51
|
Fekete M, Lehoczki A, Major D, Fazekas-Pongor V, Csípő T, Tarantini S, Csizmadia Z, Varga JT. Exploring the Influence of Gut-Brain Axis Modulation on Cognitive Health: A Comprehensive Review of Prebiotics, Probiotics, and Symbiotics. Nutrients 2024; 16:789. [PMID: 38542700 PMCID: PMC10975805 DOI: 10.3390/nu16060789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 04/01/2024] Open
Abstract
Recent research exploring the relationship between the gut and the brain suggests that the condition of the gut microbiota can influence cognitive health. A well-balanced gut microbiota may help reduce inflammation, which is linked to neurodegenerative conditions. Prebiotics, probiotics, and symbiotics are nutritional supplements and functional food components associated with gastrointestinal well-being. The bidirectional communication of the gut-brain axis is essential for maintaining homeostasis, with pre-, pro-, and symbiotics potentially affecting various cognitive functions such as attention, perception, and memory. Numerous studies have consistently shown that incorporating pre-, pro-, and symbiotics into a healthy diet can lead to improvements in cognitive functions and mood. Maintaining a healthy gut microbiota can support optimal cognitive function, which is crucial for disease prevention in our fast-paced, Westernized society. Our results indicate cognitive benefits in healthy older individuals with probiotic supplementation but not in healthy older individuals who have good and adequate levels of physical activity. Additionally, it appears that there are cognitive benefits in patients with mild cognitive impairment and Alzheimer's disease, while mixed results seem to arise in younger and healthier individuals. However, it is important to acknowledge that individual responses may vary, and the use of these dietary supplements should be tailored to each individual's unique health circumstances and needs.
Collapse
Affiliation(s)
- Mónika Fekete
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (A.L.); (D.M.); (V.F.-P.); (T.C.); (S.T.)
| | - Andrea Lehoczki
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (A.L.); (D.M.); (V.F.-P.); (T.C.); (S.T.)
- National Institute for Haematology and Infectious Diseases, Department of Haematology and Stem Cell Transplantation, South Pest Central Hospital, 1097 Budapest, Hungary
| | - Dávid Major
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (A.L.); (D.M.); (V.F.-P.); (T.C.); (S.T.)
| | - Vince Fazekas-Pongor
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (A.L.); (D.M.); (V.F.-P.); (T.C.); (S.T.)
| | - Tamás Csípő
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (A.L.); (D.M.); (V.F.-P.); (T.C.); (S.T.)
| | - Stefano Tarantini
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (A.L.); (D.M.); (V.F.-P.); (T.C.); (S.T.)
- Department of Neurosurgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Peggy and Charles Stephenson Oklahoma Cancer Center, Oklahoma City, OK 73104, USA
| | - Zoltán Csizmadia
- Faculty of Health Sciences, University of Pécs, 7621 Pécs, Hungary;
| | - János Tamás Varga
- Department of Pulmonology, Semmelweis University, 1083 Budapest, Hungary
| |
Collapse
|
52
|
Lv JJ, Li XY, Wang JB, Yang XT, Yin MY, Yang CH. Association of dietary live microbe intake with various cognitive domains in US adults aged 60 years or older. Sci Rep 2024; 14:5714. [PMID: 38459061 PMCID: PMC10923796 DOI: 10.1038/s41598-024-51520-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/06/2024] [Indexed: 03/10/2024] Open
Abstract
The purpose of this study was to explore whether dietary live microbe intake is associated with various cognitive domains using data from the National Health and Nutrition Examination Survey (NHANES) from 2011 to 2014. And the specific relationship between low, medium and high dietary live microbe intake groups and cognitive ability of the elderly. Dietary live microbe intake was calculated from 24-h diet recall interviews. Cognitive function was assessed using the number symbol substitution test (DSST, which measures processing speed), the animal fluency test (AFT, which measures executive function), the Alzheimer's Registry sub-test (CERAD, which measures memory), and the Composite Z-score, which adds the Z-values of individual tests. Multiple linear regression models and restricted cubic bar graphs were used to investigate the relationship between live microbe intake and cognitive performance. A total of 2,450 participants aged 60 or older were included. Live microbe intake was positively correlated with cognitive ability on the whole. Specifically, when the intake of low, medium and high live microbe was > 2640 g, > 39 g and > 0 g respectively, the CERAD, DSST, AFT and compositive-Z score of the subjects increased with the increase of microbial intake (P < 0.05). In American adults age 60 or older, higher intakes of live microbes were associated with better cognitive performance, especially after a certain amount was reached.
Collapse
Affiliation(s)
- Jia-Jie Lv
- Department of Vascular Surgery, Shanghai Putuo People's Hospital, School of Medicine, Tongji University, No.1291 Jiangning Road, Huangpu District, Shanghai, 200011, China
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, No.639 Zhizaoju Road, Huangpu District, Shanghai, 200011, China
| | - Xin-Yu Li
- Department of Vascular Surgery, Shanghai Putuo People's Hospital, School of Medicine, Tongji University, No.1291 Jiangning Road, Huangpu District, Shanghai, 200011, China
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639 Zhizaoju Road, Huangpu District, Shanghai, 200011, China
| | - Jing-Bing Wang
- Department of Interventional Therapy, Multidisciplinary Team of Vascular Anomalies, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, No.639 Zhizaoju Road, Huangpu District, Shanghai, 200011, China
| | - Xi-Tao Yang
- Department of Interventional Therapy, Multidisciplinary Team of Vascular Anomalies, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, No.639 Zhizaoju Road, Huangpu District, Shanghai, 200011, China
| | - Min-Yi Yin
- Department of Vascular Surgery, Shanghai Putuo People's Hospital, School of Medicine, Tongji University, No.1291 Jiangning Road, Huangpu District, Shanghai, 200011, China
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, No.639 Zhizaoju Road, Huangpu District, Shanghai, 200011, China
| | - Cheng-Hao Yang
- Department of Vascular Surgery, Shanghai Putuo People's Hospital, School of Medicine, Tongji University, No.1291 Jiangning Road, Huangpu District, Shanghai, 200011, China.
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, No.639 Zhizaoju Road, Huangpu District, Shanghai, 200011, China.
| |
Collapse
|
53
|
Nouraeinejad A. The bidirectional links between coronavirus disease 2019 and Alzheimer's disease. Int J Neurosci 2024:1-15. [PMID: 38451045 DOI: 10.1080/00207454.2024.2327403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 03/02/2024] [Indexed: 03/08/2024]
Abstract
Coronavirus disease 2019 (COVID-19) can be a critical disease, particularly in the elderly and those with comorbidities. Patients with Alzheimer's disease are more vulnerable to COVID-19 consequences. The latest results have indicated some common risk factors for both diseases. An understanding of the pathological link between COVID-19 and Alzheimer's disease will help develop timely strategies to treat both diseases. This review explores the bidirectional links between COVID-19 and Alzheimer's disease.
Collapse
Affiliation(s)
- Ali Nouraeinejad
- Faculty of Brain Sciences, Institute of Ophthalmology, University College London (UCL), London, United Kingdom
| |
Collapse
|
54
|
Fan Y, Keerthisinghe TP, Nian M, Cao X, Chen X, Yang Q, Sampathkumar K, Loo JSC, Ng KW, Demokritou P, Fang M. Comparative secretome metabolic dysregulation by six engineered dietary nanoparticles (EDNs) on the simulated gut microbiota. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133003. [PMID: 38029586 DOI: 10.1016/j.jhazmat.2023.133003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/27/2023] [Accepted: 11/12/2023] [Indexed: 12/01/2023]
Abstract
The potential use of engineered dietary nanoparticles (EDNs) in diet has been increasing and poses a risk of exposure. The effect of EDNs on gut bacterial metabolism remains largely unknown. In this study, liquid chromatography-mass spectrometry (LC-MS) based metabolomics was used to reveal significantly altered metabolites and metabolic pathways in the secretome of simulated gut microbiome exposed to six different types of EDNs (Chitosan, cellulose nanocrystals (CNC), cellulose nanofibrils (CNF) and polylactic-co-glycolic acid (PLGA); two inorganic EDNs including TiO2 and SiO2) at two dietary doses. We demonstrated that all six EDNs can alter the composition in the secretome with distinct patterns. Chitosan, followed by PLGA and SiO2, has shown the highest potency in inducing the secretome change with major pathways in tryptophan and indole metabolism, bile acid metabolism, tyrosine and phenol metabolism. Metabolomic alterations with clear dose response were observed in most EDNs. Overall, phenylalanine has been shown as the most sensitive metabolites, followed by bile acids such as chenodeoxycholic acid and cholic acid. Those metabolites might be served as the representative metabolites for the EDNs-gut bacteria interaction. Collectively, our studies have demonstrated the sensitivity and feasibility of using metabolomic signatures to understand and predict EDNs-gut microbiome interaction.
Collapse
Affiliation(s)
- Yijun Fan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Hefei 230601, Anhui, China
| | | | - Min Nian
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Xiaoqiong Cao
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 655 Huntington Ave, Boston, MA 02115, USA
| | - Xing Chen
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Qin Yang
- Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Kaarunya Sampathkumar
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Joachim Say Chye Loo
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 655 Huntington Ave, Boston, MA 02115, USA
| | - Mingliang Fang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Institute of Eco-Chongming, Shanghai 202162, China.
| |
Collapse
|
55
|
Huang B, Liang S, Li X, Xie Z, Yang R, Sun B, Xue J, Li B, Wang S, Shi H, Shi Y. Postweaning intermittent sleep deprivation enhances defensive attack in adult female mice via the microbiota-gut-brain axis. Prog Neuropsychopharmacol Biol Psychiatry 2024; 130:110915. [PMID: 38104921 DOI: 10.1016/j.pnpbp.2023.110915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
Sleep is one of the most important physiological activities in life and promotes the growth and development of an individual. In modern society, sleep deprivation (SD), especially among adolescents, has become a common phenomenon. However, long-term SD severely affected adolescents' neurodevelopment leading to abnormal behavioral phenotypes. Clinical studies indicated that sleep problems caused increased aggressive behavior in adolescents. Aggressive behavior was subordinate to social behaviors, in which defensive attack was often the last line for survival. Meanwhile, increasing studies shown that gut microbiota regulated social behaviors by affecting specific brain regions via the gut-brain axis. However, whether postweaning intermittent SD is related to defensive attack in adulthood, and if so, whether it is mediated by the microbiota-gut-brain axis are still elusive. Combined with microbial sequencing and hippocampal metabolomics, the present study mainly investigated the long-term effects of postweaning intermittent SD on defensive attack in adult mice. Our study demonstrated that postweaning intermittent SD enhanced defensive attack and impaired long-term memory formation in adult female mice. Moreover, microbial sequencing and LC-MS analysis showed that postweaning intermittent SD altered the gut microbial composition and the hippocampal metabolic profile in female mice, respectively. Our attention has been drawn to the neuroactive ligand-receptor interaction pathway and related metabolites. In conclusion, our findings provide a new perspective on the relationship of early-life SD and defensive attack in adulthood, and also highlight the importance of sleep in early-life, especially in females.
Collapse
Affiliation(s)
- Boya Huang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Forensic Medicine, Hebei Medicinal University, Shijiazhuang 050017, China; Graduate School, Tianjin Medical University, Tianjin 300070, China
| | - Shihao Liang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Forensic Medicine, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Xinrui Li
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Forensic Medicine, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Ziyu Xie
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China
| | - Rui Yang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Forensic Medicine, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Binhuang Sun
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Forensic Medicine, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Jiping Xue
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China
| | - Bingyu Li
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China
| | - Sheng Wang
- Hebei Key Laboratory of Forensic Medicine, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Haishui Shi
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Forensic Medicine, Hebei Medicinal University, Shijiazhuang 050017, China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China; Nursing School, Hebei Medical University, Shijiazhuang 050031, China.
| | - Yun Shi
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medicinal University, Shijiazhuang 050017, China.
| |
Collapse
|
56
|
Trubitsina NP, Matiiv AB, Rogoza TM, Zudilova AA, Bezgina MD, Zhouravleva GA, Bondarev SA. Role of the Gut Microbiome and Bacterial Amyloids in the Development of Synucleinopathies. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:523-542. [PMID: 38648770 DOI: 10.1134/s0006297924030118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/16/2024] [Accepted: 01/24/2024] [Indexed: 04/25/2024]
Abstract
Less than ten years ago, evidence began to accumulate about association between the changes in the composition of gut microbiota and development of human synucleinopathies, in particular sporadic form of Parkinson's disease. We collected data from more than one hundred and thirty experimental studies that reported similar results and summarized the frequencies of detection of different groups of bacteria in these studies. It is important to note that it is extremely rare that a unidirectional change in the population of one or another group of microorganisms (only an elevation or only a reduction) was detected in the patients with Parkinson's disease. However, we were able to identify several groups of bacteria that were overrepresented in the patients with Parkinson's disease in the analyzed studies. There are various hypotheses about the molecular mechanisms that explain such relationships. Usually, α-synuclein aggregation is associated with the development of inflammatory processes that occur in response to the changes in the microbiome. However, experimental evidence is accumulating on the influence of bacterial proteins, including amyloids (curli), as well as various metabolites, on the α-synuclein aggregation. In the review, we provided up-to-date information about such examples.
Collapse
Affiliation(s)
- Nina P Trubitsina
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Anton B Matiiv
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Tatyana M Rogoza
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
- St. Petersburg Branch of the Vavilov Institute of General Genetics, Saint Petersburg, 198504, Russia
| | - Anna A Zudilova
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Mariya D Bezgina
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Galina A Zhouravleva
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
- Laboratory of Amyloid Biology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Stanislav A Bondarev
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, 199034, Russia.
- Laboratory of Amyloid Biology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
| |
Collapse
|
57
|
Bashir B, Alam S, Khandale N, Birla D, Vishwas S, Pandey NK, Gupta G, Paudel KR, Dureja H, Kumar P, Singh TG, Kuppusamy G, Zacconi FC, Pinto TDJA, Dhanasekaran M, Gulati M, Dua K, Singh SK. Opening avenues for treatment of neurodegenerative disease using post-biotics: Breakthroughs and bottlenecks in clinical translation. Ageing Res Rev 2024; 95:102236. [PMID: 38369026 DOI: 10.1016/j.arr.2024.102236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
Recent studies have indicated the significant involvement of the gut microbiome in both human physiology and pathology. Additionally, therapeutic interventions based on microbiome approaches have been employed to enhance overall health and address various diseases including aging and neurodegenerative disease (ND). Researchers have explored potential links between these areas, investigating the potential pathogenic or therapeutic effects of intestinal microbiota in diseases. This article provides a summary of established interactions between the gut microbiome and ND. Post-biotic is believed to mediate its neuroprotection by elevating the level of dopamine and reducing the level of α-synuclein in substantia nigra, protecting the loss of dopaminergic neurons, reducing the aggregation of NFT, reducing the deposition of amyloid β peptide plagues and ameliorating motor deficits. Moreover, mediates its neuroprotective activity by inhibiting the inflammatory response (decreasing the expression of TNFα, iNOS expression, free radical formation, overexpression of HIF-1α), apoptosis (i.e. active caspase-3, TNF-α, maintains the level of Bax/Bcl-2 ratio) and promoting BDNF secretion. It is also reported to have good antioxidant activity. This review offers an overview of the latest findings from both preclinical and clinical trials concerning the use of post-biotics in ND.
Collapse
Affiliation(s)
- Bushra Bashir
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Shahbaz Alam
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Nikhil Khandale
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Devendra Birla
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Narendra Kumar Pandey
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur 302017, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Keshav Raj Paudel
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Ghudda, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
| | - Gowthamarajan Kuppusamy
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, India
| | - Flavia C Zacconi
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Terezinha de Jesus Andreoli Pinto
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Professor Lineu Prestes Street, Sao Paulo 05508-000, Brazil
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University Auburn, AL 36849, USA
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
58
|
Guarnieri L, Bosco F, Leo A, Citraro R, Palma E, De Sarro G, Mollace V. Impact of micronutrients and nutraceuticals on cognitive function and performance in Alzheimer's disease. Ageing Res Rev 2024; 95:102210. [PMID: 38296163 DOI: 10.1016/j.arr.2024.102210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/10/2024] [Accepted: 01/25/2024] [Indexed: 02/13/2024]
Abstract
Alzheimer's disease (AD) is a major global health problem today and is the most common form of dementia. AD is characterized by the formation of β-amyloid (Aβ) plaques and neurofibrillary clusters, leading to decreased brain acetylcholine levels in the brain. Another mechanism underlying the pathogenesis of AD is the abnormal phosphorylation of tau protein that accumulates at the level of neurofibrillary aggregates, and the areas most affected by this pathological process are usually the cholinergic neurons in cortical, subcortical, and hippocampal areas. These effects result in decreased cognitive function, brain atrophy, and neuronal death. Malnutrition and weight loss are the most frequent manifestations of AD, and these are also associated with greater cognitive decline. Several studies have confirmed that a balanced low-calorie diet and proper nutritional intake may be considered important factors in counteracting or slowing the progression of AD, whereas a high-fat or hypercholesterolemic diet predisposes to an increased risk of developing AD. Especially, fruits, vegetables, antioxidants, vitamins, polyunsaturated fatty acids, and micronutrients supplementation exert positive effects on aging-related changes in the brain due to their antioxidant, anti-inflammatory, and radical scavenging properties. The purpose of this review is to summarize some possible nutritional factors that may contribute to the progression or prevention of AD, understand the role that nutrition plays in the formation of Aβ plaques typical of this neurodegenerative disease, to identify some potential therapeutic strategies that may involve some natural compounds, in delaying the progression of the disease.
Collapse
Affiliation(s)
- Lorenza Guarnieri
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Bosco
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Antonio Leo
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy; Research Center FAS@UMG, Department of Health Science, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Rita Citraro
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy; Research Center FAS@UMG, Department of Health Science, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Ernesto Palma
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Giovambattista De Sarro
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy; Research Center FAS@UMG, Department of Health Science, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
59
|
Li Y, Wu H, Liu M, Zhang Z, Ji Y, Xu L, Liu Y. Polysaccharide from Polygala tenuifolia alleviates cognitive decline in Alzheimer's disease mice by alleviating Aβ damage and targeting the ERK pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117564. [PMID: 38081400 DOI: 10.1016/j.jep.2023.117564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/13/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polygala tenuifolia is used in a variety of Chinese medicine prescriptions for the classic dementia treatment, and polysaccharide is an important active component in the herb. AIM OF THE STUDY This study investigated the in vivo anti-Alzheimer's disease (AD) activity of the polysaccharide PTPS from Polygala tenuifolia using the senescence-accelerated mouse/prone8 (SAMP8) model and explored its molecular mechanism to lay the foundation for the development of polysaccharide-based anti-AD drugs. MATERIALS AND METHODS The Morris water maze test (MWM)was used to detect changes in the spatial cognitive ability of mice, and Nissl staining was applied to observe the state of neurons in the classic hippocampus. The levels of acetylcholine (ACh) and acetylcholinesterase (AChE) were measured by ELISA. Immunofluorescence was used to reflect β-amyloid (Aβ) levels in brain tissue. Apoptosis was evaluated by TdT-mediated dUTP Nick-End Labeling (TUNEL) method. The status of dendritic branches and spines was observed by Golgi staining. Meanwhile, the expression levels of recombinant human insulin-degrading enzyme (IDE), brain-derived neurotrophic factor (BDNF), tyrosine kinase receptor B (TrkB), extracellular regulated protein kinases (ERK), and cAMP-response element binding protein (CREB) proteins were determined by Western blotting. RESULTS PTPS improves spatial cognitive deficits in AD mice, reduces cellular damage in the CA3 region of the hippocampus, maintains the balance of the cholinergic system, and exerts an anti-AD effect in vivo. The molecular mechanism of its action may be related to the reduction of Aβ deposition as well as the activation of ERK pathway-related proteins with enhanced synaptic plasticity. CONCLUSIONS PTPS is able to exert anti-AD activity in vivo by mitigating Aβ damage and targeting the ERK pathway.
Collapse
Affiliation(s)
- Yuanyuan Li
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Key Laboratory of Medicinal Fungi and Resource Development in Shandong Province, Jinan 250355, China
| | - Haoran Wu
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Maoxuan Liu
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhiyuan Zhang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Key Laboratory of Medicinal Fungi and Resource Development in Shandong Province, Jinan 250355, China
| | - Yuning Ji
- School of Foreign Languages, Shandong University of Traditional Chinese Medicine, Jina, China
| | - Lingchuan Xu
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Key Laboratory of Medicinal Fungi and Resource Development in Shandong Province, Jinan 250355, China
| | - Yuhong Liu
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Key Laboratory of Medicinal Fungi and Resource Development in Shandong Province, Jinan 250355, China.
| |
Collapse
|
60
|
Song H, Liu J, Wang L, Hu X, Li J, Zhu L, Pang R, Zhang A. Tauroursodeoxycholic acid: a bile acid that may be used for the prevention and treatment of Alzheimer's disease. Front Neurosci 2024; 18:1348844. [PMID: 38440398 PMCID: PMC10909943 DOI: 10.3389/fnins.2024.1348844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/07/2024] [Indexed: 03/06/2024] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disease that has become one of the main factors affecting human health. It has serious impacts on individuals, families, and society. With the development of population aging, the incidence of AD will further increase worldwide. Emerging evidence suggests that many physiological metabolic processes, such as lipid metabolism, are implicated in the pathogenesis of AD. Bile acids, as the main undertakers of lipid metabolism, play an important role in the occurrence and development of Alzheimer's disease. Tauroursodeoxycholic acid, an endogenous bile acid, has been proven to possess therapeutic effects in different neurodegenerative diseases, including Alzheimer's disease. This review tries to find the relationship between bile acid metabolism and AD, as well as explore the therapeutic potential of bile acid taurocursodeoxycholic acid for this disease. The potential mechanisms of taurocursodeoxycholic acid may include reducing the deposition of Amyloid-β protein, regulating apoptotic pathways, preventing tau hyperphosphorylation and aggregation, protecting neuronal synapses, exhibiting anti-inflammatory properties, and improving metabolic disorders. The objective of this study is to shed light on the use of tauroursodeoxycholic acid preparations in the prevention and treatment of AD, with the aim of identifying effective treatment targets and clarifying various treatment mechanisms involved in this disease.
Collapse
Affiliation(s)
- Honghu Song
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Jiancheng Liu
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Linjie Wang
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Xiaomin Hu
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Jiayu Li
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Li Zhu
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Rizhao Pang
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Anren Zhang
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital Affiliated to Tongji University, Shanghai, China
| |
Collapse
|
61
|
Pasam T, Dandekar MP. Fecal microbiota transplantation unveils sex-specific differences in a controlled cortical impact injury mouse model. Front Microbiol 2024; 14:1336537. [PMID: 38410824 PMCID: PMC10894955 DOI: 10.3389/fmicb.2023.1336537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/22/2023] [Indexed: 02/28/2024] Open
Abstract
Introduction Contusion type of traumatic brain injury (TBI) is a major cause of locomotor disability and mortality worldwide. While post-TBI deleterious consequences are influenced by gender and gut dysbiosis, the sex-specific importance of commensal gut microbiota is underexplored after TBI. In this study, we investigated the impact of controlled cortical impact (CCI) injury on gut microbiota signature in a sex-specific manner in mice. Methods We depleted the gut microflora of male and female C57BL/6 mice using antibiotic treatment. Thereafter, male mice were colonized by the gut microbiota of female mice and vice versa, employing the fecal microbiota transplantation (FMT) method. CCI surgery was executed using a stereotaxic impactor (Impact One™). For the 16S rRNA gene amplicon study, fecal boli of mice were collected at 3 days post-CCI (dpi). Results and discussion CCI-operated male and female mice exhibited a significant alteration in the genera of Akkermansia, Alistipes, Bacteroides, Clostridium, Lactobacillus, Prevotella, and Ruminococcus. At the species level, less abundance of Lactobacillus helveticus and Lactobacillus hamsteri was observed in female mice, implicating the importance of sex-specific bacteriotherapy in CCI-induced neurological deficits. FMT from female donor mice to male mice displayed an increase in genera of Alistipes, Lactobacillus, and Ruminococcus and species of Bacteroides acidifaciens and Ruminococcus gnavus. Female FMT-recipient mice from male donors showed an upsurge in the genus Lactobacillus and species of Lactobacillus helveticus, Lactobacillus hamsteri, and Prevotella copri. These results suggest that the post-CCI neurological complications may be influenced by the differential gut microbiota perturbation in male and female mice.
Collapse
Affiliation(s)
| | - Manoj P. Dandekar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| |
Collapse
|
62
|
Thisayakorn P, Thipakorn Y, Tantavisut S, Sirivichayakul S, Vojdani A, Maes M. Increased IgA-mediated responses to the gut paracellular pathway and blood-brain barrier proteins predict delirium due to hip fracture in older adults. Front Neurol 2024; 15:1294689. [PMID: 38379706 PMCID: PMC10876854 DOI: 10.3389/fneur.2024.1294689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/25/2024] [Indexed: 02/22/2024] Open
Abstract
Introduction Delirium is accompanied by immune response system activation, which may, in theory, cause a breakdown of the gut barrier and blood-brain barrier (BBB). Some results suggest that the BBB is compromised in delirium, but there is no data regarding the gut barrier. This study investigates whether delirium is associated with impaired BBB and gut barriers in elderly adults undergoing hip fracture surgery. Methods We recruited 59 older adults and measured peak Delirium Rating Scale (DRS) scores 2-3 days after surgery, and assessed plasma IgG/IgA levels (using ELISA techniques) for zonulin, occludin, claudin-6, β-catenin, actin (indicating damage to the gut paracellular pathway), claudin-5 and S100B (reflecting BBB damage), bacterial cytolethal distending toxin (CDT), LPS-binding protein (LBP), lipopolysaccharides (LPS), Porphyromonas gingivalis, and Helicobacter pylori. Results Results from univariate analyses showed that delirium is linked to increased IgA responses to all the self-epitopes and antigens listed above, except for LPS. Part of the variance (between 45-48.3%) in the peak DRS score measured 2-3 days post-surgery was explained by independent effects of IgA directed to LPS and LBP (or bacterial CDT), baseline DRS scores, and previous mild stroke. Increased IgA reactivity to the paracellular pathway and BBB proteins and bacterial antigens is significantly associated with the activation of M1 macrophage, T helper-1, and 17 cytokine profiles. Conclusion Heightened bacterial translocation, disruption of the tight and adherens junctions of the gut and BBB barriers, elevated CDT and LPS load in the bloodstream, and aberrations in cell-cell interactions may be risk factors for delirium.
Collapse
Affiliation(s)
- Paul Thisayakorn
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yanin Thipakorn
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Saran Tantavisut
- Department of Orthopedics, Hip Fracture Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sunee Sirivichayakul
- Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Aristo Vojdani
- Immunosciences Lab Inc., Los Angeles, CA, United States
- Cyrex Labs LLC, Phoenix, AZ, United States
| | - Michael Maes
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu, China
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
- Research Institute, Medical University of Plovdiv, Plovdiv, Bulgaria
- Kyung Hee University, Seoul, Republic of Korea
- Cognitive Impairment and Dementia Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
63
|
Zhao H, Sun M, Zhang Y, Kong W, Fan L, Wang K, Xu Q, Chen B, Dong J, Shi Y, Wang Z, Wang S, Zhuang X, Li Q, Lin F, Yao X, Zhang W, Kong C, Zhang R, Feng D, Zhao X. Connecting the Dots: The Cerebral Lymphatic System as a Bridge Between the Central Nervous System and Peripheral System in Health and Disease. Aging Dis 2024; 15:115-152. [PMID: 37307828 PMCID: PMC10796102 DOI: 10.14336/ad.2023.0516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/16/2023] [Indexed: 06/14/2023] Open
Abstract
As a recently discovered waste removal system in the brain, cerebral lymphatic system is thought to play an important role in regulating the homeostasis of the central nervous system. Currently, more and more attention is being focused on the cerebral lymphatic system. Further understanding of the structural and functional characteristics of cerebral lymphatic system is essential to better understand the pathogenesis of diseases and to explore therapeutic approaches. In this review, we summarize the structural components and functional characteristics of cerebral lymphatic system. More importantly, it is closely associated with peripheral system diseases in the gastrointestinal tract, liver, and kidney. However, there is still a gap in the study of the cerebral lymphatic system. However, we believe that it is a critical mediator of the interactions between the central nervous system and the peripheral system.
Collapse
Affiliation(s)
- Hongxiang Zhao
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Meiyan Sun
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Yue Zhang
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Wenwen Kong
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Lulu Fan
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Kaifang Wang
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Qing Xu
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Baiyan Chen
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Jianxin Dong
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Yanan Shi
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Zhengyan Wang
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - ShiQi Wang
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Xiaoli Zhuang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Qi Li
- Department of Anesthesiology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Feihong Lin
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Xinyu Yao
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - WenBo Zhang
- Department of Neurosurgery, The Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| | - Chang Kong
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China.
| | - Rui Zhang
- Department of Anesthesiology, Affiliated Hospital of Weifang Medical University, Weifang, China.
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Dayun Feng
- Department of neurosurgery, Tangdu hospital, Fourth Military Medical University, Xi'an, China.
| | - Xiaoyong Zhao
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
- Department of Anesthesiology, Affiliated Hospital of Weifang Medical University, Weifang, China.
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| |
Collapse
|
64
|
Qneibi M, Bdir S, Maayeh C, Bdair M, Sandouka D, Basit D, Hallak M. A Comprehensive Review of Essential Oils and Their Pharmacological Activities in Neurological Disorders: Exploring Neuroprotective Potential. Neurochem Res 2024; 49:258-289. [PMID: 37768469 DOI: 10.1007/s11064-023-04032-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
Numerous studies have demonstrated essential oils' diverse chemical compositions and pharmacological properties encompassing antinociceptive, anxiolytic-like, and anticonvulsant activities, among other notable effects. The utilization of essential oils, whether inhaled, orally ingested, or applied topically, has commonly been employed as adjunctive therapy for individuals experiencing anxiety, insomnia, convulsions, pain, and cognitive impairment. The utilization of synthetic medications in the treatment of various disorders and symptoms is associated with a wide array of negative consequences. Consequently, numerous research groups across the globe have been prompted to explore the efficacy of natural alternatives such as essential oils. This review provides a comprehensive overview of the existing literature on the pharmacological properties of essential oils and their derived compounds and the underlying mechanisms responsible for these observed effects. The primary emphasis is on essential oils and their constituents, specifically targeting the nervous system and exhibiting significant potential in treating neurodegenerative disorders. The current state of research in this field is characterized by its preliminary nature, highlighting the necessity for a more comprehensive overlook of the therapeutic advantages of essential oils and their components. Integrating essential oils into conventional therapies can enhance the effectiveness of comprehensive treatment regimens for neurodegenerative diseases, offering a more holistic approach to addressing the multifaceted nature of these conditions.
Collapse
Affiliation(s)
- Mohammad Qneibi
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine.
| | - Sosana Bdir
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | | | - Mohammad Bdair
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Dana Sandouka
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Diana Basit
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Mira Hallak
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| |
Collapse
|
65
|
Choo S, An M, Lim YH. Protective Effects of Heat-Killed Ruminococcus albus against β-Amyloid-Induced Apoptosis on SH-SY5Y Cells. J Microbiol Biotechnol 2024; 34:85-93. [PMID: 38044672 PMCID: PMC10840466 DOI: 10.4014/jmb.2308.08045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/04/2023] [Accepted: 10/19/2023] [Indexed: 12/05/2023]
Abstract
A high level of β-amyloid (Aβ) in the brains of patients with Alzheimer's disease (AD) generates reactive oxygen species that induce neuronal death and DNA damage. The interaction between the gut microbiota and brain health has attracted attention in recent years. Heat-killed Ruminococcus albus (hkRA) reportedly protects neurons against damage induced by oxidative stress. However, whether hkRA can inhibit Aβ-induced apoptosis and thus alleviate AD remains unclear. Hence, we aimed to evaluate the protective effects of hkRA against Aβ-induced apoptosis on the human neuroblastoma SH-SY5Y cell. HkRA treatment (108 cells/ml) significantly decreased the Aβ-induced cytotoxicity and DNA damage in the SH-SY5Y cells. It also showed a significant increase of the bax/bcl-2 ratio in the Aβ-treated SH-SY5Y cells. Moreover, hkRA treatment stimulated the expression of antioxidation-related genes HO-1, Nrf2, and PKC-δ and increased the expression of brain-derived neurotrophic factor (BDNF). Meanwhile, it significantly decreased the activity of caspase-3 and protein expression of cleaved caspase-3 in the Aβ-treated SH-SY5Y cells. Additionally, the protein levels of mitochondrial and cytosolic cytochrome c increased and decreased, respectively, in the cells. These results suggest that hkRA protects human neuroblastoma cells from Aβ-induced apoptosis and oxidative stress. Thus, hkRA may be developed into a health-promoting paraprobiotic (the inactivated microbial cells of probiotics) for patients with AD.
Collapse
Affiliation(s)
- Seungmoon Choo
- Department of Healthcare Sciences, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Mirae An
- Department of Healthcare Sciences, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Young-Hee Lim
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul 02841, Republic of Korea
- School of Biosystems and Biomedical Sciences, College of Health Science, Korea University, Seoul 02841, Republic of Korea
- Department of Laboratory Medicine, Korea University Guro Hospital, Seoul, 08308, Republic of Korea
| |
Collapse
|
66
|
Zhou X, Mok KY, Fu AKY. Editorial: Genetics and biomarkers of Alzheimer's disease in Asian populations. Front Neurosci 2024; 18:1357783. [PMID: 38322545 PMCID: PMC10844551 DOI: 10.3389/fnins.2024.1357783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024] Open
Affiliation(s)
- Xiaopu Zhou
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Kin Y. Mok
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
| | - Amy K. Y. Fu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen, Guangdong, China
| |
Collapse
|
67
|
Bermejo-Pareja F, del Ser T. Controversial Past, Splendid Present, Unpredictable Future: A Brief Review of Alzheimer Disease History. J Clin Med 2024; 13:536. [PMID: 38256670 PMCID: PMC10816332 DOI: 10.3390/jcm13020536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Background: The concept of Alzheimer disease (AD)-since its histological discovery by Alzheimer to the present day-has undergone substantial modifications. Methods: We conducted a classical narrative review of this field with a bibliography selection (giving preference to Medline best match). Results: The following subjects are reviewed and discussed: Alzheimer's discovery, Kraepelin's creation of a new disease that was a rare condition until the 1970's, the growing interest and investment in AD as a major killer in a society with a large elderly population in the second half of the 20th century, the consolidation of the AD clinicopathological model, and the modern AD nosology based on the dominant amyloid hypothesis among many others. In the 21st century, the development of AD biomarkers has supported a novel biological definition of AD, although the proposed therapies have failed to cure this disease. The incidence of dementia/AD has shown a decrease in affluent countries (possibly due to control of risk factors), and mixed dementia has been established as the most frequent etiology in the oldest old. Conclusions: The current concept of AD lacks unanimity. Many hypotheses attempt to explain its complex physiopathology entwined with aging, and the dominant amyloid cascade has yielded poor therapeutic results. The reduction in the incidence of dementia/AD appears promising but it should be confirmed in the future. A reevaluation of the AD concept is also necessary.
Collapse
Affiliation(s)
- Félix Bermejo-Pareja
- CIBERNED, Institute of Health Carlos III, 28029 Madrid, Spain
- Institute of Research i+12, University Hospital “12 de Octubre”, 28041 Madrid, Spain
| | - Teodoro del Ser
- Alzheimer’s Centre Reina Sofia—CIEN Foundation, Institute of Health Carlos III, 28031 Madrid, Spain;
| |
Collapse
|
68
|
Riehl L, Fürst J, Kress M, Rykalo N. The importance of the gut microbiome and its signals for a healthy nervous system and the multifaceted mechanisms of neuropsychiatric disorders. Front Neurosci 2024; 17:1302957. [PMID: 38249593 PMCID: PMC10797776 DOI: 10.3389/fnins.2023.1302957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024] Open
Abstract
Increasing evidence links the gut microbiome and the nervous system in health and disease. This narrative review discusses current views on the interaction between the gut microbiota, the intestinal epithelium, and the brain, and provides an overview of the communication routes and signals of the bidirectional interactions between gut microbiota and the brain, including circulatory, immunological, neuroanatomical, and neuroendocrine pathways. Similarities and differences in healthy gut microbiota in humans and mice exist that are relevant for the translational gap between non-human model systems and patients. There is an increasing spectrum of metabolites and neurotransmitters that are released and/or modulated by the gut microbiota in both homeostatic and pathological conditions. Dysbiotic disruptions occur as consequences of critical illnesses such as cancer, cardiovascular and chronic kidney disease but also neurological, mental, and pain disorders, as well as ischemic and traumatic brain injury. Changes in the gut microbiota (dysbiosis) and a concomitant imbalance in the release of mediators may be cause or consequence of diseases of the central nervous system and are increasingly emerging as critical links to the disruption of healthy physiological function, alterations in nutrition intake, exposure to hypoxic conditions and others, observed in brain disorders. Despite the generally accepted importance of the gut microbiome, the bidirectional communication routes between brain and gut are not fully understood. Elucidating these routes and signaling pathways in more detail offers novel mechanistic insight into the pathophysiology and multifaceted aspects of brain disorders.
Collapse
Affiliation(s)
| | | | | | - Nadiia Rykalo
- Institute of Physiology, Department of Physiology and Medical Physics, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
69
|
Barbero Mazzucca C, Cappellano G, Chiocchetti A. Nutrition, Immunity and Aging: Current Scenario and Future Perspectives in Neurodegenerative Diseases. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:573-587. [PMID: 37138438 DOI: 10.2174/1871527322666230502123255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 01/17/2023] [Accepted: 02/14/2023] [Indexed: 05/05/2023]
Abstract
Aging is a gradual decline of physiological function and tissue homeostasis and, in many instances, is related to increased (neuro)-degeneration, together with inflammation, becoming one of the most important risks for developing neurodegenerative diseases. Certain individual nutrients or foods in combination may counteract aging and associated neurodegenerative diseases by promoting a balance between the pro- and anti-inflammatory responses. Thus, nutrition could represent a powerful modulator of this fine balance, other than a modifiable risk factor to contrast inflammaging. This narrative review explores from a broad perspective the impact of nutrition on the hallmarks of aging and inflammation in Alzheimer's disease (AD), Parkinson's disease (PD) and Amyotrophic Lateral Sclerosis Syndrome (ALS), starting from nutrients up to single foods and complex dietary patterns.
Collapse
Affiliation(s)
- Camilla Barbero Mazzucca
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Università del Piemonte Orientale, Novara, Italy
| | - Giuseppe Cappellano
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Università del Piemonte Orientale, Novara, Italy
| | - Annalisa Chiocchetti
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Università del Piemonte Orientale, Novara, Italy
| |
Collapse
|
70
|
Bradley E, Haran J. The human gut microbiome and aging. Gut Microbes 2024; 16:2359677. [PMID: 38831607 PMCID: PMC11152108 DOI: 10.1080/19490976.2024.2359677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/21/2024] [Indexed: 06/05/2024] Open
Abstract
The composition of the human gut microbiome has been observed to change over the course of an individual's life. From birth, it is shaped by mode of delivery, diet, environmental exposures, geographic location, exposures to medications, and by aging itself. Here, we present a narrative review of the gut microbiome across the lifespan with a focus on its impacts on aging and age-related diseases in humans. We will describe how it is shaped, and features of the gut microbiome that have been associated with diseases at different phases of life and how this can adversely affect healthy aging. Across the lifespan, and especially in old age, a diverse microbiome that includes organisms suspected to produce anti-inflammatory metabolites such as short-chain fatty acids, has been reported to be associated with healthy aging. These findings have been remarkably consistent across geographic regions of the world suggesting that they could be universal features of healthy aging across all cultures and genetic backgrounds. Exactly how these features of the microbiome affect biologic processes associated with aging thus promoting healthy aging will be crucial to targeting the gut microbiome for interventions that will support health and longevity.
Collapse
Affiliation(s)
- Evan Bradley
- UMass Chan Medical School, Department of Emergency Medicine and Department of Microbiology and Physiologic Systems, Program in Microbiome Dynamics, Worcester, MA, USA
| | - John Haran
- UMass Chan Medical School, Department of Emergency Medicine and Department of Microbiology and Physiologic Systems, Program in Microbiome Dynamics, Worcester, MA, USA
| |
Collapse
|
71
|
Yuan J, Tan H, Cheng Y, Ma X, Jiang S, Hou X, Li S, Shi L, Li P, Xu H, Lv J, Han B. Air particulate pollution exposure associated with impaired cognition via microbiota gut-brain axis: an evidence from rural elderly female in northwest China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:6398-6410. [PMID: 38151560 DOI: 10.1007/s11356-023-31504-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/08/2023] [Indexed: 12/29/2023]
Abstract
This study aimed to reveal harm of exposure to indoor air pollution to cognitive function through "gut-brain-axis" among rural elderly residents. There were 120 participants recruited in rural villages of northwest China from December 2021 to February 2022. The cognitive level was assessed by eight-item ascertain dementia (AD) questionnaire, and indoor air pollution exposure was measured by air quality sensor. Inflammatory cytokines and oxidative stress-related index were detected in blood serum. Fecal samples were collected for gut microbiota analysis. The 120 participants were divided into impaired cognition (AD8) (81/67.5%) and cognition normal (NG) (39/32.5%). And there had more female in AD8 (FAD) (55/67.9%) than NG (FNG) (18/46.2%) (P = 0.003). Exposure of air pollution in FAD was higher than FNG (PM1, PM2.5, PM10, P < 0.001; NO2, P < 0.001; CO, P = 0.014; O3, P = 0.002). The risk of cognitive impairment increases 6.8%, 3.6%, 2.6%, 11%, and 2.4% in female for every 1 μg/m3 increased in exposure of PM1, PM2.5, PM10, NO2, and O3, separately. And GSH-Px and T-SOD in FAD were significantly lower than the FNG group (P = 0.011, P = 0.019). Gut microbiota in FAD is disordered with lower richness and diversity. Relative abundance of core bacteria Faecalibacterium (top 1 genus) in FAD was reduced (13.65% vs 19.81%, P = 0.0235), while Escherichia_Shigella and Akkermansia was increased. Correlation analysis showed Faecalibacterium was negatively correlated with age, and exposure of O3, PM1, PM2.5, and PM10; Akkermansia and Monoglobus were positively correlated with exposure of PM1, PM2.5 and PM10; Escherichia_Shigella was significantly positively correlated with NO2. Indoor air pollution exposure impaired cognitive function in elderly people, especially female, which may cause systemic inflammation, dysbiosis of the gut microbiota, and ultimately leading to early cognitive impairment through the gut-brain axis.
Collapse
Affiliation(s)
- Jia Yuan
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Hui Tan
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yue Cheng
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, 710061, Shaanxi, China
| | - Xinxin Ma
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Sijin Jiang
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Xinyao Hou
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Shaoru Li
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, 710061, Shaanxi, China
| | - Lu Shi
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Pu Li
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Hongmei Xu
- School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Jia Lv
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, 710061, Shaanxi, China
| | - Bei Han
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, 710061, Shaanxi, China.
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, China.
| |
Collapse
|
72
|
Joo MK, Lee JW, Woo JH, Kim HJ, Kim DH, Choi JH. Regulation of colonic neuropeptide Y expression by the gut microbiome in patients with ulcerative colitis and its association with anxiety- and depression-like behavior in mice. Gut Microbes 2024; 16:2319844. [PMID: 38404132 PMCID: PMC10900276 DOI: 10.1080/19490976.2024.2319844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 02/13/2024] [Indexed: 02/27/2024] Open
Abstract
Patients with inflammatory bowel disease (IBD), including ulcerative colitis (UC), show an increased incidence of anxiety and depression; however, the association between UC-associated psychiatric disorders and the gut microbiota is unclear. This study aimed to examine whether gut microbiota from patients with UC can alter colonic gene expression, leading to anxiety- and depression-like behavior in mice receiving fecal microbiota transplantation (FMT). RNA sequencing transcriptome analyses revealed a difference in colonic gene expression between mice receiving FMT from patients with UC (UC-FMT mice) and those receiving FMT from healthy controls (HC-FMT mice). Gene ontology analysis revealed the downregulation of neuropeptide signaling pathways, including neuropeptide Y (NPY) expression, in the colons of UC-FMT mice. The protein levels of NPY also decreased in the colon and plasma of UC-FMT mice compared to those in HC-FMT mice. The oral administration of Enterococcus mundtii (EM), a bacterium isolated from the feces of patients with UC, reduced NPY expression in the colons of mice and induced intestinal inflammation, anxiety, and depression-like behavior. Reduced NPY protein levels were also observed in the plasma and hippocampus of EM-treated mice. Intraperitoneal administration of NPY significantly alleviated anxiety- and depressive-like behaviors induced by EM in mice. Capsular polysaccharide in EM was associated with EM-induced NPY downregulation in the colon. Analysis of Gene Expression Omnibus datasets showed markedly reduced NPY expression in the inflamed colons of patients with UC compared with that in the colons of healthy controls. In summary, EM-induced reduction in the colonic expression of NPY may be associated with a decrease in hippocampal NPY and anxiety- and depression-like behavior in mice.
Collapse
Affiliation(s)
- Min-Kyung Joo
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Korea
- College of Pharmacy, Kyung Hee University, Seoul, Korea
| | - Jae-Won Lee
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Korea
- College of Pharmacy, Kyung Hee University, Seoul, Korea
| | - Jeong-Hwa Woo
- College of Pharmacy, Kyung Hee University, Seoul, Korea
| | - Hyo-Jong Kim
- Department of Internal Medicine, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Dong-Hyun Kim
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Korea
- College of Pharmacy, Kyung Hee University, Seoul, Korea
| | - Jung-Hye Choi
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Korea
- College of Pharmacy, Kyung Hee University, Seoul, Korea
| |
Collapse
|
73
|
Abubakar M, Nama L, Ansari MA, Ansari MM, Bhardwaj S, Daksh R, Syamala KLV, Jamadade MS, Chhabra V, Kumar D, Kumar N. GLP-1/GIP Agonist as an Intriguing and Ultimate Remedy for Combating Alzheimer's Disease through its Supporting DPP4 Inhibitors: A Review. Curr Top Med Chem 2024; 24:1635-1664. [PMID: 38803170 DOI: 10.2174/0115680266293416240515075450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/14/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is a widespread neurological illness in the elderly, which impacted about 50 million people globally in 2020. Type 2 diabetes has been identified as a risk factor. Insulin and incretins are substances that have various impacts on neurodegenerative processes. Preclinical research has shown that GLP-1 receptor agonists decrease neuroinflammation, tau phosphorylation, amyloid deposition, synaptic function, and memory formation. Phase 2 and 3 studies are now occurring in Alzheimer's disease populations. In this article, we present a detailed assessment of the therapeutic potential of GLP-1 analogues and DPP4 inhibitors in Alzheimer's disease. AIM This study aimed to gain insight into how GLP-1 analogues and associated antagonists of DPP4 safeguard against AD. METHODS This study uses terms from search engines, such as Scopus, PubMed, and Google Scholar, to explore the role, function, and treatment options of the GLP-1 analogue for AD. RESULTS The review suggested that GLP-1 analogues may be useful for treating AD because they have been linked to anti-inflammatory, neurotrophic, and neuroprotective characteristics. Throughout this review, we discuss the underlying causes of AD and how GLP signaling functions. CONCLUSION With a focus on AD, the molecular and pharmacological effects of a few GLP-1/GIP analogs, both synthetic and natural, as well as DPP4 inhibitors, have been mentioned, which are in the preclinical and clinical studies. This has been demonstrated to improve cognitive function in Alzheimer's patients.
Collapse
Affiliation(s)
- Mohammad Abubakar
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Lokesh Nama
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Mohammad Arif Ansari
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Mohammad Mazharuddin Ansari
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Shivani Bhardwaj
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Rajni Daksh
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Katta Leela Venkata Syamala
- Department of Regulatory and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Mohini Santosh Jamadade
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Vishal Chhabra
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Dileep Kumar
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
- Department of Entomology, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| |
Collapse
|
74
|
Zhang M, Mi N, Ying Z, Lin X, Jin Y. Advances in the prevention and treatment of Alzheimer's disease based on oral bacteria. Front Psychiatry 2023; 14:1291455. [PMID: 38156323 PMCID: PMC10754487 DOI: 10.3389/fpsyt.2023.1291455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/22/2023] [Indexed: 12/30/2023] Open
Abstract
With the global population undergoing demographic shift towards aging, the prevalence of Alzheimer's disease (AD), a prominent neurodegenerative disorder that primarily afflicts individuals aged 65 and above, has increased across various geographical regions. This phenomenon is accompanied by a concomitant decline in immune functionality and oral hygiene capacity among the elderly, precipitating compromised oral functionality and an augmented burden of dental plaque. Accordingly, oral afflictions, including dental caries and periodontal disease, manifest with frequency among the geriatric population worldwide. Recent scientific investigations have unveiled the potential role of oral bacteria in instigating both local and systemic chronic inflammation, thereby delineating a putative nexus between oral health and the genesis and progression of AD. They further proposed the oral microbiome as a potentially modifiable risk factor in AD development, although the precise pathological mechanisms and degree of association have yet to be fully elucidated. This review summarizes current research on the relationship between oral bacteria and AD, describing the epidemiological and pathological mechanisms that may potentially link them. The purpose is to enrich early diagnostic approaches by incorporating emerging biomarkers, offering novel insights for clinicians in the early detection of AD. Additionally, it explores the potential of vaccination strategies and guidance for clinical pharmacotherapy. It proposes the development of maintenance measures specifically targeting oral health in older adults and advocates for guiding elderly patients in adopting healthy lifestyle habits, ultimately aiming to indirectly mitigate the progression of AD while promoting oral health in the elderly.
Collapse
Affiliation(s)
| | | | | | | | - Ying Jin
- Department of Stomatology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
75
|
Phuna ZX, Madhavan P. A reappraisal on amyloid cascade hypothesis: the role of chronic infection in Alzheimer's disease. Int J Neurosci 2023; 133:1071-1089. [PMID: 35282779 DOI: 10.1080/00207454.2022.2045290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 02/09/2022] [Indexed: 10/18/2022]
Abstract
Alzheimer disease (AD) is a progressive neurological disorder that accounted for the most common cause of dementia in the elderly population. Lately, 'infection hypothesis' has been proposed where the infection of microbes can lead to the pathogenesis of AD. Among different types of microbes, human immunodeficiency virus-1 (HIV-1), herpes simplex virus-1 (HSV-1), Chlamydia pneumonia, Spirochetes and Candida albicans are frequently detected in the brain of AD patients. Amyloid-beta protein has demonstrated to exhibit antimicrobial properties upon encountering these pathogens. It can bind to microglial cells and astrocytes to activate immune response and neuroinflammation. Nevertheless, HIV-1 and HSV-1 can develop into latency whereas Chlamydia pneumonia, Spirochetes and Candida albicans can cause chronic infections. At this stage, the DNA of microbes remains undetectable yet active. This can act as the prolonged pathogenic stimulus that over-triggers the expression of Aβ-related genes, which subsequently lead to overproduction and deposition of Aβ plaque. This review will highlight the pathogenesis of each of the stated microbial infection, their association in AD pathogenesis as well as the effect of chronic infection in AD progression. Potential therapies for AD by modulating the microbiome have also been suggested. This review will aid in understanding the infectious manifestations of AD.
Collapse
Affiliation(s)
- Zhi Xin Phuna
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Selangor, Malaysia
| | - Priya Madhavan
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Selangor, Malaysia
| |
Collapse
|
76
|
Ren J, Xiao H. Exercise Intervention for Alzheimer's Disease: Unraveling Neurobiological Mechanisms and Assessing Effects. Life (Basel) 2023; 13:2285. [PMID: 38137886 PMCID: PMC10744739 DOI: 10.3390/life13122285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/26/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease and a major cause of age-related dementia, characterized by cognitive dysfunction and memory impairment. The underlying causes include the accumulation of beta-amyloid protein (Aβ) in the brain, abnormal phosphorylation, and aggregation of tau protein within nerve cells, as well as neuronal damage and death. Currently, there is no cure for AD with drug therapy. Non-pharmacological interventions such as exercise have been widely used to treat AD, but the specific molecular and biological mechanisms are not well understood. In this narrative review, we integrate the biology of AD and summarize the knowledge of the molecular, neural, and physiological mechanisms underlying exercise-induced improvements in AD progression. We discuss various exercise interventions used in AD and show that exercise directly or indirectly affects the brain by regulating crosstalk mechanisms between peripheral organs and the brain, including "bone-brain crosstalk", "muscle-brain crosstalk", and "gut-brain crosstalk". We also summarize the potential role of artificial intelligence and neuroimaging technologies in exercise interventions for AD. We emphasize that moderate-intensity, regular, long-term exercise may improve the progression of Alzheimer's disease through various molecular and biological pathways, with multimodal exercise providing greater benefits. Through in-depth exploration of the molecular and biological mechanisms and effects of exercise interventions in improving AD progression, this review aims to contribute to the existing knowledge base and provide insights into new therapeutic strategies for managing AD.
Collapse
Affiliation(s)
- Jianchang Ren
- Institute of Sport and Health, Guangdong Provincial Kay Laboratory of Development and Education for Special Needs Child, Lingnan Normal University, Zhanjiang 524037, China
- Institute of Sport and Health, South China Normal University, Guangzhou 510631, China
| | - Haili Xiao
- Institute of Sport and Health, Lingnan Normal University, Zhanjiang 524037, China;
| |
Collapse
|
77
|
Wang J, Qiu F, Zhang Z, Liu Y, Zhou Q, Dai S, Xiang S, Wei C. Clostridium butyricum Alleviates DEHP Plasticizer-Induced Learning and Memory Impairment in Mice via Gut-Brain Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18524-18537. [PMID: 37963287 DOI: 10.1021/acs.jafc.3c03533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) plasticizer, a well-known environmental and food pollutant, has neurotoxicity. However, it is unknown whether DEHP leads to learning and memory impairment through gut-brain axis and whether Clostridium butyricum can alleviate this impairment. Here, C57BL/6 mice were exposed to DEHP and treated with C. butyricum. Learning and memory abilities were evaluated through the Morris water maze. The levels of synaptic proteins, inflammatory cytokines, and 5-hydroxytryptamine (5-HT) were detected by immunohistochemistry or ELISA. Gut microbiota were analyzed through 16S rRNA sequencing. C. butyricum alleviated DEHP-induced learning and memory impairment and restored synaptic proteins. It significantly relieved DEHP-induced inflammation and recovered 5-HT levels. C. butyricum recovered the richness of the gut microbiota decreased by DEHP, with the Bifidobacterium genus increasing the most. Overall, C. butyricum alleviated DEHP-induced learning and memory impairment due to reduced inflammation and increased 5-HT secretion, which was partly attributed to the recovery of gut microbiota.
Collapse
Affiliation(s)
- Jin Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
| | - Feng Qiu
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
| | - Zilong Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
| | - Yu Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
| | - Qian Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
| | - Siyu Dai
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
| | - Shuanglin Xiang
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
| | - Chenxi Wei
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
| |
Collapse
|
78
|
Li M, Yang H, Shao C, Liu Y, Wen S, Tang L. Application of Dominant Gut Microbiota Promises to Replace Fecal Microbiota Transplantation as a New Treatment for Alzheimer's Disease. Microorganisms 2023; 11:2854. [PMID: 38137998 PMCID: PMC10745325 DOI: 10.3390/microorganisms11122854] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/13/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Several studies have confirmed that the pathophysiological progression of Alzheimer's disease (AD) is closely related to changes in the intestinal microbiota; thus, modifying the intestinal microbiota has emerged as a new way to treat AD. Effective interventions for gut microbiota include the application of probiotics and other measures such as fecal microbiota transplantation (FMT). However, the application of probiotics ignores that the intestine is a complete microecosystem with competition among microorganisms. FMT also has issues when applied to patient treatment. In a previous study, we found that eight species of bacteria that are isolated with high frequency in the normal intestinal microbiota (i.e., intestinal dominant microbiota) have biological activities consistent with the effects of FMT. In this article, we confirmed that the treatment of intestinal dominant microbiota significantly restored intestinal microbiota abundance and composition to normal levels in APP/PS1 mice; downregulated brain tissue pro-inflammatory cytokines (IL-1β and IL-6) and amyloid precursor protein (APP) and β-site APP cleavage enzyme 1 (BACE1) expression levels; and reduced the area of Aβ plaque deposition in the brain hippocampus. Our study provides a new therapeutic concept for the treatment of AD, adjusting the intestinal microecological balance through dominant intestinal microbiota may be an alternative to FMT.
Collapse
Affiliation(s)
| | | | | | | | | | - Li Tang
- Department of Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China; (M.L.); (H.Y.); (C.S.); (Y.L.); (S.W.)
| |
Collapse
|
79
|
You F, Harakawa Y, Yoshikawa T, Inufusa H. Controlling Gut Microbiota by Twendee X ® May Contribute to Dementia Prevention. Int J Mol Sci 2023; 24:16642. [PMID: 38068966 PMCID: PMC10706060 DOI: 10.3390/ijms242316642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
The human gut microbiota (GM) is a complex and dynamic ecosystem that hosts trillions of commensal and potentially pathogenic microorganisms. It is crucial in protecting humans from pathogens and in maintaining immune and metabolic homeostasis. Numerous studies have demonstrated that GM has a significant impact on health and disease, including Alzheimer's disease (AD). AD is a progressive neurodegenerative disorder characterized by impaired short-term memory and cognitive deficits. Patients with AD have been reported to exhibit abnormalities in GM density and species composition. Oxidative stress (OS) has been implicated in the onset and progression of AD; however, the relationship between OS and gut microbiota in AD onset and progression is not clear. Twendee X® (TwX), an oral supplement consisting of eight active ingredients, has been shown to prevent dementia in mild cognitive impairment (MCI) in humans and substantially improve cognitive impairment in mouse models of AD. This positive effect is achieved through the potency of the combined antioxidants that regulate OS; therefore, similar results cannot be achieved by a single antioxidant ingredient. To examine the impact of long-term OS elevation, as seen in AD on the body and GM, we examined GM alterations during the initial OS elevation using a two-week OS loading rat model, and examined the effects of TwX on OS and GM. Furthermore, using a questionnaire survey and fecal samples, we analyzed the impact of TwX on healthy individuals' gut bacteria and the associated effect on their quality of life (QOL). TwX was found to increase the number of bacteria species and their diversity in GM, as well as butyrate-producing bacteria, which tend to be reduced in AD patients. Additionally, TwX improved defecation condition and QOL. The gut bacteria function as part of the homeostatic function during OS elevation, and the prophylactic administration of TwX strengthened this function. The results suggest that the preventative effect of TwX on dementia may involve the GM, in addition to the other previously demonstrated effects.
Collapse
Affiliation(s)
- Fukka You
- Division of Anti-Oxidant Research, Life Science Research Center, Gifu University, Yanagito 1-1, Gifu 501-1194, Japan; (F.Y.); (Y.H.)
- Anti-Oxidant Research Laboratory, Louis Pasteur Center for Medical Research, Tanakamonzen-cho 103-5, Kyoto 606-8225, Japan
| | - Yoshiaki Harakawa
- Division of Anti-Oxidant Research, Life Science Research Center, Gifu University, Yanagito 1-1, Gifu 501-1194, Japan; (F.Y.); (Y.H.)
| | - Toshikazu Yoshikawa
- Louis Pasteur Center for Medical Research, Tanakamonzen-cho 103-5, Kyoto 606-8225, Japan;
- Department of Cellular Regenerative Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kajii-cho, Kawaramachi-Hirokoji, Kyoto 602-8566, Japan
| | - Haruhiko Inufusa
- Division of Anti-Oxidant Research, Life Science Research Center, Gifu University, Yanagito 1-1, Gifu 501-1194, Japan; (F.Y.); (Y.H.)
- Anti-Oxidant Research Laboratory, Louis Pasteur Center for Medical Research, Tanakamonzen-cho 103-5, Kyoto 606-8225, Japan
| |
Collapse
|
80
|
Bianchimano P, Iwanowski K, Smith EM, Cantor A, Leone P, Bongers G, Gonzalez CG, Hongsup Y, Elias J, Weiner HL, Clemente JC, Tankou SK. Oral vancomycin treatment suppresses gut trypsin activity and preserves intestinal barrier function during EAE. iScience 2023; 26:108143. [PMID: 37915599 PMCID: PMC10616394 DOI: 10.1016/j.isci.2023.108143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/30/2023] [Accepted: 10/02/2023] [Indexed: 11/03/2023] Open
Abstract
Studies have reported increased intestinal permeability in multiple sclerosis (MS) patients and its mouse model experimental autoimmune encephalomyelitis (EAE). However, the mechanisms driving increased intestinal permeability that in turn exacerbate neuroinflammation during EAE remain unclear. Here we showed that vancomycin preserved the integrity of the intestinal barrier, while also suppressing gut trypsin activity, enhancing the relative abundance of specific Lactobacilli and ameliorating disease during EAE. Furthermore, Lactobacilli enriched in the gut of vancomycin-treated EAE mice at day 3 post immunization negatively correlated with gut trypsin activity and EAE severity. In untreated EAE mice, we observed increased intestinal permeability and increased intestinal protease activated receptor 2 (PAR2) expression at day 3 post immunization. Prior studies have shown that trypsin increases intestinal permeability by activating PAR2. Our results suggest that the interaction between intestinal PAR2 and trypsin may be a key modulator of intestinal permeability and disease severity during EAE.
Collapse
Affiliation(s)
- Paola Bianchimano
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kacper Iwanowski
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emma M. Smith
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adam Cantor
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paola Leone
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gerold Bongers
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carlos G. Gonzalez
- Department of Pharmacology, University of California San Diego, San Diego, CA 92093, USA
| | - Yoon Hongsup
- Institute of Clinical Neuroimmunology, Hospital and Biomedical Center of the Ludwig-Maximilian-University, Martinsried, Germany
- Hertie Senior Professor Group, Max-Plank-Institute of Neurobiology, Martinsried, Germany
| | - Joshua Elias
- Mass Spectrometry Platform, Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Howard L. Weiner
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
| | - Jose C. Clemente
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stephanie K. Tankou
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
81
|
Caldarelli M, Franza L, Rio P, Gasbarrini A, Gambassi G, Cianci R. Gut-Kidney-Heart: A Novel Trilogy. Biomedicines 2023; 11:3063. [PMID: 38002063 PMCID: PMC10669427 DOI: 10.3390/biomedicines11113063] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
The microbiota represents a key factor in determining health and disease. Its role in inflammation and immunological disorders is well known, but it is also involved in several complex conditions, ranging from neurological to psychiatric, from gastrointestinal to cardiovascular diseases. It has recently been hypothesized that the gut microbiota may act as an intermediary in the close interaction between kidneys and the cardiovascular system, leading to the conceptualization of the "gut-kidney-heart" axis. In this narrative review, we will discuss the impact of the gut microbiota on each system while also reviewing the available data regarding the axis itself. We will also describe the role of gut metabolites in this complex interplay, as well as potential therapeutical perspectives.
Collapse
Affiliation(s)
- Mario Caldarelli
- Department of Translational Medicine and Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (M.C.); (P.R.); (A.G.); (G.G.)
| | - Laura Franza
- Emergency Medicine Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy;
| | - Pierluigi Rio
- Department of Translational Medicine and Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (M.C.); (P.R.); (A.G.); (G.G.)
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (M.C.); (P.R.); (A.G.); (G.G.)
| | - Giovanni Gambassi
- Department of Translational Medicine and Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (M.C.); (P.R.); (A.G.); (G.G.)
| | - Rossella Cianci
- Department of Translational Medicine and Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (M.C.); (P.R.); (A.G.); (G.G.)
| |
Collapse
|
82
|
Thakkar A, Vora A, Kaur G, Akhtar J. Dysbiosis and Alzheimer's disease: role of probiotics, prebiotics and synbiotics. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2911-2923. [PMID: 37284896 DOI: 10.1007/s00210-023-02554-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/26/2023] [Indexed: 06/08/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by dementia and the accumulation of amyloid beta in the brain. Recently, microbial dysbiosis has been identified as one of the major factors involved in the onset and progression of AD. Imbalance in gut microbiota is known to affect central nervous system (CNS) functions through the gut-brain axis and involves inflammatory, immune, neuroendocrine and metabolic pathways. An altered gut microbiome is known to affect the gut and BBB permeability, resulting in imbalance in levels of neurotransmitters and neuroactive peptides/factors. Restoration of levels of beneficial microorganisms in the gut has demonstrated promising effects in AD in pre-clinical and clinical studies. The current review enlists the important beneficial microbial species present in the gut, the effect of their metabolites on CNS, mechanisms involved in dysbiosis related to AD and the beneficial effects of probiotics on AD. It also highlights challenges involved in large-scale manufacturing and quality control of probiotic formulations.
Collapse
Affiliation(s)
- Ami Thakkar
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Shri Vile Parle Kelavani Mandal's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Amisha Vora
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Shri Vile Parle Kelavani Mandal's Narsee Monjee Institute of Management Studies, Mumbai, India.
| | - Ginpreet Kaur
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Shri Vile Parle Kelavani Mandal's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Jamal Akhtar
- Central Council for Research in Unani Medicine, Ministry of AYUSH, New Delhi, India
| |
Collapse
|
83
|
Mitra S, Dash R, Nishan AA, Habiba SU, Moon IS. Brain modulation by the gut microbiota: From disease to therapy. J Adv Res 2023; 53:153-173. [PMID: 36496175 PMCID: PMC10658262 DOI: 10.1016/j.jare.2022.12.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The gut microbiota (GM) and brain are strongly associated, which significantly affects neuronal development and disorders. GM-derived metabolites modulate neuronal function and influence many cascades in age-related neurodegenerative disorders (NDDs). Because of the dual role of GM in neuroprotection and neurodegeneration, understanding the balance between beneficial and harmful bacteria is crucial for applying this approach to clinical therapies. AIM OF THE REVIEW This review briefly discusses the role of the gut-brain relationship in promoting brain and cognitive function. Although a healthy gut environment is helpful for brain function, gut dysbiosis can disrupt the brain's environment and create a vicious cycle of degenerative cascades. The ways in which the GM population can affect brain function and the development of neurodegeneration are also discussed. In the treatment and management of NDDs, the beneficial effects of methods targeting GM populations and their derivatives, including probiotics, prebiotics, and fecal microbial transplantation (FMT) are also highlighted. KEY SCIENTIFIC CONCEPT OF THE REVIEW In this review, we aimed to provide a deeper understanding of the mechanisms of the gut microbe-brain relationship and their twin roles in neurodegeneration progression and therapeutic applications. Here, we attempted to highlight the different pathways connecting the brain and gut, together with the role of GM in neuroprotection and neuronal development. Furthermore, potential roles of GM metabolites in the pathogenesis of brain disorders and in strategies for its treatment are also investigated. By analyzing existing in vitro, in vivo and clinical studies, this review attempts to identify new and promising therapeutic strategies for central nervous system (CNS) disorders. As the connection between the gut microbe-brain relationship and responses to NDD treatments is less studied, this review will provide new insights into the global mechanisms of GM modulation in disease progression, and identify potential future perspectives for developing new therapies to treat NDDs.
Collapse
Affiliation(s)
- Sarmistha Mitra
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| | - Amena Al Nishan
- Department of Medicine, Chittagong Medical College, Chittagong 4203, Bangladesh
| | - Sarmin Ummey Habiba
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea.
| |
Collapse
|
84
|
Dave BP, Shah YB, Maheshwari KG, Mansuri KA, Prajapati BS, Postwala HI, Chorawala MR. Pathophysiological Aspects and Therapeutic Armamentarium of Alzheimer's Disease: Recent Trends and Future Development. Cell Mol Neurobiol 2023; 43:3847-3884. [PMID: 37725199 DOI: 10.1007/s10571-023-01408-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/31/2023] [Indexed: 09/21/2023]
Abstract
Alzheimer's disease (AD) is the primary cause of dementia and is characterized by the death of brain cells due to the accumulation of insoluble amyloid plaques, hyperphosphorylation of tau protein, and the formation of neurofibrillary tangles within the cells. AD is also associated with other pathologies such as neuroinflammation, dysfunction of synaptic connections and circuits, disorders in mitochondrial function and energy production, epigenetic changes, and abnormalities in the vascular system. Despite extensive research conducted over the last hundred years, little is established about what causes AD or how to effectively treat it. Given the severity of the disease and the increasing number of affected individuals, there is a critical need to discover effective medications for AD. The US Food and Drug Administration (FDA) has approved several new drug molecules for AD management since 2003, but these drugs only provide temporary relief of symptoms and do not address the underlying causes of the disease. Currently, available medications focus on correcting the neurotransmitter disruption observed in AD, including cholinesterase inhibitors and an antagonist of the N-methyl-D-aspartate (NMDA) receptor, which temporarily alleviates the signs of dementia but does not prevent or reverse the course of AD. Research towards disease-modifying AD treatments is currently underway, including gene therapy, lipid nanoparticles, and dendrimer-based therapy. These innovative approaches aim to target the underlying pathological processes of AD rather than just managing the symptoms. This review discusses the novel aspects of pathogenesis involved in the causation of AD of AD and in recent developments in the therapeutic armamentarium for the treatment of AD such as gene therapy, lipid nanoparticles, and dendrimer-based therapy, and many more.
Collapse
Affiliation(s)
- Bhavarth P Dave
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Yesha B Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Kunal G Maheshwari
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Kaif A Mansuri
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Bhadrawati S Prajapati
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Humzah I Postwala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India.
| |
Collapse
|
85
|
Du X, Amin N, Xu L, Botchway BOA, Zhang B, Fang M. Pharmacological intervention of curcumin via the NLRP3 inflammasome in ischemic stroke. Front Pharmacol 2023; 14:1249644. [PMID: 37915409 PMCID: PMC10616488 DOI: 10.3389/fphar.2023.1249644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/26/2023] [Indexed: 11/03/2023] Open
Abstract
Ischemic-induced neuronal injury arises due to low oxygen/nutrient levels and an inflammatory response that exacerbates neuronal loss. NOD-like receptor family pyrin domain-containing 3 (NLRP3) is an important regulator of inflammation after ischemic stroke, with its inhibition being involved in nerve regeneration. Curcumin, a main active ingredient in Chinese herbs, plays a positive role in neuronal repair and neuroprotection by regulating the NLRP3 signaling pathway. Nevertheless, the signaling mechanisms relating to how curcumin regulates NLRP3 inflammasome in inflammation and neural restoration following ischemic stroke are unknown. In this report, we summarize the main biological functions of the NLRP3 inflammasome along with the neuroprotective effects and underlying mechanisms of curcumin via impairment of the NLRP3 pathway in ischemic brain injury. We also discuss the role of medicinal interventions that target the NLRP3 and potential pathways, as well as possible directions for curcumin therapy to penetrate the blood-brain barrier (BBB) and hinder inflammation in ischemic stroke. This report conclusively demonstrates that curcumin has neuroprotective properties that inhibit inflammation and prevent nerve cell loss, thereby delaying the progression of ischemic brain damage.
Collapse
Affiliation(s)
- Xiaoxue Du
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Nashwa Amin
- Institute of System Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Department of Zoology, Faculty of Science, Aswan University, Aswan, Egypt
| | - Linhao Xu
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Cardiology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Benson O. A. Botchway
- Department of Neurology, Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Centre for Child Health, Hangzhou, China
- Pharmacy Department, Bupa Cromwell Hospital, London, United Kingdom
| | - Bo Zhang
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Marong Fang
- Department of Neurology, Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Centre for Child Health, Hangzhou, China
| |
Collapse
|
86
|
Zeng H, Zhou K, Zhuang Y, Li A, Luo B, Zhang Y. Unraveling the connection between gut microbiota and Alzheimer's disease: a two-sample Mendelian randomization analysis. Front Aging Neurosci 2023; 15:1273104. [PMID: 37908561 PMCID: PMC10613649 DOI: 10.3389/fnagi.2023.1273104] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023] Open
Abstract
Purpose Studies have shown a close relationship between gut microbiota (GM) and Alzheimer's disease (AD). However, the causal relationship between them remains unclear. Methods We conducted a genome-wide association study (GWAS) using publicly available summary statistics data for GM and AD. We extracted independent genetic loci significantly associated with GM relative abundances as instrumental variables based on predefined thresholds (p < 1*e-5). The inverse variance-weighted (IVW) method was primarily used for causal relationship assessment. Additional analyses, including MR-Egger, weighted median, simple mode, and weighted mode, were performed as supplementary analyses. Results IVW analysis revealed significant correlations between certain microbial taxa and the risk of AD. Higher abundances of Actinobacteria at the class level, phylum. Actinobacteria, class. Deltaproteobacteria, order. Desulfovibrionales, genus. Oscillospira, and genus. Ruminococcaceae UCG004 (p < 0.048) was found to be positively associated with an elevated risk of AD. However, within the genus-level taxa, Ruminococcus1 (p = 0.030) demonstrated a protective effect on lowering the risk of AD. In addition, to ensure the robustness of the findings, we employed Cochrane's Q test and leave-one-out analysis for quality assessment, while the stability and reliability of the results were validated through MR-Egger intercept test, MR-PRESSO global test, and sensitivity analysis. Conclusion This study provided a comprehensive analysis of the causal relationship between 211 GM taxa and AD. It discerned distinct GM taxa linked to the susceptibility of AD, thereby providing novel perspectives on the genetic mechanisms governing AD via the GM. Additionally, these discoveries held promise as valuable biomarkers, enabling the identification of potential therapeutic targets and guiding forthcoming AD investigations.
Collapse
Affiliation(s)
- Huiqiong Zeng
- Department of Rheumatology, Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, Guangdong, China
| | - Kaixia Zhou
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Yu Zhuang
- Department of Rheumatology and Immunology, Huizhou Central People’s Hospital, Huizhou, Guangdong, China
| | - Aidong Li
- Department of Rehabilitation, The Second People’s Hospital of Futian District, Shenzhen, Guangdong, China
| | - Baiwei Luo
- Department of Rheumatology and Immunology, Yuebei People’s Hospital Affiliated to Shantou University Medical College, Shaoguan, Guangdong, China
| | - Ye Zhang
- Department of Traditional Chinese Medicine, Women and Children Health Institute Futian Shenzhen, Shenzhen, China
| |
Collapse
|
87
|
Liu J, Li T, Zhong G, Pan Y, Gao M, Su S, Liang Y, Ma C, Liu Y, Wang Q, Shi Q. Exploring the therapeutic potential of natural compounds for Alzheimer's disease: Mechanisms of action and pharmacological properties. Biomed Pharmacother 2023; 166:115406. [PMID: 37659206 DOI: 10.1016/j.biopha.2023.115406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023] Open
Abstract
Alzheimer's Disease (AD) is a global public health priority characterized by high mortality rates in adults and an increasing prevalence in aging populations worldwide. Despite significant advancements in comprehending the pathogenesis of AD since its initial report in 1907, there remains a lack of effective curative or preventive measures for the disease. In recent years, natural compounds sourced from diverse origins have garnered considerable attention as potential therapeutic agents for AD, owing to their anti-inflammatory, antioxidant, and neuroprotective properties. This review aims to consolidate the therapeutic effects of natural compounds on AD, specifically targeting the reduction of β-amyloid (Aβ) overproduction, anti-apoptosis, autophagy, neuroinflammation, oxidative stress, endoplasmic reticulum (ER) stress, and mitochondrial dysfunction. Notably, the identified compounds exhibiting these effects predominantly originate from plants. This review provides valuable insights into the potential of natural compounds as a reservoir of novel therapeutic agents for AD, thereby stimulating further research and contributing to the development of efficacious treatments for this devastating disease.
Collapse
Affiliation(s)
- Jinman Liu
- Affiliated Jiangmen TCM Hospital of Ji'nan University, Jiangmen 529099, China
| | - Tianyao Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Guangcheng Zhong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yaru Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Minghuang Gao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Shijie Su
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yong Liang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Cuiru Ma
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yuanyue Liu
- Department of Neurology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210017, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Qing Shi
- Affiliated Jiangmen TCM Hospital of Ji'nan University, Jiangmen 529099, China.
| |
Collapse
|
88
|
Schrodt C, Mahavni A, McNamara GPJ, Tallman MD, Bruger BT, Schwarz L, Bhattacharyya A. The gut microbiome and depression: a review. Nutr Neurosci 2023; 26:953-959. [PMID: 36039916 DOI: 10.1080/1028415x.2022.2111745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
BACKGROUND Recent explorations into the gut microbiome of humans and animals reveal implications in chronic physical and mental health disorders. Relatively little is known regarding the relationship of gut microbiome and depression. In the current review, we reviewed existing scientific data related to the gut microbiome and healthy patients versus patients with depression. Additionally, scientific literature containing the utility of microbiome interventions to improve depression symptoms was reviewed. METHODS A PubMed and Clinical Key literature search combined the key terms 'gut,' 'microbiome,' 'bacteria,' and 'depression' to identify studies investigating these relationships. RESULTS 76 relevant articles were identified. Human and animal studies reviewed examined marked alterations in the dominant bacterial phyla in the gut of individuals with depression, the connection between leaky gut and neuroinflammation in depression, brain regulatory centers impacted by changes in the gut microbiome, and the benefits of the addition of a probiotic/prebiotic for gut and mental health. CONCLUSIONS The current review confirmed the suspected direct communication between the gut microbiome, brain functioning, and depression. Additionally, studies suggest antibiotics disrupt the gut microbiome. There are important implications for psychiatrists in providing opportunities for intervention and enhancement of current treatments for individuals with depression.
Collapse
Affiliation(s)
- Clare Schrodt
- Department of Psychiatry, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Anika Mahavni
- Department of Psychiatry, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Griffin P J McNamara
- Department of Psychiatry, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Morgan D Tallman
- Department of Psychiatry, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Bryanna T Bruger
- Department of Psychiatry, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Lauren Schwarz
- Department of Psychiatry, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | | |
Collapse
|
89
|
Peng B, Xu S, Liang Y, Dong X, Sun Y. Effect of Bacterial Amyloid Protein Phenol-Soluble Modulin Alpha 3 on the Aggregation of Amyloid Beta Protein Associated with Alzheimer's Disease. Biomimetics (Basel) 2023; 8:459. [PMID: 37887589 PMCID: PMC10604207 DOI: 10.3390/biomimetics8060459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Since the proposal of the brainstem axis theory, increasing research attention has been paid to the interactions between bacterial amyloids produced by intestinal flora and the amyloid β-protein (Aβ) related to Alzheimer's disease (AD), and it has been considered as the possible cause of AD. Therefore, phenol-soluble modulin (PSM) α3, the most virulent protein secreted by Staphylococcus aureus, has attracted much attention. In this work, the effect of PSMα3 with a unique cross-α fibril architecture on the aggregation of pathogenic Aβ40 of AD was studied by extensive biophysical characterizations. The results proposed that the PSMα3 monomer inhibited the aggregation of Aβ40 in a concentration-dependent manner and changed the aggregation pathway to form granular aggregates. However, PSMα3 oligomers promoted the generation of the β-sheet structure, thus shortening the lag phase of Aβ40 aggregation. Moreover, the higher the cross-α content of PSMα3, the stronger the effect of the promotion, indicating that the cross-α structure of PSMα3 plays a crucial role in the aggregation of Aβ40. Further molecular dynamics (MD) simulations have shown that the Met1-Gly20 region in the PSMα3 monomer can be combined with the Asp1-Ala2 and His13-Val36 regions in the Aβ40 monomer by hydrophobic and electrostatic interactions, which prevents the conformational conversion of Aβ40 from the α-helix to β-sheet structure. By contrast, PSMα3 oligomers mainly combined with the central hydrophobic core (CHC) and the C-terminal region of the Aβ40 monomer by weak H-bonding and hydrophobic interactions, which could not inhibit the transition to the β-sheet structure in the aggregation pathway. Thus, the research has unraveled molecular interactions between Aβ40 and PSMα3 of different structures and provided a deeper understanding of the complex interactions between bacterial amyloids and AD-related pathogenic Aβ.
Collapse
Affiliation(s)
| | | | | | - Xiaoyan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China; (B.P.); (S.X.); (Y.L.)
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China; (B.P.); (S.X.); (Y.L.)
| |
Collapse
|
90
|
Ayati MH, Araj-Khodaei M, Haghgouei T, Ahmadalipour A, Mobed A, Sanaie S. Biosensors: The nanomaterial-based method in detection of human gut microbiota. MATERIALS CHEMISTRY AND PHYSICS 2023; 307:127854. [DOI: 10.1016/j.matchemphys.2023.127854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
|
91
|
Zhang Y, Xing H, Bolotnikov G, Krämer M, Gotzmann N, Knippschild U, Kissmann AK, Rosenau F. Enriched Aptamer Libraries in Fluorescence-Based Assays for Rikenella microfusus-Specific Gut Microbiome Analyses. Microorganisms 2023; 11:2266. [PMID: 37764110 PMCID: PMC10535755 DOI: 10.3390/microorganisms11092266] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Rikenella microfusus is an essential intestinal probiotic with great potential. The latest research shows that imbalance in the intestinal flora are related to the occurrence of various diseases, such as intestinal diseases, immune diseases, and metabolic diseases. Rikenella may be a target or biomarker for some diseases, providing a new possibility for preventing and treating these diseases by monitoring and optimizing the abundance of Rikenella in the intestine. However, the current monitoring methods have disadvantages, such as long detection times, complicated operations, and high costs, which seriously limit the possibility of clinical application of microbiome-based treatment options. Therefore, the intention of this study was to evolve an enriched aptamer library to be used for specific labeling of R. microfusus, allowing rapid and low-cost detection methods and, ultimately the construction of aptamer-based biosensors. In this study, we used Rikenella as the target bacterium for an in vitro whole Cell-SELEX (Systematic Evolution of Ligands by EXponential Enrichment) to evolve and enrich specific DNA oligonucleotide aptamers. Five other prominent anaerobic gut bacteria were included in this process for counterselection and served as control cells. The aptamer library R.m-R13 was evolved with high specificity and strong affinity (Kd = 9.597 nM after 13 rounds of selection). With this enriched aptamer library, R. microfusus could efficiently be discriminated from the control bacteria in complex mixtures using different analysis techniques, including fluorescence microscopy or fluorometric suspension assays, and even in human stool samples. These preliminary results open new avenues toward the development of aptamer-based microbiome bio-sensing applications for fast and reliable monitoring of R. microfusus.
Collapse
Affiliation(s)
- Yiting Zhang
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (Y.Z.); (H.X.); (G.B.); (M.K.); (N.G.); (A.-K.K.)
| | - Hu Xing
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (Y.Z.); (H.X.); (G.B.); (M.K.); (N.G.); (A.-K.K.)
| | - Grigory Bolotnikov
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (Y.Z.); (H.X.); (G.B.); (M.K.); (N.G.); (A.-K.K.)
| | - Markus Krämer
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (Y.Z.); (H.X.); (G.B.); (M.K.); (N.G.); (A.-K.K.)
| | - Nina Gotzmann
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (Y.Z.); (H.X.); (G.B.); (M.K.); (N.G.); (A.-K.K.)
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Surgery Center, Ulm University, Albert-Einstein-Allee 23, 89081 Ulm, Germany;
| | - Ann-Kathrin Kissmann
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (Y.Z.); (H.X.); (G.B.); (M.K.); (N.G.); (A.-K.K.)
- Max-Planck-Institute for Polymer Research Mainz, Ackermannweg 10, 55128 Mainz, Germany
| | - Frank Rosenau
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (Y.Z.); (H.X.); (G.B.); (M.K.); (N.G.); (A.-K.K.)
| |
Collapse
|
92
|
Cozachenco D, Zimmer ER, Lourenco MV. Emerging concepts towards a translational framework in Alzheimer's disease. Neurosci Biobehav Rev 2023; 152:105246. [PMID: 37236385 DOI: 10.1016/j.neubiorev.2023.105246] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 05/28/2023]
Abstract
Over the past decades, significant efforts have been made to understand the precise mechanisms underlying the pathogenesis of Alzheimer's disease (AD), the most common cause of dementia. However, clinical trials targeting AD pathological hallmarks have consistently failed. Refinement of AD conceptualization, modeling, and assessment is key to developing successful therapies. Here, we review critical findings and discuss emerging ideas to integrate molecular mechanisms and clinical approaches in AD. We further propose a refined workflow for animal studies incorporating multimodal biomarkers used in clinical studies - delineating critical paths for drug discovery and translation. Addressing unresolved questions with the proposed conceptual and experimental framework may accelerate the development of effective disease-modifying strategies for AD.
Collapse
Affiliation(s)
- Danielle Cozachenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Eduardo R Zimmer
- Department of Pharmacology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Graduate Program in Biological Sciences: Biochemistry (PPGBioq), UFRGS, Porto Alegre, RS, Brazil; Pharmacology and Therapeutics (PPGFT), UFRGS, Porto Alegre, RS, Brazil; McGill Centre for Studies in Aging, McGill University, Montreal, Canada; Brain Institute of Rio Grande do Sul, PUCRS, Porto Alegre, Brazil.
| | - Mychael V Lourenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
93
|
Colletti A, Pellizzato M, Cicero AF. The Possible Role of Probiotic Supplementation in Inflammation: A Narrative Review. Microorganisms 2023; 11:2160. [PMID: 37764004 PMCID: PMC10535592 DOI: 10.3390/microorganisms11092160] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/01/2023] [Accepted: 08/17/2023] [Indexed: 09/29/2023] Open
Abstract
The fine balance between symbiotic and potentially opportunistic and/or pathogenic microorganisms can undergo quantitative alterations, which, when associated with low intestinal biodiversity, could be responsible for the development of gut inflammation and the so-called "intestinal dysbiosis". This condition is characterized by the disbalance of a fine synergistic mechanism involving the mucosal barrier, the intestinal neuroendocrine system, and the immune system that results in an acute inflammatory response induced by different causes, including viral or bacterial infections of the digestive tract. More frequently, however, dysbiosis is induced slowly and subtly by subliminal causal factors, resulting in a chronic condition related to different diseases affecting the digestive tract and other organs and apparatuses. Studies on animal models, together with studies on humans, highlight the significant role of the gut microbiota and microbiome in the occurrence of inflammatory conditions such as metabolic syndrome and cardiovascular diseases (CVDs); neurodegenerative, urologic, skin, liver, and kidney pathologies; and premature aging. The blood translocation of bacterial fragments has been found to be one of the processes linked to gut dysbiosis and responsible for the possible occurrence of "metabolic endotoxemia" and systemic inflammation, associated with an increased risk of oxidative stress and related diseases. In this context, supplementation with different probiotic strains has been shown to restore gut eubiosis, especially if administered in long-term treatments. The aim of this review is to describe the anti-inflammatory effects of specific probiotic strains observed in clinical trials and the respective indications, highlighting the differences in efficacy depending on strain, formulation, time and duration of treatment, and dosage used.
Collapse
Affiliation(s)
- Alessandro Colletti
- Department of Science and Drug Technology, University of Turin, 10124 Turin, Italy
- Italian Society of Nutraceutical Formulators (SIFNut), 31033 Treviso, Italy
| | - Marzia Pellizzato
- Italian Society of Nutraceutical Formulators (SIFNut), 31033 Treviso, Italy
| | - Arrigo Francesco Cicero
- Medical and Surgical Sciences Department, University of Bologna, 40126 Bologna, Italy;
- IRCCS AOUBO, 40138 Bologna, Italy
| |
Collapse
|
94
|
Fongang B, Satizabal C, Kautz TF, Wadop YN, Muhammad JAS, Vasquez E, Mathews J, Gireud-Goss M, Saklad AR, Himali J, Beiser A, Cavazos JE, Mahaney MC, Maestre G, DeCarli C, Shipp EL, Vasan RS, Seshadri S. Cerebral small vessel disease burden is associated with decreased abundance of gut Barnesiella intestinihominis bacterium in the Framingham Heart Study. Sci Rep 2023; 13:13622. [PMID: 37604954 PMCID: PMC10442369 DOI: 10.1038/s41598-023-40872-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023] Open
Abstract
A bidirectional communication exists between the brain and the gut, in which the gut microbiota influences cognitive function and vice-versa. Gut dysbiosis has been linked to several diseases, including Alzheimer's disease and related dementias (ADRD). However, the relationship between gut dysbiosis and markers of cerebral small vessel disease (cSVD), a major contributor to ADRD, is unknown. In this cross-sectional study, we examined the connection between the gut microbiome, cognitive, and neuroimaging markers of cSVD in the Framingham Heart Study (FHS). Markers of cSVD included white matter hyperintensities (WMH), peak width of skeletonized mean diffusivity (PSMD), and executive function (EF), estimated as the difference between the trail-making tests B and A. We included 972 FHS participants with MRI scans, neurocognitive measures, and stool samples and quantified the gut microbiota composition using 16S rRNA sequencing. We used multivariable association and differential abundance analyses adjusting for age, sex, BMI, and education level to estimate the association between gut microbiota and WMH, PSMD, and EF measures. Our results suggest an increased abundance of Pseudobutyrivibrio and Ruminococcus genera was associated with lower WMH and PSMD (p values < 0.001), as well as better executive function (p values < 0.01). In addition, in both differential and multivariable analyses, we found that the gram-negative bacterium Barnesiella intestinihominis was strongly associated with markers indicating a higher cSVD burden. Finally, functional analyses using PICRUSt implicated various KEGG pathways, including microbial quorum sensing, AMP/GMP-activated protein kinase, phenylpyruvate, and β-hydroxybutyrate production previously associated with cognitive performance and dementia. Our study provides important insights into the association between the gut microbiome and cSVD, but further studies are needed to replicate the findings.
Collapse
Affiliation(s)
- Bernard Fongang
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Department of Population Health Sciences, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| | - Claudia Satizabal
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Population Health Sciences, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Framingham Heart Study, Framingham, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Tiffany F Kautz
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Yannick N Wadop
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jazmyn A S Muhammad
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Erin Vasquez
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Julia Mathews
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Monica Gireud-Goss
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Amy R Saklad
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jayandra Himali
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Population Health Sciences, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Framingham Heart Study, Framingham, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Alexa Beiser
- Framingham Heart Study, Framingham, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Jose E Cavazos
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Neurology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Michael C Mahaney
- Department of Human Genetics, South Texas Diabetes and Obesity Institute, The University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Gladys Maestre
- Department of Neurosciences and Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Charles DeCarli
- Department of Neurology, Alzheimer's Disease Center, University of California, Davis, Sacramento, CA, USA
| | - Eric L Shipp
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Ramachandran S Vasan
- Framingham Heart Study, Framingham, MA, USA
- Department of Medicine, Section of Cardiovascular Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA, USA
- Department of Medicine, Section of Preventive Medicine and Epidemiology, Boston University School of Medicine, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
- Boston University's Center for Computing and Data Sciences, Boston, MA, USA
- The University of Texas School of Public Health in San Antonio, San Antonio, TX, USA
- The Long School of Medicine, University of Texas Health Science Center, San Antonio, TX, USA
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Framingham Heart Study, Framingham, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Department of Neurology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
95
|
Gong Y, Luo H, Li Z, Feng Y, Liu Z, Chang J. Metabolic Profile of Alzheimer's Disease: Is 10-Hydroxy-2-decenoic Acid a Pertinent Metabolic Adjuster? Metabolites 2023; 13:954. [PMID: 37623897 PMCID: PMC10456792 DOI: 10.3390/metabo13080954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/12/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023] Open
Abstract
Alzheimer's disease (AD) represents a significant public health concern in modern society. Metabolic syndrome (MetS), which includes diabetes mellitus (DM) and obesity, represents a modifiable risk factor for AD. MetS and AD are interconnected through various mechanisms, such as mitochondrial dysfunction, oxidative stress, insulin resistance (IR), vascular impairment, inflammation, and endoplasmic reticulum (ER) stress. Therefore, it is necessary to seek a multi-targeted and safer approach to intervention. Thus, 10-hydroxy-2-decenoic acid (10-HDA), a unique hydroxy fatty acid in royal jelly, has shown promising anti-neuroinflammatory, blood-brain barrier (BBB)-preserving, and neurogenesis-promoting properties. In this paper, we provide a summary of the relationship between MetS and AD, together with an introduction to 10-HDA as a potential intervention nutrient. In addition, molecular docking is performed to explore the metabolic tuning properties of 10-HDA with associated macromolecules such as GLP-1R, PPARs, GSK-3, and TREM2. In conclusion, there is a close relationship between AD and MetS, and 10-HDA shows potential as a beneficial nutritional intervention for both AD and MetS.
Collapse
Affiliation(s)
| | | | | | | | | | - Jie Chang
- Department of Occupational and Environmental Health, School of Public Health, Soochow University, 199 Ren’ai Road, Suzhou 215123, China; (Y.G.)
| |
Collapse
|
96
|
Homolak J, De Busscher J, Zambrano-Lucio M, Joja M, Virag D, Babic Perhoc A, Knezovic A, Osmanovic Barilar J, Salkovic-Petrisic M. Altered Secretion, Constitution, and Functional Properties of the Gastrointestinal Mucus in a Rat Model of Sporadic Alzheimer's Disease. ACS Chem Neurosci 2023; 14:2667-2682. [PMID: 37477640 PMCID: PMC10401635 DOI: 10.1021/acschemneuro.3c00223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023] Open
Abstract
The gastrointestinal (GI) system is affected in Alzheimer's disease (AD); however, it is currently unknown whether GI alterations arise as a consequence of central nervous system (CNS) pathology or play a causal role in the pathogenesis. GI mucus is a possible mediator of GI dyshomeostasis in neurological disorders as the CNS controls mucus production and secretion via the efferent arm of the brain-gut axis. The aim was to use a brain-first model of sporadic AD induced by intracerebroventricular streptozotocin (STZ-icv; 3 mg/kg) to dissect the efferent (i.e., brain-to-gut) effects of isolated central neuropathology on the GI mucus. Morphometric analysis of goblet cell mucigen granules revealed altered GI mucus secretion in the AD model, possibly mediated by the insensitivity of AD goblet cells to neurally evoked mucosal secretion confirmed by ex vivo cholinergic stimulation of isolated duodenal rings. The dysfunctional efferent control of the GI mucus secretion results in altered biochemical composition of the mucus associated with reduced mucin glycoprotein content, aggregation, and binding capacity in vitro. Finally, functional consequences of the reduced barrier-forming capacity of the mucin-deficient AD mucus are demonstrated using the in vitro two-compartment caffeine diffusion interference model. Isolated central AD-like neuropathology results in the loss of efferent control of GI homeostasis via the brain-gut axis and is characterized by the insensitivity to neurally evoked mucosal secretion, altered mucus constitution with reduced mucin content, and reduced barrier-forming capacity, potentially increasing the susceptibility of the STZ-icv rat model of AD to GI and systemic inflammation induced by intraluminal toxins, microorganisms, and drugs.
Collapse
Affiliation(s)
- Jan Homolak
- Department
of Pharmacology, University of Zagreb School
of Medicine, 10 000 Zagreb, Croatia
- Croatian
Institute for Brain Research, University
of Zagreb School of Medicine, 10 000 Zagreb, Croatia
| | | | - Miguel Zambrano-Lucio
- School
of Medicine, Autonomous University of Nuevo
Leon, Monterrey, Nuevo Leon 66455, Mexico
| | - Mihovil Joja
- Department
of Pharmacology, University of Zagreb School
of Medicine, 10 000 Zagreb, Croatia
- Department
of Infection and Immunity, Luxembourg Institute
of Health, L-4354 Esch-sur-Alzette, Luxembourg
- Faculty
of
Science, Technology and Medicine, University
of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg
| | - Davor Virag
- Department
of Pharmacology, University of Zagreb School
of Medicine, 10 000 Zagreb, Croatia
- Croatian
Institute for Brain Research, University
of Zagreb School of Medicine, 10 000 Zagreb, Croatia
| | - Ana Babic Perhoc
- Department
of Pharmacology, University of Zagreb School
of Medicine, 10 000 Zagreb, Croatia
- Croatian
Institute for Brain Research, University
of Zagreb School of Medicine, 10 000 Zagreb, Croatia
| | - Ana Knezovic
- Department
of Pharmacology, University of Zagreb School
of Medicine, 10 000 Zagreb, Croatia
- Croatian
Institute for Brain Research, University
of Zagreb School of Medicine, 10 000 Zagreb, Croatia
| | - Jelena Osmanovic Barilar
- Department
of Pharmacology, University of Zagreb School
of Medicine, 10 000 Zagreb, Croatia
- Croatian
Institute for Brain Research, University
of Zagreb School of Medicine, 10 000 Zagreb, Croatia
| | - Melita Salkovic-Petrisic
- Department
of Pharmacology, University of Zagreb School
of Medicine, 10 000 Zagreb, Croatia
- Croatian
Institute for Brain Research, University
of Zagreb School of Medicine, 10 000 Zagreb, Croatia
| |
Collapse
|
97
|
Yang N, Lan T, Han Y, Zhao H, Wang C, Xu Z, Chen Z, Tao M, Li H, Song Y, Ma X. Tributyrin alleviates gut microbiota dysbiosis to repair intestinal damage in antibiotic-treated mice. PLoS One 2023; 18:e0289364. [PMID: 37523400 PMCID: PMC10389721 DOI: 10.1371/journal.pone.0289364] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/17/2023] [Indexed: 08/02/2023] Open
Abstract
Tributyrin (TB) is a butyric acid precursor and has a key role in anti-inflammatory and intestinal barrier repair effects by slowly releasing butyric acid. However, its roles in gut microbiota disorder caused by antibiotics remain unclear. Herein, we established an intestinal microbiota disorder model using ceftriaxone sodium via gavage to investigate the effects of different TB doses for restoring gut microbiota and intestinal injury. First, we divided C57BL/6 male mice into two groups: control (NC, n = 8) and experimental (ABx, n = 24) groups, receiving gavage with 0.2 mL normal saline and 400 mg/mL ceftriaxone sodium solution for 7 d (twice a day and the intermediate interval was 6 h), respectively. Then, mice in the ABx group were randomly split into three groups: model (M, 0.2 mL normal saline), low TB group (TL, 0.3 g/kg BW), and high TB group (TH, 3 g/kg BW) for 11 d. We found that TB supplementation alleviated antibiotics-induced weight loss, diarrhea, and intestinal tissue damage. The 16S rRNA sequence analysis showed that TB intervention increased the α diversity of intestinal flora, increased potential short-chain fatty acids (SCFAs)-producing bacteria (such as Muribaculaceae and Bifidobacterium), and inhibited the relative abundance of potentially pathogenic bacteria (such as Bacteroidetes and Enterococcus) compared to the M group. TB supplementation reversed the reduction in SCFAs production in antibiotic-treated mice. Additionally, TB downregulated the levels of serum LPS and zonulin, TNF-α, IL-6, IL-1β and NLRP3 inflammasome-related factors in intestinal tissue and upregulated tight junction proteins (such as ZO-1 and Occludin) and MUC2. Overall, the adjustment ability of low-dose TB to the above indexes was stronger than high-dose TB. In conclusion, TB can restore the dysbiosis of gut microbiota, increase SCFAs, suppress inflammation, and ameliorate antibiotic-induced intestinal damage, indicating that TB might be a potential gut microbiota modulator.
Collapse
Affiliation(s)
- Ning Yang
- Department of Nutrition and Food Hygiene, School of Public Health, College of Medicine, Qingdao University, Qingdao, China
| | - Tongtong Lan
- Department of Nutrition and Food Hygiene, School of Public Health, College of Medicine, Qingdao University, Qingdao, China
| | - Yisa Han
- Department of Nutrition and Food Hygiene, School of Public Health, College of Medicine, Qingdao University, Qingdao, China
| | - Haifeng Zhao
- Qingdao Institute of Food and Drug Control, Key Laboratory of Quality Research and Evaluation of Marine Traditional Chinese Medicine, State Medical Products Administration, Qingdao, China
| | - Chuhui Wang
- Department of Nutrition and Food Hygiene, School of Public Health, College of Medicine, Qingdao University, Qingdao, China
| | - Zhen Xu
- Department of Nutrition and Food Hygiene, School of Public Health, College of Medicine, Qingdao University, Qingdao, China
| | - Zhao Chen
- Department of Nutrition and Food Hygiene, School of Public Health, College of Medicine, Qingdao University, Qingdao, China
| | - Meng Tao
- Department of Nutrition and Food Hygiene, School of Public Health, College of Medicine, Qingdao University, Qingdao, China
| | - Hui Li
- Department of Nutrition and Food Hygiene, School of Public Health, College of Medicine, Qingdao University, Qingdao, China
| | - Yang Song
- Department of Nutrition and Food Hygiene, School of Public Health, College of Medicine, Qingdao University, Qingdao, China
| | - Xuezhen Ma
- The Affiliated Qingdao Central Hospital of Qingdao University, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, China
| |
Collapse
|
98
|
de la Rubia Ortí JE, Moneti C, Serrano-Ballesteros P, Castellano G, Bayona-Babiloni R, Carriquí-Suárez AB, Motos-Muñoz M, Proaño B, Benlloch M. Liposomal Epigallocatechin-3-Gallate for the Treatment of Intestinal Dysbiosis in Children with Autism Spectrum Disorder: A Comprehensive Review. Nutrients 2023; 15:3265. [PMID: 37513683 PMCID: PMC10383799 DOI: 10.3390/nu15143265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is characterized by varying degrees of difficulty in social interaction and communication. These deficits are often associated with gastrointestinal symptoms, indicating alterations in both intestinal microbiota composition and metabolic activities. The intestinal microbiota influences the function and development of the nervous system. In individuals with ASD, there is an increase in bacterial genera such as Clostridium, as well as species involved in the synthesis of branched-chain amino acids (BCAA) like Prevotella copri. Conversely, decreased amounts of Akkermansia muciniphila and Bifidobacterium spp. are observed. Epigallocatechin-3-gallate (EGCG) is one of the polyphenols with the greatest beneficial activity on microbial growth, and its consumption is associated with reduced psychological distress. Therefore, the objective of this review is to analyze how EGCG and its metabolites can improve the microbial dysbiosis present in ASD and its impact on the pathology. The analysis reveals that EGCG inhibits the growth of pathogenic bacteria like Clostridium perfringens and Clostridium difficile. Moreover, it increases the abundance of Bifidobacterium spp. and Akkermansia spp. As a result, EGCG demonstrates efficacy in increasing the production of metabolites involved in maintaining epithelial integrity and improving brain function. This identifies EGCG as highly promising for complementary treatment in ASD.
Collapse
Affiliation(s)
| | - Costanza Moneti
- Doctoral School, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain
| | | | - Gloria Castellano
- Centro de Investigación Traslacional San Alberto Magno (CITSAM), Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain
| | - Raquel Bayona-Babiloni
- Department of Basic Medical Sciences, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain
| | - Ana Belén Carriquí-Suárez
- Department of Basic Medical Sciences, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain
| | - María Motos-Muñoz
- Department of Personality Psychology, Treatment and Methodology, Catholic University of Valencia San Vicente Mártir, 46100 Valencia, Spain
- Child Neurorehabilitation Unit, Manises Hospital, 46940 Valencia, Spain
| | - Belén Proaño
- Department of Basic Medical Sciences, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain
| | - María Benlloch
- Department of Basic Medical Sciences, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain
| |
Collapse
|
99
|
Xiu R, Sun Q, Li B, Wang Y. Mapping Research Trends and Hotspots in the Link between Alzheimer's Disease and Gut Microbes over the Past Decade: A Bibliometric Analysis. Nutrients 2023; 15:3203. [PMID: 37513621 PMCID: PMC10383611 DOI: 10.3390/nu15143203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Alzheimer's disease (AD) is a globally prevalent neurodegenerative disorder, the underlying causes and mechanisms of which remain elusive. The emerging interest in the potential connection between gut microbes and AD prompted our study to investigate this field through bibliometric analysis. To examine research trends over the past decade, we collected relevant data using search terms associated with gut microbiota and AD from the Web of Science Core Collection. Our analysis involved various tools, including R (version 4.2.2), VOSviewer (version 1.6.18), CiteSpace software (version 6.2.R1), and an online bibliometric platform. Our findings identified a total of 1170 articles published between 2012 and 2022, indicating a consistent growth of research interest in this area. Notably, China significantly contributed with 40.7% (374) of the publications, signifying its prominent role in this field. Among the journals, the Journal of Alzheimer's Disease published the highest number of articles (57; 4.9%). In terms of author influence, Wang Y, with an H-index of 13, emerged as the most influential author. Additionally, Shanghai Jiaotong University was the most productive institution, accounting for 66 articles (5.6%). Through keyword analysis, we grouped high-frequency keywords into six clusters: gut microbiota, AD, neuroinflammation, gut-brain axis, oxidative stress, and chain fatty acids. Chain fatty acids, oxidative stress, and the gut-brain axis emerged as dominant research topics in the past five years. Recent studies have specifically focused on "nlrp3 inflammasome" and "clearance" (2020-2022), indicating shifting research interests within this field. This bibliometric analysis aims to provide insights into the evolving landscape of research on the gut microbiota and AD. Our results identify key research trends and themes while highlighting potential research gaps. The findings offer valuable perspectives for future investigations, advancing our understanding of AD and exploring potential therapeutic strategies.
Collapse
Affiliation(s)
- Ruipu Xiu
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Qingyuan Sun
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Boya Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yanqing Wang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
100
|
Lu X, Fan Y, Peng Y, Pan W, Du D, Xu X, Li N, He T, Nie J, Shi P, Ge F, Liu D, Chen Y, Guan X. Gegen-Qinlian decoction alleviates anxiety-like behaviors in methamphetamine-withdrawn mice by regulating Akkermansia and metabolism in the colon. Chin Med 2023; 18:85. [PMID: 37455317 DOI: 10.1186/s13020-023-00794-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/02/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Anxiety is a prominent withdrawal symptom of methamphetamine (Meth) addiction. Recently, the gut microbiota has been regarded as a promising target for modulating anxiety. Gegen-Qinlian decoction (GQD) is a classical Traditional Chinese Medicine applied in interventions of various gut disorders by balancing the gut microbiome. We aim to investigate whether GQD could alleviate Meth withdrawal anxiety through balancing gut microbiota and gut microenvironment. METHODS Meth withdrawal anxiety models were established in mice. GQD were intragastric administrated into Meth-withdrawn mice and controls. Gut permeability and inflammatory status were examined in mice. Germ-free (GF) and antibiotics-treated (Abx) mice were used to evaluate the role of gut bacteria in withdrawal anxiety. Gut microbiota was profiled with 16s rRNA sequencing in feces. Metabolomics in colon tissue and in Akkermansia culture medium were performed. RESULTS Meth withdrawal enhanced anxiety-like behaviors in wild-type mice, and altered gut permeability, and inflammatory status, while GQD treatment during the withdrawal period efficiently alleviated anxiety-like behaviors and improved gut microenvironment. Next, we found Germ-free (GF) and antibiotics-treated (Abx) mice did not develop anxiety-like behaviors by Meth withdrawal, indicating the essential role of gut bacteria in Meth withdrawal induced anxiety. Then, it was observed that gut microbiota was greatly affected in Meth-withdrawn mice, especially the reduction in Akkermansia. GQD can rescue the gut microbiota and reverse Akkermansia abundance in Meth-withdrawn mice. Meanwhile, GQD can also restore the Meth-impaired Akkermansia growth in vitro. Further, GQD restored several common metabolite levels both in colon in vivo and in Akkermansia in vitro. CONCLUSIONS We revealed a novel effect of GQD on Meth withdrawal anxiety and identified its pharmacological target axis as "Akkermansia-Akkermansia metabolites-gut metabolites-gut microenvironment". Our findings indicated that targeting gut bacteria with TCM, such as GQD, might be a promising therapeutic strategy for addiction and related withdrawal symptoms.
Collapse
Affiliation(s)
- Xue Lu
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yu Fan
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yaqin Peng
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Weichao Pan
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Demin Du
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xing Xu
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Nanqin Li
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Teng He
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jiaxun Nie
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Pengbo Shi
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Feifei Ge
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Dekang Liu
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yugen Chen
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xiaowei Guan
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|