteric neuron and of the mucous of the ileum of diabetic rats. AN ACAD BRAS CIENC 2013; 85:1165-76. [PMID: 24068096 DOI: 10.1590/s0001-37652013005000052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 03/15/2013] [Indexed: 11/21/2022] Open
Abstract
The objective of this work was to investigate the effect of the L-glutamine supplementation to prevent - diabetes induced changes in myenteric neurons and also to verify the effect on the mucosa of the ileum of Wistar rats. The animals were divided in five groups (n = 5): untreated normoglycaemic (UN), normoglycaemic treated with L-glutamine (NG), untreated diabetics (UD), diabetics treated with L-glutamine, starting on the 4th (DG4) or 45th day following diabetes induction (DG45). The amino acid was added to the diet at 1%. The density and size of neurons, the metaphasic index in the crypt, the height of the villus, the depth of the crypt and the number of globet cells were determined. There was no difference in the neuronal density and in the cellular body area of the myosin-stained myenteric neurons of groups DG4 and DG45 when compared to group D. The metaphase index and the number of goblet cells showed no significant differences when all groups were compared (P > 0.05). The villi height of groups DG4 and DG45 were 45.5% (P < 0.05) and 32.4% (P > 0.05) higher than those in group UD, respectively. The analyzed crypts showed similar depth for all studied groups.
Collapse
Affiliation(s)
- Eleandro A Tronchini
- Departamento de Ciências Morfológicas, Universidade Estadual de Maringá, 87020-900 Maringá, PR, Brasil
| | | | | | | | | | | | | |
Collapse
|
88
|
Verheyen A, Peeraer E, Lambrechts D, Poesen K, Carmeliet P, Shibuya M, Pintelon I, Timmermans JP, Nuydens R, Meert T. Therapeutic potential of VEGF and VEGF-derived peptide in peripheral neuropathies. Neuroscience 2013; 244:77-89. [DOI: 10.1016/j.neuroscience.2013.03.050] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 03/04/2013] [Accepted: 03/19/2013] [Indexed: 10/26/2022]
|
89
|
Stenkamp-Strahm C, Patterson S, Boren J, Gericke M, Balemba O. High-fat diet and age-dependent effects on enteric glial cell populations of mouse small intestine. Auton Neurosci 2013; 177:199-210. [PMID: 23726157 DOI: 10.1016/j.autneu.2013.04.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 04/26/2013] [Accepted: 04/29/2013] [Indexed: 02/09/2023]
Abstract
Diabetes and obesity are increasing in prevalence at an alarming rate throughout the world. Autonomic diabetic neuropathy is evident in individuals that experience a long-standing diabetic disease state, and gastrointestinal (GI) dysmotility is thought to be the outcome of neuropathies within the enteric nervous system (ENS) of these patients. To date, an analysis of enteric glial cell population changes during diabetic symptoms has not been performed, and may bring insight into disease pathology and neuropathy, given glial cell implications in gastrointestinal and neuronal homeostasis. Diabetes and obesity were monitored in C57Bl/6J mice fed a 72% high-fat diet, and duodenal glial expression patterns were evaluated by immunohistochemistry and RT-PCR for S100β, Sox10 and GFAP proteins and transcripts, as well as transmission electron microscopy (TEM). The high-fat diet caused obesity, hyperglycemia and insulin resistance after 4 weeks. These changes were associated with a significant decline in the area density indices of mucosa-associated glial cell networks, evidenced by S100β staining at 8 and 20 weeks. All three markers and TEM showed that myenteric glial cells were unaffected by early and late disease periods. However, analysis of Sox10 transcript expression and immunoreactivity showed a diet independent, age-associated decline in glial cell populations. This is the first study showing that mucosal glia cell damage occurs during diabetic symptoms, suggesting that mucosal enteric glia injury may have a pathophysiological significance during this disease. Our results also provide support for age-associated changes in longitudinal studies of enteric glial cells.
Collapse
|
90
|
Increased nerve growth factor signaling in sensory neurons of early diabetic rats is corrected by electroacupuncture. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:652735. [PMID: 23710226 PMCID: PMC3654322 DOI: 10.1155/2013/652735] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 03/18/2013] [Accepted: 03/20/2013] [Indexed: 12/12/2022]
Abstract
Diabetic polyneuropathy (DPN), characterized by early hyperalgesia and increased nerve growth factor (NGF), evolves in late irreversible neuropathic symptoms with reduced NGF support to sensory neurons. Electroacupuncture (EA) modulates NGF in the peripheral nervous system, being effective for the treatment of DPN symptoms. We hypothesize that NGF plays an important pathogenic role in DPN development, while EA could be useful in the therapy of DPN by modulating NGF expression/activity. Diabetes was induced in rats by streptozotocin (STZ) injection. One week after STZ, EA was started and continued for three weeks. NGF system and hyperalgesia-related mediators were analyzed in the dorsal root ganglia (DRG) and in their spinal cord and skin innervation territories. Our results show that four weeks long diabetes increased NGF and NGF receptors and deregulated intracellular signaling mediators of DRG neurons hypersensitization; EA in diabetic rats decreased NGF and NGF receptors, normalized c-Jun N-terminal and p38 kinases activation, decreased transient receptor potential vanilloid-1 ion channel, and possibly activated the nuclear factor kappa-light-chain-enhancer of activated B cells (Nf-κB). In conclusion, NGF signaling deregulation might play an important role in the development of DPN. EA represents a supportive tool to control DPN development by modulating NGF signaling in diabetes-targeted neurons.
Collapse
|
91
|
The upregulation of translocator protein (18 kDa) promotes recovery from neuropathic pain in rats. J Neurosci 2013; 33:1540-51. [PMID: 23345228 DOI: 10.1523/jneurosci.0324-12.2013] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
At present, effective drug for treatment of neuropathic pain is still lacking. Recent studies have shown that the ligands of translocator protein (TSPO, 18 kDa), a peripheral receptor for benzodiazepine, modulate inflammatory pain. Here, we report that TSPO was upregulated in astrocytes and microglia in the ipsilateral spinal dorsal horn of rats following L5 spinal nerve ligation (L5 SNL), lasting until the vanishing of the behavioral signs of neuropathic pain (∼50 d). Importantly, a single intrathecal injection of specific TSPO agonists Ro5-4864 or FGIN-1-27 at 7 and 21 d after L5 SNL depressed the established mechanical allodynia and thermal hyperalgesia dramatically, and the effect was abolished by pretreatment with AMG, a neurosteroid synthesis inhibitor. Mechanically, Ro5-4864 substantially inhibited spinal astrocytes but not microglia, and reduced the production of tumor necrosis factor-α (TNF-α) in vivo and in vitro. The anti-neuroinflammatory effect was also prevented by AMG. Interestingly, TSPO expression returned to control levels or decreased substantially, when neuropathic pain healed naturally or was reversed by Ro5-4864, suggesting that the role of TSPO upregulation might be to promote recovery from the neurological disorder. Finally, the neuropathic pain and the upregulation of TSPO by L5 SNL were prevented by pharmacological blockage of Toll-like receptor 4 (TLR4). These data suggested that TSPO might be a novel therapeutic target for the treatment of neuropathic pain.
Collapse
|
92
|
Park EY, Park JB. Dose- and time-dependent effect of high glucose concentration on viability of notochordal cells and expression of matrix degrading and fibrotic enzymes. INTERNATIONAL ORTHOPAEDICS 2013; 37:1179-86. [PMID: 23503638 DOI: 10.1007/s00264-013-1836-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 02/15/2013] [Indexed: 11/28/2022]
Abstract
PURPOSE Diabetes mellitus is an important aetiological factor in intervertebral disc degeneration. The disappearance of notochordal cells in the nucleus pulposus is thought to be the starting point for intervertebral disc degeneration. A cellular effect of diabetes mellitus on apoptosis of notochordal cells and intervertebral disc degeneration has been recently reported. However, how the duration and severity of diabetes mellitus affects viability of notochordal cells and intervertebral disc degeneration is still unknown . METHODS Rat notochordal cells were isolated, cultured, and placed in either 10 % foetal bovine serum (FBS) (normal control) or 10 % FBS plus three different high glucose concentrations (0.1 M, 0.2 M, and 0.4 M) (experimental conditions) for one, three, five and seven days, respectively. We identified and quantified the degree of proliferation and apoptosis, caspase activities, and cleavages of Bid and cytochrome-c. In addition, we examined the cells for expression of matrix metalloproteinases (MMPs) and their tissue inhibitors of metalloproteinases (TIMPs). RESULTS Each three high glucose concentrations significantly decreased proliferation and increased apoptosis of notochordal cells from culture days one to seven in a dose-dependent manner. Compared with those of 10 % FBS, caspase-9 and -3 activities and cleavage of Bid and cytochrome-c were significantly increased in each three high glucose concentrations, accompanied by increased expression of MMP-1, -2, -3, -7, -9, and -13 and TIMP-1 and -2. CONCLUSIONS High glucose concentration significantly decreased proliferation and increased apoptosis of notochordal cells via the intrinsic pathway with dose- and time-dependent effects. We also found that expression of MMPs and TIMPs was increased with dose- and time-dependent effects. Therefore, these results suggest that aggressive glucose control from an early stage of diabetes mellitus should be recommended to prevent or limit intervertebral disc degeneration.
Collapse
Affiliation(s)
- Eun-Young Park
- Orthopaedic Surgery, Uijongbu St. Mary's Hospital , The Catholic University of Korea School of Medicine, Seoul, South Korea
| | | |
Collapse
|
93
|
n5-STZ Diabetic Model Develops Alterations in Sciatic Nerve and Dorsal Root Ganglia Neurons of Wistar Rats. ISRN ENDOCRINOLOGY 2013; 2013:638028. [PMID: 23476801 PMCID: PMC3588209 DOI: 10.1155/2013/638028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 12/18/2012] [Indexed: 12/20/2022]
Abstract
One experimental model of diabetes mellitus (DM) similar to type
II DM, called n5-STZ, is obtained by a single injection (via i.p.)
of streptozotocin (STZ) in the 5th day of life of newborn rats.
The present investigation aimed to characterize alterations in
excitability of rat peripheral neurons in n5-STZ model. n5-STZ DM
was induced, and electrophysiological evaluation was done at 12th
week of rat life. Rats developed glucose intolerance, sensory
alteration, and hyperglycemia or near-normoglycemia (21.2 ± 1.6 and 7.4 ± 0.4 mmol/L). In near-normoglycemia group the significant
electrophysiological alteration observed was decreased in
amplitude of 2nd wave (2nd component, conduction velocity:
48.8 m/s) of compound action potential (CAP) of sciatic nerve. For
hyperglycemic rats, decreased excitability, amplitude, and
conduction velocity of 2nd CAP component of sciatic nerve were
found; a depolarization of resting potential (4-5 mV) and reduction
in maximum ascendant and descendant inclinations of action
potential were found in DRG neurons but no alteration on
Na+ current (INa+).
Thus, n5-STZ rats develop alterations in
excitability which were related to glycemic levels but were not
likely attributable to changes on INa+. Our data confirm that
n5-STZ model is a useful model to study type II DM.
Collapse
|
94
|
Nones CFM, Reis RC, Jesus CHA, Veronez DADL, Cunha JM, Chichorro JG. Orofacial sensory changes after streptozotocin-induced diabetes in rats. Brain Res 2013; 1501:56-67. [PMID: 23313875 DOI: 10.1016/j.brainres.2013.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 12/06/2012] [Accepted: 01/03/2013] [Indexed: 12/12/2022]
Abstract
Peripheral neuropathy is a common complication of diabetes and is often accompanied by episodes of pain. There is evidence that diabetic neuropathy may affect the trigeminal nerve, altering the transmission of orofacial sensory information. Structural changes in the trigeminal ganglia may be involved in the development of these sensory alterations. Herein, we evaluate the development of orofacial sensory changes after streptozotocin-induced diabetes in rats, and their sensitivity to pregabalin and morphine treatments. Furthermore, stereological analysis of the trigeminal ganglia was performed. Diabetic rats showed similar responses to 1% formalin applied into the upper lip compared to normoglycemic rats on weeks 1, 2 and 4 after streptozotocin. Additionally, there was no difference in the facial mechanical threshold of normoglycemic and diabetic rats, on weeks 1 up to 5 after streptozotocin, while the paw mechanical threshold of diabetic rats was significantly reduced. In contrast, diabetic rats developed long-lasting orofacial heat and cold hyperalgesia. Moreover, stereological analyses revealed significant neuronal loss in the trigeminal ganglia of diabetic compared to normoglycemic rats. Pregabalin treatment (30mg/kg, p.o.) of diabetic rats resulted in marked and prolonged (up to 6h) reduction of heat and cold orofacial hyperalgesia. Likewise, morphine treatment (2.5mg/kg, s.c.) abolished orofacial heat and cold hyperalgesia, but its effect was significant only up to 1h after the administration. In conclusion, the results of the present study demonstrated that streptozotocin-treated rats developed long-lasting orofacial heat and cold hyperalgesia, which is more amenable to reduction by pregabalin than morphine.
Collapse
|
95
|
|
96
|
Coenzyme Q10 prevents peripheral neuropathy and attenuates neuron loss in the db-/db- mouse, a type 2 diabetes model. Proc Natl Acad Sci U S A 2012; 110:690-5. [PMID: 23267110 DOI: 10.1073/pnas.1220794110] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Diabetic peripheral neuropathy (DPN) is the most common complication in both type 1 and type 2 diabetes. Here we studied some phenotypic features of a well-established animal model of type 2 diabetes, the leptin receptor-deficient db(-)/db(-) mouse, and also the effect of long-term (6 mo) treatment with coenzyme Q10 (CoQ10), an endogenous antioxidant. Diabetic mice at 8 mo of age exhibited loss of sensation, hypoalgesia (an increase in mechanical threshold), and decreases in mechanical hyperalgesia, cold allodynia, and sciatic nerve conduction velocity. All these changes were virtually completely absent after the 6-mo, daily CoQ10 treatment in db(-)/db(-) mice when started at 7 wk of age. There was a 33% neuronal loss in the lumbar 5 dorsal root ganglia (DRGs) of the db(-)/db(-) mouse versus controls at 8 mo of age, which was significantly attenuated by CoQ10. There was no difference in neuron number in 5/6-wk-old mice between diabetic and control mice. We observed a strong down-regulation of phospholipase C (PLC) β3 in the DRGs of diabetic mice at 8 mo of age, a key molecule in pain signaling, and this effect was also blocked by the 6-mo CoQ10 treatment. Many of the phenotypic, neurochemical regulations encountered in lumbar DRGs in standard models of peripheral nerve injury were not observed in diabetic mice at 8 mo of age. These results suggest that reactive oxygen species and reduced PLCβ3 expression may contribute to the sensory deficits in the late-stage diabetic db(-)/db(-) mouse, and that early long-term administration of the antioxidant CoQ10 may represent a promising therapeutic strategy for type 2 diabetes neuropathy.
Collapse
|
97
|
Chang MJ, Xiao JH, Wang Y, Yan YL, Yang J, Wang JL. 2, 3, 5, 4'-Tetrahydroxystilbene-2-O-beta-D-glucoside improves gastrointestinal motility disorders in STZ-induced diabetic mice. PLoS One 2012; 7:e50291. [PMID: 23226517 PMCID: PMC3513302 DOI: 10.1371/journal.pone.0050291] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 10/22/2012] [Indexed: 01/19/2023] Open
Abstract
Oxidative stress has recently been considered as a pivotal player in the pathogenesis of diabetic gastrointestinal dysfunction. We therefore investigated the role of 2, 3, 5, 4'-tetrahydroxystilbene-2-O-beta-D-glucoside (THSG) that has a strong anti-oxidant property, in diabetic gastrointestinal dysmotility as well as the underlying protective mechanisms. THSG restored the delayed gastric emptying and the increased intestinal transit in streptozotocin (STZ)-induced diabetic mice. Loss of neuronal nitric oxide synthase (nNOS) expression and impaired nonadrenergic, noncholinergic (NANC) relaxations in diabetic mice were relieved by long-term preventive treatment with THSG. Meanwhile, THSG (10(-7)~10(-4) mol/L) enhanced concentration-dependently NANC relaxations of isolated colons in diabetic mice. Diabetic mice displayed a significant increase in Malondialdehyde (MDA) level and decrease in the activity of glutathione peroxidase (GSH-Px), which were ameliorated by THSG. Inhibition of caspase-3 and activation of ERK phosphorylation related MAPK pathway were involved in prevention of enhanced apoptosis in diabetes afforded by THSG. Moreover, THSG prevented the significant decrease in PPAR-γ and SIRT1 expression in diabetic ileum. Our study indicates that THSG improves diabetic gastrointestinal disorders through activation of MAPK pathway and upregulation of PPAR-γ and SIRT1.
Collapse
Affiliation(s)
- Mu-Jun Chang
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Rode, Wuhan, China
| | - Jun-Hua Xiao
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Rode, Wuhan, China
| | - Yong Wang
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Rode, Wuhan, China
| | - Yong-Li Yan
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Rode, Wuhan, China
| | - Jun Yang
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Rode, Wuhan, China
| | - Jia-Ling Wang
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Rode, Wuhan, China
| |
Collapse
|
98
|
Farmer KL, Li C, Dobrowsky RT. Diabetic peripheral neuropathy: should a chaperone accompany our therapeutic approach? Pharmacol Rev 2012; 64:880-900. [PMID: 22885705 PMCID: PMC3462992 DOI: 10.1124/pr.111.005314] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Diabetic peripheral neuropathy (DPN) is a common complication of diabetes that is associated with axonal atrophy, demyelination, blunted regenerative potential, and loss of peripheral nerve fibers. The development and progression of DPN is due in large part to hyperglycemia but is also affected by insulin deficiency and dyslipidemia. Although numerous biochemical mechanisms contribute to DPN, increased oxidative/nitrosative stress and mitochondrial dysfunction seem intimately associated with nerve dysfunction and diminished regenerative capacity. Despite advances in understanding the etiology of DPN, few approved therapies exist for the pharmacological management of painful or insensate DPN. Therefore, identifying novel therapeutic strategies remains paramount. Because DPN does not develop with either temporal or biochemical uniformity, its therapeutic management may benefit from a multifaceted approach that inhibits pathogenic mechanisms, manages inflammation, and increases cytoprotective responses. Finally, exercise has long been recognized as a part of the therapeutic management of diabetes, and exercise can delay and/or prevent the development of painful DPN. This review presents an overview of existing therapies that target both causal and symptomatic features of DPN and discusses the role of up-regulating cytoprotective pathways via modulating molecular chaperones. Overall, it may be unrealistic to expect that a single pharmacologic entity will suffice to ameliorate the multiple symptoms of human DPN. Thus, combinatorial therapies that target causal mechanisms and enhance endogenous reparative capacity may enhance nerve function and improve regeneration in DPN if they converge to decrease oxidative stress, improve mitochondrial bioenergetics, and increase response to trophic factors.
Collapse
Affiliation(s)
- Kevin L Farmer
- Department of Pharmacology and Toxicology, The University of Kansas, Lawrence, KS 66045, USA
| | | | | |
Collapse
|
99
|
Kandhare AD, Raygude KS, Shiva Kumar V, Rajmane AR, Visnagri A, Ghule AE, Ghosh P, Badole SL, Bodhankar SL. Ameliorative effects quercetin against impaired motor nerve function, inflammatory mediators and apoptosis in neonatal streptozotocin-induced diabetic neuropathy in rats. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.biomag.2012.10.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
100
|
Saleh A, Roy Chowdhury SK, Smith DR, Balakrishnan S, Tessler L, Martens C, Morrow D, Schartner E, Frizzi KE, Calcutt NA, Fernyhough P. Ciliary neurotrophic factor activates NF-κB to enhance mitochondrial bioenergetics and prevent neuropathy in sensory neurons of streptozotocin-induced diabetic rodents. Neuropharmacology 2012; 65:65-73. [PMID: 23022047 DOI: 10.1016/j.neuropharm.2012.09.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 09/12/2012] [Accepted: 09/14/2012] [Indexed: 01/26/2023]
Abstract
Diabetes causes mitochondrial dysfunction in sensory neurons that may contribute to peripheral neuropathy. Ciliary neurotrophic factor (CNTF) promotes sensory neuron survival and axon regeneration and prevents axonal dwindling, nerve conduction deficits and thermal hypoalgesia in diabetic rats. In this study, we tested the hypothesis that CNTF protects sensory neuron function during diabetes through normalization of impaired mitochondrial bioenergetics. In addition, we investigated whether the NF-κB signal transduction pathway was mobilized by CNTF. Neurite outgrowth of sensory neurons derived from streptozotocin (STZ)-induced diabetic rats was reduced compared to neurons from control rats and exposure to CNTF for 24 h enhanced neurite outgrowth. CNTF also activated NF-κB, as assessed by Western blotting for the NF-κB p50 subunit and reporter assays for NF-κB promoter activity. Conversely, blockade of NF-κB signaling using SN50 peptide inhibited CNTF-mediated neurite outgrowth. Studies in mice with STZ-induced diabetes demonstrated that systemic therapy with CNTF prevented functional indices of peripheral neuropathy along with deficiencies in dorsal root ganglion (DRG) NF-κB p50 expression and DNA binding activity. DRG neurons derived from STZ-diabetic mice also exhibited deficiencies in maximal oxygen consumption rate and associated spare respiratory capacity that were corrected by exposure to CNTF for 24 h in an NF-κB-dependent manner. We propose that the ability of CNTF to enhance axon regeneration and protect peripheral nerve from structural and functional indices of diabetic peripheral neuropathy is associated with targeting of mitochondrial function, in part via NF-κB activation, and improvement of cellular bioenergetics.
Collapse
Affiliation(s)
- Ali Saleh
- Division of Neurodegenerative Disorders, St Boniface Hospital Research Centre, Winnipeg, MB, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|