51
|
Chen H, Wang Y, Ge R, Zirkin BR. Leydig cell stem cells: Identification, proliferation and differentiation. Mol Cell Endocrinol 2017; 445:65-73. [PMID: 27743991 PMCID: PMC5346484 DOI: 10.1016/j.mce.2016.10.010] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 10/03/2016] [Accepted: 10/11/2016] [Indexed: 01/21/2023]
Abstract
Adult Leydig cells develop from undifferentiated mesenchymal-like stem cells (stem Leydig cells, SLCs) present in the interstitial compartment of the early postnatal testis. Putative SLCs also have been identified in peritubular and perivascular locations of the adult testis. The latter cells, which normally are quiescent, are capable of regenerating new Leydig cells upon the loss of the adult cells. Recent studies have identified several protein markers to identify these cells, including nestin, PDGFRα, COUP-TFII, CD51 and CD90. We have shown that the proliferation of the SLCs is stimulated by DHH, FGF2, PDGFBB, activin and PDGFAA. Suppression of proliferation occurred with TGFβ, androgen and PKA signaling. The differentiation of the SLCs into testosterone-producing Leydig cells was found to be regulated positively by DHH (Desert hedgehog), lithium-induced signaling and activin; and negatively by TGFβ, PDGFBB, FGF2, Notch and Wnt signaling. DHH, by itself, was found to induce SLC differentiation into LH-responsive steroidogenic cells, suggesting that DHH plays a critical role in the commitment of SLC into the Leydig lineage. These studies, taken together, address the function and regulation of low turnover stem cells in a complex, adult organ, and also have potential application to the treatment of androgen deficiency.
Collapse
Affiliation(s)
- Haolin Chen
- Center for Scientific Research, Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | - Yiyan Wang
- Center for Scientific Research, Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Renshan Ge
- Center for Scientific Research, Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Barry R Zirkin
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
52
|
Bai C, Gao Y, Li X, Wang K, Xiong H, Shan Z, Zhang P, Wang W, Guan W, Ma Y. MicroRNAs can effectively induce formation of insulin-producing cells from mesenchymal stem cells. J Tissue Eng Regen Med 2017; 11:3457-3468. [DOI: 10.1002/term.2259] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 03/28/2016] [Accepted: 07/03/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Chunyu Bai
- Institute of Animal Science; Chinese Academy of Agricultural Sciences; Beijing 100193 China
| | - Yuhua Gao
- Institute of Animal Science; Chinese Academy of Agricultural Sciences; Beijing 100193 China
| | - Xiangchen Li
- Institute of Animal Science; Chinese Academy of Agricultural Sciences; Beijing 100193 China
| | - Kunfu Wang
- Institute of Animal Science; Chinese Academy of Agricultural Sciences; Beijing 100193 China
| | - Hui Xiong
- Institute of Animal Science; Chinese Academy of Agricultural Sciences; Beijing 100193 China
| | - Zhiqiang Shan
- Institute of Animal Science; Chinese Academy of Agricultural Sciences; Beijing 100193 China
| | - Ping Zhang
- Institute of Animal Science; Chinese Academy of Agricultural Sciences; Beijing 100193 China
| | - Wenjie Wang
- Institute of Animal Science; Chinese Academy of Agricultural Sciences; Beijing 100193 China
| | - Weijun Guan
- Institute of Animal Science; Chinese Academy of Agricultural Sciences; Beijing 100193 China
| | - Yuehui Ma
- Institute of Animal Science; Chinese Academy of Agricultural Sciences; Beijing 100193 China
| |
Collapse
|
53
|
Teotia RS, Kadam S, Singh AK, Verma SK, Bahulekar A, Kanetkar S, Bellare J. Islet encapsulated implantable composite hollow fiber membrane based device: A bioartificial pancreas. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:857-866. [PMID: 28532102 DOI: 10.1016/j.msec.2017.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/29/2017] [Accepted: 04/01/2017] [Indexed: 01/04/2023]
Abstract
Islets from xeno-sources and islet like clusters derived from autologus stem cells have emerged as alternatives to cadaveric pancreas used for treatment of type 1 diabetes. However, the immuno-isolation of these islets from the host immune system suffers from the issue of biocompatibility and hypoxia. To overcome the issues of immunobarrier biocompatibility, we developed a Polysulfone (Psf)/TPGS composite hollow fiber membrane (HFM) using a hollow fiber spinning pilot plant specially developed for this purpose. Important structural variables such as fiber material, dope composition, dimensions, surface characteristics etc., were precisely engineered and tuned for bioartificial pancreas application. The HFMs were characterized for their morphology, molecular diffusion, selectivity and protein absorption. The optimized Polysulfone(Psf)/TPGS composite HFMs, which contained TPGS, exhibited uniformed structure with low insulin adsorption and high permeability of insulin. The HFM was further studied for the encapsulation and in-vitro growth with porcine and differentiated islets isolated from human umbilical cord Wharton's jelly. To prove their efficacy under in-vivo conditions, the Polysulfone(Psf)/TPGS composite HFMs were encapsulated with either of these isolated cells (porcine islets or islet like cell clusters derived from mesenchymal stem cells isolated from human umbilical cord Wharton's jelly) and they were transplanted in experimental STZ induced diabetic mice. The results showed restoration of normoglycemia for 30days, indicating their ability to respond efficiently to high glucose without immune-rejection. Thus, these results indicate that Polysulfone (Psf)/TPGS composite HFMs can be used as an implantable, immune-competent bioartificial pancreas as a therapy for type 1 diabetes.
Collapse
Affiliation(s)
- Rohit S Teotia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400079, Maharashtra, India
| | - Sachin Kadam
- Krishna Institute of Medical Science University, Malkapur, Karad (Dist.Satara) 415110, Maharashtra, India
| | - Atul Kumar Singh
- Centre for Research in Nanotechnology & Science, Indian Institute of Technology Bombay, Powai, Mumbai 400079, Maharashtra, India
| | - Surendra Kumar Verma
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400079, Maharashtra, India
| | - Ashutosh Bahulekar
- Krishna Institute of Medical Science University, Malkapur, Karad (Dist.Satara) 415110, Maharashtra, India
| | - Sujata Kanetkar
- Krishna Institute of Medical Science University, Malkapur, Karad (Dist.Satara) 415110, Maharashtra, India
| | - Jayesh Bellare
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400079, Maharashtra, India; Centre for Research in Nanotechnology & Science, Indian Institute of Technology Bombay, Powai, Mumbai 400079, Maharashtra, India; Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400079, Maharashtra, India; Wadhwani Research Center for Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400079, Maharashtra, India.
| |
Collapse
|
54
|
Michishita M, Takagi M, Kishimoto TE, Nakahira R, Nogami T, Yoshimura H, Hatakeyama H, Azakami D, Ochiai K, Takahashi K. Pancreatic neuroendocrine carcinoma with exocrine differentiation in a young cat. J Vet Diagn Invest 2017; 29:325-330. [PMID: 28363254 DOI: 10.1177/1040638717698179] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A 35-mo-old spayed female mixed-breed cat with continuous vomiting, emaciation, and abdominal distention for 2 wk was presented to a private veterinary clinic for evaluation. At 71 d after the initial visit, the cat died with anemia, jaundice, and hypoalbuminemia, and was subjected to autopsy. Grossly, numerous firm masses, 0.5-2.5 cm diameter, were randomly located in the left lobe of the pancreas. Histologic examination revealed that the pancreatic mass consisted of 2 tumor cell types: mostly small round cells with a minority of epithelial cells. The small cells were arranged in nests of various sizes, which were separated by thin fibrous stroma, and had small, round, hyperchromatic nuclei, scant cytoplasm containing argyrophilic granules, and often formed rosettes. The epithelial cells formed luminal structures. Metastases were observed in the liver, greater omentum, and pancreatic, gastric, pulmonary, and mediastinal lymph nodes. Immunohistochemical examination revealed that the small cells were positive for vimentin, neuron-specific enolase, chromogranin A, cytokeratin (CK) AE1/AE3, and trypsin, whereas the epithelial cells were positive for AE1/AE3, trypsin, CK19, and nestin. Ultrastructurally, the small cells contained abundant electron-dense granules, ~200 nm diameter, whereas the epithelial cells had apical microvilli and numerous zymogen granules, ~300 nm diameter. These findings indicated that the tumor was a pancreatic neuroendocrine carcinoma with exocrine differentiation and systemic metastases.
Collapse
Affiliation(s)
- Masaki Michishita
- Department of Veterinary Pathology, School of Veterinary Medicine (Michishita, Takagi, Kishimoto, Nakahira, Nogami, Takahashi), Nippon Veterinary and Life Science University, Tokyo, Japan.,Department of Applied Science, School of Veterinary Nursing and Technology (Yoshimura), Nippon Veterinary and Life Science University, Tokyo, Japan.,Department of Comparative Cellular Biology, School of Veterinary Medicine (Hatakeyama), Nippon Veterinary and Life Science University, Tokyo, Japan.,Department of Veterinary Nursing, School of Veterinary Nursing and Technology (Azakami), Nippon Veterinary and Life Science University, Tokyo, Japan.,Department of Basic Science, School of Veterinary Nursing and Technology (Ochiai), Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Mariko Takagi
- Department of Veterinary Pathology, School of Veterinary Medicine (Michishita, Takagi, Kishimoto, Nakahira, Nogami, Takahashi), Nippon Veterinary and Life Science University, Tokyo, Japan.,Department of Applied Science, School of Veterinary Nursing and Technology (Yoshimura), Nippon Veterinary and Life Science University, Tokyo, Japan.,Department of Comparative Cellular Biology, School of Veterinary Medicine (Hatakeyama), Nippon Veterinary and Life Science University, Tokyo, Japan.,Department of Veterinary Nursing, School of Veterinary Nursing and Technology (Azakami), Nippon Veterinary and Life Science University, Tokyo, Japan.,Department of Basic Science, School of Veterinary Nursing and Technology (Ochiai), Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Takuya E Kishimoto
- Department of Veterinary Pathology, School of Veterinary Medicine (Michishita, Takagi, Kishimoto, Nakahira, Nogami, Takahashi), Nippon Veterinary and Life Science University, Tokyo, Japan.,Department of Applied Science, School of Veterinary Nursing and Technology (Yoshimura), Nippon Veterinary and Life Science University, Tokyo, Japan.,Department of Comparative Cellular Biology, School of Veterinary Medicine (Hatakeyama), Nippon Veterinary and Life Science University, Tokyo, Japan.,Department of Veterinary Nursing, School of Veterinary Nursing and Technology (Azakami), Nippon Veterinary and Life Science University, Tokyo, Japan.,Department of Basic Science, School of Veterinary Nursing and Technology (Ochiai), Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Rei Nakahira
- Department of Veterinary Pathology, School of Veterinary Medicine (Michishita, Takagi, Kishimoto, Nakahira, Nogami, Takahashi), Nippon Veterinary and Life Science University, Tokyo, Japan.,Department of Applied Science, School of Veterinary Nursing and Technology (Yoshimura), Nippon Veterinary and Life Science University, Tokyo, Japan.,Department of Comparative Cellular Biology, School of Veterinary Medicine (Hatakeyama), Nippon Veterinary and Life Science University, Tokyo, Japan.,Department of Veterinary Nursing, School of Veterinary Nursing and Technology (Azakami), Nippon Veterinary and Life Science University, Tokyo, Japan.,Department of Basic Science, School of Veterinary Nursing and Technology (Ochiai), Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Takeshi Nogami
- Department of Veterinary Pathology, School of Veterinary Medicine (Michishita, Takagi, Kishimoto, Nakahira, Nogami, Takahashi), Nippon Veterinary and Life Science University, Tokyo, Japan.,Department of Applied Science, School of Veterinary Nursing and Technology (Yoshimura), Nippon Veterinary and Life Science University, Tokyo, Japan.,Department of Comparative Cellular Biology, School of Veterinary Medicine (Hatakeyama), Nippon Veterinary and Life Science University, Tokyo, Japan.,Department of Veterinary Nursing, School of Veterinary Nursing and Technology (Azakami), Nippon Veterinary and Life Science University, Tokyo, Japan.,Department of Basic Science, School of Veterinary Nursing and Technology (Ochiai), Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Hisashi Yoshimura
- Department of Veterinary Pathology, School of Veterinary Medicine (Michishita, Takagi, Kishimoto, Nakahira, Nogami, Takahashi), Nippon Veterinary and Life Science University, Tokyo, Japan.,Department of Applied Science, School of Veterinary Nursing and Technology (Yoshimura), Nippon Veterinary and Life Science University, Tokyo, Japan.,Department of Comparative Cellular Biology, School of Veterinary Medicine (Hatakeyama), Nippon Veterinary and Life Science University, Tokyo, Japan.,Department of Veterinary Nursing, School of Veterinary Nursing and Technology (Azakami), Nippon Veterinary and Life Science University, Tokyo, Japan.,Department of Basic Science, School of Veterinary Nursing and Technology (Ochiai), Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Hitoshi Hatakeyama
- Department of Veterinary Pathology, School of Veterinary Medicine (Michishita, Takagi, Kishimoto, Nakahira, Nogami, Takahashi), Nippon Veterinary and Life Science University, Tokyo, Japan.,Department of Applied Science, School of Veterinary Nursing and Technology (Yoshimura), Nippon Veterinary and Life Science University, Tokyo, Japan.,Department of Comparative Cellular Biology, School of Veterinary Medicine (Hatakeyama), Nippon Veterinary and Life Science University, Tokyo, Japan.,Department of Veterinary Nursing, School of Veterinary Nursing and Technology (Azakami), Nippon Veterinary and Life Science University, Tokyo, Japan.,Department of Basic Science, School of Veterinary Nursing and Technology (Ochiai), Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Daigo Azakami
- Department of Veterinary Pathology, School of Veterinary Medicine (Michishita, Takagi, Kishimoto, Nakahira, Nogami, Takahashi), Nippon Veterinary and Life Science University, Tokyo, Japan.,Department of Applied Science, School of Veterinary Nursing and Technology (Yoshimura), Nippon Veterinary and Life Science University, Tokyo, Japan.,Department of Comparative Cellular Biology, School of Veterinary Medicine (Hatakeyama), Nippon Veterinary and Life Science University, Tokyo, Japan.,Department of Veterinary Nursing, School of Veterinary Nursing and Technology (Azakami), Nippon Veterinary and Life Science University, Tokyo, Japan.,Department of Basic Science, School of Veterinary Nursing and Technology (Ochiai), Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Kazuhiko Ochiai
- Department of Veterinary Pathology, School of Veterinary Medicine (Michishita, Takagi, Kishimoto, Nakahira, Nogami, Takahashi), Nippon Veterinary and Life Science University, Tokyo, Japan.,Department of Applied Science, School of Veterinary Nursing and Technology (Yoshimura), Nippon Veterinary and Life Science University, Tokyo, Japan.,Department of Comparative Cellular Biology, School of Veterinary Medicine (Hatakeyama), Nippon Veterinary and Life Science University, Tokyo, Japan.,Department of Veterinary Nursing, School of Veterinary Nursing and Technology (Azakami), Nippon Veterinary and Life Science University, Tokyo, Japan.,Department of Basic Science, School of Veterinary Nursing and Technology (Ochiai), Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Kimimasa Takahashi
- Department of Veterinary Pathology, School of Veterinary Medicine (Michishita, Takagi, Kishimoto, Nakahira, Nogami, Takahashi), Nippon Veterinary and Life Science University, Tokyo, Japan.,Department of Applied Science, School of Veterinary Nursing and Technology (Yoshimura), Nippon Veterinary and Life Science University, Tokyo, Japan.,Department of Comparative Cellular Biology, School of Veterinary Medicine (Hatakeyama), Nippon Veterinary and Life Science University, Tokyo, Japan.,Department of Veterinary Nursing, School of Veterinary Nursing and Technology (Azakami), Nippon Veterinary and Life Science University, Tokyo, Japan.,Department of Basic Science, School of Veterinary Nursing and Technology (Ochiai), Nippon Veterinary and Life Science University, Tokyo, Japan
| |
Collapse
|
55
|
Effect of Wnt Signaling on the Differentiation of Islet β-Cells from Adipose-Derived Stem Cells. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2501578. [PMID: 28303247 PMCID: PMC5337876 DOI: 10.1155/2017/2501578] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 11/26/2016] [Accepted: 12/19/2016] [Indexed: 11/28/2022]
Abstract
The Wnt signaling is critical for pancreatic development and islet function; however, its precise effects on the development and function of the β-cells remain controversial. Here we examined mRNA and protein expression of components of the Wnt signaling throughout the differentiation of islet β-cells from adipose-derived stem cells (ADSCs). After induction, ADSCs expressed markers of β-cells, including the insulin, PDX1, and glucagon genes, and the PDX1, CK19, nestin, insulin, and C-peptide proteins, indicating their successful differentiation. Compared with pancreatic adult stem cells (PASCs), the quantities of insulin, GLUT2, and Irs2 mRNA decreased, whereas Gcg, Gck, and Irs1 mRNA increased. Over time, during differentiation, insulin mRNA and protein expression increased, Gcg and Gck mRNA expression increased, Irs1 mRNA expression decreased and then increased, and Irs2 mRNA increased and then decreased (all P < 0.05). The expression of Dvl-2, LRP5, and GSK3β mRNA as well as the Dvl-2, GSK3β, and p-GSK3β proteins also increased (P < 0.05). Expression of TCF7L2 (6–10 d) and β-catenin mRNA as well as the β-catenin protein increased but not significantly (P > 0.05). Our results indicate that the Wnt signaling is activated during ADSC differentiation into islet β-cells, but there was no obvious enrichment of nonphosphorylated β-catenin protein.
Collapse
|
56
|
Steenblock C, Rubin de Celis MF, Androutsellis-Theotokis A, Sue M, Delgadillo Silva LF, Eisenhofer G, Andoniadou CL, Bornstein SR. Adrenal cortical and chromaffin stem cells: Is there a common progeny related to stress adaptation? Mol Cell Endocrinol 2017; 441:156-163. [PMID: 27637345 DOI: 10.1016/j.mce.2016.09.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/12/2016] [Accepted: 09/12/2016] [Indexed: 12/14/2022]
Abstract
The adrenal gland is a highly plastic organ with the capacity to adapt the body homeostasis to different physiological needs. The existence of stem-like cells in the adrenal cortex has been revealed in many studies. Recently, we identified and characterized in mice a pool of glia-like multipotent Nestin-expressing progenitor cells, which contributes to the plasticity of the adrenal medulla. In addition, we found that these Nestin progenitors are actively involved in the stress response by giving rise to chromaffin cells. Interestingly, we also observed a Nestin-GFP-positive cell population located under the adrenal capsule and scattered through the cortex. In this article, we discuss the possibility of a common progenitor giving rise to subpopulations of cells both in the adrenal cortex and medulla, the isolation and characterization of this progenitor as well as its clinical potential in transplantation therapies and in pathophysiology.
Collapse
Affiliation(s)
- Charlotte Steenblock
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany.
| | | | - Andreas Androutsellis-Theotokis
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany; Stem Cells, Tissue Engineering and Modelling (STEM), Division of Cancer and Stem Cells, University of Nottingham, Nottingham, UK
| | - Mariko Sue
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany
| | | | - Graeme Eisenhofer
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Cynthia L Andoniadou
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany; Department of Craniofacial Development and Stem Cell Biology, King's College London, London, UK
| | - Stefan R Bornstein
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany; Department of Endocrinology and Diabetes, King's College London, London, UK
| |
Collapse
|
57
|
Abstract
BACKGROUND The benefits of breast milk are well described, yet the mechanistic details related to how breast milk protects against acute and chronic diseases and optimizes neurodevelopment remain largely unknown. Recently, breast milk was found to contain stem cells that are thought to be involved in infant development. PURPOSE The purpose of this review was to synthesize all available research involving the characterization of breast milk stem cells to provide a basis of understanding for what is known and what still needs further exploration. METHODS/SEARCH STRATEGY The literature search was conducted between August and October 2015 using the CINAHL, PubMed, and reference list searching. Nine studies addressed characterization of human breast milk stem cells. FINDINGS/RESULTS Five research teams in 4 countries have published studies on breast milk stem cells. Current research has focused on characterizing stem cells in full-term breast milk. The amount, phenotype, and expression of breast milk stem cells are known to vary between mothers, and they have been able to differentiate into all 3 germ layers (expressing pluripotent characteristics). IMPLICATIONS FOR PRACTICE There is much to learn about breast milk stem cells. Given the potential impact of this research, healthcare professionals should be aware of their presence and ongoing research to determine benefits for infants. IMPLICATIONS FOR RESEARCH Extensive research is needed to further characterize stem cells in breast milk (full-term and preterm), throughout the stages of lactation, and most importantly, their role in the health of infants, and potential for use in regenerative therapies.
Collapse
|
58
|
Chronic Pancreatitis in the 21st Century - Research Challenges and Opportunities: Summary of a National Institute of Diabetes and Digestive and Kidney Diseases Workshop. Pancreas 2016; 45:1365-1375. [PMID: 27748719 PMCID: PMC5117429 DOI: 10.1097/mpa.0000000000000713] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A workshop was sponsored by the National Institute of Diabetes and Digestive and Kidney Diseases to focus on research gaps and opportunities in chronic pancreatitis (CP) and its sequelae. This conference marked the 20th year anniversary of the discovery of the cationic trypsinogen (PRSS1) gene mutation for hereditary pancreatitis. The event was held on July 27, 2016, and structured into 4 sessions: (1) pathophysiology, (2) exocrine complications, (3) endocrine complications, and (4) pain. The current state of knowledge was reviewed; many knowledge gaps and research needs were identified that require further investigation. Common themes included the need to design better tools to diagnose CP and its sequelae early and reliably, identify predisposing risk factors for disease progression, develop standardized protocols to distinguish type 3c diabetes mellitus from other types of diabetes, and design effective therapeutic strategies through novel cell culture technologies, animal models mimicking human disease, and pain management tools. Gene therapy and cystic fibrosis conductance regulator potentiators as possible treatments of CP were discussed. Importantly, the need for CP end points and intermediate targets for future drug trials was emphasized.
Collapse
|
59
|
Kopp JL, Grompe M, Sander M. Stem cells versus plasticity in liver and pancreas regeneration. Nat Cell Biol 2016; 18:238-45. [PMID: 26911907 DOI: 10.1038/ncb3309] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cell replacement in adult organs can be achieved through stem cell differentiation or the replication or transdifferentiation of existing cells. In the adult liver and pancreas, stem cells have been proposed to replace tissue cells, particularly following injury. Here we review how specialized cell types are produced in the adult liver and pancreas. Based on current evidence, we propose that the plasticity of differentiated cells, rather than stem cells, accounts for tissue repair in both organs.
Collapse
Affiliation(s)
- Janel L Kopp
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Markus Grompe
- Oregon Stem Cell Center, Papé Family Pediatric Research Institute, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Maike Sander
- Department of Pediatrics and Cellular and Molecular Medicine, Pediatric Diabetes Research Center, Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, California 92093-0695, USA
| |
Collapse
|
60
|
Sarang S, Viswanathan C. Umbilical Cord Derived Mesenchymal Stem Cells Useful in Insulin Production - Another Opportunity in Cell Therapy. Int J Stem Cells 2016; 9:60-9. [PMID: 27426087 PMCID: PMC4961105 DOI: 10.15283/ijsc.2016.9.1.60] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2016] [Indexed: 01/04/2023] Open
Abstract
Background and Objectives Type 1 Diabetes Mellitus (T1DM) is an autoimmune disorder resulting out of T cell mediated destruction of pancreatic beta cells. Immunomodulatory properties of mesenchymal stem cells may help to regenerate beta cells and/or prevent further destruction of remnant, unaffected beta cells in diabetes. We have assessed the ability of umbilical cord derived MSCs (UCMSCs) to differentiate into functional islet cells in vitro. Methods and Results We have isolated UCMSCs and allowed sequential exposure of various inducing agents and growth factors. We characterized these cells for confirmation of the presence of islet cell markers and their functionality. The spindle shaped undifferentiated UCMSCs, change their morphology to become triangular in shape. These cells then come together to form the islet like structures which then grow in size and mature over time. These cells express pancreatic and duodenal homeobox −1 (PDX-1), neurogenin 3 (Ngn-3), glucose transporter 2 (Glut 2) and other pancreatic cell markers like glucagon, somatostatin and pancreatic polypeptide and lose expression of MSC markers like CD73 and CD105. They were functionally active as demonstrated by release of physiological insulin and C-peptide in response to elevated glucose concentrations. Conclusions Pancreatic islet like cells with desired functionality can thus be obtained in reasonable numbers from undifferentiated UCMSCs invitro. This could help in establishing a “very definitive source” of islet like cells for cell therapy. UCMSCs could thus be a game changer in treatment of diabetes.
Collapse
Affiliation(s)
- Shabari Sarang
- Reliance Life Sciences Pvt Ltd., Dhirubhai Ambani Life Sciences Centre, Navi Mumbai, India
| | - Chandra Viswanathan
- Reliance Life Sciences Pvt Ltd., Dhirubhai Ambani Life Sciences Centre, Navi Mumbai, India
| |
Collapse
|
61
|
Kim HS, Lee MK. β-Cell regeneration through the transdifferentiation of pancreatic cells: Pancreatic progenitor cells in the pancreas. J Diabetes Investig 2016; 7:286-96. [PMID: 27330712 PMCID: PMC4847880 DOI: 10.1111/jdi.12475] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/27/2015] [Accepted: 01/04/2016] [Indexed: 12/17/2022] Open
Abstract
Pancreatic progenitor cell research has been in the spotlight, as these cells have the potential to replace pancreatic β‐cells for the treatment of type 1 and 2 diabetic patients with the absence or reduction of pancreatic β‐cells. During the past few decades, the successful treatment of diabetes through transplantation of the whole pancreas or isolated islets has nearly been achieved. However, novel sources of pancreatic islets or insulin‐producing cells are required to provide sufficient amounts of donor tissues. To overcome this limitation, the use of pancreatic progenitor cells is gaining more attention. In particular, pancreatic exocrine cells, such as duct epithelial cells and acinar cells, are attractive candidates for β‐cell regeneration because of their differentiation potential and pancreatic lineage characteristics. It has been assumed that β‐cell neogenesis from pancreatic progenitor cells could occur in pancreatic ducts in the postnatal stage. Several studies have shown that insulin‐producing cells can arise in the duct tissue of the adult pancreas. Acinar cells also might have the potential to differentiate into insulin‐producing cells. The present review summarizes recent progress in research on the transdifferentiation of pancreatic exocrine cells into insulin‐producing cells, especially duct and acinar cells.
Collapse
Affiliation(s)
- Hyo-Sup Kim
- Division of Endocrinology and Metabolism Department of Medicine Sungkyunkwan University School of Medicine Samsung Biomedical Research Institute Samsung Medical Center Seoul Korea
| | - Moon-Kyu Lee
- Division of Endocrinology and Metabolism Department of Medicine Sungkyunkwan University School of Medicine Samsung Biomedical Research Institute Samsung Medical Center Seoul Korea
| |
Collapse
|
62
|
Role of microRNA-21 in the formation of insulin-producing cells from pancreatic progenitor cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:280-93. [DOI: 10.1016/j.bbagrm.2015.12.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 11/17/2015] [Accepted: 12/02/2015] [Indexed: 12/20/2022]
|
63
|
The dynamic three-dimensional culture of islet-like clusters in decellularized liver scaffolds. Cell Tissue Res 2016; 365:157-71. [DOI: 10.1007/s00441-015-2356-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 12/18/2015] [Indexed: 02/03/2023]
|
64
|
Growth factors and medium hyperglycemia induce Sox9+ ductal cell differentiation into β cells in mice with reversal of diabetes. Proc Natl Acad Sci U S A 2016; 113:650-5. [PMID: 26733677 DOI: 10.1073/pnas.1524200113] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We previously reported that long-term administration of a low dose of gastrin and epidermal growth factor (GE) augments β-cell neogenesis in late-stage diabetic autoimmune mice after eliminating insulitis by induction of mixed chimerism. However, the source of β-cell neogenesis is still unknown. SRY (sex-determining region Y)-box 9(+) (Sox9(+)) ductal cells in the adult pancreas are clonogenic and can give rise to insulin-producing β cells in an in vitro culture. Whether Sox9(+) ductal cells in the adult pancreas can give rise to β cells in vivo remains controversial. Here, using lineage-tracing with genetic labeling of Insulin- or Sox9-expressing cells, we show that hyperglycemia (>300 mg/dL) is required for inducing Sox9(+) ductal cell differentiation into insulin-producing β cells, and medium hyperglycemia (300-450 mg/dL) in combination with long-term administration of low-dose GE synergistically augments differentiation and is associated with normalization of blood glucose in nonautoimmune diabetic C57BL/6 mice. Short-term administration of high-dose GE cannot augment differentiation, although it can augment preexisting β-cell replication. These results indicate that medium hyperglycemia combined with long-term administration of low-dose GE represents one way to induce Sox9(+) ductal cell differentiation into β cells in adult mice.
Collapse
|
65
|
Song S, Roy S. Progress and challenges in macroencapsulation approaches for type 1 diabetes (T1D) treatment: Cells, biomaterials, and devices. Biotechnol Bioeng 2016; 113:1381-402. [PMID: 26615050 DOI: 10.1002/bit.25895] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/30/2015] [Accepted: 11/24/2015] [Indexed: 12/15/2022]
Abstract
Macroencapsulation technology has been an attractive topic in the field of treatment for Type 1 diabetes due to mechanical stability, versatility, and retrievability of the macro-capsule design. Macro-capsules can be categorized into extravascular and intravascular devices, in which solute transport relies either on diffusion or convection, respectively. Failure of macroencapsulation strategies can be due to limited regenerative capacity of the encased insulin-producing cells, sub-optimal performance of encapsulation biomaterials, insufficient immunoisolation, excessive blood thrombosis for vascular perfusion devices, and inadequate modes of mass transfer to support cell viability and function. However, significant technical advancements have been achieved in macroencapsulation technology, namely reducing diffusion distance for oxygen and nutrients, using pro-angiogenic factors to increase vascularization for islet engraftment, and optimizing membrane permeability and selectivity to prevent immune attacks from host's body. This review presents an overview of existing macroencapsulation devices and discusses the advances based on tissue-engineering approaches that will stimulate future research and development of macroencapsulation technology. Biotechnol. Bioeng. 2016;113: 1381-1402. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Shang Song
- Department of Bioengineering and Therapeutic Sciences, University of California-San Francisco, San Francisco, California 94158
| | - Shuvo Roy
- Department of Bioengineering and Therapeutic Sciences, University of California-San Francisco, San Francisco, California 94158.
| |
Collapse
|
66
|
El-Gohary Y, Wiersch J, Tulachan S, Xiao X, Guo P, Rymer C, Fischbach S, Prasadan K, Shiota C, Gaffar I, Song Z, Galambos C, Esni F, Gittes GK. Intraislet Pancreatic Ducts Can Give Rise to Insulin-Positive Cells. Endocrinology 2016; 157:166-75. [PMID: 26505114 PMCID: PMC4701882 DOI: 10.1210/en.2015-1175] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 10/23/2015] [Indexed: 01/31/2023]
Abstract
A key question in diabetes research is whether new β-cells can be derived from endogenous, nonendocrine cells. The potential for pancreatic ductal cells to convert into β-cells is a highly debated issue. To date, it remains unclear what anatomical process would result in duct-derived cells coming to exist within preexisting islets. We used a whole-mount technique to directly visualize the pancreatic ductal network in young wild-type mice, young humans, and wild-type and transgenic mice after partial pancreatectomy. Pancreatic ductal networks, originating from the main ductal tree, were found to reside deep within islets in young mice and humans but not in mature mice or humans. These networks were also not present in normal adult mice after partial pancreatectomy, but TGF-β receptor mutant mice demonstrated formation of these intraislet duct structures after partial pancreatectomy. Genetic and viral lineage tracings were used to determine whether endocrine cells were derived from pancreatic ducts. Lineage tracing confirmed that pancreatic ductal cells can typically convert into new β-cells in normal young developing mice as well as in adult TGF-β signaling mutant mice after partial pancreatectomy. Here the direct visual evidence of ducts growing into islets, along with lineage tracing, not only represents strong evidence for duct cells giving rise to β-cells in the postnatal pancreas but also importantly implicates TGF-β signaling in this process.
Collapse
Affiliation(s)
- Yousef El-Gohary
- Departments of Surgery (Y.E.-G., J.W., X.X., P.G., K.P., C.S., I.G., Z.S., F.E., G.K.G.) and Pediatrics (C.R.), Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15224; Department of Surgery (Y.E.-G.), Stony Brook University Medical Center, Stony Brook, New York 11794; Department of Surgery (J.W.), University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229; Section of Gastroenterology/Hepatology (S.T.), Georgia Regents University, Augusta, Georgia 30912; Division of Biology and Medicine (S.F.), Brown University, Providence, Rhode Island 02912; Department of General Surgery (Z.S.), The Third Xiangya Hospital of Central South University, Yuelu, Changsha, Hunan 410013, China; and Department of Pathology and Laboratory Medicine (C.G.), Children's Hospital Colorado, Aurora, Colorado 80045
| | - John Wiersch
- Departments of Surgery (Y.E.-G., J.W., X.X., P.G., K.P., C.S., I.G., Z.S., F.E., G.K.G.) and Pediatrics (C.R.), Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15224; Department of Surgery (Y.E.-G.), Stony Brook University Medical Center, Stony Brook, New York 11794; Department of Surgery (J.W.), University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229; Section of Gastroenterology/Hepatology (S.T.), Georgia Regents University, Augusta, Georgia 30912; Division of Biology and Medicine (S.F.), Brown University, Providence, Rhode Island 02912; Department of General Surgery (Z.S.), The Third Xiangya Hospital of Central South University, Yuelu, Changsha, Hunan 410013, China; and Department of Pathology and Laboratory Medicine (C.G.), Children's Hospital Colorado, Aurora, Colorado 80045
| | - Sidhartha Tulachan
- Departments of Surgery (Y.E.-G., J.W., X.X., P.G., K.P., C.S., I.G., Z.S., F.E., G.K.G.) and Pediatrics (C.R.), Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15224; Department of Surgery (Y.E.-G.), Stony Brook University Medical Center, Stony Brook, New York 11794; Department of Surgery (J.W.), University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229; Section of Gastroenterology/Hepatology (S.T.), Georgia Regents University, Augusta, Georgia 30912; Division of Biology and Medicine (S.F.), Brown University, Providence, Rhode Island 02912; Department of General Surgery (Z.S.), The Third Xiangya Hospital of Central South University, Yuelu, Changsha, Hunan 410013, China; and Department of Pathology and Laboratory Medicine (C.G.), Children's Hospital Colorado, Aurora, Colorado 80045
| | - Xiangwei Xiao
- Departments of Surgery (Y.E.-G., J.W., X.X., P.G., K.P., C.S., I.G., Z.S., F.E., G.K.G.) and Pediatrics (C.R.), Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15224; Department of Surgery (Y.E.-G.), Stony Brook University Medical Center, Stony Brook, New York 11794; Department of Surgery (J.W.), University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229; Section of Gastroenterology/Hepatology (S.T.), Georgia Regents University, Augusta, Georgia 30912; Division of Biology and Medicine (S.F.), Brown University, Providence, Rhode Island 02912; Department of General Surgery (Z.S.), The Third Xiangya Hospital of Central South University, Yuelu, Changsha, Hunan 410013, China; and Department of Pathology and Laboratory Medicine (C.G.), Children's Hospital Colorado, Aurora, Colorado 80045
| | - Ping Guo
- Departments of Surgery (Y.E.-G., J.W., X.X., P.G., K.P., C.S., I.G., Z.S., F.E., G.K.G.) and Pediatrics (C.R.), Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15224; Department of Surgery (Y.E.-G.), Stony Brook University Medical Center, Stony Brook, New York 11794; Department of Surgery (J.W.), University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229; Section of Gastroenterology/Hepatology (S.T.), Georgia Regents University, Augusta, Georgia 30912; Division of Biology and Medicine (S.F.), Brown University, Providence, Rhode Island 02912; Department of General Surgery (Z.S.), The Third Xiangya Hospital of Central South University, Yuelu, Changsha, Hunan 410013, China; and Department of Pathology and Laboratory Medicine (C.G.), Children's Hospital Colorado, Aurora, Colorado 80045
| | - Christopher Rymer
- Departments of Surgery (Y.E.-G., J.W., X.X., P.G., K.P., C.S., I.G., Z.S., F.E., G.K.G.) and Pediatrics (C.R.), Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15224; Department of Surgery (Y.E.-G.), Stony Brook University Medical Center, Stony Brook, New York 11794; Department of Surgery (J.W.), University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229; Section of Gastroenterology/Hepatology (S.T.), Georgia Regents University, Augusta, Georgia 30912; Division of Biology and Medicine (S.F.), Brown University, Providence, Rhode Island 02912; Department of General Surgery (Z.S.), The Third Xiangya Hospital of Central South University, Yuelu, Changsha, Hunan 410013, China; and Department of Pathology and Laboratory Medicine (C.G.), Children's Hospital Colorado, Aurora, Colorado 80045
| | - Shane Fischbach
- Departments of Surgery (Y.E.-G., J.W., X.X., P.G., K.P., C.S., I.G., Z.S., F.E., G.K.G.) and Pediatrics (C.R.), Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15224; Department of Surgery (Y.E.-G.), Stony Brook University Medical Center, Stony Brook, New York 11794; Department of Surgery (J.W.), University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229; Section of Gastroenterology/Hepatology (S.T.), Georgia Regents University, Augusta, Georgia 30912; Division of Biology and Medicine (S.F.), Brown University, Providence, Rhode Island 02912; Department of General Surgery (Z.S.), The Third Xiangya Hospital of Central South University, Yuelu, Changsha, Hunan 410013, China; and Department of Pathology and Laboratory Medicine (C.G.), Children's Hospital Colorado, Aurora, Colorado 80045
| | - Krishna Prasadan
- Departments of Surgery (Y.E.-G., J.W., X.X., P.G., K.P., C.S., I.G., Z.S., F.E., G.K.G.) and Pediatrics (C.R.), Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15224; Department of Surgery (Y.E.-G.), Stony Brook University Medical Center, Stony Brook, New York 11794; Department of Surgery (J.W.), University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229; Section of Gastroenterology/Hepatology (S.T.), Georgia Regents University, Augusta, Georgia 30912; Division of Biology and Medicine (S.F.), Brown University, Providence, Rhode Island 02912; Department of General Surgery (Z.S.), The Third Xiangya Hospital of Central South University, Yuelu, Changsha, Hunan 410013, China; and Department of Pathology and Laboratory Medicine (C.G.), Children's Hospital Colorado, Aurora, Colorado 80045
| | - Chiyo Shiota
- Departments of Surgery (Y.E.-G., J.W., X.X., P.G., K.P., C.S., I.G., Z.S., F.E., G.K.G.) and Pediatrics (C.R.), Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15224; Department of Surgery (Y.E.-G.), Stony Brook University Medical Center, Stony Brook, New York 11794; Department of Surgery (J.W.), University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229; Section of Gastroenterology/Hepatology (S.T.), Georgia Regents University, Augusta, Georgia 30912; Division of Biology and Medicine (S.F.), Brown University, Providence, Rhode Island 02912; Department of General Surgery (Z.S.), The Third Xiangya Hospital of Central South University, Yuelu, Changsha, Hunan 410013, China; and Department of Pathology and Laboratory Medicine (C.G.), Children's Hospital Colorado, Aurora, Colorado 80045
| | - Iljana Gaffar
- Departments of Surgery (Y.E.-G., J.W., X.X., P.G., K.P., C.S., I.G., Z.S., F.E., G.K.G.) and Pediatrics (C.R.), Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15224; Department of Surgery (Y.E.-G.), Stony Brook University Medical Center, Stony Brook, New York 11794; Department of Surgery (J.W.), University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229; Section of Gastroenterology/Hepatology (S.T.), Georgia Regents University, Augusta, Georgia 30912; Division of Biology and Medicine (S.F.), Brown University, Providence, Rhode Island 02912; Department of General Surgery (Z.S.), The Third Xiangya Hospital of Central South University, Yuelu, Changsha, Hunan 410013, China; and Department of Pathology and Laboratory Medicine (C.G.), Children's Hospital Colorado, Aurora, Colorado 80045
| | - Zewen Song
- Departments of Surgery (Y.E.-G., J.W., X.X., P.G., K.P., C.S., I.G., Z.S., F.E., G.K.G.) and Pediatrics (C.R.), Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15224; Department of Surgery (Y.E.-G.), Stony Brook University Medical Center, Stony Brook, New York 11794; Department of Surgery (J.W.), University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229; Section of Gastroenterology/Hepatology (S.T.), Georgia Regents University, Augusta, Georgia 30912; Division of Biology and Medicine (S.F.), Brown University, Providence, Rhode Island 02912; Department of General Surgery (Z.S.), The Third Xiangya Hospital of Central South University, Yuelu, Changsha, Hunan 410013, China; and Department of Pathology and Laboratory Medicine (C.G.), Children's Hospital Colorado, Aurora, Colorado 80045
| | - Csaba Galambos
- Departments of Surgery (Y.E.-G., J.W., X.X., P.G., K.P., C.S., I.G., Z.S., F.E., G.K.G.) and Pediatrics (C.R.), Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15224; Department of Surgery (Y.E.-G.), Stony Brook University Medical Center, Stony Brook, New York 11794; Department of Surgery (J.W.), University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229; Section of Gastroenterology/Hepatology (S.T.), Georgia Regents University, Augusta, Georgia 30912; Division of Biology and Medicine (S.F.), Brown University, Providence, Rhode Island 02912; Department of General Surgery (Z.S.), The Third Xiangya Hospital of Central South University, Yuelu, Changsha, Hunan 410013, China; and Department of Pathology and Laboratory Medicine (C.G.), Children's Hospital Colorado, Aurora, Colorado 80045
| | - Farzad Esni
- Departments of Surgery (Y.E.-G., J.W., X.X., P.G., K.P., C.S., I.G., Z.S., F.E., G.K.G.) and Pediatrics (C.R.), Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15224; Department of Surgery (Y.E.-G.), Stony Brook University Medical Center, Stony Brook, New York 11794; Department of Surgery (J.W.), University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229; Section of Gastroenterology/Hepatology (S.T.), Georgia Regents University, Augusta, Georgia 30912; Division of Biology and Medicine (S.F.), Brown University, Providence, Rhode Island 02912; Department of General Surgery (Z.S.), The Third Xiangya Hospital of Central South University, Yuelu, Changsha, Hunan 410013, China; and Department of Pathology and Laboratory Medicine (C.G.), Children's Hospital Colorado, Aurora, Colorado 80045
| | - George K Gittes
- Departments of Surgery (Y.E.-G., J.W., X.X., P.G., K.P., C.S., I.G., Z.S., F.E., G.K.G.) and Pediatrics (C.R.), Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15224; Department of Surgery (Y.E.-G.), Stony Brook University Medical Center, Stony Brook, New York 11794; Department of Surgery (J.W.), University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229; Section of Gastroenterology/Hepatology (S.T.), Georgia Regents University, Augusta, Georgia 30912; Division of Biology and Medicine (S.F.), Brown University, Providence, Rhode Island 02912; Department of General Surgery (Z.S.), The Third Xiangya Hospital of Central South University, Yuelu, Changsha, Hunan 410013, China; and Department of Pathology and Laboratory Medicine (C.G.), Children's Hospital Colorado, Aurora, Colorado 80045
| |
Collapse
|
67
|
Morvaridi S, Dhall D, Greene MI, Pandol SJ, Wang Q. Role of YAP and TAZ in pancreatic ductal adenocarcinoma and in stellate cells associated with cancer and chronic pancreatitis. Sci Rep 2015; 5:16759. [PMID: 26567630 PMCID: PMC4645184 DOI: 10.1038/srep16759] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 10/16/2015] [Indexed: 12/18/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by a fibrotic and inflammatory microenvironment that is formed primarily by activated, myofibroblast-like, stellate cells. Although the stellate cells are thought to contribute to tumorigenesis, metastasis and drug resistance of PDAC, the signaling events involved in activation of the stellate cells are not well defined. Functioning as transcription co-factors, Yes-associated protein (YAP) and its homolog transcriptional co-activator with PDZ-binding motif (TAZ) modulate the expression of genes involved in various aspects of cellular functions, such as proliferation and mobility. Using human tissues we show that YAP and TAZ expression is restricted to the centroacinar and ductal cells of normal pancreas, but is elevated in cancer cells. In particular, YAP and TAZ are expressed at high levels in the activated stellate cells of both chronic pancreatitis and PDAC patients as well as in the islets of Langerhans in chronic pancreatitis tissues. Of note, YAP is up regulated in both acinar and ductal cells following induction of acute and chronic pancreatitis in mice. These findings indicate that YAP and TAZ may play a critical role in modulating pancreatic tissue regeneration, neoplastic transformation, and stellate cell functions in both PDAC and pancreatitis.
Collapse
Affiliation(s)
- Susan Morvaridi
- Department of Medicine; Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Pancreatic Research Program; Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Deepti Dhall
- Department of Pathology and Laboratory Medicine; Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Mark I. Greene
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Stephen J. Pandol
- Department of Medicine; Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Pancreatic Research Program; Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Qiang Wang
- Department of Medicine; Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Pancreatic Research Program; Cedars-Sinai Medical Center, Los Angeles, CA 90048
| |
Collapse
|
68
|
Ojeh N, Pastar I, Tomic-Canic M, Stojadinovic O. Stem Cells in Skin Regeneration, Wound Healing, and Their Clinical Applications. Int J Mol Sci 2015; 16:25476-501. [PMID: 26512657 PMCID: PMC4632811 DOI: 10.3390/ijms161025476] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 10/15/2015] [Accepted: 10/20/2015] [Indexed: 12/18/2022] Open
Abstract
The skin is the largest organ of the body and has an array of functions. Skin compartments, epidermis, and hair follicles house stem cells that are indispensable for skin homeostasis and regeneration. These stem cells also contribute to wound repair, resulting in restoration of tissue integrity and function of damaged tissue. Unsuccessful wound healing processes often lead to non-healing wounds. Chronic wounds are caused by depletion of stem cells and a variety of other cellular and molecular mechanisms, many of which are still poorly understood. Current chronic wound therapies are limited, so the search to develop better therapeutic strategies is ongoing. Adult stem cells are gaining recognition as potential candidates for numerous skin pathologies. In this review, we will discuss epidermal and other stem cells present in the skin, and highlight some of the therapeutic applications of epidermal stem cells and other adult stem cells as tools for cell/scaffold-based therapies for non-healing wounds and other skin disorders. We will also discuss emerging concepts and offer some perspectives on how skin tissue-engineered products can be optimized to provide efficacious therapy in cutaneous repair and regeneration.
Collapse
Affiliation(s)
- Nkemcho Ojeh
- Faculty of Medical Sciences, the University of the West Indies, Cave Hill Campus, P.O. Box 64, Bridgetown BB 11000, St. Michael, Barbados; E-Mail:
| | - Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller Medical School, 1600 NW 10th Avenue, RMSB, Room 2023-A, Miami, FL 33136, USA; E-Mails: (I.P.); (M.T.-C.)
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller Medical School, 1600 NW 10th Avenue, RMSB, Room 2023-A, Miami, FL 33136, USA; E-Mails: (I.P.); (M.T.-C.)
| | - Olivera Stojadinovic
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller Medical School, 1600 NW 10th Avenue, RMSB, Room 2023-A, Miami, FL 33136, USA; E-Mails: (I.P.); (M.T.-C.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-305-243-7295; Fax: +1-305-243-6191
| |
Collapse
|
69
|
Gomez DL, O’Driscoll M, Sheets TP, Hruban RH, Oberholzer J, McGarrigle JJ, Shamblott MJ. Neurogenin 3 Expressing Cells in the Human Exocrine Pancreas Have the Capacity for Endocrine Cell Fate. PLoS One 2015; 10:e0133862. [PMID: 26288179 PMCID: PMC4545947 DOI: 10.1371/journal.pone.0133862] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 07/02/2015] [Indexed: 01/01/2023] Open
Abstract
Neurogenin 3 (NGN3) is necessary and sufficient for endocrine differentiation during pancreatic development and is expressed by a population of progenitor cells that give rise exclusively to hormone-secreting cells within islets. NGN3 protein can be detected in the adult rodent pancreas only following certain types of injury, when it is transiently expressed by exocrine cells undergoing reprogramming to an endocrine cell fate. Here, NGN3 protein can be detected in 2% of acinar and duct cells in living biopsies of histologically normal adult human pancreata and 10% in cadaveric biopsies of organ donor pancreata. The percentage and total number of NGN3+ cells increase during culture without evidence of proliferation or selective cell death. Isolation of highly purified and viable NGN3+ cell populations can be achieved based on coexpression of the cell surface glycoprotein CD133. Transcriptome and targeted expression analyses of isolated CD133+ / NGN3+ cells indicate that they are distinct from surrounding exocrine tissue with respect to expression phenotype and Notch signaling activity, but retain high level mRNA expression of genes indicative of acinar and duct cell function. NGN3+ cells have an mRNA expression profile that resembles that of mouse early endocrine progenitor cells. During in vitro differentiation, NGN3+ cells express genes in a pattern characteristic of endocrine development and result in cells that resemble beta cells on the basis of coexpression of insulin C-peptide, chromogranin A and pancreatic and duodenal homeobox 1. NGN3 expression in the adult human exocrine pancreas marks a dedifferentiating cell population with the capacity to take on an endocrine cell fate. These cells represent a potential source for the treatment of diabetes either through ex vivo manipulation, or in vivo by targeting mechanisms controlling their population size and endocrine cell fate commitment.
Collapse
Affiliation(s)
- Danielle L. Gomez
- Children’s Research Institute, Department of Pediatrics, University of South Florida Morsani College of Medicine, St. Petersburg, FL, United States of America
| | - Marci O’Driscoll
- Children’s Research Institute, Department of Pediatrics, University of South Florida Morsani College of Medicine, St. Petersburg, FL, United States of America
| | - Timothy P. Sheets
- Department of Gynecology and Obstetrics, John Hopkins University, Baltimore, MD, United States of America
| | - Ralph H. Hruban
- Departments of Pathology and Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Jose Oberholzer
- Department of Surgery, University of Illinois at Chicago, Chicago, IL, United States of America
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States of America
| | - James J. McGarrigle
- Department of Surgery, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Michael J. Shamblott
- Children’s Research Institute, Department of Pediatrics, University of South Florida Morsani College of Medicine, St. Petersburg, FL, United States of America
- Department of Gynecology and Obstetrics, John Hopkins University, Baltimore, MD, United States of America
- * E-mail:
| |
Collapse
|
70
|
Striegel DA, Hara M, Periwal V. The Beta Cell in Its Cluster: Stochastic Graphs of Beta Cell Connectivity in the Islets of Langerhans. PLoS Comput Biol 2015; 11:e1004423. [PMID: 26266953 PMCID: PMC4534467 DOI: 10.1371/journal.pcbi.1004423] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 07/02/2015] [Indexed: 12/25/2022] Open
Abstract
Pancreatic islets of Langerhans consist of endocrine cells, primarily α, β and δ cells, which secrete glucagon, insulin, and somatostatin, respectively, to regulate plasma glucose. β cells form irregular locally connected clusters within islets that act in concert to secrete insulin upon glucose stimulation. Due to the central functional significance of this local connectivity in the placement of β cells in an islet, it is important to characterize it quantitatively. However, quantification of the seemingly stochastic cytoarchitecture of β cells in an islet requires mathematical methods that can capture topological connectivity in the entire β-cell population in an islet. Graph theory provides such a framework. Using large-scale imaging data for thousands of islets containing hundreds of thousands of cells in human organ donor pancreata, we show that quantitative graph characteristics differ between control and type 2 diabetic islets. Further insight into the processes that shape and maintain this architecture is obtained by formulating a stochastic theory of β-cell rearrangement in whole islets, just as the normal equilibrium distribution of the Ornstein-Uhlenbeck process can be viewed as the result of the interplay between a random walk and a linear restoring force. Requiring that rearrangements maintain the observed quantitative topological graph characteristics strongly constrained possible processes. Our results suggest that β-cell rearrangement is dependent on its connectivity in order to maintain an optimal cluster size in both normal and T2D islets. High or low blood glucose levels are detrimental to human health. The hormone-secreting cells primarily responsible for maintaining glucose at physiologically appropriate levels are embedded in small clusters within the pancreas, the so-called islets of Langerhans. These islets have an irregular arrangement of cells, β cells that secrete insulin, α cells that secrete glucagon, and other cells with less well-understood functions. While the arrangement of β cells is irregular, these cells need to be touching for the islet to respond to glucose with insulin secretion. We first use a mathematical formalism called graph theory to show that cell arrangements in islets from diabetic and control donors are significantly different. The question we then address is: Is there some set of moves of islet cells that will preserve the observed arrangement? The aim is to gain insight into the biological processes by which islets are formed and maintained. We find moves on β-cell graphs that leave the same significant aspects of cell arrangements unchanged. These moves turn out to be severely restricted, and suggest that β cells may prefer to move from larger clusters but can move to a cluster of any size, possibly to maximize their exposure to blood vessels.
Collapse
Affiliation(s)
- Deborah A. Striegel
- Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Manami Hara
- Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Vipul Periwal
- Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
71
|
Thakkar UG, Trivedi HL, Vanikar AV, Dave SD. Co-infusion of insulin-secreting adipose tissue-derived mesenchymal stem cells and hematopoietic stem cells: novel approach to management of type 1 diabetes mellitus. Int J Diabetes Dev Ctries 2015. [DOI: 10.1007/s13410-015-0409-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
72
|
Characterization of Nestin, a Selective Marker for Bone Marrow Derived Mesenchymal Stem Cells. Stem Cells Int 2015; 2015:762098. [PMID: 26236348 PMCID: PMC4506912 DOI: 10.1155/2015/762098] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 06/07/2015] [Accepted: 06/22/2015] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells capable of differentiating into multiple cell lineages and contributing to tissue repair and regeneration. Characterization of the physiological function of MSCs has been largely hampered by lack of unique markers. Nestin, originally found in neuroepithelial stem cells, is an intermediate filament protein expressed in the early stages of development. Increasing studies have shown a particular association between Nestin and MSCs. Nestin could characterize a subset of bone marrow perivascular MSCs which contributed to bone development and closely contacted with hematopoietic stem cells (HSCs). Nestin expressing (Nes(+)) MSCs also play a role in the progression of various diseases. However, Nes(+) cells were reported to participate in angiogenesis as MSCs or endothelial progenitor cells (EPCs) in several tissues and be a heterogeneous population comprising mesenchymal cells and endothelial cells in the developing bone marrow. In this review article, we will summarize the progress of the research on Nestin, particularly the function of Nes(+) cells in bone marrow, and discuss the feasibility of using Nestin as a specific marker for MSCs.
Collapse
|
73
|
Cheng Y, Kang H, Shen J, Hao H, Liu J, Guo Y, Mu Y, Han W. Beta-cell regeneration from vimentin+/MafB+ cells after STZ-induced extreme beta-cell ablation. Sci Rep 2015; 5:11703. [PMID: 26129776 PMCID: PMC4486952 DOI: 10.1038/srep11703] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 06/02/2015] [Indexed: 12/16/2022] Open
Abstract
Loss of functional beta-cells is fundamental in both type 1 and type 2 diabetes. In situ beta-cell regeneration therefore has garnered great interest as an approach to diabetes therapy. Here, after elimination of pre-existing beta cells by a single high-dose of streptozotocin (STZ), we demonstrated that a considerable amount of beta-like-cells was generated within 48 hrs. But the newly formed insulin producing cells failed to respond to glucose challenge at this time and diminished afterwards. Insulin treatment to normalize the glucose level protected the neogenic beta-like cells and the islet function was also gradually matured. Strikingly, intermediate cells lacking epithelial marker E-cadherin but expressing mesenchymal cell-specific marker vimentin appeared within 16 hrs following STZ exposure, which served as the major source of insulin-producing cells observed at 24 hrs. Moreover, these intermediate cells strongly expressed alpha-cell-specific marker MafB. In summary, the data presented here identified a novel intermediate cell type as beta-cell progenitors, showing mesenchymal cell feature as well as alpha-cell marker MafB. Our results might have important implications for efforts to stimulate beta-cell regeneration.
Collapse
Affiliation(s)
- Yu Cheng
- Department of Endocrinology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100853, China
- Department of Molecular Biology, Institute of Basic Medicine, School of Life Science, Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100853, China
| | - Hongjun Kang
- Department of Critical Care Medicine, Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100853, China
| | - Jing Shen
- Department of Endocrinology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100853, China
- Department of Molecular Biology, Institute of Basic Medicine, School of Life Science, Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100853, China
- Department of Endocrinology, Chinese PLA 309 Hospital, 17 Heishanhu Road, Beijing 100091, China
| | - Haojie Hao
- Department of Molecular Biology, Institute of Basic Medicine, School of Life Science, Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100853, China
| | - Jiejie Liu
- Department of Molecular Biology, Institute of Basic Medicine, School of Life Science, Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100853, China
| | - Yelei Guo
- Department of Molecular Biology, Institute of Basic Medicine, School of Life Science, Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100853, China
| | - Yiming Mu
- Department of Endocrinology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100853, China
| | - Weidong Han
- Department of Molecular Biology, Institute of Basic Medicine, School of Life Science, Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100853, China
| |
Collapse
|
74
|
Abstract
Stem cells are cells specialized cell, capable of renewing themselves through cell division and can differentiate into multi-lineage cells. These cells are categorized as embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and adult stem cells. Mesenchymal stem cells (MSCs) are adult stem cells which can be isolated from human and animal sources. Human MSCs (hMSCs) are the non-haematopoietic, multipotent stem cells with the capacity to differentiate into mesodermal lineage such as osteocytes, adipocytes and chondrocytes as well ectodermal (neurocytes) and endodermal lineages (hepatocytes). MSCs express cell surface markers like cluster of differentiation (CD)29, CD44, CD73, CD90, CD105 and lack the expression of CD14, CD34, CD45 and HLA (human leucocyte antigen)-DR. hMSCs for the first time were reported in the bone marrow and till now they have been isolated from various tissues, including adipose tissue, amniotic fluid, endometrium, dental tissues, umbilical cord and Wharton's jelly which harbours potential MSCs. hMSCs have been cultured long-term in specific media without any severe abnormalities. Furthermore, MSCs have immunomodulatory features, secrete cytokines and immune-receptors which regulate the microenvironment in the host tissue. Multilineage potential, immunomodulation and secretion of anti-inflammatory molecules makes MSCs an effective tool in the treatment of chronic diseases. In the present review, we have highlighted recent research findings in the area of hMSCs sources, expression of cell surface markers, long-term in vitro culturing, in vitro differentiation potential, immunomodulatory features, its homing capacity, banking and cryopreservation, its application in the treatment of chronic diseases and its use in clinical trials.
Collapse
|
75
|
In vitro evaluation of different protocols for the induction of mesenchymal stem cells to insulin-producing cells. In Vitro Cell Dev Biol Anim 2015; 51:866-78. [DOI: 10.1007/s11626-015-9890-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/09/2015] [Indexed: 01/08/2023]
|
76
|
Hua X, Wang Y, Lian P, Zhang S, Li J, Wang H, Chen S, Gao W. Differentiation of fetal pancreatic stem cells into neuron-like and islet-like cells in vitro. Neural Regen Res 2015; 7:506-10. [PMID: 25745436 PMCID: PMC4348996 DOI: 10.3969/j.issn.1673-5374.2012.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 02/17/2012] [Indexed: 02/03/2023] Open
Abstract
Pancreatic stem cells were isolated and cultured from aborted human fetal pancreases of gestational age 14–20 weeks. They were seeded at a density of 1 × 104 in serum-free media for differentiation into neuron-like cells, expressing β-tubulin III and glial fibrillary acidic protein. These neuron-like cells displayed a synapse-like morphology and appeared to form a neuronal network. Pancreatic stem cells were also seeded at a density of 1 × 105 for differentiation into islet-like cells, expressing insulin and glucagon, with an islet-like morphology. These cells had glucose-stimulated secretion of human insulin and C-peptide. Results suggest that pancreatic stem cells can be differentiated into neuron-like and islet-like cells.
Collapse
Affiliation(s)
- Xiufeng Hua
- Department of Endocrinology, Yuhuangding Hospital, Yantai 264000, Shandong Province, China
| | - Yanwei Wang
- Research Center of Stem Cell Engineering of Shandong, Central Laboratory of Yuhuangding Hospital, Yantai 264000, Shandong Province, China
| | - Peiwen Lian
- Research Center of Stem Cell Engineering of Shandong, Central Laboratory of Yuhuangding Hospital, Yantai 264000, Shandong Province, China
| | - Shouxin Zhang
- Research Center of Stem Cell Engineering of Shandong, Central Laboratory of Yuhuangding Hospital, Yantai 264000, Shandong Province, China
| | - Jianyuan Li
- Research Center of Stem Cell Engineering of Shandong, Central Laboratory of Yuhuangding Hospital, Yantai 264000, Shandong Province, China
| | - Haiyan Wang
- Research Center of Stem Cell Engineering of Shandong, Central Laboratory of Yuhuangding Hospital, Yantai 264000, Shandong Province, China
| | - Shulin Chen
- Department of Endocrinology, Yuhuangding Hospital, Yantai 264000, Shandong Province, China
| | - Wei Gao
- Department of Endocrinology, Yuhuangding Hospital, Yantai 264000, Shandong Province, China
| |
Collapse
|
77
|
Khadra A, Schnell S. Development, growth and maintenance of β-cell mass: models are also part of the story. Mol Aspects Med 2015; 42:78-90. [PMID: 25720614 DOI: 10.1016/j.mam.2015.01.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 01/26/2015] [Accepted: 01/26/2015] [Indexed: 01/09/2023]
Abstract
Pancreatic β-cells in the islets of Langerhans play a crucial role in regulating glucose homeostasis in the circulation. Loss of β-cell mass or function due to environmental, genetic and immunological factors leads to the manifestation of diabetes mellitus. The mechanisms regulating the dynamics of pancreatic β-cell mass during normal development and diabetes progression are complex. To fully unravel such complexity, experimental and clinical approaches need to be combined with mathematical and computational models. In the natural sciences, mathematical and computational models have aided the identification of key mechanisms underlying the behavior of systems comprising multiple interacting components. A number of mathematical and computational models have been proposed to explain the development, growth and death of pancreatic β-cells. In this review, we discuss some of these models and how their predictions provide novel insight into the mechanisms controlling β-cell mass during normal development and diabetes progression. Lastly, we discuss a handful of the major open questions in the field.
Collapse
Affiliation(s)
- Anmar Khadra
- Department of Physiology, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, Quebec H3G 1Y6, Canada
| | - Santiago Schnell
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48105, USA; Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan 48105, USA; Brehm Center for Diabetes Research, University of Michigan Medical School, Ann Arbor, Michigan 48105, USA.
| |
Collapse
|
78
|
Tonne JM, Sakuma T, Munoz-Gomez M, El Khatib M, Barry MA, Kudva YC, Ikeda Y. Beta cell regeneration after single-round immunological destruction in a mouse model. Diabetologia 2015; 58:313-23. [PMID: 25338552 PMCID: PMC4287683 DOI: 10.1007/s00125-014-3416-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 09/26/2014] [Indexed: 01/30/2023]
Abstract
AIMS/HYPOTHESIS Achieving a better understanding of beta cell regeneration after immunological destruction is crucial for the development of immunotherapy approaches for type 1 diabetes. In previous type 1 diabetes models, sustained immune activation eliminates regenerating beta cells, thus limiting the study of the regenerative capacity of beta cells upon immunological destruction. Here, we employed an adeno-associated virus 8 (AAV8) vector for beta cell-targeted overexpression of a foreign antigen to induce single-round immunological destruction of existing beta cells. METHODS Young and aged C57BL/6J mice were treated with AAV8 vectors expressing the foreign antigen luciferase. Islet inflammation and regeneration was observed at 3, 6, 10 and 22 weeks post-AAV delivery. RESULTS In young C57BL/6J mice, robust humoral and cellular immune responses were developed towards antigen-expressing beta cells, leading to decreased beta cell mass. This was followed by beta cell mass replenishment, along with enhanced proliferation of insulin-positive cells, recruitment of nestin/CD34-positive endothelial cells, displacement of alpha cells and mobilisation of cytoplasmic neurogenin 3-positive cells. Mice with recovering beta cells showed normal or reduced fasting blood glucose levels and faster glucose clearance than controls. Although aged mice demonstrated similar responses to the treatment, they initially exhibited notable islet scarring and fluctuations in blood glucose levels, indicating that beta cell regeneration is slower in aged mice. CONCLUSIONS/INTERPRETATION Our hit-and-run, beta cell-targeted antigen expression system provides an opportunity to monitor the impact of single-round immunological beta cell destruction in animals with diverse genetic backgrounds or ageing status.
Collapse
Affiliation(s)
- Jason M. Tonne
- Department of Molecular Medicine, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905 USA
| | - Toshie Sakuma
- Department of Molecular Medicine, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905 USA
| | - Miguel Munoz-Gomez
- Department of Molecular Medicine, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905 USA
| | - Moustafa El Khatib
- Department of Molecular Medicine, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905 USA
| | - Michael A. Barry
- Department of Infectious Diseases, Mayo Clinic, Rochester, MN USA
| | | | - Yasuhiro Ikeda
- Department of Molecular Medicine, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905 USA
| |
Collapse
|
79
|
Hefei W, Yu R, Haiqing W, Xiao W, Jingyuan W, Dongjun L. Morphological characteristics and identification of islet-like cells derived from rat adipose-derived stem cells cocultured with pancreas adult stem cells. Cell Biol Int 2015; 39:253-63. [PMID: 25262665 DOI: 10.1002/cbin.10387] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 07/31/2014] [Indexed: 12/14/2022]
Abstract
Diabetes is a significant public health problem that can be treated with insulin therapy; however, therapies designed to cure diabetes are limited. The goal of the current study was to assess the potential for curative treatment of diabetes using adipose-derived stem cells (ADSCs). To achieve this goal, the differentiation of rat ADSCs into pancreatic islet-like cells induced by coculture with pancreatic adult stem cells (PASCs) was characterized. Differentiation of ADSCs into islet-like cells induced by coculturing was determined morphologically, as well as by the assessment of islet cell markers using dithizone staining, immunohistochemistry, RT-PCR, qPCR, and western blotting. The results showed that ADSCs formed islet-like round cell masses after coculture with PASCs. These differentiated cells were shown to be positive for islet cell markers, including dithizone incorporation; PDX1, CK19 and Nestin by immunohistochemistry, and insulin, PDX1 and glucagon expression by RT-PCR. Differentiated ADSCs induced by coculturing also expressed insulin at the mRNA and protein level, with the level of insulin mRNA expression in cocultured ADSCs being 0.05 times greater than that of PASCs (P < 0.05). Taken together, our results demonstrate that ADSCs can be induced to differentiate into islet-like cells by coculture with PASCs; thus these cells can be used for transplantation, providing a theoretical foundation for the treatment of diabetes using this approach.
Collapse
Affiliation(s)
- Wang Hefei
- National Research Center for Animal Transgenic Bio-technology, Inner Mongolia University, 24 Zhao Jun Road, Hohhot, 010070, China
| | | | | | | | | | | |
Collapse
|
80
|
Birbrair A, Zhang T, Files DC, Mannava S, Smith T, Wang ZM, Messi ML, Mintz A, Delbono O. Type-1 pericytes accumulate after tissue injury and produce collagen in an organ-dependent manner. Stem Cell Res Ther 2014; 5:122. [PMID: 25376879 PMCID: PMC4445991 DOI: 10.1186/scrt512] [Citation(s) in RCA: 211] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 09/30/2014] [Indexed: 02/06/2023] Open
Abstract
Introduction Fibrosis, or scar formation, is a pathological condition characterized by excessive production and accumulation of collagen, loss of tissue architecture, and organ failure in response to uncontrolled wound healing. Several cellular populations have been implicated, including bone marrow-derived circulating fibrocytes, endothelial cells, resident fibroblasts, epithelial cells, and recently, perivascular cells called pericytes. We previously demonstrated pericyte functional heterogeneity in skeletal muscle. Whether pericyte subtypes are present in other tissues and whether a specific pericyte subset contributes to organ fibrosis are unknown. Methods Here, we report the presence of two pericyte subtypes, type-1 (Nestin-GFP-/NG2-DsRed+) and type-2 (Nestin-GFP+/NG2-DsRed+), surrounding blood vessels in lungs, kidneys, heart, spinal cord, and brain. Using Nestin-GFP/NG2-DsRed transgenic mice, we induced pulmonary, renal, cardiac, spinal cord, and cortical injuries to investigate the contributions of pericyte subtypes to fibrous tissue formation in vivo. Results A fraction of the lung’s collagen-producing cells corresponds to type-1 pericytes and kidney and heart pericytes do not produce collagen in pathological fibrosis. Note that type-1, but not type-2, pericytes increase and accumulate near the fibrotic tissue in all organs analyzed. Surprisingly, after CNS injury, type-1 pericytes differ from scar-forming PDGFRβ + cells. Conclusions Pericyte subpopulations respond differentially to tissue injury, and the production of collagen by type-1 pericytes is organ-dependent. Characterization of the mechanisms underlying scar formation generates cellular targets for future anti-fibrotic therapeutics. Electronic supplementary material The online version of this article (doi:10.1186/scrt512) contains supplementary material, which is available to authorized users.
Collapse
|
81
|
PDX-1 mRNA-induced reprogramming of mouse pancreas-derived mesenchymal stem cells into insulin-producing cells in vitro. Clin Exp Med 2014; 15:501-9. [DOI: 10.1007/s10238-014-0319-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 10/06/2014] [Indexed: 12/30/2022]
|
82
|
Abstract
Diabetes mellitus is caused by absolute (type 1) or relative (type 2) deficiency of insulin-secreting islet β cells. An ideal treatment of diabetes would, therefore, be to replace the lost or deficient β cells, by transplantation of donated islets or differentiated endocrine cells or by regeneration of endogenous islet cells. Due to their ability of unlimited proliferation and differentiation into all functional lineages in our body, including β cells, embryonic stem cells and induced pluripotent stem cells are ideally placed as cell sources for a diabetic transplantation therapy. Unfortunately, the inability to generate functional differentiated islet cells from pluripotent stem cells and the poor availability of donor islets have severely restricted the broad clinical use of the replacement therapy. Therefore, endogenous sources that can be directed to becoming insulin-secreting cells are actively sought after. In particular, any cell types in the developing or adult pancreas that may act as pancreatic stem cells (PSC) would provide an alternative renewable source for endogenous regeneration. In this review, we will summarize the latest progress and knowledge of such PSC, and discuss ways that facilitate the future development of this often controversial, but crucial research.
Collapse
Affiliation(s)
- Fang-Xu Jiang
- 1 Islet Cell Development Program, Harry Perkins Institute of Medical Research, and Centre for Medical Research, The University of Western Australia , Perth, Australia
| | | |
Collapse
|
83
|
Zhang WJ, Xu SQ, Cai HQ, Men XL, Wang Z, Lin H, Chen L, Jiang YW, Liu HL, Li CH, Sui WG, Deng HK, Lou JN. Evaluation of islets derived from human fetal pancreatic progenitor cells in diabetes treatment. Stem Cell Res Ther 2014; 4:141. [PMID: 24268157 PMCID: PMC4055010 DOI: 10.1186/scrt352] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 06/04/2013] [Accepted: 11/14/2013] [Indexed: 12/12/2022] Open
Abstract
Introduction With the shortage of donor organs for islet transplantation, insulin-producing cells have been generated from different types of stem cell. Human fetal pancreatic stem cells have a better self-renewal capacity than adult stem cells and can readily differentiate into pancreatic endocrine cells, making them a potential source for islets in diabetes treatment. In the present study, the functions of pancreatic islets derived from human fetal pancreatic progenitor cells were evaluated in vitro and in vivo. Methods Human pancreatic progenitor cells isolated from the fetal pancreas were expanded and differentiated into islet endocrine cells in culture. Markers for endocrine and exocrine functions as well as those for alpha and beta cells were analyzed by immunofluorescent staining and enzyme-linked immunosorbent assay (ELISA). To evaluate the functions of these islets in vivo, the islet-like structures were transplanted into renal capsules of diabetic nude mice. Immunohistochemical staining for human C-peptide and human mitochondrion antigen was applied to confirm the human origin and the survival of grafted islets. Results Human fetal pancreatic progenitor cells were able to expand in medium containing basic fibroblast growth factor (bFGF) and leukemia inhibitor factor (LIF), and to differentiate into pancreatic endocrine cells with high efficiency upon the actions of glucagon-like peptide-1 and activin-A. The differentiated cells expressed insulin, glucagon, glucose transporter-1 (GLUT1), GLUT2 and voltage-dependent calcium channel (VDCC), and were able to aggregate into islet-like structures containing alpha and beta cells upon suspension. These structures expressed and released a higher level of insulin than adhesion cultured cells, and helped to maintain normoglycemia in diabetic nude mice after transplantation. Conclusions Human fetal pancreatic progenitor cells have good capacity for generating insulin producing cells and provide a promising potential source for diabetes treatment.
Collapse
|
84
|
Lee JS, An SY, Kwon IK, Heo JS. Transdifferentiation of human periodontal ligament stem cells into pancreatic cell lineage. Cell Biochem Funct 2014; 32:605-11. [PMID: 25187163 DOI: 10.1002/cbf.3057] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/17/2014] [Accepted: 07/31/2014] [Indexed: 12/18/2022]
Abstract
Human periodontal ligament-derived stem cells (PDLSCs) demonstrate self-renewal capacity and multilineage differentiation potential. In this study, we investigated the transdifferentiation potential of human PDLSCs into pancreatic islet cells. To form three-dimensional (3D) clusters, PDLSCs were cultured in Matrigel with media containing differentiation-inducing agents. We found that after 6 days in culture, PDLSCs underwent morphological changes resembling pancreatic islet-like cell clusters (ICCs). The morphological characteristics of PDLSC-derived ICCs were further assessed using scanning electron microscopy analysis. Using reverse transcription-polymerase chain reaction analysis, we found that pluripotency genes were downregulated, whereas early endoderm and pancreatic differentiation genes were upregulated, in PDLSC-derived ICCs compared with undifferentiated PDLSCs. Furthermore, we found that PDLSC-derived ICCs were capable of secreting insulin in response to high concentrations of glucose, validating their functional differentiation into islet cells. Finally, we also performed dithizone staining, as well as immunofluorescence assays and fluorescence-activated cell sorting analysis for pancreatic differentiation markers, to confirm the differentiation status of PDLSC-derived ICCs. These results demonstrate that PDLSCs can transdifferentiate into functional pancreatic islet-like cells and provide a novel, alternative cell population for pancreatic repair.
Collapse
Affiliation(s)
- Jeong Seok Lee
- Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of Dentistry, Kyung Hee University, 26 Kyunghee-daero, Dongdaemun-gu, Seoul, 130-701, South Korea
| | | | | | | |
Collapse
|
85
|
Tampaki EC, Nakopoulou L, Tampakis A, Kontzoglou K, Weber WP, Kouraklis G. Nestin involvement in tissue injury and cancer--a potential tumor marker? Cell Oncol (Dordr) 2014; 37:305-15. [PMID: 25164879 DOI: 10.1007/s13402-014-0193-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND In eukaryotic cells, the cytoskeleton contains three major filamentous components: actin microfilaments, microtubules and intermediate filaments. Nestin represents one of the class VI intermediate filament proteins. Clinical and molecular analyses have revealed substantial information regarding the presence of Nestin in cells with progenitor or stem cell properties. During tissue injury Nestin is expressed in cells with progenitor cell-like properties. These cells may serve as a tissue reserve and, as such, may contribute to tissue repair. Based on currently available data, Nestin also appears to be implicated in two oncogenic processes. First, Nestin has been found to be expressed in cancer stem-like cells and poorly differentiated cancer cells and, as such, Nestin is thought to contribute to the aggressive behavior of these cells. Second, Nestin has been found to be involved in tumor angiogenesis through an interaction of cancer cells and blood vessel endothelial cells and, as such, Nestin is thought to facilitate tumor growth. CONCLUSIONS We conclude that Nestin may serve as a promising tumor marker and as a potential therapeutic target amenable to tumor suppression and angiogenesis inhibition.
Collapse
Affiliation(s)
- Ekaterini Christina Tampaki
- 2nd Department of Propedeutic Surgery, Athens University Medical School, Laiko General Hospital, 17 Agiou Thoma Street, 11527, Athens, Greece,
| | | | | | | | | | | |
Collapse
|
86
|
Golbar HM, Izawa T, Wijesundera KK, Tennakoon AH, Katou-Ichikawa C, Tanaka M, Kuwamura M, Yamate J. Expression of nestin in remodelling of α-naphthylisothiocyanate-induced acute bile duct injury in rats. J Comp Pathol 2014; 151:255-63. [PMID: 25087881 DOI: 10.1016/j.jcpa.2014.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 05/12/2014] [Accepted: 05/29/2014] [Indexed: 10/25/2022]
Abstract
The function of the intermediate filament protein nestin is poorly understood. The significance of nestin expression was assessed in α-naphthylisothiocyanate (ANIT)-induced cholangiocyte injury lesions in F344 rats. Liver samples obtained from rats injected intraperitoneally with ANIT (75 mg/kg) on post-injection days 0 (control) and 1-12 were labelled immunohistochemically for expression of nestin and markers specific for mesenchymal cells (vimentin), hepatic stellate cells (HSCs) (desmin and glial fibrillary acidic protein [GFAP]), endothelial cells (rat endothelial cell antigen [RECA]-1), cholangiocytes (cytokeratin [CK] 19) and cellular proliferation (Ki67). Cholangiocyte injury led to infiltration of neutrophils and macrophages followed by aggregation of mesenchymal cells and regeneration of bile ducts. Nestin expression was detected in mesenchymal cells (vimentin positive) on days 1-7 with a peak on days 3-5 and in newly-formed RECA-1-positive endothelial cells on day 3. Nestin expression was also observed in regenerating CK19-positive cholangiocytes on days 2-5, with a peak on day 3. Labelling for Ki67 showed proliferation of cholangiocytes, mesenchymal cells and HSCs. Real-time reverse transcriptase polymerase chain reaction with microdissected samples showed significantly elevated nestin mRNA on day 3. The findings suggest an association between nestin expression and cellular proliferation. Based on these findings, it was considered that nestin-expressing mesenchymal cells, HSCs and endothelial cells may be possible progenitors of repopulating cholangiocytes. Nestin expression may serve as an indicator for cellular remodelling and behaviour of injured and repopulating bile ducts.
Collapse
Affiliation(s)
- H M Golbar
- Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano City, Osaka 598-8531, Japan
| | - T Izawa
- Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano City, Osaka 598-8531, Japan
| | - K K Wijesundera
- Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano City, Osaka 598-8531, Japan
| | - A H Tennakoon
- Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano City, Osaka 598-8531, Japan
| | - C Katou-Ichikawa
- Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano City, Osaka 598-8531, Japan
| | - M Tanaka
- Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano City, Osaka 598-8531, Japan
| | - M Kuwamura
- Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano City, Osaka 598-8531, Japan
| | - J Yamate
- Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano City, Osaka 598-8531, Japan.
| |
Collapse
|
87
|
Mansouri A, Esmaeili F, Nejatpour A, Houshmand F, Shabani L, Ebrahimie E. Differentiation of P19 embryonal carcinoma stem cells into insulin-producing cells promoted by pancreas-conditioned medium. J Tissue Eng Regen Med 2014; 10:600-12. [DOI: 10.1002/term.1927] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 04/25/2014] [Accepted: 05/05/2014] [Indexed: 12/27/2022]
Affiliation(s)
- Akram Mansouri
- Department of Biology, Faculty of Basic Sciences; Shahrekord University; Iran
| | - Fariba Esmaeili
- Research Institute of Biotechnology; Shahrekord University; Iran
- Department of Biology, Faculty of Basic Sciences; University of Isfahan; Iran
| | | | - Fariba Houshmand
- Department of Physiology, Faculty of Medical Sciences; Shahrekord University of Medical Sciences; Iran
| | - Leila Shabani
- Department of Biology, Faculty of Basic Sciences; Shahrekord University; Iran
- Research Institute of Biotechnology; Shahrekord University; Iran
| | - Esmaeil Ebrahimie
- Institute of Biotechnology; Shiraz University; Shiraz Iran
- School of Molecular and Biomedical Science; The University of Adelaide; Adelaide Australia
| |
Collapse
|
88
|
Park KS, Shin SW, Choi JW, Um SH. Specific protein markers for stem cell cross-talk with neighboring cells in the environment. Int J Stem Cells 2014; 6:75-86. [PMID: 24386551 DOI: 10.15283/ijsc.2013.6.2.75] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2013] [Indexed: 01/04/2023] Open
Abstract
A stem cell interacts with the neighboring cells in its environment. To maintain a living organism's metabolism, either cell-cell or cell-environment interactions may be significant. Usually, these cells communicate with each other through biological signaling by interactive behaviors of primary proteins or complementary chemicals. The signaling intermediates offer the stem cell's functionality on its metabolism. With the rapid advent of omics technologies, various specific markers by which stem cells cooperate with their surroundings have been discovered and established. In this article, we review several stem cell markers used to communicate with either cancer or immune cells in the human body.
Collapse
Affiliation(s)
- Kyung Soo Park
- Department of Chemical and Biomolecular Engineering and Sogang University, Seoul, Korea
| | - Seung Won Shin
- School of Chemical Engineering and Sungkyunkwan University, Suwon
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering and Sogang University, Seoul, Korea ; Graduate School of Management of Technology, Sogang University, Seoul, Korea
| | - Soong Ho Um
- School of Chemical Engineering and Sungkyunkwan University, Suwon ; SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon
| |
Collapse
|
89
|
Minami K, Seino S. Current status of regeneration of pancreatic β-cells. J Diabetes Investig 2014; 4:131-41. [PMID: 24843642 PMCID: PMC4019265 DOI: 10.1111/jdi.12062] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 01/21/2013] [Indexed: 12/13/2022] Open
Abstract
Newly generated insulin‐secreting cells for use in cell therapy for insulin‐deficient diabetes mellitus require properties similar to those of native pancreatic β‐cells. Pancreatic β‐cells are highly specialized cells that produce a large amount of insulin, and secrete insulin in a regulated manner in response to glucose and other stimuli. It is not yet explained how the β‐cells acquire this complex function during normal differentiation. So far, in vitro generation of insulin‐secreting cells from embryonic stem cells, induced‐pluripotent stem cells and adult stem/progenitor‐like cells has been reported. However, most of these cells are functionally immature and show poor glucose‐responsive insulin secretion compared to that of native pancreatic β‐cells (or islets). Strategies to generate functional β‐cells or a whole organ in vivo have also recently been proposed. Establishing a protocol to generate fully functional insulin‐secreting cells that closely resemble native β‐cells is a critical matter in regenerative medicine for diabetes. Understanding the physiological processes of differentiation, proliferation and regeneration of pancreatic β‐cells might open the path to cell therapy to cure patients with absolute insulin deficiency.
Collapse
Affiliation(s)
- Kohtaro Minami
- Division of Cellular and Molecular Medicine Department of Physiology and Cell Biology Kobe University Graduate School of Medicine Kobe Japan
| | - Susumu Seino
- Division of Cellular and Molecular Medicine Department of Physiology and Cell Biology Kobe University Graduate School of Medicine Kobe Japan ; Division of Diabetes and Endocrinology Department of Internal Medicine Kobe University Graduate School of Medicine Kobe Japan ; Core Research for Evolutional Science and Technology (CREST) Japan Science and Technology Corp. Kawaguchi Saitama Japan
| |
Collapse
|
90
|
Kang PJ, Moon JH, Yoon BS, Hyeon S, Jun EK, Park G, Yun W, Park J, Park M, Kim A, Whang KY, Koh GY, Oh S, You S. Reprogramming of mouse somatic cells into pluripotent stem-like cells using a combination of small molecules. Biomaterials 2014; 35:7336-45. [PMID: 24881998 DOI: 10.1016/j.biomaterials.2014.05.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 05/05/2014] [Indexed: 12/16/2022]
Abstract
Somatic cells can be reprogrammed to generate induced pluripotent stem cells (iPSCs) by overexpression of four transcription factors, Oct4, Klf4, Sox2, and c-Myc. However, exogenous expression of pluripotency factors raised concerns for clinical applications. Here, we show that iPS-like cells (iPSLCs) were generated from mouse somatic cells in two steps with small molecule compounds. In the first step, stable intermediate cells were generated from mouse astrocytes by Bmi1. These cells called induced epiblast stem cell (EpiSC)-like cells (iEpiSCLCs) are similar to EpiSCs in terms of expression of specific markers, epigenetic state, and ability to differentiate into three germ layers. In the second step, treatment with MEK/ERK and GSK3 pathway inhibitors in the presence of leukemia inhibitory factor resulted in conversion of iEpiSCLCs into iPSLCs that were similar to mESCs, suggesting that Bmi1 is sufficient to reprogram astrocytes to partially reprogrammed pluripotency. Next, Bmi1 function was replaced with Shh activators (oxysterol and purmorphamine), which demonstrating that combinations of small molecules can compensate for reprogramming factors and are sufficient to directly reprogram mouse somatic cells into iPSLCs. The chemically induced pluripotent stem cell-like cells (ciPSLCs) showed similar gene expression profiles, epigenetic status, and differentiation potentials to mESCs.
Collapse
Affiliation(s)
- Phil Jun Kang
- Laboratory of Cell Function Regulation, Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Jai-Hee Moon
- Laboratory of Cell Function Regulation, Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Byung Sun Yoon
- Laboratory of Cell Function Regulation, Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea; StemLab, Venture Incubation Center Korea University, Seoul 136-701, Republic of Korea
| | - Solji Hyeon
- Laboratory of Cell Function Regulation, Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Eun Kyoung Jun
- Laboratory of Cell Function Regulation, Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea; StemLab, Venture Incubation Center Korea University, Seoul 136-701, Republic of Korea
| | - Gyuman Park
- Laboratory of Cell Function Regulation, Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Wonjin Yun
- Laboratory of Cell Function Regulation, Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Jiyong Park
- Laboratory of Cell Function Regulation, Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Minji Park
- Laboratory of Cell Function Regulation, Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Aeree Kim
- Department of Pathology, College of Medicine, Korea University Guro Hospital, Seoul 152-703, Republic of Korea
| | - Kwang Youn Whang
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Gou Young Koh
- National Research Laboratory of Vascular Biology and Stem Cells, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea
| | - Sejong Oh
- Division of Animal Science, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Seungkwon You
- Laboratory of Cell Function Regulation, Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea.
| |
Collapse
|
91
|
Aloysious N, Nair PD. Enhanced Survival and Function of Islet-Like Clusters Differentiated from Adipose Stem Cells on a Three-Dimensional Natural Polymeric Scaffold: AnIn VitroStudy. Tissue Eng Part A 2014; 20:1508-22. [DOI: 10.1089/ten.tea.2012.0615] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Neena Aloysious
- Division of Tissue Engineering and Regeneration Technologies, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojapura, Trivandrum, India
| | - Prabha D. Nair
- Division of Tissue Engineering and Regeneration Technologies, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojapura, Trivandrum, India
| |
Collapse
|
92
|
Clinical applications of mesenchymal stem cells in chronic diseases. Stem Cells Int 2014; 2014:306573. [PMID: 24876848 PMCID: PMC4021690 DOI: 10.1155/2014/306573] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 04/14/2014] [Accepted: 04/15/2014] [Indexed: 12/13/2022] Open
Abstract
Extraordinary progress in understanding several key features of stem cells has been made in the last ten years, including definition of the niche, and identification of signals regulating mobilization and homing as well as partial understanding of the mechanisms controlling self-renewal, commitment, and differentiation. This progress produced invaluable tools for the development of rational cell therapy protocols that have yielded positive results in preclinical models of genetic and acquired diseases and, in several cases, have entered clinical experimentation with positive outcome. Adult mesenchymal stem cells (MSCs) are nonhematopoietic cells with multilineage potential to differentiate into various tissues of mesodermal origin. They can be isolated from bone marrow and other tissues and have the capacity to extensively proliferate in vitro. Moreover, MSCs have also been shown to produce anti-inflammatory molecules which can modulate humoral and cellular immune responses. Considering their regenerative potential and immunoregulatory effect, MSC therapy is a promising tool in the treatment of degenerative, inflammatory, and autoimmune diseases. It is obvious that much work remains to be done to increase our knowledge of the mechanisms regulating development, homeostasis, and tissue repair and thus to provide new tools to implement the efficacy of cell therapy trials.
Collapse
|
93
|
Hiram-Bab S, Katz LS, Shapira H, Sandbank J, Gershengorn MC, Oron Y. Platelet-derived growth factor BB mimics serum-induced dispersal of pancreatic epithelial cell clusters. J Cell Physiol 2014; 229:743-51. [PMID: 24129818 DOI: 10.1002/jcp.24493] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 10/10/2013] [Indexed: 12/22/2022]
Abstract
We showed previously that proliferating human islet-derived de-differentiated cells (DIDs) exhibit many characteristics of mesenchymal stem cells. Dispersed DIDs can be induced by serum deprivation to undergo mesenchymal-to-epithelial transition and aggregate into epithelial cell clusters (ECCs). Conversely, ECCs can be induced to disperse and undergo epithelial-to-mesenchymal transition (EMT) by re-addition of mammalian sera. In this study, we show that platelet-derived growth factor BB (PDGF-BB) mimics and mediates serum-induced ECCs' dispersal accompanied by accumulation of cytoplasmic β-catenin and a decrease in the levels of insulin and glucagon mRNAs. Moreover, we show that PDGF-BB-induced dispersal of ECCs is a more general phenomenon that occurs also with bone marrow mesenchymal stem cells (BM-MSCs) and dermal fibroblasts (DFs). In DIDs, BM-MSCs, and DFs, PDGF decreased the levels of DKK1 mRNA, suggesting involvement of the Wnt signaling pathway. PDGF-BB stimulated a significant increase in S473 phosphorylation of Akt and the PI3K specific inhibitor (PIP828) partially inhibited PDGF-BB-induced ECC dispersal. Lastly, the PDGF-receptor (PDGF-R) antagonist JNJ-10198409 inhibited both PDGF-BB--and serum-induced ECC dispersal. Epidermal growth factor (EGF), which shares most of the PDGF signaling pathway, did not induce dispersal and only weakly stimulated Akt phosphorylation. Our data suggest that PDGF-BB mediates serum-induced DIDs dispersal, correlated with the activation of the PI3K-Akt pathway.
Collapse
Affiliation(s)
- Sahar Hiram-Bab
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | | | |
Collapse
|
94
|
Niki Boroujeni Z, Aleyasin A. Human umbilical cord-derived mesenchymal stem cells can secrete insulinin vitroandin vivo. Biotechnol Appl Biochem 2014; 61:82-92. [DOI: 10.1002/bab.1127] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Accepted: 05/17/2013] [Indexed: 01/01/2023]
Affiliation(s)
| | - Ahmad Aleyasin
- National Institute of Genetic Engineering and Biotechnology; Tehran Iran
| |
Collapse
|
95
|
Migliorini A, Bader E, Lickert H. Islet cell plasticity and regeneration. Mol Metab 2014; 3:268-74. [PMID: 24749056 PMCID: PMC3986629 DOI: 10.1016/j.molmet.2014.01.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/13/2014] [Accepted: 01/15/2014] [Indexed: 01/09/2023] Open
Abstract
Insulin-dependent diabetes is a complex multifactorial disorder characterized by loss or dysfunction of β-cells resulting in failure of metabolic control. Even though type 1 and 2 diabetes differ in their pathogenesis, restoring β-cell function is the overarching goal for improved therapy of both diseases. This could be achieved either by cell-replacement therapy or by triggering intrinsic regenerative mechanisms of the pancreas. For type 1 diabetes, a combination of β-cell replacement and immunosuppressive therapy could be a curative treatment, whereas for type 2 diabetes enhancing endogenous mechanisms of β-cell regeneration might optimize blood glucose control. This review will briefly summarize recent efforts to allow β-cell regeneration where the most promising approaches are currently (1) increasing β-cell self-replication or neogenesis from ductal progenitors and (2) conversion of α-cells into β-cells.
Collapse
Affiliation(s)
- Adriana Migliorini
- Institute of Stem Cell Research, Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Am Parkring 11, D-85748, Business Campus Garching, Germany
| | - Erik Bader
- Institute of Stem Cell Research, Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Am Parkring 11, D-85748, Business Campus Garching, Germany
- Research Unit of Molecular Epidemiology Institute of Epidemiology II, Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Heiko Lickert
- Institute of Stem Cell Research, Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Am Parkring 11, D-85748, Business Campus Garching, Germany
- German Center for Diabetes Research (DZD), Germany
- Corresponding author at: Helmholtz Zentrum München, Am Parkring 11, D-85748, Business Campus Garching, Germany. Tel.: +49 89 3187 3760; fax: +49 89 3187 2060.
| |
Collapse
|
96
|
Schweicher J, Nyitray C, Desai TA. Membranes to achieve immunoprotection of transplanted islets. FRONT BIOSCI-LANDMRK 2014; 19:49-76. [PMID: 24389172 PMCID: PMC4230297 DOI: 10.2741/4195] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Transplantation of islet or beta cells is seen as the cure for type 1 diabetes since it allows physiological regulation of blood glucose levels without requiring any compliance from the patients. In order to circumvent the use of immunosuppressive drugs (and their side effects), semipermeable membranes have been developed to encapsulate and immunoprotect transplanted cells. This review presents the historical developments of immunoisolation and provides an update on the current research in this field. A particular emphasis is laid on the fabrication, characterization and performance of membranes developed for immunoisolation applications.
Collapse
Affiliation(s)
- Julien Schweicher
- Therapeutic Micro and Nanotechnology Laboratory, Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco (UCSF), 1700 4 Street, Box 2520, San Francisco, CA, 94158, USA
| | - Crystal Nyitray
- Therapeutic Micro and Nanotechnology Laboratory, Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco (UCSF), 1700 4 Street, Box 2520, San Francisco, CA, 94158, USA
| | - Tejal A. Desai
- Therapeutic Micro and Nanotechnology Laboratory, Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco (UCSF), 1700 4 Street, Box 2520, San Francisco, CA, 94158, USA
| |
Collapse
|
97
|
Vaz AP, Ponnusamy MP, Seshacharyulu P, Batra SK. A concise review on the current understanding of pancreatic cancer stem cells. JOURNAL OF CANCER STEM CELL RESEARCH 2014; 2:e1004. [PMID: 26451384 PMCID: PMC4594952 DOI: 10.14343/jcscr.2014.2e1004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Several evidences suggest that a small population of cells known as cancer stem cells (CSCs) or tumor initiating stemlike cells within a tumor is capable of tumor initiation, maintenance and propagation. Recent publications have supported the existence of CSCs in pancreatic tumors. The pancreatic stem/progenitor cells, which express self-renewal markers, are identified to be present in the peribiliary gland. Based on the CSC hypothesis, mutations can lead to the transformation of stem/progenitor cells or differentiated cells into CSCs. The pancreatic CSCs express a wide array of markers such as CD44, CD24, ESA, CD133, c-MET, CXCR4, PD2/Paf1 and ALDH1. The CSCs are isolated based on surface markers or by other methods such as ALDEFLOUR assay or Hoechst 33342 dye exclusion assay. The isolated cells are further characterized by in vitro and in vivo tumorigenic assays. The most important characteristics of CSCs are its ability to self-renew and impart drug resistance towards chemotherapy. Moreover, these distinct cells display alteration of signaling pathways pertaining to CSCs such as Notch, Wnt and Shh to maintain the self-renewal process. Failure of cancer treatment could be attributed to the therapy resistance exhibited by the CSCs. Metastasis and drug resistance in pancreatic cancer is associated with epithelial to mesenchymal transition (EMT). Furthermore, mucins, the high molecular weight proteins are found to be associated with pancreatic CSCs and EMT. Understanding the underlying molecular pathways that aid in the metastatic and drug resistant nature of these distinct cells will aid in targeting these cells. Overall, this review focuses on the various aspects of pancreatic adult/stem progenitors, CSC hypothesis, its markers, pathways, niche, EMT and novel therapeutic drugs used for the elimination of pancreatic CSCs.
Collapse
Affiliation(s)
- Arokia Priyanka Vaz
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Moorthy P. Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Eppley Institute for Research in Cancer and Allied Diseases and Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
98
|
Sheik Abdulazeez S. Diabetes treatment: A rapid review of the current and future scope of stem cell research. Saudi Pharm J 2013; 23:333-40. [PMID: 27134533 PMCID: PMC4834680 DOI: 10.1016/j.jsps.2013.12.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 12/14/2013] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus is a major health concern of the developing and developed nations across the globe. This devastating disease accounts for the 5% deaths around the world annually. The current treatment methods do not address the underlying causes of the disease and have severe limitations. Stem cells are unique cells with the potential to differentiate into any type of specialized cells. This feature of both adult and embryonic stem cells was explored in great detail by the scientists around the world and are successful in producing insulin secreting cells. The different type of stem cells (induced pluripotent stem cells (iPSCs), embryonic stem cells (ESCs) and adult stem cells) proves to be potent in treating diabetes with certain limitations. This article precisely reviews the resources and progress made in the field of stem cell research for diabetic treatment.
Collapse
Affiliation(s)
- Sheriff Sheik Abdulazeez
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Kingdom of Saudi Arabia
| |
Collapse
|
99
|
Dave SD, Vanikar AV, Trivedi HL, Thakkar UG, Gopal SC, Chandra T. Novel therapy for insulin-dependent diabetes mellitus: infusion of in vitro-generated insulin-secreting cells. Clin Exp Med 2013; 15:41-5. [PMID: 24317657 DOI: 10.1007/s10238-013-0266-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 11/20/2013] [Indexed: 12/20/2022]
Abstract
Insulin-dependent diabetes mellitus (IDDM) is a metabolic disease usually resulting from autoimmune-mediated β-cell destruction requiring lifetime exogenous insulin replacement. Mesenchymal stem cells (MSC) hold promising therapy. We present our experience of treating IDDM with co-infusion of in vitro autologous adipose tissue-derived MSC-differentiated insulin-secreting cells (ISC) with hematopoietic stem cells (HSC). This was an Institutional Review Board approved prospective non-randomized open-labeled clinical trial after informed consent from ten patients. ISC were differentiated from autologous adipose tissue-derived MSC and were infused with bone marrow-derived HSC in portal, thymic circulation by mini-laparotomy and in subcutaneous circulation. Patients were monitored for blood sugar levels, serum C-peptide levels, glycosylated hemoglobin (Hb1Ac) and glutamic acid decarboxylase (GAD) antibodies. Insulin administration was made on sliding scale with an objective of maintaining FBS < 150 mg/dL and PPBS around 200 mg/dL. Mean 3.34 mL cell inoculums with 5.25 × 10(4) cells/μL were infused. No untoward effects were observed. Over a mean follow-up of 31.71 months, mean serum C-peptide of 0.22 ng/mL before infusion had sustained rise of 0.92 ng/mL with decreased exogenous insulin requirement from 63.9 international units (IU)/day to 38.6 IU/day. Improvement in mean Hb1Ac was observed from 10.99 to 6.72%. Mean GAD antibodies were positive in all patients with mean of 331.10 IU/mL, which decreased to mean of 123 IU/mL. Co-infusion of autologous ISC with HSC represents a viable novel therapeutic option for IDDM.
Collapse
Affiliation(s)
- S D Dave
- Stem Cell Lab, Transplantation Biology Research Centre, Department of Pathology, Laboratory Medicine, Transfusion Services and Immunohematology, G. R. Doshi and K. M. Mehta Institute of Kidney Diseases and Research Centre (IKDRC)-Dr. H.L. Trivedi Institute of Transplantation Sciences (ITS), Civil Hospital Campus, Asarwa, Ahmedabad, 380016, Gujarat, India,
| | | | | | | | | | | |
Collapse
|
100
|
Abdel Aziz MT, El-Asmar MF, Rezq AM, Mahfouz SM, Wassef MA, Fouad HH, Ahmed HH, Taha FM. The effect of a novel curcumin derivative on pancreatic islet regeneration in experimental type-1 diabetes in rats (long term study). Diabetol Metab Syndr 2013; 5:75. [PMID: 24279645 PMCID: PMC4176754 DOI: 10.1186/1758-5996-5-75] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 11/07/2013] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Several studies highlight curcumin's benefit as a hypoglycemic agent, however; a limited number of reports present the importance of curcumin in improvement of pancreatic islets in diabetes. The aim of the present study is to evaluate the antidiabetic effect of a novel curcumin derivative and its effect on pancreatic islet regeneration in type I diabetes-induced by STZ. MATERIALS AND METHODS Rats were divided into diabetic rats and diabetic rats treated orally with the novel curcumin derivative (NCD) for 40 days. Fasting blood samples were withdrawn periodically from all rats to estimate plasma glucose, insulin and C-peptide for 10 months. Histopathology was performed to allow the assessment of pancreatic islet morphology. Insulin and CD105 were detected immunohistochemically. RESULTS In diabetic rats, the plasma glucose, insulin and C-peptide levels remained within the diabetic range for about 4 months, after which a gradual decrease in glucose and increase in insulin and C-peptide was observed, which reached almost normal levels after 10 months. NCD treated diabetic rats showed significantly lowered plasma glucose and increased plasma insulin and C-peptide levels. This was followed by a further significant decrease in plasma glucose and increase in plasma insulin and C-peptide after two months from oral administration of the NCD. The plasma insulin and C-peptide continued to increase for ten months reaching levels significantly higher than the basal level. Histopathological examination of diabetic rat pancreas revealed absence of islets of Langerhans, minimal adipose tissue infiltration and localized lymphocytic infiltrates. However, after 6 months of induction of diabetes, rat pancreas showed the appearance of small well formed islets and positive insulin cells but no CD105 positive cells. NCD treated rats showed the appearance of primitive cell collections, large insulin positive cells and CD105 positive cells in the adipose tissue infiltrating the pancreatic tissues. This was followed by the gradual appearance of insulin positive cells in the islets while, CD 105 positive cells remained in the adipose tissue. After 5 and 10 months from the onset of diabetes, rat pancreas showed, well developed larger sized islets with disappearance of primitive cell collections and CD 105 positive cells. Also, insulin positive islets of variable size with disappearance of insulin positive cells in adipose tissue were detected. CONCLUSION The NCD possesses antidiabetic actions and enhanced pancreatic islets regeneration.
Collapse
Affiliation(s)
- Mohamed T Abdel Aziz
- Unit of Biochemistry and Molecular Biology, the Medical Biochemistry Department, Faculty of Medicine, Cairo University, Kasr El Aini, Cairo, Egypt
| | - Mohamed F El-Asmar
- Medical Biochemistry Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Ameen M Rezq
- Unit of Biochemistry and Molecular Biology, the Medical Biochemistry Department, Faculty of Medicine, Cairo University, Kasr El Aini, Cairo, Egypt
| | - Soheir M Mahfouz
- Pathology Department Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed A Wassef
- Unit of Biochemistry and Molecular Biology, the Medical Biochemistry Department, Faculty of Medicine, Cairo University, Kasr El Aini, Cairo, Egypt
| | - Hanan H Fouad
- Unit of Biochemistry and Molecular Biology, the Medical Biochemistry Department, Faculty of Medicine, Cairo University, Kasr El Aini, Cairo, Egypt
| | - Hanan H Ahmed
- Unit of Biochemistry and Molecular Biology, the Medical Biochemistry Department, Faculty of Medicine, Cairo University, Kasr El Aini, Cairo, Egypt
| | - Fatma M Taha
- Unit of Biochemistry and Molecular Biology, the Medical Biochemistry Department, Faculty of Medicine, Cairo University, Kasr El Aini, Cairo, Egypt
| |
Collapse
|