51
|
Dabravolski SA, Sukhorukov VN, Melnichenko AA, Khotina VA, Orekhov AN. Oligosaccharides as Potential Therapeutics against Atherosclerosis. Molecules 2023; 28:5452. [PMID: 37513323 PMCID: PMC10386248 DOI: 10.3390/molecules28145452] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Atherosclerosis is the major cause of cardiovascular-disease-related death worldwide, resulting from the subendothelial accumulation of lipoprotein-derived cholesterol, ultimately leading to chronic inflammation and the formation of clinically significant atherosclerotic plaques. Oligosaccharides have been widely used in biomedical research and therapy, including tissue engineering, wound healing, and drug delivery. Moreover, oligosaccharides have been consumed by humans for centuries, and are cheap, and available in large amounts. Given the constantly increasing number of obesity, diabetes, and hyperlipidaemia cases, there is an urgent need for novel therapeutics that can economically and effectively slow the progression of atherosclerosis. In this review, we address the current state of knowledge in oligosaccharides research, and provide an update of the recent in vitro and in vivo experiments that precede clinical studies. The application of oligosaccharides could help to eliminate the residual risk after the application of other cholesterol-lowering medicines, and provide new therapeutic opportunities to reduce the associated burden of premature deaths because of atherosclerosis.
Collapse
Affiliation(s)
- Siarhei A Dabravolski
- Department of Biotechnology Engineering, Braude Academic College of Engineering, Snunit 51, P.O. Box 78, Karmiel 2161002, Israel
| | - Vasily N Sukhorukov
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia
| | - Alexandra A Melnichenko
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia
| | - Victoria A Khotina
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia
| | - Alexander N Orekhov
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia
| |
Collapse
|
52
|
Immanuel J, Yun S. Vascular Inflammatory Diseases and Endothelial Phenotypes. Cells 2023; 12:1640. [PMID: 37371110 PMCID: PMC10297687 DOI: 10.3390/cells12121640] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/06/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
The physiological functions of endothelial cells control vascular tone, permeability, inflammation, and angiogenesis, which significantly help to maintain a healthy vascular system. Several cardiovascular diseases are characterized by endothelial cell activation or dysfunction triggered by external stimuli such as disturbed flow, hypoxia, growth factors, and cytokines in response to high levels of low-density lipoprotein and cholesterol, hypertension, diabetes, aging, drugs, and smoking. Increasing evidence suggests that uncontrolled proinflammatory signaling and further alteration in endothelial cell phenotypes such as barrier disruption, increased permeability, endothelial to mesenchymal transition (EndMT), and metabolic reprogramming further induce vascular diseases, and multiple studies are focusing on finding the pathways and mechanisms involved in it. This review highlights the main proinflammatory stimuli and their effects on endothelial cell function. In order to provide a rational direction for future research, we also compiled the most recent data regarding the impact of endothelial cell dysfunction on vascular diseases and potential targets that impede the pathogenic process.
Collapse
Affiliation(s)
| | - Sanguk Yun
- Department of Biotechnology, Inje University, Gimhae-si 50834, Republic of Korea;
| |
Collapse
|
53
|
Fasipe B, Li S, Laher I. Exercise and vascular function in sedentary lifestyles in humans. Pflugers Arch 2023:10.1007/s00424-023-02828-6. [PMID: 37272982 DOI: 10.1007/s00424-023-02828-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/06/2023]
Abstract
People with sedentary lifestyles engage in minimal or no physical activity. A sedentary lifestyle promotes dysregulation of cellular redox balance, diminishes mitochondrial function, and increases NADPH oxidase activity. These changes collectively increase cellular oxidative stress, which alters endothelial function by oxidizing LDL-C, reducing NO production, and causing eNOS uncoupling. Reduced levels of nitric oxide (NO) leads to vasoconstriction, vascular remodeling, and vascular inflammation. Exercise modulates reactive oxygen species (ROS) to modify NRF2-KEAP signaling, leading to the activation of NRF2 to alleviate oxidative stress. While regular moderate exercise activates NRF2 through ROS production, high-intensity intermittent exercise stimulates NRF2 activation to a greater degree by reducing KEAP levels, which can be more beneficial for sedentary individuals. We review the damaging effects of a sedentary lifestyle on the vascular system and the health benefits of regular and intermittent exercise.
Collapse
Affiliation(s)
- Babatunde Fasipe
- Faculty of Basic Clinical Sciences, Department of Pharmacology and Therapeutics, Bowen University, Iwo, Nigeria
| | - Shunchang Li
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, 610041, China
| | - Ismail Laher
- Faculty of Medicine, Department of Anesthesiology, Pharmacology and Therapeutics, The University of British Columbia, 2176 Health Sciences Mall, Vancouver, Canada.
| |
Collapse
|
54
|
Demgne Loungaing V, Tonfack Djikeng F, Boungo Teboukeu G, Njike Ngamga FH, Womeni HM. The effect of soursop-flower-enriched fried palm olein on some biochemical and hematological parameters of rats. Food Sci Nutr 2023; 11:2798-2810. [PMID: 37324895 PMCID: PMC10261762 DOI: 10.1002/fsn3.3258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/12/2023] [Accepted: 01/27/2023] [Indexed: 02/22/2023] Open
Abstract
This work set out to, first, assess the role of soursop flower extracts (SFE) in limiting palm olein oxidation during the production of plantain chips, before ascertaining the effect of these soursop-flower-enriched fried palm olein on some biochemical and hematological parameters of rats. The extracts were added to 1.5 kg of oil at 1000, 1400, and 1800 ppm, while BHT at 200 ppm served as a positive control (PO+BHT), and the oil without additives was the negative control (PO). The samples were subjected to 15 frying cycles. Total oxidation values varied between 5.94 ± 0.0 and 31.58 ± 0.37; 8.08 ± 0.25 and 28.24 ± 0.00 and 13.71 ± 0.24 and 42.71 ± 0.40 respectively for palm olein enriched with SFE, for PO+BHT and for PO. Twenty-one groups each comprising five rats received, through dietary supplementation, oils subjected to 0, and 5, 10 and 15 frying cycles for a duration of 30 days. The alanine transaminase and aspartate transaminase of rats fed with oils enriched with SFE at fresh states and at 5 frying cycles was comparable to that of the neutral control group (23.45 ± 2.65 and 93.10 ± 3.53 U/L) and lower than that of the negative control group (52.15 ± 2.01 and 124.07 ± 1.89 U/L). The HDL cholesterol of these animals was also comparable to that of the neutral control group (67.82 ± 4.06 mg/dl) and higher than that of the negative control group (50.25 ± 5.20 mg/dl). White blood cells and mean corpuscular volume of rats fed with fried olein previously enriched with SFE were lower than those fed with fried olein without additives. These extracts are recommended as natural antioxidants for the stabilization of palm olein.
Collapse
Affiliation(s)
- Valerie Demgne Loungaing
- Research Unit of Biochemistry, Medicinal Plants, Food Sciences, and Nutrition, Department of Biochemistry, Faculty of ScienceUniversity of DschangDschangCameroon
- Institute of Agricultural Research for Development, Foumbot Multipurpose StationFoumbotCameroon
| | - Fabrice Tonfack Djikeng
- Department of Biochemistry and Molecular Biology, Faculty of ScienceUniversity of BueaBueaCameroon
| | | | - Fabrice Herve Njike Ngamga
- Research Unit of Biochemistry, Medicinal Plants, Food Sciences, and Nutrition, Department of Biochemistry, Faculty of ScienceUniversity of DschangDschangCameroon
| | - Hilaire Macaire Womeni
- Research Unit of Biochemistry, Medicinal Plants, Food Sciences, and Nutrition, Department of Biochemistry, Faculty of ScienceUniversity of DschangDschangCameroon
| |
Collapse
|
55
|
Munteanu C. Hydrogen Sulfide and Oxygen Homeostasis in Atherosclerosis: A Systematic Review from Molecular Biology to Therapeutic Perspectives. Int J Mol Sci 2023; 24:ijms24098376. [PMID: 37176083 PMCID: PMC10179092 DOI: 10.3390/ijms24098376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Atherosclerosis is a complex pathological condition marked by the accumulation of lipids in the arterial wall, leading to the development of plaques that can eventually rupture and cause thrombotic events. In recent years, hydrogen sulfide (H2S) has emerged as a key mediator of cardiovascular homeostasis, with potential therapeutic applications in atherosclerosis. This systematic review highlights the importance of understanding the complex interplay between H2S, oxygen homeostasis, and atherosclerosis and suggests that targeting H2S signaling pathways may offer new avenues for treating and preventing this condition. Oxygen homeostasis is a critical aspect of cardiovascular health, and disruption of this balance can contribute to the development and progression of atherosclerosis. Recent studies have demonstrated that H2S plays an important role in maintaining oxygen homeostasis by regulating the function of oxygen-sensing enzymes and transcription factors in vascular cells. H2S has been shown to modulate endothelial nitric oxide synthase (eNOS) activity, which plays a key role in regulating vascular tone and oxygen delivery to tissues. The comprehensive analysis of the current understanding of H2S in atherosclerosis can pave the way for future research and the development of new therapeutic strategies for this debilitating condition. PROSPERO ID: 417150.
Collapse
Affiliation(s)
- Constantin Munteanu
- Faculty of Medical Bioengineering, University of Medicine and Pharmacy "Grigore T. Popa" Iași, 700454 Iași, Romania
- Teaching Emergency Hospital "Bagdasar-Arseni" (TEHBA), 041915 Bucharest, Romania
| |
Collapse
|
56
|
Khan MA, Mohammad I, Banerjee S, Tomar A, Varughese KI, Mehta JL, Chandele A, Arockiasamy A. Oxidized LDL receptors: a recent update. Curr Opin Lipidol 2023:00041433-990000000-00037. [PMID: 37171285 DOI: 10.1097/mol.0000000000000884] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
PURPOSE OF REVIEW LDL in its oxidized form, or 'oxLDL', is now generally acknowledged to be highly proatherogenic and to play a significant role in atherosclerotic plaque formation. Therefore, there has been increasing interest in understanding the significance of oxLDL and its receptors in different phases of atherosclerosis, leading to the accumulation of additional data at the cellular, structural, and physiological levels. This review focuses on the most recent discoveries about these receptors and how they influence lipid absorption, metabolism, and inflammation in various cell types. RECENT FINDINGS Two crystal structures of lectin-like oxLDL receptor-1 (LOX-1), one with a small molecule inhibitor and the other with a monoclonal antibody have been published. We recently demonstrated that the 'surface site' of LOX1, adjacent to the positively charged 'basic spine region' that facilitates oxLDL binding, is a targetable site for drug development. Further, recent human studies showed that soluble LOX-1 holds potential as a biomarker for cardiovascular disease diagnosis, prognosis, and assessing the efficacy of therapy. SUMMARY Receptor-mediated oxLDL uptake results in cellular dysfunction of various cell types involved in atherogenesis and plaque development. The current advancements clearly demonstrate that targeting oxLDL-LOX-1 axis may lead to development of future therapeutics for the treatment of atherosclerotic cardiovascular and cerebrovascular diseases.
Collapse
Affiliation(s)
- Mohd Azeem Khan
- Membrane Protein Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Irshad Mohammad
- Membrane Protein Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Sohom Banerjee
- Membrane Protein Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Akanksha Tomar
- Membrane Protein Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Kottayil I Varughese
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences
| | - Jawahar L Mehta
- Division of Cardiology, University of Arkansas for Medical Sciences and the VA Medical Center, Little Rock, Arkansas, USA
| | - Anmol Chandele
- ICGEB-Emory Vaccine Centre, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Arulandu Arockiasamy
- Membrane Protein Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
57
|
Tanase DM, Valasciuc E, Gosav EM, Ouatu A, Buliga-Finis ON, Floria M, Maranduca MA, Serban IL. Portrayal of NLRP3 Inflammasome in Atherosclerosis: Current Knowledge and Therapeutic Targets. Int J Mol Sci 2023; 24:ijms24098162. [PMID: 37175869 PMCID: PMC10179095 DOI: 10.3390/ijms24098162] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/26/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
We are witnessing the globalization of a specific type of arteriosclerosis with rising prevalence, incidence and an overall cardiovascular disease burden. Currently, atherosclerosis increasingly affects the younger generation as compared to previous decades. While early preventive medicine has seen improvements, research advances in laboratory and clinical investigation promise to provide us with novel diagnosis tools. Given the physio-pathological complexity and epigenetic patterns of atherosclerosis and the discovery of new molecules involved, the therapeutic field of atherosclerosis has room for substantial growth. Thus, the scientific community is currently investigating the role of nucleotide-binding and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, a crucial component of the innate immune system in different inflammatory disorders. NLRP3 is activated by distinct factors and numerous cellular and molecular events which trigger NLRP3 inflammasome assembly with subsequent cleavage of pro-interleukin (IL)-1β and pro-IL-18 pathways via caspase-1 activation, eliciting endothelial dysfunction, promotion of oxidative stress and the inflammation process of atherosclerosis. In this review, we introduce the basic cellular and molecular mechanisms of NLRP3 inflammasome activation and its role in atherosclerosis. We also emphasize its promising therapeutic pharmaceutical potential.
Collapse
Affiliation(s)
- Daniela Maria Tanase
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, "St. Spiridon" County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Emilia Valasciuc
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, "St. Spiridon" County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Evelina Maria Gosav
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, "St. Spiridon" County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Anca Ouatu
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, "St. Spiridon" County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Oana Nicoleta Buliga-Finis
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, "St. Spiridon" County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Mariana Floria
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, "St. Spiridon" County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Minela Aida Maranduca
- Internal Medicine Clinic, "St. Spiridon" County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
- Department of Morpho-Functional Sciences II, Discipline of Physiology, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ionela Lacramioara Serban
- Department of Morpho-Functional Sciences II, Discipline of Physiology, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
58
|
Kotlyarov S. Effects of Atherogenic Factors on Endothelial Cells: Bioinformatics Analysis of Differentially Expressed Genes and Signaling Pathways. Biomedicines 2023; 11:1216. [PMID: 37189834 PMCID: PMC10135807 DOI: 10.3390/biomedicines11041216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
(1) Background: Atherosclerosis is a serious medical condition associated with high morbidity and mortality rates. It develops over many years as a complex chain of events in the vascular wall involving various cells and is influenced by many factors of clinical interest. (2) Methods: In this study, we performed a bioinformatic analysis of Gene Expression Omnibus (GEO) datasets to investigate the gene ontology of differentially expressed genes (DEGs) in endothelial cells exposed to atherogenic factors such as tobacco smoking, oscillatory shear, and oxidized low-density lipoproteins (oxLDL). DEGs were identified using the limma R package, and gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, and protein-protein interaction (PPI) network analysis were performed. (3) Results: We studied biological processes and signaling pathways involving DEGs in endothelial cells under the influence of atherogenic factors. GO enrichment analysis demonstrated that the DEGs were mainly involved in cytokine-mediated signaling pathway, innate immune response, lipid biosynthetic process, 5-lipoxygenase activity, and nitric-oxide synthase activity. KEGG pathway enrichment analysis showed that common pathways included tumor necrosis factor signaling pathway, NF-κB signaling pathway, NOD-like receptor signaling pathway, lipid and atherosclerosis, lipoprotein particle binding, and apoptosis. (4) Conclusions: Atherogenic factors such as smoking, impaired flow, and oxLDL contribute to impaired innate immune response, metabolism, and apoptosis in endothelial cells, potentially leading to the development of atherosclerosis.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
59
|
Duan H, Song P, Li R, Su H, He L. Attenuating lipid metabolism in atherosclerosis: The potential role of Anti-oxidative effects on low-density lipoprotein of herbal medicines. Front Pharmacol 2023; 14:1161657. [PMID: 37063287 PMCID: PMC10102431 DOI: 10.3389/fphar.2023.1161657] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
Atherosclerosis (AS) is a multifactorial chronic disease with great harm to the health of human being, which is a basic pathogenesis of many cardiovascular diseases and ultimately threatens human life. Abnormal blood lipid level is one of the most common diagnostic indicators of AS in clinic, and lipid metabolism disorder is often observed in patients with AS. Cholesterol is an important lipid in the human body, which is of great significance for maintaining normal life activities. Generally, cholesterol is transported to peripheral tissues by low-density lipoprotein (LDL), and then transported to the liver by high-density lipoprotein (HDL) via its cholesterol reverse transport function, and finally discharged. Under oxidative stress condition, LDL is commonly oxidized to the form ox-LDL, which is ingested by macrophages in large quantities and further forms foam cells, disrupting the normal metabolic process of cholesterol. Importantly, the foam cells are involved in forming atherosclerotic plaques, whose rupture may lead to ischemic heart disease or stroke. Furthermore, ox-LDL could also promote the development of AS by damaging vascular endothelium, promoting the migration and proliferation of smooth muscle cells, and activating platelets. Therefore, inhibiting LDL oxidation may be an effective way to improve lipid metabolism and prevent AS. In recent years, increasing studies have shown that herbal medicines have great potentiality in inhibiting LDL oxidation and reducing ox-LDL induced foam cell formation. Accordingly, this paper summarized current research on the inhibitory effects of herbal medicines against LDL oxidation and foam cell formation, and made a brief description of the role of cholesterol and LDL in lipid metabolism disorder and AS pathogenesis. Importantly, it is suggested that herbal medicines could inhibit LDL oxidation and regulate cholesterol homeostasis via downregulation of CD36 and SR-A, whereas upregulation of ABCA1 and ABCG1.
Collapse
Affiliation(s)
- Huxinyue Duan
- School of Pharmacy, School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Pan Song
- Chengdu Integrated TCM and Western Medicine Hospital, Chengdu, China
| | - Ruolan Li
- School of Pharmacy, School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong Su
- Chengdu Integrated TCM and Western Medicine Hospital, Chengdu, China
- *Correspondence: Hong Su, ; Lisha He,
| | - Lisha He
- School of Pharmacy, School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Hong Su, ; Lisha He,
| |
Collapse
|
60
|
Kamal FZ, Lefter R, Jaber H, Balmus IM, Ciobica A, Iordache AC. The Role of Potential Oxidative Biomarkers in the Prognosis of Acute Ischemic Stroke and the Exploration of Antioxidants as Possible Preventive and Treatment Options. Int J Mol Sci 2023; 24:ijms24076389. [PMID: 37047362 PMCID: PMC10094154 DOI: 10.3390/ijms24076389] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Ischemic strokes occur when the blood supply to a part of the brain is interrupted or reduced due to arterial blockage, and it often leads to damage to brain cells or death. According to a myriad of experimental studies, oxidative stress is an important pathophysiological mechanism of ischemic stroke. In this narrative review, we aimed to identify how the alterations of oxidative stress biomarkers could suggest a severity-reflecting diagnosis of ischemic stroke and how these interactions may provide new molecular targets for neuroprotective therapies. We performed an eligibility criteria-based search on three main scientific databases. We found that patients with acute ischemic stroke are characterized by increased oxidative stress markers levels, such as the total antioxidant capacity, F2-isoprostanes, hydroxynonenal, total and perchloric acid oxygen radical absorbance capacity (ORACTOT and ORACPCA), malondialdehyde (MDA), myeloperoxidase, and urinary 8-oxo-7,8-dihydro-2′-deoxyguanosine. Thus, acute ischemic stroke is causing significant oxidative stress and associated molecular and cellular damage. The assessment of these molecular markers could be useful in diagnosing ischemic stroke, finding its causes, predicting its severity and outcomes, reducing its impact on the cellular structures of the brain, and guiding preventive treatment towards antioxidant-based therapy as novel therapeutic alternatives.
Collapse
|
61
|
Bielawska L, Wysocka E, Baszczuk A, Dżumak A, Ludziejewska A, Cymerys M, Płóciniczak A. The Effect of 75 Grams of Glucose during OGTT on Plasma Markers of Lipid and Lipoprotein Peroxidation, Oxidized LDL and Thiobarbituric Acid Reactive Substances, in People with Increased Body Mass. Metabolites 2023; 13:metabo13040483. [PMID: 37110142 PMCID: PMC10140869 DOI: 10.3390/metabo13040483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/24/2023] [Accepted: 03/25/2023] [Indexed: 03/30/2023] Open
Abstract
Obesity, currently defined as a disease, is associated with a number of metabolic disorders, and oxidative stress is discussed as the link between them. The aim of this study was to analyze the plasma markers reflecting oxidative modification of lipids and lipoproteins, oxidized LDL (oxLDL) and thiobarbituric acid reactive substances (TBARS), under the influence of the 75 g of oral glucose during oral glucose tolerance test (OGTT), in patients with increased body mass. One hundred twenty individuals of both genders (46 women and 74 men) aged 26 to 75 years with increased body mass (BMI > 25 kg/m2) were recruited for the study. OGTT was performed in each of the qualified persons, and glycemia, insulinemia, and concentrations of oxLDL and TBARS were measured fasting and at 120 min of OGTT. The homeostasis model assessment of insulin resistance (HOMA-IR) was used to assess the degree of insulin resistance (IR). In order to assess the changes of the investigated parameters under the influence of 75 g glucose, the index ROGTT = [120’]/[0’] was calculated to obtain oxLDL-ROGTT and TBARS-ROGTT. The statistical analysis was performed in the entire study population and subsequent groups from H1 to H4, defined by HOMA-IR quartiles. In the entire study population and the subgroups, oxidative stress markers changed during OGTT. From H1 to H4 group, increasing oxLDL and TBARS were observed both in the fasting state and at 120 min of OGTT, and the oxLDL-ROGTT index decreased from the H2 to the H4 group. The intensification of IR in people with increased body mass may predispose them to enhanced oxidative modification of lipoproteins. Individual reduction in the concentration of oxLDL during OGTT, in reference to fasting value (decreased oxLDL-ROGTT), suggests increased uptake of modified lipoproteins by scavenger receptor-presenting cells or increased migration to the vascular wall.
Collapse
Affiliation(s)
- Lena Bielawska
- Department of Laboratory Diagnostics, Poznan University of Medical Sciences, 84 Szamarzewskiego Str., 60-569 Poznań, Poland
- Correspondence:
| | - Ewa Wysocka
- Department of Laboratory Diagnostics, Poznan University of Medical Sciences, 84 Szamarzewskiego Str., 60-569 Poznań, Poland
| | - Aleksandra Baszczuk
- Department of Laboratory Diagnostics, Poznan University of Medical Sciences, 84 Szamarzewskiego Str., 60-569 Poznań, Poland
| | - Anna Dżumak
- Department of Laboratory Diagnostics, Poznan University of Medical Sciences, 84 Szamarzewskiego Str., 60-569 Poznań, Poland
| | - Aleksandra Ludziejewska
- Department of Laboratory Diagnostics, Poznan University of Medical Sciences, 84 Szamarzewskiego Str., 60-569 Poznań, Poland
| | - Maciej Cymerys
- Department of Internal Medicine, Metabolic Disorders and Arterial Hypertension, Poznan University of Medical Sciences, 16/18 Grunwaldzka Str., 60-780 Poznań, Poland
| | - Alicja Płóciniczak
- Department of Laboratory Diagnostics, Poznan University of Medical Sciences, 84 Szamarzewskiego Str., 60-569 Poznań, Poland
| |
Collapse
|
62
|
Salemkour Y, Lenoir O. Endothelial Autophagy Dysregulation in Diabetes. Cells 2023; 12:947. [PMID: 36980288 PMCID: PMC10047205 DOI: 10.3390/cells12060947] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Diabetes mellitus is a major public health issue that affected 537 million people worldwide in 2021, a number that is only expected to increase in the upcoming decade. Diabetes is a systemic metabolic disease with devastating macro- and microvascular complications. Endothelial dysfunction is a key determinant in the pathogenesis of diabetes. Dysfunctional endothelium leads to vasoconstriction by decreased nitric oxide bioavailability and increased expression of vasoconstrictor factors, vascular inflammation through the production of pro-inflammatory cytokines, a loss of microvascular density leading to low organ perfusion, procoagulopathy, and/or arterial stiffening. Autophagy, a lysosomal recycling process, appears to play an important role in endothelial cells, ensuring endothelial homeostasis and functions. Previous reports have provided evidence of autophagic flux impairment in patients with type I or type II diabetes. In this review, we report evidence of endothelial autophagy dysfunction during diabetes. We discuss the mechanisms driving endothelial autophagic flux impairment and summarize therapeutic strategies targeting autophagy in diabetes.
Collapse
Affiliation(s)
| | - Olivia Lenoir
- PARCC, Inserm, Université Paris Cité, 75015 Paris, France
| |
Collapse
|
63
|
Troncoso MF, Díaz-Vesga MC, Sanhueza-Olivares F, Riquelme JA, Müller M, Garrido L, Gabrielli L, Chiong M, Corbalan R, Castro PF, Lavandero S. Targeting VCAM-1: a therapeutic opportunity for vascular damage. Expert Opin Ther Targets 2023; 27:207-223. [PMID: 36880349 DOI: 10.1080/14728222.2023.2187778] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
INTRODUCTION The vascular cell adhesion molecule (VCAM-1) is a transmembrane sialoglycoprotein detected in activated endothelial and vascular smooth muscle cells involved in the adhesion and transmigration of inflammatory cells into damaged tissue. Widely used as a pro-inflammatory marker, its potential role as a targeting molecule has not been thoroughly explored. AREAS COVERED We discuss the current evidence supporting the potential targeting of VCAM-1 in atherosclerosis, diabetes, hypertension and ischemia/reperfusion injury. EXPERT OPINION There is emerging evidence that VCAM-1 is more than a biomarker and may be a promising therapeutic target for vascular diseases. While there are neutralizing antibodies that allow preclinical research, the development of pharmacological tools to activate or inhibit this protein are required to thoroughly assess its therapeutic potential.
Collapse
Affiliation(s)
- Mayarling F Troncoso
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Escuela de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Magda C Díaz-Vesga
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Pontificia Universidad Javeriana de Cali, Cali, Colombia
| | - Fernanda Sanhueza-Olivares
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Jaime A Riquelme
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Marioly Müller
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Luis Garrido
- Division of Cardiovascular Diseases, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luigi Gabrielli
- Division Surgery, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Ramon Corbalan
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Pablo F Castro
- Division Surgery, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
64
|
Hypotheses on Atherogenesis Triggering: Does the Infectious Nature of Atherosclerosis Development Have a Substruction? Cells 2023; 12:cells12050707. [PMID: 36899843 PMCID: PMC10001176 DOI: 10.3390/cells12050707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/03/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Since the end of the 20th century, it has been clear that atherosclerosis is an inflammatory disease. However, the main triggering mechanism of the inflammatory process in the vascular walls is still unclear. To date, many different hypotheses have been put forward to explain the causes of atherogenesis, and all of them are supported by strong evidence. Among the main causes of atherosclerosis, which underlies these hypotheses, the following can be mentioned: lipoprotein modification, oxidative transformation, shear stress, endothelial dysfunction, free radicals' action, homocysteinemia, diabetes mellitus, and decreased nitric oxide level. One of the latest hypotheses concerns the infectious nature of atherogenesis. The currently available data indicate that pathogen-associated molecular patterns from bacteria or viruses may be an etiological factor in atherosclerosis. This paper is devoted to the analysis of existing hypotheses for atherogenesis triggering, and special attention is paid to the contribution of bacterial and viral infections to the pathogenesis of atherosclerosis and cardiovascular disease.
Collapse
|
65
|
Effect of Sphingomyelinase-Treated LDLs on HUVECs. Molecules 2023; 28:molecules28052100. [PMID: 36903354 PMCID: PMC10004656 DOI: 10.3390/molecules28052100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 03/12/2023] Open
Abstract
Low-density lipoproteins (LDLs) exert a key role in the transport of esterified cholesterol to tissues. Among the atherogenic modifications of LDLs, the oxidative modification has been mainly investigated as a major risk factor for accelerating atherogenesis. Since LDL sphingolipids are also emerging as important regulators of the atherogenic process, increasing attention is devoted to the effects of sphingomyelinase (SMase) on LDL structural and atherogenic properties. The aims of the study were to investigate the effect of SMase treatment on the physical-chemical properties of LDLs. Moreover, we evaluated cell viability, apoptosis, and oxidative and inflammatory status in human umbilical vein endothelial cells (HUVECs) treated with either ox-LDLs or SMase-treated LDLs (SMase-LDLs). Both treatments were associated with the accrual of the intracellular ROS and upregulation of the antioxidant Paraoxonase 2 (PON2), while only SMase-LDLs induced an increase of superoxide dismutase 2 (SOD2), suggesting the activation of a feedback loop to restrain the detrimental effects of ROS. The increased caspase-3 activity and reduced viability observed in cells treated with SMase-LDLs and ox-LDLs suggest a pro-apoptotic effect of these modified lipoproteins on endothelial cells. Moreover, a strong proinflammatory effect of SMase-LDLs compared to ox-LDLs was confirmed by an increased activation of NF-κB and consequent increased expression of its downstream cytokines IL-8 and IL-6 in HUVECs.
Collapse
|
66
|
Inflammatory Response: A Crucial Way for Gut Microbes to Regulate Cardiovascular Diseases. Nutrients 2023; 15:nu15030607. [PMID: 36771313 PMCID: PMC9921390 DOI: 10.3390/nu15030607] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/09/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Gut microbiota is the largest and most complex microflora in the human body, which plays a crucial role in human health and disease. Over the past 20 years, the bidirectional communication between gut microbiota and extra-intestinal organs has been extensively studied. A better comprehension of the alternative mechanisms for physiological and pathophysiological processes could pave the way for health. Cardiovascular disease (CVD) is one of the most common diseases that seriously threatens human health. Although previous studies have shown that cardiovascular diseases, such as heart failure, hypertension, and coronary atherosclerosis, are closely related to gut microbiota, limited understanding of the complex pathogenesis leads to poor effectiveness of clinical treatment. Dysregulation of inflammation always accounts for the damaged gastrointestinal function and deranged interaction with the cardiovascular system. This review focuses on the characteristics of gut microbiota in CVD and the significance of inflammation regulation during the whole process. In addition, strategies to prevent and treat CVD through proper regulation of gut microbiota and its metabolites are also discussed.
Collapse
|
67
|
Yuan D, Chu J, Lin H, Zhu G, Qian J, Yu Y, Yao T, Ping F, Chen F, Liu X. Mechanism of homocysteine-mediated endothelial injury and its consequences for atherosclerosis. Front Cardiovasc Med 2023; 9:1109445. [PMID: 36727029 PMCID: PMC9884709 DOI: 10.3389/fcvm.2022.1109445] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
Homocysteine (Hcy) is an intermediate amino acid formed during the conversion from methionine to cysteine. When the fasting plasma Hcy level is higher than 15 μmol/L, it is considered as hyperhomocysteinemia (HHcy). The vascular endothelium is an important barrier to vascular homeostasis, and its impairment is the initiation of atherosclerosis (AS). HHcy is an important risk factor for AS, which can promote the development of AS and the occurrence of cardiovascular events, and Hcy damage to the endothelium is considered to play a very important role. However, the mechanism by which Hcy damages the endothelium is still not fully understood. This review summarizes the mechanism of Hcy-induced endothelial injury and the treatment methods to alleviate the Hcy induced endothelial dysfunction, in order to provide new thoughts for the diagnosis and treatment of Hcy-induced endothelial injury and subsequent AS-related diseases.
Collapse
|
68
|
Vorotnikov AV, Khapchaev AY, Nickashin AV, Shirinsky VP. In Vitro Modeling of Diabetes Impact on Vascular Endothelium: Are Essentials Engaged to Tune Metabolism? Biomedicines 2022; 10:biomedicines10123181. [PMID: 36551937 PMCID: PMC9775148 DOI: 10.3390/biomedicines10123181] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Angiopathy is a common complication of diabetes mellitus. Vascular endothelium is among the first targets to experience blood-borne metabolic alterations, such as hyperglycemia and hyperlipidemia, the hallmarks of type 2 diabetes. To explore mechanisms of vascular dysfunction and eventual damage brought by these pathologic conditions and to find ways to protect vasculature in diabetic patients, various research approaches are used including in vitro endothelial cell-based models. We present an analysis of the data available from these models that identifies early endothelial cell apoptosis associated with oxidative stress as the major outcome of mimicking hyperglycemia and hyperlipidemia in vitro. However, the fate of endothelial cells observed in these studies does not closely follow it in vivo where massive endothelial damage occurs mainly in the terminal stages of diabetes and in conjunction with comorbidities. We propose that the discrepancy is likely in missing essentials that should be available to cultured endothelial cells to adjust the metabolic state and withstand the immediate apoptosis. We discuss the role of carnitine, creatine, and AMP-activated protein kinase (AMPK) in suiting the endothelial metabolism for long-term function in diabetic type milieu in vitro. Engagement of these essentials is anticipated to expand diabetes research options when using endothelial cell-based models.
Collapse
|
69
|
Grundler F, Viallon M, Mesnage R, Ruscica M, von Schacky C, Madeo F, Hofer SJ, Mitchell SJ, Croisille P, Wilhelmi de Toledo F. Long-term fasting: Multi-system adaptations in humans (GENESIS) study-A single-arm interventional trial. Front Nutr 2022; 9:951000. [PMID: 36466423 PMCID: PMC9713250 DOI: 10.3389/fnut.2022.951000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/31/2022] [Indexed: 09/10/2024] Open
Abstract
Fasting provokes fundamental changes in the activation of metabolic and signaling pathways leading to longer and healthier lifespans in animal models. Although the involvement of different metabolites in fueling human fasting metabolism is well known, the contribution of tissues and organs to their supply remains partly unclear. Also, changes in organ volume and composition remain relatively unexplored. Thus, processes involved in remodeling tissues during fasting and food reintroduction need to be better understood. Therefore, this study will apply state-of-the-art techniques to investigate the effects of long-term fasting (LF) and food reintroduction in humans by a multi-systemic approach focusing on changes in body composition, organ and tissue volume, lipid transport and storage, sources of protein utilization, blood metabolites, and gut microbiome profiles in a single cohort. This is a prospective, single-arm, monocentric trial. One hundred subjects will be recruited and undergo 9 ± 3 day-long fasting periods (250 kcal/day). We will assess changes in the composition of organs, bones and blood lipid profiles before and after fasting, as well as high-density lipoprotein (HDL) transport and storage, untargeted metabolomics of peripheral blood mononuclear cells (PBMCs), protein persulfidation and shotgun metagenomics of the gut microbiome. The first 32 subjects, fasting for 12 days, will be examined in more detail by magnetic resonance imaging (MRI) and spectroscopy to provide quantitative information on changes in organ volume and function, followed by an additional follow-up examination after 1 and 4 months. The study protocol was approved by the ethics board of the State Medical Chamber of Baden-Württemberg on 26.07.2021 and registered at ClinicalTrials.gov (NCT05031598). The results will be disseminated through peer-reviewed publications, international conferences and social media. Clinical trial registration [ClinicalTrials.gov], identifier [NCT05031598].
Collapse
Affiliation(s)
| | - Magalie Viallon
- UJM-Saint-Etienne, INSA, CNRS UMR 5520, INSERM U1206, CREATIS, F-42023, Université de Lyon, Saint-Étienne, France
- Department of Radiology, University Hospital Saint-Étienne, Saint-Étienne, France
| | - Robin Mesnage
- Buchinger Wilhelmi Clinic, Überlingen, Germany
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | | | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioHealth Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Sebastian J. Hofer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioHealth Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Sarah J. Mitchell
- Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, Switzerland
| | - Pierre Croisille
- UJM-Saint-Etienne, INSA, CNRS UMR 5520, INSERM U1206, CREATIS, F-42023, Université de Lyon, Saint-Étienne, France
- Department of Radiology, University Hospital Saint-Étienne, Saint-Étienne, France
| | | |
Collapse
|
70
|
Serum Bilirubin and Markers of Oxidative Stress and Inflammation in a Healthy Population and in Patients with Various Forms of Atherosclerosis. Antioxidants (Basel) 2022; 11:antiox11112118. [PMID: 36358491 PMCID: PMC9686784 DOI: 10.3390/antiox11112118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 01/08/2023] Open
Abstract
Oxidative stress and inflammation contribute significantly to atherogenesis. We and others have demonstrated that mildly elevated serum bilirubin levels protect against coronary and peripheral atherosclerosis, most likely due to the antioxidant and anti-inflammatory activities of bilirubin. The aim of the present study was to assess serum bilirubin and the markers of oxidative stress and inflammation in both healthy subjects and patients with various forms of atherosclerosis. The study was performed in patients with premature myocardial infarction (n = 129), chronic ischemic heart disease (n = 43), peripheral artery disease (PAD, n = 69), and healthy subjects (n = 225). In all subjects, standard serum biochemistry, UGT1A1 genotypes, total antioxidant status (TAS), and concentrations of various pro- and anti-inflammatory chemokines were determined. Compared to controls, all atherosclerotic groups had significantly lower serum bilirubin and TAS, while having much higher serum high-sensitivity C-reactive protein (hsCRP) and most of the analyzed proinflammatory cytokines (p < 0.05 for all comparisons). Surprisingly, the highest inflammation, and the lowest antioxidant status, together with the lowest serum bilirubin, was observed in PAD patients, and not in premature atherosclerosis. In conclusion, elevated serum bilirubin is positively correlated with TAS, and negatively related to inflammatory markers. Compared to healthy subjects, patients with atherosclerosis have a much higher degree of oxidative stress and inflammation.
Collapse
|
71
|
Chen M, Xiao J, El-Seedi HR, Woźniak KS, Daglia M, Little PJ, Weng J, Xu S. Kaempferol and atherosclerosis: From mechanism to medicine. Crit Rev Food Sci Nutr 2022; 64:2157-2175. [PMID: 36099317 DOI: 10.1080/10408398.2022.2121261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Natural products possess pleiotropic cardiovascular protective effects owing to their anti-oxidation, anti-inflammation and anti-thrombotic properties. Kaempferol, (3,5,7-trihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one), is a kind of naturally occurring flavonoid existing in many common fruits and vegetables (e.g., onions, broccoli, strawberries and grapes) and particularly in traditional Chinese medicine as exemplified by Ginkgo biloba. Epidemiological, preclinical and clinical studies have revealed an inverse association between the consumption of kaempferol-containing foods and medicines and the risk of developing cardiovascular diseases. Numerous translational studies in experimental animal models and cultured cells have demonstrated a wide range of pharmacological activities of kaempferol. In this article, we reviewed the antioxidant, anti-inflammatory and cardio-protective activities of kaempferol and elucidated the potential molecular basis of the therapeutic capacity of kaempferol by focusing on its anti-atherosclerotic effects. Overall, the review presents the health benefits of kaempferol-containing plants and medicines and reflects on the potential of kaempferol as a possible drug candidate to prevent and treat atherosclerosis, the underlying pathology of most cardiovascular diseases.
Collapse
Affiliation(s)
- Meijie Chen
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, China
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, University of Vigo, Vigo, Spain
| | - Hesham R El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | | | - Maria Daglia
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
- Department of Pharmacy, University of Napoli Federico II, Naples, Italy
| | - Peter J Little
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD, Australia
| | - Jianping Weng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, China
| | - Suowen Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
72
|
Xu S, Lyu QR, Ilyas I, Tian XY, Weng J. Vascular homeostasis in atherosclerosis: A holistic overview. Front Immunol 2022; 13:976722. [PMID: 36172381 PMCID: PMC9512393 DOI: 10.3389/fimmu.2022.976722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Atherosclerosis refers to the deposition of lipids and the co-existence of inflammation and impaired inflammation resolution in pan-vasculature, which causes lumen narrowing, hardening, plaque formation, and the manifestation of acute cardiovascular events. Emerging evidence has suggested that vascular circulation can be viewed as a complex homeostatic system analogous to a mini-ecosystem which consists of the vascular microenvironment (niche) and the crosstalk among phenotypically and functionally diverse vascular cell types. Here, we elucidate how cell components in the vascular wall affect vascular homeostasis, structure, function, and atherosclerosis in a holistic perspective. Finally, we discuss the potential role of vascular-stabilizing strategies including pharmacotherapies, natural substances and lifestyle modifications, in preventing cardiovascular diseases by preserving vascular integrity and homeostasis.
Collapse
Affiliation(s)
- Suowen Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China (USTC), Hefei, China
- *Correspondence: Suowen Xu, ; Jianping Weng,
| | - Qing Rex Lyu
- Medical Research Institute, Chongqing General Hospital, Chongqing, China
| | - Iqra Ilyas
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China (USTC), Hefei, China
| | - Xiao-Yu Tian
- School of Biomedical Sciences, Chinese University of Hong Kong, NT, Hong Kong SAR, China
| | - Jianping Weng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China (USTC), Hefei, China
- *Correspondence: Suowen Xu, ; Jianping Weng,
| |
Collapse
|
73
|
Qiao YN, Zou YL, Guo SD. Low-density lipoprotein particles in atherosclerosis. Front Physiol 2022; 13:931931. [PMID: 36111155 PMCID: PMC9468243 DOI: 10.3389/fphys.2022.931931] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/05/2022] [Indexed: 12/11/2022] Open
Abstract
Among the diseases causing human death, cardiovascular disease (CVD) remains number one according to the World Health Organization report in 2021. It is known that atherosclerosis is the pathological basis of CVD. Low-density lipoprotein (LDL) plays a pivotal role in the initiation and progression of atherosclerotic CVD (ASCVD). LDL cholesterol (LDL-C) is the traditional biological marker of LDL. However, large numbers of patients who have achieved the recommended LDL-C goals still have ASCVD risk. In multiple prospective studies, LDL particle (LDL-P) is reported to be more accurate in predicting CVD risk than LDL-C. LDL-Ps differ in size, density and chemical composition. Numerous clinical studies have proved that the atherogenic mechanisms of LDL-Ps are determined not only by LDL number and size but also by LDL modifications. Of note, small dense LDL (sdLDL) particles possess stronger atherogenic ability compared with large and intermediate LDL subfractions. Besides, oxidized LDL (ox-LDL) is another risk factor in atherosclerosis. Among the traditional lipid-lowering drugs, statins induce dramatic reductions in LDL-C and LDL-P to a lesser extend. Recently, proprotein convertase subtilsin/kexin type 9 inhibitors (PCSK9i) have been demonstrated to be effective in lowering the levels of LDL-C, LDL-P, as well as CVD events. In this article, we will make a short review of LDL metabolism, discuss the discordance between LDL-C and LDL-P, outline the atherogenic mechanisms of action of LDL by focusing on sdLDL and ox-LDL, summarize the methods used for measurement of LDL subclasses, and conclude the advances in LDL-lowering therapies using statins and PCSK9i.
Collapse
|
74
|
Jamialahmadi T, Baratzadeh F, Reiner Ž, Mannarino MR, Cardenia V, Simental-Mendía LE, Pirro M, Watts GF, Sahebkar A. The Effects of Statin Therapy on Oxidized LDL and Its Antibodies: A Systematic Review and Meta-Analysis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7850659. [PMID: 35958018 PMCID: PMC9359854 DOI: 10.1155/2022/7850659] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023]
Abstract
Background Elevated serum low-density lipoproteins (LDL), the substrate for the formation of atherogenic oxidized LDLs (oxLDL), are a causal factor for atherosclerotic cardiovascular disease (ASCVD). Statins are well known to decrease LDL particle concentration and reduce ASCVD morbidity and mortality. Objective To perform a meta-analysis of the effects of statins (i.e., type, dose, and duration of treatment) on serum levels of oxLDL and on immunoglobulin M (IgM) and immunoglobulin G (IgG) antibody levels against oxLDL. Methods PubMed, Scopus, Embase, and Web of Science were searched up to February 5th, 2021, for randomized controlled trials (RCT) evaluating the effect of statins on oxLDL and anti-oxLDL antibody levels. Meta-analysis was performed using Comprehensive Meta-Analysis (CMA) V2 software. To evaluate the influence of each study on the overall effect size, a sensitivity analysis was performed using the leave-one-out method. Evaluation of the funnel plot, Begg's rank correlation, and Egger's weighted regression tests was used to assess the presence of publication bias in the meta-analysis. Results A total of 28 RCTs including 4019 subjects were finally included in the meta-analysis. The results indicated a significant decrease in circulating concentrations of oxLDL after treatment with statins (SMD: -2.150, 95% CI: -2.640, -1.697, p < 0.001). Subgroup analysis found no significant effect of the intensity of statin treatment or statin lipophilicity on the reduction of circulating concentrations of oxLDL. An additional meta-analysis of 3 trials showed that statins did not change the serum levels of IgM and IgG antibodies to oxLDL. Conclusion Statin therapy decreases serum oxLDL concentrations but does not affect circulating levels of anti-oxLDL antibodies.
Collapse
Affiliation(s)
- Tannaz Jamialahmadi
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Baratzadeh
- Department of Clinical Pharmacy, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Željko Reiner
- Department of Internal Medicine, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Massimo R. Mannarino
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Vladimiro Cardenia
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Grugliasco 10095, Italy
| | | | - Matteo Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Gerald F. Watts
- Cardiometabolic Service, Department of Cardiology, Royal Perth Hospital, School of Medicine, The University of Western Australia, Perth, Western Australia, Australia
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|