51
|
Hata J, Ohara T, Katakura Y, Shimizu K, Yamashita S, Yoshida D, Honda T, Hirakawa Y, Shibata M, Sakata S, Kitazono T, Kuhara S, Ninomiya T. Association Between Serum β-Alanine and Risk of Dementia. Am J Epidemiol 2019; 188:1637-1645. [PMID: 31127276 DOI: 10.1093/aje/kwz116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 11/12/2022] Open
Abstract
We examined the association between serum concentrations of β-alanine, a metabolite of carnosine and anserine, and the risk of dementia in a general population of elderly Japanese persons. In 2007, 1,475 residents of Hisayama, Japan, aged 60-79 years and without dementia were divided into 4 groups according to quartiles of serum β-alanine concentrations (quartile 1, lowest; quartile 4, highest) and followed for a median of 5.3 years. During follow-up, 117 subjects developed all-cause dementia (Alzheimer in 77 cases and vascular dementia in 31). The risk of all-cause dementia decreased with increasing serum β-alanine levels after adjustment for potential confounding factors (quartile 2, hazard ratio (HR) = 0.73 (95% confidence interval (CI): 0.45, 1.18); quartile 3, HR = 0.50 (95% CI: 0.28, 0.89); quartile 4, HR = 0.50 (95% CI: 0.27, 0.92); P = 0.01 for trend). A similar inverse association was observed for Alzheimer disease (quartile 2, HR = 0.78 (95% CI: 0.44, 1.38); quartile 3, HR = 0.53 (95% CI: 0.26, 1.06); quartile 4, HR = 0.53 (95% CI: 0.25, 1.10); P = 0.04 for trend) but not for vascular dementia. We found that higher serum β-alanine levels were significantly associated with lower risks of all-cause dementia and Alzheimer disease. Because serum β-alanine levels reflect intakes of carnosine/anserine, higher intakes of carnosine/anserine might be beneficial for the prevention of dementia.
Collapse
Affiliation(s)
- Jun Hata
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoyuki Ohara
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinori Katakura
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Kuniyoshi Shimizu
- Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Shuntaro Yamashita
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Daigo Yoshida
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takanori Honda
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoichiro Hirakawa
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mao Shibata
- Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Satoko Sakata
- Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takanari Kitazono
- Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Satoru Kuhara
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Toshiharu Ninomiya
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
52
|
Effects of Anserine/Carnosine Supplementation on Mild Cognitive Impairment with APOE4. Nutrients 2019; 11:nu11071626. [PMID: 31319510 PMCID: PMC6683059 DOI: 10.3390/nu11071626] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 11/30/2022] Open
Abstract
Background: Oral supplementation of anserine/carnosine helps preserve cognitive functions in healthy older adults. Mild cognitive impairment (MCI) is a transition between cognitive-normal and dementia. Therefore, it needs to investigate whether anserine/carnosine supplementation (ACS) has effects on subjects with MCI. Methods: A randomized, double-blind, placebo-controlled 12-week trial was performed. Fifty-four subjects with MCI were randomized to an active group ingesting 750 mg of anserine and 250 mg of carnosine per day or a placebo (1:1). Evaluation of cognitive change was conducted utilizing a psychometric test battery. Results: The score improvement in the global Clinical Dementia Rating (gloCDR) was superior in the active group than placebo (p = 0.023). No beneficial effect in the active group was detected in the other psychometric tests including the Mini-Mental State Examination (MMSE), the Wechsler Memory Scale, and the Alzheimer’s Disease Assessment Scale (ADAS). When APOE4 positive (APOE4 (+)) or negative (APOE4 (-)) subjects were separately analyzed, beneficial change in the APOE4 (+) subjects was observed in MMSE (p = 0.025) as well as in gloCDR (p = 0.026). Conclusions: The present study might suggest that protective effects against cognitive decline in APOE4 (+) MCI subjects exist.
Collapse
|
53
|
Solfrizzi V, Agosti P, Lozupone M, Custodero C, Schilardi A, Valiani V, Sardone R, Dibello V, Di Lena L, Lamanna A, Stallone R, Bellomo A, Greco A, Daniele A, Seripa D, Sabbà C, Logroscino G, Panza F. Nutritional Intervention as a Preventive Approach for Cognitive-Related Outcomes in Cognitively Healthy Older Adults: A Systematic Review. J Alzheimers Dis 2019; 64:S229-S254. [PMID: 29865058 DOI: 10.3233/jad-179940] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The link diet-cognitive function/dementia has been largely investigated in observational studies; however, there was a lack of evidence from randomized clinical trials (RCTs) on the prevention of late-life cognitive disorders though dietary intervention in cognitively healthy older adults. In the present article, we systematically reviewed RCTs published in the last four years (2014-2017) exploring nutritional intervention efficacy in preventing the onset of late-life cognitive disorders and dementia in cognitively healthy subjects aged 60 years and older using different levels of investigation (i.e., dietary pattern changes/medical food/nutraceutical supplementation/multidomain approach and dietary macro- and micronutrient approaches) as well as possible underlying mechanisms of nutritional prevention. From the 35 included RCTs, there was moderate evidence that intervention through dietary pattern changes, medical food/nutraceutical supplementation, and multidomain approach improved specific cognitive domains or cognitive-related blood biomarkers. There was high evidence that protein supplementation improved specific cognitive domains or functional status in prefrail older adults without effect on cognitive function. For fatty acid supplementation, mainly long-chain polyunsaturated fatty acids, there was emerging evidence suggesting an impact of this approach in improving specific cognitive domains, magnetic resonance imaging (MRI) findings, and/or cognitive-related biomarkers also in selected subgroups of older subjects, although some results were conflicting. There was convincing evidence of an impact of non-flavonoid polyphenol and flavonoid supplementations in improving specific cognitive domains and/or MRI findings. Finally, there was only low evidence suggesting efficacy of intervention with homocysteine-related and antioxidant vitamins in improving cognitive functions, dementia incidence, or cognitive-related biomarkers in cognitively healthy older subjects.
Collapse
Affiliation(s)
- Vincenzo Solfrizzi
- Geriatric Medicine-Memory Unit and Rare Disease Centre, University of Bari 'Aldo Moro', Bari, Italy.,Geriatric Medicine-Memory Unit and Rare Disease Centre, University of Bari 'Aldo Moro', Bari, Italy
| | - Pasquale Agosti
- Geriatric Medicine-Memory Unit and Rare Disease Centre, University of Bari 'Aldo Moro', Bari, Italy
| | - Madia Lozupone
- Department of Basic Medicine, Neurodegenerative Disease Unit, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Carlo Custodero
- Geriatric Medicine-Memory Unit and Rare Disease Centre, University of Bari 'Aldo Moro', Bari, Italy
| | - Andrea Schilardi
- Geriatric Medicine-Memory Unit and Rare Disease Centre, University of Bari 'Aldo Moro', Bari, Italy
| | - Vincenzo Valiani
- Geriatric Medicine-Memory Unit and Rare Disease Centre, University of Bari 'Aldo Moro', Bari, Italy
| | - Rodolfo Sardone
- National Institute of Gastroenterology "Saverio de Bellis", Research Hospital, Castellana Grotte Bari, Italy
| | - Vittorio Dibello
- Department of Interdisciplinary Medicine (DIM), Section of Dentistry, University of Bari Aldo, Moro, Bari, Italy
| | - Luca Di Lena
- National Institute of Gastroenterology "Saverio de Bellis", Research Hospital, Castellana Grotte Bari, Italy
| | - Angela Lamanna
- National Institute of Gastroenterology "Saverio de Bellis", Research Hospital, Castellana Grotte Bari, Italy
| | - Roberta Stallone
- Department of Basic Medicine, Neurodegenerative Disease Unit, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Antonello Bellomo
- Department of Clinical and Experimental Medicine, Psychiatric Unit, University of Foggia, Foggia, Italy
| | - Antonio Greco
- Department of Medical Sciences, Geriatric Unit and Laboratory of Gerontology and Geriatrics, IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Foggia, Italy
| | - Antonio Daniele
- Institute of Neurology, Catholic University of Sacred Heart, Rome, Italy
| | - Davide Seripa
- Department of Medical Sciences, Geriatric Unit and Laboratory of Gerontology and Geriatrics, IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Foggia, Italy
| | - Carlo Sabbà
- Geriatric Medicine-Memory Unit and Rare Disease Centre, University of Bari 'Aldo Moro', Bari, Italy
| | - Giancarlo Logroscino
- Department of Basic Medicine, Neurodegenerative Disease Unit, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy.,Department of Clinical Research in Neurology, University of Bari Aldo Moro, "Pia Fondazione Cardinale G. Panico", Tricase, Lecce, Italy
| | - Francesco Panza
- Department of Basic Medicine, Neurodegenerative Disease Unit, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy.,Department of Medical Sciences, Geriatric Unit and Laboratory of Gerontology and Geriatrics, IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Foggia, Italy.,Department of Clinical Research in Neurology, University of Bari Aldo Moro, "Pia Fondazione Cardinale G. Panico", Tricase, Lecce, Italy.,Geriatric Medicine-Memory Unit and Rare Disease Centre, University of Bari 'Aldo Moro', Bari, Italy
| |
Collapse
|
54
|
Pirone L, Di Gaetano S, Rizzarelli E, Bellia F, Pedone E. Focusing on the functional characterization of the anserinase from Oreochromis niloticus. Int J Biol Macromol 2019; 130:158-165. [PMID: 30797810 DOI: 10.1016/j.ijbiomac.2019.02.118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/20/2019] [Accepted: 02/20/2019] [Indexed: 12/24/2022]
Abstract
Carnosine, anserine and homocarnosine are the three most representative compounds of the histidine dipeptides family, widely distributed in mammals in different amounts depending on the species and the tissue considered. Histidine dipeptides are mainly degraded by two different carnosinase homologues: a highly specific metal-ion dependent carnosinase (CN1) located in serum and brain and a non-specific cytosolic form (CN2). The hydrolysis of such dipeptides in prokaryotes and eukaryotes is also catalyzed by the anserinase (ANSN). Such naturally occurring dipeptides represent an interesting topic because they seem to have numerous biological roles such as potential neuroprotective and neurotransmitter functions in the brain and therefore ANSN results to be a very interesting target of study. We here report, for the first time, cloning, expression of ANSN from the fish Oreochromis niloticus both in a mammalian and in a prokaryotic system, in order to perform deep functional studies by enzymatic assays in the presence of different metals and substrates. Furthermore, by means of a mass spectrometry-based proteomic approach, we analysed protein sequence and the potential presence of post-translational modifications in the mammalian recombinant protein. Finally, a preliminary structural characterization was carried out on ANSN produced in Escherichia coli.
Collapse
Affiliation(s)
- L Pirone
- Institute of Biostructure and Bioimaging, CNR, Napoli, Italy
| | - S Di Gaetano
- Institute of Biostructure and Bioimaging, CNR, Napoli, Italy
| | - E Rizzarelli
- Institute of Biostructure and Bioimaging, CNR, Catania, Italy; Department of Chemical Sciences, University of Catania, Catania, Italy
| | - F Bellia
- Institute of Biostructure and Bioimaging, CNR, Catania, Italy.
| | - E Pedone
- Institute of Biostructure and Bioimaging, CNR, Napoli, Italy.
| |
Collapse
|
55
|
Sugihara Y, Onoue S, Tashiro K, Sato M, Hasegawa T, Katakura Y. Carnosine induces intestinal cells to secrete exosomes that activate neuronal cells. PLoS One 2019; 14:e0217394. [PMID: 31136600 PMCID: PMC6538158 DOI: 10.1371/journal.pone.0217394] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 05/12/2019] [Indexed: 02/06/2023] Open
Abstract
Recently, we showed that imidazole dipeptide such as carnosine contained abundantly in chicken breast meat improves brain function in a double-blind randomized controlled trial. However, the underlying molecular mechanisms remain unknown. Here, we investigated whether carnosine activates intestinal epithelial cells and induces the secretion of factors that activate brain function. We focused on exosomes derived from intestinal epithelial cells as mediators of brain-gut interaction. Results showed that exosomes derived from Caco-2 cells treated with carnosine significantly induced neurite growth in SH-SY5Y cells. To clarify the molecular basis of this finding, we performed integrated analysis of microRNAs (miRNAs) with altered expression in exosomes in response to carnosine treatment and mRNAs with altered expression in target cells in response to exosome treatment to identify related miRNAs and their target genes. The combination of miR-6769-5p and its target gene ATXN1 was found to be involved in the exosome-induced activation of neuronal cells.
Collapse
Affiliation(s)
- Yuka Sugihara
- Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Nishi-ku, Fukuoka, Japan
| | - Shiori Onoue
- Graduate School of Systems Life Sciences, Kyushu University, Nishi-ku, Fukuoka, Japan
| | - Kosuke Tashiro
- Faculty of Agriculture, Kyushu University, Nishi-ku, Fukuoka, Japan
| | - Mikako Sato
- R&D Center, NH Foods, Ltd., Tsukuba, Ibaraki, Japan
| | | | - Yoshinori Katakura
- Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Nishi-ku, Fukuoka, Japan
- Graduate School of Systems Life Sciences, Kyushu University, Nishi-ku, Fukuoka, Japan
- Faculty of Agriculture, Kyushu University, Nishi-ku, Fukuoka, Japan
- * E-mail:
| |
Collapse
|
56
|
Schön M, Mousa A, Berk M, Chia WL, Ukropec J, Majid A, Ukropcová B, de Courten B. The Potential of Carnosine in Brain-Related Disorders: A Comprehensive Review of Current Evidence. Nutrients 2019; 11:nu11061196. [PMID: 31141890 PMCID: PMC6627134 DOI: 10.3390/nu11061196] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/17/2019] [Accepted: 05/23/2019] [Indexed: 12/17/2022] Open
Abstract
Neurological, neurodegenerative, and psychiatric disorders represent a serious burden because of their increasing prevalence, risk of disability, and the lack of effective causal/disease-modifying treatments. There is a growing body of evidence indicating potentially favourable effects of carnosine, which is an over-the-counter food supplement, in peripheral tissues. Although most studies to date have focused on the role of carnosine in metabolic and cardiovascular disorders, the physiological presence of this di-peptide and its analogues in the brain together with their ability to cross the blood-brain barrier as well as evidence from in vitro, animal, and human studies suggest carnosine as a promising therapeutic target in brain disorders. In this review, we aim to provide a comprehensive overview of the role of carnosine in neurological, neurodevelopmental, neurodegenerative, and psychiatric disorders, summarizing current evidence from cell, animal, and human cross-sectional, longitudinal studies, and randomized controlled trials.
Collapse
Affiliation(s)
- Martin Schön
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 84215 Bratislava, Slovakia.
- Biomedical Research Center, Slovak Academy of Sciences, 81439 Bratislava, Slovakia.
| | - Aya Mousa
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Melbourne, Victoria 3168, Australia.
| | - Michael Berk
- School of Medicine, IMPACT Strategic Research Centre, Barwon Health, Deakin University, Geelong, Victoria 3220, Australia.
- Orygen, The Centre of Excellence in Youth Mental Health, the Department of Psychiatry and the Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria 3052, Australia.
| | - Wern L Chia
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Melbourne, Victoria 3168, Australia.
| | - Jozef Ukropec
- Biomedical Research Center, Slovak Academy of Sciences, 81439 Bratislava, Slovakia.
| | - Arshad Majid
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK.
| | - Barbara Ukropcová
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 84215 Bratislava, Slovakia.
- Biomedical Research Center, Slovak Academy of Sciences, 81439 Bratislava, Slovakia.
- Faculty of Physical Education and Sports, Comenius University, 81469 Bratislava, Slovakia.
| | - Barbora de Courten
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Melbourne, Victoria 3168, Australia.
| |
Collapse
|
57
|
Toh DWK, Wong CH, Fam J, Kim JE. Daily consumption of essence of chicken improves cognitive function: a systematically searched meta-analysis of randomized controlled trials. Nutr Neurosci 2019; 24:236-247. [PMID: 31131735 DOI: 10.1080/1028415x.2019.1619984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Essence of chicken (EC) is a dietary supplement with potential benefits on one's cognitive performance. The purpose of this meta-analysis is to evaluate the effects of consuming EC on cognitive function, applying extensively represented domains. Six databases were systematically searched to yield 1760 articles. These articles were independently screened to obtain 8 eligible articles with a pooled population of 794 subjects which is more than twice the population size considered in the previous meta-analyses. Largely, favorable effects on cognitive function were observed following daily EC intake, specifically in the working memory domain (standardized mean difference: 0.31, 95% CI: 0.16, 0.46), one of the core components in executive function which showed statistically significant results. Furthermore, the observed results were also robust to sensitivity analyses and subgroup analyses. This suggests that when consumed daily, EC may improve the mental processing aspect of cognitive function amongst the healthy population.
Collapse
Affiliation(s)
- Darel Wee Kiat Toh
- Food Science and Technology Programme, Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Chun Hong Wong
- Food Science and Technology Programme, Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Johnson Fam
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Psychological Medicine, National University Hospital, Singapore, Singapore
| | - Jung Eun Kim
- Food Science and Technology Programme, Department of Chemistry, National University of Singapore, Singapore, Singapore
| |
Collapse
|
58
|
Pivotal role of carnosine in the modulation of brain cells activity: Multimodal mechanism of action and therapeutic potential in neurodegenerative disorders. Prog Neurobiol 2018; 175:35-53. [PMID: 30593839 DOI: 10.1016/j.pneurobio.2018.12.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/13/2018] [Accepted: 12/23/2018] [Indexed: 12/24/2022]
Abstract
Carnosine (β-alanyl-l-histidine), a dipeptide, is an endogenous antioxidant widely distributed in excitable tissues like muscles and the brain. Although discovered more than a hundred years ago and having been extensively studied in the periphery, the role of carnosine in the brain remains mysterious. Carnosinemia, a rare metabolic disorder with increased levels of carnosine in urine and low levels or absence of carnosinase in the blood, is associated with severe neurological symptoms in humans. This review deals with the role of carnosine in the brain in both physiological and pathological conditions, with a focus on preclinical evidence suggesting a high therapeutic potential of carnosine in neurodegenerative disorders. We review carnosine and carnosinemia's discoveries and the extensive research on the role and benefits of carnosine in the periphery. We then turn to carnosine's biochemistry and distribution in the brain. Using an array of recent observations as a foundation, we draw a parallel with the role of carnosine in muscles and speculate on the role of carnosine in promoting the metabolic support of neurons by glial cells. Finally, carnosine has been shown to exert a multimodal activity including inhibition of protein cross-linking and aggregation of amyloid-β and related proteins, free radical generation, nitric oxide detoxification, and an anti-inflammatory activity. It could thus play an important role in the prevention and treatment of neurodegenerative diseases such as Alzheimer's disease. We discuss the potential of carnosine in this context and speculate on new preclinical research directions.
Collapse
|
59
|
Berezhnoy DS, Stvolinsky SL, Lopachev AV, Devyatov AA, Lopacheva OM, Kulikova OI, Abaimov DA, Fedorova TN. Carnosine as an effective neuroprotector in brain pathology and potential neuromodulator in normal conditions. Amino Acids 2018; 51:139-150. [PMID: 30353356 DOI: 10.1007/s00726-018-2667-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 10/12/2018] [Indexed: 11/28/2022]
Abstract
Carnosine (b-alanyl-L-histidine) is an endogenous dipeptide widely distributed in excitable tissues, such as muscle and neural tissues-though in minor concentrations in the latter. Multiple benefits have been attributed to carnosine: direct and indirect antioxidant effect, antiglycating, metal-chelating, chaperone and pH-buffering activity. Thus, carnosine turns out to be a multipotent protector against oxidative damage. However, the role of carnosine in the brain remains unclear. The key aspects concerning carnosine in the brain reviewed are as follows: its concentration and bioavailability, mechanisms of action in neuronal and glial cells, beneficial effects in human studies. Recent literature data and the results of our own research are summarized here. This review covers studies of carnosine effects on both in vitro and in vivo models of cerebral damage, such as neurodegenerative disorders and ischemic injuries and the data on its physiological actions on neuronal signaling and cerebral functions. Besides its antioxidant and homeostatic properties, new potential roles of carnosine in the brain are discussed.
Collapse
Affiliation(s)
- D S Berezhnoy
- Research Center of Neurology, Laboratory of Clinical and Experimental Neurochemistry, Volokolamskoe Shosse, 80, Moscow, 125367, Russia. .,Faculty of Biology, Moscow State University, Moscow, 119234, Russia.
| | - S L Stvolinsky
- Research Center of Neurology, Laboratory of Clinical and Experimental Neurochemistry, Volokolamskoe Shosse, 80, Moscow, 125367, Russia
| | - A V Lopachev
- Research Center of Neurology, Laboratory of Clinical and Experimental Neurochemistry, Volokolamskoe Shosse, 80, Moscow, 125367, Russia
| | - A A Devyatov
- Research Center of Neurology, Laboratory of Clinical and Experimental Neurochemistry, Volokolamskoe Shosse, 80, Moscow, 125367, Russia
| | - O M Lopacheva
- Research Center of Neurology, Laboratory of Clinical and Experimental Neurochemistry, Volokolamskoe Shosse, 80, Moscow, 125367, Russia
| | - O I Kulikova
- Research Center of Neurology, Laboratory of Clinical and Experimental Neurochemistry, Volokolamskoe Shosse, 80, Moscow, 125367, Russia.,Faculty of Ecology, Peoples' Friendship University of Russia, Moscow, 117198, Russia
| | - D A Abaimov
- Research Center of Neurology, Laboratory of Clinical and Experimental Neurochemistry, Volokolamskoe Shosse, 80, Moscow, 125367, Russia
| | - T N Fedorova
- Research Center of Neurology, Laboratory of Clinical and Experimental Neurochemistry, Volokolamskoe Shosse, 80, Moscow, 125367, Russia
| |
Collapse
|
60
|
Development and validation of a sensitive LC-MS/MS assay for the quantification of anserine in human plasma and urine and its application to pharmacokinetic study. Amino Acids 2018; 51:103-114. [PMID: 30302566 DOI: 10.1007/s00726-018-2663-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/03/2018] [Indexed: 12/15/2022]
Abstract
Carnosine (beta-alanyl-L-histidine) and its methylated analogue anserine are present in relevant concentrations in the omnivore human diet. Several studies reported promising therapeutic potential for carnosine in various rodent models of oxidative stress and inflammation-related chronic diseases. Nevertheless, the poor serum stability of carnosine in humans makes the translation of rodent models hard. Even though anserine and carnosine have similar biochemical properties, anserine has better serum stability. Despite this interesting profile, the research on anserine is scarce. The aim of this study was to explore the bioavailability and stability of synthesized anserine by (1) performing in vitro stability experiments in human plasma and molecular modelling studies and by (2) evaluating the plasma and urinary pharmacokinetic profile in healthy volunteers following different doses of anserine (4-10-20 mg/kg body weight). A bio-analytical method for measuring anserine levels was developed and validated using liquid chromatography-electrospray mass spectrometry. Both plasma (CMAX: 0.54-1.10-3.12 µM) and urinary (CMAX: 0.09-0.41-0.72 mg/mg creatinine) anserine increased dose-dependently following ingestion of 4-10-20 anserine mg/kg BW, respectively. The inter-individual variation in plasma anserine was mainly explained by the activity (R2 = 0.75) and content (R2 = 0.77) of the enzyme serum carnosinase-1. Compared to carnosine, a lower interaction energy of anserine with carnosinase-1 was suggested by molecular modelling studies. Conversely, the two dipeptides seems to have similar interaction with the PEPT1 transporter. It can be concluded that nutritionally relevant doses of synthesized anserine are well-absorbed and that its degradation by serum carnosinase-1 is less pronounced compared to carnosine. This makes anserine a good candidate as a more stable carnosine-analogue to attenuate chronic diseases in humans.
Collapse
|
61
|
Effectiveness of Essence of Chicken on Cognitive Function Improvement: A Randomized Controlled Clinical Trial. Nutrients 2018; 10:nu10070845. [PMID: 29966229 PMCID: PMC6073337 DOI: 10.3390/nu10070845] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/16/2018] [Accepted: 06/26/2018] [Indexed: 01/26/2023] Open
Abstract
High-quality, adequately-powered clinical trials investigating the effect of Essence of Chicken (EC) on cognitive function are lacking. We conducted a randomized, double-blind, placebo-controlled clinical trial on healthy adult volunteers to determine the effect of EC on short-term memory, working memory, and selective and sustained attention. As a secondary objective, we evaluated baseline stress as a modifying factor by including treatment, stress and visit as main effects in a three-way ANOVA model. Cognitive function was evaluated at baseline, and Days 7 and 14. Data from 235 participants were analyzed on a per-protocol basis. The three-way interaction effect was significant (p = 0.020) in Digit Span Forward and further analyses showed EC improved test performance in moderate (p = 0.041) and severe stress (p = 0.065) but not in normal and mild stress subgroups. In Digit Span Backward, EC group showed greater improvement compared to placebo (p = 0.028), with 0.60 digits (8.50% improvement from baseline) more recalled on Day 7. No treatment or interaction effects were statistically significant in selective and sustained attention tests. Our findings support EC’s effect in improving mental processes used in working memory among healthy adults and short-term memory among healthy adults experiencing stress in daily life.
Collapse
|
62
|
Ding Q, Tanigawa K, Kaneko J, Totsuka M, Katakura Y, Imabayashi E, Matsuda H, Hisatsune T. Anserine/Carnosine Supplementation Preserves Blood Flow in the Prefrontal Brain of Elderly People Carrying APOE e4. Aging Dis 2018; 9:334-345. [PMID: 29896423 PMCID: PMC5988590 DOI: 10.14336/ad.2017.0809] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/09/2017] [Indexed: 12/15/2022] Open
Abstract
In a previously reported double-blind, randomized controlled trial (RCT), we demonstrated that daily supplementation with anserine (750 mg) and carnosine (250 mg) improves brain blood flow and memory function in elderly people. Here, we conducted a sub-analysis of MRI data and test scores from the same RCT to determine whether anserine/carnosine supplementation specifically benefits elderly people carrying the APOE e4 allele, which is a risk gene for accelerated brain aging and for the onset of Alzheimer’s Disease. We collected data from 68 participants aged 65 years or older who received anserine/carnosine supplementation (ACS) or placebo for 12 months. Subjects were assessed at the start and end of the trial using several neuropsychological tests, including the Wechsler Memory Scale-Logical Memory (WMS-LM). We also collected two types of MRI data, arterial spin labeling (ASL) and diffusion tensor imaging (DTI) at the start and end of the trial. We found that ACS significantly preserved verbal memory (WMS-LM, F[1,65] = 4.2003, p = 0.0445) and blood flow at frontal areas of the brain (FWEcluster level, p < 0.001). Sub-analysis based on the APOE4 genotype showed a significant preservation of blood flow (p = 0.002, by ASL analysis) and white-matter microstructure (p = 0.003, by DTI analysis) at prefrontal areas in APOE4+ subjects in the active group, while there was no significant difference between APOE4- subjects in the active and placebo groups. The effect of ACS in preserving brain structure and function in elderly people carrying APOE4 should be verified by further studies.
Collapse
Affiliation(s)
- Qiong Ding
- 1Department of Integrated Biosciences, Graduate School of Frontier Sciences, and
| | - Kitora Tanigawa
- 1Department of Integrated Biosciences, Graduate School of Frontier Sciences, and
| | - Jun Kaneko
- 1Department of Integrated Biosciences, Graduate School of Frontier Sciences, and
| | - Mamoru Totsuka
- 2Department of Applied Biochemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yoshinori Katakura
- 3Graduate School of Systems Life Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Etsuko Imabayashi
- 4Integrative Brain Imaging Center (IBIC), National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hiroshi Matsuda
- 4Integrative Brain Imaging Center (IBIC), National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Tatsuhiro Hisatsune
- 1Department of Integrated Biosciences, Graduate School of Frontier Sciences, and
| |
Collapse
|
63
|
Shan Y, Qi W, Wang M, Su R, He Z. Kinetically Controlled Carboxypeptidase-Catalyzed Synthesis of Novel Antioxidant Dipeptide Precursor BOC-Tyr-Ala. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s12209-018-0166-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
64
|
Yamashita S, Sato M, Matsumoto T, Kadooka K, Hasegawa T, Fujimura T, Katakura Y. Mechanisms of carnosine-induced activation of neuronal cells. Biosci Biotechnol Biochem 2018; 82:683-688. [DOI: 10.1080/09168451.2017.1413325] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Abstract
Carnosine (β-Ala-l-His), an imidazole dipeptide, is known to have many functions. Recently, we demonstrated in a double-blind randomized controlled trial that carnosine is capable of preserving cognitive function in elderly people. In the current study, we assessed the ability of carnosine to activate the brain, and we tried to clarify the molecular mechanisms behind this activation. Our results demonstrate that carnosine permeates the blood brain barrier and activates glial cells within the brain, causing them to secrete neurotrophins, including BDNF and NGF. These results point to a novel mechanism of carnosine-induced neuronal activation. Our results suggest that carnosine should be recognized as a functional food factor that helps achieve anti-brain aging.
Collapse
Affiliation(s)
- Shuntaro Yamashita
- R&D Center, NH Foods Ltd., Tsukuba, Japan
- Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
65
|
Affiliation(s)
- Guilherme Giannini Artioli
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement (SHAPE) Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Craig Sale
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement (SHAPE) Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Rebecca Louise Jones
- School of Sport Science and Physical Activity, Institute for Sport and Physical Activity Research, University of Bedfordshire, Bedford, UK
| |
Collapse
|
66
|
Hachimura S, Totsuka M, Hosono A. Immunomodulation by food: impact on gut immunity and immune cell function. Biosci Biotechnol Biochem 2018; 82:584-599. [PMID: 29448897 DOI: 10.1080/09168451.2018.1433017] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent studies have revealed that various food components affect the immune response. These components act on various immune cells, and their effects are mediated through the intestinal immune system and, in some cases, the intestinal microbiota. In this review, we describe the immunomodulating effects of various food components, including probiotics, prebiotics, polysaccharides, vitamins, minerals, fatty acids, peptides, amino acids and polyphenols. Some of these components enhance immune responses, leading to host defense against infection, whereas others inhibit immune responses, thus suppressing allergy and inflammation.
Collapse
Affiliation(s)
- Satoshi Hachimura
- a Research Center for Food Safety, Graduate School of Agricultural and Life Sciences , The University of Tokyo , Japan
| | - Mamoru Totsuka
- b Department of Food Science and Technology, Faculty of Applied Life Science , Nippon Veterinary and Life Science University , Japan
| | - Akira Hosono
- c Department of Food Bioscience and Biotechnology, College of Bioresource Sciences , Nihon University , Japan
| |
Collapse
|
67
|
Glycotoxins: Dietary and Metabolic Origins; Possible Amelioration of Neurotoxicity by Carnosine, with Special Reference to Parkinson’s Disease. Neurotox Res 2018; 34:164-172. [DOI: 10.1007/s12640-018-9867-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/01/2018] [Accepted: 01/11/2018] [Indexed: 12/17/2022]
|
68
|
Kawahara M, Tanaka KI, Kato-Negishi M. Zinc, Carnosine, and Neurodegenerative Diseases. Nutrients 2018; 10:E147. [PMID: 29382141 PMCID: PMC5852723 DOI: 10.3390/nu10020147] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 01/02/2023] Open
Abstract
Zinc (Zn) is abundantly present in the brain, and accumulates in the synaptic vesicles. Synaptic Zn is released with neuronal excitation, and plays essential roles in learning and memory. Increasing evidence suggests that the disruption of Zn homeostasis is involved in various neurodegenerative diseases including Alzheimer's disease, a vascular type of dementia, and prion diseases. Our and other numerous studies suggest that carnosine (β-alanyl histidine) is protective against these neurodegenerative diseases. Carnosine is an endogenous dipeptide abundantly present in the skeletal muscles and in the brain, and has numerous beneficial effects such as antioxidant, metal chelating, anti-crosslinking, and anti-glycation activities. The complex of carnosine and Zn, termed polaprezinc, is widely used for Zn supplementation therapy and for the treatment of ulcers. Here, we review the link between Zn and these neurodegenerative diseases, and focus on the neuroprotective effects of carnosine. We also discuss the carnosine level in various foodstuffs and beneficial effects of dietary supplementation of carnosine.
Collapse
Affiliation(s)
- Masahiro Kawahara
- Department of Bio-Analytical Chemistry, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan.
| | - Ken-Ichiro Tanaka
- Department of Bio-Analytical Chemistry, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan.
| | - Midori Kato-Negishi
- Department of Bio-Analytical Chemistry, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan.
| |
Collapse
|
69
|
Katakura Y, Totsuka M, Imabayashi E, Matsuda H, Hisatsune T. Anserine/Carnosine Supplementation Suppresses the Expression of the Inflammatory Chemokine CCL24 in Peripheral Blood Mononuclear Cells from Elderly People. Nutrients 2017; 9:nu9111199. [PMID: 29088099 PMCID: PMC5707671 DOI: 10.3390/nu9111199] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/16/2017] [Accepted: 10/27/2017] [Indexed: 11/16/2022] Open
Abstract
Our goal was to determine whether anserine/carnosine supplementation (ACS) suppresses chemokine levels in elderly people. In a double-blind randomized controlled trial, volunteers were assigned to the ACS or placebo group (1:1). Sixty healthy elderly volunteers (active, n = 30; placebo, n = 30) completed the study. The ACS group was administered 1.0 g of anserine/carnosine (3:1) for 3 months. A microarray analysis and subsequent quantitative real-time polymerase chain reaction (qRT-PCR) analysis of peripheral blood mononuclear cells (PBMCs) showed decreased expression of CCL24, an inflammatory chemokine (p < 0.05). Verbal memory, assessed using the Wechsler memory scale-logical memory, was preserved in the ACS group. An age-restricted sub-analysis showed significant verbal memory preservation by ACS in participants who were in their 60s (active, n = 12; placebo, n = 9; p = 0.048) and 70s (active, n = 7; placebo, n = 11; p = 0.017). The suppression of CCL24 expression was greatest in people who were in their 70s (p < 0.01). There was a significant correlation between the preservation of verbal memory and suppression of CCL24 expression in the group that was in the 70s (Poisson correlation, r = 0.46, p < 0.05). These results suggest that ACS may preserve verbal episodic memory, probably owing to CCL24 suppression in the blood, especially in elderly participants.
Collapse
Affiliation(s)
- Yoshinori Katakura
- Faculty of Agriculture, Kyushu University, Higashi-ku, Fukuoka 812-8581, Japan.
| | - Mamoru Totsuka
- Department of Applied Biochemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan.
| | - Etsuko Imabayashi
- Integrative Brain Imaging Center (IBIC), National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan.
| | - Hiroshi Matsuda
- Integrative Brain Imaging Center (IBIC), National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan.
| | - Tatsuhiro Hisatsune
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan.
| |
Collapse
|
70
|
Anserine (beta-alanyl-3-methyl-L-histidine) improves neurovascular-unit dysfunction and spatial memory in aged AβPPswe/PSEN1dE9 Alzheimer's-model mice. Sci Rep 2017; 7:12571. [PMID: 28974740 PMCID: PMC5626714 DOI: 10.1038/s41598-017-12785-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 09/19/2017] [Indexed: 11/16/2022] Open
Abstract
Anserine/carnosine supplementation improves cerebral blood flow and verbal episodic memory in elderly people, as we previously reported. Anserine’s buffering activity is superior to that of carnosine at neutral pH. In human sera, carnosine but not anserine is rapidly cleaved by carnosinase, limiting its effectiveness. This study examined the effects of anserine on AβPPswe/PSEN1dE9 Alzheimer’s disease (AD) model mice over 18-months old, an age at which these mice exhibit detectable memory deficits. We found that 8 weeks of anserine treatment completely recovered the memory deficits, improved pericyte coverage on endothelial cells in the brain, and diminished chronic glial neuroinflammatory reactions in these mice. These results suggest that anserine (beta-alanyl-3-methyl-L-histidine) supplementation improved memory functions in AD-model mice by exerting a protective effect on the neurovascular units, which are composed of endothelial cells, pericytes, and supporting glial cells.
Collapse
|
71
|
Baye E, Menon K, de Courten MPJ, Earnest A, Cameron J, de Courten B. Does supplementation with carnosine improve cardiometabolic health and cognitive function in patients with pre-diabetes and type 2 diabetes? study protocol for a randomised, double-blind, placebo-controlled trial. BMJ Open 2017; 7:e017691. [PMID: 28864708 PMCID: PMC5588946 DOI: 10.1136/bmjopen-2017-017691] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION Carnosine, an over-the-counter food supplement, has a promising potential for the prevention and treatment of chronic diseases such as type 2 diabetes (T2DM), cardiovascular and neurodegenerative diseases through its anti-inflammatory, antiglycation, antioxidative and chelating effects. We have previously shown that supplementation with carnosine preserves insulin sensitivity and secretion in non-diabetic overweight and obese individuals. The effect of carnosine on cardiometabolic risk and related cognitive outcomes in patients with pre-diabetes and T2DM has thus far not been studied. We therefore aim to investigate whether supplementation with carnosine improves cardiometabolic health and cognitive function in patients with pre-diabetes and T2DM. METHODS AND ANALYSIS We will employ a parallel design randomised controlled trial. Fifty participants with pre-diabetes (impaired fasting glycaemia and impaired glucose tolerance) and T2DM (with HbA1c level < 8%) aged between 18 to 70 years will be randomly assigned to the intervention or control group. At baseline, participants will undergo a medical review and series of tests including anthropometric measurements (body mass index, a dual X-ray absorptiometry and peripheral quantitative computed tomography scan), an oral glucose tolerance test, cardiovascular measurements (central blood pressure, endothelial function and arterial stiffness), cognitive function, physical activity measurement, heart rate variability and liver fibroscan as well as questionnaires to assess dietary habits, sleep quality, depression and quality of life. The intervention group will receive 2 g of carnosine daily in two divided doses while the control group will receive identical placebo capsules for 14 weeks. All baseline measurements will be repeated at the end of the intervention. The change in glycaemic, cardiovascular and cognitive parameters as well as other measures will be compared between the groups. ETHICS AND DISSEMINATION This study is approved by the Human Research Ethics Committee of Monash Health and Monash University, Australia. The findings will be disseminated via peer-reviewed publications and conference presentations. TRIAL REGISTRATION NCT02917928; Pre-results.
Collapse
Affiliation(s)
- Estifanos Baye
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Kirthi Menon
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Maximilian PJ de Courten
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia
| | - Arul Earnest
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - James Cameron
- Monash Cardiovascular Research Centre, Monash Heart, Monash Health, Melbourne, Victoria, Australia
| | - Barbora de Courten
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- Diabetes and Vascular Medicine Unit, Monash Health, Melbourne, Victoria, Australia
| |
Collapse
|
72
|
Carnosine activates the CREB pathway in Caco-2 cells. Cytotechnology 2017; 69:523-527. [PMID: 28374107 DOI: 10.1007/s10616-017-0089-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 03/21/2017] [Indexed: 10/19/2022] Open
Abstract
Imidazole dipeptide, carnosine, is a versatile compound composed of β-Ala and L-His. A recent study showed that carnosine might benefit the treatment of Alzheimer's disease and the maintenance of cognitive function. Based on the observation that carnosine is immediately degraded by serum carnosinase, we hypothesized that carnosine improves brain function by promoting brain-gut interaction. This study sought to present possible mechanisms regulating carnosine-induced activation of brain-gut interaction. We had previously found that carnosine augmented the expression of BDNF in human colorectal cancer cells, thus we became interested in cAMP-responsive element binding protein (CREB), which is a dominant regulator of BDNF transcription. We found that carnosine activates CREB and CREB-related pathways by activating Ca2+-related pathways. Our findings suggest that carnosine augments the expression of CREB-regulated genes in the intestine; this augmentation contributes to the carnosine-induced activation of brain-gut interaction.
Collapse
|
73
|
Hipkiss AR. Depression, Diabetes and Dementia: Formaldehyde May Be a Common Causal Agent; Could Carnosine, a Pluripotent Peptide, Be Protective? Aging Dis 2017; 8:128-130. [PMID: 28400979 PMCID: PMC5362172 DOI: 10.14336/ad.2017.0120] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/20/2017] [Indexed: 01/31/2023] Open
Affiliation(s)
- Alan R Hipkiss
- Aston Research Centre for Healthy Ageing (ARCHA), Aston University, Birmingham, B4 7ET, U.K
| |
Collapse
|
74
|
Goyal D, Shuaib S, Mann S, Goyal B. Rationally Designed Peptides and Peptidomimetics as Inhibitors of Amyloid-β (Aβ) Aggregation: Potential Therapeutics of Alzheimer's Disease. ACS COMBINATORIAL SCIENCE 2017; 19:55-80. [PMID: 28045249 DOI: 10.1021/acscombsci.6b00116] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease with no clinically accepted treatment to cure or halt its progression. The worldwide effort to develop peptide-based inhibitors of amyloid-β (Aβ) aggregation can be considered an unplanned combinatorial experiment. An understanding of what has been done and achieved may advance our understanding of AD pathology and the discovery of effective therapeutic agents. We review here the history of such peptide-based inhibitors, including those based on the Aβ sequence and those not derived from that sequence, containing both natural and unnatural amino acid building blocks. Peptide-based aggregation inhibitors hold significant promise for future AD therapy owing to their high selectivity, effectiveness, low toxicity, good tolerance, low accumulation in tissues, high chemical and biological diversity, possibility of rational design, and highly developed methods for analyzing their mode of action, proteolytic stability (modified peptides), and blood-brain barrier (BBB) permeability.
Collapse
Affiliation(s)
- Deepti Goyal
- Department of Chemistry,
School of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib-140406, Punjab, India
| | - Suniba Shuaib
- Department of Chemistry,
School of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib-140406, Punjab, India
| | - Sukhmani Mann
- Department of Chemistry,
School of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib-140406, Punjab, India
| | - Bhupesh Goyal
- Department of Chemistry,
School of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib-140406, Punjab, India
| |
Collapse
|
75
|
Carnosine and the processes of ageing. Maturitas 2016; 93:28-33. [DOI: 10.1016/j.maturitas.2016.06.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 12/19/2022]
|