51
|
Harries LW, Ellard S, Jones RWA, Hattersley AT, Bingham C. Abnormal splicing of hepatocyte nuclear factor-1 beta in the renal cysts and diabetes syndrome. Diabetologia 2004; 47:937-42. [PMID: 15085338 DOI: 10.1007/s00125-004-1383-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2003] [Accepted: 01/15/2004] [Indexed: 11/24/2022]
Abstract
AIMS/HYPOTHESIS Mutations in the hepatocyte nuclear factor-1 beta ( HNF-1 beta) gene result in disorders of renal development, typically involving renal cysts and early-onset diabetes (the RCAD syndrome/ MODY5). Sixteen mutations have been reported, including three splicing mutations of the intron 2 splice donor site. Because tissues showing abundant expression (kidney, liver, pancreas, gut, lung and gonads) are not easily accessible for analysis in living subjects, it has previously proven difficult to determine the effect of HNF-1 beta mutations at the mRNA level. This is the aim of the present study. METHODS We have developed a nested RT-PCR assay that exploits the presence of ectopic HNF-1 beta transcripts in Epstein-Barr virus (EBV)-transformed lymphoblastoid cell lines derived from subjects carrying HNF-1 beta splice site mutations. RESULTS We report a fourth mutation of the intron 2 splice donor site, IVS2nt+2insT. Sequence analysis of ectopic HNF-1 beta transcripts showed that both IVS2nt+2insT and IVS2nt+1G>T result in the deletion of exon 2 and are predicted to result in premature termination of the HNF-1 beta protein. Mutant transcripts were less abundant than the normal transcripts but there was no evidence of nonsense-mediated decay. CONCLUSIONS/INTERPRETATION This is the first study to define the pathogenic consequences of mutations within the HNF-1 beta gene by mRNA analysis. This type of approach is a useful and important tool to define mutational mechanisms and determine pathogenicity.
Collapse
Affiliation(s)
- L W Harries
- Molecular Genetics, Institute of Biomedical and Clinical Science, Peninsula Medical School, Exeter, UK
| | | | | | | | | |
Collapse
|
52
|
Pearson ER, Badman MK, Lockwood CR, Clark PM, Ellard S, Bingham C, Hattersley AT. Contrasting diabetes phenotypes associated with hepatocyte nuclear factor-1alpha and -1beta mutations. Diabetes Care 2004; 27:1102-7. [PMID: 15111528 DOI: 10.2337/diacare.27.5.1102] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Mutations in the highly homologous transcription factors hepatocyte nuclear factor (HNF)-1alpha and -1beta cause maturity-onset diabetes of the young types 3 and 5, respectively. Diabetes due to HNF-1alpha mutations is well characterized. However, physiological assessment of the HNF-1beta phenotype is limited. We aimed to test the hypothesis that the diabetes phenotype due to HNF-1beta mutations is similar to that in HNF-1alpha. RESEARCH DESIGN AND METHODS Fasting biochemistry and a tolbutamide-modified intravenous glucose tolerance test (IVGTT) were compared in matched HNF-1beta, HNF-1alpha, type 2 diabetic, and control subjects. Homeostasis model assessment indexes were determined from fasting insulin and glucose. The peak measures for the insulin increment after tolbutamide and for the insulin increment after glucose were determined from the IVGTT. RESULTS The HNF-1beta patients showed a 2.4-fold reduction in insulin sensitivity compared with the HNF-1alpha patients (P = 0.001) with fasting insulin concentrations 2.7-fold higher (P = 0.004). HNF-1beta patients had lower HDL cholesterol (1.17 vs. 1.46 mmol/l; P = 0.009) and higher triglyceride (2.2 vs. 1.35 mmol/l; P = 0.015) levels than HNF-1alpha patients. The HNF-1beta patients had similar beta-cell responses to tolbutamide and glucose as the type 2 diabetic patients, but in the HNF-1alpha patients, the tolbutamide response was considerably increased relative to the response to glucose (P = 0.002). CONCLUSIONS HNF-1beta patients have a different diabetes phenotype than HNF-1alpha patients. Those with HNF-1beta mutations have hyperinsulinemia and associated dyslipidemia consistent with insulin resistance and may have a different beta-cell defect. This suggests that despite considerable homology and a shared binding site, HNF-1alpha and HNF-1beta have a different role in maintaining normal glucose homeostasis. This result suggests a new etiological pathway for insulin resistance involving HNF-1beta.
Collapse
Affiliation(s)
- Ewan R Pearson
- Diabetes and Vascular Medicine, Peninsula Medical School, Exeter, UK
| | | | | | | | | | | | | |
Collapse
|
53
|
Kitanaka S, Miki Y, Hayashi Y, Igarashi T. Promoter-specific repression of hepatocyte nuclear factor (HNF)-1 beta and HNF-1 alpha transcriptional activity by an HNF-1 beta missense mutant associated with Type 5 maturity-onset diabetes of the young with hepatic and biliary manifestations. J Clin Endocrinol Metab 2004; 89:1369-78. [PMID: 15001636 DOI: 10.1210/jc.2003-031308] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mutations in the hepatocyte nuclear factor (HNF)-1 beta lead to type 5 maturity-onset diabetes of the young (MODY5). HNF-1 beta forms a homodimer or a heterodimer with HNF-1 alpha and regulates various target genes. HNF-1 beta mutations are rare, and no functional analysis has been performed in conjunction with HNF-1 alpha. HNF-1 beta is expressed in the liver and biliary system and controls liver-specific and bile acid-related genes. Moreover, liver-specific Hnf-1 beta knockout mice present with severe jaundice. However, no patients with HNF-1 beta mutations have biliary manifestations. In this report, we found a novel missense mutation in the HNF-1 beta gene in a patient with neonatal cholestasis and liver dysfunction together with the common features of MODY5. Functional analysis revealed that the mutant HNF-1 beta had diminished transcriptional activity by loss of the DNA binding activity. The mutant had a promoter-specific dominant-negative transcriptional effect on wild-type HNF- and inhibited its DNA binding. Moreover, the mutant had a promoter- and cell-specific transcriptional repressive effect on HNF-1 alpha and a promoter-specific inhibitory effect on HNF-1 alpha DNA binding. From these results, we considered that the different phenotype of patients with HNF-1 beta mutations might be caused by the different HNF-1 beta activity in conjunction with the different repression of HNF-1 alpha activity in selected promoters and tissues.
Collapse
Affiliation(s)
- Sachiko Kitanaka
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan.
| | | | | | | |
Collapse
|
54
|
Auyeung DJ, Kessler FK, Ritter JK. Differential regulation of alternate UDP-glucuronosyltransferase 1A6 gene promoters by hepatic nuclear factor-1. Toxicol Appl Pharmacol 2003; 191:156-66. [PMID: 12946651 DOI: 10.1016/s0041-008x(03)00230-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
UDP-glucuronosyltransferase 1A6 (UGT1A6) is a major UGT contributing to the glucuronidation of small phenolic compounds. The gene for rat 1A6 is expressed using two promoters, a distal promoter P1 and a proximal promoter P2. Transcripts from P2 are high in liver, gastrointestinal tract, and kidney, whereas P1 transcripts predominate in other tissues. Here we report evidence for primary control of the P2 promoter by hepatic nuclear factor 1 (HNF1). Transient transfection of a P2 reporter plasmid, p(-1354/+65) 1A6P2-luc, resulted in enhanced luciferase activity in HepG2 but not Hepa1 cells compared to cells transfected with pGL3-Basic control vector. A truncated reporter under the control of -224 to +65 exhibited comparable activity. Footprint analysis of the -224/+65 fragment revealed specific binding by rat liver nuclear protein to a region between bases -60 and -37. The binding activity was also observed with HepG2 cell but not Hepa1 cell extract. Electrophoretic mobility shift assays were consistent with the presence of HNF1 in the binding complexes. The functionality of an HNF1-binding site at -51/-37 is also supported by (1) marked decreases in the activity of P2 reporter plasmids containing a three-base substitution in the proposed HNF1 binding site and (2) the enhancement of P2 reporter activity following cotransfection of an HNF1alpha expression plasmid. The UGT1A6 P1 promoter lacks an HNF1 binding site in the analogous position and showed little response to HNF1 overexpression. Although these data do not strictly rule out an interaction between the P1 promoter and HNF1 bound to -51/-37 of P2, the results suggest a mechanism for the more abundant expression of P2-derived UGT1A6 transcripts in liver and other HNF1-enriched tissues.
Collapse
Affiliation(s)
- Diana J Auyeung
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus of Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | |
Collapse
|
55
|
Hong YH, Varanasi US, Yang W, Leff T. AMP-activated protein kinase regulates HNF4alpha transcriptional activity by inhibiting dimer formation and decreasing protein stability. J Biol Chem 2003; 278:27495-501. [PMID: 12740371 DOI: 10.1074/jbc.m304112200] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
AMP-activated protein kinase (AMPK) is the central component of a cellular signaling system that regulates multiple metabolic enzymes and pathways in response to reduced intracellular energy levels. The transcription factor hepatic nuclear factor 4alpha (HNF4alpha) is an orphan nuclear receptor that regulates the expression of genes involved in energy metabolism in the liver, intestine, and endocrine pancreas. Inheritance of a single null allele of HNF4alpha causes diabetes in humans. Here we demonstrate that AMPK directly phosphorylates HNF4alpha and represses its transcriptional activity. AMPK-mediated phosphorylation of HNF4alpha on serine 304 had a 2-fold effect, reducing the ability of the transcription factor to form homodimers and bind DNA and increasing its degradation rate in vivo. These results demonstrate that HNF4alpha is a downstream target of AMPK and raise the possibility that one of the effects of AMPK activation is reduced expression of HNF4alpha target genes.
Collapse
Affiliation(s)
- Yu Holly Hong
- Department of Pathology and the Center for Integrative Metabolic and Endocrine Research, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | |
Collapse
|
56
|
Divine JK, McCaul SP, Simon TC. HNF-1alpha and endodermal transcription factors cooperatively activate Fabpl: MODY3 mutations abrogate cooperativity. Am J Physiol Gastrointest Liver Physiol 2003; 285:G62-72. [PMID: 12646418 DOI: 10.1152/ajpgi.00074.2003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hepatocyte nuclear factor (HNF)-1alpha plays a central role in intestinal and hepatic gene regulation and is required for hepatic expression of the liver fatty acid binding protein gene (Fabpl). An Fabpl transgene was directly activated through cognate sites by HNF-1alpha and HNF-1beta, as well as five other endodermal factors: CDX-1, C/EBPbeta, GATA-4, FoxA2, and HNF-4alpha. HNF-1alpha activated the Fabpl transgene by as much as 60-fold greater in the presence of the other five endodermal factors than in their absence, accounting for up to one-half the total transgene activation by the group of six factors. This degree of synergistic interaction suggests that multifactor cooperativity is a critical determinant of endodermal gene activation by HNF-1alpha. Mutations in HNF-1alpha that result in maturity onset diabetes of the young (MODY3) provide evidence for the in vivo significance of these synergistic interactions. An R131Q HNF-1alpha MODY3 mutant exhibits complete loss of synergistic activation in concert with the other endodermal transcription factors despite wild-type transactivation ability in their absence. Furthermore, whereas wild-type HNF-1alpha exhibited pairwise cooperative synergy with each of the other five factors, the R131Q mutant could synergize only with GATA-4 and C/EBPbeta. Selective loss of synergy with other endodermal transcription factors accompanied by retention of native transactivation ability in an HNF-1alpha MODY mutant suggests in vivo significance for cooperative synergy.
Collapse
Affiliation(s)
- Joyce K Divine
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
57
|
Bingham C, Ellard S, van't Hoff WG, Simmonds HA, Marinaki AM, Badman MK, Winocour PH, Stride A, Lockwood CR, Nicholls AJ, Owen KR, Spyer G, Pearson ER, Hattersley AT. Atypical familial juvenile hyperuricemic nephropathy associated with a hepatocyte nuclear factor-1beta gene mutation. Kidney Int 2003; 63:1645-51. [PMID: 12675839 DOI: 10.1046/j.1523-1755.2003.00903.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Familial juvenile hyperuricemic nephropathy (FJHN) is a dominantly inherited condition characterized by young-onset hyperuricemia, gout, and renal disease. The etiologic genes are unknown, although a locus on chromosome 16 has been identified in some kindreds. Mutations in the gene encoding hepatocyte nuclear factor (HNF)-1beta have been associated with dominant inheritance of a variety of disorders of renal development, particularly renal cystic disease and early onset diabetes; hyperuricemia has been reported in some kindreds. METHODS To assess a possible role for the HNF-1beta gene in some FJHN kindreds we sequenced the HNF-1beta gene in subjects from three unrelated FJHN families with atypical features of renal cysts or abnormalities of renal development. We also compared serum urate levels in subjects with HNF-1beta mutations with populations of controls, type 2 diabetic subjects, and subjects with mild chronic renal failure without HNF-1beta mutations. RESULTS A splice-site mutation in intron 2, designated IVS2+1G>T, showed complete co-segregation with FJHN in one family with diabetes. Serum urate levels were significantly higher in the HNF-1beta subjects compared with the normal control subjects (384 micromol/L vs. 264 micromol/L, P = 0.002) and the type 2 diabetic subjects (397 micromol/L vs. 271 micromol/L, P = 0.01). Comparison of serum urate levels in the HNF-1beta subjects with gender-matched subjects with renal impairment of other causes did not reach significance (402 micromol/L vs. 352 micromol/L, P = 0.2). CONCLUSION Hyperuricemia and young-onset gout are consistent features of the phenotype associated with HNF-1beta mutations, but the mechanism is uncertain. Families with HNF-1beta mutations may fit diagnostic criteria for FJHN. Identification of HNF-1beta patients by recognizing the features of diabetes and disorders of renal development is important in resolving the genetic heterogeneity in FJHN.
Collapse
Affiliation(s)
- Coralie Bingham
- Diabetes and Vascular Medicine, Peninsula Medical School, Exeter, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Wang H, Hagenfeldt-Johansson K, Otten LA, Gauthier BR, Herrera PL, Wollheim CB. Experimental models of transcription factor-associated maturity-onset diabetes of the young. Diabetes 2002; 51 Suppl 3:S333-42. [PMID: 12475772 DOI: 10.2337/diabetes.51.2007.s333] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Six monogenic forms of maturity-onset diabetes of the young (MODY) have been identified to date. Except for MODY2 (glucokinase), all other MODY subtypes have been linked to transcription factors. We have established a MODY3 transgenic model through the beta-cell-targeted expression of dominant-negative HNF-1alpha either constitutively (rat insulin II promoter) or conditionally (Tet-On system). The animals display either overt diabetes or glucose intolerance. Decreased insulin secretion and reduced pancreatic insulin content contribute to the hyperglycemic state. The conditional approach in INS-1 cells helped to define new molecular targets of hepatocyte nuclear factor (HNF)-1alpha. In the cellular system, nutrient-induced insulin secretion was abolished because of impaired glucose metabolism. Conditional suppression of HNF-4alpha, the MODY1 gene, showed a similar phenotype in INS-1 cells to HNF-1alpha. The existence of a regulatory circuit between HNF-4alpha and HNF-1alpha is confirmed in these cell models. The MODY4 gene, IPF-1 (insulin promoter factor-1)/PDX-1 (pancreas duodenum homeobox-1), controls not only the transcription of insulin but also expression of enzymes involved in its processing. Suppression of Pdx-1 function in INS-1 cells does not alter glucose metabolism but rather inhibits insulin release by impairing steps distal to the generation of mitochondrial coupling factors. The presented experimental models are important tools for the elucidation of the beta-cell pathogenesis in MODY syndromes.
Collapse
Affiliation(s)
- Haiyan Wang
- Department of Internal Medicine, Division of Clinical Biochemistry, University Medical Centre, Geneva, Switzerland
| | | | | | | | | | | |
Collapse
|
59
|
Montoli A, Colussi G, Massa O, Caccia R, Rizzoni G, Civati G, Barbetti F. Renal cysts and diabetes syndrome linked to mutations of the hepatocyte nuclear factor-1 beta gene: description of a new family with associated liver involvement. Am J Kidney Dis 2002; 40:397-402. [PMID: 12148114 DOI: 10.1053/ajkd.2002.34538] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Mutations in the hepatocyte nuclear factor (HNF)-1beta gene (TCF2) are responsible for a syndrome characterized by maturity-onset diabetes of the young, a nondiabetic renal disease, genital malformations, and liver dysfunction. METHODS The HNF-1beta gene was screened for mutations in four members of an Italian family with early-onset, nonketotic diabetes or a familiar, nondiabetic renal disease and nonprogressive liver disorder. RESULTS The genetic analysis revealed an already described nonsense mutation in codon 177 of HNF-1beta gene (R177X) in the four related subjects. Clinical features included diabetes in three of four patients, monolateral renal hypoplasia with cysts in the controlateral kidney in two patients, and bilaterally small hyperechoic kidneys without cysts in the other two patients. Renal function impairment was severe in one patient, requiring dialysis treatment, and mild in three. Three patients had nonprogressive liver dysfunction, with long-lasting enzyme alterations but no liver insufficiency or jaundice. CONCLUSION HNF-1beta gene mutations are associated with a wide variability in severity and pattern of clinical symptoms within the same kindred regarding diabetes and renal impairment. Moderate liver dysfunction may be a so far overlooked component of the syndrome.
Collapse
|
60
|
Golling G, Amsterdam A, Sun Z, Antonelli M, Maldonado E, Chen W, Burgess S, Haldi M, Artzt K, Farrington S, Lin SY, Nissen RM, Hopkins N. Insertional mutagenesis in zebrafish rapidly identifies genes essential for early vertebrate development. Nat Genet 2002; 31:135-40. [PMID: 12006978 DOI: 10.1038/ng896] [Citation(s) in RCA: 422] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
To rapidly identify genes required for early vertebrate development, we are carrying out a large-scale, insertional mutagenesis screen in zebrafish, using mouse retroviral vectors as the mutagen. We will obtain mutations in 450 to 500 different genes--roughly 20% of the genes that can be mutated to produce a visible embryonic phenotype in this species--and will clone the majority of the mutated alleles. So far, we have isolated more than 500 insertional mutants. Here we describe the first 75 insertional mutants for which the disrupted genes have been identified. In agreement with chemical mutagenesis screens, approximately one-third of the mutants have developmental defects that affect primarily one or a small number of organs, body shape or swimming behavior; the rest of the mutants show more widespread or pleiotropic abnormalities. Many of the genes we identified have not been previously assigned a biological role in vivo. Roughly 20% of the mutants result from lesions in genes for which the biochemical and cellular function of the proteins they encode cannot be deduced with confidence, if at all, from their predicted amino-acid sequences. All of the genes have either orthologs or clearly related genes in human. These results provide an unbiased view of the genetic construction kit for a vertebrate embryo, reveal the diversity of genes required for vertebrate development and suggest that hundreds of genes of unknown biochemical function essential for vertebrate development have yet to be identified.
Collapse
Affiliation(s)
- Gregory Golling
- Center for Cancer Research and Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Coffinier C, Gresh L, Fiette L, Tronche F, Schütz G, Babinet C, Pontoglio M, Yaniv M, Barra J. Bile system morphogenesis defects and liver dysfunction upon targeted deletion of HNF1β. Development 2002; 129:1829-38. [PMID: 11934849 DOI: 10.1242/dev.129.8.1829] [Citation(s) in RCA: 224] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The inactivation of the Hnf1β gene identified an essential role in epithelial differentiation of the visceral endoderm and resulted in early embryonic death. In the present study, we have specifically inactivated this gene in hepatocytes and bile duct cells using the Cre/loxP system. Mutant animals exhibited severe jaundice caused by abnormalities of the gallbladder and intrahepatic bile ducts (IHBD). The paucity of small IHBD was linked to a failure in the organization of duct structures during liver organogenesis, suggesting an essential function of Hnf1b in bile duct morphogenesis. Mutant mice also lacked interlobular arteries. As HNF1β is not expressed in these cells, it further emphasizes the link between arterial and biliary formation. Hepatocyte metabolism was also affected and we identified hepatocyte-specific HNF1β target genes involved in bile acids sensing and in fatty acid oxidation.
Collapse
Affiliation(s)
- Catherine Coffinier
- Unité des Virus Oncogènes-CNRS URA 1644, Institut Pasteur, 25, rue du Docteur Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Bingham C, Ellard S, Cole TRP, Jones KE, Allen LIS, Goodship JA, Goodship THJ, Bakalinova-Pugh D, Russell GI, Woolf AS, Nicholls AJ, Hattersley AT. Solitary functioning kidney and diverse genital tract malformations associated with hepatocyte nuclear factor-1beta mutations. Kidney Int 2002; 61:1243-51. [PMID: 11918730 DOI: 10.1046/j.1523-1755.2002.00272.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Renal tract malformations are, on occasion, associated with uterine malformations. The transcription factor hepatocyte nuclear factor (HNF)-1beta is expressed from the earliest stages of development of the Wolffian duct, the mesonephros and metanephros, and the Müllerian ducts in the mouse. In adult mice HNF-1beta is expressed in the kidney tubules, collecting ducts, and in the oviducts and uterus in the female (Müllerian duct derivatives) and in the epididymis, vas deferens and seminal vesicles (Wolffian duct derivatives) in the male. HNF-1beta mutations have been reported in two families where affected members have renal abnormalities, female genital tract malformations and early-onset diabetes. Renal and uterine abnormalities have not been described in families without early-onset diabetes. METHODS We sequenced the HNF-1beta gene in nine subjects with renal abnormalities and a personal or family history of female genital tract malformations, but no history of diabetes. RESULTS Two families were identified with novel HNF-1beta mutations: a missense mutation in exon 2 with conversion of serine to proline at codon 151 (S151P) and a frameshift mutation in exon 3 with a 1 base pair deletion at codon 243 (Q243fsdelC). The S151P mutation proband has cystic kidneys and uterus didelphys. Her affected second son has renal cysts and hypospadias. The Q243fsdelC proband has a single functioning kidney and her two children have renal dysplasia. Histology in one child shows cystic dysplasia with a lack of glomeruli. The proband's sister is a mutation carrier and has a bicornuate uterus. Diabetes is not a feature in either family. CONCLUSIONS This study confirms an association between HNF-1beta mutations and renal and Müllerian anomalies. The hypospadias may be coincidental. This study describes the first HNF-1beta mutations that are associated with a single functioning kidney and the absence of diabetes. This study further reinforces the variability of the renal and non-renal phenotypes associated with HNF-1beta mutations.
Collapse
Affiliation(s)
- Coralie Bingham
- Department of Vascular Medicine and Diabetes Research, School of Postgraduate Medicine and Health Sciences, University of Exeter, Devon, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Abstract
The pancreas, as most of the digestive tract, derives from the endoderm. Differentiation of these early gut endoderm cells into the endocrine cells forming the pancreatic islets of Langerhans depends on a cascade of gene activation events. These are controlled by different classes of transcription factors including the homeodomain, the basic helix-loop-helix (bHLH) and the winged helix proteins. Recently, considerable progress has been made delineating this cascade. The present review focuses on the role of the different transcription factors during pancreas development, with a particular emphasis on the newly identified bHLH transcription factor neurogenin3.
Collapse
Affiliation(s)
- V M Schwitzgebel
- Division of Pediatric Endocrinology and Diabetology, Hôpital des Enfants, University of Geneva, 6, rue Willi Donzé, CH-1211 Geneva, Switzerland.
| |
Collapse
|
64
|
Hagenfeldt-Johansson KA, Herrera PL, Wang H, Gjinovci A, Ishihara H, Wollheim CB. Beta-cell-targeted expression of a dominant-negative hepatocyte nuclear factor-1 alpha induces a maturity-onset diabetes of the young (MODY)3-like phenotype in transgenic mice. Endocrinology 2001; 142:5311-20. [PMID: 11713231 DOI: 10.1210/endo.142.12.8592] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mutations in the transcription factor hepatocyte nuclear factor-1 alpha (HNF-1 alpha) cause maturity-onset diabetes of the young 3, a severe form of diabetes characterized by pancreatic beta-cell dysfunction. We have used targeted expression of a dominant-negative mutant of HNF-1 alpha to specifically suppress HNF-1 alpha function in beta-cells of transgenic mice. We show that males expressing the mutant protein became overtly diabetic within 6 wk of age, whereas females displayed glucose intolerance. Transgenic males exhibited impaired glucose-stimulated insulin secretion, detected both in vivo and in the perfused pancreas. Pancreatic insulin content was markedly decreased in diabetic animals, whereas the glucagon content was increased. Postnatal islet development was altered, with an increased alpha-cell to beta-cell ratio. beta-Cell ultrastructure showed signs of severe beta-cell damage, including mitochondrial swelling. This animal model of maturity-onset diabetes of the young 3 should be useful for the further elucidation of the mechanism by which HNF-1 alpha deficiency causes beta-cell dysfunction in this disease.
Collapse
Affiliation(s)
- K A Hagenfeldt-Johansson
- Division of Clinical Biochemistry, Department of Internal Medicine, University Medical Center, 1211 Geneva 4, Switzerland
| | | | | | | | | | | |
Collapse
|
65
|
Fajans SS, Bell GI, Polonsky KS. Molecular mechanisms and clinical pathophysiology of maturity-onset diabetes of the young. N Engl J Med 2001; 345:971-80. [PMID: 11575290 DOI: 10.1056/nejmra002168] [Citation(s) in RCA: 667] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- S S Fajans
- Department of Internal Medicine, University of Michigan Health System, Ann Arbor, USA.
| | | | | |
Collapse
|
66
|
Nishigori H, Tomura H, Tonooka N, Kanamori M, Yamada S, Sho K, Inoue I, Kikuchi N, Onigata K, Kojima I, Kohama T, Yamagata K, Yang Q, Matsuzawa Y, Miki T, Seino S, Kim MY, Choi HS, Lee YK, Moore DD, Takeda J. Mutations in the small heterodimer partner gene are associated with mild obesity in Japanese subjects. Proc Natl Acad Sci U S A 2001; 98:575-80. [PMID: 11136233 PMCID: PMC14629 DOI: 10.1073/pnas.98.2.575] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mutations in several genes encoding transcription factors of the hepatocyte nuclear factor (HNF) cascade are associated with maturity-onset diabetes of the young (MODY), a monogenic form of early-onset diabetes mellitus. The ability of the orphan nuclear receptor small heterodimer partner (SHP, NR0B2) to modulate the transcriptional activity of MODY1 protein, the nuclear receptor HNF-4alpha, suggested SHP as a candidate MODY gene. We screened 173 unrelated Japanese subjects with early-onset diabetes for mutations in this gene and found five different mutations (H53fsdel10, L98fsdel9insAC, R34X, A195S, and R213C) in 6 subjects as well as one apparent polymorphism (R216H), all present in the heterozygous state. Interestingly, all of the subjects with the mutations were mildly or moderately obese at onset of diabetes, and analysis of the lineages of these individuals indicated that the SHP mutations were associated with obesity rather than with diabetes. Therefore, an additional group of 101 unrelated nondiabetic subjects with early-onset obesity was screened for mutations in the SHP gene. Two of the previously observed mutations (R34X and A195S) and two additional mutations (R57W and G189E) were identified in 6 subjects, whereas no mutations were identified in 116 young nondiabetic lean controls (P = 0.0094). Functional studies of the mutant proteins show that the mutations result in the loss of SHP activity. These results suggest that genetic variation in the SHP gene contributes to increased body weight and reveal a pathway leading to this common metabolic disorder in Japanese.
Collapse
MESH Headings
- Adolescent
- Adult
- Age of Onset
- Amino Acid Substitution
- Basic Helix-Loop-Helix Leucine Zipper Transcription Factors
- Birth Weight/genetics
- Body Weight/genetics
- Child
- Chromosomes, Human, Pair 1/genetics
- Comorbidity
- DNA Mutational Analysis
- DNA-Binding Proteins
- Diabetes Mellitus, Type 2/epidemiology
- Diabetes Mellitus, Type 2/ethnology
- Diabetes Mellitus, Type 2/genetics
- Female
- Gene Expression Regulation
- Genes, Dominant
- Genes, Recessive
- Genetic Predisposition to Disease
- Hepatocyte Nuclear Factor 4
- Heterozygote
- Humans
- Hyperinsulinism/epidemiology
- Hyperinsulinism/ethnology
- Hyperinsulinism/genetics
- Japan/epidemiology
- Lod Score
- Male
- Middle Aged
- Mutation, Missense
- Obesity/epidemiology
- Obesity/ethnology
- Obesity/genetics
- Pedigree
- Phosphoproteins/physiology
- Point Mutation
- Polymorphism, Genetic
- Receptors, Cytoplasmic and Nuclear/genetics
- Transcription Factors/physiology
- Transcriptional Activation
- Transfection
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- H Nishigori
- Laboratories of Molecular Genetics and Cell Physiology, Department of Cell Biology, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Mutations in the small heterodimer partner gene are associated with mild obesity in Japanese subjects. Proc Natl Acad Sci U S A 2001. [PMID: 11136233 PMCID: PMC14629 DOI: 10.1073/pnas.021544398] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mutations in several genes encoding transcription factors of the hepatocyte nuclear factor (HNF) cascade are associated with maturity-onset diabetes of the young (MODY), a monogenic form of early-onset diabetes mellitus. The ability of the orphan nuclear receptor small heterodimer partner (SHP, NR0B2) to modulate the transcriptional activity of MODY1 protein, the nuclear receptor HNF-4alpha, suggested SHP as a candidate MODY gene. We screened 173 unrelated Japanese subjects with early-onset diabetes for mutations in this gene and found five different mutations (H53fsdel10, L98fsdel9insAC, R34X, A195S, and R213C) in 6 subjects as well as one apparent polymorphism (R216H), all present in the heterozygous state. Interestingly, all of the subjects with the mutations were mildly or moderately obese at onset of diabetes, and analysis of the lineages of these individuals indicated that the SHP mutations were associated with obesity rather than with diabetes. Therefore, an additional group of 101 unrelated nondiabetic subjects with early-onset obesity was screened for mutations in the SHP gene. Two of the previously observed mutations (R34X and A195S) and two additional mutations (R57W and G189E) were identified in 6 subjects, whereas no mutations were identified in 116 young nondiabetic lean controls (P = 0.0094). Functional studies of the mutant proteins show that the mutations result in the loss of SHP activity. These results suggest that genetic variation in the SHP gene contributes to increased body weight and reveal a pathway leading to this common metabolic disorder in Japanese.
Collapse
|
68
|
Wang H, Antinozzi PA, Hagenfeldt KA, Maechler P, Wollheim CB. Molecular targets of a human HNF1 alpha mutation responsible for pancreatic beta-cell dysfunction. EMBO J 2000; 19:4257-64. [PMID: 10944108 PMCID: PMC302029 DOI: 10.1093/emboj/19.16.4257] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The reverse tetracycline-dependent transactivator system was employed in insulinoma INS-1 cells to achieve controlled inducible expression of hepatocyte nuclear factor-1 alpha (HNF1 alpha)-P291fsinsC, the most common mutation associated with subtype 3 of maturity-onset diabetes of the young (MODY3). Nuclear localized HNF1 alpha-P291fsinsC protein exerts its dominant-negative effects by competing with endogenous HNF1 alpha for the cognate DNA-binding site. HNF1 alpha controls multiple genes implicated in pancreatic beta-cell function and notably in metabolism- secretion coupling. In addition to reduced expression of the genes encoding insulin, glucose transporter-2, L-pyruvate kinase, aldolase B and 3-hydroxy-3-methylglutaryl coenzyme A reductase, induction of HNF1 alpha-P291fsinsC also significantly inhibits expression of mitochondrial 2-oxoglutarate dehydrogenase (OGDH) E1 subunit mRNA and protein. OGDH enzyme activity and [(14)C]pyruvate oxidation were also reduced. In contrast, the mRNA and protein levels of mitochondrial uncoupling protein-2 were dramatically increased by HNF1 alpha-P291fsinsC induction. As predicted from this altered gene expression profile, HNF1 alpha-P291fsinsC also inhibits insulin secretory responses to glucose and leucine, correlated with impaired nutrient-evoked mitochondrial ATP production and mitochondrial membrane hyperpolarization. These unprecedented results suggest the molecular mechanism of HNF1 alpha-P291fsinsC causing beta-cell dysfunction.
Collapse
Affiliation(s)
- H Wang
- Division de Biochimie Clinique et de Diabétologie Expérimentale, Départment de Médecine interne, Centre Médical Universitaire, CH-1211 Geneva 4, Switzerland
| | | | | | | | | |
Collapse
|
69
|
Abstract
Maturity onset diabetes of youth (MODY) occurs in children, adolescents and young adults as a non-insulin-requiring form of diabetes mellitus that is inherited as an autosomal dominant trait. Maturity onset diabetes of youth in whites presents subtly similar to type 2 diabetes in adults. In contrast, a MODY variant that occurs in young blacks, termed atypical diabetes mellitus, presents as an acute-onset form of diabetes. Months to years after diagnosis, atypical diabetes mellitus reverts to a noninsulin requiring course similar to MODY in whites. Five molecular causes for MODY have been identified: mutations in four transcription factors and mutations in one enzyme (glucokinase). Transcription factors regulate gene expression within cells. Mutations in hepatocyte nuclear factor-4alpha, hepatocyte nuclear factor-1alpha, insulin promoter factor-1 and hepatocyte nuclear factor-1beta, respectively, cause MODY1, MODY3, MODY4, and MODY5. Glucokinase is the glucosensor of the beta cell. MODY2 is caused by glucokinase mutations. Although testing for MODY mutations is only available in research laboratories, a careful history and review of the patient's clinical course can often allow the clinician to diagnose MODY. The diagnosis of MODY has implications for the clinical management of the patient's diabetes.
Collapse
Affiliation(s)
- W E Winter
- Department of Pathology, Immunology, & Laboratory Medicine, University of Florida, College of Medicine, Gainesville 32610-0275, USA
| | | |
Collapse
|