51
|
Lu Y, Yu R, Tong L, Zhang L, Zhang Z, Pan L, Wang Y, Guo H, Hu Y, Liu X. Transcriptome Analysis of LLC-PK Cells Single or Coinfected with Porcine Epidemic Diarrhea Virus and Porcine Deltacoronavirus. Viruses 2023; 16:74. [PMID: 38257774 PMCID: PMC10818665 DOI: 10.3390/v16010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) and porcine deltacoronavirus (PDCoV) are the two most prevalent swine enteric coronaviruses worldwide. They commonly cause natural coinfections, which worsen as the disease progresses and cause increased mortality in piglets. To better understand the transcriptomic changes after PEDV and PDCoV coinfection, we compared LLC porcine kidney (LLC-PK) cells infected with PEDV and/or PDCoV and evaluated the differential expression of genes by transcriptomic analysis and real-time qPCR. The antiviral efficacy of interferon-stimulated gene 20 (ISG20) against PDCoV and PEDV infections was also assessed. Differentially expressed genes (DEGs) were detected in PEDV-, PDCoV-, and PEDV + PDCoV-infected cells at 6, 12, and 24 h post-infection (hpi), and at 24 hpi, the number of DEGs was the highest. Furthermore, changes in the expression of interferons, which are mainly related to apoptosis and activation of the host innate immune pathway, were found in the PEDV and PDCoV infection and coinfection groups. Additionally, 43 ISGs, including GBP2, IRF1, ISG20, and IFIT2, were upregulated during PEDV or PDCoV infection. Furthermore, we found that ISG20 significantly inhibited PEDV and PDCoV infection in LLC-PK cells. The transcriptomic profiles of cells coinfected with PEDV and PDCoV were reported, providing reference data for understanding the host response to PEDV and PDCoV coinfection.
Collapse
Affiliation(s)
- Yanzhen Lu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (Y.L.)
- State Key Laboratory for Animal Disease Control and Prevention, OIE/National Foot-and-Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China (L.P.)
| | - Ruiming Yu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (Y.L.)
- State Key Laboratory for Animal Disease Control and Prevention, OIE/National Foot-and-Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China (L.P.)
| | - Lixin Tong
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (Y.L.)
- State Key Laboratory for Animal Disease Control and Prevention, OIE/National Foot-and-Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China (L.P.)
| | - Liping Zhang
- State Key Laboratory for Animal Disease Control and Prevention, OIE/National Foot-and-Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China (L.P.)
| | - Zhongwang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, OIE/National Foot-and-Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China (L.P.)
| | - Li Pan
- State Key Laboratory for Animal Disease Control and Prevention, OIE/National Foot-and-Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China (L.P.)
| | - Yonglu Wang
- State Key Laboratory for Animal Disease Control and Prevention, OIE/National Foot-and-Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China (L.P.)
| | - Huichen Guo
- State Key Laboratory for Animal Disease Control and Prevention, OIE/National Foot-and-Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China (L.P.)
| | - Yonghao Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (Y.L.)
| | - Xinsheng Liu
- State Key Laboratory for Animal Disease Control and Prevention, OIE/National Foot-and-Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China (L.P.)
| |
Collapse
|
52
|
Kong F, Jia H, Xiao Q, Fang L, Wang Q. Prevention and Control of Swine Enteric Coronaviruses in China: A Review of Vaccine Development and Application. Vaccines (Basel) 2023; 12:11. [PMID: 38276670 PMCID: PMC10820180 DOI: 10.3390/vaccines12010011] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Swine enteric coronaviruses (SECs) cause significant economic losses to the pig industry in China. Although many commercialized vaccines against transmissible gastroenteritis virus (TGEV) and porcine epidemic diarrhea virus (PEDV) are available, viruses are still widespread. The recent emergence of porcine deltacoronavirus (PDCoV) and swine acute diarrhea syndrome coronavirus (SADS-CoV), for which no vaccines are available, increases the disease burden. In this review, we first introduced the genomic organization and epidemiology of SECs in China. Then, we discussed the current vaccine development and application in China, aiming to provide suggestions for better prevention and control of SECs in China and other countries.
Collapse
Affiliation(s)
- Fanzhi Kong
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China; (F.K.); (H.J.); (Q.X.)
| | - Huilin Jia
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China; (F.K.); (H.J.); (Q.X.)
| | - Qi Xiao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China; (F.K.); (H.J.); (Q.X.)
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Qiuhong Wang
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
53
|
Wang N, Wang Z, Ma M, Jia X, Liu H, Qian M, Lu S, Xiang Y, Wei Z, Zheng L. Expression of codon-optimized PDCoV-RBD protein in baculovirus expression system and immunogenicity evaluation in mice. Int J Biol Macromol 2023; 252:126113. [PMID: 37541479 DOI: 10.1016/j.ijbiomac.2023.126113] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Porcine deltacoronavirus (PDCoV) is a global epidemic enteropathogenic coronavirus that mainly infects piglets, and causes huge losses to the pig industry. However, there are still no commercial vaccines available for PDCoV prevention and controlment. Receptor-binding domain (RBD) is located at the S1 subunit of PDCoV and is the major target for developing viral inhibitor and vaccine. In this study, the characteristics of the RBD were analyzed by bioinformatic tools, and codon optimization was performed to efficiently express the PDCoV-RBD protein in the insect baculovirus expression system. The purified PDCoV-RBD protein was obtained and fully emulsified with CPG2395 adjuvant, aqueous adjuvant and Al(OH)3 adjuvant, respectively, to develop vaccines. The humoral and cellular immune responses were assessed on mice. The results showed that both the RBD/CPG2395 and RBD/aqueous adjuvant could induce stronger immune responses in mice than that of RBD/Al(OH)3. In addition, the PDCoV challenge infection was conducted and the RBD/CPG2395 could provide better protection against PDCoV in mice. Our study showed that the RBD protein has good antigenicity and can be used as a protective antigen, which provided a basis for the development of the PDCoV vaccine.
Collapse
Affiliation(s)
- Nianxiang Wang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Zi Wang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Mengyao Ma
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Xinhao Jia
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Hang Liu
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Mengwei Qian
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Sijia Lu
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Yuqiang Xiang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhanyong Wei
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
| | - Lanlan Zheng
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
54
|
Li J, Zhao S, Zhang B, Huang J, Peng Q, Xiao L, Yuan X, Guo R, Zhou J, Fan B, Xue T, Zhu X, Liu C, Zhu X, Ren L, Li B. A novel recombinant S-based subunit vaccine induces protective immunity against porcine deltacoronavirus challenge in piglets. J Virol 2023; 97:e0095823. [PMID: 37846983 PMCID: PMC10688320 DOI: 10.1128/jvi.00958-23] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 08/28/2023] [Indexed: 10/18/2023] Open
Abstract
IMPORTANCE As an emerging porcine enteropathogenic coronavirus that has the potential to infect humans, porcine deltacoronavirus (PDCoV) is receiving increasing attention. However, no effective commercially available vaccines against this virus are available. In this work, we designed a spike (S) protein and receptor-binding domain (RBD) trimer as a candidate PDCoV subunit vaccine. We demonstrated that S protein induced more robust humoral and cellular immune responses than the RBD trimer in mice. Furthermore, the protective efficacy of the S protein was compared with that of inactivated PDCoV vaccines in piglets and sows. Of note, the immunized piglets and suckling pig showed a high level of NAbs and were associated with reduced virus shedding and mild diarrhea, and the high level of NAbs was maintained for at least 4 months. Importantly, we demonstrated that S protein-based subunit vaccines conferred significant protection against PDCoV infection.
Collapse
Affiliation(s)
- Jizong Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- School of Pharmacy, Linyi University, Linyi, China
- Institute of Life Sciences, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Shuqing Zhao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Nanjing, China
- School of Pharmacy, Nanjing Tech University, Nanjing, China
| | - Baotai Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Nanjing, China
- College of Animal Science, Guizhou University, Guiyang, China
| | - Jin Huang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Nanjing, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Qi Peng
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Nanjing, China
| | - Li Xiao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Nanjing, China
- College of Animal Science, Guizhou University, Guiyang, China
| | - Xuesong Yuan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Nanjing, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Rongli Guo
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Nanjing, China
| | - Jinzhu Zhou
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Nanjing, China
| | - Baochao Fan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Nanjing, China
- Institute of Life Sciences, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Tao Xue
- School of Pharmacy, Linyi University, Linyi, China
| | - Xuejiao Zhu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Nanjing, China
- Institute of Life Sciences, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Chuanmin Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Nanjing, China
- School of Pharmacy, Linyi University, Linyi, China
- Institute of Life Sciences, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xing Zhu
- College of Animal Science, Guizhou University, Guiyang, China
| | - Lili Ren
- School of Pharmacy, Nanjing Tech University, Nanjing, China
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Nanjing, China
- Institute of Life Sciences, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
55
|
Wen Y, Chen R, Yang J, Yu E, Liu W, Liao Y, Wen Y, Wu R, Zhao Q, Du S, Yan Q, Han X, Cao S, Huang X. Identification of potential SLA-I-specific T-cell epitopes within the structural proteins of porcine deltacoronavirus. Int J Biol Macromol 2023; 251:126327. [PMID: 37579907 DOI: 10.1016/j.ijbiomac.2023.126327] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging swine enteropathogenic coronavirus that mainly threatens newborn piglets and poses a potential broad cross-species transmission risk. The antigenic epitopes of PDCoV are currently unidentified, and no information about T cell epitopes is available. Here, T-cell epitopes of PDCoV structural proteins were predicted using computational methods. 17 epitope peptides were synthesized and then screened using ELIspot, intracellular cytokine staining (ICS), and RT-qPCR detection of IFN-γ mRNA to evaluate their ability to elicit interferon-gamma (IFN-γ) responses in peripheral blood mononuclear cells (PBMCs) from PDCoV-challenged pigs. Five peptides (M1, M2, M3, N6, and S4) elicited high levels of IFN-γ and were investigated further as potential T-cell epitope candidates. All five peptides were cytotoxic T lymphocyte (CTL) epitopes, and two peptides (M3, N6) were recognized simultaneously by CD8 + and CD4 + T cells. A multi-epitope peptide combining the five epitopes (designated "5T") was synthesized and its immune response and protection efficacy was evaluated in a piglet model. ELISpot assay results indicated that 5T induces robust epitope-specific cellular immune responses. Four epitopes (M1, M2, N6, S4) elicited IFN-γ responses in 5T-vaccinated piglets. No obvious protection efficacy was detected in piglets vaccinated with 5T alone. Our results provide valuable information concerning PDCoV-related antigenic epitopes and will be useful in the design of epitope-based vaccines.
Collapse
Affiliation(s)
- Yimin Wen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Rui Chen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Junpeng Yang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Enbo Yu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Weizhe Liu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yijie Liao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yiping Wen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Rui Wu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Qin Zhao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Senyan Du
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Qigui Yan
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinfeng Han
- Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu 611130, China
| | - Sanjie Cao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu 611130, China
| | - Xiaobo Huang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu 611130, China.
| |
Collapse
|
56
|
Fang P, Zhang H, Cheng T, Ding T, Xia S, Xiao W, Li Z, Xiao S, Fang L. Porcine deltacoronavirus accessory protein NS6 harnesses VPS35-mediated retrograde trafficking to facilitate efficient viral infection. J Virol 2023; 97:e0095723. [PMID: 37815351 PMCID: PMC10617406 DOI: 10.1128/jvi.00957-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/01/2023] [Indexed: 10/11/2023] Open
Abstract
IMPORTANCE Retrograde transport has been reported to be closely associated with normal cellular biological processes and viral replication. As an emerging enteropathogenic coronavirus with zoonotic potential, porcine deltacoronavirus (PDCoV) has attracted considerable attention. However, whether retrograde transport is associated with PDCoV infection remains unclear. Our present study demonstrates that retromer protein VPS35 acts as a critical host factor that is required for PDCoV infection. Mechanically, VPS35 interacts with PDCoV NS6, mediating the retrograde transport of NS6 from endosomes to the Golgi and preventing it from lysosomal degradation. Recombinant PDCoVs with an NS6 deletion display resistance to VPS35 deficiency. Our work reveals a novel evasion mechanism of PDCoV that involves the manipulation of the retrograde transport pathway by VPS35, providing new insight into the mechanism of PDCoV infection.
Collapse
Affiliation(s)
- Puxian Fang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Huichang Zhang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Ting Cheng
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Tong Ding
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - SiJin Xia
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Wenwen Xiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zhuang Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Shaobo Xiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Liurong Fang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
57
|
Miao X, Zhang L, Zhou P, Yu R, Zhang Z, Wang C, Guo H, Wang Y, Pan L, Liu X. Adenovirus-vectored PDCoV vaccines induce potent humoral and cellular immune responses in mice. Vaccine 2023; 41:6661-6671. [PMID: 37777448 DOI: 10.1016/j.vaccine.2023.09.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 09/21/2023] [Accepted: 09/24/2023] [Indexed: 10/02/2023]
Abstract
Porcine deltacoronavirus (PDCoV) is a novel swine enteropathogenic coronavirus that causes severe watery diarrhea, vomiting, dehydration and high mortality in piglets, resulting in significant economic losses by the global pig industry. Recently, PDCoV has also shown the potential for cross-species transmission. However, there are currently few vaccine studies and no commercially available vaccines for PDCoV. Hence, here, two novel human adenovirus 5 (Ad5)-vectored vaccines expressing codon-optimized forms of the PDCoV spike (S) glycoprotein (Ad-PD-tPA-Sopt) and S1 glycoprotein (Ad-PD-oriSIP-S1opt) were constructed, and their effects were evaluated via intramuscular (IM) injection in BALB/c mice with different doses and times. Both vaccines elicited robust humoral and cellular immune responses; moreover, Ad-PD-tPA-Sopt-vaccinated mice after two IM injections with 108 infectious units (IFU)/mouse had significantly higher anti-PDCoV-specific neutralizing antibody titers. In contrast, the mice immunized with Ad-PD-tPA-Sopt via oral gavage (OG) did not generate robust systemic and mucosal immunity. Thus, IM Ad-PD-tPA-Sopt administration is a promising strategy against PDCoV and provides useful information for future animal vaccine development.
Collapse
Affiliation(s)
- Xin Miao
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China; National Center of Technology Innovation for Pigs, China
| | - Liping Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China; National Center of Technology Innovation for Pigs, China
| | - Peng Zhou
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Ruiming Yu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China; National Center of Technology Innovation for Pigs, China
| | - Zhongwang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China; National Center of Technology Innovation for Pigs, China
| | - Cancan Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China; National Center of Technology Innovation for Pigs, China
| | - Huichen Guo
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Yonglu Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Li Pan
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China; National Center of Technology Innovation for Pigs, China.
| | - Xinsheng Liu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China; National Center of Technology Innovation for Pigs, China.
| |
Collapse
|
58
|
Lee D, Shin S, Jang G, Gim Y, Son HK, Kang SC, Eo Y, Chae YG, Koh PO, Lee HJ, Lee C. Genomic and Virulence Investigations of a Novel Porcine Deltacoronavirus Strain Identified in South Korea. Transbound Emerg Dis 2023; 2023:5569675. [PMID: 40303825 PMCID: PMC12016722 DOI: 10.1155/2023/5569675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 01/05/2025]
Abstract
Porcine deltacoronavirus (PDCoV) has emerged as a significant issue in multiple pork-producing countries. This study isolated a novel PDCoV strain, GNU-2105/KOR/2021, which caused a severe diarrhea outbreak with a high mortality rate among neonatal piglets in South Korea. The growth properties and sialic acid dependency of the GNU-2105 strain in cell culture were comparable to those of the 2016 domestic isolate, KNU-1607. Interestingly, phylogenetic analysis using the complete genome of GNU-2105 identified in 2021 demonstrated that this novel strain belongs to the US/South Korean/Japanese clade; however, it is more closely placed around the Chinese isolates. To investigate the potential pathogenic diversity between the previous and recent PDCoVs, we performed an experimental infection using conventional suckling piglets with KNU-1607 or GNU-2105. The KNU-1607-inoculated piglets suffered from acute, watery diarrhea; however, all piglets recovered and survived. In the KNU-1607-inoculated group, histopathological observation detected viral antigens in the jejunum and ileum. However, the virulence of the GNU-2105 virus was enhanced and presented severe clinical symptoms, including thin, transparent intestinal walls, with 100% mortality in piglets. Furthermore, viruses and severe villous atrophy were observed from the duodenum to the colon in all the piglets inoculated with GNU-2105 by quantitative RT-PCR and microscopic assessments, confirming the high enteropathogenicity of PDCoV in neonatal piglets. These findings could expand our understanding of the genetic and pathogenic variation of the PDCoV strain and highlight the necessity of vaccine development providing protection against virulent PDCoV.
Collapse
Affiliation(s)
- Duri Lee
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Sangjune Shin
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
- ChoongAng Vaccine Laboratories, Daejeon 34055, Republic of Korea
| | - Guehwan Jang
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Yunhee Gim
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hyun-Kyoung Son
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | | | - Yongjoon Eo
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
- Nawoo Veterinary Group, Yangsan 50573, Republic of Korea
| | | | - Phil-Ok Koh
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hu-Jang Lee
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Changhee Lee
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
59
|
Huang B, Huang Y, Deng L, Xu T, Jian Z, Lai S, Ai Y, Zhu L, Xu Z. Intranasal administration with recombinant vaccine PRVXJ-delgE/gI/TK-S induces strong intestinal mucosal immune responses against PDCoV. BMC Vet Res 2023; 19:171. [PMID: 37741960 PMCID: PMC10517555 DOI: 10.1186/s12917-023-03739-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/15/2023] [Indexed: 09/25/2023] Open
Abstract
Porcine deltacoronavirus (PDCoV) is a novel coronavirus that causes enteric diseases in pigs leading to substantial financial losses within the industry. The absence of commercial vaccines and limited research on PDCoV vaccines presents significant challenges. Therefore, we evaluated the safety and immunogenicity of recombinant pseudorabies virus (PRV) rPRVXJ-delgE/gI/TK-S through intranasal mucosal immunization in weaned piglets and SPF mice. Results indicated that rPRVXJ-delgE/gI/TK-S safely induced PDCoV S-specific and PRV gB-specific antibodies in piglets, with levels increasing 7 days after immunization. Virus challenge tests demonstrated that rPRVXJ-delgE/gI/TK-S effectively improved piglet survival rates, reduced virus shedding, and alleviated clinical symptoms and pathological damage. Notably, the recombinant virus reduced anti-inflammatory and pro-inflammatory responses by regulating IFN-γ, TNF-α, and IL-1β secretion after infection. Additionally, rPRVXJ-delgE/gI/TK-S colonized target intestinal segments infected with PDCoV, stimulated the secretion of cytokines by MLVS in mice, stimulated sIgA secretion in different intestinal segments of mice, and improved mucosal immune function. HE and AB/PAS staining confirmed a more complete intestinal mucosal barrier and a significant increase in goblet cell numbers after immunization. In conclusion, rPRVXJ-delgE/gI/TK-S exhibits good immunogenicity and safety in mice and piglets, making it a promising candidate vaccine for PDCoV.
Collapse
Affiliation(s)
- Bingzhou Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yao Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lishuang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Tong Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhijie Jian
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Siyuan Lai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, 611130, China
| | - Yanru Ai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, 611130, China
| | - Ling Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, 611130, China.
| | - Zhiwen Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, 611130, China
| |
Collapse
|
60
|
Hou W, Wu H, Wang S, Wang W, Wang B, Wang H. Designing a multi-epitope vaccine to control porcine epidemic diarrhea virus infection using immunoinformatics approaches. Front Microbiol 2023; 14:1264612. [PMID: 37779715 PMCID: PMC10538973 DOI: 10.3389/fmicb.2023.1264612] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV), a continuously evolving pathogen, causes severe diarrhea in piglets with high mortality rates. However, current vaccines cannot provide complete protection against PEDV, so vaccine development is still necessary and urgent. Here, with the help of immunoinformatics approaches, we attempted to design a multi-epitope vaccine named rPMEV to prevent and control PEDV infection. The epitopes of rPMEV were constructed by 9 cytotoxic T lymphocyte epitopes (CTLs), 11 helper T lymphocyte epitopes (HTLs), 6 linear B cell epitopes (LBEs), and 4 conformational B cell epitopes (CBEs) based on the S proteins from the four representative PEDV G2 strains. To enhance immunogenicity, porcine β-defensin-2 (PBD-2) was adjoined to the N-terminal of the vaccine as an adjuvant. All of the epitopes and PBD-2 were joined by corresponding linkers and recombined into the multivalent vaccine, which is stable, antigenic, and non-allergenic. Furthermore, we adopted molecular docking and molecular dynamics simulation methods to analyze the interaction of rPMEV with the Toll-like receptor 4 (TLR4): a stable interaction between them created by 13 hydrogen bonds. In addition, the results of the immune simulation showed that rPMEV could stimulate both cellular and humoral immune responses. Finally, to raise the expression efficiency, the sequence of the vaccine protein was cloned into the pET28a (+) vector after the codon optimization. These studies indicate that the designed multi-epitope vaccine has a potential protective effect, providing a theoretical basis for further confirmation of its protective effect against PEDV infection in vitro and in vivo studies.
Collapse
Affiliation(s)
- Wei Hou
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Heqiong Wu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Sibei Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Wenting Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Bin Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
- Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, China
| | - Haidong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| |
Collapse
|
61
|
Wu H, Li C, Sun X, Cheng Y, Chen Z. Identification of a Monoclonal Antibody against Porcine Deltacoronavirus Membrane Protein. Int J Mol Sci 2023; 24:13934. [PMID: 37762237 PMCID: PMC10530725 DOI: 10.3390/ijms241813934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging virus that poses a significant threat to the global swine industry. Its membrane (M) protein is crucial for virion assembly and virus-host interactions. We selected the hydrophilic region of M protein for prokaryotic expression, purification, and recombinant protein production. Utilizing hybridoma technology, we prepared the monoclonal antibody (mAb) 24-A6 against M protein. The mAb 24-A6 was shown to be suitable for use in immunofluorescence assays, western blotting, and immunoprecipitation, with specificity for PDCoV and no cross-reactivity with other five porcine viruses. The M protein was observed to be expressed as early as 3 h after PDCoV infection, increasing its expression over the duration of infection. Notably, the antigenic epitope of the M protein identified as 103SPESRL108 recognized by mAb 24-A6 was found within a conserved structural domain (SWWSFNPETNNL) of the coronavirus M protein, indicating a crucial overlap between a functionally important viral assembly region and a region recognized by the immune system. Our findings provide valuable insights into mAb 24-A6 targeting the antigenic epitope of M protein and may contribute to the development of diagnostic tools for PDCoV infection and fundamental research into the function of PDCoV M protein.
Collapse
Affiliation(s)
- Huiguang Wu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Chen Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xian Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Yue Cheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Zhenhai Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
62
|
Li CQ, Hu LQ, Liu GP, Wang Y, Li T, Chen SX, Yang XL, Ma LX, Zeng JG. A duplex nested RT-PCR method for monitoring porcine epidemic diarrhea virus and porcine delta-coronavirus. BMC Vet Res 2023; 19:151. [PMID: 37684673 PMCID: PMC10486053 DOI: 10.1186/s12917-023-03708-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Porcine epidemic diarrhea virus (PEDV) and porcine delta-coronavirus (PDCoV) are economically important pathogens that cause diarrhea in sows and acute death of newborn piglets. Moreover, the emerging PDCoV was reported to infect children. The current situation is that vaccine prevention has not met expectations, and emergency containment strategies following outbreaks cannot prevent the damages and losses already incurred. Therefore, a more sensitive detection method, that is both convenient and enables accurate and effective sequencing, that will provide early warning of PEDV and PDCoV is necessary. This will enable active, effective, and comprehensive prevention and control, which will possibly reduce disease occurrences. RESULTS Duplex nested RT-PCR (dnRT-PCR) is an ideal method to achieve early warning and monitoring of PEDV and PDCoV diseases, and to additionally investigate any molecular epidemiological characteristics. In this study, two pairs of primers were designed for each virus based upon the highly conserved N protein sequences of both PEDV and PDCoV strains retrieved from the NCBI Genbank. After optimization of the reaction conditions, the dnRT-PCR assay amplified a 749-bp fragment specific to PEDV and a 344-bp fragment specific to PDCoV. Meanwhile, the specificity and sensitivity of the primers and clinical samples were tested to verify and establish this dnRT-PCR method. The limit of detection (LoD)for both PEDV and PDCoV was 10 copies/µL. The results showed that among 251 samples, 1 sample contained PEDV infection, 19 samples contained a PDCoV infection, and 8 samples were infected with both viruses, following the use of dnRT-PCR. Subsequently, the positive samples were sent for sequencing, and the sequencing results confirmed that they were all positive for the viruses detected using dnRT-PCR, and conventional RT-PCR detection was conducted again after the onset of disease. As these results were consistent with previous results, a detection method for PEDV and PDCoV using dnRT-PCR was successfully established. In conclusion, the dnRT-PCR method established in this study was able to detect both PEDV and PDCoV, concomitantly. CONCLUSIONS The duplex nested RT-PCR method represents a convenient, reliable, specific, sensitive and anti-interference technique for detecting PEDV and PDCoV, and can additionally be used to simultaneously determine the molecular epidemiological background.
Collapse
Affiliation(s)
- Chun Qi Li
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Li Qun Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
- Center for Disease Control and Prevention of Xinzhou Distract, Wuhan, China
| | - Guo Ping Liu
- College of Animal Science, Yangtze University, Jingzhou, China.
| | - Yan Wang
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Tong Li
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Shao Xian Chen
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Xiao Lin Yang
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Li Xin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China.
| | - Jian Guo Zeng
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
63
|
Zhao Y, Zhang T, Zhou C, Ma P, Gu K, Li H, Li W, Yang X, Wang H. Development of an RT-PCR-based RspCas13d system to detect porcine deltacoronavirus. Appl Microbiol Biotechnol 2023; 107:5739-5747. [PMID: 37477697 DOI: 10.1007/s00253-023-12690-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/29/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023]
Abstract
Porcine deltacoronavirus (PDCoV) is an enteropathogen that causes diarrhea in piglets and may undergo cross-species transmission. The prevention and control of PDCoV are complicated, and a sensitive, specific, and accessible method of diagnosis would be advantageous. Whereas qPCR is a standard approach for detecting PDCoV, it is not effectively sensitive. In the present study, we report such a strategy using an RT-PCR-based RspCas13d detection system and its efficacy in clinical sample diagnosis. The detection limit of this method was 4 copies/μL and no cross-reaction with other viruses such as the porcine epidemic diarrhea virus, classical swine fever virus, pseudorabies virus, porcine reproductive and respiratory syndrome virus, transmissible gastroenteritis virus and porcine rotavirus. The method was also effective in clinical samples. In summary, we demonstrate that RT-PCR-based RspCas13d detection system is an extremely sensitive and specific nucleic acid-based approach for detecting PDCoV. KEY POINTS: • RspCas13d can be used as a candidate molecular diagnostic tool to diagnose viral genomes. • A novel method is proposed using an RT-PCR-based RspCas13d detection system and its effectiveness in the detection of PDCoV. • The RT-PCR-based RspCas13d detection system has excellent sensitivity and specificity.
Collapse
Affiliation(s)
- Yu Zhao
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Tiejun Zhang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Changyu Zhou
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Peng Ma
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Kui Gu
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Hao Li
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Wenjing Li
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Xin Yang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Hongning Wang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
64
|
Wang GL, Li LB, Chen JJ, Wang QC, Ye RZ, Li LM, Zhu KL, Jiang WG, Tian S, Fang LQ. Emergence of a Novel Genotype of Pigeon Deltacoronavirus Closely Related to Porcine Deltacoronavirus HKU15 and Sparrow Deltacoronavirus HKU17 in a Live Poultry Market in Shandong Province, China. Microbiol Spectr 2023; 11:e0055623. [PMID: 37382540 PMCID: PMC10433798 DOI: 10.1128/spectrum.00556-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023] Open
Affiliation(s)
- Guo-Lin Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Li-Bo Li
- Jining Center for Disease Control and Prevention, Jining, China
| | - Jin-Jin Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Qing-Chuan Wang
- Jining Municipal Government Hospital Department, Jining, China
| | - Run-Ze Ye
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Li-Ming Li
- Jining Center for Disease Control and Prevention, Jining, China
| | - Ka-Li Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Wen-Guo Jiang
- Jining Center for Disease Control and Prevention, Jining, China
| | - Shen Tian
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Li-Qun Fang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
65
|
Lazov CM, Papetti A, Belsham GJ, Bøtner A, Rasmussen TB, Boniotti MB. Multiplex Real-Time RT-PCR Assays for Detection and Differentiation of Porcine Enteric Coronaviruses. Pathogens 2023; 12:1040. [PMID: 37624000 PMCID: PMC10457881 DOI: 10.3390/pathogens12081040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023] Open
Abstract
It is important to be able to detect and differentiate between distinct porcine enteric coronaviruses that can cause similar diseases. However, the existence of naturally occurring recombinant coronaviruses such as swine enteric coronavirus (SeCoV) can give misleading results with currently used diagnostic methods. Therefore, we have developed and validated three duplex real-time quantitative RT-PCR assays for the simultaneous detection of, and differentiation between, porcine epidemic diarrhea virus (PEDV) and SeCoV. Transmissible gastroenteritis virus (TGEV) is also detected by two out of these three assays. In addition, a novel triplex assay was set up that was able to detect and differentiate between these alphacoronaviruses and the porcine deltacoronavirus (PDCoV). The validated assays have low limits of detection, close to 100% efficiency, and were able to correctly identify the presence of PEDV and SeCoV in 55 field samples, whereas 20 samples of other pathogens did not give a positive result. Implementing one or more of these multiplex assays into the routine diagnostic surveillance for PEDV will ensure that the presence of SeCoV, TGEV, and PDCoV will not go unnoticed.
Collapse
Affiliation(s)
- Christina M. Lazov
- DTU Institute of Bioengineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark;
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna, IZSLER, Reparto Tecnologie Biologiche Applicate, Via Bianchi, 9, 25124 Brescia, Italy
- Department of Veterinary and Animal Sciences, University of Copenhagen, 4 Stigboejlen, 1870 Frederiksberg, Denmark
| | - Alice Papetti
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna, IZSLER, Reparto Tecnologie Biologiche Applicate, Via Bianchi, 9, 25124 Brescia, Italy
| | - Graham J. Belsham
- Department of Veterinary and Animal Sciences, University of Copenhagen, 4 Stigboejlen, 1870 Frederiksberg, Denmark
| | - Anette Bøtner
- Department of Veterinary and Animal Sciences, University of Copenhagen, 4 Stigboejlen, 1870 Frederiksberg, Denmark
| | - Thomas Bruun Rasmussen
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, 5 Artillerivej, 2300 Copenhagen, Denmark
| | - Maria Beatrice Boniotti
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna, IZSLER, Reparto Tecnologie Biologiche Applicate, Via Bianchi, 9, 25124 Brescia, Italy
| |
Collapse
|
66
|
Sun J, Zhang Q, Zhang C, Liu Z, Zhang J. Epidemiology of porcine deltacoronavirus among Chinese pig populations in China: systematic review and meta-analysis. Front Vet Sci 2023; 10:1198593. [PMID: 37483295 PMCID: PMC10361067 DOI: 10.3389/fvets.2023.1198593] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 05/31/2023] [Indexed: 07/25/2023] Open
Abstract
Porcine deltacoronavirus (PDCoV) is a newly emerging and important porcine enteropathogenic coronavirus that seriously threatens the swine industry in China and worldwide. We conducted a systematic review and meta-analysis to access the prevalence of PDCoV infection in pig population from mainland China. Electronic databases were reviewed for PDCoV infection in pig population, and meta-analysis was performed to calculate the overall estimated prevalence using random-effect models. Thirty-nine studies were included (including data from 31,015 pigs). The overall estimated prevalence of PDCoV infection in pigs in China was 12.2% [95% confidence interval (CI), 10.2-14.2%], and that in Central China was 24.5% (95%CI, 16.1-32.9%), which was higher than those in other regions. During 2014-2021, the estimated prevalence of PDCoV infection was the highest in 2015 at 20.5% (95%CI, 10.1-31.0%) and the lowest in 2021 at 4.8% (95%CI, 2.3-7.3%). The prevalence of PDCoV infection in sows was 23.6% (95%CI, 15.8-31.4%), which was higher than those in suckling piglets, nursery piglets, and finishing pigs. The prevalence of PDCoV infection was significantly associated with sampling region, sampling year, pig stage, and clinical signs (diarrhea). This study systematically evaluated the epidemiology of PDCoV infection in Chinese pig population. The findings provide us with a comprehensive understanding of PDCoV infection and are beneficial for establishing new controlling strategies worldwide.
Collapse
Affiliation(s)
- Junying Sun
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Qin Zhang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Chunhong Zhang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Zhicheng Liu
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Jianfeng Zhang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| |
Collapse
|
67
|
Puente H, Arguello H, Cortey M, Gómez-García M, Mencía-Ares O, Pérez-Perez L, Díaz I, Carvajal A. Detection and genetic characterization of enteric viruses in diarrhoea outbreaks from swine farms in Spain. Porcine Health Manag 2023; 9:29. [PMID: 37349807 DOI: 10.1186/s40813-023-00326-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/18/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND The aim of this work was to study the prevalence and distribution of Porcine astrovirus (PAstV), Porcine kobuvirus (PKoV), Porcine torovirus (PToV), Mammalian orthoreovirus (MRV) and Porcine mastadenovirus (PAdV) as well as their association with widely recognized virus that cause diarrhoea in swine such as coronavirus (CoVs) and rotavirus (RVs) in diarrhoea outbreaks from Spanish swine farms. Furthermore, a selection of the viral strains was genetically characterized. RESULTS PAstV, PKoV, PToV, MRV and PAdV were frequently detected. Particularly, PAstV and PKoV were detected in almost 50% and 30% of the investigated farms, respectively, with an age-dependent distribution; PAstV was mainly detected in postweaning and fattening pigs, while PKoV was more frequent in sucking piglets. Viral co-infections were detected in almost half of the outbreaks, combining CoVs, RVs and the viruses studied, with a maximum of 5 different viral species reported in three investigated farms. Using a next generation sequencing approach, we obtained a total of 24 ARN viral genomes (> 90% genome sequence), characterizing for first time the full genome of circulating strains of PAstV2, PAstV4, PAstV5 and PToV on Spanish farms. Phylogenetic analyses showed that PAstV, PKoV and PToV from Spanish swine farms clustered together with isolates of the same viral species from neighboring pig producing countries. CONCLUSIONS Although further studies to evaluate the role of these enteric viruses in diarrhoea outbreaks are required, their wide distribution and frequent association in co-infections cannot be disregard. Hence, their inclusion into routine diagnostic panels for diarrhoea in swine should be considered.
Collapse
Affiliation(s)
- Héctor Puente
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain.
| | - Héctor Arguello
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
- INDEGSAL, Universidad de León, León, Spain
| | - Martí Cortey
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Manuel Gómez-García
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Oscar Mencía-Ares
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Lucía Pérez-Perez
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Ivan Díaz
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain
- Unitat Mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain
- WOAH Reference Laboratory for Classical Swine Fever, IRTA-CReSA, Bellaterra, Spain
| | - Ana Carvajal
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
- INDEGSAL, Universidad de León, León, Spain
| |
Collapse
|
68
|
Srinivas K, Gagana Sri R, Pravallika K, Nishitha K, Polamuri SR. COVID-19 prediction based on hybrid Inception V3 with VGG16 using chest X-ray images. MULTIMEDIA TOOLS AND APPLICATIONS 2023:1-18. [PMID: 37362699 PMCID: PMC10240113 DOI: 10.1007/s11042-023-15903-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 06/28/2023]
Abstract
The Corona Virus was first started in the Wuhan city, China in December of 2019. It belongs to the Coronaviridae family, which can infect both animals and humans. The diagnosis of coronavirus disease-2019 (COVID-19) is typically detected by Serology, Genetic Real-Time reverse transcription-Polymerase Chain Reaction (RT-PCR), and Antigen testing. These testing methods have limitations like limited sensitivity, high cost, and long turn-around time. It is necessary to develop an automatic detection system for COVID-19 prediction. Chest X-ray is a lower-cost process in comparison to chest Computed tomography (CT). Deep learning is the best fruitful technique of machine learning, which provides useful investigation for learning and screening a large amount of chest X-ray images with COVID-19 and normal. There are many deep learning methods for prediction, but these methods have a few limitations like overfitting, misclassification, and false predictions for poor-quality chest X-rays. In order to overcome these limitations, the novel hybrid model called "Inception V3 with VGG16 (Visual Geometry Group)" is proposed for the prediction of COVID-19 using chest X-rays. It is a combination of two deep learning models, Inception V3 and VGG16 (IV3-VGG). To build the hybrid model, collected 243 images from the COVID-19 Radiography Database. Out of 243 X-rays, 121 are COVID-19 positive and 122 are normal images. The hybrid model is divided into two modules namely pre-processing and the IV3-VGG. In the dataset, some of the images with different sizes and different color intensities are identified and pre-processed. The second module i.e., IV3-VGG consists of four blocks. The first block is considered for VGG-16 and blocks 2 and 3 are considered for Inception V3 networks and final block 4 consists of four layers namely Avg pooling, dropout, fully connected, and Softmax layers. The experimental results show that the IV3-VGG model achieves the highest accuracy of 98% compared to the existing five prominent deep learning models such as Inception V3, VGG16, ResNet50, DenseNet121, and MobileNet.
Collapse
Affiliation(s)
- K. Srinivas
- Department of CSE, VR Siddhartha Engineering College, Vijayawada, 520007 India
| | - R. Gagana Sri
- Department of CSE, VR Siddhartha Engineering College, Vijayawada, 520007 India
| | - K. Pravallika
- Department of CSE, Sir C. R. Reddy Engineering College, Eluru, 534007 India
| | - K. Nishitha
- Department of CSE, VR Siddhartha Engineering College, Vijayawada, 520007 India
| | - Subba Rao Polamuri
- Department of CSE, Bonam Venkata Chalamayya Engineering College (Autonomous), Odalarevu, 533210 India
| |
Collapse
|
69
|
Kim HR, Park J, Lee KK, Jeoung HY, Lyoo YS, Park SC, Park CK. Genetic Characterization and Evolution of Porcine Deltacoronavirus Isolated in the Republic of Korea in 2022. Pathogens 2023; 12:pathogens12050686. [PMID: 37242356 DOI: 10.3390/pathogens12050686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging coronavirus that causes diarrhea in nursing piglets. Since its first outbreak in the United States in 2014, this novel porcine coronavirus has been detected worldwide, including in Korea. However, no PDCoV case has been reported since the last report in 2016 in Korea. In June 2022, the Korean PDCoV strain KPDCoV-2201 was detected on a farm where sows and piglets had black tarry and watery diarrhea, respectively. We isolated the KPDCoV-2201 strain from the intestinal samples of piglets and sequenced the viral genome. Genetically, the full-length genome and spike gene of KPDCoV-2201 shared 96.9-99.2% and 95.8-98.8% nucleotide identity with other global PDCoV strains, respectively. Phylogenetic analysis suggested that KPDCoV-2201 belongs to G1b. Notably, the molecular evolutionary analysis indicated that KPDCoV-2201 evolved from a clade different from that of previously reported Korean PDCoV strains and is closely related to the emergent Peruvian and Taiwanese PDCoV strains. Furthermore, KPDCoV-2201 had one unique and two Taiwanese strain-like amino acid substitutions in the receptor-binding domain of the S1 region. Our findings suggest the possibility of transboundary transmission of the virus and expand our knowledge about the genetic diversity and evolution of PDCoV in Korea.
Collapse
Affiliation(s)
- Hye-Ryung Kim
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu 41566, Republic of Korea
- DIVA Bio Incorporation, Daegu 41519, Republic of Korea
| | - Jonghyun Park
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu 41566, Republic of Korea
- DIVA Bio Incorporation, Daegu 41519, Republic of Korea
| | - Kyoung-Ki Lee
- Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea
| | - Hye-Young Jeoung
- Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea
| | - Young S Lyoo
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Seung-Chun Park
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu 41566, Republic of Korea
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine and Cardiovascular Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Choi-Kyu Park
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
70
|
Liu Y, Han X, Qiao Y, Wang T, Yao L. Porcine Deltacoronavirus-like Particles Produced by a Single Recombinant Baculovirus Elicit Virus-Specific Immune Responses in Mice. Viruses 2023; 15:v15051095. [PMID: 37243181 DOI: 10.3390/v15051095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Porcine deltacoronavirus (PDCoV) causes diarrhea and vomiting in neonatal piglets worldwide and has the potential for cross-species transmission. Therefore, virus-like particles (VLPs) are promising vaccine candidates because of their safety and strong immunogenicity. To the best of our knowledge, the present study reported for the first time the generation of PDCoV VLPs using a baculovirus expression vector system, and electron micrograph analyses revealed that PDCoV VLPs appeared as spherical particles with a diameter similar to that of the native virions. Furthermore, PDCoV VLPs effectively induced mice to produce PDCoV-specific IgG and neutralizing antibodies. In addition, VLPs could stimulate mouse splenocytes to produce high levels of cytokines IL-4 and IFN-γ. Moreover, the combination of PDCoV VLPs and Freund's adjuvant could improve the level of the immune response. Together, these data showed that PDCoV VLPs could effectively elicit humoral and cellular immunity in mice, laying a solid foundation for developing VLP-based vaccines to prevent PDCoV infections.
Collapse
Affiliation(s)
- Yangkun Liu
- Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Xueying Han
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| | - Yaqi Qiao
- College of Veterinary Medicine and Engineering, Nanyang Vocational College of Agriculture, Nanyang 473061, China
| | - Tiejun Wang
- College of Veterinary Medicine and Engineering, Nanyang Vocational College of Agriculture, Nanyang 473061, China
| | - Lunguang Yao
- Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, China
| |
Collapse
|
71
|
Xia S, Xiao W, Zhu X, Liao S, Guo J, Zhou J, Xiao S, Fang P, Fang L. Porcine deltacoronavirus resists antibody neutralization through cell-to-cell transmission. Emerg Microbes Infect 2023; 12:2207688. [PMID: 37125733 DOI: 10.1080/22221751.2023.2207688] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging enteric coronavirus that has been reported to infect a variety of animals and even humans. Cell-cell fusion has been identified as an alternative pathway for the cell-to-cell transmission of certain viruses, but the ability of PDCoV to exploit this transmission model, and the relevant mechanisms, have not been fully elucidated. Herein, we provide evidence that cell-to-cell transmission is the main mechanism supporting PDCoV spread in cell culture and that this efficient spread model is mediated by spike glycoprotein-driven cell-cell fusion. We found that PDCoV efficiently spread to non-susceptible cells via cell-to-cell transmission, and demonstrated that functional receptor porcine aminopeptidase N and cathepsins in endosomes are involved in the cell-to-cell transmission of PDCoV. Most importantly, compared with non-cell-to-cell infection, the cell-to-cell transmission of PDCoV was resistant to neutralizing antibodies and immune sera that potently neutralized free viruses. Taken together, our study revealed key characteristics of the cell-to-cell transmission of PDCoV and provided new insights into the mechanism of PDCoV infection.
Collapse
Affiliation(s)
- Sijin Xia
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Wenwen Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Xuerui Zhu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shusen Liao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Jiahui Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Junwei Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Puxian Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| |
Collapse
|
72
|
Wang Z, Qu K, Li J, Wang Y, Wang L, Yu Y. Prevalence and potential risk factors of PDCoV in pigs based on publications during 2015-2021 in China: Comprehensive literature review and meta-analysis. Microb Pathog 2023; 179:106118. [PMID: 37062492 DOI: 10.1016/j.micpath.2023.106118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/18/2023]
Abstract
Porcine deltacoronavirus (PDCoV), a novel coronavirus which infects pigs, spreading around the world and causing huge economic losses. In recent years, there have also been human cases of PDCoV infection, which poses a potential threat to public health. Therefore, we conducted a systematic review and meta-analysis to assess the prevalence of PDCoV in pigs in China between 2015 and 2021. The prevalence of PDCoV in China was searched from five databases (CNKI, VIP, WanFang, PubMed and ScienceDirect) and 65 articles met the inclusion criteria, with a total of 25,977 samples, including 3828 positive cases. The overall prevalence of PDCoV was 13.61% (3828/25,977), with the highest prevalence in northern China (19.18%) and the lowest prevalence in southwest China (7.19%). We also analyzed other subgroup information, such as sampling years, test methods, age and geographic factors. The results show that PDCoV is endemic in China and climate may be a potential risk factor for PDCoV infection. It is suggested that appropriate measures should be taken in different climatic areas to reduce local PDCoV infection.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Immunology, College of Basic Medical Sciences, Norman Bethune Health Science Center, Jilin University, Changchun, Jilin Province, 130021, PR China; Department of Molecular Biology, College of Basic Medical Sciences and Institute of Pediatrics, First Hospital of Jilin University, Norman Bethune Health Science Center, Jilin University, Changchun, Jilin Province, 130021, PR China
| | - Kuo Qu
- Department of Molecular Biology, College of Basic Medical Sciences and Institute of Pediatrics, First Hospital of Jilin University, Norman Bethune Health Science Center, Jilin University, Changchun, Jilin Province, 130021, PR China
| | - Jianhua Li
- Department of Molecular Biology, College of Basic Medical Sciences and Institute of Pediatrics, First Hospital of Jilin University, Norman Bethune Health Science Center, Jilin University, Changchun, Jilin Province, 130021, PR China
| | - Yangyang Wang
- Department of Molecular Biology, College of Basic Medical Sciences and Institute of Pediatrics, First Hospital of Jilin University, Norman Bethune Health Science Center, Jilin University, Changchun, Jilin Province, 130021, PR China
| | - Liying Wang
- Department of Molecular Biology, College of Basic Medical Sciences and Institute of Pediatrics, First Hospital of Jilin University, Norman Bethune Health Science Center, Jilin University, Changchun, Jilin Province, 130021, PR China.
| | - Yongli Yu
- Department of Immunology, College of Basic Medical Sciences, Norman Bethune Health Science Center, Jilin University, Changchun, Jilin Province, 130021, PR China.
| |
Collapse
|
73
|
Sun W, Shi Z, Wang P, Zhao B, Li J, Wei X, Wei L, Wang J. Metavirome Analysis Reveals a High Prevalence of Porcine Hemagglutination Encephalomyelitis Virus in Clinically Healthy Pigs in China. Pathogens 2023; 12:pathogens12040510. [PMID: 37111396 PMCID: PMC10144687 DOI: 10.3390/pathogens12040510] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/11/2023] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
Six swine coronaviruses (SCoVs), which include porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), porcine hemagglutination encephalomyelitis virus (PHEV), porcine respiratory coronavirus (PRCV), swine acute diarrhea syndrome coronavirus (SADS-CoV), and porcine delta coronavirus (PDCoV), have been reported as infecting and causing serious diseases in pigs. To investigate the genetic diversity and spatial distribution of SCoVs in clinically healthy pigs in China, we collected 6400 nasal swabs and 1245 serum samples from clinically healthy pigs at slaughterhouses in 13 provinces in 2017 and pooled them into 17 libraries by type and region for next-generation sequencing (NGS) and metavirome analyses. In total, we identified five species of SCoVs, including PEDV, PDCoV, PHEV, PRCV, and TGEV. Strikingly, PHEV was detected from all the samples in high abundance and its genome sequences accounted for 75.28% of all coronaviruses, while those belonging to TGEV (including PRCV), PEDV, and PDCoV were 20.4%, 2.66%, and 2.37%, respectively. The phylogenetic analysis showed that two lineages of PHEV have been circulating in pig populations in China. We also recognized two PRCVs which lack 672 nucleotides at the N-terminus of the S gene compared with that of TGEV. Together, we disclose preliminarily the genetic diversities of SCoVs in clinically healthy pigs in China and provide new insights into two SCoVs, PHEV and PRCV, that have been somewhat overlooked in previous studies in China.
Collapse
Affiliation(s)
- Weiyao Sun
- State Key Laboratory for Animal Disease Control and Prevention & National Data Center for Animal Infectious Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Zhibin Shi
- State Key Laboratory for Animal Disease Control and Prevention & National Data Center for Animal Infectious Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Pengfei Wang
- State Key Laboratory for Animal Disease Control and Prevention & National Data Center for Animal Infectious Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Bingbing Zhao
- State Key Laboratory for Animal Disease Control and Prevention & National Data Center for Animal Infectious Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Jiaqi Li
- State Key Laboratory for Animal Disease Control and Prevention & National Data Center for Animal Infectious Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xinyu Wei
- State Key Laboratory for Animal Disease Control and Prevention & National Data Center for Animal Infectious Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Lili Wei
- State Key Laboratory for Animal Disease Control and Prevention & National Data Center for Animal Infectious Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Jingfei Wang
- State Key Laboratory for Animal Disease Control and Prevention & National Data Center for Animal Infectious Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| |
Collapse
|
74
|
Li Y, Niu JW, Zhou X, Chu PP, Zhang KL, Gou HC, Yang DX, Zhang JF, Li CL, Liao M, Zhai SL. Development of a multiplex qRT-PCR assay for the detection of porcine epidemic diarrhea virus, porcine transmissible gastroenteritis virus and porcine Deltacoronavirus. Front Vet Sci 2023; 10:1158585. [PMID: 37008344 PMCID: PMC10060962 DOI: 10.3389/fvets.2023.1158585] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
Currently, porcine coronaviruses are prevalent in pigs, and due to the outbreak of COVID-19, porcine coronaviruses have become a research hotspot. porcine epidemic diarrhea virus (PEDV), Transmissible Gastroenteritis Virus (TGEV), and Porcine Deltacoronavirus (PDCoV) mentioned in this study mainly cause diarrhea in pigs. These viruses cause significant economic losses and pose a potential public health threat. In this study, specific primers and probes were designed according to the M gene of PEDV, the S gene of TGEV, and the M gene of PDCoV, respectively, and TaqMan probe-based multiplex real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was developed for the simultaneous detection of PEDV, TGEV, and PDCoV. This method has high sensitivity and specificity, and the detection limit of each virus can reach 2.95 × 100 copies/μl. An assay of 160 clinical samples from pigs with diarrhea showed that the positive rates of PEDV, TGEV, and PDCoV were 38.13, 1.88, and 5.00%; the coinfection rates of PEDV+TGEV, PEDV+PDCoV, TGEV+PDCoV, PEDV+TGEV+PDCoV were 1.25, 1.25, 0, 0.63%, respectively. The positive coincidence rates of the multiplex qRT-PCR and single-reaction qRT-PCR were 100%. This method is of great significance for clinical monitoring of the porcine enteric diarrhea virus and helps reduce the loss of the breeding industry and control the spread of the disease.
Collapse
Affiliation(s)
- Yan Li
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Institute of Animal Health Guangdong Academy of Agricultural Sciences, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, Guangdong, China
| | - Jia-Wei Niu
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Institute of Animal Health Guangdong Academy of Agricultural Sciences, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, Guangdong, China
| | - Xia Zhou
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Institute of Animal Health Guangdong Academy of Agricultural Sciences, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, Guangdong, China
| | - Pin-Pin Chu
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Institute of Animal Health Guangdong Academy of Agricultural Sciences, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, Guangdong, China
| | - Kun-Li Zhang
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Institute of Animal Health Guangdong Academy of Agricultural Sciences, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, Guangdong, China
| | - Hong-Chao Gou
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Institute of Animal Health Guangdong Academy of Agricultural Sciences, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, Guangdong, China
| | - Dong-Xia Yang
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Institute of Animal Health Guangdong Academy of Agricultural Sciences, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, Guangdong, China
| | - Jian-Feng Zhang
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Institute of Animal Health Guangdong Academy of Agricultural Sciences, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, Guangdong, China
| | - Chun-Ling Li
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Institute of Animal Health Guangdong Academy of Agricultural Sciences, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, Guangdong, China
| | - Ming Liao
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Institute of Animal Health Guangdong Academy of Agricultural Sciences, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, Guangdong, China
- Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Maoming, China
| | - Shao-Lun Zhai
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Institute of Animal Health Guangdong Academy of Agricultural Sciences, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, Guangdong, China
| |
Collapse
|
75
|
Kwon T, Gaudreault NN, Cool K, McDowell CD, Morozov I, Richt JA. Stability of SARS-CoV-2 in Biological Fluids of Animals. Viruses 2023; 15:v15030761. [PMID: 36992470 PMCID: PMC10058514 DOI: 10.3390/v15030761] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Since its first emergence in 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has continued to evolve genetically, jump species barriers, and expand its host range. There is growing evidence of interspecies transmission including infection of domestic animals and widespread circulation in wildlife. However, knowledge of SARS-CoV-2 stability in animal biological fluids and their role in transmission is still limited as previous studies focused on human biological fluids. Therefore, this study aimed to determine the SARS-CoV-2 stability in biological fluids from three animal species, cats, sheep and white-tailed deer (WTD). Saliva, feces, 10% fecal suspensions, and urine of cats, sheep, and WTD were mixed with a known concentration of virus and incubated under indoor and three different climatic conditions. Our results show that the virus was stable for up to 1 day in the saliva of cats, sheep, and WTD regardless of the environmental conditions. The virus remained infectious for up to 6 days in feces and 15 days in fecal suspension of WTD, whereas the virus was rather unstable in cat and sheep feces and fecal suspensions. We found the longest survival of SARS-CoV-2 in the urine of cats, sheep, and WTD. Furthermore, side-by-side comparison with different SARS-CoV-2 strains showed that the Alpha, Delta, and Omicron variants of concern were less stable than the ancestral Wuhan-like strain in WTD fecal suspension. The results of our study provide valuable information for assessing the potential role of various animal biological fluids in SARS-CoV-2 transmission.
Collapse
|
76
|
Lu SJ, Ma MY, Yan XG, Zhao FJ, Hu WY, Ding QW, Ren HJ, Xiang YQ, Zheng LL. Development and application of a low-priced duplex quantitative PCR assay based on SYBR Green I for the simultaneous detection of porcine deltacoronavirus and porcine sapelovirus. VET MED-CZECH 2023; 68:106-115. [PMID: 37981902 PMCID: PMC10581527 DOI: 10.17221/79/2022-vetmed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 02/15/2023] [Indexed: 11/21/2023] Open
Abstract
Porcine deltacoronavirus (PDCoV) and porcine sapelovirus (PSV) are two viruses that can cause diarrhoea in pigs and bring great economic loss to the pig industry. In this research, a duplex real-time quantitative polymerase chain reaction (qPCR) assay based on SYBR Green I was developed to simultaneously detect PDCoV and PSV. No specific melting peaks were found in other porcine diarrhoea-associated viruses, indicating that the method developed in this study had good specificity. The detection limits of PDCoV and PSV were 1.0 × 101 copies μl-1 and 1.0 × 102 copies μl-1, respectively. The duplex real-time qPCR assay tested two hundred and three (203) intestinal and faecal samples collected from diarrhoeal and asymptomatic pigs. The positive rates of PDCoV and PSV were 20.2% and 23.2%, respectively. The co-infection rate of PDCoV and PSV was 13.8%. To evaluate the accuracy of the developed method, conventional PCR and singular TaqMan real-time qPCR assays for PDCoV/PSV were also used to detect the samples. The results showed that the duplex real-time qPCR assay was consistent with the singular assays, but its sensitivity was higher than conventional PCR methods. This duplex real-time qPCR assay provides a rapid, sensitive and reliable method in a clinic to simultaneously detect PDCoV and PSV.
Collapse
Affiliation(s)
- Si-Jia Lu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, P.R. China
| | - Meng-Yao Ma
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, P.R. China
| | - Xiao-Guang Yan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, P.R. China
| | - Fu-Jie Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, P.R. China
| | - Wen-Yang Hu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, P.R. China
| | - Qing-Wen Ding
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, P.R. China
| | - Hao-Jie Ren
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, P.R. China
| | - Yu-Qiang Xiang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, P.R. China
| | - Lan-Lan Zheng
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, P.R. China
| |
Collapse
|
77
|
Wang L. Diagnostics for Viral Pathogens in Veterinary Diagnostic Laboratories. Vet Clin North Am Food Anim Pract 2023; 39:129-140. [PMID: 36731993 DOI: 10.1016/j.cvfa.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Laboratory testing is one part of clinical diagnosis, and quick and reliable testing results provide important data to support treatment decision and develop control strategies. Clinical viral testing has been shifting from traditional virus isolation and electron microscopy to molecular polymerase chain reaction and point-of-care antigen tests. This shift in diagnostic methodology also means change from looking for infectious virions or viral particles to hunting viral antigens and genomes. With technological development, it is predicted that metagenomic sequencing will be commonly used in veterinary clinical diagnosis for unveiling the whole picture of microbes involved in diseases in the future.
Collapse
Affiliation(s)
- Leyi Wang
- Department of Veterinary Clinical Medicine, Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, VMBSB Room 1222A, Urbana, IL 61802, USA.
| |
Collapse
|
78
|
Liang QZ, Wang B, Ji CM, Hu F, Qin P, Feng Y, Tang YD, Huang YW. Chicken or Porcine Aminopeptidase N Mediates Cellular Entry of Pseudoviruses Carrying Spike Glycoprotein from the Avian Deltacoronaviruses HKU11, HKU13, and HKU17. J Virol 2023; 97:e0194722. [PMID: 36656013 PMCID: PMC9973037 DOI: 10.1128/jvi.01947-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 01/20/2023] Open
Abstract
Members of deltacoronavirus (DCoV) have mostly been identified in diverse avian species as natural reservoirs, though the porcine DCoV (PDCoV) is a major swine enteropathogenic virus with global spread. The important role of aminopeptidase N (APN) orthologues from various mammalian and avian species in PDCoV cellular entry and interspecies transmission has been revealed recently. In this study, comparative analysis indicated that three avian DCoVs, bulbul DCoV HKU11, munia DCoV HKU13, and sparrow DCoV HKU17 (Chinese strain), and PDCoV in the subgenera Buldecovirus are grouped together at whole-genome levels; however, the spike (S) glycoprotein and its S1 subunit of HKU17 are more closely related to night heron DCoV HKU19 in Herdecovirus. Nevertheless, the S1 protein of HKU11, HKU13, or HKU17 bound to or interacted with chicken APN (chAPN) or porcine APN (pAPN) by flow cytometry analysis of cell surface expression of APN and by coimmunoprecipitation in APN-overexpressing cells. Expression of chAPN or pAPN allowed entry of pseudotyped lentiviruses with the S proteins from HKU11, HKU13 and HKU17 into nonsusceptible cells and natural avian and porcine cells, which could be inhibited by the antibody against APN or anti-PDCoV-S1. APN knockdown by siRNA or knockout by CRISPR/Cas9 in chicken or swine cell lines significantly or almost completely blocked infection of these pseudoviruses. Hence, we demonstrate that HKU11, HKU13, and HKU17 with divergent S genes likely engage chAPN or pAPN to enter the cells, suggesting a potential interspecies transmission from wild birds to poultry and from birds to mammals by certain avian DCoVs. IMPORTANCE The receptor usage of avian deltacoronaviruses (DCoVs) has not been investigated thus far, though porcine deltacoronavirus (PDCoV) has been shown to utilize aminopeptidase N (APN) as a cell receptor. We report here that chicken or porcine APN also mediates cellular entry by three avian DCoV (HKU11, HKU13, and HKU17) spike pseudoviruses, and the S1 subunit of three avian DCoVs binds to APN in vitro and in the surface of avian and porcine cells. The results fill the gaps in knowledge about the avian DCoV receptor and elucidate important insights for the monitoring and prevention of potential interspecies transmission of certain avian DCoVs. In view of the diversity of DCoVs, whether this coronavirus genus will cause novel virus to emerge in other mammals from birds, are worthy of further surveillance and investigation.
Collapse
Affiliation(s)
- Qi-Zhang Liang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Bin Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Chun-Miao Ji
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Feifan Hu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Pan Qin
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Yaoyu Feng
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yan-Dong Tang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yao-Wei Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
79
|
Detection of Porcine Deltacoronavirus RNA in the Upper and Lower Respiratory Tract and Biliary Fluid and the Effect of Infection on Serum Cholesterol Levels and Blood T Cell Population Frequencies in Gnotobiotic Piglets. Vet Sci 2023; 10:vetsci10020117. [PMID: 36851421 PMCID: PMC9962660 DOI: 10.3390/vetsci10020117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
Porcine deltacoronavirus (PDCoV) was first identified approximately a decade ago, but much is still obscure in terms of its pathogenesis. We aimed to further characterize PDCoV infection by investigating the presence of virus in respiratory and biliary tissues or fluids; T cell population frequencies in blood; and altered serum cholesterol levels. Twelve, 6-day-old, gnotobiotic piglets were inoculated oronasally with PDCoV OH-FD22 (2.6 × 107 FFU/pig). Six control piglets were not inoculated. Rectal swab (RS), nasal swab (NS), nasal wash (NW), bronchoalveolar lavage (BAL), and biliary fluid (BF) samples were collected at 2, 4, and 7 days post-inoculation (DPI) and tested for PDCoV RNA by RT-qPCR. Blood T cell populations and serum cholesterol levels were determined by flow cytometry and a colorimetric assay, respectively. Moderate to high, and low to moderate titers of PDCoV RNA were detected in RS and in NS, NW, BAL, and BF samples, respectively, of inoculated piglets. There were trends toward decreased CD4+CD8-, CD4-CD8+, and CD4+CD8+ blood T cell frequencies in inoculated piglets. Furthermore, serum cholesterol levels were increased in inoculated piglets. Overall, we found that PDCoV infection does not exclusively involve the intestine, since the respiratory and biliary systems and cholesterol metabolism also can be affected.
Collapse
|
80
|
He W, Shi X, Guan H, Zou Y, Zhang S, Jiang Z, Su S. Identification of a novel linear B-cell epitope in porcine deltacoronavirus nucleocapsid protein. Appl Microbiol Biotechnol 2023; 107:651-661. [PMID: 36602561 PMCID: PMC9813470 DOI: 10.1007/s00253-022-12348-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/29/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023]
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging swine enteropathogenic coronavirus that caused diarrhea and/or vomiting in neonatal piglets worldwide. Coronaviruses nucleocapsid (N) protein is the most conserved structural protein for viral replication and possesses good antigenicity. In this study, three monoclonal antibodies (mAbs), 3B4, 4D3, and 4E3 identified as subclass IgG2aκ were prepared using the lymphocytic hybridoma technology against PDCoV N protein. Furthermore, the B-cell epitope recognized by mAb 4D3 was mapped by dozens of overlapping truncated recombinant proteins based on the western blotting. The polypeptide 28QFRGNGVPLNSAIKPVE44 (EP-4D3) in the N-terminal of PDCoV N protein was identified as the minimal linear epitope for binding mAb 4D3. And the EP-4D3 epitope's amino acid sequence homology study revealed that PDCoV strains are substantially conserved, with the exception of the Alanine43 substitution Valine43 in the China lineage, the Early China lineage, and the Thailand, Vietnam, and Laos lineage. The epitope sequences shared high similarity (94.1%) with porcine coronavirus HKU15-155 (PorCoV HKU15), Asian leopard cats coronavirus (ALCCoV), sparrow coronavirus HKU17 (SpCoV HKU17), and sparrow deltacoronavirus. In contrast, the epitope sequences shared a very low homology (11.8 to 29.4%) with other porcine CoVs (PEDV, TGEV, PRCV, SADS-CoV, PHEV). Overall, the study will enrich the biological function of PDCoV N protein and provide foundational data for further development of diagnostic applications. KEY POINTS: • Three monoclonal antibodies against PDCoV N protein were prepared. • Discovery of a novel B-cell liner epitope (28QFRGNGVPLNSAIKPVE44) of PDCoV N protein. • The epitope EP-4D3 was conserved among PDCoV strains.
Collapse
Affiliation(s)
- Wei He
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Sanya Institute of Nanjing Agricultural University, Sanya, China
| | - Xinze Shi
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haifei Guan
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuntong Zou
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shengkun Zhang
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhiwen Jiang
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuo Su
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
- Sanya Institute of Nanjing Agricultural University, Sanya, China.
| |
Collapse
|
81
|
Chen Y, Zhang Y, Wang X, Zhou J, Ma L, Li J, Yang L, Ouyang H, Yuan H, Pang D. Transmissible Gastroenteritis Virus: An Update Review and Perspective. Viruses 2023; 15:v15020359. [PMID: 36851573 PMCID: PMC9958687 DOI: 10.3390/v15020359] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 01/29/2023] Open
Abstract
Transmissible gastroenteritis virus (TGEV) is a member of the alphacoronavirus genus, which has caused huge threats and losses to pig husbandry with a 100% mortality in infected piglets. TGEV is observed to be recombining and evolving unstoppably in recent years, with some of these recombinant strains spreading across species, which makes the detection and prevention of TGEV more complex. This paper reviews and discusses the basic biological properties of TGEV, factors affecting virulence, viral receptors, and the latest research advances in TGEV infection-induced apoptosis and autophagy to improve understanding of the current status of TGEV and related research processes. We also highlight a possible risk of TGEV being zoonotic, which could be evidenced by the detection of CCoV-HuPn-2018 in humans.
Collapse
Affiliation(s)
- Yiwu Chen
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Yuanzhu Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Xi Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Jian Zhou
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Lerong Ma
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Jianing Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Lin Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Hongsheng Ouyang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401120, China
- Chongqing Jitang Biotechnology Research Institute Co., Ltd., Chongqing 401120, China
| | - Hongming Yuan
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401120, China
- Correspondence: (H.Y.); (D.P.); Tel.: +86-431-8783-6175 (D.P.)
| | - Daxin Pang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401120, China
- Chongqing Jitang Biotechnology Research Institute Co., Ltd., Chongqing 401120, China
- Correspondence: (H.Y.); (D.P.); Tel.: +86-431-8783-6175 (D.P.)
| |
Collapse
|
82
|
Wang W, Fan B, Zhang X, Guo R, Zhao Y, Zhou J, Zhou J, Peng Q, Zhu M, Li J, Li B. Development of a colloidal gold immunochromatographic assay strip using monoclonal antibody for rapid detection of porcine deltacoronavirus. Front Microbiol 2023; 13:1074513. [PMID: 36687576 PMCID: PMC9849564 DOI: 10.3389/fmicb.2022.1074513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/13/2022] [Indexed: 01/07/2023] Open
Abstract
Porcine deltacoronavirus (PDCoV) cause diarrhea and dehydration in newborn piglets and has the potential for cross-species transmission. Rapid and early diagnosis is important for preventing and controlling infectious disease. In this study, two monoclonal antibodies (mAbs) were generated, which could specifically recognize recombinant PDCoV nucleocapsid (rPDCoV-N) protein. A colloidal gold immunochromatographic assay (GICA) strip using these mAbs was developed to detect PDCoV antigens within 15 min. Results showed that the detection limit of the GICA strip developed in this study was 103 TCID50/ml for the suspension of virus-infected cell culture and 0.125 μg/ml for rPDCoV-N protein, respectively. Besides, the GICA strip showed high specificity with no cross-reactivity with other porcine pathogenic viruses. Three hundred and twenty-five fecal samples were detected for PDCoV using the GICA strip and reverse transcription-quantitative real-time PCR (RT-qPCR). The coincidence rate of the GICA strip and RT-qPCR was 96.9%. The GICA strip had a diagnostic sensitivity of 88.9% and diagnostic specificity of 98.5%. The specific and efficient detection by the strip provides a convenient, rapid, easy to use and valuable diagnostic tool for PDCoV under laboratory and field conditions.
Collapse
Affiliation(s)
- Wei Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture and Rural Affairs, Nanjing, China,Shaoxing Academy of Biomedicine of Zhejiang Sci-Tech University, Shaoxing, China,Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China,Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Baochao Fan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture and Rural Affairs, Nanjing, China,Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xuehan Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture and Rural Affairs, Nanjing, China,Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Rongli Guo
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture and Rural Affairs, Nanjing, China,Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yongxiang Zhao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture and Rural Affairs, Nanjing, China,Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Junming Zhou
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture and Rural Affairs, Nanjing, China,Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jinzhu Zhou
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture and Rural Affairs, Nanjing, China,Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Qi Peng
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture and Rural Affairs, Nanjing, China,Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Mingjun Zhu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture and Rural Affairs, Nanjing, China,Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jizong Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture and Rural Affairs, Nanjing, China,Shaoxing Academy of Biomedicine of Zhejiang Sci-Tech University, Shaoxing, China,Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China,Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Guangzhou, China,*Correspondence: Jizong Li,
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture and Rural Affairs, Nanjing, China,Shaoxing Academy of Biomedicine of Zhejiang Sci-Tech University, Shaoxing, China,Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China,Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Guangzhou, China,Bin Li,
| |
Collapse
|
83
|
Zhai K, Zhang Z, Liu X, Lv J, Zhang L, Li J, Ma Z, Wang Y, Guo H, Zhang Y, Pan L. Mucosal immune responses induced by oral administration of recombinant Lactococcus lactis expressing the S1 protein of PDCoV. Virology 2023; 578:180-189. [PMID: 36586181 DOI: 10.1016/j.virol.2022.12.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022]
Abstract
Porcine deltacoronavirus is an evolving coronavirus that primarily infects the intestine and may lead to intestinal disease in piglets. Up to now, no commercial vaccination is readily accessible to protect against the spread of PDCoV. Lactococcus lactis has been shown to have good immune efficacy and safety and can be used as a genetically engineered vaccine to deliver antigens. In this research, we utilized L. lactis NZ9000 to provide the S1 protein orally and improved the delivery efficiency by connecting the M cell targeting ligand Co1 with the S1 protein of PDCoV in tandem to obtain the recombinant protein S1-Co1. We successfully constructed two recombinant strains capable of expressing PDCoV-S1 and PDCoV-S1-Co1 proteins (i.e., L. lactis NZ9000-S1 and L. lactis NZ9000-S1-Co1), and their immunogenic capacity was evaluated in mice. Our study shows that Lactococcus is an advantageous bacterial live vector vaccine and is anticipated as a potential PDCoV vaccination option.
Collapse
Affiliation(s)
- Kaige Zhai
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| | - Zhongwang Zhang
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| | - Xinsheng Liu
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| | - Jianliang Lv
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| | - Liping Zhang
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| | - Jiahao Li
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| | - Zhongyuan Ma
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| | - Yonglu Wang
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| | - Huichen Guo
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| | - Yongguang Zhang
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| | - Li Pan
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| |
Collapse
|
84
|
Bahoussi AN, Wang PH, Shah PT, Bu H, Wu C, Xing L. Evolutionary plasticity of zoonotic porcine Deltacoronavirus (PDCoV): genetic characteristics and geographic distribution. BMC Vet Res 2022; 18:444. [PMID: 36550483 PMCID: PMC9772601 DOI: 10.1186/s12917-022-03554-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
The emergence and rapid spread of the acute respiratory syndrome coronavirus-2 have confirmed that animal coronaviruses represent a potential zoonotic source. Porcine deltacoronavirus is a worldwide evolving enteropathogen of swine, detected first in Hong Kong, China, before its global identification. Following the recent detection of PDCoV in humans, we attempted in this report to re-examine the status of PDCoV phylogenetic classification and evolutionary characteristics. A dataset of 166 complete PDCoV genomes was analyzed using the Maximum Likelihood method in IQ-TREE with the best-fitting model GTR + F + I + G4, revealing two major genogroups (GI and GII), with further seven and two sub-genogroups, (GI a-g) and (GII a-b), respectively. PDCoV strains collected in China exhibited the broadest genetic diversity, distributed in all subgenotypes. Thirty-one potential natural recombination events were identified, 19 of which occurred between China strains, and seven involved at least one China strain as a parental sequence. Importantly, we identified a human Haiti PDCoV strain as recombinant, alarming a possible future spillover that could become a critical threat to human health. The similarity and recombination analysis showed that PDCoV spike ORF is highly variable compared to ORFs encoding other structural proteins. Prediction of linear B cell epitopes of the spike glycoprotein and the 3D structural mapping of amino acid variations of two representative strains of GI and GII showed that the receptor-binding domain (RBD) of spike glycoprotein underwent a significant antigenic drift, suggesting its contribution in the genetic diversity and the wider spread of PDCoV.
Collapse
Affiliation(s)
- Amina Nawal Bahoussi
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi province, China
| | - Pei-Hua Wang
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi province, China
| | - Pir Tariq Shah
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi province, China
| | - Hongli Bu
- Department of Laboratory Medicine, The Fourth People's Hospital of Taiyuan, 231 Xikuang St, Taiyuan, 030053, Shanxi province, China
| | - Changxin Wu
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi province, China.
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, China.
- Shanxi Provincial Key Laboratory for Prevention and Treatment of Major Infectious Diseases, 92 Wucheng Road, Taiyuan, 030006, China.
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China.
| | - Li Xing
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi province, China.
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, China.
- Shanxi Provincial Key Laboratory for Prevention and Treatment of Major Infectious Diseases, 92 Wucheng Road, Taiyuan, 030006, China.
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
85
|
Genome-Wide CRISPR/Cas9 Screen Reveals a Role for SLC35A1 in the Adsorption of Porcine Deltacoronavirus. J Virol 2022; 96:e0162622. [PMID: 36453883 PMCID: PMC9769367 DOI: 10.1128/jvi.01626-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Porcine deltacoronavirus (PDCoV), an emerging enteropathogenic coronavirus, not only causes diarrhea in piglets but also possesses the potential to infect humans. To better understand host-virus genetic dependencies and find potential therapeutic targets for PDCoV, we used a porcine single-guide RNA (sgRNA) lentivirus library to screen host factors related to PDCoV infection in LLC-PK1 cells. The solute carrier family 35 member A1 (SLC35A1), a key molecule in the sialic acid (SA) synthesis pathway, was identified as a host factor required for PDCoV infection. A knockout of SLC35A1 caused decreases in the amounts of cell surface sialic acid (SA) and viral adsorption; meanwhile, trypsin promoted the use of SA in PDCoV infection. By constructing and assessing a series of recombinant PDCoV strains with the deletion or mutation of possible critical domain or amino acid residues for SA binding in the S1 N-terminal domain, we found that S T182 might be a PDCoV SA-binding site. However, the double knockout of SLC35A1 and amino peptidase N (APN) could not block PDCoV infection completely. Additionally, we found that different swine enteric coronaviruses, including transmissible gastroenteritis coronavirus, porcine epidemic diarrhea virus, and swine acute diarrhea syndrome coronavirus, are differentially dependent on SA. Overall, our study uncovered a collection of host factors that can be exploited as drug targets against PDCoV infection and deepened our understanding of the relationship between PDCoV and SA. IMPORTANCE Identifying the host factors required for replication will be helpful to uncover the pathogenesis mechanisms and develop antivirals against the emerging coronavirus porcine deltacoronavirus (PDCoV). Herein, we performed a genome-wide clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 knockout screen, the results of which revealed that the solute carrier family 35 member A1 (SLC35A1) is a host factor required for PDCoV infection that acts by regulating cell surface sialic acid (SA). We also identified the T182 site in the N-terminal domain of PDCoV S1 subunit as being associated with the SA-binding site and found that trypsin promotes the use of cell surface SA by PDCoV. Furthermore, different swine enteric coronaviruses use SLC35A1 differently for infection. This is the first study to screen host factors required for PDCoV replication using a genome-wide CRISPR-Cas9 functional knockout, thereby providing clues for developing antiviral drugs against PDCoV infection.
Collapse
|
86
|
Thakor JC, Dinesh M, Manikandan R, Bindu S, Sahoo M, Sahoo D, Dhawan M, Pandey MK, Tiwari R, Emran TB, Dhama K, Chaicumpa W. Swine coronaviruses (SCoVs) and their emerging threats to swine population, inter-species transmission, exploring the susceptibility of pigs for SARS-CoV-2 and zoonotic concerns. Vet Q 2022; 42:125-147. [PMID: 35584308 PMCID: PMC9225692 DOI: 10.1080/01652176.2022.2079756] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 03/23/2022] [Accepted: 05/16/2022] [Indexed: 12/23/2022] Open
Abstract
Swine coronaviruses (SCoVs) are one of the most devastating pathogens affecting the livelihoods of farmers and swine industry across the world. These include transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV), porcine respiratory coronavirus (PRCV), porcine hemagglutinating encephalomyelitis virus (PHEV), swine acute diarrhea syndrome coronavirus (SADS-CoV), and porcine delta coronavirus (PDCoV). Coronaviruses infect a wide variety of animal species and humans because these are having single stranded-RNA that accounts for high mutation rates and thus could break the species barrier. The gastrointestinal, cardiovascular, and nervous systems are the primary organ systems affected by SCoVs. Infection is very common in piglets compared to adult swine causing high mortality in the former. Bat is implicated to be the origin of all CoVs affecting animals and humans. Since pig is the only domestic animal in which CoVs cause a wide range of diseases; new coronaviruses with high zoonotic potential could likely emerge in the future as observed in the past. The recently emerged severe acute respiratory syndrome coronavirus virus-2 (SARS-CoV-2), causing COVID-19 pandemic in humans, has been implicated to have animal origin, also reported from few animal species, though its zoonotic concerns are still under investigation. This review discusses SCoVs and their epidemiology, virology, evolution, pathology, wildlife reservoirs, interspecies transmission, spill-over events and highlighting their emerging threats to swine population. The role of pigs amid ongoing SARS-CoV-2 pandemic will also be discussed. A thorough investigation should be conducted to rule out zoonotic potential of SCoVs and to design appropriate strategies for their prevention and control.
Collapse
Affiliation(s)
- Jigarji C. Thakor
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Murali Dinesh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Rajendran Manikandan
- Immunology Section, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Suresh Bindu
- Immunology Section, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Monalisa Sahoo
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Diptimayee Sahoo
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana, India
- The Trafford Group of Colleges, Manchester, United Kingdom
| | - Megha Katare Pandey
- Department of Translational Medicine Center, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, India
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
87
|
Shu X, Han F, Hu Y, Hao C, Li Z, Wei Z, Zhang H. Co-infection of porcine deltacoronavirus and porcine epidemic diarrhoea virus alters gut microbiota diversity and composition in the colon of piglets. Virus Res 2022; 322:198954. [PMID: 36198372 DOI: 10.1016/j.virusres.2022.198954] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/26/2022] [Accepted: 10/01/2022] [Indexed: 11/18/2022]
Abstract
Porcine deltacoronavirus (PDCoV) and porcine epidemic diarrhoea virus (PEDV) are the main porcine enteric coronaviruses that cause severe diarrhoea in piglets, posing huge threat to the swine industry. Our previous study verified that the co-infection of PDCoV and PEDV is common in natural swine infections and obviously enhances the disease severity in piglets. However, the effects of co-infection of PDCoV and PEDV on intestinal microbial community are unknown. In current study, the microbial composition and diversity in the colon of piglets were analyzed. Our results showed that both of PDCoV and PEDV were mainly distributed in the small intestines and caused severe damage of ileum but not colon in the co-inoculated piglets. Furthermore, we observed that PDCoV and PEDV co-infection alters the gut microbiota composition at the phylum, family and genus levels. The abundance of Mitsuokella and Collinsella at genus level were significantly increased in PDCoV-PEDV co-infection piglets. Spearman's correlation analysis further suggested that there existed strong positive correlation between Mitsuokella and TNF-α, IL-6 and IL-8 secretion, these two factors may together aggravating the small intestine pathological lesions. These results proved there existed obvious correlation between the disease severity caused by PDCoV-PEDV co-infection and intestinal microbial community.
Collapse
Affiliation(s)
- Xiangli Shu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Fangfang Han
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Yating Hu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Chenlin Hao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Zhaoyang Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Zhanyong Wei
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China; Key Laboratory for Animal-Derived Food Safety of Henan Province, Zhengzhou 450002, China.
| | - Honglei Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China; Key Laboratory for Animal-Derived Food Safety of Henan Province, Zhengzhou 450002, China.
| |
Collapse
|
88
|
Zhang Y, Chen Y, Zhou J, Wang X, Ma L, Li J, Yang L, Yuan H, Pang D, Ouyang H. Porcine Epidemic Diarrhea Virus: An Updated Overview of Virus Epidemiology, Virulence Variation Patterns and Virus-Host Interactions. Viruses 2022; 14:2434. [PMID: 36366532 PMCID: PMC9695474 DOI: 10.3390/v14112434] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
The porcine epidemic diarrhea virus (PEDV) is a member of the coronavirus family, causing deadly watery diarrhea in newborn piglets. The global pandemic of PEDV, with significant morbidity and mortality, poses a huge threat to the swine industry. The currently developed vaccines and drugs are only effective against the classic GI strains that were prevalent before 2010, while there is no effective control against the GII variant strains that are currently a global pandemic. In this review, we summarize the latest progress in the biology of PEDV, including its transmission and origin, structure and function, evolution, and virus-host interaction, in an attempt to find the potential virulence factors influencing PEDV pathogenesis. We conclude with the mechanism by which PEDV components antagonize the immune responses of the virus, and the role of host factors in virus infection. Essentially, this review serves as a valuable reference for the development of attenuated virus vaccines and the potential of host factors as antiviral targets for the prevention and control of PEDV infection.
Collapse
Affiliation(s)
- Yuanzhu Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Yiwu Chen
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Jian Zhou
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Xi Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Lerong Ma
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Jianing Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Lin Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Hongming Yuan
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401120, China
| | - Daxin Pang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401120, China
- Chongqing Jitang Biotechnology Research Institute Co., Ltd., Chongqing 401120, China
| | - Hongsheng Ouyang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401120, China
- Chongqing Jitang Biotechnology Research Institute Co., Ltd., Chongqing 401120, China
| |
Collapse
|
89
|
Xia S, Fang P, Pan T, Xiao W, Zhang H, Zhu X, Xiao S, Fang L. Porcine deltacoronavirus accessory protein NS7a possesses the functional characteristics of a viroporin. Vet Microbiol 2022; 274:109551. [PMID: 36067658 DOI: 10.1016/j.vetmic.2022.109551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 10/31/2022]
Abstract
Viroporins are virus-encoded proteins that mediate ion channel (IC) activity, playing critical roles in virus entry, replication, pathogenesis, and immune evasion. Previous studies have shown that some coronavirus accessory proteins have viroporin-like activity. Porcine deltacoronavirus (PDCoV) is an emerging enteropathogenic coronavirus that encodes three accessory proteins, NS6, NS7, and NS7a. However, whether any of the PDCoV accessory proteins possess viroporin-like activity, and if so which, remains unknown. In this study, we analyzed the biochemical properties of the three PDCoV-encoded accessory proteins and found that NS7a could enhance the membrane permeability of both mammalian cells and Escherichia coli cells. Indirect immunofluorescence assay and co-immunoprecipitation assay results further indicated that NS7a is an integral membrane protein and can form homo-oligomers. A bioinformation analysis revealed that a putative viroporin domain (VPD) is located within amino acids 69-88 (aa69-88) of NS7a. Experiments with truncated mutants and alanine scanning mutagenesis additionally demonstrated that the amino acid residues 69FLR71 of NS7a are essential for its viroporin-like activity. Together, our findings are the first to demonstrate that PDCoV NS7a possesses viroporin-like activity and identify its key amino acid residues associated with viroporin-like activity.
Collapse
Affiliation(s)
- Sijin Xia
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Puxian Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Ting Pan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Wenwen Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Huichang Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Xuerui Zhu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| |
Collapse
|
90
|
Cong X, Zhu Y, Liu X, Lian Y, Huang B, Luo Y, Gu Y, Wu M, Shi Y. Establishment of a recombinase polymerase amplification (RPA) fluorescence assay for the detection of swine acute diarrhea syndrome coronavirus (SADS-CoV). BMC Vet Res 2022; 18:369. [PMID: 36221092 PMCID: PMC9552127 DOI: 10.1186/s12917-022-03465-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 09/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Swine acute diarrhea syndrome coronavirus (SADS-CoV) causes acute vomiting and diarrhea in piglets, leading to significant financial losses for the pig industry. Recombinase polymerase amplification (RPA) is a rapid nucleic acid amplification technology used under constant temperature conditions. The study established a real-time reverse transcription (RT)-RPA assay for early diagnosis of SADS-CoV. RESULTS: The detection limit of the real-time RT-RPA was 74 copies/µL of SADS-CoV genomic standard recombinant plasmid in 95% of cases. The assay was performed in less than 30 min and no cross-reactions were observed with eight other common viruses that affect swine, including classical swine fever virus (CSFV), porcine reproductive and respiratory syndrome virus (PRRSV), pseudo rabies virus (PRV), swine influenza virus (SIV), seneca valley virus (SVA), transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV) and porcine deltacoronavirus (PDCoV). The coefficient of variation (C.V.) values of the two standards dilutions and three positive clinical sample ranged from 2.95% to 4.71%. A total of 72 clinical fecal samples from swine with diarrheal symptoms were analyzed with the developed RT-RPA and quantitative RT-PCR. There was 98.61% agreement between the RT-RPA and the quantitative real-time PCR results. CONCLUSIONS These results indicated that the developed RT-RPA assay had good specificity, sensitivity, stability and repeatability. The study successfully established a broadly reactive RT-RPA assay for SADS-CoV detection.
Collapse
Affiliation(s)
- Xiao Cong
- College of Animal Science, Anhui Science and Technology University and Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Fengyang, China
| | - Yujun Zhu
- Guangdong Laboratory Animals Monitoring Institute and Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, China
| | - Xinchao Liu
- College of Animal Science, Anhui Science and Technology University and Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Fengyang, China
| | - Yuexiao Lian
- Guangdong Laboratory Animals Monitoring Institute and Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, China
| | - Bihong Huang
- Guangdong Laboratory Animals Monitoring Institute and Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, China
| | - Yinzhu Luo
- Guangdong Laboratory Animals Monitoring Institute and Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, China
| | - Youfang Gu
- College of Animal Science, Anhui Science and Technology University and Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Fengyang, China.
| | - Miaoli Wu
- Guangdong Laboratory Animals Monitoring Institute and Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, China.
| | - Yue Shi
- Beijing Biaochizehui Biotechnology Company Limited Daxing District, Qingfengxilu No.29, Beijing, China.
| |
Collapse
|
91
|
Charlier J, Barkema HW, Becher P, De Benedictis P, Hansson I, Hennig-Pauka I, La Ragione R, Larsen LE, Madoroba E, Maes D, Marín CM, Mutinelli F, Nisbet AJ, Podgórska K, Vercruysse J, Vitale F, Williams DJL, Zadoks RN. Disease control tools to secure animal and public health in a densely populated world. Lancet Planet Health 2022; 6:e812-e824. [PMID: 36208644 DOI: 10.1016/s2542-5196(22)00147-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 03/29/2022] [Accepted: 06/14/2022] [Indexed: 06/16/2023]
Abstract
Animal health is a prerequisite for global health, economic development, food security, food quality, and poverty reduction, while mitigating against climate change and biodiversity loss. We did a qualitative review of 53 infectious diseases in terrestrial animals with data from DISCONTOOLS, a specialist database and prioritisation model focusing on research gaps for improving infectious disease control in animals. Many diseases do not have any appropriate control tools, but the prioritisation model suggests that we should focus international efforts on Nipah virus infection, African swine fever, contagious bovine pleuropneumonia, peste des petits ruminants, sheeppox and goatpox, avian influenza, Rift Valley fever, foot and mouth disease, and bovine tuberculosis, for the greatest impact on the UN's Sustainable Development Goals. Easy to use and accurate diagnostics are available for many animal diseases. However, there is an urgent need for the development of stable and durable diagnostics that can differentiate infected animals from vaccinated animals, to exploit rapid technological advances, and to make diagnostics widely available and affordable. Veterinary vaccines are important for dealing with endemic, new, and emerging diseases. However, fundamental research is needed to improve the convenience of use and duration of immunity, and to establish performant marker vaccines. The largest gap in animal pharmaceuticals is the threat of pathogens developing resistance to available drugs, in particular for bacterial and parasitic (protozoal, helminth, and arthropod) pathogens. We propose and discuss five research priorities for animal health that will help to deliver a sustainable and healthy planet: vaccinology, antimicrobial resistance, climate mitigation and adaptation, digital health, and epidemic preparedness.
Collapse
Affiliation(s)
- Johannes Charlier
- DISCONTOOLS, AnimalhealthEurope, Brussels, Belgium; Kreavet, Kruibeke, Belgium.
| | - Herman W Barkema
- One Health at UCalgary, University of Calgary, Calgary, AB, Canada
| | - Paul Becher
- Institute of Virology, University of Veterinary Medicine, Hannover, Germany
| | | | - Ingrid Hansson
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Isabel Hennig-Pauka
- Field Station for Epidemiology in Bakum, University of Veterinary Medicine, Hannover, Germany
| | - Roberto La Ragione
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Surrey, UK
| | - Lars E Larsen
- Institute for Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Evelyn Madoroba
- Department of Biochemistry and Microbiology, University of Zululand, Empangeni, South Africa
| | - Dominiek Maes
- Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Clara M Marín
- Department of Animal Science, Agrifood Research and Technology Centre of Aragón (CITA) and AgriFood Institute of Aragón-IA2 (CITA), University of Zaragoza, Zaragoza, Spain
| | - Franco Mutinelli
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Alasdair J Nisbet
- Vaccines and Diagnostics Department, Moredun Research Institute, Mithlothian, Scotland
| | - Katarzyna Podgórska
- Department of Swine Diseases, National Veterinary Research Institute, Pulawy, Poland
| | - Jozef Vercruysse
- Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Fabrizio Vitale
- Istituto Zooprofilattico Sperimentale della Sicilia, Palermo, Italy
| | - Diana J L Williams
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Ruth N Zadoks
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
92
|
Chen Y, Li P, Zhen R, Wang L, Feng J, Xie Y, Yang B, Xiong Y, Niu J, Wu Q, Jiang Z, He D, Yi H. Effects of niacin on intestinal epithelial Barrier, intestinal Immunity, and microbial community in weaned piglets challenged by PDCoV. Int Immunopharmacol 2022; 111:109054. [PMID: 35921778 DOI: 10.1016/j.intimp.2022.109054] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/01/2022] [Accepted: 07/11/2022] [Indexed: 11/29/2022]
|
93
|
More‐Bayona JA, Ramirez‐Velasquez M, Hause B, Nelson E, Rivera‐Geronimo H. First isolation and whole genome characterization of porcine deltacoronavirus from pigs in Peru. Transbound Emerg Dis 2022; 69:e1561-e1573. [PMID: 35184388 PMCID: PMC9790302 DOI: 10.1111/tbed.14489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 12/30/2022]
Abstract
Porcine deltacoronavirus is a newly emergent enteric pathogen affecting swine farms worldwide. It has been detected in several countries in Europe, Asia and North America; yet, it has not been reported in South America. In November 2019, an enteric disease outbreak in a pig farm located in San Martin, Peru, was reported along with submission of three intestinal samples from pigs who succumbed to the disease. Samples were processed for molecular detection by qRT-PCR, viral isolation and further sequencing analysis. A taqman-based RT-PCR was performed to differentiate among the most relevant swine enteric coronaviruses described to date. All samples were positive to porcine deltacoronavirus with a cycle threshold (Ct) value between 9 and 14, revealing a high viral load, while testing negative to porcine epidemic diarrhea and transmissible gastroenteritis viruses. Following detection, viral isolation was performed using PK-15 and Vero cell lines. After 5 days of inoculation, no cytopathic effect was observed. A second blind passage allowed the observation of cytopathic effect on PK-15 cells, while it remained absent in Vero cells. A fluorescence test using an anti-N monoclonal antibody confirmed viral replication. One sample was processed for whole genome sequencing (WGS). In short, raw reads were imported into CLC genomics and assembled de novo. Out of 479k reads generated from the sample, 436k assembled into a 25,501 bp contig which was 99.5% identical to a reference porcine deltacoronavirus strain from the USA within the North American phylogroup. Yet, there are relevant differences at the nucleotide and amino acid levels compared with previously described porcine deltacoronavirus strains. Altogether, our findings represent the first report of porcine deltacoronavirus in South America, which provides information of its evolutionary origin. Thus, this study offers new insights into the molecular epidemiology of porcine deltacoronavirus infections in the swine industry.
Collapse
Affiliation(s)
- Juan A. More‐Bayona
- Laboratory of VirologyFaculty of Veterinary MedicineUniversidad Nacional Mayor de San MarcosLimaPeru
| | - Mercy Ramirez‐Velasquez
- Laboratory of VirologyFaculty of Veterinary MedicineUniversidad Nacional Mayor de San MarcosLimaPeru
| | - Ben Hause
- Cambridge TechnologiesWorthingtonMinnesotaUSA
| | - Eric Nelson
- Department of Veterinary and Biomedical SciencesSouth Dakota State UniversityBrookingsSouth DakotaUSA
| | | |
Collapse
|
94
|
Yan Q, Wu K, Zeng W, Yu S, Li Y, Sun Y, Liu X, Ruan Y, Huang J, Ding H, Yi L, Zhao M, Chen J, Fan S. Historical Evolutionary Dynamics and Phylogeography Analysis of Transmissible Gastroenteritis Virus and Porcine Deltacoronavirus: Findings from 59 Suspected Swine Viral Samples from China. Int J Mol Sci 2022; 23:ijms23179786. [PMID: 36077190 PMCID: PMC9456201 DOI: 10.3390/ijms23179786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/14/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Since the beginning of the 21st century, humans have experienced three coronavirus pandemics, all of which were transmitted to humans via animals. Recent studies have found that porcine deltacoronavirus (PDCoV) can infect humans, so swine enteric coronavirus (SeCoV) may cause harm through cross-species transmission. Transmissible gastroenteritis virus (TGEV) and PDCoV have caused tremendous damage and loss to the pig industry around the world. Therefore, we analyzed the genome sequence data of these two SeCoVs by evolutionary dynamics and phylogeography, revealing the genetic diversity and spatiotemporal distribution characteristics. Maximum likelihood and Bayesian inference analysis showed that TGEV could be divided into two different genotypes, and PDCoV could be divided into four main lineages. Based on the analysis results inferred by phylogeography, we inferred that TGEV might originate from America, PDCoV might originate from Asia, and different migration events had different migration rates. In addition, we also identified positive selection sites of spike protein in TGEV and PDCoV, indicating that the above sites play an essential role in promoting membrane fusion to achieve adaptive evolution. In a word, TGEV and PDCoV are the past and future of SeCoV, and the relatively smooth transmission rate of TGEV and the increasing transmission events of PDCoV are their respective transmission characteristics. Our results provide new insights into the evolutionary characteristics and transmission diversity of these SeCoVs, highlighting the potential for cross-species transmission of SeCoV and the importance of enhanced surveillance and biosecurity measures for SeCoV in the context of the COVID-19 epidemic.
Collapse
Affiliation(s)
- Quanhui Yan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Keke Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Weijun Zeng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Shu Yu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Yuwan Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Yawei Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Xiaodi Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Yang Ruan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Juncong Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Hongxing Ding
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Lin Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Correspondence: (J.C.); (S.F.); Tel.: +86-20-8528-8017 (J.C.); +86-20-8528-8017 (S.F.)
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Correspondence: (J.C.); (S.F.); Tel.: +86-20-8528-8017 (J.C.); +86-20-8528-8017 (S.F.)
| |
Collapse
|
95
|
Wang Z, Li S, Shao Y, Lu Y, Tan C, Cui Y, Ding G, Fu Y, Liu G, Chen J, Hu Y. Genomic characterization and pathogenicity analysis of a porcine deltacoronavirus strain isolated in western China. Arch Virol 2022; 167:2249-2262. [PMID: 36029354 PMCID: PMC9419129 DOI: 10.1007/s00705-022-05549-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 06/13/2022] [Indexed: 12/02/2022]
Abstract
Porcine deltacoronavirus (PDCoV) is an enteric virus that was first identified in 2012. Although PDCoV has been detected worldwide, there is little information about its circulation in western China. In this study, fecal samples were collected from piglets with watery diarrhea in western China between 2015 and 2018 for the detection of PDCoV. The positive rate was 29.9%. A PDCoV strain (CHN/CQ/BN23/2016, BN23) was isolated and selected for further investigation. Phylogenetic analysis showed that this strain formed an individual cluster between the early Chinese lineage and the Chinese lineage. RDP4 and SimPlot analysis demonstrated that strain BN23 is a recombinant of Thailand/S5015L/2015 and CHN-AH-2004. The pathogenicity of BN23 was evaluated in 3-day-old piglets. Challenged piglets developed serious clinical signs and died at 3 days post-inoculation. Our data show that PDCoV is prevalent in western China and that strain BN23 is highly pathogenic to newborn piglets. Therefore, more attention should be paid to emerging PDCoV strains in western China.
Collapse
Affiliation(s)
- Zemei Wang
- College of Veterinary Medicine, Gansu Agricultural University, Ying-Men-Cun, Yin-Tan-Lu, An-Ning District, Lanzhou, 730000, Gansu, China.,State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 Xu-Jia-Ping, Yan-Chang-Bu, Cheng-Guan District, Lanzhou, 730046, Gansu, China
| | - Shuxian Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 Xu-Jia-Ping, Yan-Chang-Bu, Cheng-Guan District, Lanzhou, 730046, Gansu, China.,College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
| | - Yongheng Shao
- College of Veterinary Medicine, Gansu Agricultural University, Ying-Men-Cun, Yin-Tan-Lu, An-Ning District, Lanzhou, 730000, Gansu, China.,State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 Xu-Jia-Ping, Yan-Chang-Bu, Cheng-Guan District, Lanzhou, 730046, Gansu, China
| | - Yabin Lu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 Xu-Jia-Ping, Yan-Chang-Bu, Cheng-Guan District, Lanzhou, 730046, Gansu, China.,College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
| | - Chen Tan
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 Xu-Jia-Ping, Yan-Chang-Bu, Cheng-Guan District, Lanzhou, 730046, Gansu, China
| | - Yaru Cui
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 Xu-Jia-Ping, Yan-Chang-Bu, Cheng-Guan District, Lanzhou, 730046, Gansu, China
| | - Guangming Ding
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 Xu-Jia-Ping, Yan-Chang-Bu, Cheng-Guan District, Lanzhou, 730046, Gansu, China
| | - Yuguang Fu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 Xu-Jia-Ping, Yan-Chang-Bu, Cheng-Guan District, Lanzhou, 730046, Gansu, China
| | - Guangliang Liu
- College of Veterinary Medicine, Gansu Agricultural University, Ying-Men-Cun, Yin-Tan-Lu, An-Ning District, Lanzhou, 730000, Gansu, China.,State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 Xu-Jia-Ping, Yan-Chang-Bu, Cheng-Guan District, Lanzhou, 730046, Gansu, China.,College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
| | - Jianing Chen
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 Xu-Jia-Ping, Yan-Chang-Bu, Cheng-Guan District, Lanzhou, 730046, Gansu, China.
| | - Yonghao Hu
- College of Veterinary Medicine, Gansu Agricultural University, Ying-Men-Cun, Yin-Tan-Lu, An-Ning District, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
96
|
Zeng J, Wang W, Zhou L, Ge X, Han J, Guo X, Chen Y, Zhang Y, Yang H. A nucleic acid detection assay combining reverse transcription recombinase-aided amplification with a lateral flow dipstick for the rapid visual detection of porcine deltacoronavirus. Virulence 2022; 13:1471-1485. [PMID: 36005235 PMCID: PMC9450908 DOI: 10.1080/21505594.2022.2116157] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging enteropathogen causing severe diarrhoea, dehydration, and death in nursing piglets and enormous economic losses for the global swine industry. Furthermore, it can infect multiple animal species including humans. Therefore, a rapid, definitive diagnostic assay is required for the effective control of this zoonotic pathogen. To identify PDCoV, we developed a nucleic acid detection assay combining reverse transcription recombinase-aided amplification (RT-RAA) with a lateral flow dipstick (LFD) targeting the highly conserved genomic region in the ORF1b gene. The RT-RAA-LFD assay exhibited good PDCoV detection reproducibility and repeatability and could be completed within 11 min. Ten minutes at 40 °C was required for nucleic acid amplification and 1 min at room temperature was needed for the visual LFD readout. The assay specifically detected PDCoV and did not cross-react with any other major swine pathogens. The 95% limit of detection (LOD) was 3.97 median tissue culture infectious dose PDCoV RNA per reaction. This performance was comparable to that of a reference TaqMan-based real-time RT-PCR (trRT-PCR) assay for PDCoV. Of 149 swine small intestine, rectal swab, and serum samples, 71 and 75 tested positive for PDCoV according to RT-RAA-LFD and trRT-PCR, respectively. The diagnostic coincidence rate for both assays was 97.32% (145/149) and the kappa value was 0.946 (p < 0.001). Overall, the RT-RAA-LFD assay is a user-friendly diagnostic tool that can rapidly and visually detect PDCoV.
Collapse
Affiliation(s)
- Jianyu Zeng
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing,P.R. China
| | - Wenlong Wang
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing,P.R. China
| | - Lei Zhou
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing,P.R. China
| | - Xinna Ge
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing,P.R. China
| | - Jun Han
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing,P.R. China
| | - Xin Guo
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing,P.R. China
| | - Yanhong Chen
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing,P.R. China
| | - Yongning Zhang
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing,P.R. China
| | - Hanchun Yang
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing,P.R. China
| |
Collapse
|
97
|
Li Z, Fang P, Duan P, Chen J, Fang L, Xiao S. Porcine Deltacoronavirus Infection Cleaves HDAC2 to Attenuate Its Antiviral Activity. J Virol 2022; 96:e0102722. [PMID: 35916536 PMCID: PMC9400482 DOI: 10.1128/jvi.01027-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023] Open
Abstract
Protein acetylation plays an important role during virus infection. Thus, it is not surprising that viruses always evolve elaborate mechanisms to regulate the functions of histone deacetylases (HDACs), the essential transcriptional and epigenetic regulators for deacetylation. Porcine deltacoronavirus (PDCoV), an emerging enteropathogenic coronavirus, causes severe diarrhea in suckling piglets and has the potential to infect humans. In this study, we found that PDCoV infection inhibited cellular HDAC activity. By screening the expressions of different HDAC subfamilies after PDCoV infection, we unexpectedly found that HDAC2 was cleaved. Ectopic expression of HDAC2 significantly inhibited PDCoV replication, while the reverse effects could be observed after treatment with an HDAC2 inhibitor (CAY10683) or the knockdown of HDAC2 expression by specific siRNA. Furthermore, we demonstrated that PDCoV-encoded nonstructural protein 5 (nsp5), a 3C-like protease, was responsible for HDAC2 cleavage through its protease activity. Detailed analyses showed that PDCoV nsp5 cleaved HDAC2 at glutamine 261 (Q261), and the cleaved fragments (amino acids 1 to 261 and 262 to 488) lost the ability to inhibit PDCoV replication. Interestingly, the Q261 cleavage site is highly conserved in HDAC2 homologs from other mammalian species, and the nsp5s encoded by seven tested mammalian coronaviruses also cleaved HDAC2, suggesting that cleaving HDAC2 may be a common strategy used by different mammalian coronaviruses to antagonize the antiviral role of HDAC2. IMPORTANCE As an emerging porcine enteropathogenic coronavirus that possesses the potential to infect humans, porcine deltacoronavirus (PDCoV) is receiving increasing attention. In this work, we found that PDCoV infection downregulated cellular histone deacetylase (HDAC) activity. Of particular interest, the viral 3C-like protease, encoded by the PDCoV nonstructural protein 5 (nsp5), cleaved HDAC2, and this cleavage could be observed in the context of PDCoV infection. Furthermore, the cleavage of HDAC2 appears to be a common strategy among mammalian coronaviruses, including the emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), to antagonize the antiviral role of HDAC2. To our knowledge, PDCoV nsp5 is the first identified viral protein that can cleave cellular HDAC2. Results from our study provide new targets to develop drugs combating coronavirus infection.
Collapse
Affiliation(s)
- Zhuang Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Puxian Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Panpan Duan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Jiyao Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
98
|
Development of a Nucleocapsid Protein-Based Blocking ELISA for the Detection of Porcine Deltacoronavirus Antibodies. Viruses 2022; 14:v14081815. [PMID: 36016437 PMCID: PMC9412986 DOI: 10.3390/v14081815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/06/2022] [Accepted: 08/17/2022] [Indexed: 11/20/2022] Open
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging enteropathogen which mainly causes diarrhea, dehydration and death in nursing piglets, threatening the global swine industry. Moreover, it can infect multiple animal species and humans. Hence, reliable diagnostic assays are needed to better control this zoonotic pathogen. Here, a blocking ELISA was developed using a recombinant nucleocapsid (N) protein as the coating antigen paired with an N-specific monoclonal antibody (mAb) as the detection antibody. The percent inhibition (PI) of the ELISA was determined using 384 swine serum samples, with an indirect immunofluorescence assay (IFA) as the reference method. Through receiver operating characteristic analysis in conjunction with Youden’s index, the optimal PI cut-off value was determined to be 51.65%, which corresponded to a diagnostic sensitivity of 98.79% and a diagnostic specificity of 100%. Of the 330 serum samples tested positive via IFA, 326 and 4 were tested positive and negative via the ELISA, respectively, while the 54 serum samples tested negative via IFA were all negative via the ELISA. The overall coincidence rate between the two assays was 98.96% (380/384). The ELISA exhibited good repeatability and did not cross-react with antisera against other swine pathogens. Overall, this is the first report on developing a blocking ELISA for PDCoV serodiagnosis.
Collapse
|
99
|
Zhang B, Zhao S, Zhong C, Xiao L, Yan A, Xue T, Huang J, Zhou J, Peng Q, Guo R, Fan B, Liu C, Ni Y, Zhu X, Shu J, Zha Y, Chen J, Li J, Li B. Comparison of pathogenicity of porcine deltacoronavirus CZ2020 from cell culture and intestinal contents in 27-day-old piglets. Microb Pathog 2022; 170:105723. [PMID: 35981694 DOI: 10.1016/j.micpath.2022.105723] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/09/2022] [Accepted: 08/11/2022] [Indexed: 10/15/2022]
Abstract
Porcine deltacoronavirus (PDCoV) is an emenging swine enteropathogenic coronavirus that can cause high mortality rate. It affects pigs of all ages, but most several in neonatal piglets. Little is known regarding the pathogenicity of PDCoV against 27-day-old piglets. In this study, 27-day-old piglets were experimentally infected with PDCoV CZ2020 from cell culture, the challenged piglets do not have obvious symptoms from 1 to 7 days post-challenge (DPC), while viral shedding was detected in rectal swab at 1 DPC. Tissues of small intestines displayed slight macroscopic and microscopic lesions with no viral antigen detection. On the other hand, 27-day-old piglets were infected with PDCoV from intestinal contents, the piglets developed mild to severe diarrhea, shedding increasing from 2 to 7 DPC, and developed macroscopic and microscopic lesions in small intestines with clear viral antigen confirmed by immunohistochemistry staining. Indicating the small intestine was still the major target organ in PDCoV-challenged pigs at the age of 27-day-old. Diarrhea caused by PDCoV from intestinal contents in 27-day-old piglets is less reported. Thus, our results might provide new insights into the pathogenesis of PDCoV.
Collapse
Affiliation(s)
- Baotai Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China; College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Shuqing Zhao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China; School of Pharmacy, Nanjing Tech University, Nanjing, 21009, China
| | - Chunyan Zhong
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China; Biological Engineering Department, Southwest Guizhou Vocational and Technical College for Nationalities, Xingyi, 562400, China
| | - Li Xiao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China; College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Ai Yan
- Zunyi Animal Disease Control Center, Zunyi, 563000, China
| | - Tao Xue
- School of Pharmacy, Linyi University, Linyi, 276000, China
| | - Jin Huang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinzhu Zhou
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| | - Qi Peng
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| | - Rongli Guo
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| | - Baochao Fan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China; Institute of Life Sciences, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Chuanmin Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China; School of Pharmacy, Linyi University, Linyi, 276000, China; Institute of Life Sciences, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Yanxiu Ni
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Xing Zhu
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Jianhong Shu
- Zhejiang Hongsheng Biotechnology CO. LTD, Shaoxing, 312000, China
| | - Yinhe Zha
- Zhejiang Hongsheng Biotechnology CO. LTD, Shaoxing, 312000, China
| | - Jin Chen
- Luduo Town Animal Husbandry and Veterinary Station, Baoying, 225817, China
| | - Jizong Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China; School of Pharmacy, Linyi University, Linyi, 276000, China; Institute of Life Sciences, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China; Institute of Life Sciences, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
100
|
Yen L, Magtoto R, Mora-Díaz JC, Carrillo-Ávila JA, Zhang J, Cheng TY, Magtoto P, Nelli RK, Baum DH, Zimmerman JJ, Giménez-Lirola LG. The N-terminal Subunit of the Porcine Deltacoronavirus Spike Recombinant Protein (S1) Does Not Serologically Cross-react with Other Porcine Coronaviruses. Pathogens 2022; 11:pathogens11080910. [PMID: 36015031 PMCID: PMC9414728 DOI: 10.3390/pathogens11080910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Porcine deltacoronavirus (PDCoV), belonging to family Coronaviridae and genus Deltacoronavirus, is a major enteric pathogen in swine. Accurate PDCoV diagnosis relying on laboratory testing and antibody detection is an important approach. This study evaluated the potential of the receptor-binding subunit of the PDCoV spike protein (S1), generated using a mammalian expression system, for specific antibody detection via indirect enzyme-linked immunosorbent assay (ELISA). Serum samples were collected at day post-inoculation (DPI) −7 to 42, from pigs (n = 83) experimentally inoculated with different porcine coronaviruses (PorCoV). The diagnostic sensitivity of the PDCoV S1-based ELISA was evaluated using serum samples (n = 72) from PDCoV-inoculated animals. The diagnostic specificity and potential cross-reactivity of the assay was evaluated on PorCoV-negative samples (n = 345) and samples collected from pigs experimentally inoculated with other PorCoVs (n = 472). The overall diagnostic performance, time of detection, and detection rate over time varied across different S/P cut-offs, estimated by Receiver Operating Characteristic (ROC) curve analysis. The higher detection rate in the PDCoV group was observed after DPI 21. An S/P cut-off of 0.25 provided 100% specificity with no serological cross-reactivity against other PorCoV. These results support the use of S1 protein-based ELISA for accurate detection of PDCoV infections, transference of maternal antibodies, or active surveillance.
Collapse
Affiliation(s)
- Lu Yen
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Ronaldo Magtoto
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Juan Carlos Mora-Díaz
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | | | - Jianqiang Zhang
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Ting-Yu Cheng
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Ohio State University, Columbus, OH 43210, USA
| | - Precy Magtoto
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
- College of Veterinary Medicine, Pampanga State Agricultural University, Pampanga 2011, Philippines
| | - Rahul K. Nelli
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - David H. Baum
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Jeffrey J. Zimmerman
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Luis G. Giménez-Lirola
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
- Correspondence:
| |
Collapse
|