51
|
Lenarczyk M, Su J, Haworth ST, Komorowski R, Fish BL, Migrino RQ, Harmann L, Hopewell JW, Kronenberg A, Patel S, Moulder JE, Baker JE. Simvastatin mitigates increases in risk factors for and the occurrence of cardiac disease following 10 Gy total body irradiation. Pharmacol Res Perspect 2015; 3:e00145. [PMID: 26171225 PMCID: PMC4492761 DOI: 10.1002/prp2.145] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 03/17/2015] [Indexed: 01/20/2023] Open
Abstract
The ability of simvastatin to mitigate the increases in risk factors for and the occurrence of cardiac disease after 10 Gy total body irradiation (TBI) was determined. This radiation dose is relevant to conditioning for stem cell transplantation and threats from radiological terrorism. Male rats received single dose TBI of 10 Gy. Age-matched, sham-irradiated rats served as controls. Lipid profile, heart and liver morphology and cardiac mechanical function were determined for up to 120 days after irradiation. TBI resulted in a sustained increase in total- and LDL-cholesterol (low-density lipoprotein-cholesterol), and triglycerides. Simvastatin (10 mg/kg body weight/day) administered continuously from 9 days after irradiation mitigated TBI-induced increases in total- and LDL-cholesterol and triglycerides, as well as liver injury. TBI resulted in cellular peri-arterial fibrosis, whereas control hearts had less collagen and fibrosis. Simvastatin mitigated these morphological injuries. TBI resulted in cardiac mechanical dysfunction. Simvastatin mitigated cardiac mechanical dysfunction 20–120 days following TBI. To determine whether simvastatin affects the ability of the heart to withstand stress after TBI, injury from myocardial ischemia/reperfusion was determined in vitro. TBI increased the severity of an induced myocardial infarction at 20 and 80 days after irradiation. Simvastatin mitigated the severity of this myocardial infarction at 20 and 80 days following TBI. It is concluded simvastatin mitigated the increases in risk factors for cardiac disease and the extent of cardiac disease following TBI. This statin may be developed as a medical countermeasure for the mitigation of radiation-induced cardiac disease.
Collapse
Affiliation(s)
- Marek Lenarczyk
- Division of Cardiothoracic Surgery, Medical College of Wisconsin Milwaukee, Wisconsin
| | - Jidong Su
- Division of Cardiothoracic Surgery, Medical College of Wisconsin Milwaukee, Wisconsin
| | - Steven T Haworth
- Department of Medicine, Medical College of Wisconsin Milwaukee, Wisconsin
| | - Richard Komorowski
- Department of Pathology, Medical College of Wisconsin Milwaukee, Wisconsin
| | - Brian L Fish
- Department of Radiation Oncology, Medical College of Wisconsin Milwaukee, Wisconsin
| | | | - Leanne Harmann
- Division of Cardiovascular Medicine, Medical College of Wisconsin Milwaukee, Wisconsin
| | - John W Hopewell
- Green Templeton College and Particle Therapy Cancer Research Institute, University of Oxford Oxford, United Kingdom
| | - Amy Kronenberg
- Lawrence Berkeley National Laboratory Berkeley, California
| | - Shailendra Patel
- Division of Endocrinology, Medical College of Wisconsin Milwaukee, Wisconsin ; Clement J. Zablocki Veterans Affairs Medical Center Milwaukee, Wisconsin
| | - John E Moulder
- Department of Radiation Oncology, Medical College of Wisconsin Milwaukee, Wisconsin
| | - John E Baker
- Division of Cardiothoracic Surgery, Medical College of Wisconsin Milwaukee, Wisconsin ; Department of Pharmacology and Toxicology, Medical College of Wisconsin Milwaukee, Wisconsin ; Children's Research Institute, Children's Hospital of Wisconsin Milwaukee, Wisconsin
| |
Collapse
|
52
|
Mathias D, Mitchel REJ, Barclay M, Wyatt H, Bugden M, Priest ND, Whitman SC, Scholz M, Hildebrandt G, Kamprad M, Glasow A. Low-dose irradiation affects expression of inflammatory markers in the heart of ApoE -/- mice. PLoS One 2015; 10:e0119661. [PMID: 25799423 PMCID: PMC4370602 DOI: 10.1371/journal.pone.0119661] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 01/21/2015] [Indexed: 01/17/2023] Open
Abstract
Epidemiological studies indicate long-term risks of ionizing radiation on the heart, even at moderate doses. In this study, we investigated the inflammatory, thrombotic and fibrotic late responses of the heart after low-dose irradiation (IR) with specific emphasize on the dose rate. Hypercholesterolemic ApoE-deficient mice were sacrificed 3 and 6 months after total body irradiation (TBI) with 0.025, 0.05, 0.1, 0.5 or 2 Gy at low (1 mGy/min) or high dose rate (150 mGy/min). The expression of inflammatory and thrombotic markers was quantified in frozen heart sections (CD31, E-selectin, thrombomodulin, ICAM-1, VCAM-1, collagen IV, Thy-1, and CD45) and in plasma samples (IL6, KC, MCP-1, TNFα, INFγ, IL-1β, TGFβ, INFγ, IL-10, sICAM-1, sE-selectin, sVCAM-1 and fibrinogen) by fluorescence analysis and ELISA. We found that even very low irradiation doses induced adaptive late responses, such as increases of capillary density and changes in collagen IV and Thy-1 levels indicating compensatory regulation. Slight decreases of ICAM-1 levels and reduction of Thy 1 expression at 0.025–0.5 Gy indicate anti-inflammatory effects, whereas at the highest dose (2 Gy) increased VCAM-1 levels on the endocardium may represent a switch to a pro-inflammatory response. Plasma samples partially confirmed this pattern, showing a decrease of proinflammatory markers (sVCAM, sICAM) at 0.025–2.0 Gy. In contrast, an enhancement of MCP-1, TNFα and fibrinogen at 0.05–2.0 Gy indicated a proinflammatory and prothrombotic systemic response. Multivariate analysis also revealed significant age-dependent increases (KC, MCP-1, fibrinogen) and decreases (sICAM, sVCAM, sE-selectin) of plasma markers. This paper represents local and systemic effects of low-dose irradiation, including also age- and dose rate-dependent responses in the ApoE-/- mouse model. These insights in the multiple inflammatory/thrombotic effects caused by low-dose irradiation might facilitate an individual evaluation and intervention of radiation related, long-term side effects but also give important implications for low dose anti-inflammatory radiotherapy.
Collapse
Affiliation(s)
- Daniel Mathias
- Department of Radiation Therapy, University of Leipzig, Leipzig, Germany
| | - Ronald E. J. Mitchel
- Radiological Protection Research and Instrumentation Branch, Canadian Nuclear Laboratories, Chalk River, Ontario, Canada
| | - Mirela Barclay
- Departments of Pathology and Laboratory Medicine and Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Vascular Biology Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Heather Wyatt
- Radiological Protection Research and Instrumentation Branch, Canadian Nuclear Laboratories, Chalk River, Ontario, Canada
| | - Michelle Bugden
- Radiological Protection Research and Instrumentation Branch, Canadian Nuclear Laboratories, Chalk River, Ontario, Canada
| | - Nicholas D. Priest
- Radiological Protection Research and Instrumentation Branch, Canadian Nuclear Laboratories, Chalk River, Ontario, Canada
| | - Stewart C. Whitman
- Departments of Pathology and Laboratory Medicine and Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Vascular Biology Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Germany
| | - Guido Hildebrandt
- Department of Radiotherapy and Radiation Oncology, University of Rostock, Rostock, Germany
| | - Manja Kamprad
- Institute of Clinical Immunology and Transfusion Medicine, University of Leipzig, Leipzig, Germany
| | - Annegret Glasow
- Department of Radiation Therapy, University of Leipzig, Leipzig, Germany
- * E-mail:
| |
Collapse
|
53
|
Medhora M, Gao F, Glisch C, Narayanan J, Sharma A, Harmann LM, Lawlor MW, Snyder LA, Fish BL, Down JD, Moulder JE, Strande JL, Jacobs ER. Whole-thorax irradiation induces hypoxic respiratory failure, pleural effusions and cardiac remodeling. JOURNAL OF RADIATION RESEARCH 2015; 56:248-60. [PMID: 25368342 PMCID: PMC4380043 DOI: 10.1093/jrr/rru095] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/11/2014] [Accepted: 09/19/2014] [Indexed: 05/20/2023]
Abstract
To study the mechanisms of death following a single lethal dose of thoracic radiation, WAG/RijCmcr (Wistar) rats were treated with 15 Gy to the whole thorax and followed until they were morbid or sacrificed for invasive assays at 6 weeks. Lung function was assessed by breathing rate and arterial oxygen saturation. Lung structure was evaluated histologically. Cardiac structure and function were examined by echocardiography. The frequency and characteristics of pleural effusions were determined. Morbidity from 15 Gy radiation occurred in all rats 5 to 8 weeks after exposure, coincident with histological pneumonitis. Increases in breathing frequencies peaked at 6 weeks, when profound arterial hypoxia was also recorded. Echocardiography analysis at 6 weeks showed pulmonary hypertension and severe right ventricular enlargement with impaired left ventricular function and cardiac output. Histologic sections of the heart revealed only rare foci of lymphocytic infiltration. Total lung weight more than doubled. Pleural effusions were present in the majority of the irradiated rats and contained elevated protein, but low lactate dehydrogenase, when compared with serum from the same animal. Pleural effusions had a higher percentage of macrophages and large monocytes than neutrophils and contained mast cells that are rarely present in other pathological states. Lethal irradiation to rat lungs leads to hypoxia with infiltration of immune cells, edema and pleural effusion. These changes may contribute to pulmonary vascular and parenchymal injury that result in secondary changes in heart structure and function. We report that conditions resembling congestive heart failure contribute to death during radiation pneumonitis, which indicates new targets for therapy.
Collapse
Affiliation(s)
- Meetha Medhora
- Department of Radiation Oncology, Medical College of Wisconsin, 8701, Watertown Plank Road, Milwaukee, WI 53226, USA Cardiovascular Center, Medical College of Wisconsin, 8701, Watertown Plank Road, Milwaukee, WI 53226, USA Division of Pulmonary Medicine, Medical College of Wisconsin, 8701, Watertown Plank Road, Milwaukee, WI 53226, USA Research Service, Department of Veteran's Affairs, Clement J. Zablocki VA Medical Center, Milwaukee, Wisconsin, USA
| | - Feng Gao
- Department of Radiation Oncology, Medical College of Wisconsin, 8701, Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Chad Glisch
- Department of Radiation Oncology, Medical College of Wisconsin, 8701, Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Jayashree Narayanan
- Department of Radiation Oncology, Medical College of Wisconsin, 8701, Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Ashish Sharma
- Department of Radiation Oncology, Medical College of Wisconsin, 8701, Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Leanne M Harmann
- Cardiovascular Center, Medical College of Wisconsin, 8701, Watertown Plank Road, Milwaukee, WI 53226, USA Division of Cardiovascular Medicine, Medical College of Wisconsin, 8701, Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Michael W Lawlor
- Division of Pediatric Pathology, Medical College of Wisconsin, 8701, Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Laura A Snyder
- Marshfield Laboratories; Wisconsin Veterinary Referral Hospital, Waukesha, Wisconsin, USA
| | - Brian L Fish
- Department of Radiation Oncology, Medical College of Wisconsin, 8701, Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Julian D Down
- Harvard-Massachusetts Institute of Technology Division of Health Sciences Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - John E Moulder
- Department of Radiation Oncology, Medical College of Wisconsin, 8701, Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Jennifer L Strande
- Cardiovascular Center, Medical College of Wisconsin, 8701, Watertown Plank Road, Milwaukee, WI 53226, USA Division of Cardiovascular Medicine, Medical College of Wisconsin, 8701, Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Elizabeth R Jacobs
- Cardiovascular Center, Medical College of Wisconsin, 8701, Watertown Plank Road, Milwaukee, WI 53226, USA Division of Pulmonary Medicine, Medical College of Wisconsin, 8701, Watertown Plank Road, Milwaukee, WI 53226, USA Research Service, Department of Veteran's Affairs, Clement J. Zablocki VA Medical Center, Milwaukee, Wisconsin, USA
| |
Collapse
|
54
|
Slezak J, Kura B, Ravingerová T, Tribulova N, Okruhlicova L, Barancik M. Mechanisms of cardiac radiation injury and potential preventive approaches. Can J Physiol Pharmacol 2015; 93:737-53. [PMID: 26030720 DOI: 10.1139/cjpp-2015-0006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In addition to cytostatic treatment and surgery, the most common cancer treatment is gamma radiation. Despite sophisticated radiological techniques however, in addition to irradiation of the tumor, irradiation of the surrounding healthy tissue also takes place, which results in various side-effects, depending on the absorbed dose of radiation. Radiation either damages the cell DNA directly, or indirectly via the formation of oxygen radicals that in addition to the DNA damage, react with all cell organelles and interfere with their molecular mechanisms. The main features of radiation injury besides DNA damage is inflammation and increased expression of pro-inflammatory genes and cytokines. Endothelial damage and dysfunction of capillaries and small blood vessels plays a particularly important role in radiation injury. This review is focused on summarizing the currently available data concerning the mechanisms of radiation injury, as well as the effectiveness of various antioxidants, anti-inflammatory cytokines, and cytoprotective substances that may be utilized in preventing, mitigating, or treating the toxic effects of ionizing radiation on the heart.
Collapse
Affiliation(s)
- Jan Slezak
- Institute for Heart Research, Slovak Academy of Sciences, Dúbravská cesta 9, 842 33 Bratislava, Slovak Republic.,Institute for Heart Research, Slovak Academy of Sciences, Dúbravská cesta 9, 842 33 Bratislava, Slovak Republic
| | - Branislav Kura
- Institute for Heart Research, Slovak Academy of Sciences, Dúbravská cesta 9, 842 33 Bratislava, Slovak Republic.,Institute for Heart Research, Slovak Academy of Sciences, Dúbravská cesta 9, 842 33 Bratislava, Slovak Republic
| | - Táňa Ravingerová
- Institute for Heart Research, Slovak Academy of Sciences, Dúbravská cesta 9, 842 33 Bratislava, Slovak Republic.,Institute for Heart Research, Slovak Academy of Sciences, Dúbravská cesta 9, 842 33 Bratislava, Slovak Republic
| | - Narcisa Tribulova
- Institute for Heart Research, Slovak Academy of Sciences, Dúbravská cesta 9, 842 33 Bratislava, Slovak Republic.,Institute for Heart Research, Slovak Academy of Sciences, Dúbravská cesta 9, 842 33 Bratislava, Slovak Republic
| | - Ludmila Okruhlicova
- Institute for Heart Research, Slovak Academy of Sciences, Dúbravská cesta 9, 842 33 Bratislava, Slovak Republic.,Institute for Heart Research, Slovak Academy of Sciences, Dúbravská cesta 9, 842 33 Bratislava, Slovak Republic
| | - Miroslav Barancik
- Institute for Heart Research, Slovak Academy of Sciences, Dúbravská cesta 9, 842 33 Bratislava, Slovak Republic.,Institute for Heart Research, Slovak Academy of Sciences, Dúbravská cesta 9, 842 33 Bratislava, Slovak Republic
| |
Collapse
|
55
|
Azimzadeh O, Sievert W, Sarioglu H, Merl-Pham J, Yentrapalli R, Bakshi MV, Janik D, Ueffing M, Atkinson MJ, Multhoff G, Tapio S. Integrative proteomics and targeted transcriptomics analyses in cardiac endothelial cells unravel mechanisms of long-term radiation-induced vascular dysfunction. J Proteome Res 2015; 14:1203-19. [PMID: 25590149 DOI: 10.1021/pr501141b] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Epidemiological data from radiotherapy patients show the damaging effect of ionizing radiation on heart and vasculature. The endothelium is the main target of radiation damage and contributes essentially to the development of cardiac injury. However, the molecular mechanisms behind the radiation-induced endothelial dysfunction are not fully understood. In the present study, 10-week-old C57Bl/6 mice received local X-ray heart doses of 8 or 16 Gy and were sacrificed after 16 weeks; the controls were sham-irradiated. The cardiac microvascular endothelial cells were isolated from the heart tissue using streptavidin-CD31-coated microbeads. The cells were lysed and proteins were labeled with duplex isotope-coded protein label methodology for quantification. All samples were analyzed by LC-ESI-MS/MS and Proteome Discoverer software. The proteomics data were further studied by bioinformatics tools and validated by targeted transcriptomics, immunoblotting, immunohistochemistry, and serum profiling. Radiation-induced endothelial dysfunction was characterized by impaired energy metabolism and perturbation of the insulin/IGF-PI3K-Akt signaling pathway. The data also strongly suggested premature endothelial senescence, increased oxidative stress, decreased NO availability, and enhanced inflammation as main causes of radiation-induced long-term vascular dysfunction. Detailed data on molecular mechanisms of radiation-induced vascular injury as compiled here are essential in developing radiotherapy strategies that minimize cardiovascular complications.
Collapse
Affiliation(s)
- Omid Azimzadeh
- Helmholtz Zentrum München - German Research Centre for Environmental Health, Institute of Radiation Biology , Ingolstaedter Landstrasse 1, D-85764 Neuherberg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Barshishat-Kupper M, Tipton AJ, McCart EA, McCue J, Mueller GP, Day RM. Effect of ionizing radiation on liver protein oxidation and metabolic function in C57BL/6J mice. Int J Radiat Biol 2014; 90:1169-78. [PMID: 24899392 DOI: 10.3109/09553002.2014.930536] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE Protein oxidation in response to radiation results in DNA damage, endoplasmic reticulum stress/unfolded protein response, cell cycle arrest, cell death and senescence. The liver, a relatively radiosensitive organ, undergoes measurable alterations in metabolic functions following irradiation. Accordingly, we investigated radiation-induced changes in liver metabolism and alterations in protein oxidation. MATERIALS AND METHODS C57BL/6 mice were sham irradiated or exposed to 8.5 Gy (60)Co (0.6 Gy/min) total body irradiation. Metabolites and metabolic enzymes in the blood and liver tissue were analyzed. Two-dimensional gel electrophoresis and OxyBlot™ were used to detect carbonylated proteins that were then identified by peptide mass fingerprinting. RESULTS Analysis of serum metabolites revealed elevated glucose, bilirubin, lactate dehydrogenase (LDH), high-density lipoprotein, and aspartate aminotransferase within 24-72 h post irradiation. Liver tissue LDH and alkaline phosphatase activities were elevated 24-72 h post irradiation. OxyBlotting revealed that the hepatic proteome contains baseline protein carbonylation. Radiation exposure increased carbonylation of specific liver proteins including carbonic anhydrase 1, α-enolase, and regucalcin. CONCLUSIONS 8.5 Gy irradiation resulted in distinct metabolic alterations in hepatic functions. Coincident with these changes, radiation induced the carbonylation of specific liver enzymes. The oxidation of liver enzymes may underlie some radiation-induced alterations in hepatic function.
Collapse
Affiliation(s)
- Michal Barshishat-Kupper
- Department of Pharmacology, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| | | | | | | | | | | |
Collapse
|
57
|
Santoro F, Tarantino N, Pellegrino PL, Caivano M, Lopizzo A, Di Biase M, Brunetti ND. Cardiovascular sequelae of radiation therapy. Clin Res Cardiol 2014; 103:955-67. [DOI: 10.1007/s00392-014-0718-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 04/15/2014] [Indexed: 01/13/2023]
|
58
|
Effects of γ-irradiation on Na,K-ATPase in cardiac sarcolemma. Mol Cell Biochem 2013; 388:241-7. [DOI: 10.1007/s11010-013-1915-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 12/06/2013] [Indexed: 10/25/2022]
|
59
|
Takahashi I, Ohishi W, Mettler FA, Ozasa K, Jacob P, Ban N, Lipshultz SE, Stewart FA, Nabika T, Niwa Y, Takahashi N, Akahoshi M, Kodama K, Shore R. A report from the 2013 international workshop: radiation and cardiovascular disease, Hiroshima, Japan. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2013; 33:869-880. [PMID: 24190873 DOI: 10.1088/0952-4746/33/4/869] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Two longitudinal cohort studies of Japanese atomic bomb survivors-the life span study (LSS) and the adult health study (AHS)-from the Radiation Effects Research Foundation (RERF) indicate that total body irradiation doses less than 1 Gy are associated with an increased risk of cardiovascular disease (CVD), but several questions about this association remain.In particular, the diversity of heart disease subtypes and the high prevalence of other risk factors complicate the estimates of radiation effects. Subtype-specific analyses with more reliable diagnostic criteria and measurement techniques are needed. The radiation effects on CVD risk are probably tissue-reaction (deterministic) effects, so the dose-response relationships for various subtypes of CVD may be nonlinear and therefore should be explored with several types of statistical models.Subpopulations at high risk need to be identified because effects at lower radiation doses may occur primarily in these susceptible subpopulations. Whether other CVD risk factors modify radiation effects also needs to be determined. Finally, background rates for various subtypes of CVD have historically differed substantially between Japanese and Western populations, so the generalisability to other populations needs to be examined.Cardiovascular disease mechanisms and manifestations may differ between high-dose local irradiation and low-dose total body irradiation (TBI)-microvascular damage and altered metabolism from low-dose TBI, but coronary artery atherosclerosis and thrombotic myocardial infarcts at high localised doses. For TBI, doses to organs other than the heart may be important in pathogenesis of CVD, so data on renal and liver disorders, plaque instability, microvascular damage, metabolic disorders, hypertension and various CVD biomarkers and risk factors are needed. Epidemiological, clinical and experimental studies at doses of less than 1 Gy are necessary to clarify the effects of radiation on CVD risk.
Collapse
Affiliation(s)
- Ikuno Takahashi
- Department of Clinical Studies, Radiation Effects Research Foundation (RERF), Hiroshima, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Bakshi MV, Barjaktarovic Z, Azimzadeh O, Kempf SJ, Merl J, Hauck SM, Eriksson P, Buratovic S, Atkinson MJ, Tapio S. Long-term effects of acute low-dose ionizing radiation on the neonatal mouse heart: a proteomic study. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2013; 52:451-461. [PMID: 23880982 DOI: 10.1007/s00411-013-0483-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 07/11/2013] [Indexed: 06/02/2023]
Abstract
Epidemiological studies establish that children and young adults are especially susceptible to radiation-induced cardiovascular disease (CVD). The biological mechanisms behind the elevated CVD risk following exposure at young age remain unknown. The present study aims to elucidate the long-term effects of ionizing radiation by studying the murine cardiac proteome after exposure to low and moderate radiation doses. NMRI mice received single doses of total body (60)Co gamma-irradiation on postnatal day 10 and were sacrificed 7 months later. Changes in cardiac protein expression were quantified using isotope-coded protein label and tandem mass spectrometry. We identified 32, 31, 66, and 34 significantly deregulated proteins after doses of 0.02, 0.1, 0.5, and 1.0 Gy, respectively. The four doses shared 9 deregulated proteins. Bioinformatics analysis showed that most of the deregulated proteins belonged to a limited set of biological categories, including metabolic processes, inflammatory response, and cytoskeletal structure. The transcription factor peroxisome proliferator-activated receptor alpha was predicted as a common upstream regulator of several deregulated proteins. This study indicates that both adaptive and maladaptive responses to the initial radiation damage persist well into adulthood. It will contribute to the understanding of the long-term consequences of radiation-induced injury and developmental alterations in the neonatal heart.
Collapse
Affiliation(s)
- Mayur V Bakshi
- Institute of Radiation Biology, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Wondergem J, Boerma M, Kodama K, Stewart FA, Trott KR. Cardiovascular effects after low-dose exposure and radiotherapy: what research is needed? RADIATION AND ENVIRONMENTAL BIOPHYSICS 2013; 52:425-434. [PMID: 23999657 DOI: 10.1007/s00411-013-0489-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 08/19/2013] [Indexed: 06/02/2023]
Abstract
The authors of this report met at the Head Quarter of the International Atomic Energy Agency (IAEA) in Vienna, Austria, on 2-4 July 2012, for intensive discussions of an abundance of original publications on new epidemiological studies on cardiovascular effects after low-dose exposure and radiotherapy and radiobiological experiments as well as several comprehensive reviews that were published since the previous meeting by experts sponsored by the IAEA in June 2006. The data necessitated a re-evaluation of the situation with special emphasis on the consequences current experimental and clinical data may have for clinical oncology/radiotherapy and radiobiological research. The authors jointly arrived at the conclusions and recommendations presented here.
Collapse
Affiliation(s)
- Jan Wondergem
- Applied Radiation Biology and Radiotherapy Section, Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Wagrammer Strasse 5, PO box 100, 1400, Vienna, Austria,
| | | | | | | | | |
Collapse
|
62
|
Giardi MT, Touloupakis E, Bertolotto D, Mascetti G. Preventive or potential therapeutic value of nutraceuticals against ionizing radiation-induced oxidative stress in exposed subjects and frequent fliers. Int J Mol Sci 2013; 14:17168-92. [PMID: 23965979 PMCID: PMC3759958 DOI: 10.3390/ijms140817168] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 08/01/2013] [Accepted: 08/12/2013] [Indexed: 12/19/2022] Open
Abstract
Humans are constantly exposed to ionizing radiation deriving from outer space sources or activities related to medical care. Absorption of ionizing radiation doses over a prolonged period of time can result in oxidative damage and cellular dysfunction inducing several diseases, especially in ageing subjects. In this report, we analyze the effects of ionizing radiation, particularly at low doses, in relation to a variety of human pathologies, including cancer, and cardiovascular and retinal diseases. We discuss scientific data in support of protection strategies by safe antioxidant formulations that can provide preventive or potential therapeutic value in response to long-term diseases that may develop following exposure.
Collapse
Affiliation(s)
| | - Eleftherios Touloupakis
- Biosensor, Via Olmetti 44 Formello, Rome 00060, Italy; E-Mail:
- Department of Chemistry, University of Crete, P.O. Box 2208, Voutes-Heraklion 71003, Greece
| | - Delfina Bertolotto
- Agenzia Spaziale Italiana (ASI), Viale Liegi 26, Rome 00198, Italy; E-Mails: (D.B.); (G.M.)
| | - Gabriele Mascetti
- Agenzia Spaziale Italiana (ASI), Viale Liegi 26, Rome 00198, Italy; E-Mails: (D.B.); (G.M.)
| |
Collapse
|
63
|
Lenarczyk M, Lam V, Jensen E, Fish BL, Su J, Koprowski S, Komorowski RA, Harmann L, Migrino RQ, Li XA, Hopewell JW, Moulder JE, Baker JE. Cardiac injury after 10 gy total body irradiation: indirect role of effects on abdominal organs. Radiat Res 2013; 180:247-58. [PMID: 23919311 DOI: 10.1667/rr3292.1] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The objective of this study was to determine whether radiation-induced injury to the heart after 10 Gy total body irradiation (TBI) is direct or indirect. Young male WAG/RijCmcr rats received a 10 Gy single dose using TBI, upper hemi-body (UHB) irradiation, lower hemi-body (LHB) irradiation, TBI with the kidneys shielded or LHB irradiation with the intestines shielded. Age-matched, sham-irradiated rats served as controls. The lipid profile, kidney injury, heart and liver morphology and cardiac function were determined up to 120 days after irradiation. LHB, but not UHB irradiation, increased the risk factors for cardiac disease as well as the occurrence of cardiac and kidney injury in a way that was quantitatively and qualitatively similar to that observed after TBI. Shielding of the kidneys prevented the increases in risk factors for cardiac disease. Shielding of the intestines did not prevent the increases in risk factors for cardiac disease. There was no histological evidence of liver injury 120 days after irradiation. Injury to the heart from irradiation appears to be indirect, supporting the notion that injury to abdominal organs, principally the kidneys, is responsible for the increased risk factors for and the occurrence of cardiac disease after TBI and LHB irradiation.
Collapse
|
64
|
Stewart FA, Seemann I, Hoving S, Russell NS. Understanding radiation-induced cardiovascular damage and strategies for intervention. Clin Oncol (R Coll Radiol) 2013; 25:617-24. [PMID: 23876528 DOI: 10.1016/j.clon.2013.06.012] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 04/26/2013] [Accepted: 06/30/2013] [Indexed: 12/22/2022]
Abstract
There is a clear association between therapeutic doses of thoracic irradiation and an increased risk of cardiovascular disease (CVD) in cancer survivors, although these effects may take decades to become symptomatic. Long-term survivors of Hodgkin's lymphoma and childhood cancers have two-fold to more than seven-fold increased risks for late cardiac deaths after total tumour doses of 30-40 Gy, given in 2 Gy fractions, where large volumes of heart were included in the field. Increased cardiac mortality is also seen in women irradiated for breast cancer. Breast doses are generally 40-50 Gy in 2 Gy fractions, but only a small part of the heart is included in the treatment fields and mean heart doses rarely exceeded 10-15 Gy, even with older techniques. The relative risks of cardiac mortality (1.1-1.4) are consequently lower than for Hodgkin's lymphoma survivors. Some epidemiological studies show increased risks of cardiac death after accidental or environmental total body exposures to much lower radiation doses. The mechanisms whereby these cardiac effects occur are not fully understood and different mechanisms are probably involved after high therapeutic doses to the heart, or part of the heart, than after low total body exposures. These various mechanisms probably result in different cardiac pathologies, e.g. coronary artery atherosclerosis leading to myocardial infarct, versus microvascular damage and fibrosis leading to congestive heart failure. Experimental studies can help to unravel some of these mechanisms and may identify suitable strategies for managing or inhibiting CVD. In this overview, the main epidemiological and clinical evidence for radiation-induced CVD is summarised. Experimental data shedding light on some of the underlying pathologies and possible targets for intervention are also discussed.
Collapse
Affiliation(s)
- F A Stewart
- Division of Biological Stress Response, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
65
|
Detombe SA, Dunmore-Buyze J, Petrov IE, Drangova M. X-ray dose delivered during a longitudinal micro-CT study has no adverse effect on cardiac and pulmonary tissue in C57BL/6 mice. Acta Radiol 2013; 54:435-41. [PMID: 23436828 DOI: 10.1177/0284185113475608] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Micro-computed tomography (micro-CT) offers numerous advantages for small animal imaging, including the ability to monitor the same animals throughout a longitudinal study. However, concerns are often raised regarding the effects of X-ray dose accumulated over the course of the experiment. PURPOSE To scan C57BL/6 mice multiple times per week for 6 weeks, in order to determine the effect of the cumulative dose on pulmonary and cardiac tissue at the end of the study. MATERIAL AND METHODS C57BL/6 male mice were split into two groups (irradiated group = 10, control group = 10). The irradiated group was scanned (80 kVp/50 mA) three times weekly for 6 weeks, resulting in a weekly dose of 0.84 Gy, and a total study dose of 5.04 Gy. The control group was scanned on the final week. Scans from week 6 were reconstructed and the lungs and heart were analyzed. RESULTS Overall, there was no significant difference in lung volume or lung density or in left ventricular volume or ejection fraction between the control group and the irradiated group. Histological samples taken from excised lung and myocardial tissue also showed no evidence of inflammation or fibrosis in the irradiated group. CONCLUSION This study demonstrated that a 5 Gy X-ray dose accumulated over 6 weeks during a longitudinal micro-CT study had no significant effects on the pulmonary and myocardial tissue of C57BL/6 mice. As a result, the many advantages of micro-CT imaging, including rapid acquisition of high-resolution, isotropic images in free-breathing mice, can be taken advantage of in longitudinal studies without concern for negative dose-related effects.
Collapse
Affiliation(s)
- Sarah A Detombe
- Imaging Research Laboratories, Robarts Research Institute, Western University, London, ON
- Department of Medical Biophysics, Western University, London, ON, Canada
| | - Joy Dunmore-Buyze
- Imaging Research Laboratories, Robarts Research Institute, Western University, London, ON
| | - Ivailo E Petrov
- Imaging Research Laboratories, Robarts Research Institute, Western University, London, ON
| | - Maria Drangova
- Imaging Research Laboratories, Robarts Research Institute, Western University, London, ON
- Department of Medical Biophysics, Western University, London, ON, Canada
| |
Collapse
|
66
|
Ferreira-Machado SC, Salata C, Rocha NN, Corrêa AF, Côrte-Real S, Peregrino AA, Campos VMD, Andrade CB, Bernardo-Filho M, Cabral-Neto JB, Dealmeida CE. Caspase-3 activation and increased procollagen type I in irradiated hearts. AN ACAD BRAS CIENC 2013; 85:215-22. [DOI: 10.1590/s0001-37652013005000009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 12/19/2011] [Indexed: 02/06/2023] Open
Abstract
The caspase-3-cleaved presence was evaluated in this study in the heart of irradiated rats, during the decline of ventricular function. Female Wistar rats were irradiated with a single dose of radiation (15 Gy) delivered directly to the heart and the molecular, histological and physiological evaluations were performed at thirteen months post-irradiation. The expressions of procollagen type I, TGF-ß1 and caspase-3-cleaved were analyzed using Western blotting. Cardiac structural and functional alterations were investigated by echocardiography and electron microscopy. In the irradiated group, the levels of procollagen type I, TGF-ß1 and caspase-3-cleaved are increased. Significant histological changes (degeneration of heart tissue and collagen deposition) and functional (reduced ejection fraction) were observed. Data suggest that the cardiac function decline after exposure to ionizing radiation is related, in part, to increased collagen and increased caspase-3-cleaved.
Collapse
Affiliation(s)
- Samara C. Ferreira-Machado
- Universidade Federal Fluminense, Brasil; Universidade Federal do Rio de Janeiro, Brasil; Universidade do Estado do Rio de Janeiro, Brasil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
The Urine Proteome as a Radiation Biodosimeter. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 990:87-100. [DOI: 10.1007/978-94-007-5896-4_5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
68
|
Effect of acute and fractionated irradiation on hippocampal neurogenesis. Molecules 2012; 17:9462-8. [PMID: 22874790 PMCID: PMC6268856 DOI: 10.3390/molecules17089462] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 07/27/2012] [Accepted: 08/06/2012] [Indexed: 11/17/2022] Open
Abstract
Ionizing radiation has become an inevitable health concern emanating from natural sources like space travel and from artificial sources like medical therapies. In general, exposure to ionizing radiation such as γ-rays is one of the methods currently used to stress specific model systems. In this study, we elucidated the long-term effect of acute and fractionated irradiation on DCX-positive cells in hippocampal neurogenesis. Groups of two-month-old C57BL/6 female mice were exposed to whole-body irradiation at acute dose (5 Gy) or fractional doses (1 Gy × 5 times and 0.5 Gy × 10 times). Six months after exposure to γ-irradiation, the hippocampus was analyzed. Doublecortin (DCX) immunohistochemistry was used to measure changes of neurogenesis in the subgranular zone (SGZ) of the hippocampal dentate gyrus (DG). The number of DCX-positive cells was significantly decreased in all acute and fractionally irradiation groups. The long-term changes in DCX-positive cells triggered by radiation exposure showed a very different pattern to the short-term changes which tended to return to the control level in previous studies. Furthermore, the number of DCX-positive cells was relatively lower in the acute irradiation group than the fractional irradiation groups (approximately 3.6-fold), suggesting the biological change on hippocampal neurogenesis was more susceptible to being damaged by acute than fractional irradiation. These results suggest that the exposure to γ-irradiation as a long-term effect can trigger biological responses resulting in the inhibition of hippocampal neurogenesis.
Collapse
|
69
|
Snead AN, Insel PA. Defining the cellular repertoire of GPCRs identifies a profibrotic role for the most highly expressed receptor, protease-activated receptor 1, in cardiac fibroblasts. FASEB J 2012; 26:4540-7. [PMID: 22859370 DOI: 10.1096/fj.12-213496] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
G-protein-coupled receptors (GPCRs) have many roles in cell regulation and are commonly used as drug targets, but the repertoire of GPCRs expressed by individual cell types has not been defined. Here we use an unbiased approach, GPCR RT-PCR array, to define the expression of nonchemosensory GPCRs by cardiac fibroblasts (CFs) isolated from Rattus norvegicus. CFs were selected because of their importance for cardiac structure and function and their contribution to cardiac fibrosis, which occurs with advanced age, after acute injury (e.g., myocardial infarction), and in disease states (e.g., diabetes mellitus, hypertension). We discovered that adult rat CFs express 190 GPCRs and that activation of protease-activated receptor 1 (PAR1), the most highly expressed receptor, raises the expression of profibrotic markers in rat CFs, resulting in a 60% increase in collagen synthesis and conversion to a profibrogenic myofibroblast phenotype. We use siRNA knockdown of PAR1 (90% decrease in mRNA) to show that the profibrotic effects of thrombin are PAR1-dependent. These findings, which define the expression of GPCRs in CFs, provide a proof of principle of an approach to discover previously unappreciated, functionally relevant GPCRs and reveal a potential role for thrombin and PAR1 in wound repair and pathophysiology of the adult heart.
Collapse
Affiliation(s)
- Aaron N Snead
- Department of Pharmacology, University of California at San Diego, La Jolla, California 92093, USA
| | | |
Collapse
|
70
|
Medhora M, Gao F, Fish BL, Jacobs ER, Moulder JE, Szabo A. Dose-modifying factor for captopril for mitigation of radiation injury to normal lung. JOURNAL OF RADIATION RESEARCH 2012; 53:633-40. [PMID: 22843631 PMCID: PMC3393339 DOI: 10.1093/jrr/rrs004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 02/28/2012] [Indexed: 05/20/2023]
Abstract
Our goal is to develop countermeasures for pulmonary injury following unpredictable events such as radiological terrorism or nuclear accidents. We have previously demonstrated that captopril, an angiotensin converting enzyme (ACE) inhibitor, is more effective than losartan, an angiotensin type-1 receptor blocker, in mitigating radiation-pneumopathy in a relevant rodent model. In the current study we determined the dose modifying factors (DMFs) of captopril for mitigation of parameters of radiation pneumonitis. We used a whole animal model, irradiating 9-10-week-old female rats derived from a Wistar strain (WAG/RijCmcr) with a single dose of irradiation to the thorax of 11, 12, 13, 14 or 15 Gy. Our study develops methodology to measure DMFs for morbidity (survival) as well as physiological endpoints such as lung function, taking into account attrition due to lethal radiation-induced pneumonitis. Captopril delivered in drinking water (140-180 mg/m(2)/day, comparable with that given clinically) and started one week after irradiation has a DMF of 1.07-1.17 for morbidity up to 80 days (survival) and 1.21-1.35 for tachypnea at 42 days (at the peak of pneumonitis) after a single dose of ionizing radiation (X-rays). These encouraging results advance our goals, since DMF measurements are essential for drug labeling and comparison with other mitigators.
Collapse
Affiliation(s)
- Meetha Medhora
- Department of Radiation Oncology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| | | | | | | | | | | |
Collapse
|
71
|
Lam V, Moulder JE, Salzman NH, Dubinsky EA, Andersen GL, Baker JE. Intestinal microbiota as novel biomarkers of prior radiation exposure. Radiat Res 2012; 177:573-83. [PMID: 22439602 DOI: 10.1667/rr2691.1] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
There is an urgent need for rapid, accurate, and sensitive diagnostic platforms to confirm exposure to radiation and estimate the dose absorbed by individuals subjected to acts of radiological terrorism, nuclear power plant accidents, or nuclear warfare. Clinical symptoms and physical dosimeters, even when available, do not provide adequate diagnostic information to triage and treat life-threatening radiation injuries. We hypothesized that intestinal microbiota act as novel biomarkers of prior radiation exposure. Adult male Wistar rats (n = 5/group) received single or multiple fraction total-body irradiation of 10.0 Gy and 18.0 Gy, respectively. Fresh fecal pellets were obtained from each rat prior to (day 0) and at days 4, 11, and 21 post-irradiation. Fecal microbiota composition was determined using microarray and quantitative PCR (polymerase chain reaction) analyses. The radiation exposure biomarkers consisted of increased 16S rRNA levels of 12 members of the Bacteroidales, Lactobacillaceae, and Streptococcaceae after radiation exposure, unchanged levels of 98 Clostridiaceae and Peptostreptococcaceae, and decreased levels of 47 separate Clostridiaceae members; these biomarkers are present in human and rat feces. As a result of the ubiquity of these biomarkers, this biomarker technique is non-invasive; microbiota provide a sustained level of reporting signals that are increased several-fold following exposure to radiation, and intestinal microbiota that are unaffected by radiation serve as internal controls. We conclude that intestinal microbiota serve as novel biomarkers of prior radiation exposure, and may be able to complement conventional chromosome aberrational analysis to significantly enhance biological dose assessments.
Collapse
Affiliation(s)
- Vy Lam
- Division of Cardiothoracic Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | | | |
Collapse
|
72
|
Rovó A, Tichelli A. Cardiovascular Complications in Long-Term Survivors After Allogeneic Hematopoietic Stem Cell Transplantation. Semin Hematol 2012; 49:25-34. [DOI: 10.1053/j.seminhematol.2011.10.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
73
|
Jourdan MM, Lopez A, Olasz EB, Duncan NE, Demara M, Kittipongdaja W, Fish BL, Mäder M, Schock A, Morrow NV, Semenenko VA, Baker JE, Moulder JE, Lazarova Z. Laminin 332 deposition is diminished in irradiated skin in an animal model of combined radiation and wound skin injury. Radiat Res 2011; 176:636-48. [PMID: 21854211 PMCID: PMC3227557 DOI: 10.1667/rr2422.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Skin exposure to ionizing radiation affects the normal wound healing process and greatly impacts the prognosis of affected individuals. We investigated the effect of ionizing radiation on wound healing in a rat model of combined radiation and wound skin injury. Using a soft X-ray beam, a single dose of ionizing radiation (10-40 Gy) was delivered to the skin without significant exposure to internal organs. At 1 h postirradiation, two skin wounds were made on the back of each rat. Control and experimental animals were euthanized at 3, 7, 14, 21 and 30 days postirradiation. The wound areas were measured, and tissue samples were evaluated for laminin 332 and matrix metalloproteinase (MMP) 2 expression. Our results clearly demonstrate that radiation exposure significantly delayed wound healing in a dose-related manner. Evaluation of irradiated and wounded skin showed decreased deposition of laminin 332 protein in the epidermal basement membrane together with an elevated expression of all three laminin 332 genes within 3 days postirradiation. The elevated laminin 332 gene expression was paralleled by an elevated gene and protein expression of MMP2, suggesting that the reduced amount of laminin 332 in irradiated skin is due to an imbalance between laminin 332 secretion and its accelerated processing by elevated tissue metalloproteinases. Western blot analysis of cultured rat keratinocytes showed decreased laminin 332 deposition by irradiated cells, and incubation of irradiated keratinocytes with MMP inhibitor significantly increased the amount of deposited laminin 332. Furthermore, irradiated keratinocytes exhibited a longer time to close an artificial wound, and this delay was partially corrected by seeding keratinocytes on laminin 332-coated plates. These data strongly suggest that laminin 332 deposition is inhibited by ionizing radiation and, in combination with slower keratinocyte migration, can contribute to the delayed wound healing of irradiated skin.
Collapse
Affiliation(s)
- M. M. Jourdan
- Department of Dermatology, Center for Medical Countermeasures against Radiological Terrorism, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - A. Lopez
- Department of Dermatology, Center for Medical Countermeasures against Radiological Terrorism, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - E. B. Olasz
- Department of Dermatology, Center for Medical Countermeasures against Radiological Terrorism, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - N. E. Duncan
- Department of Dermatology, Center for Medical Countermeasures against Radiological Terrorism, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - M. Demara
- Department of Dermatology, Center for Medical Countermeasures against Radiological Terrorism, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - W. Kittipongdaja
- Department of Dermatology, Center for Medical Countermeasures against Radiological Terrorism, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - B. L. Fish
- Department of Radiation Oncology, Center for Medical Countermeasures against Radiological Terrorism, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - M. Mäder
- Department of Radiation Oncology, Center for Medical Countermeasures against Radiological Terrorism, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - A. Schock
- Department of Radiation Oncology, Center for Medical Countermeasures against Radiological Terrorism, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - N. V. Morrow
- Department of Radiation Oncology, Center for Medical Countermeasures against Radiological Terrorism, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - V. A. Semenenko
- Department of Radiation Oncology, Center for Medical Countermeasures against Radiological Terrorism, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - J. E. Baker
- Department of Surgery, Center for Medical Countermeasures against Radiological Terrorism, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - J. E. Moulder
- Department of Radiation Oncology, Center for Medical Countermeasures against Radiological Terrorism, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Z. Lazarova
- Department of Dermatology, Center for Medical Countermeasures against Radiological Terrorism, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
74
|
Abstract
Abstract population are ubiquitous background radiation and medical exposure of patients. From the early 1980s to 2006, the average dose per individual in the United States for all sources of radiation increased by a factor of 1.7-6.2 mSv, with this increase due to the growth of medical imaging procedures. Radiation can place individuals at an increased risk of developing cardiovascular disease. Excess risk of cardiovascular disease occurs a long time after exposure to lower doses of radiation as demonstrated in Japanese atomic bomb survivors. This review examines sources of radiation (atomic bombs, radiation accidents, radiological terrorism, cancer treatment, space exploration, radiosurgery for cardiac arrhythmia, and computed tomography) and the risk for developing cardiovascular disease. The evidence presented suggests an association between cardiovascular disease and exposure to low-to-moderate levels of radiation, as well as the well-known association at high doses. Studies are needed to define the extent that diagnostic and therapeutic radiation results in increased risk factors for cardiovascular disease, to understand the mechanisms involved, and to develop strategies to mitigate or treat radiation-induced cardiovascular disease.
Collapse
Affiliation(s)
- John E Baker
- Division of Cardiothoracic Surgery, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| | | | | |
Collapse
|
75
|
Azimzadeh O, Scherthan H, Sarioglu H, Barjaktarovic Z, Conrad M, Vogt A, Calzada-Wack J, Neff F, Aubele M, Buske C, Atkinson MJ, Tapio S. Rapid proteomic remodeling of cardiac tissue caused by total body ionizing radiation. Proteomics 2011; 11:3299-311. [DOI: 10.1002/pmic.201100178] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
76
|
Sieber F, Muir SA, Cohen EP, Fish BL, Mäder M, Schock AM, Althouse BJ, Moulder JE. Dietary selenium for the mitigation of radiation injury: effects of selenium dose escalation and timing of supplementation. Radiat Res 2011; 176:366-74. [PMID: 21867430 DOI: 10.1667/rr2456.1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We recently reported that daily dietary supplementation with 100 µg selenium (a dose exceeding a rat's nutritional requirement by about 33-fold) initiated immediately after total-body irradiation (TBI) and maintained for 21 weeks mitigates radiation nephropathy in a rat model as indicated by blood urea nitrogen (BUN) levels and histopathological criteria (Radiat Res. 2009; 17:368-73). In this follow-up study, we explored the risks and benefits of delaying the onset of supplementation, shortening periods of supplementation, and escalating selenium supplementation beyond 100 µg/day. Supplementation with 200 µg selenium/day (as selenite or seleno-l-methionine) substantially improved the mitigation of radiation nephropathy by lowering BUN levels at 4 months after TBI from 115 to as low as 34 mg/dl and by proportionally lowering the incidence of histopathological abnormalities. Shortening the period of supplementation to 3 or 2 months did not compromise efficacy. Delaying the onset of supplementation for 1 week reduced but did not abrogate the mitigation of radiation nephropathy. Supplementation with 300 µg/day mitigated radiation nephropathy less effectively than 200 µg and was poorly tolerated. Rats that had been given 10 Gy of TBI were less tolerant of high-dose selenium than nonirradiated rats. This reduced tolerance of high-dose selenium would need to be taken into consideration when selenium is used for the mitigation of radiation injury in victims of nuclear accidents or acts of radiological terrorism. The high dose requirements, the pronounced threshold effect, and the superior performance of selenite suggest that the mitigation of radiation nephropathy involves mechanisms that go beyond the induction of selenoproteins.
Collapse
Affiliation(s)
- Fritz Sieber
- Department of Pediatrics and Children's Research Institute, Milwaukee, Wisconsin 53226, USA.
| | | | | | | | | | | | | | | |
Collapse
|
77
|
|
78
|
Cohen EP, Fish BL, Moulder JE. Mitigation of radiation injuries via suppression of the renin-angiotensin system: emphasis on radiation nephropathy. Curr Drug Targets 2011; 11:1423-9. [PMID: 20583975 DOI: 10.2174/1389450111009011423] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 04/05/2010] [Indexed: 02/07/2023]
Abstract
Radiation nephropathy and other normal tissue radiation injuries can be successfully mitigated, and also treated, by antagonists of the renin-angiotensin system (RAS). This implies a mechanistic role for that system in radiation nephropathy, yet no evidence exists to date of activation of the RAS by irradiation. RAS antagonists, including angiotensin converting enzyme inhibitors and angiotensin receptor blockers, are the standard of care in the treatment of subjects with other chronic progressive kidney diseases, in which they exert benefit by reducing both glomerular and tubulo-interstitial injury. These drugs are likely to act in a similar way to mitigate radiation nephropathy.
Collapse
Affiliation(s)
- E P Cohen
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| | | | | |
Collapse
|
79
|
Boerma M, Hauer-Jensen M. Potential targets for intervention in radiation-induced heart disease. Curr Drug Targets 2011; 11:1405-12. [PMID: 20583977 DOI: 10.2174/1389450111009011405] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2010] [Accepted: 04/05/2010] [Indexed: 12/14/2022]
Abstract
Radiotherapy of thoracic and chest wall tumors, if all or part of the heart was included in the radiation field, can lead to radiation-induced heart disease (RIHD), a late and potentially severe side effect. RIHD presents clinically several years after irradiation and manifestations include accelerated atherosclerosis, pericardial and myocardial fibrosis, conduction abnormalities, and injury to cardiac valves. The pathogenesis of RIHD is largely unknown, and a treatment is not available. Hence, ongoing pre-clinical studies aim to elucidate molecular and cellular mechanisms of RIHD. Here, an overview of recent pre-clinical studies is given, and based on the results of these studies, potential targets for intervention in RIHD are discussed.
Collapse
Affiliation(s)
- M Boerma
- Department of Pharmaceutical Sciences, Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
| | | |
Collapse
|
80
|
Abstract
Although important advances have been made in curing childhood cancer in the last several decades, long-term survivors face considerable morbidity and mortality because of late effects from their initial anticancer therapy. By 30 years after treatment, the cumulative mortality from treatment-related medical illness actually exceeds that of mortality from cancer recurrence. Cardiovascular disease, in particular, is a leading threat to the well-being of adult survivors of childhood cancers. Unfortunately, the mechanisms of these late cardiac effects are understudied and poorly understood. This article reviews cardiotoxicity associated with 2 major anticancer regimens used in treating childhood cancer patients: anthracycline treatment and radiation therapy. The known pathophysiology and clinical cardiac risk factors that further predispose these patients to late-onset cardiac events are discussed. Basic and translational research is urgently needed to clarify pathophysiologic mechanisms of late cardiac effects and to develop therapies to improve both long-term survival and quality of life of adults cured of pediatric cancers.
Collapse
Affiliation(s)
- Ming Hui Chen
- From the Departments of Cardiology (M.H.C., S.D.C.) and Medicine (L.D.), Children's Hospital Boston; Department of Medicine (M.H.C.), Divisions of Women's Health and Cardiovascular Medicine, Brigham and Women's Hospital; Departments of Medical Oncology (M.H.C.) and Pediatric Oncology (L.D.), Dana-Farber Cancer Institute; and the Departments of Medicine (M.H.C.) and Pediatrics (S.D.C., L.D.), Harvard Medical School, Boston, MA
| | - Steven D. Colan
- From the Departments of Cardiology (M.H.C., S.D.C.) and Medicine (L.D.), Children's Hospital Boston; Department of Medicine (M.H.C.), Divisions of Women's Health and Cardiovascular Medicine, Brigham and Women's Hospital; Departments of Medical Oncology (M.H.C.) and Pediatric Oncology (L.D.), Dana-Farber Cancer Institute; and the Departments of Medicine (M.H.C.) and Pediatrics (S.D.C., L.D.), Harvard Medical School, Boston, MA
| | - Lisa Diller
- From the Departments of Cardiology (M.H.C., S.D.C.) and Medicine (L.D.), Children's Hospital Boston; Department of Medicine (M.H.C.), Divisions of Women's Health and Cardiovascular Medicine, Brigham and Women's Hospital; Departments of Medical Oncology (M.H.C.) and Pediatric Oncology (L.D.), Dana-Farber Cancer Institute; and the Departments of Medicine (M.H.C.) and Pediatrics (S.D.C., L.D.), Harvard Medical School, Boston, MA
| |
Collapse
|
81
|
Vardar SA, Gunduz O, Altun GD, Aydogdu N, Karadag H, Torun N, Kaya O. The alteration of asymmetric dimetilarginine (ADMA) levels in cardiac and gastrocnemius muscles following radioactive iodine application in guinea pigs and the effect of L-carnitine on this alteration. Int J Radiat Biol 2010. [DOI: 10.3109/09553002.2011.518209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
82
|
Vardar SA, Gunduz O, Altun GD, Aydogdu N, Karadag H, Torun N, Kaya O. The alteration of asymmetric dimetilarginine (ADMA) levels in cardiac and gastrocnemius muscles following radioactive iodine application in guinea pigs and the effect of L-carnitine on this alteration. Int J Radiat Biol 2010; 87:2-7. [DOI: 10.3109/09553002.2010.518209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
83
|
Boerma M, Hauer-Jensen M. Preclinical research into basic mechanisms of radiation-induced heart disease. Cardiol Res Pract 2010; 2011:858262. [PMID: 20953374 PMCID: PMC2952915 DOI: 10.4061/2011/858262] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 09/04/2010] [Indexed: 01/20/2023] Open
Abstract
Radiation-induced heart disease (RIHD) is a potentially severe side effect of radiotherapy of thoracic and chest wall tumors if all or part of the heart was included in the radiation field. RIHD presents clinically several years after irradiation and manifestations include accelerated atherosclerosis, pericardial and myocardial fibrosis, conduction abnormalities, and injury to cardiac valves. There is no method to prevent or reverse these injuries when the heart is exposed to ionizing radiation. This paper presents an overview of recent studies that address the role of microvascular injury, endothelial dysfunction, mast cells, and the renin angiotensin system in animal models of cardiac radiation injury. These insights into the basic mechanisms of RIHD may lead to the identification of targets for intervention in this late radiotherapy side effect.
Collapse
Affiliation(s)
- M. Boerma
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, 4301 West Markham, Slot 522-10, Little Rock, AR 72205, USA
| | - M. Hauer-Jensen
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, 4301 West Markham, Slot 522-10, Little Rock, AR 72205, USA
| |
Collapse
|
84
|
Pieper GM, Shah A, Harmann L, Cooley BC, Ionova IA, Migrino RQ. Speckle-tracking 2-dimensional strain echocardiography: a new noninvasive imaging tool to evaluate acute rejection in cardiac transplantation. J Heart Lung Transplant 2010; 29:1039-46. [PMID: 20488730 DOI: 10.1016/j.healun.2010.04.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 03/03/2010] [Accepted: 04/07/2010] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND There remains no reliable non-invasive method to detect cardiac transplant rejection. Recently, speckle-tracking 2-dimensional strain echocardiography (2DSE) was shown to be sensitive in the early detection of myocardial dysfunction in various models of cardiomyopathy. We aim to determine if 2DSE-derived functional indices can detect cardiac transplant rejection. METHODS Heterotopic rat cardiac transplantation was performed in histocompatible isografts or histoincompatible allografts. Histologic rejection scores were determined. Short-axis, mid-left ventricular (LV) echocardiography was performed on Day 6 after transplantation. Conventional measures of function were measured, (including LV fractional shortening and ejection fraction) as well as 2DSE parameters. RESULTS Despite class IIIB rejection in allografts and no rejection in isografts, there was no difference between isografts vs allografts in fractional shortening (15% +/- 3% vs 12% +/- 3%) or ejection fraction (36% +/- 5% vs 26% +/- 6%; both not significant). In contrast, 2DSE revealed decreases between isografts and allografts in global radial strain (12.6% +/- 5.6% vs 1.1% +/- 0.2%, p < 0.05), peak radial systolic strain rate (3.10 +/- 0.74/s vs 0.54 +/- 0.13/s, p < 0.001), and peak circumferential systolic strain rate (-1.99 +/- 0.55 vs -0.43 +/- 0.11/s; p < 0.01). CONCLUSIONS Systolic strain imaging using 2DSE differentiates myocardial function between experimental cardiac transplant rejection in allografts and non-rejection in isografts. Therefore, 2DSE may be useful in early non-invasive detection of transplant rejection.
Collapse
Affiliation(s)
- Galen M Pieper
- Department of Surgery (Transplant Surgery), Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
| | | | | | | | | | | |
Collapse
|