51
|
Meehan CS, Kethireddy PL, Ashcraft JK, Shuster JJ, Haller MJ. Premeal insulin decreases arterial stiffness in children with type 1 diabetes. Pediatr Diabetes 2017; 18:311-314. [PMID: 27174580 PMCID: PMC6939859 DOI: 10.1111/pedi.12389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/22/2016] [Accepted: 03/22/2016] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE To determine the effects of omitting meal time insulin on arterial stiffness in children with type 1 diabetes. RESEARCH DESIGN AND METHODS In this prospective, randomized, crossover study, radial artery tonometry and augmentation index adjusted to heart rate 75 (AI75 ) were used to measure arterial stiffness. Children were randomized to receive or omit premeal insulin and completed the crossover portion of the study on a subsequent day. AI75 was determined when fasting, 1, and 2 h postmeal. RESULTS When comparing change in AI75 from baseline to 1 h and baseline to 2 h, when subjects received premeal insulin vs. no insulin, AI75 was 4.5 units lower at 1 h (p = 0.011, 95% CI:1.1 lower to 8 lower) and 4.3 units lower at 2 h (p = 0.062, 95% CI: 0.2 higher to 8.9 lower) (n = 40). CONCLUSIONS Arterial stiffness is decreased by premeal insulin in children with type 1 diabetes.
Collapse
Affiliation(s)
- Colette S. Meehan
- Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA
| | | | - Jordan K. Ashcraft
- Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA
| | - Jonathan J. Shuster
- Department of Health Outcomes and Policy Biostatistics Epidemiology and Research Design, Clinical Translational Science Institute, University of Florida, Gainesville, FL 32610, USA
| | - Michael J. Haller
- Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
52
|
TWEAK blockade decreases atherosclerotic lesion size and progression through suppression of STAT1 signaling in diabetic mice. Sci Rep 2017; 7:46679. [PMID: 28447667 PMCID: PMC5406837 DOI: 10.1038/srep46679] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 03/27/2017] [Indexed: 11/30/2022] Open
Abstract
Tumor necrosis factor-like weak inducer of apoptosis (TWEAK/Tnfsf12) is a cytokine implicated in different steps associated with vascular remodeling. However, the role of TWEAK under hyperglycemic conditions is currently unknown. Using two different approaches, genetic deletion of Tnfsf12 and treatment with a TWEAK blocking mAb, we have analyzed the effect of TWEAK inhibition on atherosclerotic plaque progression and stability in streptozotocin-induced diabetic ApoE deficient mice. Genetic inactivation of Tnfsf12 reduced atherosclerosis extension and severity in diabetic ApoE deficient mice. Tnfsf12 deficient mice display a more stable plaque phenotype characterized by lower lipid and macrophage content within atherosclerotic plaques. A similar phenotype was observed in diabetic mice treated with anti-TWEAK mAb. The proatherosclerotic effects of TWEAK were mediated, at least in part, by STAT1 activation and expression of proinflammatory target genes (CCL5, CXCL10 and ICAM-1), both in plaques of ApoE mice and in cultured vascular smooth muscle cells (VSMCs) under hyperglycemic conditions. Loss-of-function experiments demonstrated that TWEAK induces proinflammatory genes mRNA expression through its receptor Fn14 and STAT1 activation in cultured VSMCs. Overall, TWEAK blockade delay plaque progression and alter plaque composition in diabetic atherosclerotic mice. Therapies aimed to inhibit TWEAK expression and/or function could protect from diabetic vascular complications.
Collapse
|
53
|
Second-generation versus first-generation drug-eluting stents in patients with and without diabetes mellitus: pooled analysis from the RESET and NEXT trials. Cardiovasc Interv Ther 2017; 33:125-134. [PMID: 28150119 DOI: 10.1007/s12928-017-0458-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/20/2017] [Indexed: 10/20/2022]
Abstract
The impact of second-generation drug-eluting stent (G2-DES) implantations compared with first-generation drug-eluting stents (G1-DES) implantations on long-term clinical outcomes after percutaneous coronary intervention in patients with and without diabetes mellitus (DM) has not yet been adequately assessed. This pooled analysis compared 3-year clinical outcomes between G1- and G2-DES according to the presence or absence of DM, using individual patient-level data from the RESET and NEXT trials. Among 6431 patients, G1-DES and G2-DES were used in 713 and 2211 patients, respectively, in the DM stratum, and 887 and 2620 patients, respectively, in the non-DM stratum. Cumulative incidence of and adjusted hazard ratio (HR) for target-lesion revascularization (TLR) were not significantly different between G2- and G1-DES in both strata [DM, 8.7 versus 10.1%, adjusted HR: 0.80, 95% confidence interval (CI) 0.59-1.10, P = 0.17; non-DM, 5.7 versus 6.2%, adjusted HR: 0.86, 95% CI 0.62-1.22, P = 0.38]. In the insulin-treated DM (ITDM), G2-DES had a significantly lower adjusted HR for TLR compared with G1-DES, although there was no significant difference in the non-ITDM (ITDM, adjusted HR: 0.54, 95% CI 0.32-0.96, P = 0.04; non-ITDM, adjusted HR: 0.95, 95% CI 0.66-1.42, P = 0.81). G2-DES provided similar risk for TLR in non-ITDM and non-DM patients compared with G1-DES. However, G2-DES compared with G1-DES had a lower risk for TLR among ITDM patients.
Collapse
|
54
|
Far-infrared protects vascular endothelial cells from advanced glycation end products-induced injury via PLZF-mediated autophagy in diabetic mice. Sci Rep 2017; 7:40442. [PMID: 28071754 PMCID: PMC5223182 DOI: 10.1038/srep40442] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 12/06/2016] [Indexed: 12/22/2022] Open
Abstract
The accumulation of advanced glycation end products (AGEs) in diabetic patients induces vascular endothelial injury. Promyelocytic leukemia zinc finger protein (PLZF) is a transcription factor that can be activated by low-temperature far-infrared (FIR) irradiation to exert beneficial effects on the vascular endothelium. In the present study, we investigated the influence of FIR-induced PLZF activation on AGE-induced endothelial injury both in vitro and in vivo. FIR irradiation inhibited AGE-induced apoptosis in human umbilical vein endothelial cells (HUVECs). PLZF activation increased the expression of phosphatidylinositol-3 kinases (PI3K), which are important kinases in the autophagic signaling pathway. FIR-induced PLZF activation led to autophagy in HUVEC, which was mediated through the upregulation of PI3K. Immunofluorescence staining showed that AGEs were engulfed by HUVECs and localized to lysosomes. FIR-induced autophagy promoted AGEs degradation in HUVECs. In nicotinamide/streptozotocin-induced diabetic mice, FIR therapy reduced serum AGEs and AGEs deposition at the vascular endothelium. FIR therapy also reduced diabetes-induced inflammatory markers in the vascular endothelium and improved vascular endothelial function. These protective effects of FIR therapy were not found in PLZF-knockout mice. Our data suggest that FIR-induced PLZF activation in vascular endothelial cells protects the vascular endothelium in diabetic mice from AGE-induced injury.
Collapse
|
55
|
Endothelial dysfunction and cardiometabolic diseases: Role of long non-coding RNAs. Life Sci 2016; 167:6-11. [DOI: 10.1016/j.lfs.2016.11.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/02/2016] [Accepted: 11/07/2016] [Indexed: 12/19/2022]
|
56
|
Early blood pressure alterations are associated with pro-inflammatory markers in type 1 diabetes mellitus. J Hum Hypertens 2016; 31:151-156. [DOI: 10.1038/jhh.2016.56] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 06/20/2016] [Accepted: 07/12/2016] [Indexed: 12/11/2022]
|
57
|
Scott HA, Quach B, Yang X, Ardekani S, Cabrera AP, Wilson R, Messaoudi-Powers I, Ghosh K. Matrix stiffness exerts biphasic control over monocyte-endothelial adhesion via Rho-mediated ICAM-1 clustering. Integr Biol (Camb) 2016; 8:869-78. [PMID: 27444067 DOI: 10.1039/c6ib00084c] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Leukocyte-endothelial adhesion is a critical early step in chronic vascular inflammation associated with diabetes, emphysema, and aging. Importantly, these conditions are also marked by abnormal subendothelial matrix crosslinking (stiffness). Yet, whether and how abnormal matrix stiffness contributes to leukocyte-endothelial adhesion remains poorly understood. Using a co-culture of human monocytic cells and human microvascular endothelial cells (ECs) grown on matrices of tunable stiffness, we demonstrate that matrix stiffness exerts biphasic control over monocyte-EC adhesion, with both matrix softening and stiffening eliciting a two-fold increase in this adhesive interaction. This preferential endothelial adhesivity on softer and stiffer matrices was consistent with a significant increase in α-actinin-4-associated endothelial ICAM-1 clustering, a key determinant of monocyte-EC adhesion. Further, the enhanced ICAM-1 clustering on soft and stiff matrices correlated strongly with an increase in Rho activity and ROCK2 expression. Importantly, inhibition of Rho/ROCK activity blocked the effects of abnormal matrix stiffness on ICAM-1 clustering and monocyte-EC adhesion. Thus, these findings implicate matrix stiffness-dependent ICAM-1 clustering as an important regulator of vascular inflammation and provide the rationale for closely examining mechanotransduction pathways as new molecular targets for anti-inflammatory therapy.
Collapse
Affiliation(s)
- Harry A Scott
- Department of Bioengineering, University of California Riverside, 900 University Avenue, MSE 207, Riverside, CA 92521, USA.
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Insulin Resistance and Endothelial Dysfunction Constitute a Common Therapeutic Target in Cardiometabolic Disorders. Mediators Inflamm 2016; 2016:3634948. [PMID: 27413253 PMCID: PMC4931075 DOI: 10.1155/2016/3634948] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 05/12/2016] [Indexed: 12/20/2022] Open
Abstract
Insulin resistance and other risk factors for atherosclerosis, such as hypertension and hypercholesterolemia, promote endothelial dysfunction and lead to development of metabolic syndrome which constitutes an introduction to cardiovascular disease. The insulin resistance and endothelial dysfunction cross talk between each other by numerous metabolic pathways. Hence, targeting one of these pathologies with pleiotropic treatment exerts beneficial effect on another one. Combined and expletive treatment of hypertension, lipid disorders, and insulin resistance with nonpharmacological interventions and conventional pharmacotherapy may inhibit the transformation of metabolic disturbances to fully developed cardiovascular disease. This paper summarises the common therapeutic targets for insulin resistance, endothelial dysfunction, and vascular inflammatory reaction at molecular level and analyses the potential pleiotropic effects of drugs used currently in management of cardiovascular disease, metabolic syndrome, and diabetes.
Collapse
|
59
|
von Scholten BJ, Rosendahl A, Hasbak P, Bergholdt R, Kjaer A, Rossing P, Hansen TW. Impaired coronary microcirculation in type 2 diabetic patients is associated with elevated circulating regulatory T cells and reduced number of IL-21R⁺ T cells. Cardiovasc Diabetol 2016; 15:67. [PMID: 27095356 PMCID: PMC4837587 DOI: 10.1186/s12933-016-0378-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/25/2016] [Indexed: 01/24/2023] Open
Abstract
Background Low-grade systemic inflammation is considered to participate in the progression of type 2 diabetes (T2D) and in diabetic complications. Methods To determine if circulating leukocytes were abnormally regulated in T2D patients, 8-color flow-cytometry (FACS) analysis was performed in a cross-sectional study of 37 T2D patients and 16 controls. Data obtained from the FACS analysis were compared to coronary flow reserve (CFR), assessed by Rb82-PET-imaging, to uncover inflammatory signatures associated with impaired CFR. Results Presence of T2D was associated with T cell attenuation characterized by reduced overall T cell, Th17, IL-21R+, Treg’s and TLR4+ T cells, while the monocyte population showed enhanced TLR4 expression. Further, our data revealed reduced M1-like CD11c expression in T2D which was associated with impaired CFR. In contrast, we show, for the first time in T2D, increased TLR4 expression on CD8 T cells, increased Treg cell number and Treg maturation and reduced IL-21R expression on CD8 T cells to be functionally associated with impaired CFR. Conclusions Our demonstration that HbA1c inversely correlates to several T cell populations suggests that T cells may play disease modulating roles in T2D. Further, the novel association between impaired CFR and regulatory T cells and IL-21R+ T cells imply an intricate balance in maintaining tissue homeostasis in vascular diabetic complications. Electronic supplementary material The online version of this article (doi:10.1186/s12933-016-0378-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bernt Johan von Scholten
- Department of Diabetic Complications, Steno Diabetes Center, Niels Steensens Vej 1, 2820, Gentofte, Denmark.
| | - Alexander Rosendahl
- Diabetes Complications Research, Novo Nordisk A/S, Måløv, Denmark.,Department of New Haemophilia, Novo Nordisk A/S, Gentofte, Denmark.,Baxalta Inc, Medical Affairs, Tobaksvej 2, 2860, Søborg, Denmark
| | - Philip Hasbak
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet, Copenhagen, Denmark
| | - Regine Bergholdt
- Diabetes Complications Research, Novo Nordisk A/S, Måløv, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet, Copenhagen, Denmark
| | - Peter Rossing
- Department of Diabetic Complications, Steno Diabetes Center, Niels Steensens Vej 1, 2820, Gentofte, Denmark.,University of Copenhagen, Copenhagen, Denmark.,Aarhus University Denmark, Aarhus, Denmark
| | - Tine W Hansen
- Department of Diabetic Complications, Steno Diabetes Center, Niels Steensens Vej 1, 2820, Gentofte, Denmark
| |
Collapse
|
60
|
UPLC-MS/MS-Based Profiling of Eicosanoids in RAW264.7 Cells Treated with Lipopolysaccharide. Int J Mol Sci 2016; 17:508. [PMID: 27058537 PMCID: PMC4848964 DOI: 10.3390/ijms17040508] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 03/28/2016] [Accepted: 03/30/2016] [Indexed: 01/10/2023] Open
Abstract
While both the pro- and anti-inflammatory effects of several eicosanoids have been widely studied, the degree of inflammation in cells that results from various eicosanoids has yet to be comprehensively studied. The objective of this study was to assess the effect of lipopolysaccharide (LPS) treatment on eicosanoid content in RAW264.7 cells. An Ultra performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS)-based profiling method was used to analyze the eicosanoid contents of RAW264.7 cells treated with different LPS concentrations. The profiling data were subjected to statistical analyses, such as principal component analysis (PCA) and hierarchical clustering analysis. LPS treatment increased nitric oxide production and secretion of pro-inflammatory cytokines, such as tumor necrosis factor-α and interleukin-6, in a concentration-dependent manner. In total, 79 eicosanoids were identified in the cells. RAW264.7 cells treated with different LPS concentrations were well differentiated in the PCA score plot. A heatmap was used to identify the eicosanoids that were up- or down-regulated according to the degree of inflammation and LPS concentration. Thirty-nine eicosanoids were upregulated and seven were down-regulated by LPS treatment in a concentration-dependent manner. Our novel UPLC-MS/MS technique can profile eicosanoids, and can evaluate the correlations between inflammation and eicosanoid metabolism.
Collapse
|
61
|
Buturlin K, Minha S, Rozenbaum Z, Neuman Y, Shlezinger M, Goldenberg I, Mosseri M, Pereg D. Admission plasma glucose levels within the normal to mildly impaired range and the outcome of patients with acute coronary syndrome. EUROPEAN HEART JOURNAL-ACUTE CARDIOVASCULAR CARE 2016; 6:738-743. [PMID: 27037239 DOI: 10.1177/2048872616641900] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Elevated admission plasma glucose levels >140 mg/dl are associated with adverse clinical outcomes in both diabetic and non-diabetic patients admitted with acute coronary syndrome (ACS). We aimed to evaluate the association between admission plasma glucose levels <140 mg/dl and the outcome of non-diabetic patients admitted with acute coronary syndrome. METHODS The study population consisted of patients with acute coronary syndrome included in the Acute Coronary Syndrome Israeli Survey during 2000-2013. Diabetic patients were excluded. The primary endpoint was all-cause mortality at one year. RESULTS The 452 0 patients had a mean age of 61.7±13.5 years and were stratified into four quartiles according to admission plasma glucose (60-94, 95-105, 106-119, 120-140 mg/dl). Patients with higher admission plasma glucose were older and included a higher percentage of smokers. In addition, the higher the glucose so also did they have a poorer risk factor profile including a higher body mass index, total and low-density lipoprotein cholesterol and triglyceride levels, and lower high-density lipoprotein cholesterol levels. During the first year 5.2% of patients died. A comparison of one-year mortality according to admission plasma glucose quartiles demonstrated a significant and progressive increase in mortality risk as admission plasma glucose rose (3.5%, 4.1%, 6.1%, 6.4%, respectively, p=0.001). However, this association lost its clinical significance following a multivariate analysis ( p=0.08). CONCLUSIONS High admission plasma glucose levels within the normal to mildly impaired range are associated with increased one-year mortality in non-diabetic acute coronary syndrome patients. However, the higher glucose level is probably not the cause for the adverse outcome but rather a marker for high risk. Our findings support the definition of 140 mg/dl as the cutoff for clinically acceptable admission glucose levels in patients with acute coronary syndrome.
Collapse
Affiliation(s)
- Kirill Buturlin
- 1 Department of Cardiology, Meir Medical Center, Kfar Saba, Israel
| | - Saar Minha
- 2 Cardiology Department, Assaf-Harofeh Medical Center, Zerifin, Israel
| | - Zach Rozenbaum
- 3 Department of Internal Medicine D, Tel Aviv Sourasky Medical Center, Israel
| | - Yoram Neuman
- 1 Department of Cardiology, Meir Medical Center, Kfar Saba, Israel.,4 Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - Meital Shlezinger
- 5 Department of Cardiology, Sheba Medical Center, Tel Hashomer, Israel
| | - Ilan Goldenberg
- 4 Sackler Faculty of Medicine, Tel-Aviv University, Israel.,5 Department of Cardiology, Sheba Medical Center, Tel Hashomer, Israel
| | - Morris Mosseri
- 1 Department of Cardiology, Meir Medical Center, Kfar Saba, Israel.,4 Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - David Pereg
- 1 Department of Cardiology, Meir Medical Center, Kfar Saba, Israel.,4 Sackler Faculty of Medicine, Tel-Aviv University, Israel
| |
Collapse
|
62
|
Agarwal A, Hegde A, Yadav C, Ahmad A, Manjrekar PA, Srikantiah RM. Assessment of oxidative stress and inflammation in prediabetes-A hospital based cross-sectional study. Diabetes Metab Syndr 2016; 10:S123-S126. [PMID: 27016886 DOI: 10.1016/j.dsx.2016.03.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 03/05/2016] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND AIM Prediabetes is associated with dysglycemia, obesity, inflammation and endothelial dysfunction, contributing towards the pathogenesis of cardiovascular diseases rendering them vulnerable for the same. The current study intended to explore the risk of cardiovascular disease (CVD) related with prediabetes by assessing oxidative stress and inflammation using serum interleukin-6 (IL-6), myeloperoxidase (MPO) and urine microalbumin (MA) and their correlation with fasting plasma glucose (FPG) and physical measurements. MATERIALS AND METHODS Based on FPG values, 80 subjects were grouped into prediabetes and healthy controls. IL-6 and MPO were estimated in serum sample whereas MA was estimated in random urine sample. RESULTS Prediabetes group had significantly increased (p<0.05) mean anthropometric measurements and IL-6, MPO and MA as compared to healthy controls. MPO had significant correlation with FPG (r-0.388) in the prediabetes group. IL-6 and MPO showed a positive correlation with body mass index (BMI (r-0.339, r-0.327)), waist circumference (WC (r-484, r-0.493)) and waist-to-hip ratio (WHR (r-0.430, r-0.493)) while MA did not correlate with FPG and anthropometric measurements. CONCLUSION This study suggests that prediabetes is associated with central adiposity, inflammation and oxidative stress predisposing them to an increased risk for CVD.
Collapse
Affiliation(s)
- Ashish Agarwal
- Department of Biochemistry, Kasturba Medical College, Manipal University, ,Mangalore 575004, Karnataka, India
| | - Anupama Hegde
- Department of Biochemistry, Kasturba Medical College, Manipal University, ,Mangalore 575004, Karnataka, India.
| | - Charu Yadav
- Department of Biochemistry, Kasturba Medical College, Manipal University, ,Mangalore 575004, Karnataka, India
| | - Afzal Ahmad
- Department of Biochemistry, Kasturba Medical College, Manipal University, ,Mangalore 575004, Karnataka, India
| | - Poornima A Manjrekar
- Department of Biochemistry, Kasturba Medical College, Manipal University, ,Mangalore 575004, Karnataka, India
| | - Rukmini M Srikantiah
- Department of Biochemistry, Kasturba Medical College, Manipal University, ,Mangalore 575004, Karnataka, India
| |
Collapse
|
63
|
Kulkarni H, Mamtani M, Peralta J, Almeida M, Dyer TD, Goring HH, Johnson MP, Duggirala R, Mahaney MC, Olvera RL, Almasy L, Glahn DC, Williams-Blangero S, Curran JE, Blangero J. Soluble Forms of Intercellular and Vascular Cell Adhesion Molecules Independently Predict Progression to Type 2 Diabetes in Mexican American Families. PLoS One 2016; 11:e0151177. [PMID: 27007680 PMCID: PMC4805238 DOI: 10.1371/journal.pone.0151177] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 02/24/2016] [Indexed: 12/16/2022] Open
Abstract
Objective While the role of type 2 diabetes (T2D) in inducing endothelial dysfunction is fairly well-established the etiological role of endothelial dysfunction in the onset of T2D is still a matter of debate. In the light of conflicting evidence in this regard, we conducted a prospective study to determine the association of circulating levels of soluble intercellular adhesion molecule 1 (sICAM-1) and soluble vessel cell adhesion molecule 1 (sVCAM-1) with incident T2D. Methods Data from this study came from 1,269 Mexican Americans of whom 821 initially T2D-free individuals were longitudinally followed up in the San Antonio Family Heart Study. These individuals were followed for 9752.95 person-years for development of T2D. Prospective association of sICAM-1 and sVCAM-1 with incident T2D was studied using Kaplan-Meier survival plots and mixed effects Cox proportional hazards modeling to account for relatedness among study participants. Incremental value of adhesion molecule biomarkers was studied using integrated discrimination improvement (IDI) and net reclassification improvement (NRI) indexes. Results Decreasing median values for serum concentrations of sICAM-1 and sVCAM-1 were observed in the following groups in this order: individuals with T2D at baseline, individuals who developed T2D during follow-up, individuals with prediabetes at baseline and normal glucose tolerant (NGT) individuals who remained T2D-free during follow-up. Top quartiles for sICAM-1 and sVCAM-1 were strongly and significantly associated with homeostatic model of assessment—insulin resistance (HOMA-IR). Mixed effects Cox proportional hazards modeling revealed that after correcting for important clinical confounders, high sICAM-1 and sVCAM-1 concentrations were associated with 2.52 and 1.99 times faster progression to T2D as compared to low concentrations, respectively. Individuals with high concentrations for both sICAM-1 and sVCAM-1 progressed to T2D 3.42 times faster than those with low values for both sICAM-1 and sVCAM-1. The results were similar in women in reproductive age group and the remainder of the cohort. Inclusion of sICAM-1 and sVCAM-1 in predictive models significantly improved reclassification and discrimination. The majority of these results were seen even when the analyses were restricted to NGT individuals. Conclusion Serum concentrations of sICAM-1 and sVCAM-1 independently and additively predict future T2D and represent important candidate biomarkers of T2D.
Collapse
Affiliation(s)
- Hemant Kulkarni
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, United States of America
- * E-mail:
| | - Manju Mamtani
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, United States of America
| | - Juan Peralta
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, United States of America
| | - Marcio Almeida
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, United States of America
| | - Thomas D. Dyer
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, United States of America
| | - Harald H. Goring
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, United States of America
| | - Matthew P. Johnson
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, United States of America
| | - Ravindranath Duggirala
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, United States of America
| | - Michael C. Mahaney
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, United States of America
| | - Rene L. Olvera
- Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America
| | - Laura Almasy
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, United States of America
| | - David C. Glahn
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States of America
- Olin Neuropsychiatric Research Center, Institute of Living, Hartford Hospital, Hartford, CT, United States of America
| | - Sarah Williams-Blangero
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, United States of America
| | - Joanne E. Curran
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, United States of America
| | - John Blangero
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, United States of America
| |
Collapse
|
64
|
Song KH, Park JH, Jo I, Park JY, Seo J, Kim SA, Cho DH. Telmisartan attenuates hyperglycemia-exacerbated VCAM-1 expression and monocytes adhesion in TNFα-stimulated endothelial cells by inhibiting IKKβ expression. Vascul Pharmacol 2016; 78:43-52. [DOI: 10.1016/j.vph.2015.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 09/08/2015] [Accepted: 10/04/2015] [Indexed: 01/06/2023]
|
65
|
Yang X, Scott HA, Monickaraj F, Xu J, Ardekani S, Nitta CF, Cabrera A, McGuire PG, Mohideen U, Das A, Ghosh K. Basement membrane stiffening promotes retinal endothelial activation associated with diabetes. FASEB J 2016; 30:601-11. [PMID: 26443820 PMCID: PMC6188223 DOI: 10.1096/fj.15-277962] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 09/21/2015] [Indexed: 12/21/2022]
Abstract
Endothelial activation is a hallmark of the high-glucose (HG)-induced retinal inflammation associated with diabetic retinopathy (DR). However, precisely how HG induces retinal endothelial activation is not fully understood. We hypothesized that HG-induced up-regulation of lysyl oxidase (LOX), a collagen-cross-linking enzyme, in retinal capillary endothelial cells (ECs) enhances subendothelial basement membrane (BM) stiffness, which, in turn, promotes retinal EC activation. Diabetic C57BL/6 mice exhibiting a 70 and 50% increase in retinal intercellular adhesion molecule (ICAM)-1 expression and leukocyte accumulation, respectively, demonstrated a 2-fold increase in the levels of BM collagen IV and LOX, key determinants of capillary BM stiffness. Using atomic force microscopy, we confirmed that HG significantly enhances LOX-dependent subendothelial matrix stiffness in vitro, which correlated with an ∼2.5-fold increase in endothelial ICAM-1 expression, a 4-fold greater monocyte-EC adhesion, and an ∼2-fold alteration in endothelial NO (decrease) and NF-κB activation (increase). Inhibition of LOX-dependent subendothelial matrix stiffening alone suppressed HG-induced retinal EC activation. Finally, using synthetic matrices of tunable stiffness, we demonstrated that subendothelial matrix stiffening is necessary and sufficient to promote EC activation. These findings implicate BM stiffening as a critical determinant of HG-induced retinal EC activation and provide a rationale for examining BM stiffness and underlying mechanotransduction pathways as therapeutic targets for diabetic retinopathy.
Collapse
Affiliation(s)
- Xiao Yang
- *Department of Bioengineering and Department of Physics and Astronomy, University of California, Riverside, Riverside, California, USA; Department of Surgery and Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico, USA; and New Mexico Veterans Affairs Health Care System, Albuquerque, New Mexico, USA
| | - Harry A Scott
- *Department of Bioengineering and Department of Physics and Astronomy, University of California, Riverside, Riverside, California, USA; Department of Surgery and Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico, USA; and New Mexico Veterans Affairs Health Care System, Albuquerque, New Mexico, USA
| | - Finny Monickaraj
- *Department of Bioengineering and Department of Physics and Astronomy, University of California, Riverside, Riverside, California, USA; Department of Surgery and Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico, USA; and New Mexico Veterans Affairs Health Care System, Albuquerque, New Mexico, USA
| | - Jun Xu
- *Department of Bioengineering and Department of Physics and Astronomy, University of California, Riverside, Riverside, California, USA; Department of Surgery and Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico, USA; and New Mexico Veterans Affairs Health Care System, Albuquerque, New Mexico, USA
| | - Soroush Ardekani
- *Department of Bioengineering and Department of Physics and Astronomy, University of California, Riverside, Riverside, California, USA; Department of Surgery and Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico, USA; and New Mexico Veterans Affairs Health Care System, Albuquerque, New Mexico, USA
| | - Carolina F Nitta
- *Department of Bioengineering and Department of Physics and Astronomy, University of California, Riverside, Riverside, California, USA; Department of Surgery and Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico, USA; and New Mexico Veterans Affairs Health Care System, Albuquerque, New Mexico, USA
| | - Andrea Cabrera
- *Department of Bioengineering and Department of Physics and Astronomy, University of California, Riverside, Riverside, California, USA; Department of Surgery and Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico, USA; and New Mexico Veterans Affairs Health Care System, Albuquerque, New Mexico, USA
| | - Paul G McGuire
- *Department of Bioengineering and Department of Physics and Astronomy, University of California, Riverside, Riverside, California, USA; Department of Surgery and Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico, USA; and New Mexico Veterans Affairs Health Care System, Albuquerque, New Mexico, USA
| | - Umar Mohideen
- *Department of Bioengineering and Department of Physics and Astronomy, University of California, Riverside, Riverside, California, USA; Department of Surgery and Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico, USA; and New Mexico Veterans Affairs Health Care System, Albuquerque, New Mexico, USA
| | - Arup Das
- *Department of Bioengineering and Department of Physics and Astronomy, University of California, Riverside, Riverside, California, USA; Department of Surgery and Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico, USA; and New Mexico Veterans Affairs Health Care System, Albuquerque, New Mexico, USA
| | - Kaustabh Ghosh
- *Department of Bioengineering and Department of Physics and Astronomy, University of California, Riverside, Riverside, California, USA; Department of Surgery and Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico, USA; and New Mexico Veterans Affairs Health Care System, Albuquerque, New Mexico, USA
| |
Collapse
|
66
|
Wang Z, Zheng W, Wu Y, Wang J, Zhang X, Wang K, Zhao Q, Kong D, Ke T, Li C. Differences in the performance of PCL-based vascular grafts as abdominal aorta substitutes in healthy and diabetic rats. Biomater Sci 2016; 4:1485-92. [DOI: 10.1039/c6bm00178e] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Diabetes exacerbates the regeneration process after in vivo implantation of vascular graft.
Collapse
|
67
|
Saad MI, Abdelkhalek TM, Saleh MM, Kamel MA, Youssef M, Tawfik SH, Dominguez H. Insights into the molecular mechanisms of diabetes-induced endothelial dysfunction: focus on oxidative stress and endothelial progenitor cells. Endocrine 2015; 50:537-67. [PMID: 26271514 DOI: 10.1007/s12020-015-0709-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/25/2015] [Indexed: 12/13/2022]
Abstract
Diabetes mellitus is a heterogeneous, multifactorial, chronic disease characterized by hyperglycemia owing to insulin insufficiency and insulin resistance (IR). Recent epidemiological studies showed that the diabetes epidemic affects 382 million people worldwide in 2013, and this figure is expected to be 600 million people by 2035. Diabetes is associated with microvascular and macrovascular complications resulting in accelerated endothelial dysfunction (ED), atherosclerosis, and cardiovascular disease (CVD). Unfortunately, the complex pathophysiology of diabetic cardiovascular damage is not fully understood. Therefore, there is a clear need to better understand the molecular pathophysiology of ED in diabetes, and consequently, better treatment options and novel efficacious therapies could be identified. In the light of recent extensive research, we re-investigate the association between diabetes-associated metabolic disturbances (IR, subclinical inflammation, dyslipidemia, hyperglycemia, dysregulated production of adipokines, defective incretin and gut hormones production/action, and oxidative stress) and ED, focusing on oxidative stress and endothelial progenitor cells (EPCs). In addition, we re-emphasize that oxidative stress is the final common pathway that transduces signals from other conditions-either directly or indirectly-leading to ED and CVD.
Collapse
Affiliation(s)
- Mohamed I Saad
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt.
- Hudson Institute of Medical Research, School of Clinical Sciences, Monash University, Melbourne, VIC, Australia.
| | - Taha M Abdelkhalek
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Moustafa M Saleh
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Maher A Kamel
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Mina Youssef
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Shady H Tawfik
- Department of Molecular Medicine, University of Padova, Padua, Italy
| | - Helena Dominguez
- Department of Biomedical Sciences, Copenhagen University, Copenhagen, Denmark
| |
Collapse
|
68
|
Bae JS, Kim YJ, Kim JK. Diabetes mellitus exacerbates the clinical and electrophysiological features of Guillain–Barré syndrome. Eur J Neurol 2015; 23:439-46. [DOI: 10.1111/ene.12885] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 09/02/2015] [Indexed: 12/18/2022]
Affiliation(s)
- J. S. Bae
- Department of Neurology Kangdong Sacred Heart Hospital Hallym University College of Medicine SeoulKorea
| | - Y. J. Kim
- Department of Neurology Busan Paik Hospital Inje University College of Medicine BusanKorea
| | - J. K. Kim
- Department of Neurology College of Medicine Dong‐A University Busan Korea
| |
Collapse
|
69
|
Islam BU, Habib S, Ahmad P, Allarakha S, Moinuddin, Ali A. Pathophysiological Role of Peroxynitrite Induced DNA Damage in Human Diseases: A Special Focus on Poly(ADP-ribose) Polymerase (PARP). Indian J Clin Biochem 2015; 30:368-385. [PMID: 26788021 PMCID: PMC4712174 DOI: 10.1007/s12291-014-0475-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 12/22/2014] [Indexed: 12/17/2022]
Abstract
Peroxynitrite is formed in biological systems when nitric oxide and superoxide rapidly interact at near equimolar ratio. Peroxynitrite, though not a free radical by chemical nature, is a powerful oxidant which reacts with proteins, DNA and lipids. These reactions trigger a wide array of cellular responses ranging from subtle modulations of cell signaling to overwhelming oxidative injury, committing cells to necrosis or apoptosis. The present review outlines the various peroxynitrite-induced DNA modifications with special mention to the formation of 8-nitroguanine and 8-oxoguanine as well as the induction of DNA single strand breakage. Low concentrations of peroxynitrite cause apoptotic death, whereas higher concentrations cause necrosis with cellular energetics (ATP and NAD(+)) serving as control between the two modes of cell death. DNA damage induced by peroxynitrite triggers the activation of DNA repair systems. A DNA nick sensing enzyme, poly(ADP-ribose) polymerase-1 (PARP-1) becomes activated upon detecting DNA breakage and it cleaves NAD(+) into nicotinamide and ADP-ribose and polymerizes the latter on nuclear acceptor proteins. Over-activation of PARP induced by peroxynitrite consumes NAD(+) and consequently ATP decreases, culminating in cell dysfunction, apoptosis or necrosis. This mechanism has been implicated in the pathogenesis of various diseases like diabetes, cardiovascular diseases and neurodegenerative diseases. In this review, we have discussed the cytotoxic effects (apoptosis and necrosis) of peroxynitrite in the etiology of the mentioned diseases, focusing on the role of PARP in DNA repair in presence of peroxynitrite.
Collapse
Affiliation(s)
- Badar ul Islam
- />Department of Biochemistry, Faculty of Medicine, J. N. Medical College, Aligarh Muslim University, Aligarh, 202002 UP India
| | - Safia Habib
- />Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002 UP India
| | - Parvez Ahmad
- />Department of Biochemistry, Faculty of Medicine, J. N. Medical College, Aligarh Muslim University, Aligarh, 202002 UP India
| | - Shaziya Allarakha
- />Department of Biochemistry, Faculty of Medicine, J. N. Medical College, Aligarh Muslim University, Aligarh, 202002 UP India
| | - Moinuddin
- />Department of Biochemistry, Faculty of Medicine, J. N. Medical College, Aligarh Muslim University, Aligarh, 202002 UP India
| | - Asif Ali
- />Department of Biochemistry, Faculty of Medicine, J. N. Medical College, Aligarh Muslim University, Aligarh, 202002 UP India
| |
Collapse
|
70
|
Hung WL, Liu CM, Lai CS, Ho CT, Pan MH. Inhibitory effect of garcinol against 12-O-tetradecanoylphorbol 13-acetate-induced skin inflammation and tumorigenesis in mice. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.07.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
71
|
Sertoglu E, Uyanik M, Kayadibi H. Assessment of the relationship between neutrophil-lymphocyte ratio and hearing loss of diabetics. Eur Arch Otorhinolaryngol 2015; 272:2579-80. [PMID: 25472818 DOI: 10.1007/s00405-014-3416-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 11/26/2014] [Indexed: 02/07/2023]
Affiliation(s)
- Erdim Sertoglu
- Biochemistry Laboratory, Anittepe Dispensary, Ankara Mevki Military Hospital, Ankara, Turkey,
| | | | | |
Collapse
|
72
|
Abstract
Heart failure is now recognized as a progressive disease in which patients transition through the stages of being at risk of heart failure (stage A), to asymptomatic structural heart disease (stage B), to clinical manifestations of heart failure (stage C) and finally end-stage or refractory heart failure (stage D). This review outlines the key role of diabetes mellitus as a stage A risk factor for heart failure with preserved ejection fraction, and asymptomatic diabetic cardiomyopathy, referring to the presence of left ventricular diastolic dysfunction in diabetic patients without coronary artery disease, hypertension or other potential aetiologies, as an expression of stage B heart failure with preserved ejection fraction at high risk of transitioning to symptomatic stage C heart failure with preserved ejection fraction. The data presented call for better recognition of the unique phenotype of diabetic cardiomyopathy with preserved ejection fraction and elevated diastolic stiffness as a manifestation of stage B heart failure with preserved ejection fraction that should be targeted for risk management and preventive strategies.
Collapse
Affiliation(s)
- Carolyn Sp Lam
- National Heart Centre Singapore and Duke-National University of Singapore, Singapore
| |
Collapse
|
73
|
Psarros C, Economou EK, Koutsilieris M, Antoniades C. Statins as Pleiotropic Modifiers of Vascular Oxidative Stress and Inflammation. J Crit Care Med (Targu Mures) 2015; 1:43-54. [PMID: 29967815 DOI: 10.1515/jccm-2015-0007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 04/20/2015] [Indexed: 11/15/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality in the industrialized world and in the future is expected to be the number one killer worldwide. The main cause underlying CVD is atherosclerosis. A key event in atherosclerosis initiation and progression is oxidative stress through the production of reactive oxygen species as well as endothelial dysfunction. Several pro- inflammatory and anti-inflammatory cytokines and proteins are involved in this process, complemented by activation of adhesion molecules that promote leukocyte rolling, tethering and infiltration into the sub-endothelial space. Statins represent the agent of choice since numerous clinical trials have verified that their pharmacological action extends beyond lipid lowering. Statins demonstrate direct anti-oxidant effects by scavenging free radicals and stimulating anti-oxidant enzymes while acting as regulators for cytokine, protein and adhesion molecule expression, all of which are involved in the atherosclerotic process. Statin use is considered one of the most efficient currently used interventions in managing CVD with the likely hood of remaining so in the near future.
Collapse
Affiliation(s)
- Costas Psarros
- Department of Experimental Physiology, Medical School, National and Kapodistrian, University of Athens, Athens, Greece
| | - Evangelos K Economou
- Department of Experimental Physiology, Medical School, National and Kapodistrian, University of Athens, Athens, Greece
| | - Michael Koutsilieris
- Department of Experimental Physiology, Medical School, National and Kapodistrian, University of Athens, Athens, Greece
| | - Charalambos Antoniades
- Radcliffe Department of Medicine, Cardiovascular Medicine Division, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
74
|
Milstone DS, Ilyama M, Chen M, O'Donnell P, Davis VM, Plutzky J, Brown JD, Haldar SM, Siu A, Lau AC, Zhu SN, Basheer MF, Collins T, Jongstra-Bilen J, Cybulsky MI. Differential role of an NF-κB transcriptional response element in endothelial versus intimal cell VCAM-1 expression. Circ Res 2015; 117:166-77. [PMID: 26034041 DOI: 10.1161/circresaha.117.306666] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 05/21/2015] [Indexed: 12/22/2022]
Abstract
RATIONALE Human and murine Vcam1 promoters contain 2 adjacent nuclear factor-κB (NF-κB)-binding elements. Both are essential for cytokine-induced transcription of transiently transfected promoter-reporter constructs. However, the relevance of these insights to regulation of the endogenous Vcam1 gene and to pathophysiological processes in vivo remained unknown. OBJECTIVE Determine the role of the 5' NF-κB-binding element in expression of the endogenous Vcam1 gene. METHODS AND RESULTS Homologous recombination in embryonic stem cells was used to inactivate the 5' NF-κB element in the Vcam1 promoter and alter 3 nucleotides in the 5' untranslated region to allow direct comparison of wild-type versus mutant allele RNA expression and chromatin configuration in heterozygous mice. Systemic treatment with inflammatory cytokines or endotoxin (lipopolysaccharide) induced lower expression of the mutant allele relative to wild-type by endothelial cells in the aorta, heart, and lungs. The mutant allele also showed lower endothelial expression in 2-week atherosclerotic lesions in Vcam1 heterozygous/low-density lipoprotein receptor-deficient mice fed a cholesterol-rich diet. In vivo chromatin immunoprecipitation assays of heart showed diminished lipopolysaccharide-induced association of RNA polymerase 2 and NF-κB p65 with the mutant promoter. In contrast, expression of mutant and wild-type alleles was comparable in intimal cells of wire-injured carotid artery and 4- to 12-week atherosclerotic lesions. CONCLUSIONS This study highlights differences between in vivo and in vitro promoter analyses, and reveals a differential role for a NF-κB transcriptional response element in endothelial vascular cell adhesion molecule-1 expression induced by inflammatory cytokines or a cholesterol-rich diet versus intimal cell expression in atherosclerotic lesions and injured arteries.
Collapse
Affiliation(s)
- David S Milstone
- From the Vascular Research Division, Department of Pathology, Center for Excellence in Vascular Biology (D.S.M., P.O.D., V.M.D., T.C.) and Cardiovascular Division (J.P., J.D.B.), Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Advanced Diagnostics Division, Toronto General Research Institute, University Health Network Toronto, Ontario, Canada (M.I., M.C., A.S., A.C.L., S.-N.Z., M.F.B., J.J.-B., M.I.C.); Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada (M.I., M.C., A.S., A.C.L., S.-N.Z., M.F.B., J.J.-B., M.I.C.); Department of Geriatric Medicine, Kyoto University Hospital, Kyoto, Japan (M.I.); Case Cardiovascular Research Institute, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH (S.M.H.); and Department of Pathology, Children's Hospital and Harvard Medical School, Boston, MA (T.C.).
| | - Motoi Ilyama
- From the Vascular Research Division, Department of Pathology, Center for Excellence in Vascular Biology (D.S.M., P.O.D., V.M.D., T.C.) and Cardiovascular Division (J.P., J.D.B.), Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Advanced Diagnostics Division, Toronto General Research Institute, University Health Network Toronto, Ontario, Canada (M.I., M.C., A.S., A.C.L., S.-N.Z., M.F.B., J.J.-B., M.I.C.); Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada (M.I., M.C., A.S., A.C.L., S.-N.Z., M.F.B., J.J.-B., M.I.C.); Department of Geriatric Medicine, Kyoto University Hospital, Kyoto, Japan (M.I.); Case Cardiovascular Research Institute, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH (S.M.H.); and Department of Pathology, Children's Hospital and Harvard Medical School, Boston, MA (T.C.)
| | - Mian Chen
- From the Vascular Research Division, Department of Pathology, Center for Excellence in Vascular Biology (D.S.M., P.O.D., V.M.D., T.C.) and Cardiovascular Division (J.P., J.D.B.), Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Advanced Diagnostics Division, Toronto General Research Institute, University Health Network Toronto, Ontario, Canada (M.I., M.C., A.S., A.C.L., S.-N.Z., M.F.B., J.J.-B., M.I.C.); Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada (M.I., M.C., A.S., A.C.L., S.-N.Z., M.F.B., J.J.-B., M.I.C.); Department of Geriatric Medicine, Kyoto University Hospital, Kyoto, Japan (M.I.); Case Cardiovascular Research Institute, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH (S.M.H.); and Department of Pathology, Children's Hospital and Harvard Medical School, Boston, MA (T.C.)
| | - Peter O'Donnell
- From the Vascular Research Division, Department of Pathology, Center for Excellence in Vascular Biology (D.S.M., P.O.D., V.M.D., T.C.) and Cardiovascular Division (J.P., J.D.B.), Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Advanced Diagnostics Division, Toronto General Research Institute, University Health Network Toronto, Ontario, Canada (M.I., M.C., A.S., A.C.L., S.-N.Z., M.F.B., J.J.-B., M.I.C.); Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada (M.I., M.C., A.S., A.C.L., S.-N.Z., M.F.B., J.J.-B., M.I.C.); Department of Geriatric Medicine, Kyoto University Hospital, Kyoto, Japan (M.I.); Case Cardiovascular Research Institute, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH (S.M.H.); and Department of Pathology, Children's Hospital and Harvard Medical School, Boston, MA (T.C.)
| | - Vannessa M Davis
- From the Vascular Research Division, Department of Pathology, Center for Excellence in Vascular Biology (D.S.M., P.O.D., V.M.D., T.C.) and Cardiovascular Division (J.P., J.D.B.), Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Advanced Diagnostics Division, Toronto General Research Institute, University Health Network Toronto, Ontario, Canada (M.I., M.C., A.S., A.C.L., S.-N.Z., M.F.B., J.J.-B., M.I.C.); Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada (M.I., M.C., A.S., A.C.L., S.-N.Z., M.F.B., J.J.-B., M.I.C.); Department of Geriatric Medicine, Kyoto University Hospital, Kyoto, Japan (M.I.); Case Cardiovascular Research Institute, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH (S.M.H.); and Department of Pathology, Children's Hospital and Harvard Medical School, Boston, MA (T.C.)
| | - Jorge Plutzky
- From the Vascular Research Division, Department of Pathology, Center for Excellence in Vascular Biology (D.S.M., P.O.D., V.M.D., T.C.) and Cardiovascular Division (J.P., J.D.B.), Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Advanced Diagnostics Division, Toronto General Research Institute, University Health Network Toronto, Ontario, Canada (M.I., M.C., A.S., A.C.L., S.-N.Z., M.F.B., J.J.-B., M.I.C.); Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada (M.I., M.C., A.S., A.C.L., S.-N.Z., M.F.B., J.J.-B., M.I.C.); Department of Geriatric Medicine, Kyoto University Hospital, Kyoto, Japan (M.I.); Case Cardiovascular Research Institute, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH (S.M.H.); and Department of Pathology, Children's Hospital and Harvard Medical School, Boston, MA (T.C.)
| | - Jonathan D Brown
- From the Vascular Research Division, Department of Pathology, Center for Excellence in Vascular Biology (D.S.M., P.O.D., V.M.D., T.C.) and Cardiovascular Division (J.P., J.D.B.), Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Advanced Diagnostics Division, Toronto General Research Institute, University Health Network Toronto, Ontario, Canada (M.I., M.C., A.S., A.C.L., S.-N.Z., M.F.B., J.J.-B., M.I.C.); Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada (M.I., M.C., A.S., A.C.L., S.-N.Z., M.F.B., J.J.-B., M.I.C.); Department of Geriatric Medicine, Kyoto University Hospital, Kyoto, Japan (M.I.); Case Cardiovascular Research Institute, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH (S.M.H.); and Department of Pathology, Children's Hospital and Harvard Medical School, Boston, MA (T.C.)
| | - Saptarsi M Haldar
- From the Vascular Research Division, Department of Pathology, Center for Excellence in Vascular Biology (D.S.M., P.O.D., V.M.D., T.C.) and Cardiovascular Division (J.P., J.D.B.), Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Advanced Diagnostics Division, Toronto General Research Institute, University Health Network Toronto, Ontario, Canada (M.I., M.C., A.S., A.C.L., S.-N.Z., M.F.B., J.J.-B., M.I.C.); Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada (M.I., M.C., A.S., A.C.L., S.-N.Z., M.F.B., J.J.-B., M.I.C.); Department of Geriatric Medicine, Kyoto University Hospital, Kyoto, Japan (M.I.); Case Cardiovascular Research Institute, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH (S.M.H.); and Department of Pathology, Children's Hospital and Harvard Medical School, Boston, MA (T.C.)
| | - Allan Siu
- From the Vascular Research Division, Department of Pathology, Center for Excellence in Vascular Biology (D.S.M., P.O.D., V.M.D., T.C.) and Cardiovascular Division (J.P., J.D.B.), Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Advanced Diagnostics Division, Toronto General Research Institute, University Health Network Toronto, Ontario, Canada (M.I., M.C., A.S., A.C.L., S.-N.Z., M.F.B., J.J.-B., M.I.C.); Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada (M.I., M.C., A.S., A.C.L., S.-N.Z., M.F.B., J.J.-B., M.I.C.); Department of Geriatric Medicine, Kyoto University Hospital, Kyoto, Japan (M.I.); Case Cardiovascular Research Institute, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH (S.M.H.); and Department of Pathology, Children's Hospital and Harvard Medical School, Boston, MA (T.C.)
| | - Andrew C Lau
- From the Vascular Research Division, Department of Pathology, Center for Excellence in Vascular Biology (D.S.M., P.O.D., V.M.D., T.C.) and Cardiovascular Division (J.P., J.D.B.), Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Advanced Diagnostics Division, Toronto General Research Institute, University Health Network Toronto, Ontario, Canada (M.I., M.C., A.S., A.C.L., S.-N.Z., M.F.B., J.J.-B., M.I.C.); Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada (M.I., M.C., A.S., A.C.L., S.-N.Z., M.F.B., J.J.-B., M.I.C.); Department of Geriatric Medicine, Kyoto University Hospital, Kyoto, Japan (M.I.); Case Cardiovascular Research Institute, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH (S.M.H.); and Department of Pathology, Children's Hospital and Harvard Medical School, Boston, MA (T.C.)
| | - Su-Ning Zhu
- From the Vascular Research Division, Department of Pathology, Center for Excellence in Vascular Biology (D.S.M., P.O.D., V.M.D., T.C.) and Cardiovascular Division (J.P., J.D.B.), Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Advanced Diagnostics Division, Toronto General Research Institute, University Health Network Toronto, Ontario, Canada (M.I., M.C., A.S., A.C.L., S.-N.Z., M.F.B., J.J.-B., M.I.C.); Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada (M.I., M.C., A.S., A.C.L., S.-N.Z., M.F.B., J.J.-B., M.I.C.); Department of Geriatric Medicine, Kyoto University Hospital, Kyoto, Japan (M.I.); Case Cardiovascular Research Institute, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH (S.M.H.); and Department of Pathology, Children's Hospital and Harvard Medical School, Boston, MA (T.C.)
| | - Mayada F Basheer
- From the Vascular Research Division, Department of Pathology, Center for Excellence in Vascular Biology (D.S.M., P.O.D., V.M.D., T.C.) and Cardiovascular Division (J.P., J.D.B.), Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Advanced Diagnostics Division, Toronto General Research Institute, University Health Network Toronto, Ontario, Canada (M.I., M.C., A.S., A.C.L., S.-N.Z., M.F.B., J.J.-B., M.I.C.); Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada (M.I., M.C., A.S., A.C.L., S.-N.Z., M.F.B., J.J.-B., M.I.C.); Department of Geriatric Medicine, Kyoto University Hospital, Kyoto, Japan (M.I.); Case Cardiovascular Research Institute, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH (S.M.H.); and Department of Pathology, Children's Hospital and Harvard Medical School, Boston, MA (T.C.)
| | - Tucker Collins
- From the Vascular Research Division, Department of Pathology, Center for Excellence in Vascular Biology (D.S.M., P.O.D., V.M.D., T.C.) and Cardiovascular Division (J.P., J.D.B.), Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Advanced Diagnostics Division, Toronto General Research Institute, University Health Network Toronto, Ontario, Canada (M.I., M.C., A.S., A.C.L., S.-N.Z., M.F.B., J.J.-B., M.I.C.); Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada (M.I., M.C., A.S., A.C.L., S.-N.Z., M.F.B., J.J.-B., M.I.C.); Department of Geriatric Medicine, Kyoto University Hospital, Kyoto, Japan (M.I.); Case Cardiovascular Research Institute, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH (S.M.H.); and Department of Pathology, Children's Hospital and Harvard Medical School, Boston, MA (T.C.)
| | - Jenny Jongstra-Bilen
- From the Vascular Research Division, Department of Pathology, Center for Excellence in Vascular Biology (D.S.M., P.O.D., V.M.D., T.C.) and Cardiovascular Division (J.P., J.D.B.), Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Advanced Diagnostics Division, Toronto General Research Institute, University Health Network Toronto, Ontario, Canada (M.I., M.C., A.S., A.C.L., S.-N.Z., M.F.B., J.J.-B., M.I.C.); Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada (M.I., M.C., A.S., A.C.L., S.-N.Z., M.F.B., J.J.-B., M.I.C.); Department of Geriatric Medicine, Kyoto University Hospital, Kyoto, Japan (M.I.); Case Cardiovascular Research Institute, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH (S.M.H.); and Department of Pathology, Children's Hospital and Harvard Medical School, Boston, MA (T.C.)
| | - Myron I Cybulsky
- From the Vascular Research Division, Department of Pathology, Center for Excellence in Vascular Biology (D.S.M., P.O.D., V.M.D., T.C.) and Cardiovascular Division (J.P., J.D.B.), Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Advanced Diagnostics Division, Toronto General Research Institute, University Health Network Toronto, Ontario, Canada (M.I., M.C., A.S., A.C.L., S.-N.Z., M.F.B., J.J.-B., M.I.C.); Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada (M.I., M.C., A.S., A.C.L., S.-N.Z., M.F.B., J.J.-B., M.I.C.); Department of Geriatric Medicine, Kyoto University Hospital, Kyoto, Japan (M.I.); Case Cardiovascular Research Institute, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH (S.M.H.); and Department of Pathology, Children's Hospital and Harvard Medical School, Boston, MA (T.C.).
| |
Collapse
|
75
|
Switching α-glucosidase inhibitors to miglitol reduced glucose fluctuations and circulating cardiovascular disease risk factors in type 2 diabetic Japanese patients. Drugs R D 2015; 14:177-84. [PMID: 25079671 PMCID: PMC4153962 DOI: 10.1007/s40268-014-0055-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Background and Objectives In this study we examined the effects of switching α-glucosidase inhibitors (α-GI) from acarbose or voglibose to miglitol on glucose fluctuations and circulating concentrations of cardiovascular disease risk factors, such as soluble adhesion molecules (sE-selectin, sICAM-1 and sVCAM-1), a chemokine monocyte chemoattractant protein (MCP)-1, plasminogen activator inhibitor-1, and fatty acid-binding protein 4, in type 2 diabetic patients for 3 months. Methods We enrolled 47 Japanese patients with type 2 diabetes, with HbA1c levels with 7.26 ± 0.5 % (mean ± standard deviation), and who were treated with the highest approved dose of acarbose (100 mg/meal) or voglibose (0.3 mg/meal) in combination with insulin or sulfonylurea. Patients’ prior α-GIs were switched to a medium dose of miglitol (50 mg/meal), and the new treatments were maintained for 3 months. Thirty-five patients who completed the 3-month study and provided serum samples were analyzed. Results The switch to miglitol for 3 months did not affect HbA1c, fasting glucose, triglycerides, total-cholesterol or C-reactive protein levels, or result in any adverse events. Glucose fluctuations were significantly improved by the change in treatment (M-value: 10.54 ± 4.32 to 8.36 ± 2.54), while serum protein concentrations of MCP-1 (525.04 ± 288.06–428.11 ± 163.78 pg/mL) and sE-selectin (18.65 ± 9.77–14.50 ± 6.26 ng/mL) were suppressed. Conclusion Our results suggest that switching from acarbose or voglibose to miglitol for 3 months suppressed glucose fluctuations and serum protein levels of MCP-1 and sE-selectin in type 2 diabetic Japanese patients, with fewer adverse effects.
Collapse
|
76
|
Venneri MA, Giannetta E, Panio G, De Gaetano R, Gianfrilli D, Pofi R, Masciarelli S, Fazi F, Pellegrini M, Lenzi A, Naro F, Isidori AM. Chronic Inhibition of PDE5 Limits Pro-Inflammatory Monocyte-Macrophage Polarization in Streptozotocin-Induced Diabetic Mice. PLoS One 2015; 10:e0126580. [PMID: 25961566 PMCID: PMC4427327 DOI: 10.1371/journal.pone.0126580] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/06/2015] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus is characterized by changes in endothelial cells that alter monocyte recruitment, increase classic (M1-type) tissue macrophage infiltration and lead to self-sustained inflammation. Our and other groups recently showed that chronic inhibition of phosphodiesterase-5 (PDE5i) affects circulating cytokine levels in patients with diabetes; whether PDE5i also affects circulating monocytes and tissue inflammatory cell infiltration remains to be established. Using murine streptozotocin (STZ)-induced diabetes and in human vitro cell-cell adhesion models we show that chronic hyperglycemia induces changes in myeloid and endothelial cells that alter monocyte recruitment and lead to self-sustained inflammation. Continuous PDE5i with sildenafil (SILD) expanded tissue anti-inflammatory TIE2-expressing monocytes (TEMs), which are known to limit inflammation and promote tissue repair. Specifically, SILD: 1) normalizes the frequency of circulating pro-inflammatory monocytes triggered by hyperglycemia (53.7 ± 7.9% of CD11b+Gr-1+ cells in STZ vs. 30.4 ± 8.3% in STZ+SILD and 27.1 ± 1.6% in CTRL, P<0.01); 2) prevents STZ-induced tissue inflammatory infiltration (4-fold increase in F4/80+ macrophages in diabetic vs. control mice) by increasing renal and heart anti-inflammatory TEMs (30.9 ± 3.6% in STZ+SILD vs. 6.9 ± 2.7% in STZ, P <0.01, and 11.6 ± 2.9% in CTRL mice); 3) reduces vascular inflammatory proteins (iNOS, COX2, VCAM-1) promoting tissue protection; 4) lowers monocyte adhesion to human endothelial cells in vitro through the TIE2 receptor. All these changes occurred independently from changes of glycemic status. In summary, we demonstrate that circulating renal and cardiac TEMs are defective in chronic hyperglycemia and that SILD normalizes their levels by facilitating the shift from classic (M1-like) to alternative (M2-like)/TEM macrophage polarization. Restoration of tissue TEMs with PDE5i could represent an additional pharmacological tool to prevent end-organ diabetic complications.
Collapse
Affiliation(s)
- Mary Anna Venneri
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
- * E-mail: (AMI); (MAV)
| | - Elisa Giannetta
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Panio
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Rita De Gaetano
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University, Rome, Italy
| | - Daniele Gianfrilli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Riccardo Pofi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Silvia Masciarelli
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University, Rome, Italy
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University, Rome, Italy
| | - Manuela Pellegrini
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | - Andrea Lenzi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Fabio Naro
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University, Rome, Italy
| | - Andrea M. Isidori
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
- * E-mail: (AMI); (MAV)
| |
Collapse
|
77
|
Kadakol A, Malek V, Goru SK, Pandey A, Bagal S, Gaikwad AB. Esculetin attenuates alterations in Ang II and acetylcholine mediated vascular reactivity associated with hyperinsulinemia and hyperglycemia. Biochem Biophys Res Commun 2015; 461:342-7. [DOI: 10.1016/j.bbrc.2015.04.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 04/01/2015] [Indexed: 10/23/2022]
|
78
|
Liu Y, Bao L, Xuan L, Song B, Lin L, Han H. Chebulagic acid inhibits the LPS-induced expression of TNF-α and IL-1β in endothelial cells by suppressing MAPK activation. Exp Ther Med 2015; 10:263-268. [PMID: 26170946 DOI: 10.3892/etm.2015.2447] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 04/13/2015] [Indexed: 01/17/2023] Open
Abstract
Inflammatory response in the vasculature, including the overexpression of tumor necrosis factor (TNF)-α and interleukin (IL)-1β, has been demonstrated to increase the risk of thrombosis development. Chebulagic acid (CA) is a key chemical component in the traditional Mongolian anti-thrombotic drug Garidi-13, and has been suggested to exert anti-inflammatory and anti-infective effects. The present study aimed to evaluate the regulatory impact of CA on a number of biological processes, including lipopolysaccharide (LPS)-induced inflammation, LPS-promoted mitogen-activated protein kinase (MAPK) activation and the expression of toll-like receptor (TLR)4 in EA.hy926 human endothelial cells. The results indicated that CA significantly inhibited the LPS-induced upregulation of TNF-α and IL-1β in a dose- and time-dependent manner. Furthermore, LPS-activated MAPK signaling was inhibited by CA treatment in the EA.hy926 cells. However, TLR4, which serves a key function in LPS-induced inflammation as the receptor of LPS, was not regulated by the CA treatment. In summary, the results of the present study indicate that CA inhibits the LPS-induced promotion of TNF-α and IL-1β in endothelial cells by suppressing MAPK activation, which may contribute to the anti-thrombotic effect of Garidi-13.
Collapse
Affiliation(s)
- Yueying Liu
- Teaching and Research Section of Physiology and Pathophysiology, Medical College, Inner Mongolia University for the Nationalities, Tongliao, Inner Mongolia 028041, P.R. China
| | - Luer Bao
- Teaching and Research Section of Physiology and Pathophysiology, Medical College, Inner Mongolia University for the Nationalities, Tongliao, Inner Mongolia 028041, P.R. China
| | - Liying Xuan
- Teaching and Research Section of Physiology and Pathophysiology, Medical College, Inner Mongolia University for the Nationalities, Tongliao, Inner Mongolia 028041, P.R. China
| | - Baohua Song
- Teaching and Research Section of Physiology and Pathophysiology, Medical College, Inner Mongolia University for the Nationalities, Tongliao, Inner Mongolia 028041, P.R. China
| | - Lin Lin
- Teaching and Research Section of Physiology and Pathophysiology, Medical College, Inner Mongolia University for the Nationalities, Tongliao, Inner Mongolia 028041, P.R. China
| | - Hao Han
- Teaching and Research Section of Physiology and Pathophysiology, Medical College, Inner Mongolia University for the Nationalities, Tongliao, Inner Mongolia 028041, P.R. China
| |
Collapse
|
79
|
Long-term high fat feeding of rats results in increased numbers of circulating microvesicles with pro-inflammatory effects on endothelial cells. Br J Nutr 2015; 113:1704-11. [PMID: 25880162 DOI: 10.1017/s0007114515001117] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Obesity and type 2 diabetes lead to dramatically increased risks of atherosclerosis and CHD. Multiple mechanisms converge to promote atherosclerosis by increasing endothelial oxidative stress and up-regulating expression of pro-inflammatory molecules. Microvesicles (MV) are small ( < 1 μm) circulating particles that transport proteins and genetic material, through which they are able to mediate cell-cell communication and influence gene expression. Since MV are increased in plasma of obese, insulin-resistant and diabetic individuals, who often exhibit chronic vascular inflammation, and long-term feeding of a high-fat diet (HFD) to rats is a well-described model of obesity and insulin resistance, we hypothesised that this may be a useful model to study the impact of MV on endothelial inflammation. The number and cellular origin of MV from HFD-fed obese rats were characterised by flow cytometry. Total MV were significantly increased after feeding HFD compared to feeding chow (P< 0·001), with significantly elevated numbers of MV derived from leucocyte, endothelial and platelet compartments (P< 0·01 for each cell type). MV were isolated from plasma and their ability to induce reactive oxygen species (ROS) formation and vascular cell adhesion molecule (VCAM)-1 expression was measured in primary rat cardiac endothelial cells in vitro. MV from HFD-fed rats induced significant ROS (P< 0·001) and VCAM-1 expression (P= 0·0275), indicative of a pro-inflammatory MV phenotype in this model of obesity. These findings confirm that this is a useful model to further study the mechanisms by which diet can influence MV release and subsequent effects on cardio-metabolic health.
Collapse
|
80
|
Lecube A, Sampol G, Hernández C, Romero O, Ciudin A, Simó R. Characterization of sleep breathing pattern in patients with type 2 diabetes: sweet sleep study. PLoS One 2015; 10:e0119073. [PMID: 25760760 PMCID: PMC4356580 DOI: 10.1371/journal.pone.0119073] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 01/10/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Although sleep apnea-hypopnea syndrome (SAHS) is highly prevalent in patients with type 2 diabetes (T2D), it is unknown whether or not subjects with and without T2D share the same sleep breathing pattern. METHODOLOGY/PRINCIPAL FINDINGS A cross-sectional study in patients with SAHS according to the presence (n = 132) or not (n = 264) of T2D. Both groups were matched by age, gender, BMI, and waist and neck circumferences. A subgroup of 125 subjects was also matched by AHI. The exclusion criteria included chronic respiratory disease, alcohol abuse, use of sedatives, and heart failure. A higher apnea hypopnea index (AHI) was observed in T2D patients [32.2 (10.2-114.0) vs. 25.6 (10.2-123.4) events/hours; p = 0.002). When sleep events were evaluated separately, patients with T2D showed a significant increase in apnea events [8.4 (0.1-87.7) vs. 6.3 (0.0-105.6) e/h; p = 0.044), as well as a two-fold increase in the percentage of time spent with oxygen saturation <90% [15.7 (0.0-97.0) vs. 7.9 (0.0-95.6) %; <0.001)], higher rates of oxygen desaturation events, and also higher daily sleepiness [7.0 (0.0-21.0) vs. 5.0 (0.0-21.0); p = 0.006)] than subjects without T2D. Significant positive correlations between fasting plasma glucose and AHI, the apnea events, and CT90 were observed. Finally, multiple linear regression analyses showed that T2D was independently associated with AHI (R2 = 0.217), the apnea index (R2 = 0.194), CT90 (R2 = 0.222), and desaturation events. CONCLUSIONS/SIGNIFICANCE T2D patients present a different pattern of sleep breathing than subject without diabetes. The most important differences are the severity of hypoxemia and the number of apneas whereas the incidence of hypopnea episodes is similar.
Collapse
Affiliation(s)
- Albert Lecube
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Endocrinology Department, Diabetes and Metabolism Research Unit, Institut de Recerca i Hospital Universitari Vall d’Hebron (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Endocrinology and Nutrition Department, Hospital Universitari Arnau de Vilanova, IRB-Lleida, Universitat de Lleida, Lleida, Spain
- * E-mail:
| | - Gabriel Sampol
- CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Sleep Unit, Neurophysiology Department, Institut de Recerca i Hospital Universitari Vall d’Hebron (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cristina Hernández
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Endocrinology Department, Diabetes and Metabolism Research Unit, Institut de Recerca i Hospital Universitari Vall d’Hebron (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Odile Romero
- CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Sleep Unit, Neurophysiology Department, Institut de Recerca i Hospital Universitari Vall d’Hebron (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Andreea Ciudin
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Endocrinology Department, Diabetes and Metabolism Research Unit, Institut de Recerca i Hospital Universitari Vall d’Hebron (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Rafael Simó
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Endocrinology Department, Diabetes and Metabolism Research Unit, Institut de Recerca i Hospital Universitari Vall d’Hebron (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
81
|
Campochiaro PA, Sophie R, Tolentino M, Miller DM, Browning D, Boyer DS, Heier JS, Gambino L, Withers B, Brigell M, Peters K. Treatment of Diabetic Macular Edema with an Inhibitor of Vascular Endothelial-Protein Tyrosine Phosphatase That Activates Tie2. Ophthalmology 2015; 122:545-54. [DOI: 10.1016/j.ophtha.2014.09.023] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 07/23/2014] [Accepted: 09/15/2014] [Indexed: 10/24/2022] Open
|
82
|
Kwon JK, Lee JY, Jung HD, Oh CK, Choi YD, Cho KS. Associations of Self-Reported Erectile Function with Non-Invasive Measurements of Endothelial Function: A Preliminary Study. World J Mens Health 2015; 33:174-81. [PMID: 26770937 PMCID: PMC4709433 DOI: 10.5534/wjmh.2015.33.3.174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 07/27/2015] [Accepted: 08/03/2015] [Indexed: 11/15/2022] Open
Abstract
Purpose To evaluate the association of self-reported erectile function and endothelial function using the EndoPAT device. Materials and Methods We prospectively enrolled 76 men (age≥40 years) after obtaining a complete medical history and a self-reported questionnaire (International Index of Erectile Function-5 [IIEF-5], SEP Q2, Q3). Endothelial function was noninvasively measured with an EndoPAT 2000, recorded as the reactive hyperemia index (RHI), and analyzed according to the patients' baseline characteristics. Results The mean patient age and IIEF-5 score were 62.50±8.56 years and 11.20±6.36, respectively. In comparing the RHI according to erectile dysfunction (ED) risk factors, the RHI was significantly lower in older subjects (p=0.004). There was no difference in the RHI according to age, body mass index, waist circumference, obesity, smoking habit, or other comorbidities. When the subjects were divided into four groups according to the severity of ED, no statistical differences in the RHI value were found among the groups. There was no difference in IIEF-5 according to the RHI when categorized according to the normal cutoff value or quartile ranges. The second subdomain of IIEF-5 (erection firmness) was significantly correlated with the RHI value (R=0.309, p=0.007); however, this was not the case with the other IIEF-5 subdomains. Self-assessment showed a tendency toward a negative correlation with the RHI value (R=-0.202, p=0.080). Conclusions The role of endothelial function measurement by the EndoPAT in the evaluation and management of ED patients remains inconclusive. However, further studies are needed to validate the role of endothelial function measurement, by the EndoPAT or any other device.
Collapse
Affiliation(s)
- Jong Kyou Kwon
- Department of Urology, Severance Hospital, Urological Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Joo Yong Lee
- Department of Urology, Severance Hospital, Urological Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Hae Do Jung
- Department of Urology, Severance Hospital, Urological Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Cheol Kyu Oh
- Department of Urology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Young Deuk Choi
- Department of Urology, Severance Hospital, Urological Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Kang Su Cho
- Department of Urology, Gangnam Severance Hospital, Urological Science Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
83
|
Altabas V. Diabetes, Endothelial Dysfunction, and Vascular Repair: What Should a Diabetologist Keep His Eye on? Int J Endocrinol 2015; 2015:848272. [PMID: 26089898 PMCID: PMC4452196 DOI: 10.1155/2015/848272] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 01/13/2015] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular complications are the most common complications of diabetes mellitus. A prominent attribute of diabetic cardiovascular complications is accelerated atherosclerosis, considered as a still incurable disease, at least at more advanced stages. The discovery of endothelial progenitor cells (EPCs), able to replace old and injured mature endothelial cells and capable of differentiating into healthy and functional endothelial cells, has offered the prospect of merging the traditional theories on the pathogenesis of atherosclerosis with evolving concepts of vascular biology. The literature supports the notion that EPC alterations are involved in the pathogenesis of vascular diseases in diabetics, but at present many questions remain unanswered. In this review the aspects linking endothelial progenitor cells to the altered vascular biology in diabetes mellitus are discussed.
Collapse
Affiliation(s)
- V. Altabas
- Department for Endocrinology, Diabetes and Metabolic Diseases “Mladen Sekso”, Clinic for Internal Medicine, University Hospital Center “Sestre Milosrdnice”, 10000 Zagreb, Croatia
- *V. Altabas:
| |
Collapse
|
84
|
Ni Q, Yun L, Xu R, Shang D. Correlation between blood lipid levels and chronic pancreatitis: a retrospective case-control study of 48 cases. Medicine (Baltimore) 2014; 93:e331. [PMID: 25526493 PMCID: PMC4603079 DOI: 10.1097/md.0000000000000331] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The incidence of chronic pancreatitis (CP) is increasing, and dyslipidemia severely affects the health of middle-aged and elderly people. We investigated the association between blood lipid levels and CP. The serum lipid metabolic indices of 48 patients with CP (CP group) were summarized retrospectively. The physical examination results of 40 randomly selected healthy individuals were used as the normal control (NC) group. Statistical analyses of the blood lipid data were performed between the 2 groups using the case-control study method. High-density lipoprotein-cholesterol (HDL-c) levels decreased and fasting blood glucose (GLU) levels increased in the CP group compared with those in the NC group (P<0.01). Pearson correlation analysis results showed that serum amylase (AMY) was positively correlated with low-density lipoprotein-cholesterol (LDL-c; r=0.414, P<0.05), and urine AMY (UAMY) was positively correlated with total cholesterol (TC; r=0.614, P<0.01) and LDL-c (r=0.678, P<0.01). A binary logistic regression analysis showed that GLU (odds ratio [OR], 5.052; P<0.01) and TC (OR, 1.074; P<0.01) may be risk factors for CP, whereas HDL-c may be a CP protective factor (OR, 0.833; P<0.01). The HDL-c levels decreased and GLU levels increased in the CP group compared with those in the NC group; AMY was positively correlated with LDL-c and UAMY was positively correlated with TC and LDL-c; GLU and TC may be risk factors for CP; and HDL-c may be a CP protective factor. This may be the first time that such results have been reported. These findings will contribute to primary prevention and control of CP progression.
Collapse
Affiliation(s)
- Qingqiang Ni
- From the Medical College of Soochow University (QN), Suzhou, Jiangsu; Eastern Hepatobiliary Surgery Hospital (QN), Shanghai; Department of General Surgery (QN, DS), Pancreato-Biliary Center, First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning; Jinan Maternity and Child Care Hospital (LY), Jinan, Shandong; and Department of Cardiology (RX), Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, P.R. China
| | | | | | | |
Collapse
|
85
|
Bruder-Nascimento T, da Silva MAB, Tostes RC. The involvement of aldosterone on vascular insulin resistance: implications in obesity and type 2 diabetes. Diabetol Metab Syndr 2014; 6:90. [PMID: 25352918 PMCID: PMC4210491 DOI: 10.1186/1758-5996-6-90] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 08/02/2014] [Indexed: 12/31/2022] Open
Abstract
Aldosterone, a mineralocorticoid hormone produced at the adrenal glands, controls corporal hydroelectrolytic balance and, consequently, has a key role in blood pressure adjustments. Aldosterone also has direct effects in many organs, including the vasculature, leading to many cellular events that influence proliferation, migration, inflammation, redox balance and apoptosis. Aldosterone effects depend on its binding to mineralocorticoid receptors (MR). Aldosterone binding to MR triggers two pathways, the genomic pathway and the non-genomic pathway. In the vasculature e.g., activation of the non-genomic pathway by aldosterone induces rapid effects that involve activation of kinases, phosphatases, transcriptional factors and NAD(P)H oxidases. Aldosterone also plays a crucial role on systemic and vascular insulin resistance, i.e. the inability of a tissue to respond to insulin. Insulin has a critical role on cell function and vascular insulin resistance is considered an early contributor to vascular damage. Accordingly, aldosterone impairs insulin receptor (IR) signaling by altering the phosphatidylinositol 3-kinase (PI3K)/nitric oxide (NO) pathway and by inducing oxidative stress and crosstalk between the IR and the insulin-like growth factor-1 receptor (IGF-1R). This mini-review focuses on the relationship between aldosterone and vascular insulin resistance. Evidence indicating MR antagonists as therapeutic tools to minimize vascular injury associated with obesity and diabetes type 2 is also discussed.
Collapse
Affiliation(s)
- Thiago Bruder-Nascimento
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av Bandeirantes 3900, Ribeirao Preto, SP 14049-900 Brazil
| | - Marcondes AB da Silva
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av Bandeirantes 3900, Ribeirao Preto, SP 14049-900 Brazil
| | - Rita C Tostes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av Bandeirantes 3900, Ribeirao Preto, SP 14049-900 Brazil
| |
Collapse
|
86
|
Fernández-Velasco M, Ruiz-Hurtado G, Gómez AM, Rueda A. Ca(2+) handling alterations and vascular dysfunction in diabetes. Cell Calcium 2014; 56:397-407. [PMID: 25218935 DOI: 10.1016/j.ceca.2014.08.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 07/30/2014] [Accepted: 08/07/2014] [Indexed: 12/12/2022]
Abstract
More than 65% of patients with diabetes mellitus die from cardiovascular disease or stroke. Hyperglycemia, due to either reduced insulin secretion or reduced insulin sensitivity, is the hallmark feature of diabetes mellitus. Vascular dysfunction is a distinctive phenotype found in both types of diabetes and could be responsible for the high incidence of stroke, heart attack, and organ damage in diabetic patients. In addition to well-documented endothelial dysfunction, Ca(2+) handling alterations in vascular smooth muscle cells (VSMCs) play a key role in the development and progression of vascular complications in diabetes. VSMCs provide not only structural integrity to the vessels but also control myogenic arterial tone and systemic blood pressure through global and local Ca(2+) signaling. The Ca(2+) signalosome of VSMCs is integrated by an extensive number of Ca(2+) handling proteins (i.e. channels, pumps, exchangers) and related signal transduction components, whose function is modulated by endothelial effectors. This review summarizes recent findings concerning alterations in endothelium and VSMC Ca(2+) signaling proteins that may contribute to the vascular dysfunction found in the diabetic condition.
Collapse
Affiliation(s)
| | - Gema Ruiz-Hurtado
- Unidad de Hipertensión, Instituto de Investigación imas12, Hospital 12 de Octubre, Madrid, Spain; Instituto Pluridisciplinar, Facultad de Farmacia, Universidad Complutense de Madrid, Spain
| | - Ana M Gómez
- Inserm, UMR S769, Faculté de Pharmacie, Université Paris Sud, Labex LERMIT, DHU TORINO, Châtenay-Malabry, France
| | - Angélica Rueda
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, México City, Mexico.
| |
Collapse
|
87
|
Biodistribution of 99mTc–2-aminoestrone-3-methyl ether as a potential radiotracer for inflammation imaging. J Radioanal Nucl Chem 2014. [DOI: 10.1007/s10967-014-3320-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
88
|
Liu H, Wang ZC, Yue Y, Yu JW, Cai Y, Bai YG, Zhang HJ, Bao JX, Ren XL, Xie MJ, Ma J. Simulated microgravity induces an inflammatory response in the common carotid artery of rats. Can J Physiol Pharmacol 2014; 92:661-8. [PMID: 25008451 DOI: 10.1139/cjpp-2014-0066] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Post-spaceflight orthostatic intolerance is one of the most important adverse effects after exposure to space microgravity, and there are still no effective countermeasures. It has been considered that arterial remodeling may play an important role in the occurrence of post-spaceflight orthostatic intolerance, but the cellular mechanisms remain unknown. In this study, we investigated whether an inflammatory response exists in the common carotid artery of rats exposed to simulated microgravity. For this, Sprague-Dawley rats were subjected to 4 weeks of hindlimb unweighting to simulate microgravity. The expression levels of the adhesion molecules E-selectin and vascular cell adhesion molecule-1 (VCAM-1), and the cytokine monocyte chemoattractant protein-1 (MCP-1) in the common carotid artery of simulated microgravity rats were evaluated by immunohistochemical staining, quantitative RT-PCR, and Western blot analyses. The recruitment of monocytes in the common carotid artery of rats exposed to simulated microgravity was investigated by en face immunofluorescence staining and monocyte binding assays. Our results provided convincing evidence that there is an inflammatory response in the common carotid artery of rats exposed to simulated microgravity. Our work suggests that the inflammatory response may be a novel cellular mechanism that is responsible for the arterial remodeling that occurs during exposure to microgravity.
Collapse
Affiliation(s)
- Huan Liu
- a Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, Shaanxi Province, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Rajkovic N, Zamaklar M, Lalic K, Jotic A, Lukic L, Milicic T, Singh S, Stosic L, Lalic NM. Relationship between obesity, adipocytokines and inflammatory markers in type 2 diabetes: relevance for cardiovascular risk prevention. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:4049-65. [PMID: 24736687 PMCID: PMC4024989 DOI: 10.3390/ijerph110404049] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 03/20/2014] [Accepted: 03/31/2014] [Indexed: 02/07/2023]
Abstract
This study aimed to analyse the impact of obesity in type 2 diabetes (T2D) on adipocytokines (adiponectin, leptin and resistin) and inflammatory markers (TNF-α, IL-6 and hsCRP) as cardiovascular risk factors. A cross-sectional study comparing the basal levels of adipocytokines and inflammatory markers was done in 18 obese (BMI ≥ 30 kg/m2) (group A), 21 overweight (25 kg/m2 ≤ BMI < 30 kg/m2) (group B), 25 non-obese T2D patients (group C) and 15 non-obese controls (group D). The lowest levels of adiponectin and the highest levels of leptin, resistin, TNF-α, IL-6 and hsCRP were found in group A. Adiponectin levels were significantly lower, and resistin, TNF-α, and hsCRP levels were elevated in group C vs. D. However, leptin and IL-6 levels differed significantly between groups A and B, but not between groups C and D. Moreover, we found a significant negative correlation between adiponectin and TNF-α, but not with other markers, which was independent of the presence of obesity. In contrast, leptin and resistin correlated with the inflammatory markers, and this correlation was obesity-dependent. Our results suggest that obesity influences cardiovascular risk primarily through changes in leptin and resistin and less efficiently at the level of adiponectin.
Collapse
Affiliation(s)
- Natasa Rajkovic
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Dr. Subotica 13, Belgrade 11000, Serbia.
| | - Miroslava Zamaklar
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Dr. Subotica 13, Belgrade 11000, Serbia.
| | - Katarina Lalic
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Dr. Subotica 13, Belgrade 11000, Serbia.
| | - Aleksandra Jotic
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Dr. Subotica 13, Belgrade 11000, Serbia.
| | - Ljiljana Lukic
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Dr. Subotica 13, Belgrade 11000, Serbia.
| | - Tanja Milicic
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Dr. Subotica 13, Belgrade 11000, Serbia.
| | - Sandra Singh
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Dr. Subotica 13, Belgrade 11000, Serbia.
| | - Ljubica Stosic
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Dr. Subotica 13, Belgrade 11000, Serbia.
| | - Nebojsa M Lalic
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Dr. Subotica 13, Belgrade 11000, Serbia.
| |
Collapse
|
90
|
Protection of long-term treatment with huang-lian-jie-du-tang on vascular endothelium in rats with type 2 diabetes mellitus. Curr Ther Res Clin Exp 2014; 73:174-85. [PMID: 24653519 DOI: 10.1016/j.curtheres.2012.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2012] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Huang-Lian-Jie-Du-Tang (HLJDT) is the classical traditional Chinese recipe for heat clearance and detoxification and is used in diabetic patients in the clinical practice of traditional Chinese medicine. OBJECTIVE The aim of this study was to evaluate the protective effects of long-term treatment with HLJDT on vascular endothelial function in rats with type 2 diabetes mellitus (T2DM). METHODS The male T2DM model rats were induced by intraperitoneal injection of low-dose streptozotocin plus a high-fat and high-calorie laboratory diet. The T2DM animals were randomly divided into the T2DM model group, the low-dose HLJDT group (0.42 g/kg/d), and the high-dose HLJDT group (1.25 g/kg/d). RESULTS Administration of HLJDT (0.42 or 1.25 g/kg/d) for 8 weeks decreased the levels of serum fasting blood glucose, malondialdehyde, and vascular tissue interleukin 6 but raised the level of serum superoxide dismutase compared with the T2DM model group in a dose-dependent manner. In addition, HLJDT treatment restored the impaired endothelial-dependent vascular relaxation in aortic preparations from the T2DM model group in a dose-dependent manner. CONCLUSIONS Early and long-term treatments with HLJDT could have anti-inflammatory, antioxidant properties and could protect vascular endothelium from the cardiovascular complications associated with T2DM.
Collapse
|
91
|
Accelerometer-assessed Physical Activity, Functional Disability, and Systemic Inflammation: A National Sample of Community-dwelling Older Adults with Diabetes. Cardiopulm Phys Ther J 2014. [DOI: 10.1097/01823246-201403000-00003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
92
|
Enli Y, Balci YI, Gönen C, Uzun E, Polat A. Adipocytokine concentrations in children with different types of beta-thalassemia. Scandinavian Journal of Clinical and Laboratory Investigation 2014; 74:306-11. [DOI: 10.3109/00365513.2014.883639] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
93
|
The 14 bp Del/Ins HLA-G polymorphism is related with high blood pressure in acute coronary syndrome and type 2 diabetes mellitus. BIOMED RESEARCH INTERNATIONAL 2014; 2014:898159. [PMID: 24689061 PMCID: PMC3933038 DOI: 10.1155/2014/898159] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/19/2013] [Accepted: 12/23/2013] [Indexed: 12/31/2022]
Abstract
Immunologic and inflammatory processes are involved in the pathogenesis of acute coronary syndrome (ACS) and type 2 diabetes mellitus (DM2). Human leukocyte antigen-G (HLA-G) is a negative regulator of the immune response. This study evaluates the 14 bp Del/Ins HLA-G polymorphism in ACS and DM2. Three hundred and seventy individuals from Western Mexico were recruited and categorized into three groups: ACS (86), DM2 without coronary complications (70), and healthy subjects (214). Genotyping of the 14 bp Del/Ins HLA-G polymorphism was performed by PCR and Native-PAGE. The most common risk factors were hypertension and overweight in ACS and DM2, respectively. The genetic distribution of the 14 bp Del/Ins HLA-G polymorphism showed no significant differences between groups (P ≥ 0.23). Nonetheless, the Ins/Ins genotype was associated with high blood pressure (HBP) in the DM2 group (ORc = 1.65, P = 0.02). The genetic recessive model showed similar findings (ORc = 3.03, P = 0.04). No association was found in ACS, with a P of 0.05; nevertheless, the prevalence of Ins/Ins carriers was quite similar to that found in the DM2-HBP group. The 14 bp Del/Ins HLA-G polymorphism was not a susceptibility factor for ACS or DM2; however, the Ins/Ins genotype might have contributed to the development of HBP in the studied groups.
Collapse
|
94
|
Fang SY, Roan JN, Lin Y, Hsu CH, Chang SW, Huang CC, Tsai YC, Lam CF. Rosuvastatin Suppresses the Oxidative Response in the Venous Limb of an Arteriovenous Fistula and Enhances the Fistula Blood Flow in Diabetic Rats. J Vasc Res 2014; 51:81-9. [DOI: 10.1159/000357619] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 11/23/2013] [Indexed: 11/19/2022] Open
|
95
|
Tahrani AA, Ali A. Oxidative Stress, Inflammation and Endothelial Dysfunction: The Link Between Obstructive Sleep Apnoea and Vascular Disease in Type 2 Diabetes. OXIDATIVE STRESS IN APPLIED BASIC RESEARCH AND CLINICAL PRACTICE 2014:149-171. [DOI: 10.1007/978-1-4899-8035-9_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
96
|
Yang M, Liu C, Niu M, Hu Y, Guo M, Zhang J, Luo Y, Yuan W, Yang M, Yun M, Guo L, Yan J, Liu D, Liu J, Jiang Y. Phage-display library biopanning and bioinformatic analysis yielded a high-affinity peptide to inflamed vascular endothelium both in vitro and in vivo. J Control Release 2014; 174:72-80. [DOI: 10.1016/j.jconrel.2013.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 10/20/2013] [Accepted: 11/07/2013] [Indexed: 12/26/2022]
|
97
|
Su Y, Qadri SM, Hossain M, Wu L, Liu L. Uncoupling of eNOS contributes to redox-sensitive leukocyte recruitment and microvascular leakage elicited by methylglyoxal. Biochem Pharmacol 2013; 86:1762-74. [PMID: 24144633 DOI: 10.1016/j.bcp.2013.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 10/10/2013] [Accepted: 10/11/2013] [Indexed: 01/03/2023]
Abstract
Elevated levels of the glycolysis metabolite methylglyoxal (MG) have been implicated in impaired leukocyte-endothelial interactions and vascular complications in diabetes, putative mechanisms of which remain elusive. Uncoupling of endothelial nitric oxide synthase (eNOS) was shown to be involved in endothelial dysfunction in diabetes. Whether MG contributes to these effects has not been elucidated. By using intravital microscopy in vivo, we demonstrate that MG-triggered reduction in leukocyte rolling velocity and increases in rolling flux, adhesion, emigration and microvascular permeability were significantly abated by scavenging reactive oxygen species (ROS). In murine cremaster muscle, MG treatment reduced tetrahydrobiopterin (BH4)/total biopterin ratio, increased arginase expression and stimulated ROS and superoxide production. The latter was significantly blunted by ROS scavengers Tempol (300μM) or MnTBAP (300μM), by BH4 supplementation (100μM) or by NOS inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME; 20μM). In these tissues and cultured murine and human primary endothelial cells, MG increased eNOS monomerization and decreased BH4/total biopterin ratio, effects that were significantly mitigated by supplementation of BH4 or its precursor sepiapterin but not by L-NAME or tetrahydroneopterin, indicative of MG-triggered eNOS uncoupling. MG treatment further decreased the expression of guanosine triphosphate cyclohydrolase I in murine primary endothelial cells. MG-induced leukocyte recruitment was significantly attenuated by supplementation of BH4 or sepiapterin or suppression of superoxide by L-NAME confirming the role of eNOS uncoupling in MG-elicited leukocyte recruitment. Together, our study uncovers eNOS uncoupling as a pivotal mechanism in MG-induced oxidative stress, microvascular hyperpermeability and leukocyte recruitment in vivo.
Collapse
Affiliation(s)
- Yang Su
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada S7N 5E5
| | | | | | | | | |
Collapse
|
98
|
Affiliation(s)
- Ehrin J Armstrong
- University of California, Davis Medical Center, Division of Cardiovascular Medicine, Sacramento
| | | | | |
Collapse
|
99
|
Admission glucose, fasting glucose, HbA1c levels and the SYNTAX score in non-diabetic patients undergoing coronary angiography. Clin Res Cardiol 2013; 103:223-7. [DOI: 10.1007/s00392-013-0641-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Accepted: 11/11/2013] [Indexed: 11/25/2022]
|
100
|
Costa R, Negrão R, Valente I, Castela Â, Duarte D, Guardão L, Magalhães PJ, Rodrigues JA, Guimarães JT, Gomes P, Soares R. Xanthohumol modulates inflammation, oxidative stress, and angiogenesis in type 1 diabetic rat skin wound healing. JOURNAL OF NATURAL PRODUCTS 2013; 76:2047-2053. [PMID: 24200239 DOI: 10.1021/np4002898] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Type 1 diabetes mellitus is responsible for metabolic dysfunction, accompanied by chronic inflammation, oxidative stress, and endothelium dysfunction, and is often associated with impaired wound healing. Phenol-rich food improves vascular function, contributing to diabetes prevention. This study has evaluated the effect of phenol-rich beverage consumption in diabetic rats on wound healing, through angiogenesis, inflammation, and oxidative stress modulation. A wound-healing assay was performed in streptozotocin-induced diabetic Wistar rats drinking water, 5% ethanol, and stout beer with and without 10 mg/L xanthohumol (1), for a five-week period. Wounded skin microvessel density was reduced to normal values upon consumption of 1 in diabetic rats, being accompanied by decreased serum VEGF-A and inflammatory markers (IL-1β, NO, N-acetylglucosaminidase). Systemic glutathione and kidney and liver H2O2, 3-nitrotyrosine, and protein carbonylation also decreased to healthy levels after treatment with 1, implying an improvement in oxidative stress status. These findings suggest that consumption of xanthohumol (1) by diabetic animals consistently decreases inflammation and oxidative stress, allowing neovascularization control and improving diabetic wound healing.
Collapse
Affiliation(s)
- Raquel Costa
- Department of Biochemistry (U38-FCT), Faculty of Medicine, University of Porto , 4200-319 Porto, Portugal
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|