51
|
Campagnini S, Liuzzi P, Mannini A, Riener R, Carrozza MC. Effects of control strategies on gait in robot-assisted post-stroke lower limb rehabilitation: a systematic review. J Neuroeng Rehabil 2022; 19:52. [PMID: 35659703 PMCID: PMC9166346 DOI: 10.1186/s12984-022-01031-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 05/18/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Stroke related motor function deficits affect patients' likelihood of returning to professional activities, limit their participation in society and functionality in daily living. Hence, robot-aided gait rehabilitation needs to be fruitful and effective from a motor learning perspective. For this reason, optimal human-robot interaction strategies are necessary to foster neuroplastic shaping during therapy. Therefore, we performed a systematic search on the effects of different control algorithms on quantitative objective gait parameters of post-acute stroke patients. METHODS We conducted a systematic search on four electronic databases using the Population Intervention Comparison and Outcome format. The heterogeneity of performance assessment, study designs and patients' numerosity prevented the possibility to conduct a rigorous meta-analysis, thus, the results were presented through narrative synthesis. RESULTS A total of 31 studies (out of 1036) met the inclusion criteria, without applying any temporal constraints. No controller preference with respect to gait parameters improvements was found. However, preferred solutions were encountered in the implementation of force control strategies mostly on rigid devices in therapeutic scenarios. Conversely, soft devices, which were all position-controlled, were found to be more commonly used in assistive scenarios. The effect of different controllers on gait could not be evaluated since conspicuous heterogeneity was found for both performance metrics and study designs. CONCLUSIONS Overall, due to the impossibility of performing a meta-analysis, this systematic review calls for an outcome standardisation in the evaluation of robot-aided gait rehabilitation. This could allow for the comparison of adaptive and human-dependent controllers with conventional ones, identifying the most suitable control strategies for specific pathologic gait patterns. This latter aspect could bolster individualized and personalized choices of control strategies during the therapeutic or assistive path.
Collapse
Affiliation(s)
- Silvia Campagnini
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via di Scandicci 269, 50143, Firenze, FI, Italy
- Istituto di BioRobotica, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, 56025, Pontedera, PI, Italy
| | - Piergiuseppe Liuzzi
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via di Scandicci 269, 50143, Firenze, FI, Italy.
- Istituto di BioRobotica, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, 56025, Pontedera, PI, Italy.
| | - Andrea Mannini
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via di Scandicci 269, 50143, Firenze, FI, Italy
| | - Robert Riener
- ETH Zurich, Rämistrasse 101, 8092 CH, Zürich, Switzerland
- Balgrist University Hospital, Forchstrasse 340, 8008 CH, Zürich, Switzerland
| | - Maria Chiara Carrozza
- Istituto di BioRobotica, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, 56025, Pontedera, PI, Italy
| |
Collapse
|
52
|
Øverberg LT, Lugg EF, Gaarder M, Langhammer B, Thommessen B, Rønning OM, Morland C. Plasma levels of BDNF and EGF are reduced in acute stroke patients. Heliyon 2022; 8:e09661. [PMID: 35756121 PMCID: PMC9218156 DOI: 10.1016/j.heliyon.2022.e09661] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/22/2022] [Accepted: 05/31/2022] [Indexed: 12/22/2022] Open
Abstract
Stroke affects almost 14 million people worldwide each year. It is the second leading cause of death and a major cause of acquired disability. The degree of initial impairment in cognitive and motor functions greatly affects the recovery, but idiosyncratic factors also contribute. These are largely unidentified, which contributes to making accurate prediction of recovery challenging. Release of soluble regulators of neurotoxicity, neuroprotection and repair are presumably essential. Here we measured plasma levels of known regulators of neuroprotection and repair in patients with mild acute ischemic stroke and compared them to the plasma levels in healthy age and gender matched controls. We found that the levels of BDNF and EGF were substantially lower in stroke patients than in healthy controls, while the levels of bFGF and irisin did not differ between the groups. The lower levels of growth factors highlight that during the acute phase of stroke, there is a mismatch between the need for neuroprotection and repair, and the brain's ability to induce these processes. Large individual differences in growth factor levels were seen among the stroke patients, but whether these can be used as predictors of long-term prognosis remains to be investigated.
Collapse
Affiliation(s)
- Linda Thøring Øverberg
- Department of Behavioral Sciences, Faculty of Health Sciences, OsloMet-Oslo Metropolitan University, Oslo, Norway.,Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, The Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Elise Fritsch Lugg
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, The Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Mona Gaarder
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, The Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Birgitta Langhammer
- Department of Physiotherapy, Faculty of Health Sciences, OsloMet-Oslo Metropolitan University, Oslo, Norway.,Research Department, Sunnaas Rehabilitation Hospital, Nesoddtangen, Norway
| | - Bente Thommessen
- Department of Neurology, Division of Medicine, Akershus University Hospital, Lørenskog, Norway
| | - Ole Morten Rønning
- Department of Neurology, Division of Medicine, Akershus University Hospital, Lørenskog, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Cecilie Morland
- Department of Behavioral Sciences, Faculty of Health Sciences, OsloMet-Oslo Metropolitan University, Oslo, Norway.,Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, The Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
53
|
Evans NH, Suri C, Field-Fote EC. Walking and Balance Outcomes Are Improved Following Brief Intensive Locomotor Skill Training but Are Not Augmented by Transcranial Direct Current Stimulation in Persons With Chronic Spinal Cord Injury. Front Hum Neurosci 2022; 16:849297. [PMID: 35634208 PMCID: PMC9130633 DOI: 10.3389/fnhum.2022.849297] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/25/2022] [Indexed: 11/30/2022] Open
Abstract
Motor training to improve walking and balance function is a common aspect of rehabilitation following motor-incomplete spinal cord injury (MISCI). Evidence suggests that moderate- to high-intensity exercise facilitates neuroplastic mechanisms that support motor skill acquisition and learning. Furthermore, enhancing corticospinal drive via transcranial direct current stimulation (tDCS) may augment the effects of motor training. In this pilot study, we investigated whether a brief moderate-intensity locomotor-related motor skill training (MST) circuit, with and without tDCS, improved walking and balance outcomes in persons with MISCI. In addition, we examined potential differences between within-day (online) and between-day (offline) effects of MST. Twenty-six adults with chronic MISCI, who had some walking ability, were enrolled in a 5-day double-blind, randomized study with a 3-day intervention period. Participants were assigned to an intensive locomotor MST circuit and concurrent application of either sham tDCS (MST+tDCSsham) or active tDCS (MST+tDCS). The primary outcome was overground walking speed measured during the 10-meter walk test. Secondary outcomes included spatiotemporal gait characteristics (cadence and stride length), peak trailing limb angle (TLA), intralimb coordination (ACC), the Berg Balance Scale (BBS), and the Falls Efficacy Scale-International (FES-I) questionnaire. Analyses revealed a significant effect of the MST circuit, with improvements in walking speed, cadence, bilateral stride length, stronger limb TLA, weaker limb ACC, BBS, and FES-I observed in both the MST+tDCSsham and MST+tDCS groups. No differences in outcomes were observed between groups. Between-day change accounted for a greater percentage of the overall change in walking outcomes. In persons with MISCI, brief intensive MST involving a circuit of ballistic, cyclic locomotor-related skill activities improved walking outcomes, and selected strength and balance outcomes; however, concurrent application of tDCS did not further enhance the effects of MST.
Collapse
Affiliation(s)
- Nicholas H. Evans
- Shepherd Center, Crawford Research Institute, Atlanta, GA, United States
- Department of Applied Physiology, Georgia Institute of Technology, Atlanta, GA, United States
| | - Cazmon Suri
- Shepherd Center, Crawford Research Institute, Atlanta, GA, United States
| | - Edelle C. Field-Fote
- Shepherd Center, Crawford Research Institute, Atlanta, GA, United States
- Department of Applied Physiology, Georgia Institute of Technology, Atlanta, GA, United States
- Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA, United States
- *Correspondence: Edelle C. Field-Fote,
| |
Collapse
|
54
|
Pickersgill JW, Turco CV, Ramdeo K, Rehsi RS, Foglia SD, Nelson AJ. The Combined Influences of Exercise, Diet and Sleep on Neuroplasticity. Front Psychol 2022; 13:831819. [PMID: 35558719 PMCID: PMC9090458 DOI: 10.3389/fpsyg.2022.831819] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/25/2022] [Indexed: 12/11/2022] Open
Abstract
Neuroplasticity refers to the brain's ability to undergo structural and functional adaptations in response to experience, and this process is associated with learning, memory and improvements in cognitive function. The brain's propensity for neuroplasticity is influenced by lifestyle factors including exercise, diet and sleep. This review gathers evidence from molecular, systems and behavioral neuroscience to explain how these three key lifestyle factors influence neuroplasticity alone and in combination with one another. This review collected results from human studies as well as animal models. This information will have implications for research, educational, fitness and neurorehabilitation settings.
Collapse
Affiliation(s)
| | - Claudia V. Turco
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Karishma Ramdeo
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Ravjot S. Rehsi
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Stevie D. Foglia
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
| | - Aimee J. Nelson
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
55
|
Berlet R, Galang Cabantan DA, Gonzales-Portillo D, Borlongan CV. Enriched Environment and Exercise Enhance Stem Cell Therapy for Stroke, Parkinson’s Disease, and Huntington’s Disease. Front Cell Dev Biol 2022; 10:798826. [PMID: 35309929 PMCID: PMC8927702 DOI: 10.3389/fcell.2022.798826] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/01/2022] [Indexed: 12/12/2022] Open
Abstract
Stem cells, specifically embryonic stem cells (ESCs), mesenchymal stem cells (MSCs), induced pluripotent stem cells (IPSCs), and neural progenitor stem cells (NSCs), are a possible treatment for stroke, Parkinson’s disease (PD), and Huntington’s disease (HD). Current preclinical data suggest stem cell transplantation is a potential treatment for these chronic conditions that lack effective long-term treatment options. Finding treatments with a wider therapeutic window and harnessing a disease-modifying approach will likely improve clinical outcomes. The overarching concept of stem cell therapy entails the use of immature cells, while key in recapitulating brain development and presents the challenge of young grafted cells forming neural circuitry with the mature host brain cells. To this end, exploring strategies designed to nurture graft-host integration will likely enhance the reconstruction of the elusive neural circuitry. Enriched environment (EE) and exercise facilitate stem cell graft-host reconstruction of neural circuitry. It may involve at least a two-pronged mechanism whereby EE and exercise create a conducive microenvironment in the host brain, allowing the newly transplanted cells to survive, proliferate, and differentiate into neural cells; vice versa, EE and exercise may also train the transplanted immature cells to learn the neurochemical, physiological, and anatomical signals in the brain towards better functional graft-host connectivity.
Collapse
Affiliation(s)
- Reed Berlet
- Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | | | | | - Cesar V. Borlongan
- Center of Excellence for Aging and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- *Correspondence: Cesar V. Borlongan,
| |
Collapse
|
56
|
Carè M, Averna A, Barban F, Semprini M, De Michieli L, Nudo RJ, Guggenmos DJ, Chiappalone M. The impact of closed-loop intracortical stimulation on neural activity in brain-injured, anesthetized animals. Bioelectron Med 2022; 8:4. [PMID: 35220964 PMCID: PMC8883660 DOI: 10.1186/s42234-022-00086-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/27/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Acquired brain injuries, such as stroke, are a major cause of long-term disability worldwide. Intracortical microstimulation (ICMS) can be used successfully to assist in guiding appropriate connections to restore lost sensorimotor integration. Activity-Dependent Stimulation (ADS) is a specific type of closed-loop ICMS that aims at coupling the activity of two different brain regions by stimulating one in response to activity in the other. Recently, ADS was used to effectively promote behavioral recovery in rodent models following a unilateral traumatic brain injury in the primary motor cortex. While behavioral benefits have been described, the neurophysiological changes in spared areas in response to this type of stimulation have not been fully characterized. Here we explored how single-unit spiking activity is impacted by a focal ischemic lesion and, subsequently, by an ADS treatment. METHODS Intracortical microelectrode arrays were implanted in the ipsilesional rostral forelimb area (RFA) to record spike activity and to trigger intracortical microstimulation in the primary somatosensory area (S1) of anaesthetized Long Evans rats. An ischemic injury was induced in the caudal forelimb area through microinjections of Endothelin-1. Activity from both RFA and S1 was recorded and analyzed off-line by evaluating possible changes, either induced by the lesion in the Control group or by stimulation in the ADS group. RESULTS We found that the ischemic lesion in the motor area led to an overall increase in spike activity within RFA and a decrease in S1 with respect to the baseline condition. Subsequent treatment with ADS increased the firing rate in both RFA and S1. Post-stimulation spiking activity was significantly higher compared to pre-stimulation activity in the ADS animals versus non-stimulated controls. Moreover, stimulation promoted the generation of highly synchronized bursting patterns in both RFA and S1 only in the ADS group. CONCLUSIONS This study describes the impact on single-unit activity in ipsilesional areas immediately following a cortical infarct and demonstrates that application of ADS is effective in altering this activity.
Collapse
Affiliation(s)
- Marta Carè
- Rehab Technologies, Istituto Italiano di Tecnologia, 16163, Genoa, Italy
- Department of Informatics, Bioengineering, Robotics System Engineering (DIBRIS), University of Genova, 16145, Genoa, Italy
| | - Alberto Averna
- Rehab Technologies, Istituto Italiano di Tecnologia, 16163, Genoa, Italy
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142, Milan, Italy
| | - Federico Barban
- Rehab Technologies, Istituto Italiano di Tecnologia, 16163, Genoa, Italy
- Department of Informatics, Bioengineering, Robotics System Engineering (DIBRIS), University of Genova, 16145, Genoa, Italy
| | - Marianna Semprini
- Rehab Technologies, Istituto Italiano di Tecnologia, 16163, Genoa, Italy
| | | | - Randolph J Nudo
- Department of Rehabilitation Medicine, University of Kansas Medical Center, Kansas City, 66160, USA
- Landon Center on Aging, University of Kansas Medical Center, Kansas, 66160, USA
| | - David J Guggenmos
- Department of Rehabilitation Medicine, University of Kansas Medical Center, Kansas City, 66160, USA.
- Landon Center on Aging, University of Kansas Medical Center, Kansas, 66160, USA.
| | - Michela Chiappalone
- Rehab Technologies, Istituto Italiano di Tecnologia, 16163, Genoa, Italy.
- Department of Informatics, Bioengineering, Robotics System Engineering (DIBRIS), University of Genova, 16145, Genoa, Italy.
| |
Collapse
|
57
|
Huang CY, Chiang WC, Yeh YC, Fan SC, Yang WH, Kuo HC, Li PC. Effects of virtual reality-based motor control training on inflammation, oxidative stress, neuroplasticity and upper limb motor function in patients with chronic stroke: a randomized controlled trial. BMC Neurol 2022; 22:21. [PMID: 35016629 PMCID: PMC8751278 DOI: 10.1186/s12883-021-02547-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/28/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Immersive virtual reality (VR)-based motor control training (VRT) is an innovative approach to improve motor function in patients with stroke. Currently, outcome measures for immersive VRT mainly focus on motor function. However, serum biomarkers help detect precise and subtle physiological changes. Therefore, this study aimed to identify the effects of immersive VRT on inflammation, oxidative stress, neuroplasticity and upper limb motor function in stroke patients. METHODS Thirty patients with chronic stroke were randomized to the VRT or conventional occupational therapy (COT) groups. Serum biomarkers including interleukin 6 (IL-6), intracellular adhesion molecule 1 (ICAM-1), heme oxygenase 1 (HO-1), 8-hydroxy-2-deoxyguanosine (8-OHdG), and brain-derived neurotrophic factor (BDNF) were assessed to reflect inflammation, oxidative stress and neuroplasticity. Clinical assessments including active range of motion of the upper limb and the Fugl-Meyer Assessment for upper extremity (FMA-UE) were also used. Two-way mixed analyses of variance (ANOVAs) were used to examine the effects of the intervention (VRT and COT) and time on serum biomarkers and upper limb motor function. RESULTS We found significant time effects in serum IL-6 (p = 0.010), HO-1 (p = 0.002), 8-OHdG (p = 0.045), and all items/subscales of the clinical assessments (ps < 0.05), except FMA-UE-Coordination/Speed (p = 0.055). However, significant group effects existed only in items of the AROM-Elbow Extension (p = 0.007) and AROM-Forearm Pronation (p = 0.048). Moreover, significant interactions between time and group existed in item/subscales of FMA-UE-Shoulder/Elbow/Forearm (p = 0.004), FMA-UE-Total score (p = 0.008), and AROM-Shoulder Flexion (p = 0.001). CONCLUSION This was the first study to combine the effectiveness of immersive VRT using serum biomarkers as outcome measures. Our study demonstrated promising results that support the further application of commercial and immersive VR technologies in patients with chronic stroke.
Collapse
Affiliation(s)
- Chien-Yu Huang
- Department of Occupational Therapy, I-Shou University, Yanchao Dist., Kaohsiung, 824, Taiwan, R.O.C.,School of Occupational Therapy, National Taiwan University, Zhongzheng Dist., Taipei, 100, Taiwan, R.O.C
| | - Wei-Chi Chiang
- Department of Occupational Therapy, I-Shou University, Yanchao Dist., Kaohsiung, 824, Taiwan, R.O.C
| | - Ya-Chin Yeh
- Department of Occupational Therapy, Shu-Zen Junior College of Medicine and Management, Kaohsiung, 741, Taiwan, R.O.C.,Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan, R.O.C
| | - Shih-Chen Fan
- Department of Occupational Therapy, I-Shou University, Yanchao Dist., Kaohsiung, 824, Taiwan, R.O.C
| | - Wan-Hsien Yang
- Tan-Chi International Technology Co., Ltd, 824, Kaohsiung, Taiwan, R.O.C
| | - Ho-Chang Kuo
- Kawasaki Disease Center and Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 824, Taiwan R.O.C
| | - Ping-Chia Li
- Department of Occupational Therapy, I-Shou University, Yanchao Dist., Kaohsiung, 824, Taiwan, R.O.C..
| |
Collapse
|
58
|
Bonuzzi GMG, Torriani-Pasin C. Cardiovascular exercise and motor learning in non-disabled individuals: A systematic review with a behavioral emphasis. MOTRIZ: REVISTA DE EDUCACAO FISICA 2022. [DOI: 10.1590/s1980-65742022005221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
59
|
PESARICO ANAPAULA, CECHELLA JOSÉL, NOGUEIRA CRISTINAW, ROSA SUZANG. Swimming exercise and diphenyl diselenide-supplemented diet modulate cerebral cortical and striatal GABA uptake in aged rats. AN ACAD BRAS CIENC 2022; 94:e20200844. [DOI: 10.1590/0001-3765202220200844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 01/21/2021] [Indexed: 11/21/2022] Open
|
60
|
Neva JL, Greeley B, Chau B, Ferris JK, Jones CB, Denyer R, Hayward KS, Campbell KL, Boyd LA. Acute High-Intensity Interval Exercise Modulates Corticospinal Excitability in Older Adults. Med Sci Sports Exerc 2021; 54:673-682. [PMID: 34939609 DOI: 10.1249/mss.0000000000002839] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Acute exercise can modulate the excitability of the non-exercised upper-limb representation in the primary motor cortex (M1). Measures of M1 excitability using transcranial magnetic stimulation (TMS) are modulated following various forms of acute exercise in young adults, including high intensity interval training (HIIT). However, the impact of HIIT on M1 excitability in older adults is currently unknown. Therefore, the purpose of the current study was to investigate the effects of lower-limb cycling HIIT on bilateral upper-limb M1 excitability in older adults. METHODS We assessed the impact of acute lower-limb HIIT or rest on bilateral corticospinal excitability, intracortical inhibition and facilitation, and interhemispheric inhibition of the non-exercised upper-limb muscle in healthy older adults (aged 66 ± 8). We used single and paired-pulse TMS to assess motor evoked potentials (MEPs), short-interval intracortical inhibition (SICI), intracortical facilitation (ICF) and the ipsilateral silent period (iSP). Two groups of healthy older adults completed either HIIT exercise or seated rest for 23 min, with TMS measures performed pre (T0), immediately post (T1) and 30 min post (T2) HIIT/rest. RESULTS MEPs were significantly increased after HIIT exercise at T2 compared to T0 in the dominant upper-limb. Contrary to our hypothesis we did not find any significant change in SICI, ICF or iSP following HIIT. CONCLUSIONS Our findings demonstrate that corticospinal excitability of the non-exercised upper-limb is increased following HIIT in healthy older adults. Our results indicate that acute HIIT exercise impacts corticospinal excitability in older adults, without affecting intracortical or interhemispheric circuitry. These findings have implications for the development of exercise strategies to potentiate neuroplasticity in healthy older and clinical populations.
Collapse
Affiliation(s)
- Jason L Neva
- University of Montreal, School of Kinesiology and Physical Activity Sciences, Faculty of Medicine, Montreal, QC, Canada Research Center of the Montreal Geriatrics Institute (CRIUGM), Montreal, QC, Canada University of British Columbia, Department of Physical Therapy, Faculty of Medicine, Vancouver, BC, Canada University of British Columbia, Rehabilitation Research Program, Vancouver, BC, Canada University of British Columbia, Graduate Program in Neuroscience, Vancouver, BC, Canada University of Melbourne, Department of Physiotherapy, Department of Medicine, & Florey Institute of Neuroscience and Mental Health, Melbourne, Australia The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Neva JL, Brown KE, Peters S, Feldman SJ, Mahendran N, Boisgontier MP, Boyd LA. Acute Exercise Modulates the Excitability of Specific Interneurons in Human Motor Cortex. Neuroscience 2021; 475:103-116. [PMID: 34487820 DOI: 10.1016/j.neuroscience.2021.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 10/20/2022]
Abstract
Acute exercise can modulate the excitability of the non-exercised upper-limb representation in the primary motor cortex (M1). Accumulating evidence demonstrates acute exercise affects measures of M1 intracortical excitability, with some studies also showing altered corticospinal excitability. However, the influence of distinct M1 interneuron populations on the modulation of intracortical and corticospinal excitability following acute exercise is currently unknown. We assessed the impact of an acute bout of leg cycling exercise on unique M1 interneuron excitability of a non-exercised intrinsic hand muscle using transcranial magnetic stimulation (TMS) in young adults. Specifically, posterior-to-anterior (PA) and anterior-to-posterior (AP) TMS current directions were used to measure the excitability of distinct populations of interneurons before and after an acute bout of exercise or rest. Motor evoked potentials (MEPs) and short-interval intracortical inhibition (SICI) were measured in the PA and AP current directions in M1 at two time points separated by 25 min of rest, as well as immediately and 30 min after a 25-minute bout of moderate-intensity cycling exercise. Thirty minutes after exercise, MEP amplitudes were significantly larger than other timepoints when measured with AP current, whereas MEP amplitudes derived from PA current did not show this effect. Similarly, SICI was significantly decreased immediately following acute exercise measured with AP but not PA current. Our findings suggest that the excitability of unique M1 interneurons are differentially modulated by acute exercise. These results indicate that M1 interneurons preferentially activated by AP current may play an important role in the exercise-induced modulation of intracortical and corticospinal excitability.
Collapse
Affiliation(s)
- Jason L Neva
- Université de Montréal, École de kinésiologie et des sciences de l'activité physique, Faculté de médecine, Montréal, QC, Canada; Centre de recherche de l'institut universitaire de gériatrie de Montréal, Montréal, QC, Canada.
| | - Katlyn E Brown
- University of Waterloo, Department of Kinesiology, Applied Health Sciences, Waterloo, ON, Canada
| | - Sue Peters
- Rehabilitation Research Program, GF Strong Rehabilitation Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada; University of British Columbia, Department of Physical Therapy, Faculty of Medicine, Vancouver, BC, Canada
| | - Samantha J Feldman
- Graduate Program in Clinical Developmental Neuropsychology, Department of Psychology, York University, Toronto, ON, Canada
| | - Niruthikha Mahendran
- University of Queensland, Discipline of Physiotherapy, School of Health and Rehabilitation Sciences, Brisbane, Australia
| | - Matthieu P Boisgontier
- School of Rehabilitation Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa ON, Canada; Bruyère Research Institute, Ottawa, ON, Canada
| | - Lara A Boyd
- University of British Columbia, Department of Physical Therapy, Faculty of Medicine, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
62
|
Mang CS, Peters S. Advancing motor rehabilitation for adults with chronic neurological conditions through increased involvement of kinesiologists: a perspective review. BMC Sports Sci Med Rehabil 2021; 13:132. [PMID: 34689800 PMCID: PMC8542408 DOI: 10.1186/s13102-021-00361-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/18/2021] [Indexed: 11/10/2022]
Abstract
Many people with neurological conditions experience challenges with movement. Although rehabilitation is often provided acutely and sub-acutely following the onset of a condition, motor deficits commonly persist in the long-term and are exacerbated by disuse and inactivity. Notably, motor rehabilitation approaches that incorporate exercise and physical activity can support gains in motor function even in the chronic stages of many neurological conditions. However, delivering motor rehabilitation on a long-term basis to people with chronic neurological conditions is a challenge within health care systems, and the onus is often placed on patients to find and pay for services. While neurological motor rehabilitation is largely the domain of physical and occupational therapists, kinesiologists may be able to complement existing care and support delivery of long-term neurological motor rehabilitation, specifically through provision of supported exercise and physical activity programs. In this perspective style review article, we discuss potential contributions of kinesiologists to advancing the field through exercise programming, focusing on community-based interventions that increase physical activity levels. We conclude with recommendations on how kinesiologists' role might be further optimized towards improving long-term outcomes for people with chronic neurological conditions, considering issues related to professional regulation and models of care.
Collapse
Affiliation(s)
- Cameron S Mang
- Faculty of Kinesiology and Health Studies, University of Regina, 3737 Wascana Parkway, Regina, SK, S4S 0A2, Canada.
| | - Sue Peters
- School of Physical Therapy, Faculty of Health Sciences, Western University, London, Canada
| |
Collapse
|
63
|
Penna LG, Pinheiro JP, Ramalho SHR, Ribeiro CF. Effects of aerobic physical exercise on neuroplasticity after stroke: systematic review. ARQUIVOS DE NEURO-PSIQUIATRIA 2021; 79:832-843. [PMID: 34669820 DOI: 10.1590/0004-282x-anp-2020-0551] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 02/18/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Stroke is among the leading causes of death and disability worldwide. Interventions for stroke rehabilitation aim to minimize sequelae, promote individuals' independence and potentially recover functional damage. The role of aerobic exercise as a facilitator of post-stroke neuroplasticity in humans is still questionable. OBJECTIVE To investigate the impact of aerobic exercise on neuroplasticity in patients with stroke sequelae. METHODS A systematic review of randomized clinical trials and crossover studies was performed, with searches for human studies in the following databases: PUBMED, EMBASE, LILACS and PeDRO, only in English, following the PRISMA protocol. The keywords used for selecting articles were defined based on the PICO strategy. RESULTS This systematic review evaluated the impacts of aerobic exercise on neuroplasticity through assessment of neural networks and neuronal excitability, neurotrophic factors, or cognitive and functional assessment. Studies that evaluated the effects of aerobic exercise on neuroplasticity after stroke measured through functional resonance (fMRI) or cortical excitability have shown divergent results, but aerobic exercise potentially can modify the neural network, as measured through fMRI. Additionally, aerobic exercise combined with cognitive training improves certain cognitive domains linked to motor learning. Studies that involved analysis of neurotrophic factors to assess neuroplasticity had conflicting results. CONCLUSIONS Physical exercise is a therapeutic intervention in rehabilitation programs that, beyond the known benefits relating to physical conditioning, functionality, mood and cardiovascular health, may also potentiate the neuroplasticity process. Neuroplasticity responses seem more robust in moderate to high-intensity exercise training programs, but dose-response heterogeneity and non-uniform neuroplasticity assessments limit generalizability.
Collapse
Affiliation(s)
- Leandro Goursand Penna
- Universidade de Coimbra, Faculdade de Medicina, Departamento de Medicina do Desporto, Coimbra, Província de Coimbra, Portugal
| | - João Pascoa Pinheiro
- Universidade de Coimbra, Faculdade de Medicina, Departamento de Medicina do Desporto, Coimbra, Província de Coimbra, Portugal
| | | | - Carlos Fontes Ribeiro
- Universidade de Coimbra, Faculdade de Medicina, Departamento de Medicina do Desporto, Coimbra, Província de Coimbra, Portugal
| |
Collapse
|
64
|
Kao PC, Pierro MA, Wu T, Gonzalez DM, Seeley R. Association between functional physical capacity and cognitive performance under destabilizing walking conditions in older adults. Exp Gerontol 2021; 155:111582. [PMID: 34637948 DOI: 10.1016/j.exger.2021.111582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/23/2021] [Accepted: 10/01/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Cognitive decline increases the risk of falls in older adults. Understanding the association between cognitive function, functional physical capacity, and falls may help identify targets for fall screening and intervention. This study examined (1) cognitive and functional physical capacity in community-dwelling older adults with and without a history of falls or the presence of brain-derived neurotrophic factor (BDNF) gene Val66Met polymorphism (Val/Met), and (2) the association between their cognitive and functional physical capacity, focusing on the cognitive performance during dual-task, challenging walking conditions. METHODS Twenty-nine healthy, community-dwelling older adults attended two testing sessions for (1) functional assessments of physical capacity and global cognitive status, and (2) performing four cognitive tasks (visual and auditory Stroop tasks, Clock task, and Paced Auditory Serial Addition Test) during standing and while walking on the treadmill with and without medio-lateral treadmill platform sways. RESULTS Participants with a fall history had reduced functional reach distance whereas individuals with Val/Met had reduced functional gait assessment (FGA) score compared to their controls. In addition, participants with a fall history or Val/Met showed reduced Clock task performance under dual-task conditions. Among all cognitive tasks, visual-Stroop performance, especially during the perturbed walking conditions, was significantly correlated with more physical capacity items. The performance of the other three cognitive tasks provided complementary information on those items not correlated with visual-Stroop performance. CONCLUSIONS Clock task performance can distinguish fallers from non-fallers as well as older adults with and without the BDNF gene polymorphism. Administering different types of cognitive tasks and under more challenging walking conditions can better reveal the association between cognitive and functional physical capacity in older adults. Fall screening and prevention intervention should integrate cognitive tasks into the functional physical capacity assessment and training regime, and progress to a more challenging condition such as introducing gait or balance perturbations during the assessment or training.
Collapse
Affiliation(s)
- Pei-Chun Kao
- Department of Physical Therapy and Kinesiology, University of Massachusetts Lowell, Lowell, MA, United States; New England Robotics Validation and Experimentation (NERVE) Center, University of Massachusetts Lowell, Lowell, MA, United States.
| | - Michaela A Pierro
- Biomedical Engineering and Biotechnology Program, University of Massachusetts Lowell, Lowell, MA, United States
| | - Tong Wu
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA, United States
| | - Daniela M Gonzalez
- Department of Biomedical Engineering, University of Massachusetts Lowell, Lowell, MA, United States
| | - Rachel Seeley
- Department of Physical Therapy and Kinesiology, University of Massachusetts Lowell, Lowell, MA, United States
| |
Collapse
|
65
|
Menglu S, Suyong Y, Xiaoyan W, Schöllhorn WI, Dong Z. Cognitive effectiveness of high-intensity interval training for individuals with methamphetamine dependence: a study protocol for randomised controlled trial. Trials 2021; 22:650. [PMID: 34556153 PMCID: PMC8460192 DOI: 10.1186/s13063-021-05615-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 09/13/2021] [Indexed: 12/02/2022] Open
Abstract
INTRODUCTION Cognitive deficit is a common syndrome of methamphetamine (MA) dependence. It is related to decision-making, control ability, and social functioning. High-intensity interval training (HIIT) is a training technique that requires people to work out at full intensity during a short period. Many studies have already shown the potential effects of HIIT on cognitive functions. The purpose of this trial is to evaluate the cognitive effects of HIIT on individuals with MA dependence. METHODS AND ANALYSIS A total of 240 individuals with MA dependence will be randomly assigned to the HIIT group, moderate-intensity continuous training (MICT) group and control (CON) group. HIIT will consist of a 24-min HIIT exercise on a treadmill. MICT will consist of a 1-h body-mind exercise. CON will be their traditional intervention. The experimental period will be 12 months with 3 interventions weekly for the first 6 months and follow-up for the next 6 months. All subjects will be given cognitive tests at baseline, after intervention and at follow-up. Cognitive performances will be compared by a mixed-model analysis for repeated measures. DISCUSSION HIIT training may reduce illicit drug cravings amongst individuals with MA dependence; hence, HIIT may have a good effect on the cognitive functions, such as memory and executive function, of individuals with MA dependence. TRIAL REGISTRATION Chinese Clinical Trial Registry ChiCTR2000032492 . Registered on April 30, 2020 ( http://www.chictr.org.cn/edit.aspx?pid=52127&htm=4 ).
Collapse
Affiliation(s)
- Shen Menglu
- Wushu College, Shanghai University of Sport, 399 Changhai Road, Shanghai, China
| | - Yang Suyong
- School of Sport Psychology, Shanghai University of Sport, Shanghai, China
| | - Wang Xiaoyan
- School of Physical Education, Hangzhou Normal University, Zhejiang, China
| | | | - Zhu Dong
- School of International Education, Shanghai University of Sport, 399 Changhai Road, Shanghai, China
| |
Collapse
|
66
|
Limaye NS, Carvalho LB, Kramer S. Effects of Aerobic Exercise on Serum Biomarkers of Neuroplasticity and Brain Repair in Stroke: A Systematic Review. Arch Phys Med Rehabil 2021; 102:1633-1644. [PMID: 33992633 DOI: 10.1016/j.apmr.2021.04.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/06/2021] [Accepted: 04/20/2021] [Indexed: 12/29/2022]
Abstract
OBJECTIVE To provide a novel overview of the literature and to summarize the evidence for the effects of aerobic exercise (AE) on serum biomarkers neuroplasticity and brain repair in survivors of stroke. DATA SOURCES We conducted a systematic review and searched MEDLINE, Embase, and Cochrane CENTRAL using terms related to AE, neuroplasticity, brain repair, and stroke. STUDY SELECTION Titles, abstracts, and selected full texts were screened by 2 independent reviewers against the following inclusion criteria: including adult survivors of stroke, completing an AE intervention working within the AE capacity, and measuring at least 1 blood biomarker outcome of interest. DATA EXTRACTION Two independent reviewers extracted data and assessed risk of bias using Risk of Bias in Nonrandomized Studies-of Interventions and Cochrane's Risk of Bias 2 tools. DATA SYNTHESIS Nine studies (n=215 participants) were included, reporting on the following outcomes: brain-derived neurotrophic factor (BDNF), insulin-like growth factor 1 (IGF-1), vascular endothelial growth factor (VEGF), cortisol, interleukin 6, and myeloperoxidase. A single bout of high-intensity interval training significantly increased BDNF, IGF-1, and VEGF levels, and a 40-45-minute, 24-session, continuous 8-week AE training program significantly increased BDNF levels. No significant difference in response to any other AE intervention was found in other serum biomarkers. CONCLUSIONS AE can significantly increase BDNF, IGF-1, and VEGF across different AE protocols in survivors of stroke. However, more research is needed to determine the optimal exercise intensity and modalities, specifically in survivors of acute and subacute stroke, and how this may relate to functional outcomes.
Collapse
Affiliation(s)
- Neeraj S Limaye
- Melbourne Medical School, University of Melbourne, Parkville, Victoria.
| | - Lilian Braighi Carvalho
- The Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, Austin Campus, Heidelberg, Victoria
| | - Sharon Kramer
- The Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, Austin Campus, Heidelberg, Victoria; School of Nursing and Midwifery, Faculty of Health, Deakin University, Victoria, Australia
| |
Collapse
|
67
|
Solianik R, Mickevičienė D, Žlibinaitė L, Čekanauskaitė A. Tai chi improves psychoemotional state, cognition, and motor learning in older adults during the COVID-19 pandemic. Exp Gerontol 2021; 150:111363. [PMID: 33887380 PMCID: PMC8054611 DOI: 10.1016/j.exger.2021.111363] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/28/2021] [Accepted: 04/17/2021] [Indexed: 01/21/2023]
Abstract
The aim of this study was to determine the effect of a 10-week tai chi intervention on psychoemotional state, cognition, and motor learning in older adults during the COVID-19 pandemic. Participants aged 60-78 years were randomized to either a control group (n = 15) or a tai chi group (n = 15) for a 10-week period. The tai chi group received two, 8-form tai chi classes of 60 min duration per week. Changes in psychoemotional state, cognition, and the learning of fast and accurate reaching movements were assessed. In addition, the potential roles of the autonomic nervous system and brain-derived neurotrophic factor (BDNF) were investigated. Tai chi practice decreased (P < 0.05) perceived stress, whereas no change in autonomic nervous system activity was observed. Improvements in mental switching correlated with decreased depressive symptoms and increased BDNF levels (P < 0.05), whereas improvements in inhibitory control tended to correlate with BDNF levels (P = 0.08). Improvements in visuospatial processing tended to correlate with decreased depressive symptoms (P = 0.07) while improved visuospatial processing correlated with improved motor planning during learning tasks (P < 0.05). This study suggests that tai chi is an effective intervention that can be delivered under pandemic conditions to improve mental and physical function in older adults.
Collapse
Affiliation(s)
- Rima Solianik
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Kaunas, Lithuania; Institute of Sports Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania.
| | - Dalia Mickevičienė
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Kaunas, Lithuania; Institute of Sports Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Laura Žlibinaitė
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Kaunas, Lithuania
| | - Agnė Čekanauskaitė
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Kaunas, Lithuania
| |
Collapse
|
68
|
Chai Z, Zheng P, Zheng J. Mechanism of ARPP21 antagonistic intron miR-128 on neurological function repair after stroke. Ann Clin Transl Neurol 2021; 8:1408-1421. [PMID: 34047500 PMCID: PMC8283178 DOI: 10.1002/acn3.51379] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/18/2021] [Accepted: 04/02/2021] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Stroke is a cerebrovascular disorder that often causes neurological function defects. ARPP21 is a conserved host gene of miR-128 controlling neurodevelopmental functions. This study investigated the mechanism of ARPP21 antagonistic intron miR-128 on neurological function repair after stroke. METHODS Expressions of ARPP21 and miR-128 in stroke patients were detected. The mouse neurons and astrocytes were cultured in vitro and treated with oxygen-glucose deprivation (OGD). The OGD-treated cells were transfected with pc-ARPP21 and miR-128 mimic. The proliferation of astrocytes, and the apoptosis of neurons and astrocytes were detected, and inflammatory factors of astrocytes were measured. The binding relationship between miR-128 and CREB1 was verified. The rat model of middle cerebral artery occlusion (MCAO) was established. ARPP21 expression in model rats was detected. The effects of pc-ARPP21 on neuron injury, brain edema volume, and cerebral infarct in rats were observed. RESULTS ARPP21 expression was downregulated and miR-128 expression was upregulated in stroke patients. pc-ARPP21 facilitated the proliferation of astrocytes and inhibited apoptosis of neurons and astrocytes, and reduced inflammation of astrocytes. miR-128 mimic could reverse these effects of pc-ARPP21 on neurons and astrocytes. miR-128 targeted CREB1 and reduced BDNF secretion. In vitro experiments confirmed that ARPP21 expression was decreased in MCAO rats, and pc-ARPP21 promoted neurological function repair after stroke. CONCLUSION ARPP21 upregulated CREB1 and BDNF expressions by antagonizing miR-128, thus inhibiting neuronal apoptosis and promoting neurological function repair after stroke. This study may offer a novel target for the management of stroke.
Collapse
Affiliation(s)
- Zhaohui Chai
- Department of NeurosurgeryThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310003China
| | - Peidong Zheng
- Department of NeurosurgeryThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310003China
| | - Jiesheng Zheng
- Department of NeurosurgeryThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310003China
| |
Collapse
|
69
|
Mahmood A, Nayak P, English C, Deshmukh A, U S, N M, Solomon JM. Adherence to home exercises and rehabilitation (ADHERE) after stroke in low-to-middle-income countries: A randomized controlled trial. Top Stroke Rehabil 2021; 29:438-448. [PMID: 34180370 DOI: 10.1080/10749357.2021.1940800] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Background: Adherence to prescribed exercises is essential for home-based programs to be effective, but evidence for strategies to enhance exercise adherence in people with stroke is lacking.Objectives: To determine the effect of adherence strategies on the proportion of people with stroke who adhere to prescribed home-based exercises and their level of adherence at 6 and 12 weeks of intervention. Our secondary objective was to determine the effect of the combined intervention on mobility and quality of life post-stroke.Methods: We conducted an RCT among people with stroke (Exp = 27, Con = 25) living in semi-urban India. Both groups received standard hospital care and a home exercise program. The experimental group also received adherence strategies delivered over five sessions. Adherence was measured using the Stroke-Specific Measure of Adherence to Home-based Exercises (SS-MAHE) , mobility using Mobility Disability Scale, and quality of life using the Stroke Impact Scale.Results: The experimental group had better exercise adherence compared to the control group both at six (mean difference [MD] 45, 95% CI 40, 64, p < .001) and 12 weeks (MD 51, 95% CI 39, 63, p < .001). The experimental group also had better mobility at 12 weeks (median (IQR), experimental 42 (57), median (IQR), control 95 (50), p = .002). There was no difference in the quality of life scores between groups at six or 12 weeks.Conclusion: The adherence strategies were effective in improving exercise adherence and mobility post-stroke but did not improve quality of life.Trial registration: CTRI/2018/08/015212.
Collapse
Affiliation(s)
- Amreen Mahmood
- Department of Physiotherapy, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, India.,Department of Physiotherapy, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - Pradeepa Nayak
- Department of Physiotherapy, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, India
| | - Coralie English
- School of Health Sciences and Priority Research, Centre for Stroke and Brain Injury, University of Newcastle, Newcastle, Australia
| | - Anagha Deshmukh
- Department of Clinical Psychology, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, India
| | - Shashikiran U
- Department of Medicine, Dr. TMA Pai Hospital, Udupi, MMMC, Manipal Academy of Higher Education, India
| | - Manikandan N
- Department of Physiotherapy, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, India.,Centre for Comprehensive Stroke Rehabilitation and Research, Manipal Academy of Higher Education, Manipal, India
| | - John M Solomon
- Department of Physiotherapy, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, India.,Centre for Comprehensive Stroke Rehabilitation and Research, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
70
|
Sakabe N, Altukhaim S, Hayashi Y, Sakurada T, Yano S, Kondo T. Enhanced Visual Feedback Using Immersive VR Affects Decision Making Regarding Hand Use With a Simulated Impaired Limb. Front Hum Neurosci 2021; 15:677578. [PMID: 34177496 PMCID: PMC8232051 DOI: 10.3389/fnhum.2021.677578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/18/2021] [Indexed: 11/23/2022] Open
Abstract
The long-term effects of impairment have a negative impact on the quality of life of stroke patients in terms of not using the affected limb even after some recovery (i.e., learned non-use). Immersive virtual reality (IVR) has been introduced as a new approach for the treatment of stroke rehabilitation. We propose an IVR-based therapeutic approach to incorporate positive reinforcement components in motor coordination as opposed to constraint-induced movement therapy (CIMT). This study aimed to investigate the effect of IVR-reinforced physical therapy that incorporates positive reinforcement components in motor coordination. To simulate affected upper limb function loss in patients, a wrist weight was attached to the dominant hand of participant. Participants were asked to choose their right or left hand to reach toward a randomly allocated target. The movement of the virtual image of the upper limb was reinforced by visual feedback to participants, that is, the participants perceived their motor coordination as if their upper limb was moving to a greater degree than what was occurring in everyday life. We found that the use of the simulated affected limb was increased after the visual feedback enhancement intervention, and importantly, the effect was maintained even after gradual withdrawal of the visual amplification. The results suggest that positive reinforcement within the IVR could induce an effect on decision making in hand usage.
Collapse
Affiliation(s)
- Naoko Sakabe
- Department of Computer and Information Sciences, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Samirah Altukhaim
- Biomedical Science and Biomedical Engineering, School of Biological Sciences, University of Reading, Reading, United Kingdom.,Physiotherapy Group in Stroke Unit, Alamiri Hospital, Kuwait City, Kuwait
| | - Yoshikatsu Hayashi
- Biomedical Science and Biomedical Engineering, School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Takeshi Sakurada
- College of Science and Engineering, Ritsumeikan University, Shiga, Japan
| | - Shiro Yano
- Department of Computer and Information Sciences, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Toshiyuki Kondo
- Department of Computer and Information Sciences, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
71
|
Gregor S, Saumur TM, Crosby LD, Powers J, Patterson KK. Study Paradigms and Principles Investigated in Motor Learning Research After Stroke: A Scoping Review. Arch Rehabil Res Clin Transl 2021; 3:100111. [PMID: 34179749 PMCID: PMC8211998 DOI: 10.1016/j.arrct.2021.100111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES To (1) characterize study paradigms used to investigate motor learning (ML) poststroke and (2) summarize the effects of different ML principles in promoting skill acquisition and retention. Our secondary objective is to evaluate the clinical utility of ML principles on stroke rehabilitation. DATA SOURCES Medline, Excerpta Medica Database, Allied and Complementary Medicine, Cumulative Index to Nursing and Allied Health Literature, and Cochrane Central Register of Controlled Trials were searched from inception on October 24, 2018 and repeated on June 23, 2020. Scopus was searched on January 24, 2019 and July 22, 2020 to identify additional studies. STUDY SELECTION Our search included keywords and concepts to represent stroke and "motor learning. An iterative process was used to generate study selection criteria. Three authors independently completed title, abstract, and full-text screening. DATA EXTRACTION Three reviewers independently completed data extraction. DATA SYNTHESIS The Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension guidelines for scoping reviews were used to guide our synthesis. Thirty-nine studies were included. Study designs were heterogeneous, including variability in tasks practiced, acquisition parameters, and retention intervals. ML principles investigated included practice complexity, feedback, motor imagery, mental practice, action observation, implicit and explicit information, aerobic exercise, and neurostimulation. An additional 2 patient-related factors that influence ML were included: stroke characteristics and sleep. Practice complexity, feedback, and mental practice/action observation most consistently promoted ML, while provision of explicit information and more severe strokes were detrimental to ML. Other factors (ie, sleep, practice structure, aerobic exercise, neurostimulation) had a less clear influence on learning. CONCLUSIONS Improved consistency of reporting in ML studies is needed to improve study comparability and facilitate meta-analyses to better understand the influence of ML principles on learning poststroke. Knowledge of ML principles and patient-related factors that influence ML, with clinical judgment can guide neurologic rehabilitation delivery to improve patient motor outcomes.
Collapse
Affiliation(s)
- Sarah Gregor
- KITE, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario
| | - Tyler M. Saumur
- KITE, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario
| | - Lucas D. Crosby
- KITE, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario
| | - Jessica Powers
- KITE, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario
| | - Kara K. Patterson
- KITE, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario
- Department of Physical Therapy, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
72
|
Turco CV, Nelson AJ. Transcranial Magnetic Stimulation to Assess Exercise-Induced Neuroplasticity. FRONTIERS IN NEUROERGONOMICS 2021; 2:679033. [PMID: 38235229 PMCID: PMC10790852 DOI: 10.3389/fnrgo.2021.679033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/06/2021] [Indexed: 01/19/2024]
Abstract
Aerobic exercise facilitates neuroplasticity and has been linked to improvements in cognitive and motor function. Transcranial magnetic stimulation (TMS) is a non-invasive technique that can be used to quantify changes in neurophysiology induced by exercise. The present review summarizes the single- and paired-pulse TMS paradigms that can be used to probe exercise-induced neuroplasticity, the optimal stimulation parameters and the current understanding of the neurophysiology underlying each paradigm. Further, this review amalgamates previous research exploring the modulation of these paradigms with exercise-induced neuroplasticity in healthy and clinical populations and highlights important considerations for future TMS-exercise research.
Collapse
Affiliation(s)
| | - Aimee J. Nelson
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
73
|
Nicolini C, Nelson AJ. Current Methodological Pitfalls and Caveats in the Assessment of Exercise-Induced Changes in Peripheral Brain-Derived Neurotrophic Factor: How Result Reproducibility Can Be Improved. FRONTIERS IN NEUROERGONOMICS 2021; 2:678541. [PMID: 38235217 PMCID: PMC10790889 DOI: 10.3389/fnrgo.2021.678541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/04/2021] [Indexed: 01/19/2024]
Abstract
Neural mechanisms, such as enhanced neuroplasticity within the motor system, underpin exercise-induced motor improvements. Being a key mediator of motor plasticity, brain-derived neurotrophic factor (BDNF) is likely to play an important role in mediating exercise positive effects on motor function. Difficulties in assessing brain BDNF levels in humans have drawn attention to quantification of blood BDNF and raise the question of whether peripheral BDNF contributes to exercise-related motor improvements. Methodological and non-methodological factors influence measurements of blood BDNF introducing a substantial variability that complicates result interpretation and leads to inconsistencies among studies. Here, we discuss methodology-related issues and approaches emerging from current findings to reduce variability and increase result reproducibility.
Collapse
Affiliation(s)
| | - Aimee J. Nelson
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
74
|
Nicolini C, Michalski B, Toepp SL, Turco CV, D'Hoine T, Harasym D, Gibala MJ, Fahnestock M, Nelson AJ. A Single Bout of High-intensity Interval Exercise Increases Corticospinal Excitability, Brain-derived Neurotrophic Factor, and Uncarboxylated Osteolcalcin in Sedentary, Healthy Males. Neuroscience 2021; 437:242-255. [PMID: 32482330 DOI: 10.1016/j.neuroscience.2020.03.042] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/17/2022]
Abstract
Exercise induces neuroplasticity in descending motor pathways facilitating motor learning, and as such it could be utilized as an intervention in neurorehabilitation, for example when re-learning motor skills after stroke. To date, however, the neurophysiological and molecular mechanisms underlying exercise-induced neuroplasticity remain largely unknown impeding the potential utilization of exercise protocols as 'motor learning boosters' in clinical and non-clinical settings. Here, we assessed corticospinal excitability, intracortical facilitation (ICF) and short-interval intracortical inhibition (SICI) using transcranial magnetic stimulation (TMS) and serum biochemical markers including brain-derived neurotrophic factor (BDNF), total and precursor cathepsin B (tCTSB, proCTSB), uncarboxylated and carboxylated osteocalcin (unOCN, cOCN) and irisin using ELISA. Measurements were carried out in sedentary, healthy males before and after a single session of high-intensity interval exercise (HIIE) or in individuals who rested and did not perform exercise (No Exercise). We found that HIIE increased corticospinal excitability, BDNF and unOCN, and decreased cOCN. We also determined that greater increases in BDNF were associated with increases in unOCN and irisin and decreases in cOCN only in participants who underwent HIIE, suggesting that unOCN and irisin may contribute to exercise-induced BDNF increases. Conversely, no changes other than a decrease in serum unOCN/tOCN were found in No Exercise participants. The present findings show that a single session of HIIE is sufficient to modulate corticospinal excitability and to increase BDNF and unOCN in sedentary, healthy males.
Collapse
Affiliation(s)
- Chiara Nicolini
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada; Department of Psychiatry & Behavioral Neurosciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Bernadeta Michalski
- Department of Psychiatry & Behavioral Neurosciences, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Stephen L Toepp
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Claudia V Turco
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Tarra D'Hoine
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Diana Harasym
- School of Biomedical Engineering, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Martin J Gibala
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Margaret Fahnestock
- Department of Psychiatry & Behavioral Neurosciences, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Aimee J Nelson
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada; School of Biomedical Engineering, McMaster University, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
75
|
Liu X, Fang JC, Zhi XY, Yan QY, Zhu H, Xie J. The Influence of Val66Met Polymorphism in Brain-Derived Neurotrophic Factor on Stroke Recovery Outcome: A Systematic Review and Meta-analysis. Neurorehabil Neural Repair 2021; 35:550-560. [PMID: 33957818 DOI: 10.1177/15459683211014119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and purpose. A single nucleotide polymorphism at nucleotide 196 (G/A) in the human brain-derived neurotrophic factor (BDNF) gene produces an amino acid substitution (valine to methionine) at codon 66(Val66Met). It is unclear whether carriers of this substitution may have worse functional outcomes after stroke. We aimed to explore the distribution of Val66Met polymorphism and evaluate the effect of different genotypes on stroke functional recovery. Methods. Several databases were searched using the keywords BDNF or brain-derived neurotrophic factor, codon66, G196A, rs6265, or Val66Met, and stroke. Results. A total of 25 articles were relevant to estimate the distribution of alleles; 5 reports were applied in the meta-analysis to assess genetic differences on recovery outcomes. The genetic model analysis showed that the recessive model should be used; we combined data for AA versus GA+GG (GG-Val/Val, GA-Val/Met, AA-Met/Met). The results showed that stroke patients with AA might have worse recovery outcomes than those with GA+GG (odds ratio = 1.90; 95% CI: 1.17-3.10; P = .010; I2 = 69.2%). Overall, the A allele may be more common in Asian patients (48.6%; 95% CI: 45.8%-51.4%, I2 = 54.2%) than Caucasian patients (29.8%; 95% CI: 7.5%-52.1%; I2 = 99.1%). However, in Caucasian patients, the frequency of the A allele in Iranians (87.9%; 95% CI: 83.4%-92.3%) was quite higher than that in other Caucasians (18.7%; 95% CI: 16.6%-20.9%; I2 = 0.00%). Conclusion. Val66Met AA carriers may have worse rehabilitation outcomes than GA+GG carriers. Further studies are needed to determine the effect of Val66Met polymorphism on stroke recovery and to evaluate this relationship with ethnicity, sex, age, stroke type, observe duration, stroke severity, injury location, and therapies.
Collapse
Affiliation(s)
- Xuan Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Jun-Chao Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xin-Yue Zhi
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China.,Tianjin Center for International Collaborative Research in Environment, Nutrition and Public Health, Tianjin, China
| | - Qiu-Yu Yan
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Hong Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China.,Tianjin Center for International Collaborative Research in Environment, Nutrition and Public Health, Tianjin, China
| | - Juan Xie
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China.,Tianjin Center for International Collaborative Research in Environment, Nutrition and Public Health, Tianjin, China
| |
Collapse
|
76
|
Tortella GR, Seabra AB, Padrão J, Díaz-San Juan R. Mindfulness and Other Simple Neuroscience-Based Proposals to Promote the Learning Performance and Mental Health of Students during the COVID-19 Pandemic. Brain Sci 2021; 11:552. [PMID: 33925627 PMCID: PMC8145019 DOI: 10.3390/brainsci11050552] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/31/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
The COVID-19 pandemic has had a negative impact on education. The restrictions imposed have undoubtedly led to impairment of the psychological well-being of both teachers and students, and of the way they experience interpersonal relationships. As reported previously in the literature, adverse effects such as loneliness, anxiety, and stress have resulted in a decrease in the cognitive performance of school and higher education students. Therefore, the objective of this work is to present a general overview of the reported adverse effects of the COVID-19 pandemic which may potentially influence the learning performance of students. Some neuroscientific findings related to memory and cognition, such as neuroplasticity and long-term potentiation, are also shown. We also discuss the positive effects of the practice of mindfulness, as well as other simple recommendations based on neuroscientific findings such as restful sleep, physical activity, and nutrition, which can act on memory and cognition. Finally, we propose some practical recommendations on how to achieve more effective student learning in the context of the pandemic. The aim of this review is to provide some assistance in this changing and uncertain situation in which we all find ourselves, and we hope that some of the information could serve as a starting point for hypotheses to be tested in educational research and their association with neuroscience.
Collapse
Affiliation(s)
- Gonzalo R. Tortella
- Center of Excellence (CIBAMA-BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
- PhD Program in Natural Resource Sciences, Universidad de La Frontera, Temuco 4811230, Chile
| | - Amedea B. Seabra
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Av. dos Estados, 5001-Bangú, Santo André 09210-580, SP, Brazil;
| | - Jorge Padrão
- Centre for Textile Science and Technology (2C2T), University of Minho, 4800-058 Guimarães, Portugal;
| | - Rodrigo Díaz-San Juan
- Educational Neurosciences and Psychology Department, Centenario School, Temuco 4810936, Chile;
| |
Collapse
|
77
|
Chiazza F, Pintana H, Lietzau G, Nyström T, Patrone C, Darsalia V. The Stroke-Induced Increase of Somatostatin-Expressing Neurons is Inhibited by Diabetes: A Potential Mechanism at the Basis of Impaired Stroke Recovery. Cell Mol Neurobiol 2021; 41:591-603. [PMID: 32447613 PMCID: PMC7921043 DOI: 10.1007/s10571-020-00874-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/11/2020] [Indexed: 12/16/2022]
Abstract
Type 2 diabetes (T2D) hampers recovery after stroke, but the underling mechanisms are mostly unknown. In a recently published study (Pintana et al. in Clin Sci (Lond) 133(13):1367-1386, 2019), we showed that impaired recovery in T2D was associated with persistent atrophy of parvalbumin+ interneurons in the damaged striatum. In the current work, which is an extension of the abovementioned study, we investigated whether somatostatin (SOM)+ interneurons are also affected by T2D during the stroke recovery phase. C57Bl/6j mice were fed with high-fat diet or standard diet (SD) for 12 months and subjected to 30-min transient middle cerebral artery occlusion (tMCAO). SOM+ cell number/density in the striatum was assessed by immunohistochemistry 2 and 6 weeks after tMCAO in peri-infarct and infarct areas. This was possible by establishing a computer-based quantification method that compensates the post-stroke tissue deformation and the irregular cell distribution. SOM+ interneurons largely survived the stroke as seen at 2 weeks. Remarkably, 6 weeks after stroke, the number of SOM+ interneurons increased (vs. contralateral striatum) in SD-fed mice in both peri-infarct and infarct areas. However, this increase did not result from neurogenesis. T2D completely abolished this effect specifically in the in the infarct area. The results suggest that the up-regulation of SOM expression in the post-stroke phase could be related to neurological recovery and T2D could inhibit this process. We also present a new and precise method for cell counting in the stroke-damaged striatum that allows to reveal accurate, area-related effects of stroke on cell number.
Collapse
Affiliation(s)
- Fausto Chiazza
- Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Pharmaceutical Sciences, Università Degli Studi del Piemonte Orientale, Novara, Italy
| | - Hiranya Pintana
- Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Grazyna Lietzau
- Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Nyström
- Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Cesare Patrone
- Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Vladimer Darsalia
- Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
78
|
Braun RG, Wittenberg GF. Motor Recovery: How Rehabilitation Techniques and Technologies Can Enhance Recovery and Neuroplasticity. Semin Neurol 2021; 41:167-176. [PMID: 33663001 DOI: 10.1055/s-0041-1725138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
There are now a large number of technological and methodological approaches to the rehabilitation of motor function after stroke. It is important to employ these approaches in a manner that is tailored to specific patient impairments and desired functional outcomes, while avoiding the hype of overly broad or unsubstantiated claims for efficacy. Here we review the evidence for poststroke plasticity, including therapy-related plasticity and functional imaging data. Early demonstrations of remapping in somatomotor and somatosensory representations have been succeeded by findings of white matter plasticity and a focus on activity-dependent changes in neuronal properties and connections. The methods employed in neurorehabilitation have their roots in early understanding of neuronal circuitry and plasticity, and therapies involving large numbers of repetitions, such as robotic therapy and constraint-induced movement therapy (CIMT), change measurable nervous systems properties. Other methods that involve stimulation of brain and peripheral excitable structures have the potential to harness neuroplastic mechanisms, but remain experimental. Gaps in our understanding of the neural substrates targeted by neurorehabilitation technology and techniques remain, preventing their prescriptive application in individual patients as well as their general refinement. However, with ongoing research-facilitated in part by technologies that can capture quantitative information about motor performance-this gap is narrowing. These research approaches can improve efforts to attain the shared goal of better functional recovery after stroke.
Collapse
Affiliation(s)
- Robynne G Braun
- Department of Neurology, University of Maryland School of Medicine, University of Maryland Rehabilitation & Orthopaedic Institute, Baltimore, Maryland
| | - George F Wittenberg
- Department of Neurology, Rehab Neural Engineering Labs, Center for the Neural Basis of Cognition, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Human Engineering Research Laboratory, Geriatrics Research Education and Clinical Center, VA Pittsburgh HealthCare System, Pittsburgh, Pennsylvania
| |
Collapse
|
79
|
Chaves AR, Snow NJ, Alcock LR, Ploughman M. Probing the Brain-Body Connection Using Transcranial Magnetic Stimulation (TMS): Validating a Promising Tool to Provide Biomarkers of Neuroplasticity and Central Nervous System Function. Brain Sci 2021; 11:384. [PMID: 33803028 PMCID: PMC8002717 DOI: 10.3390/brainsci11030384] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 01/18/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) is a non-invasive method used to investigate neurophysiological integrity of the human neuromotor system. We describe in detail, the methodology of a single pulse TMS protocol that was performed in a large cohort of people (n = 110) with multiple sclerosis (MS). The aim was to establish and validate a core-set of TMS variables that predicted typical MS clinical outcomes: walking speed, hand dexterity, fatigue, and cognitive processing speed. We provide a brief and simple methodological pipeline to examine excitatory and inhibitory corticospinal mechanisms in MS that map to clinical status. Delayed and longer ipsilateral silent period (a measure of transcallosal inhibition; the influence of one brain hemisphere's activity over the other), longer cortical silent period (suggestive of greater corticospinal inhibition via GABA) and higher resting motor threshold (lower corticospinal excitability) most strongly related to clinical outcomes, especially when measured in the hemisphere corresponding to the weaker hand. Greater interhemispheric asymmetry (imbalance between hemispheres) correlated with poorer performance in the greatest number of clinical outcomes. We also show, not surprisingly, that TMS variables related more strongly to motor outcomes than non-motor outcomes. As it was validated in a large sample of patients with varying severities of central nervous system dysfunction, the protocol described herein can be used by investigators and clinicians alike to investigate the role of TMS as a biomarker in MS and other central nervous system disorders.
Collapse
Affiliation(s)
| | | | | | - Michelle Ploughman
- L.A. Miller Centre, Recovery and Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1A 1E5, Canada; (A.R.C.); (N.J.S.); (L.R.A.)
| |
Collapse
|
80
|
Mancuso M, Tondo SD, Costantini E, Damora A, Sale P, Abbruzzese L. Action Observation Therapy for Upper Limb Recovery in Patients with Stroke: A Randomized Controlled Pilot Study. Brain Sci 2021; 11:290. [PMID: 33652680 PMCID: PMC7996947 DOI: 10.3390/brainsci11030290] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022] Open
Abstract
Due to the complexity of the interventions for upper limb recovery, at the moment there is a lack of evidence regarding innovative and effective rehabilitative interventions. Action Observation Training (AOT) constitutes a promising rehabilitative method to improve upper limb motor recovery in stroke patients. The aim of the present study was to evaluate the potential efficacy of AOT, both in upper limb recovery and in functional outcomes when compared to patients treated with task oriented training (TOT). Both treatments were added to traditional rehabilitative treatment. Thirty-two acute stroke patients at 15.6 days (±8.3) from onset, with moderate to severe upper limb impairment at baseline following their first-ever stroke, were enrolled and randomized into two groups: 16 in the experimental group (EG) and 16 in the control group (CG). The EG underwent 30 min sessions of AOT, and the CG underwent 30 min sessions of TOT. All participants received 20 sessions of treatment for four consecutive weeks (five days/week). The Fugl-Meyer Assessment for Upper Extremity (FMA-UE), Box and Block Test (BBT), Functional Independence Measure (FIM) and Modified Ashworth Scale (MAS) were administered at baseline (T0) and at the end of treatment (T1). No statistical differences were found at T0 for inclusion criteria between the CG and EG, whereas both groups improved significantly at T1. After the treatment period, the rehabilitative gain was greater in the EG compared to the CG for FMA-UE and FIM (all p < 0.05). Our results suggest that AOT can contribute to increased motor recovery in subacute stroke patients with moderate to severe upper limb impairment in the early phase after stroke. The improvements presented in this article, together with the lack of adverse events, confirm that the use of AOT should be broadened out to larger pools of subacute stroke patients.
Collapse
Affiliation(s)
- Mauro Mancuso
- Physical and Rehabilitative Medicine Unit, NHS-USL Tuscany South-Est, Via Senese 169, 58100 Grosseto, GR, Italy;
- Tuscany Rehabilitation Clinic, Montevarchi, Piazza del Volontariato 2, Montevarchi, 52025 Arezzo, AR, Italy; (S.D.T.); (A.D.); (L.A.)
| | - Serena Di Tondo
- Tuscany Rehabilitation Clinic, Montevarchi, Piazza del Volontariato 2, Montevarchi, 52025 Arezzo, AR, Italy; (S.D.T.); (A.D.); (L.A.)
| | - Enza Costantini
- Physical and Rehabilitative Medicine Unit, NHS-USL Tuscany South-Est, Via Senese 169, 58100 Grosseto, GR, Italy;
| | - Alessio Damora
- Tuscany Rehabilitation Clinic, Montevarchi, Piazza del Volontariato 2, Montevarchi, 52025 Arezzo, AR, Italy; (S.D.T.); (A.D.); (L.A.)
| | - Patrizio Sale
- Sant’Isidoro Hospital, FERB Onlus, Via Ospedale 34, 24069 Trescore Balneario, BG, Italy;
| | - Laura Abbruzzese
- Tuscany Rehabilitation Clinic, Montevarchi, Piazza del Volontariato 2, Montevarchi, 52025 Arezzo, AR, Italy; (S.D.T.); (A.D.); (L.A.)
| |
Collapse
|
81
|
de Fátima Dos Santos Sampaio M, Santana Bastos Boechat M, Augusto Gusman Cunha I, Gonzaga Pereira M, Coimbra NC, Giraldi-Guimarães A. Neurotrophin-3 upregulation associated with intravenous transplantation of bone marrow mononuclear cells induces axonal sprouting and motor functional recovery in the long term after neocortical ischaemia. Brain Res 2021; 1758:147292. [PMID: 33516814 DOI: 10.1016/j.brainres.2021.147292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 10/22/2022]
Abstract
Bone marrow mononuclear cells (BMMCs) have been identified as a relevant therapeutic strategy for the treatment of several chronic diseases of the central nervous system. The aim of this work was to evaluate whether intravenous treatment with BMMCs facilitates the reconnection of lesioned cortico-cortical and cortico-striatal pathways, together with motor recovery, in injured adult Wistar rats using an experimental model of unilateral focal neocortical ischaemia. Animals with cerebral cortex ischaemia underwent neural tract tracing for axonal fibre analysis, differential expression analysis of genes involved in apoptosis and neuroplasticity by RT-qPCR, and motor performance assessment by the cylinder test. Quantitative and qualitative analyses of axonal fibres labelled by an anterograde neural tract tracer were performed. Ischaemic animals treated with BMMCs showed a significant increase in axonal sprouting in the ipsilateral neocortex and in the striatum contralateral to the injured cortical areas compared to untreated rodents. In BMMC-treated animals, there was a trend towards upregulation of the Neurotrophin-3 gene compared to the other genes, as well as modulation of apoptosis by BMMCs. On the 56th day after ischaemia, BMMC-treated animals showed significant improvement in motor performance compared to untreated rats. These results suggest that in the acute phase of ischaemia, Neurotrophin-3 is upregulated in response to the lesion itself. In the long run, therapy with BMMCs causes axonal sprouting, reconnection of damaged neuronal circuitry and a significant increase in motor performance.
Collapse
Affiliation(s)
- Maria de Fátima Dos Santos Sampaio
- Laboratory of Tissue and Cellular Biology, Centre of Biosciences and Biotechnology of Darcy Ribeiro Northern Fluminense State University (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, 28013-602, Rio de Janeiro, Brazil; Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil.
| | - Marcela Santana Bastos Boechat
- Laboratory of Plant Breeding of Darcy Ribeiro Northern Fluminense State University (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, 28013-602, Rio de Janeiro, Brazil
| | - Igor Augusto Gusman Cunha
- Laboratory of Tissue and Cellular Biology, Centre of Biosciences and Biotechnology of Darcy Ribeiro Northern Fluminense State University (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, 28013-602, Rio de Janeiro, Brazil
| | - Messias Gonzaga Pereira
- Laboratory of Plant Breeding of Darcy Ribeiro Northern Fluminense State University (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, 28013-602, Rio de Janeiro, Brazil
| | - Norberto Cysne Coimbra
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil.
| | - Arthur Giraldi-Guimarães
- Laboratory of Tissue and Cellular Biology, Centre of Biosciences and Biotechnology of Darcy Ribeiro Northern Fluminense State University (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, 28013-602, Rio de Janeiro, Brazil
| |
Collapse
|
82
|
Zlibinaite L, Skurvydas A, Kilikeviciene S, Solianik R. Two Months of Using Global Recommendations for Physical Activity Had No Impact on Cognitive or Motor Functions in Overweight and Obese Middle-Aged Women. J Phys Act Health 2021; 18:52-60. [PMID: 33361470 DOI: 10.1123/jpah.2020-0055] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 09/29/2020] [Accepted: 10/11/2020] [Indexed: 11/18/2022]
Abstract
BACKGROUND The effect of globally recommended levels of physical activity on cognition and motor behavior is not completely understood. Therefore, the main aim of this study was to assess the effect of 300 minutes per week of moderate-intensity aerobic exercise on cognitive and motor performance among overweight and obese working-age women. METHODS Overweight and obese participants aged 38-56 years were randomized to either a control or an experimental group performing aerobic exercise at 50% to 60% of the peak oxygen consumption for a 2-month period. Changes in aerobic fitness, cardiac autonomic function, brain-derived neurotropic factor levels, and cognitive and motor performance were assessed. RESULTS Although aerobic exercise reduced body weight (P < .05) and improved peak oxygen consumption (P < .05), the brain-derived neurotropic factor levels and cognitive and motor performance remained unchanged. Heart rate and blood pressure decreased (P < .05), whereas heart rate variability indices were not affected. No significant correlations between changes in heart rate variability indices and cognition were observed. CONCLUSIONS Two months of moderate-intensity aerobic exercise decreased sympathetic activity and improved cardiovascular fitness but had no impact on cognition or motor control among these middle-aged, overweight, and obese women.
Collapse
|
83
|
Elsner VR, Trevizol L, de Leon I, da Silva M, Weiss T, Braga M, Pochmann D, Blembeel AS, Dani C, Boggio E. Therapeutic effectiveness of a single exercise session combined with WalkAide functional electrical stimulation in post-stroke patients: a crossover design study. Neural Regen Res 2021; 16:805-812. [PMID: 33229713 PMCID: PMC8178791 DOI: 10.4103/1673-5374.297078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A growing body of evidence has suggested that the imbalance of epigenetic markers and oxidative stress appears to be involved in the pathophysiology and progression of stroke. Thus, strategies that modulate these biomarkers might be considered targets for neuroprotection and novel therapeutic opportunities for these patients. Physical exercise has been reported to induce changes in these epigenetic markers and improve clinical outcomes in different populations. However, little is reported on this in post-stroke patients. The purpose of this study was to investigate the effect of a single exercise session with WalkAide functional electrical stimulation (FES) on cognitive performance, clinical functional parameters, oxidative stress and epigenetic modulation in post-stroke individuals. In this crossover design study, 12 post-stroke individuals aged 54–72 years of either sexes were included and subjected to a single session of exercise (45 minutes) without WalkAide functional electrical stimulation (EXE alone group), followed by another single session of exercise (45 minutes) with WalkAide functional electrical stimulation (EXE + FES group). The clinical functional outcome measures, cognitive performance and blood collections for biomarker measurements were assessed pre- and post-intervention. After intervention, higher Berg Balance Scale scores were obtained in the EXE + FES group than in the EXE alone group. There was no significant difference in the Timed Up and Go test results post-intervention between EXE alone and EXE + FES groups. After intervention, a better cognitive performance was found in both groups compared with before the intervention. After intervention, the Timed Up and Go test scores were higher in the EXE + FES group than in the EXE alone group. In addition, the intervention induced lower levels of lipid peroxidation. After intervention, carbonyl level was lower, superoxide dismutase activity and superoxide dismutase/catalase activity ratio were higher in the EXE + FES group, compared with the EXE group alone. In each group, both histone deacetylase (HDAC2) and histone acetyltransferase activities were increased after intervention compared with before the intervention. These findings suggest that a single exercise session with WalkAide FES is more effective on balance ability and cognitive performance compared with conventional exercise alone in post-stroke patients. This is likely to be related to the regulation of oxidative stress markers. The present study was approved by the Research Ethics Committee of the Methodist University Center-IPA (approval No. 2.423.376) on December 7, 2017 and registered in the Brazilian Registry of Clinical Trials—ReBEC (RBR-9phj2q) on February 11, 2019.
Collapse
Affiliation(s)
- Viviane Rostirola Elsner
- Curso de Fisioterapia do Centro Universitário Metodista-IPA; Programa de Pós-Graduação em Biociências e Reabilitação do Centro Universitário Metodista-IPA; Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Lucieli Trevizol
- Curso de Fisioterapia do Centro Universitário Metodista-IPA, Porto Alegre, RS, Brasil
| | - Isadora de Leon
- Curso de Fisioterapia do Centro Universitário Metodista-IPA, Porto Alegre, RS, Brasil
| | - Marcos da Silva
- Curso de Fisioterapia do Centro Universitário Metodista-IPA, Porto Alegre, RS, Brasil
| | - Thayná Weiss
- Curso de Fisioterapia do Centro Universitário Metodista-IPA, Porto Alegre, RS, Brasil
| | - Milena Braga
- Curso de Fisioterapia do Centro Universitário Metodista-IPA, Porto Alegre, RS, Brasil
| | - Daniela Pochmann
- Programa de Pós-Graduação em Biociências e Reabilitação do Centro Universitário Metodista-IPA, Porto Alegre, RS, Brasil
| | - Amanda Stolzenberg Blembeel
- Programa de Pós-Graduação em Biociências e Reabilitação do Centro Universitário Metodista-IPA, Porto Alegre, RS, Brasil
| | - Caroline Dani
- Programa de Pós-Graduação em Biociências e Reabilitação do Centro Universitário Metodista-IPA, Porto Alegre, RS, Brasil
| | - Elenice Boggio
- Programa de Pós-Graduação em Biociências e Reabilitação do Centro Universitário Metodista-IPA, Porto Alegre, RS, Brasil
| |
Collapse
|
84
|
Nicolini C, Fahnestock M, Gibala MJ, Nelson AJ. Understanding the Neurophysiological and Molecular Mechanisms of Exercise-Induced Neuroplasticity in Cortical and Descending Motor Pathways: Where Do We Stand? Neuroscience 2020; 457:259-282. [PMID: 33359477 DOI: 10.1016/j.neuroscience.2020.12.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023]
Abstract
Exercise is a promising, cost-effective intervention to augment successful aging and neurorehabilitation. Decline of gray and white matter accompanies physiological aging and contributes to motor deficits in older adults. Exercise is believed to reduce atrophy within the motor system and induce neuroplasticity which, in turn, helps preserve motor function during aging and promote re-learning of motor skills, for example after stroke. To fully exploit the benefits of exercise, it is crucial to gain a greater understanding of the neurophysiological and molecular mechanisms underlying exercise-induced brain changes that prime neuroplasticity and thus contribute to postponing, slowing, and ameliorating age- and disease-related impairments in motor function. This knowledge will allow us to develop more effective, personalized exercise protocols that meet individual needs, thereby increasing the utility of exercise strategies in clinical and non-clinical settings. Here, we review findings from studies that investigated neurophysiological and molecular changes associated with acute or long-term exercise in healthy, young adults and in healthy, postmenopausal women.
Collapse
Affiliation(s)
- Chiara Nicolini
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Margaret Fahnestock
- Department of Psychiatry & Behavioral Neurosciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Martin J Gibala
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Aimee J Nelson
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
85
|
Liu Y, Zhu C, Guo J, Chen Y, Meng C. The Neuroprotective Effect of Irisin in Ischemic Stroke. Front Aging Neurosci 2020; 12:588958. [PMID: 33414714 PMCID: PMC7782245 DOI: 10.3389/fnagi.2020.588958] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022] Open
Abstract
Irisin is a PGC-1α-dependent myokine that causes increased energy expenditure by driving the development of white adipose tissue into brown fat-like tissue. Exercise can improve irisin levels and lead to its release into the blood. In ischemic stroke, neurons are always sensitive to energy supply; after a series of pathophysiological processes, reactive oxygen species that are detrimental to cell survival via mitochondrial dysfunction are generated in large quantities. As a protein associated with exercise, irisin can alleviate brain injury in the pathogenesis of ischemic stroke. It is thought that irisin can upregulate the levels of brain-derived neurotrophic factor (BDNF), which protects nerve cells from injury during ischemic stroke. Furthermore, the release of irisin into the blood via exercise influences the mitochondrial dynamics crucial to maintaining the normal function of nerve cells. Consequently, we intended to summarize the known effects of irisin during ischemic stroke.
Collapse
Affiliation(s)
- Yaqiang Liu
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chunhua Zhu
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jiahui Guo
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yonghong Chen
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chaoyue Meng
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
86
|
de Las Heras B, Rodrigues L, Cristini J, Weiss M, Prats-Puig A, Roig M. Does the Brain-Derived Neurotrophic Factor Val66Met Polymorphism Modulate the Effects of Physical Activity and Exercise on Cognition? Neuroscientist 2020; 28:69-86. [PMID: 33300425 DOI: 10.1177/1073858420975712] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Val66Met is a polymorphism of the brain-derived neurotrophic factor (BDNF) gene that encodes a substitution of a valine (Val) to methionine (Met) amino acid. Carrying this polymorphism reduces the activity-dependent secretion of the BDNF protein, which can potentially affect brain plasticity and cognition. We reviewed the biology of Val66Met and surveyed 26 studies (11,417 participants) that examined the role of this polymorphism in moderating the cognitive response to physical activity (PA) and exercise. Nine observational studies confirmed a moderating effect of Val66Met on the cognitive response to PA but differences between Val and Met carriers were inconsistent and only significant in some cognitive domains. Only five interventional studies found a moderating effect of Val66Met on the cognitive response to exercise, which was also inconsistent in its direction. Two studies showed a superior cognitive response in Val carriers and three studies showed a better response in Met carriers. These results do not support a general and consistent effect of Val66Met in moderating the cognitive response to PA or exercise. Both Val and Met carriers can improve specific aspects of cognition by increasing PA and engaging in exercise. Causes for discrepancies among studies, effect moderators, and future directions are discussed.
Collapse
Affiliation(s)
- Bernat de Las Heras
- Memory and Motor Rehabilitation Laboratory (MEMORY-LAB), Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Montreal Center for Interdisciplinary Research in Rehabilitation (CRIR), Laval, Quebec, Canada.,School of Physical and Occupational Therapy, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Lynden Rodrigues
- Memory and Motor Rehabilitation Laboratory (MEMORY-LAB), Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Montreal Center for Interdisciplinary Research in Rehabilitation (CRIR), Laval, Quebec, Canada.,School of Physical and Occupational Therapy, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Jacopo Cristini
- Memory and Motor Rehabilitation Laboratory (MEMORY-LAB), Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Montreal Center for Interdisciplinary Research in Rehabilitation (CRIR), Laval, Quebec, Canada.,School of Physical and Occupational Therapy, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Maxana Weiss
- Memory and Motor Rehabilitation Laboratory (MEMORY-LAB), Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Montreal Center for Interdisciplinary Research in Rehabilitation (CRIR), Laval, Quebec, Canada.,School of Physical and Occupational Therapy, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Anna Prats-Puig
- University School of Health and Sport (EUSES), University of Girona, Girona, Catalunya, Spain
| | - Marc Roig
- Memory and Motor Rehabilitation Laboratory (MEMORY-LAB), Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Montreal Center for Interdisciplinary Research in Rehabilitation (CRIR), Laval, Quebec, Canada.,School of Physical and Occupational Therapy, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
87
|
Alam JJ, Krakovsky M, Germann U, Levy A. Continuous administration of a p38α inhibitor during the subacute phase after transient ischemia-induced stroke in the rat promotes dose-dependent functional recovery accompanied by increase in brain BDNF protein level. PLoS One 2020; 15:e0233073. [PMID: 33275615 PMCID: PMC7717516 DOI: 10.1371/journal.pone.0233073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 11/20/2020] [Indexed: 12/17/2022] Open
Abstract
There is unmet need for effective stroke therapies. Numerous neuroprotection attempts for acute cerebral ischemia have failed and as a result there is growing interest in developing therapies to promote functional recovery through increasing synaptic plasticity. For this research study, we hypothesized that in addition to its previously reported role in mediating cell death during the acute phase, the alpha isoform of p38 mitogen-activated protein kinase, p38α, may also contribute to interleukin-1β-mediated impairment of functional recovery during the subacute phase after acute ischemic stroke. Accordingly, an oral, brain-penetrant, small molecule p38α inhibitor, neflamapimod, was evaluated as a subacute phase stroke treatment to promote functional recovery. Neflamapimod administration to rats after transient middle cerebral artery occlusion at two dose levels was initiated outside of the previously characterized therapeutic window for neuroprotection of less than 24 hours for p38α inhibitors. Six-week administration of neflamapimod, starting at 48 hours after reperfusion, significantly improved behavioral outcomes assessed by the modified neurological severity score at Week 4 and at Week 6 post stroke in a dose-dependent manner. Neflamapimod demonstrated beneficial effects on additional measures of sensory and motor function. It also resulted in a dose-related increase in brain-derived neurotrophic factor (BDNF) protein levels, a previously reported potential marker of synaptic plasticity that was measured in brain homogenates at sacrifice. Taken together with literature evidence on the role of p38α-dependent suppression by interleukin-1β of BDNF-mediated synaptic plasticity and BDNF production, our findings support a mechanistic model in which inhibition of p38α promotes functional recovery after ischemic stroke by blocking the deleterious effects of interleukin-1β on synaptic plasticity. The dose-related in vivo efficacy of neflamapimod offers the possibility of having a therapy for stroke that could be initiated outside the short time window for neuroprotection and for improving recovery after a completed stroke.
Collapse
Affiliation(s)
- John J. Alam
- EIP Pharma, Inc., Boston, Massachusetts, United States of America
- * E-mail:
| | | | - Ursula Germann
- EIP Pharma, Inc., Boston, Massachusetts, United States of America
| | | |
Collapse
|
88
|
Free Fatty Acids and Their Inflammatory Derivatives Affect BDNF in Stroke Patients. Mediators Inflamm 2020; 2020:6676247. [PMID: 33343231 PMCID: PMC7728491 DOI: 10.1155/2020/6676247] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 12/18/2022] Open
Abstract
Objective The neurotrophin brain-derived neurotrophic factor (BDNF) affects poststroke functional outcome, neurogenesis, neuroprotection, and neuroplasticity. Its level is related to the diet and nutritional status, and more specifically, it is free fatty acids (FFAs) and eicosanoids that can have an impact on the BDNF level. The aim of this study was to analyze the potential impact of FFAs and eicosanoids on the BDNF level in stroke patients. Material and Methods. Seventy-three ischemic stroke patients were prospectively enrolled in the study. Laboratory tests were performed in all subjects, including the levels of FFAs, eicosanoids, and BDNF. FFAs and inflammatory metabolites were determined by gas chromatography and liquid chromatography, while BDNF was evaluated by the immune-enzymatic method (ELISA). Results The plasma level of BDNF negatively correlated with C22:1n9 13 erucic acid, C18:3n3 linolenic acid (ALA), and lipoxin A4 15-epi-LxA4. A direct association was observed in relation to BDNF and C16:1 palmitoleic acid and C20:3n6 eicosatrienoic acid (dihomo-gamma-linolenic acid (DGLA)). Conclusions Saturated fatty acids and omega-3 and omega-9 erucic acids can affect signaling in the BDNF synthesis resulting in the decrease in BDNF. There is a beneficial effect of DGLA on the BDNF level, while the effect of ALA on BDNF can be inhibitory. Specialized proresolving lipid mediators can play a role in the BDNF metabolism. BDNF can interact with inflammation as the risk factor in the cardiovascular disorders, including stroke.
Collapse
|
89
|
Di Raimondo D, Rizzo G, Musiari G, Tuttolomondo A, Pinto A. Role of Regular Physical Activity in Neuroprotection against Acute Ischemia. Int J Mol Sci 2020; 21:ijms21239086. [PMID: 33260365 PMCID: PMC7731306 DOI: 10.3390/ijms21239086] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/11/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022] Open
Abstract
One of the major obstacles that prevents an effective therapeutic intervention against ischemic stroke is the lack of neuroprotective agents able to reduce neuronal damage; this results in frequent evolution towards a long-term disability with limited alternatives available to aid in recovery. Nevertheless, various treatment options have shown clinical efficacy. Neurotrophins such as brain-derived neurotrophic factor (BDNF), widely produced throughout the brain, but also in distant tissues such as the muscle, have demonstrated regenerative properties with the potential to restore damaged neural tissue. Neurotrophins play a significant role in both protection and recovery of function following neurological diseases such as ischemic stroke or traumatic brain injury. Unfortunately, the efficacy of exogenous administration of these neurotrophins is limited by rapid degradation with subsequent poor half-life and a lack of blood-brain-barrier permeability. Regular exercise seems to be a therapeutic approach able to induce the activation of several pathways related to the neurotrophins release. Exercise, furthermore, reduces the infarct volume in the ischemic brain and ameliorates motor function in animal models increasing astrocyte proliferation, inducing angiogenesis and reducing neuronal apoptosis and oxidative stress. One of the most critical issues is to identify the relationship between neurotrophins and myokines, newly discovered skeletal muscle-derived factors released during and after exercise able to exert several biological functions. Various myokines (e.g., Insulin-Like Growth Factor 1, Irisin) have recently shown their ability to protects against neuronal injury in cerebral ischemia models, suggesting that these substances may influence the degree of neuronal damage in part via inhibiting inflammatory signaling pathways. The aim of this narrative review is to examine the main experimental data available to date on the neuroprotective and anti-ischemic role of regular exercise, analyzing also the possible role played by neurotrophins and myokines.
Collapse
|
90
|
de Almeida W, Confortim HD, Deniz BF, Miguel PM, Vieira MC, Bronauth L, Dos Santos AS, Bertoldi K, Siqueira IR, Pereira LO. Acrobatic exercise recovers object recognition memory impairment in hypoxic-ischemic rats. Int J Dev Neurosci 2020; 81:60-70. [PMID: 33135304 DOI: 10.1002/jdn.10075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/17/2020] [Accepted: 10/28/2020] [Indexed: 11/08/2022] Open
Abstract
Neonatal hypoxia-ischemia (HI) can lead to cognitive impairments and motor dysfunction. Acrobatic exercises (AE) were proposing as therapeutic option to manage HI motor deficits, however, the cognitive effects after this treatment are still poorly understood. Therefore, we evaluated the effects of AE protocol on memory impairments and brain plasticity markers after Rice-Vannucci HI rodent model. Wistar rats on the 7th postnatal day (PND) were submitted to HI model and after weaning (PND22) were trained for 5 weeks with AE protocol, then subsequently submitted to cognitive tests. Our results showed recovery in novel object recognition (NOR) memory, but not, spatial Morris Water Maze (WM) memory after AE treatment in HI rats. BDNF and synaptophysin neuroplasticity markers indicate plastic alterations in the hippocampus and striatum, with maintenance of synaptophysin despite the reduction of total volume tissue, besides, hippocampal HI-induced ipsilateral BDNF increased, and striatum contralateral BDNF decreased were noted. Nevertheless, the exercise promoted functional recovery and seems to be a promising strategy for HI treatment, however, future studies identifying neuroplastic pathway for this improvement are needed.
Collapse
Affiliation(s)
- Wellington de Almeida
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Heloísa Deola Confortim
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,UNIVEL Centro Universitário, Cascavel, Brazil
| | - Bruna Ferrary Deniz
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Patrícia Maidana Miguel
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Milene Cardoso Vieira
- Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Loise Bronauth
- Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Adriana Souza Dos Santos
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Karine Bertoldi
- Departamento de Farmacologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ionara Rodrigues Siqueira
- Departamento de Farmacologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-Graduação em Ciências Biológicas, Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Lenir Orlandi Pereira
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
91
|
Combinational Pretreatment of Colony-Stimulating Factor 1 Receptor Inhibitor and Triptolide Upregulates BDNF-Akt and Autophagic Pathways to Improve Cerebral Ischemia. Mediators Inflamm 2020; 2020:8796103. [PMID: 33192177 PMCID: PMC7648715 DOI: 10.1155/2020/8796103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/27/2020] [Accepted: 09/22/2020] [Indexed: 01/15/2023] Open
Abstract
Ki20227, a selective inhibitor of colony-stimulating factor 1 receptor (CSF1R), has been suggested to regulate microglia inflammatory function and neuronal synaptic plasticity. Triptolide (TP) pretreatment has neuroprotective effects through its anti-inflammatory and antiapoptotic features in ischemic stroke mice. However, the underlying mechanism and pathway are presently unclear. We thus investigated the association between neuroprotective effects of combined TP and Ki20227 and BDNF-Akt and autophagy pathways. Ki20227 was administrated for 7 days, and TP was administered once 24 hours prior to building the ischemic stroke model in C57BL/6 mice. Behavioral tests, Golgi staining, immunofluorescence, and western blot analyses were employed to examine neuroprotective effects of TP and Ki20227. TP and Ki20227 pretreatments improved the neurobehavioral function in stroke mice. Synaptic protein expressions and density of dendritic spine density were upregulated in Ki20227 and TP pretreated stroke mice. Further, optimized integration of TP and Ki20227 pretreatments upregulated the NeuN expression and downregulated Iba1 expression after stroke. In addition, both TP and Ki20227 pretreatments significantly upregulated BDNF, p-Akt/Akt, and Erk1/2 protein expressions and autophagy related proteins (LC3II/I, Atg5, and p62), indicating the activation of BDNF and autophagic pathways. Optimized integration of TP and Ki20227 can improve cerebral ischemia by inhibiting CSF1R signal and trigger autophagy and BDNF-Akt signaling pathways to increase dendritic spine density and synaptic protein expressions, which in turn enhances neurobehavioral function.
Collapse
|
92
|
Pellegrini M, Zoghi M, Jaberzadeh S. Can genetic polymorphisms predict response variability to anodal transcranial direct current stimulation of the primary motor cortex? Eur J Neurosci 2020; 53:1569-1591. [PMID: 33048398 DOI: 10.1111/ejn.15002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 09/17/2020] [Accepted: 10/02/2020] [Indexed: 11/28/2022]
Abstract
Genetic mediation of cortical plasticity and the role genetic variants play in previously observed response variability to transcranial direct current stimulation (tDCS) have become important issues in the tDCS literature in recent years. This study investigated whether inter-individual variability to tDCS was in-part genetically mediated. In 61 healthy males, anodal-tDCS (a-tDCS) and sham-tDCS were administered to the primary motor cortex at 1 mA for 10-min via 6 × 4 cm active and 7 × 5 cm return electrodes. Twenty-five single-pulse transcranial magnetic stimulation (TMS) motor evoked potentials (MEP) were recorded to represent corticospinal excitability (CSE). Twenty-five paired-pulse MEPs were recorded with 3 ms inter-stimulus interval (ISI) to assess intracortical inhibition (ICI) via short-interval intracranial inhibition (SICI) and 10 ms ISI for intracortical facilitation (ICF). Saliva samples were tested for specific genetic polymorphisms in genes encoding for excitatory and inhibitory neuroreceptors. Individuals were sub-grouped based on a pre-determined threshold and via statistical cluster analysis. Two distinct subgroups were identified, increases in CSE following a-tDCS (i.e. Responders) and no increase or even reductions in CSE (i.e. Non-responders). No changes in ICI or ICF were reported. No relationships were reported between genetic polymorphisms in excitatory receptor genes and a-tDCS responders. An association was reported between a-tDCS responders and GABRA3 gene polymorphisms encoding for GABA-A receptors suggesting potential relationships between GABA-A receptor variations and capacity to undergo tDCS-induced cortical plasticity. In the largest tDCS study of its kind, this study presents an important step forward in determining the contribution genetic factors play in previously observed inter-individual variability to tDCS.
Collapse
Affiliation(s)
- Michael Pellegrini
- Non-Invasive Brain Stimulation and Neuroplasticity Laboratory, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia
| | - Maryam Zoghi
- Department of Rehabilitation, Nutrition and Sport, School of Allied Health, Discipline of Physiotherapy, La Trobe University, Melbourne, Australia
| | - Shapour Jaberzadeh
- Non-Invasive Brain Stimulation and Neuroplasticity Laboratory, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia
| |
Collapse
|
93
|
Zhang D, Lu Y, Zhao X, Zhang Q, Li L. Aerobic exercise attenuates neurodegeneration and promotes functional recovery - Why it matters for neurorehabilitation & neural repair. Neurochem Int 2020; 141:104862. [PMID: 33031857 DOI: 10.1016/j.neuint.2020.104862] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/19/2022]
Abstract
Aerobic exercise facilitates optimal neurological function and exerts beneficial effects in neurologic injuries. Both animal and clinical studies have shown that aerobic exercise reduces brain lesion volume and improves multiple aspects of cognition and motor function after stroke. Studies using animal models have proposed a wide range of potential molecular mechanisms that underlie the neurological benefits of aerobic exercise. Furthermore, additional exercise parameters, including time of initiation, exercise dosage (exercise duration and intensity), and treatment modality are also critical for clinical application, as identifying the optimal combination of parameters will afford patients with maximal functional gains. To clarify these issues, the current review summarizes the known neurological benefits of aerobic exercise under both physiological and pathological conditions and then considers the molecular mechanisms underlying these benefits in the contexts of stroke-like focal cerebral ischemia and cardiac arrest-induced global cerebral ischemia. In addition, we explore the key roles of exercise parameters on the extent of aerobic exercise-induced neurological benefits to elucidate the optimal combination for aerobic exercise intervention. Finally, the current challenges for aerobic exercise implementation after stroke are discussed.
Collapse
Affiliation(s)
- Dandan Zhang
- Department of General Practice & Geriatrics, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Yujiao Lu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Xudong Zhao
- Department of General Practice & Geriatrics, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - Lei Li
- Department of General Practice & Geriatrics, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China.
| |
Collapse
|
94
|
Morice E, Moncharmont J, Jenny C, Bruyneel AV. Dancing to improve balance control, cognitive-motor functions and quality of life after stroke: a study protocol for a randomised controlled trial. BMJ Open 2020; 10:e037039. [PMID: 32998921 PMCID: PMC7528364 DOI: 10.1136/bmjopen-2020-037039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 08/19/2020] [Accepted: 08/25/2020] [Indexed: 11/12/2022] Open
Abstract
INTRODUCTION Dance is an intrinsically motivating activity that includes social interaction, stimulation through music, the pleasure of moving despite pathology-induced motor limitations, and it also has good perceived benefits among participants. Feeling pleasure while moving is essential to finding the motivation to engage in a rehabilitation programme. It is, therefore, urgent to provide persons in a poststroke situation with motivating physical activity opportunities. Very few studies have examined dance in a stroke context, while it is highly adapted and effective for other chronic conditions.Our primary objective is to assess the effects of dance programme on patients' balance control after stroke. Our secondary objective is to investigate the effects of dance on cognitive function, strength, coordination, functional status, balance confidence, quality of life, motivation and adherence. Our hypothesis is that dance increases balance and motor capacities, and improves poststroke quality of life, adherence and motivation. METHODS AND ANALYSIS Forty-eight subjects with stroke in subacute phase will be randomised into two groups: (1) intervention (dance and standard rehabilitation) and (2) control (standard rehabilitation). Before intervention, stroke severity, cognitive abilities and motor capacities will be assessed. Two baseline tests will be planned to evaluate the stability of individuals. Participants will attend a weekly 60-min dance class for 6 weeks. Cognitive and motor functions (balance, lower-limbs strength, coordination and motor level), quality of life (Stroke-Specific Quality of Life Scale) will be measured at weeks 4 and 6 in both groups. Participant satisfaction with regard to dance will be tested, as well as adherence and adverse effects. ETHICS AND DISSEMINATION Ethics approval has been granted by the Swiss Ethics Committee of the CER Vaud (2019-01467). Outcomes will be disseminated through publication in peer-reviewed journals and presentations at conferences. TRIAL REGISTRATION NUMBER NCT04120467.
Collapse
Affiliation(s)
- Emmanuel Morice
- Neurorehabilitation, Institution de Lavigny, Lavigny, Vaud, Switzerland
| | | | - Clémentine Jenny
- Neurorehabilitation, Institution de Lavigny, Lavigny, Vaud, Switzerland
| | - Anne-Violette Bruyneel
- Physiotherapy Department, Geneva School of Health Sciences, HES-SO University of Applied Sciences and Arts Western Switzerland, Geneva, Switzerland
| |
Collapse
|
95
|
Li X, Zhao J, Li Z, Zhang L, Huo Z. Applications of Acupuncture Therapy in Modulating the Plasticity of Neurodegenerative Disease and Depression: Do MicroRNA and Neurotrophin BDNF Shed Light on the Underlying Mechanism? Neural Plast 2020; 2020:8850653. [PMID: 33029119 PMCID: PMC7527896 DOI: 10.1155/2020/8850653] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/12/2020] [Accepted: 09/05/2020] [Indexed: 02/08/2023] Open
Abstract
As the global population ages, the incidence of neurodegenerative diseases has risen. Furthermore, it has been suggested that depression, especially in elderly people, may also be an indication of latent neurodegeneration. Stroke, Alzheimer's disease (AD), and Parkinson's disease (PD) are usually accompanied by depression. The urgent challenge is further enforced by psychiatric comorbid conditions, particularly the feeling of despair in these patients. Fortunately, as our understanding of the neurobiological substrates of maladies affecting the central nervous system (CNS) has increased, more therapeutic options and novel potential biological mechanisms have been presented: (1) Neurodegenerative diseases share some similarities in their pathological characteristics, including changes in neuron structure or function and neuronal plasticity. (2) MicroRNAs (miRNAs) are small noncoding RNAs that contribute to the pathogenesis of diverse neurological disease. (3) One ubiquitous neurotrophin, brain-derived neurotrophic factor (BDNF), is crucial for the development of the nervous system. Accumulating data have indicated that miRNAs not only are related to BDNF regulation but also can directly bind with the 3'-UTR of BDNF to regulate BDNF and participate in neuroplasticity. In this short review, we present evidence of shared biological substrates among stroke, AD, PD, and depression and summarize the possible influencing mechanisms of acupuncture on the neuroplasticity of these diseases. We discuss neuroplasticity underscored by the roles of miRNAs and BDNF, which might further reveal the potential biological mechanism of neurodegenerative diseases and depression by acupuncture.
Collapse
Affiliation(s)
- Xia Li
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jun Zhao
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhigang Li
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Li Zhang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zejun Huo
- Department of Chinese Medicine, Peking University 3rd Hospital, Beijing 100191, China
| |
Collapse
|
96
|
Bhat A, Ray B, Mahalakshmi AM, Tuladhar S, Nandakumar DN, Srinivasan M, Essa MM, Chidambaram SB, Guillemin GJ, Sakharkar MK. Phosphodiesterase-4 enzyme as a therapeutic target in neurological disorders. Pharmacol Res 2020; 160:105078. [PMID: 32673703 DOI: 10.1016/j.phrs.2020.105078] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 02/08/2023]
Abstract
Phosphodiesterases (PDE) are a diverse family of enzymes (11 isoforms so far identified) responsible for the degradation of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) which are involved in several cellular and biochemical functions. Phosphodiesterase 4 (PDE4) is the major isoform within this group and is highly expressed in the mammalian brain. An inverse association between PDE4 and cAMP levels is the key mechanism in various pathophysiological conditions like airway inflammatory diseases-chronic obstruction pulmonary disease (COPD), asthma, psoriasis, rheumatoid arthritis, and neurological disorders etc. In 2011, roflumilast, a PDE4 inhibitor (PDE4I) was approved for the treatment of COPD. Subsequently, other PDE4 inhibitors (PDE4Is) like apremilast and crisaborole were approved by the Food and Drug Administration (FDA) for psoriasis, atopic dermatitis etc. Due to the adverse effects like unbearable nausea and vomiting, dose intolerance and diarrhoea, PDE4 inhibitors have very less clinical compliance. Efforts are being made to develop allosteric modulation with high specificity to PDE4 isoforms having better efficacy and lesser adverse effects. Interestingly, repositioning PDE4Is towards neurological disorders including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), multiple sclerosis (MS) and sleep disorders, is gaining attention. This review is an attempt to summarize the data on the effects of PDE4 overexpression in neurological disorders and the use of PDE4Is and newer allosteric modulators as therapeutic options. We have also compiled a list of on-going clinical trials on PDE4 inhibitors in neurological disorders.
Collapse
Affiliation(s)
- Abid Bhat
- Dept. of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Bipul Ray
- Dept. of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | | | - Sunanda Tuladhar
- Dept. of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - D N Nandakumar
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India
| | - Malathi Srinivasan
- Department of Lipid Science, CSIR - Central Food Technological Research Institute (CFTRI), CFTRI Campus, Mysuru, 570020, India
| | - Musthafa Mohamed Essa
- Ageing and Dementia Research Group, Sultan Qaboos University, Muscat, Oman; Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat, Oman.
| | - Saravana Babu Chidambaram
- Dept. of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India; Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India.
| | - Gilles J Guillemin
- Neuroinflammation group, Faculty of Medicine and Health Sciences, Macquarie University, NSW, 2109, Australia.
| | - Meena Kishore Sakharkar
- College of Pharmacy and Nutrition, University of Saskatchewan, 107, Wiggins Road, Saskatoon, SK, S7N 5C9, Canada
| |
Collapse
|
97
|
Li F, Geng X, Huber C, Stone C, Ding Y. In Search of a Dose: The Functional and Molecular Effects of Exercise on Post-stroke Rehabilitation in Rats. Front Cell Neurosci 2020; 14:186. [PMID: 32670026 PMCID: PMC7330054 DOI: 10.3389/fncel.2020.00186] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 05/28/2020] [Indexed: 12/11/2022] Open
Abstract
Although physical exercise has been demonstrated to augment recovery of the post-stroke brain, the question of what level of exercise intensity optimizes neurological outcomes of post-stroke rehabilitation remains unsettled. In this study, we aim to clarify the mechanisms underlying the intensity-dependent effect of exercise on neurologic function, and thereby to help direct the clinical application of exercise-based neurorehabilitation. To do this, we used a well-established rat model of ischemic stroke consisting of cerebral ischemia induction through middle cerebral artery occlusion (MCAO). Ischemic rats were subsequently assigned either to a control group entailing post-stroke rest or to one of two exercise groups distinguished by the intensity of their accompanying treadmill regimens. After 24 h of reperfusion, exercise was initiated. Infarct volume, apoptotic cell death, and neurological defects were quantified in all groups at 3 days, and motor and cognitive functions were tracked up to day-28. Additionally, Western blotting was used to assess the influence of our interventions on several proteins related to synaptogenesis and neuroplasticity (growth-associated protein 43, a microtubule-associated protein, postsynaptic density-95, synapsin I, hypoxia-inducible factor-1α, brain-derived neurotrophic factor, nerve growth factor, tyrosine kinase B, and cAMP response element-binding protein). Our results were in equal parts encouraging and surprising. Both mild and intense exercise significantly decreased infarct volume, cell death, and neurological deficits. Motor and cognitive function, as determined using an array of tests such as beam balance, forelimb placing, and the Morris water maze, were also significantly improved by both exercise protocols. Interestingly, while an obvious enhancement of neuroplasticity proteins was shown in both exercise groups, mild exercise rats demonstrated a stronger effect on the expressions of Tau (p < 0.01), brain-derived neurotrophic factor (p < 0.01), and tyrosine kinase B (p < 0.05). These findings contribute to the growing body of literature regarding the positive effects of both mild and intense long-term treadmill exercise on brain injury, functional outcome, and neuroplasticity. Additionally, the results may provide a base for our future study regarding the regulation of HIF-1α on the BDNF/TrkB/CREB pathway in the biochemical processes underlying post-stroke synaptic plasticity.
Collapse
Affiliation(s)
- Fengwu Li
- China-America Institute of Neuroscience, Luhe Hospital, Capital Medical University, Beijing, China
| | - Xiaokun Geng
- China-America Institute of Neuroscience, Luhe Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Christian Huber
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Christopher Stone
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States.,Department of Research and Development Center, John D. Dingell VA Medical Center, Detroit, MI, United States
| |
Collapse
|
98
|
A 10-week yoga practice has no effect on cognition, but improves balance and motor learning by attenuating brain-derived neurotrophic factor levels in older adults. Exp Gerontol 2020; 138:110998. [PMID: 32544572 DOI: 10.1016/j.exger.2020.110998] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 12/23/2022]
Abstract
Despite studies investigating the effect of yoga on cognitive and motor functioning in older adults, the effect on dual-task performance and motor learning and the specific mechanisms underlying the positive effect of yoga remain unclear. Thus, the aim of this study was to investigate the effects of yoga on cognition, balance under single- and dual-task conditions, and motor learning. The potential role of brain-derived neurotrophic factor (BDNF) in induced improvement was also explored. Participants aged 60-79 years were randomized to either a control group (n = 15) or a yoga group (n = 18) for a 10-week period. The yoga group received 90-min duration yoga classes two times per week. Changes in cognition, balance under single- and dual-task conditions, and learning fast and accurate reaching movements were assessed. Yoga practice decreased (P < 0.05) the velocity vector of the center of pressure under single- and dual-task conditions, whereas no changes in cognitive performance were observed. Although reaction and movement times during learning were decreased in both groups (P < 0.05), a faster reaction time (P < 0.05) and shorter movement time (P < 0.05) were observed in the yoga group than in the control group. Significant moderate relationships (P < 0.05) between changes in BDNF levels and functional improvements were observed. Thus, 10 weeks of yoga practice resulted in improved balance and learning in the speed-accuracy motor task that were mediated by increased BDNF levels, but had no impact on cognition in older adults.
Collapse
|
99
|
Rossi Daré L, Garcia A, Neves BH, Mello-Carpes PB. One physical exercise session promotes recognition learning in rats with cognitive deficits related to amyloid beta neurotoxicity. Brain Res 2020; 1744:146918. [PMID: 32485172 DOI: 10.1016/j.brainres.2020.146918] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/04/2020] [Accepted: 05/28/2020] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease is a progressive neurodegenerative pathological process that causes memory loss and cognitive impairment. One of the pathological characteristics of Alzheimer's disease is the amyloid-β protein aggregation on the brain. The regular practice of physical exercise is a consolidated strategy on the prevention of cognitive deficits; however, little is known about the effects of acute exercise on memory. We hypothesize that one physical exercise session could act as a modulator of learning. Here we investigated the effects of one single session of running (aerobic) or strength (anaerobic) exercise on memory deficits related to neurotoxicity induced by amyloid-β. Male Wistar rats were submitted to stereotaxic surgery to intrahippocampal infusion of amyloid-β protein or saline (control). Ten days after the surgery the rats were submitted to the object recognition (OR) memory task. Immediately after the OR learning session, some rats were submitted to one treadmill running or strength exercise session. Then, the animals were submitted to memory tests 24 h, 7, and 14 days after the OR learning. We demonstrated that one physical exercise session, both aerobic as anaerobic, performed after learning improves learning and memory, promoting memory persistence in control rats and memory consolidation in rats submitted to amyloid-β neurotoxicity model. Notably, the effects of the aerobic exercise session seem to be more prominent, since they also reflect in an improvement of object discrimination index for 7 days in control animals. We verified that the mechanisms involved in the effects of aerobic exercise include the dopaminergic system activation. The mechanisms involved in the anaerobic exercise effects seem to be others since no alterations on hippocampal dopamine or noradrenaline levels were detected.
Collapse
Affiliation(s)
- Leticia Rossi Daré
- Physiology Research Group, Stress, Memory and Behavior Lab, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Alexandre Garcia
- Physiology Research Group, Stress, Memory and Behavior Lab, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Ben-Hur Neves
- Physiology Research Group, Stress, Memory and Behavior Lab, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Pâmela B Mello-Carpes
- Physiology Research Group, Stress, Memory and Behavior Lab, Federal University of Pampa, Uruguaiana, RS, Brazil.
| |
Collapse
|
100
|
da Silva ESM, Ocamoto GN, Santos-Maia GLD, de Fátima Carreira Moreira Padovez R, Trevisan C, de Noronha MA, Pereira ND, Borstad A, Russo TL. The Effect of Priming on Outcomes of Task-Oriented Training for the Upper Extremity in Chronic Stroke: A Systematic Review and Meta-analysis. Neurorehabil Neural Repair 2020; 34:479-504. [PMID: 32452242 DOI: 10.1177/1545968320912760] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Background. Priming results in a type of implicit memory that prepares the brain for a more plastic response, thereby changing behavior. New evidence in neurorehabilitation points to the use of priming interventions to optimize functional gains of the upper extremity in poststroke individuals. Objective. To determine the effects of priming on task-oriented training on upper extremity outcomes (body function and activity) in chronic stroke. Methods. The PubMed, CINAHL, Web of Science, EMBASE, and PEDro databases were searched in October 2019. Outcome data were pooled into categories of measures considering the International Classification Functional (ICF) classifications of body function and activity. Means and standard deviations for each group were used to determine group effect sizes by calculating mean differences (MDs) and 95% confidence intervals via a fixed effects model. Heterogeneity among the included studies for each factor evaluated was measured using the I2 statistic. Results. Thirty-six studies with 814 patients undergoing various types of task-oriented training were included in the analysis. Of these studies, 17 were associated with stimulation priming, 12 with sensory priming, 4 with movement priming, and 3 with action observation priming. Stimulation priming showed moderate-quality evidence of body function. Only the Wolf Motor Function Test (time) in the activity domain showed low-quality evidence. However, gains in motor function and in use of extremity members were measured by the Fugl-Meyer Assessment (UE-FMA). Regarding sensory priming, we found moderate-quality evidence and effect size for UE-FMA, corresponding to the body function domain (MD 4.77, 95% CI 3.25-6.29, Z = 6.15, P < .0001), and for the Action Research Arm Test, corresponding to the activity domain (MD 7.47, 95% CI 4.52-10.42, Z = 4.96, P < .0001). Despite the low-quality evidence, we found an effect size (MD 8.64, 95% CI 10.85-16.43, Z = 2.17, P = .003) in movement priming. Evidence for action observation priming was inconclusive. Conclusion. Combining priming and task-oriented training for the upper extremities of chronic stroke patients can be a promising intervention strategy. Studies that identify which priming techniques combined with task-oriented training for upper extremity function in chronic stroke yield effective outcomes in each ICF domain are needed and may be beneficial for the recovery of upper extremities poststroke.
Collapse
Affiliation(s)
| | | | - Gabriela Lopes Dos Santos-Maia
- Federal University of São Carlos (UFSCar), São Carlos, São Paulo, Brazil.,Alfredo Nasser College, Aparecida de Goiânia, Goiás, Brazil
| | | | - Claudia Trevisan
- Federal University of São Carlos (UFSCar), São Carlos, São Paulo, Brazil
| | | | | | | | - Thiago Luiz Russo
- Federal University of São Carlos (UFSCar), São Carlos, São Paulo, Brazil
| |
Collapse
|