51
|
Lismont E, Verbakel L, Vogel E, Corbisier J, Degroot GN, Verdonck R, Verlinden H, Marchal E, Springael JY, Vanden Broeck J. Can BRET-based biosensors be used to characterize G-protein mediated signaling pathways of an insect GPCR, the Schistocerca gregaria CRF-related diuretic hormone receptor? INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 122:103392. [PMID: 32387240 DOI: 10.1016/j.ibmb.2020.103392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/01/2020] [Accepted: 04/19/2020] [Indexed: 05/26/2023]
Abstract
G protein-coupled receptors (GPCRs) are membrane-bound receptors that are considered prime candidates for the development of novel insect pest management strategies. However, the molecular signaling properties of insect GPCRs remain poorly understood. In fact, most studies on insect GPCR signaling are limited to analysis of fluctuations in the secondary messenger molecules calcium (Ca2+) and/or cyclic adenosine monophosphate (cAMP). In the current study, we characterized a corticotropin-releasing factor-related diuretic hormone (CRF-DH) receptor of the desert locust, Schistocerca gregaria. This Schgr-CRF-DHR is mainly expressed in the nervous system and in brain-associated endocrine organs. The neuropeptide Schgr-CRF-DH induced Ca2+-dependent aequorin-based bioluminescent responses in CHO cells co-expressing this receptor with the promiscuous Gα16 protein. Furthermore, when co-expressed with the cAMP-dependent bioluminescence resonance energy transfer (BRET)-based CAMYEL biosensor in HEK293T cells, this receptor elicited dose-dependent agonist-induced responses with an EC50 in the nanomolar range (4.02 nM). In addition, we tested if vertebrate BRET-based G protein biosensors, can also be used to detect direct Gα protein subunit activation by an insect GPCR. Therefore, we analyzed ten different human BRET-based G protein biosensors, representing members of all four Gα protein subfamilies; Gαs, Gαi/o, Gαq/11 and Gα12/13. Our data demonstrate that stimulation of Schgr-CRF-DHR by Schgr-CRF-DH can dose-dependently activate Gαi/o and Gαs biosensors, while no significant effects were observed with the Gαq/11 and Gα12/13 biosensors. Our study paves the way for future biosensor-based studies to analyze the signaling properties of insect GPCRs in both fundamental science and applied research contexts.
Collapse
Affiliation(s)
- Els Lismont
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000, Leuven, Belgium
| | - Lina Verbakel
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000, Leuven, Belgium.
| | - Elise Vogel
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000, Leuven, Belgium
| | | | | | - Rik Verdonck
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000, Leuven, Belgium
| | - Heleen Verlinden
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000, Leuven, Belgium
| | - Elisabeth Marchal
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000, Leuven, Belgium; Imec, Kapeldreef 75, B-3001, Leuven, Belgium
| | - Jean-Yves Springael
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) Université Libre de Bruxelles (ULB), Campus Erasme, 808 Route de Lennik, B-1070, Brussels, Belgium
| | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000, Leuven, Belgium
| |
Collapse
|
52
|
Oliphant A, Hawkes MKN, Cridge AG, Dearden PK. Transcriptomic characterisation of neuropeptides and their putative cognate G protein-coupled receptors during late embryo and stage-1 juvenile development of the Aotearoa-New Zealand crayfish, Paranephrops zealandicus. Gen Comp Endocrinol 2020; 292:113443. [PMID: 32097662 DOI: 10.1016/j.ygcen.2020.113443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/18/2022]
Abstract
We de novo assembled a transcriptome for early life-stages of the Aotearoa-New Zealand crayfish, Paranephrops zealandicus, establishing the first genetic resource for this under-developed aquaculture species and for the Paranephrops genus. Mining of this transcriptome for neuropeptides and their putative cognate G protein-coupled receptors (GPCRs) yielded a comprehensive catalogue of neuropeptides, but few putative neuropeptide GPCRs. Of the neuropeptides commonly identified from decapod transcriptomes, only crustacean female sex hormone and insulin-like peptide were absent from our trinity de novo transcriptome assembly, and also RNA-sequence reads. We identified 63 putative neuropeptide precursors from 43 families, predicted to yield 122 active peptides. Transcripts encoding 26 putative neuropeptide GPCRs were identified but were often incomplete. Putative GPCRs for 15 of the neuropeptides identified here were absent from our transcriptome and RNAseq reads. These data highlight the diverse neuropeptide systems already present at the early development life stages sampled here for P. zealandicus.
Collapse
Affiliation(s)
- Andrew Oliphant
- Genomics Aotearoa and Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand.
| | - Mary K N Hawkes
- Genomics Aotearoa and Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| | - Andrew G Cridge
- Genomics Aotearoa and Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| | - Peter K Dearden
- Genomics Aotearoa and Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
53
|
Identification and expression profiling of neuropeptides and neuropeptide receptor genes in Atrijuglans hetaohei. Gene 2020; 743:144605. [PMID: 32199950 DOI: 10.1016/j.gene.2020.144605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/16/2020] [Accepted: 03/17/2020] [Indexed: 11/21/2022]
Abstract
Atrijuglans hetaohei Yang (Lepidoptera: Gelechioidea), is one of the major pests that can seriously damage the walnut fruits. Neuropeptides and their receptors regulate most physiological functions in insects and represent new targets for the development of control agents. To identify the neuropeptides and their receptors from A. hetaohei, we sequenced and analyzed its head transcriptomic data, identified 32 neuropeptides and 39 neuropeptide receptor genes. Sequence comparisons and phylogenetic analyses suggest that A. hetaohei neuropeptides and receptor genes have high homology with those in Bombyx mori, Chilo suppressalis, Plutella xylostella and Helicoverpa armigera. Moreover, gene expression patterns revealed that neuropeptide genes such as AKH1, CP, MS and PTTH were expressed specifically in male head, while CAP3, DH, NPLP1, PBAN and SIF showed higher expression in the female head. Bur showed abdomen biased expression in both male and female. Neuropeptide receptor genes such as A8, A11, A15 and LGR were highly expressed in male head, whereas A24 and LGR2 were preferentially expressed in female head. This is the first sequencing, identification and expression analyses of neuropeptides and neuropeptide receptor genes from A. hetaohei. Our results could provide a powerful background that will facilitate the further investigations using transcriptomics to determine neuropeptides and their receptors presence, functions, and indicates potential targets in A. hetaohei for a novel pest management strategy.
Collapse
|
54
|
Zhang H, Bai J, Huang S, Liu H, Lin J, Hou Y. Neuropeptides and G-Protein Coupled Receptors (GPCRs) in the Red Palm Weevil Rhynchophorus ferrugineus Olivier (Coleoptera: Dryophthoridae). Front Physiol 2020; 11:159. [PMID: 32184735 PMCID: PMC7058690 DOI: 10.3389/fphys.2020.00159] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/12/2020] [Indexed: 12/21/2022] Open
Abstract
The red palm weevil Rhynchophorus ferrugineus is a devastating, invasive pest that causes serious damages to palm trees, and its invasiveness depends on its strong ability of physiological and behavioral adaptability. Neuropeptides and their receptors regulate physiology and behavior of insects, but these protein partners have not been identified from many insects. Here, we systematically identified neuropeptide precursors and the corresponding receptors in the red palm weevil, and analyzed their tissue expression patterns under control conditions and after pathogen infection. A total of 43 putative neuropeptide precursors were identified, including an extra myosuppressin peptide was identified with amino acid substitutions at two conserved sites. Forty-four putative neuropeptide receptors belonging to three classes were also identified, in which neuropeptide F receptors and insulin receptors were expanded compared to those in other insects. Based on qRT-PCR analyses, genes coding for several neuropeptide precursors and receptors were highly expressed in tissues other than the nervous system, suggesting that these neuropeptides and receptors play other roles in addition to neuro-reception. Some of the neuropeptides and receptors, like the tachykinin-related peptide and receptor, were significantly induced by pathogen infection, especially sensitive to Bacillus thuringiensis and Metarhizium anisopliae. Systemic identification and initial characterization of neuropeptides and their receptors in the red palm weevil provide a framework for further studies to reveal the functions of these ligand- and receptor-couples in regulating physiology, behavior, and immunity in this important insect pest species.
Collapse
Affiliation(s)
- He Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fujian, China.,Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fujian, China
| | - Juan Bai
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fujian, China.,Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fujian, China
| | - Shuning Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fujian, China.,Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fujian, China
| | - Huihui Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fujian, China.,Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fujian, China
| | - Jintian Lin
- Guangzhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Youming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fujian, China.,Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fujian, China
| |
Collapse
|
55
|
Li X, Du L, Jiang XJ, Ju Q, Qu CJ, Qu MJ, Liu TX. Identification and Characterization of Neuropeptides and Their G Protein-Coupled Receptors (GPCRs) in the Cowpea Aphid Aphis craccivora. Front Endocrinol (Lausanne) 2020; 11:640. [PMID: 33042012 PMCID: PMC7527416 DOI: 10.3389/fendo.2020.00640] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/06/2020] [Indexed: 01/13/2023] Open
Abstract
Neuropeptides are the most abundant and diverse signal molecules in insects. They act as neurohormones and neuromodulators to regulate the physiology and behavior of insects. The majority of neuropeptides initiate downstream signaling pathways through binding to G protein-coupled receptors (GPCRs) on the cell surface. In this study, RNA-seq technology and bioinformatics were used to search for genes encoding neuropeptides and their GPCRs in the cowpea aphid Aphis craccivora. And the expression of these genes at different developmental stages of A. craccivora was analyzed by quantitative real-time PCR (qRT-PCR). A total of 40 candidate genes encoding neuropeptide precursors were identified from the transcriptome data, which is roughly equivalent to the number of neuropeptide genes that have been reported in other insects. On this basis, software analysis combined with homologous prediction estimated that there could be more than 60 mature neuropeptides with biological activity. In addition, 46 neuropeptide GPCRs were obtained, of which 40 belong to rhodopsin-like receptors (A-family GPCRs), including 21 families of neuropeptide receptors and 7 orphan receptors, and 6 belong to secretin-like receptors (B-family GPCRs), including receptors for diuretic hormone 31, diuretic hormone 44 and pigment-dispersing factor (PDF). Compared with holometabolous insects such as Drosophila melanogaster, the coding genes for sulfakinin, corazonin, arginine vasopressin-like peptide (AVLP), and trissin and the corresponding receptors were not found in A. craccivora. It is speculated that A. craccivora likely lacks the above neuropeptide signaling pathways, which is consistent with Acyrthosiphon pisum and that the loss of these pathways may be a common feature of aphids. In addition, expression profiling revealed neuropeptide genes and their GPCR genes that are differentially expressed at different developmental stages and in different wing morphs. This study will help to deepen our understanding of the neuropeptide signaling systems in aphids, thus laying the foundation for the development of new methods for aphid control targeting these signaling systems.
Collapse
Affiliation(s)
- Xiao Li
- Department of Plant Protection, Shandong Peanut Research Institute, Qingdao, China
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Long Du
- Department of Plant Protection, Shandong Peanut Research Institute, Qingdao, China
| | - Xiao-Jing Jiang
- Department of Plant Protection, Shandong Peanut Research Institute, Qingdao, China
| | - Qian Ju
- Department of Plant Protection, Shandong Peanut Research Institute, Qingdao, China
| | - Chun-Juan Qu
- Department of Plant Protection, Shandong Peanut Research Institute, Qingdao, China
| | - Ming-Jing Qu
- Department of Plant Protection, Shandong Peanut Research Institute, Qingdao, China
- *Correspondence: Ming-Jing Qu
| | - Tong-Xian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, China
- Tong-Xian Liu
| |
Collapse
|
56
|
Bao C, Liu F, Yang Y, Lin Q, Ye H. Identification of Peptides and Their GPCRs in the Peppermint Shrimp Lysmata vittata, a Protandric Simultaneous Hermaphrodite Species. Front Endocrinol (Lausanne) 2020; 11:226. [PMID: 32425883 PMCID: PMC7212414 DOI: 10.3389/fendo.2020.00226] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/30/2020] [Indexed: 12/17/2022] Open
Abstract
Peptide hormones commonly binding with G-protein coupled receptors (GPCRs) achieve their function in reproduction. The peppermint shrimp Lysmata vittata popular in marine ornamental trade and is known to display protandric simultaneous hermaphrodite (PSH). Knowledge on reproductive biology of this commercial species is critical for resources management and aquaculture. This study employed Illumina sequencing and bioinformatics analysis to identify peptides and their candidate GPCRs from male phase (MP) and euhermaphrodite phase (EP) of L. vittata. A total of 61 peptide and 40 peptide GPCR transcripts derive from 44 peptide families and 13 peptide GPCR families were identified, respectively. Among them, insulin-like androgenic gland hormone and crustacean female sex hormone have two unique mature peptides, respectively, and their transcripts showed higher expression levels in MP than EP, which suggest that these sex differentiation hormones might be involved in sexual characters than spermatogenesis or vitellogenesis. Overall, the first study on identification of peptides and their GPCRs in the genus Lysmata extends our knowledge of peptidergic signaling in PSH species, and provides an important basis for development of aquaculture strategies.
Collapse
Affiliation(s)
- Chenchang Bao
- School of Marine Science, Ningbo University, Ningbo, China
| | - Fang Liu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Yanan Yang
- School of Marine Science, Ningbo University, Ningbo, China
| | - Qi Lin
- Fisheries Research Institute of Fujian, Xiamen, China
| | - Haihui Ye
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- *Correspondence: Haihui Ye
| |
Collapse
|
57
|
Zhang F, Wang J, Thakur K, Hu F, Zhang JG, Jiang XF, An SH, Jiang H, Jiang L, Wei ZJ. Isolation functional characterization of allatotropin receptor from the cotton bollworm, Helicoverpa armigera. Peptides 2019; 122:169874. [PMID: 29198647 DOI: 10.1016/j.peptides.2017.11.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/24/2017] [Accepted: 11/27/2017] [Indexed: 12/31/2022]
Abstract
Insect allatotropin (AT) plays multi-functions including regulation of juvenile hormone synthesis, growth, development and reproduction. In the present study, the full-length cDNA encoding the AT receptor was cloned from the brain of Helicoverpa armigera (Helar-ATR). The ORF of Helar-ATR exhibited the characteristic seven transmembrane domains of the G protein-coupled receptor (GPCR) and was close to the ATR of Manduca sexta in the phylogenetic tree. The Helar-ATR expressed in vertebrate cell lines can be activated by Helar-AT and each Helar-ATL in a dose-responsive manner, in the following order: Helar-ATLI > Helar-ATLII > Helar-AT > Helar-ATLIII. Helar-ATLI and Helar-ATLII represented the functional ligands to Helar-ATR in vitro, while Helar-AT and Helar-ATLIII behaved as partial agonists. The in vitro functional analysis suggested that the Helar-ATR signal was mainly coupled with elevated levels of Ca2+ and independent of cAMP levels. Helar-ATR mRNA in larvae showed the highest level in the brain, followed by the thorax ganglion, abdomen ganglion, fat body and midgut. Helar-ATR mRNA levels in the complex of the brain-thoracic-abdomen ganglion on the 2nd day of the larval stage and during later pupal stages were observed to be relatively higher than in the wandering and early pupal stages.
Collapse
Affiliation(s)
- Fang Zhang
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jun Wang
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Kiran Thakur
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Fei Hu
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jian-Guo Zhang
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xing-Fu Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shi-Hen An
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Hongbo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Li Jiang
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Zhao-Jun Wei
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
58
|
Meng X, Dong F, Qian K, Miao L, Yang X, Ge H, Wu Z, Wang J. Transcriptome analysis reveals global gene expression changes of Chilo suppressalis in response to sublethal dose of chlorantraniliprole. CHEMOSPHERE 2019; 234:648-657. [PMID: 31234082 DOI: 10.1016/j.chemosphere.2019.06.129] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/17/2019] [Accepted: 06/17/2019] [Indexed: 06/09/2023]
Abstract
The anthranilic diamide insecticide chlorantraniliprole was widely used for the controlling of Chilo suppressalis in China. Previous studies have revealed sublethal effects of chlorantraniliprole on the development and reproduction of C. suppressalis. In the present study, a comparative transcriptome analysis was performed to investigate the global gene expression changes in third-instar larvae of C. suppressalis after exposure to LC30 of chlorantraniliprole. A total of 908 differentially expressed genes (DEGs) were identified including 441 up-regulated and 467 down-regulated unigenes. Gene enrichment analysis revealed that the down-regulated DEGs were mainly linked to carbohydrate, energy, lipid and amino acid metabolisms as well as posttranslational modification, while most of the DEGs involved in signal transduction were up-regulated. Specifically, the DEGs encoding detoxification related genes were identified and validated by RT-qPCR. Our results provide a basis for understanding the molecular mechanisms of chlorantraniliprole action and detoxification in C. suppressalis and other insect pests.
Collapse
Affiliation(s)
- Xiangkun Meng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Fan Dong
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Kun Qian
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Lijun Miao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Xuemei Yang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Huichen Ge
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Zhaolu Wu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Jianjun Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
59
|
Steuer Costa W, Van der Auwera P, Glock C, Liewald JF, Bach M, Schüler C, Wabnig S, Oranth A, Masurat F, Bringmann H, Schoofs L, Stelzer EHK, Fischer SC, Gottschalk A. A GABAergic and peptidergic sleep neuron as a locomotion stop neuron with compartmentalized Ca2+ dynamics. Nat Commun 2019; 10:4095. [PMID: 31506439 PMCID: PMC6736843 DOI: 10.1038/s41467-019-12098-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 08/21/2019] [Indexed: 11/09/2022] Open
Abstract
Animals must slow or halt locomotion to integrate sensory inputs or to change direction. In Caenorhabditis elegans, the GABAergic and peptidergic neuron RIS mediates developmentally timed quiescence. Here, we show RIS functions additionally as a locomotion stop neuron. RIS optogenetic stimulation caused acute and persistent inhibition of locomotion and pharyngeal pumping, phenotypes requiring FLP-11 neuropeptides and GABA. RIS photoactivation allows the animal to maintain its body posture by sustaining muscle tone, yet inactivating motor neuron oscillatory activity. During locomotion, RIS axonal Ca2+ signals revealed functional compartmentalization: Activity in the nerve ring process correlated with locomotion stop, while activity in a branch correlated with induced reversals. GABA was required to induce, and FLP-11 neuropeptides were required to sustain locomotion stop. RIS attenuates neuronal activity and inhibits movement, possibly enabling sensory integration and decision making, and exemplifies dual use of one cell across development in a compact nervous system.
Collapse
Affiliation(s)
- Wagner Steuer Costa
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Max-von-Laue-Strasse 15, 60438, Frankfurt, Germany.,Institute for Biophysical Chemistry, Goethe University, Max-von-Laue-Strasse 9, 60438, Frankfurt, Germany
| | - Petrus Van der Auwera
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Max-von-Laue-Strasse 15, 60438, Frankfurt, Germany.,Institute for Biophysical Chemistry, Goethe University, Max-von-Laue-Strasse 9, 60438, Frankfurt, Germany.,Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, Naamsestraat 59 - box 2465, 3000, Leuven, Belgium
| | - Caspar Glock
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Max-von-Laue-Strasse 15, 60438, Frankfurt, Germany.,Institute for Biophysical Chemistry, Goethe University, Max-von-Laue-Strasse 9, 60438, Frankfurt, Germany.,Max-Planck-Institute for Brain Research, Max-von-Laue-Strasse 4, 60438, Frankfurt, Germany
| | - Jana F Liewald
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Max-von-Laue-Strasse 15, 60438, Frankfurt, Germany.,Institute for Biophysical Chemistry, Goethe University, Max-von-Laue-Strasse 9, 60438, Frankfurt, Germany
| | - Maximilian Bach
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Max-von-Laue-Strasse 15, 60438, Frankfurt, Germany.,Institute for Biophysical Chemistry, Goethe University, Max-von-Laue-Strasse 9, 60438, Frankfurt, Germany
| | - Christina Schüler
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Max-von-Laue-Strasse 15, 60438, Frankfurt, Germany.,Institute for Biophysical Chemistry, Goethe University, Max-von-Laue-Strasse 9, 60438, Frankfurt, Germany
| | - Sebastian Wabnig
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Max-von-Laue-Strasse 15, 60438, Frankfurt, Germany.,Institute for Biophysical Chemistry, Goethe University, Max-von-Laue-Strasse 9, 60438, Frankfurt, Germany.,od green GmbH, Passauerstrasse 34, 4780, Schärding am Inn, Austria
| | - Alexandra Oranth
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Max-von-Laue-Strasse 15, 60438, Frankfurt, Germany.,Institute for Biophysical Chemistry, Goethe University, Max-von-Laue-Strasse 9, 60438, Frankfurt, Germany
| | - Florentin Masurat
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Henrik Bringmann
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany.,Department of Biology, University of Marburg, Karl-von-Frisch-Strasse 8, 35043, Marburg, Germany
| | - Liliane Schoofs
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, Naamsestraat 59 - box 2465, 3000, Leuven, Belgium
| | - Ernst H K Stelzer
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Max-von-Laue-Strasse 15, 60438, Frankfurt, Germany.,Institute of Cell Biology and Neuroscience, Goethe University, Max-von-Laue-Strasse 13, 60439, Frankfurt, Germany
| | - Sabine C Fischer
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Max-von-Laue-Strasse 15, 60438, Frankfurt, Germany.,Institute of Cell Biology and Neuroscience, Goethe University, Max-von-Laue-Strasse 13, 60439, Frankfurt, Germany.,Center for Computational and Theoretical Biology (CCTB), University of Würzburg, Campus Hubland Nord 32, 97074, Würzburg, Germany
| | - Alexander Gottschalk
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Max-von-Laue-Strasse 15, 60438, Frankfurt, Germany. .,Institute for Biophysical Chemistry, Goethe University, Max-von-Laue-Strasse 9, 60438, Frankfurt, Germany.
| |
Collapse
|
60
|
Role of the G-Protein-Coupled Receptor Signaling Pathway in Insecticide Resistance. Int J Mol Sci 2019; 20:ijms20174300. [PMID: 31484301 PMCID: PMC6747477 DOI: 10.3390/ijms20174300] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/13/2019] [Accepted: 08/28/2019] [Indexed: 12/22/2022] Open
Abstract
The G-protein-coupled receptor (GPCR) regulated intracellular signaling pathway is known to be involved in the development of insecticide resistance in the mosquito, Culex quinquefasciatus. To elucidate the specific role of each effector in the GPCR regulating pathway, we initially expressed a GPCR, G-protein alpha subunit (Gαs), adenylate cyclase (AC), and protein kinase A (PKA) in insect Spodoptera frugiperda (Sf9) cells and investigated their regulation function on cyclic AMP (cAMP) production and PKA activity. GPCR, Gαs, and AC individually expressed Sf9 cells showed higher cAMP production as the expression of each effector increased. All the effector-expressed cell lines showed increased PKA activity however. Moreover, Sf9 cytochrome P450 gene expression and cell tolerance to permethrin were examined. The relative expression of CYP9A32gene in Sf9 cells tested was significantly increased in all effector-expressed cell lines compared to a control cell line; these effector-expressed cell lines also showed significantly higher tolerance to permethrin. Inhibitor treatments on each effector-expressed cell line revealed that Bupivacaine HCl and H89 2HCl robustly inhibited cAMP production and PKA activity, respectively, resulting in decreased tolerance to permethrin in all cell lines. The synergistic functions of Bupivacaine HCl and H89 2HCl with permethrin were further examined in Culex mosquito larvae, providing a valuable new information for mosquito control strategies.
Collapse
|
61
|
Sirot LK. On the evolutionary origins of insect seminal fluid proteins. Gen Comp Endocrinol 2019; 278:104-111. [PMID: 30682344 DOI: 10.1016/j.ygcen.2019.01.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 01/11/2019] [Accepted: 01/17/2019] [Indexed: 02/06/2023]
Abstract
In most cases, proteins affect the phenotype of the individual in which they are produced. However, in some cases, proteins have evolved in such a way that they are able to influence the phenotype of another individual of the same or of a different species ("influential proteins"). Examples of interspecific influential proteins include venom proteins and proteins produced by parasites that influence their hosts' physiology or behavior. Examples of intraspecific influential proteins include those produced by both mothers and fetuses that mitigate maternal resource allocation and proteins transferred to females in the seminal fluid during mating that change female physiology and behavior. Although there has been much interest in the functions and evolutionary dynamics of these influential proteins, less is known about the origin of these proteins. Where does the DNA that encodes the proteins that can impact another individual's phenotype come from and how do the proteins acquire their influential abilities? In this mini-review, I use insect seminal fluid proteins as a case study to consider the origin of intraspecific influential proteins. The existing data suggest that influential insect seminal fluid proteins arise both through co-option of existing genes (both single copy genes and gene duplicates) and de novo evolution. Other mechanisms for the origin of new insect seminal fluid proteins (e.g., retrotransoposition and horizontal gene transfer) are plausible but have not yet been demonstrated. Additional gaps in our understanding of the origin of insect seminal fluid proteins include an understanding of the cis-regulatory elements that designate expression in the male reproductive tract and of the evolutionary steps by which individual proteins come to depend on other seminal fluid proteins for their activity within the mated female.
Collapse
Affiliation(s)
- Laura King Sirot
- Department of Biology, The College of Wooster, Wooster, OH 44691, United States.
| |
Collapse
|
62
|
Sun L, Liu P, Zhang C, Du H, Wang Z, Moural TW, Zhu F, Cao C. Ocular Albinism Type 1 Regulates Deltamethrin Tolerance in Lymantria dispar and Drosophila melanogaster. Front Physiol 2019; 10:766. [PMID: 31275171 PMCID: PMC6594220 DOI: 10.3389/fphys.2019.00766] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/31/2019] [Indexed: 02/04/2023] Open
Abstract
The ocular albinism type 1 (OA1), a pigment cell-specific integral membrane glycoprotein, is a member of the G-protein-coupled receptor (GPCR) superfamily that binds to heterotrimeric G proteins in mammalian cells. We aimed to characterize the physiological functions an insect OA1 from Lymantria dispar (LdOA1) employs in the regulation of insecticide tolerance. In the present study, we investigated the roles of LdOA1 in response to deltamethrin exposure in both L. dispar and Drosophila melanogaster. LdOA1 was expressed at the lowest level during the 4th instar stage, while LdOA1 was significantly upregulated in the 5th instar and male stages. Knockdown of LdOA1 by injecting dsRNA of LdOA1 into gypsy moth larvae caused a 4.80-fold higher mortality than in control larvae microinjected with dsRNA of GFP under deltamethrin stress. Nine out of 11 L. dispar CYP genes were significantly downregulated under deltamethrin stress in LdOA1 silenced larvae as compared to control larvae. Moreover, the LdOA1 gene was successfully overexpressed in D. melanogaster using transgenic technique. The deltamethrin contact assay showed that the LdOA1 overexpression in flies significantly enhanced the tolerance to deltamethrin compared to the control flies. Furthermore, the downstream Drosophila CYP genes were upregulated in the LdOA1 overexpression flies, suggesting LdOA1 may play a master switch role in P450-mediated metabolic detoxification. This study is the first report of an insect OA1 gene regulating insecticide tolerance and potentially playing a role in the regulation of downstream cytochrome P450 expression. These results contribute to the future development of novel insecticides targeting insect GPCRs.
Collapse
Affiliation(s)
- Lili Sun
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
| | - Peng Liu
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
| | - Chenshu Zhang
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
| | - Hui Du
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
| | - Zhiying Wang
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
| | - Timothy W Moural
- Department of Entomology, Pennsylvania State University, University Park, PA, United States
| | - Fang Zhu
- Department of Entomology, Pennsylvania State University, University Park, PA, United States
| | - Chuanwang Cao
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
| |
Collapse
|
63
|
Nässel DR, Zandawala M. Recent advances in neuropeptide signaling in Drosophila, from genes to physiology and behavior. Prog Neurobiol 2019; 179:101607. [PMID: 30905728 DOI: 10.1016/j.pneurobio.2019.02.003] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/18/2019] [Accepted: 02/28/2019] [Indexed: 12/11/2022]
Abstract
This review focuses on neuropeptides and peptide hormones, the largest and most diverse class of neuroactive substances, known in Drosophila and other animals to play roles in almost all aspects of daily life, as w;1;ell as in developmental processes. We provide an update on novel neuropeptides and receptors identified in the last decade, and highlight progress in analysis of neuropeptide signaling in Drosophila. Especially exciting is the huge amount of work published on novel functions of neuropeptides and peptide hormones in Drosophila, largely due to the rapid developments of powerful genetic methods, imaging techniques and innovative assays. We critically discuss the roles of peptides in olfaction, taste, foraging, feeding, clock function/sleep, aggression, mating/reproduction, learning and other behaviors, as well as in regulation of development, growth, metabolic and water homeostasis, stress responses, fecundity, and lifespan. We furthermore provide novel information on neuropeptide distribution and organization of peptidergic systems, as well as the phylogenetic relations between Drosophila neuropeptides and those of other phyla, including mammals. As will be shown, neuropeptide signaling is phylogenetically ancient, and not only are the structures of the peptides, precursors and receptors conserved over evolution, but also many functions of neuropeptide signaling in physiology and behavior.
Collapse
Affiliation(s)
- Dick R Nässel
- Department of Zoology, Stockholm University, Stockholm, Sweden.
| | - Meet Zandawala
- Department of Zoology, Stockholm University, Stockholm, Sweden; Department of Neuroscience, Brown University, Providence, RI, USA.
| |
Collapse
|
64
|
Lu K, Wang Y, Chen X, Zhang X, Li W, Cheng Y, Li Y, Zhou J, You K, Song Y, Zhou Q, Zeng R. Adipokinetic Hormone Receptor Mediates Trehalose Homeostasis to Promote Vitellogenin Uptake by Oocytes in Nilaparvata lugens. Front Physiol 2019; 9:1904. [PMID: 30687120 PMCID: PMC6338042 DOI: 10.3389/fphys.2018.01904] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022] Open
Abstract
Adipokinetic hormones (AKHs) are well known to mobilize lipids and carbohydrates for energy-consuming activities in insects. These neuropeptides exert their functions by interacting with AKH receptors (AKHRs) located on the plasma membrane of fat body cells, which regulates energy mobilization by stimulating lipolysis of triacylglycerols (TAG) to diacylglycerols (DAG) and conversion of glycogen into trehalose. Here, we investigated the roles of AKH/AKHR signaling system in trehalose metabolism and vitellogenesis during female reproduction in the brown planthopper, Nilaparvata lugens. Knockdown of AKHR expression by RNA interference (RNAi) resulted in a decrease of the circulating trehalose in hemolymph and significantly increased levels of two trehalases in fat bodies, indicating that the modulation of hemolymph trehalose levels by AKHR may be mediated by regulating trehalose degradation. In addition, adult females that had been injected with double-stranded RNA (dsRNA) for AKHR exhibited delayed oocyte maturation, prolonged pre-oviposition period, as well as decline in egg number and reduction in fecundity. Considering that these phenotypes resulting from AKHR silencing are similar to those of vitellogenin receptor (VgR) RNAi, we further analyzed a possible connection between AKHR and vitellogenesis. Knockdown of AKHR showed no effects on the Vg synthesis in fat bodies, whereas it significantly reduced the levels of VgR in ovaries. With RNAi-females, we observed an increase of Vg accumulation in hemolymph and a decrease of Vg deposition in ovaries. Moreover, the decrease in VgR expression and Vg incorporation by developing oocytes could be partially rescued by injection of trehalose into AKHR RNAi females. The present study has implicated trehalose in the AKH/AKHR signaling-mediated control of reproduction and provided new insight into mechanisms of AKH/AKHR regulation of trehalose metabolism in insect vitellogenesis, oocyte maturation and fecundity.
Collapse
Affiliation(s)
- Kai Lu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ying Wang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xia Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xinyu Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wenru Li
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yibei Cheng
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yue Li
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jinming Zhou
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Keke You
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yuanyuan Song
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qiang Zhou
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Rensen Zeng
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
65
|
Marco HG, Gäde G. Five Neuropeptide Ligands Meet One Receptor: How Does This Tally? A Structure-Activity Relationship Study Using Adipokinetic Bioassays With the Sphingid Moth, Hippotion eson. Front Endocrinol (Lausanne) 2019; 10:231. [PMID: 31031708 PMCID: PMC6473027 DOI: 10.3389/fendo.2019.00231] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/22/2019] [Indexed: 12/13/2022] Open
Abstract
Adipokinetic hormones (AKHs) play a major role in mobilizing stored energy metabolites during energetic demand in insects. We showed previously (i) the sphingid moth Hippotion eson synthesizes the highest number of AKHs ever recorded, viz. five, in its corpus cardiacum: two octa- (Hipes-AKH-I and II), two nona- (Hipes-AKH-III and Manse-AKH), and one decapeptide (Manse-AKH-II), which are all active in lipid mobilization (1). (ii) Lacol-AKH from a noctuid moth showed maximal AKH activity in H. eson despite sequence differences and analogs based on Lacol-AKH with modifications at positions 2, 3, 8, or at the termini, as well as C-terminally shortened analogs had reduced or no activity (2). Here we report on N-terminally shortened and modified analogs of the lead peptide, as well as single amino acid substitutions at positions 1, 4, 5, 6, and 7 by an alanine residue. Ala1 and Glu1 instead of pGlu are not tolerated well to bind to the H. eson AKH receptor, whereas Gln1 has high activity, suggesting it is endogenously cyclized. Replacing residue 5 or 7 with Ala did not alter activity much, in contrast with changes at position 4 or 6. Similarly, eliminating pGlu1, Leu2, or Thr3 from Lacol-AKH severely interfered with biological activity. This indicates that there is no core peptide sequence that can elicit the adipokinetic effect and that the overall conformation of the active peptide is required for a physiological response. AKHs achieve a biological action through binding to a receptor located on fat body cells. To date, one AKH receptor has been identified in any given insect species; we infer the same for H. eson. We aligned lepidopteran AKH receptor sequences and note that these are very similar. The results of our study is, therefore, also applicable to ligand-receptor interaction of other lepidopteran species. This information is important for the consideration of peptide mimetics to combat lepidopteran pest insects.
Collapse
|
66
|
Abstract
Mosquito breeding depends on the supply of fresh vertebrate blood, a major bottleneck for large-scale production of Anopheles spp. Feeding alternatives to fresh blood are thus a priority for research, outdoor large-cage trials and control interventions. Several artificial meal compositions were tested and Anopheles oogenesis, egg laying and development into the next generation of adult mosquitoes were followed. We identified blood-substitute-diets that supported ovarian development, egg maturation and fertility as well as, low progeny larval mortality, and normal development of offspring into adult mosquitoes. The formulated diet is an effective artificial meal, free of fresh blood that mimics a vertebrate blood meal and represents an important advance for the sustainability of Anopheles mosquito rearing in captivity.
Collapse
|
67
|
Characterization and Expression Profiling of Neuropeptides and G-Protein-Coupled Receptors (GPCRs) for Neuropeptides in the Asian Citrus Psyllid, Diaphorina citri (Hemiptera: Psyllidae). Int J Mol Sci 2018; 19:ijms19123912. [PMID: 30563248 PMCID: PMC6321106 DOI: 10.3390/ijms19123912] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 12/29/2022] Open
Abstract
Neuropeptides are endogenous active substances that widely exist in multicellular biological nerve tissue and participate in the function of the nervous system, and most of them act on neuropeptide receptors. In insects, neuropeptides and their receptors play important roles in controlling a multitude of physiological processes. In this project, we sequenced the transcriptome from twelve tissues of the Asian citrus psyllid, Diaphorina citri Kuwayama. A total of 40 candidate neuropeptide genes and 42 neuropeptide receptor genes were identified. Among the neuropeptide receptor genes, 35 of them belong to the A-family (or rhodopsin-like), four of them belong to the B-family (or secretin-like), and three of them are leucine-rich repeat-containing G-protein-coupled receptors. The expression profile of the 82 genes across developmental stages was determined by qRT-PCR. Our study provides the first investigation on the genes of neuropeptides and their receptors in D. citri, which may play key roles in regulating the physiology and behaviors of D. citri.
Collapse
|
68
|
Bao C, Yang Y, Zeng C, Huang H, Ye H. Identifying neuropeptide GPCRs in the mud crab, Scylla paramamosain, by combinatorial bioinformatics analysis. Gen Comp Endocrinol 2018; 269:122-130. [PMID: 30189191 DOI: 10.1016/j.ygcen.2018.09.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 08/23/2018] [Accepted: 09/02/2018] [Indexed: 11/24/2022]
Abstract
Neuropeptides, ubiquitous signaling molecules, commonly achieve their signaling function via interaction with cell membrane-spanning G-protein coupled receptors (GPCRs). In recent years, in the midst of the rapid development of next-generation sequencing technology, the amount of available information on encoded neuropeptides and their GPCRs sequences have increased dramatically. The repertoire of neuropeptides has been determined in many crustaceans, including the commercially important mud crab, Scylla paramamosain; however, determination of GPCRs is known to be more difficult and usually requires in vitro binding tests. In this study, we adopted a combinatorial bioinformatics analysis to identify S. paramamosain neuropeptide GPCRs. A total of 65 assembled GPCR sequences were collected from the transcriptome database. Subsequently these GPCRs were identified by comparison to known neuropeptide GPCRs based on the sequence-similarity-based clustering and phylogenetic analysis, which showed that many of them are closely related to insect GPCR families. Of these GPCRs, most of them were detected in various tissues of the mud crab and some of them showed differential expression by gender, suggesting they are involved in different physiological processes, such as sex differentiation. By employing ligand-receptor binding tests, we demonstrated that the predicted crustacean cardioactive peptide (CCAP) receptor was activated by CCAP peptide in a dose-dependent manner. This is the first CCAP receptor that has been functionally defined in crustaceans. In summary, the present study shortlists candidate neuropeptide GPCRs for ligand-receptor binding tests, and provides information for subsequent future research on the neuropeptide/GPCR signaling pathway in S. paramamosain.
Collapse
Affiliation(s)
- Chenchang Bao
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Yanan Yang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Chaoshu Zeng
- College of Science & Engineering, James Cook University, Townsville, Queensland 4811, Australia
| | - Huiyang Huang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Haihui Ye
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen 361102, Fujian Province, China.
| |
Collapse
|
69
|
Lu K, Zhang X, Chen X, Li Y, Li W, Cheng Y, Zhou J, You K, Zhou Q. Adipokinetic Hormone Receptor Mediates Lipid Mobilization to Regulate Starvation Resistance in the Brown Planthopper, Nilaparvata lugens. Front Physiol 2018; 9:1730. [PMID: 30555355 PMCID: PMC6281999 DOI: 10.3389/fphys.2018.01730] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/16/2018] [Indexed: 12/19/2022] Open
Abstract
Lipid storage must be efficiently mobilized to sustain the energy demands during processes of exercise or starvation. In insects, adipokinetic hormone (AKH) and brummer lipase are well-known regulators of lipid mobilization. We recently demonstrated that brummer-dependent lipolysis regulates starvation resistance in the brown planthopper, Nilaparvata lugens, one of the most destructive rice pests. The present work investigated the roles of the AKH signaling system in lipid mobilization during the starvation process in N. lugens. NlAKHR is a typical G protein-coupled receptor (GPCR) and possesses high structure and sequence similarity to other insect AKHRs. Spatial and developmental expression profiles suggested that NlAKH is released from the corpora cardiaca to activate NlAKHR mainly expressed in the fat body. Starvation significantly induced the expression of NlAKH and NlAKHR, indicating a potential role of the AKH signaling system in starvation resistance. To reveal the functions of the AKH signaling system, a double-stranded RNA (dsRNA)-mediated knockdown of NlAKHR and NlAKH peptide injection was performed. The results show NlAKHR silencing decreased the levels of 1,2-diacylglycerol (DAG) in the hemolymph and increased triacylglycerol (TAG) levels in the fat body, whereas NlAKH injection led to a critical accumulation of DAG in the hemolymph and a severe reduction of TAG content in the fat body. Knockdown of NlAKHR resulted in prolonged lifespan and high levels of whole-body TAG, indicating an inability to mobilize TAG reserves during starvation. Conversely, the NlAKH injection reduced the survival and accelerated TAG mobilization during starvation, which further confirms the role of NlAKH in lipolysis. Moreover, NlAKHR silencing caused obesity in N. lugens, whereas NlAKH injection depleted organismal TAG reserves in vivo and produced a slim phenotype. These results indicate that lipid mobilization is regulated by the AKH signaling system, which is essential for adjusting body lipid homeostasis and ensuring energy supplement during starvation in N. lugens.
Collapse
Affiliation(s)
- Kai Lu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xinyu Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xia Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yue Li
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenru Li
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yibei Cheng
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jinming Zhou
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Keke You
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qiang Zhou
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
70
|
Friedman DA, Pilko A, Skowronska-Krawczyk D, Krasinska K, Parker JW, Hirsh J, Gordon DM. The Role of Dopamine in the Collective Regulation of Foraging in Harvester Ants. iScience 2018; 8:283-294. [PMID: 30270022 PMCID: PMC6205345 DOI: 10.1016/j.isci.2018.09.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/04/2018] [Accepted: 09/03/2018] [Indexed: 01/09/2023] Open
Abstract
Colonies of the red harvester ant (Pogonomyrmex barbatus) differ in how they regulate collective foraging activity in response to changes in humidity. We used transcriptomic, physiological, and pharmacological experiments to investigate the molecular basis of this ecologically important variation in collective behavior among colonies. RNA sequencing of forager brain tissue showed an association between colony foraging activity and differential expression of transcripts related to biogenic amine and neurohormonal metabolism and signaling. In field experiments, pharmacological increases in forager brain dopamine titer caused significant increases in foraging activity. Colonies that were naturally most sensitive to humidity were significantly more responsive to the stimulatory effect of exogenous dopamine. In addition, forager brain tissue significantly varied among colonies in biogenic amine content. Neurophysiological variation among colonies associated with individual forager sensitivity to humidity may reflect the heritable molecular variation on which natural selection acts to shape the collective regulation of foraging.
Collapse
Affiliation(s)
- Daniel A Friedman
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| | - Anna Pilko
- Department of Chemistry and Biochemistry and the Institute for Quantitative and Computational Biosciences (QCB), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Dorota Skowronska-Krawczyk
- Shiley Eye Institute, Richard C. Atkinson Lab for Regenerative Ophthalmology, Department of Ophthalmology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Karolina Krasinska
- Stanford University Mass Spectrometry, Stanford University, Stanford, CA 94305, USA
| | - Jacqueline W Parker
- Department of Biology, University of Virginia, Charlottesville, Charlottesville, VA 22904, USA
| | - Jay Hirsh
- Department of Biology, University of Virginia, Charlottesville, Charlottesville, VA 22904, USA
| | - Deborah M Gordon
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
71
|
Ormerod KG, Jung J, Mercier AJ. Modulation of neuromuscular synapses and contraction in Drosophila 3rd instar larvae. J Neurogenet 2018; 32:183-194. [PMID: 30303434 DOI: 10.1080/01677063.2018.1502761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Over the past four decades, Drosophila melanogaster has become an increasingly important model system for studying the modulation of chemical synapses and muscle contraction by cotransmitters and neurohormones. This review describes how advantages provided by Drosophila have been utilized to investigate synaptic modulation, and it discusses key findings from investigations of cotransmitters and neurohormones that act on body wall muscles of 3rd instar Drosophila larvae. These studies have contributed much to our understanding of how neuromuscular systems are modulated by neuropeptides and biogenic amines, but there are still gaps in relating these peripheral modulatory effects to behavior.
Collapse
Affiliation(s)
- Kiel G Ormerod
- a Department of Biology , Massachusetts Institute of Technology , Cambridge , MA , USA
| | - JaeHwan Jung
- b Department of Biological Sciences , Brock University , St. Catharines , Canada
| | - A Joffre Mercier
- b Department of Biological Sciences , Brock University , St. Catharines , Canada
| |
Collapse
|
72
|
Koziol U. Precursors of neuropeptides and peptide hormones in the genomes of tardigrades. Gen Comp Endocrinol 2018; 267:116-127. [PMID: 29935140 DOI: 10.1016/j.ygcen.2018.06.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 12/20/2022]
Abstract
Tardigrades are a key group for understanding the evolution of the Ecdysozoa, a large clade of molting animals that also includes arthropods and nematodes. However, little is known about most aspects of their basic biology. Neuropeptide and peptide hormone signaling has been extensively studied in arthropods and nematodes (particularly regarding their roles in molting in arthropods), but very little is known about neuropeptide signaling in other ecdysozoans. In this work, different strategies were used to search for neuropeptide and peptide hormone precursors in the genomes of the tardigrades Hypsibius dujardini and Ramazzottius varieornatus. In general, there is a remarkable similarity in the complement of neuropeptides and their sequences between tardigrades and arthropods. The precursors found in tardigrades included homologs of achatin, allatostatins A, B and C, allatotropin, calcitonin, CCHamide, CCRFa, corazonin, crustacean cardioactive peptide, diuretic hormone 31, diuretic hormone 44, ecdysis triggering hormone, eclosion hormone, gonadotropin-releasing hormone (GnRH), GSEFLamide, insulin-like peptides, ion transport peptide, kinin, neuropeptide F, orcokinin, pigment dispersing hormone, proctolin, pyrokinin, RYamide, short neuropeptide F, sulfakinin, tachykinin, trissin and vasopressin. In most cases, homologs of known cognate receptors for each neuropeptide family could only be identified when the precursors were also present in the genome, further supporting their identification. Some neuropeptide precursor genes have undergone several duplications in tardigrades, including allatostatin A and C, corazonin, GnRH, eclosion hormone, sulfakinin and trissin. Furthermore, four novel families of candidate neuropeptide precursors were identified (two of which could also be found in several arthropods). To the best of my knowledge, this work represents the first genome-wide search for neuropeptide precursors in any ecdysozoan species outside arthropods and nematodes, and is a necessary first step towards understanding neuropeptide function in tardigrades.
Collapse
Affiliation(s)
- Uriel Koziol
- Sección Biología Celular, Facultad de Ciencias, Universidad de la República, Iguá 4225, CP11400 Montevideo, Uruguay.
| |
Collapse
|
73
|
Oliphant A, Alexander JL, Swain MT, Webster SG, Wilcockson DC. Transcriptomic analysis of crustacean neuropeptide signaling during the moult cycle in the green shore crab, Carcinus maenas. BMC Genomics 2018; 19:711. [PMID: 30257651 PMCID: PMC6158917 DOI: 10.1186/s12864-018-5057-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 09/06/2018] [Indexed: 11/10/2022] Open
Abstract
Background Ecdysis is an innate behaviour programme by which all arthropods moult their exoskeletons. The complex suite of interacting neuropeptides that orchestrate ecdysis is well studied in insects, but details of the crustacean ecdysis cassette are fragmented and our understanding of this process is comparatively crude, preventing a meaningful evolutionary comparison. To begin to address this issue we identified transcripts coding for neuropeptides and their putative receptors in the central nervous system (CNS) and Y-organs (YO) within the crab, Carcinus maenas, and mapped their expression profiles across accurately defined stages of the moult cycle using RNA-sequencing. We also studied gene expression within the epidermally-derived YO, the only defined role for which is the synthesis of ecdysteroid moulting hormones, to elucidate peptides and G protein-coupled receptors (GPCRs) that might have a function in ecdysis. Results Transcriptome mining of the CNS transcriptome yielded neuropeptide transcripts representing 47 neuropeptide families and 66 putative GPCRs. Neuropeptide transcripts that were differentially expressed across the moult cycle included carcikinin, crustacean hyperglycemic hormone-2, and crustacean cardioactive peptide, whilst a single putative neuropeptide receptor, proctolin R1, was differentially expressed. Carcikinin mRNA in particular exhibited dramatic increases in expression pre-moult, suggesting a role in ecdysis regulation. Crustacean hyperglycemic hormone-2 mRNA expression was elevated post- and pre-moult whilst that for crustacean cardioactive peptide, which regulates insect ecdysis and plays a role in stereotyped motor activity during crustacean ecdysis, was elevated in pre-moult. In the YO, several putative neuropeptide receptor transcripts were differentially expressed across the moult cycle, as was the mRNA for the neuropeptide, neuroparsin-1. Whilst differential gene expression of putative neuropeptide receptors was expected, the discovery and differential expression of neuropeptide transcripts was surprising. Analysis of GPCR transcript expression between YO and epidermis revealed 11 to be upregulated in the YO and thus are now candidates for peptide control of ecdysis. Conclusions The data presented represent a comprehensive survey of the deduced C. maenas neuropeptidome and putative GPCRs. Importantly, we have described the differential expression profiles of these transcripts across accurately staged moult cycles in tissues key to the ecdysis programme. This study provides important avenues for the future exploration of functionality of receptor-ligand pairs in crustaceans. Electronic supplementary material The online version of this article (10.1186/s12864-018-5057-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrew Oliphant
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, SY23 3DA, UK
| | - Jodi L Alexander
- School of Biological Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - Martin T Swain
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, SY23 3DA, UK
| | - Simon G Webster
- School of Biological Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - David C Wilcockson
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, SY23 3DA, UK.
| |
Collapse
|
74
|
Sedra L, Paluzzi JP, Lange AB. Characterization and expression of a long neuropeptide F (NPF) receptor in the Chagas disease vector Rhodnius prolixus. PLoS One 2018; 13:e0202425. [PMID: 30114273 PMCID: PMC6095579 DOI: 10.1371/journal.pone.0202425] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 08/02/2018] [Indexed: 12/15/2022] Open
Abstract
In this study, a long neuropeptide F receptor of the blood-feeding hemipteran, Rhodnius prolixus (RhoprNPFR) has been cloned and characterized. Approximately 70% of the RhoprNPFR deduced protein sequence is identical to that of other hemipteran NPFRs. RhoprNPFR has seven highly-conserved transmembrane domains, two cysteine residues in the 2nd and 3rd extracellular loops that likely form a disulfide bond integral for maintaining the structure of the receptor, and a conserved DRY motif after the third transmembrane domain. All of these characteristics are typical of class A rhodopsin-like GPCRs. The receptor transcript is predominantly expressed in the central nervous system (CNS) and gut of both fifth instar and adult R. prolixus. Using fluorescent in situ hybridization (FISH), we identified six bilaterally-paired large median neurosecretory cells (approximately 30μm in diameter) in the brain that express the RhoprNPFR mRNA transcript. We also found RhoprNPFR transcript expression in endocrine cells in the anterior midgut of fifth instars, as well as in putative pre-follicular cells present in the germarium and between developing oocytes, and in the nutritive cord. These results suggest that RhoprNPFR may play a role within the CNS, and in digestion and possibly egg production and/or egg development in R. prolixus.
Collapse
Affiliation(s)
- Laura Sedra
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
- * E-mail:
| | | | - Angela B. Lange
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| |
Collapse
|
75
|
Alexander J, Oliphant A, Wilcockson DC, Webster SG. Functional Identification and Characterization of the Diuretic Hormone 31 (DH31) Signaling System in the Green Shore Crab, Carcinus maenas. Front Neurosci 2018; 12:454. [PMID: 30022930 PMCID: PMC6039563 DOI: 10.3389/fnins.2018.00454] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 06/13/2018] [Indexed: 01/10/2023] Open
Abstract
The functional characterization of crustacean neuropeptides and their cognate receptors has not kept pace with the recent advances in sequence determination and, therefore, our understanding of the physiological roles of neuropeptides in this important arthropod sub-phylum is rather limited. We identified a candidate receptor-ligand pairing for diuretic hormone 31 (DH31) in a neural transcriptome of the crab, Carcinus maenas. In insects, DH31 plays species -specific but central roles in many facets of physiology, including fluid secretion, myoactivity, and gut peristalsis but little is known concerning its functions in crustaceans. The C. maenas DH31 transcript codes for a 147 amino acid prepropeptide, and a single receptor transcript translates to a secretin-like (Class B1) G protein-coupled receptor (GPCR). We used an in vitro aequorin luminescence Ca2+ mobilization assay to demonstrate that this candidate DH31R is activated byCarcinus and insect DH31s in a dose-dependent manner (EC50 15-30 nM). Whole mount immunohistochemical and in situ hybridization localization revealed extensive DH31 expressing neurons throughout the central nervous system, most notably in the abdominal ganglion where large, unpaired cells give rise to medial nerves, which terminate in extensive DH31 immunopositive dendritic fields intimately associated with oesophageal musculature. This system constitutes a large and hitherto undescribed neurohemal area adjacent to key muscle groups associated with the gastric system. DH31 expressing neurons were also seen in the cardiac, commissural, oesophageal, and stomatogastric ganglia and intense labeling was seen in dendrites innervating fore- and hindgut musculature but not with limb muscles. These labeling patterns, together with measurement of DH31R mRNA in the heart and hindgut, prompted us test the effects of DH31 on semi-isolated heart preparations. Cardiac superfusion with peptide evoked increased heart rates (10-100 nM). The neuroanatomical distribution of DH31 and its receptor transcripts, particularly that associated with gastric and cardiac musculature, coupled with the cardio- acceleratory effects of the peptide implicate this peptide in key myoactive roles, likely related to rhythmic coordination.
Collapse
Affiliation(s)
- Jodi Alexander
- Brambell Laboratories, School of Biological Sciences, Bangor University, Bangor, United Kingdom
| | - Andrew Oliphant
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - David C. Wilcockson
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Simon G. Webster
- Brambell Laboratories, School of Biological Sciences, Bangor University, Bangor, United Kingdom
| |
Collapse
|
76
|
Jiang L, Zhang F, Hou Y, Thakur K, Hu F, Zhang JG, Jiang XF, Liu YQ, Wei ZJ. Isolation and functional characterization of the pheromone biosynthesis activating neuropeptide receptor of Chinese oak silkworm, Antheraea pernyi. Int J Biol Macromol 2018; 117:42-50. [PMID: 29800669 DOI: 10.1016/j.ijbiomac.2018.05.145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/17/2018] [Accepted: 05/18/2018] [Indexed: 10/16/2022]
Abstract
Insect pheromone biosynthesis activating neuropeptide (PBAN) controls the synthesis and actuating of sex pheromones of female adult. In the current examination, the full-length cDNA encoding the PBAN receptor was cloned from the pheromone gland (PG) of Antheraea pernyi (AntpePBANR). The AntpePBANR displayed the characteristic seven transmembrane areas of the G protein-coupled receptor (GPCR) and was closely related to the PBANR from Bombyx mori and Manduca sexta in the phylogenetic tree. The AntpePBANR expressed in mammalian cell lines were enacted by AntpePBAN in a concentration-dependent manner. AntpePBANR activation resulted in the calcium mobilization but did not activate the cAMP elevation pathway. Cells expressing AntpePBANR were profoundly responsive to Antpe-γ-SGNP (suboesophageal ganglion neuropeptides) and Antpe-DH (diapause hormone), different individuals from FXPRLamide (X = T, S or V) family in A. pernyi. Deletion of residues in the C-terminal hexapeptide (FSPRLamide) proved that P, R and L played the key parts in initiating the AntpePBANR, the amination to the last C terminal residues which can also likewise impact the activation of AntpePBAN receptor altogether. The mRNA of the AntpePBANR gene demonstrated the most noteworthy transcript levels in pheromone gland followed by fat body.
Collapse
Affiliation(s)
- Li Jiang
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, PR China.
| | - Fang Zhang
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - Yang Hou
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - Kiran Thakur
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, PR China.
| | - Fei Hu
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, PR China.
| | - Jian-Guo Zhang
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, PR China.
| | - Xing-Fu Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| | - Yan-Qun Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, PR China.
| | - Zhao-Jun Wei
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, PR China.
| |
Collapse
|
77
|
Bernardo MA, Singer MS. Parasite-altered feeding behavior in insects: integrating functional and mechanistic research frontiers. ACTA ACUST UNITED AC 2018; 220:2848-2857. [PMID: 28814608 DOI: 10.1242/jeb.143800] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Research on parasite-altered feeding behavior in insects is contributing to an emerging literature that considers possible adaptive consequences of altered feeding behavior for the host or the parasite. Several recent ecoimmunological studies show that insects can adaptively alter their foraging behavior in response to parasitism. Another body of recent work shows that infection by parasites can change the behavior of insect hosts to benefit the parasite; manipulations of host feeding behavior may be part of this phenomenon. Here, we address both the functional and the underlying physiological frontiers of parasite-altered feeding behavior in order to spur research that better integrates the two. Functional categories of parasite-altered behavior that are adaptive for the host include prophylaxis, therapy and compensation, while host manipulation is adaptive for the parasite. To better understand and distinguish prophylaxis, therapy and compensation, further study of physiological feedbacks affecting host sensory systems is especially needed. For host manipulation in particular, research on mechanisms by which parasites control host feedbacks will be important to integrate with functional approaches. We see this integration as critical to advancing the field of parasite-altered feeding behavior, which may be common in insects and consequential for human and environmental health.
Collapse
Affiliation(s)
| | - Michael S Singer
- Department of Biology, Wesleyan University, Middletown, CT 06105, USA
| |
Collapse
|
78
|
Mondet F, Rau A, Klopp C, Rohmer M, Severac D, Le Conte Y, Alaux C. Transcriptome profiling of the honeybee parasite Varroa destructor provides new biological insights into the mite adult life cycle. BMC Genomics 2018; 19:328. [PMID: 29728057 PMCID: PMC5936029 DOI: 10.1186/s12864-018-4668-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 04/12/2018] [Indexed: 12/16/2022] Open
Abstract
Background The parasite Varroa destructor represents a significant threat to honeybee colonies. Indeed, development of Varroa infestation within colonies, if left untreated, often leads to the death of the colony. Although its impact on bees has been extensively studied, less is known about its biology and the functional processes governing its adult life cycle and adaptation to its host. We therefore developed a full life cycle transcriptomic catalogue in adult Varroa females and included pairwise comparisons with males, artificially-reared and non-reproducing females (10 life cycle stages and conditions in total). Results Extensive remodeling of the Varroa transcriptome was observed, with an upregulation of energetic and chitin metabolic processes during the initial and final phases of the life cycle (e.g. phoretic and post-oviposition stages), whereas during reproductive stages in brood cells genes showing functions related to transcriptional regulation were overexpressed. Several neurotransmitter and neuropeptide receptors involved in behavioural regulation, as well as active compounds of salivary glands, were also expressed at a higher level outside the reproductive stages. No difference was detected between artificially-reared phoretic females and their counterparts in colonies, or between females who failed to reproduce and females who successfully reproduced, indicating that phoretic individuals can be reared outside host colonies without impacting their physiology and that mechanisms underlying reproductive failure occur before oogenesis. Conclusions We discuss how these new findings reveal the remarkable adaptation of Varroa to its host biology and notably to the switch from living on adults to reproducing in sealed brood cells. By spanning the entire adult life cycle, our work captures the dynamic changes in the parasite gene expression and serves as a unique resource for deciphering Varroa biology and identifying new targets for mite control. Electronic supplementary material The online version of this article (10.1186/s12864-018-4668-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fanny Mondet
- INRA, UR 406 Abeilles et Environnement, 84914, Avignon, France.
| | - Andrea Rau
- INRA, UMR 1313 GABI Génétique Animale et Biologie Intégrative, 78350, Jouy-en-Josas, France
| | - Christophe Klopp
- INRA, Genotoul Bioinfo, UR 875 MIAT Mathématiques et Informatique Appliquées de Toulouse, 31326, Castanet-Tolosan, France
| | - Marine Rohmer
- Institut de Génomique Fonctionnelle, UMR 5203 CNRS, U661 INSERM, Universités Montpellier 1 & 2, 34094, Montpellier, France
| | - Dany Severac
- Institut de Génomique Fonctionnelle, UMR 5203 CNRS, U661 INSERM, Universités Montpellier 1 & 2, 34094, Montpellier, France
| | - Yves Le Conte
- INRA, UR 406 Abeilles et Environnement, 84914, Avignon, France
| | - Cedric Alaux
- INRA, UR 406 Abeilles et Environnement, 84914, Avignon, France.
| |
Collapse
|
79
|
Calkins TL, Chen ME, Arora AK, Hawkings C, Tamborindeguy C, Pietrantonio PV. Brain gene expression analyses in virgin and mated queens of fire ants reveal mating-independent and socially regulated changes. Ecol Evol 2018; 8:4312-4327. [PMID: 29721300 PMCID: PMC5916306 DOI: 10.1002/ece3.3976] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/03/2018] [Accepted: 02/05/2018] [Indexed: 02/05/2023] Open
Abstract
Transcriptomes of dissected brains from virgin alate and dealate mated queens from polygyne fire ants (Solenopsis invicta) were analyzed and compared. Thirteen genes were upregulated in mated queen brain, and nine were downregulated. While many of the regulated genes were either uncharacterized or noncoding RNAs, those annotated genes included two hexamerin proteins, astakine neuropeptide, serine proteases, and serine protease inhibitors. We found that for select differentially expressed genes in the brain, changes in gene expression were most likely driven by the changes in physiological state (i.e., age, nutritional status, or dominance rank) or in social environment (released from influence of primer pheromone). This was concluded because virgins that dealated after being separated from mated queens showed similar patterns of gene expression in the brain as those of mated queens for hexamerin 1, astakine, and XR_850909. Abaecin (XR_850725), however, appears upregulated only after mating. Therefore, our findings contribute to distinguish how specific gene networks, especially those influenced by queen primer pheromone, are regulated in queen ants. Additionally, to identify brain signaling pathways, we mined the fire ant genome and compiled a list of G-protein-coupled receptors (GPCRs). The expression level of GPCRs and other genes in the "genetic toolkit" in the brains of virgin alates and mated dealate queens is reported.
Collapse
Affiliation(s)
- Travis L Calkins
- Department of Entomology Texas A&M University College Station TX USA
| | - Mei-Er Chen
- Department of Entomology Texas A&M University College Station TX USA.,Department of Entomology National Chung Hsing University Taichung City Taiwan
| | - Arinder K Arora
- Department of Entomology Texas A&M University College Station TX USA.,Department of Entomology Cornell University Ithaca NY USA
| | - Chloe Hawkings
- Department of Entomology Texas A&M University College Station TX USA
| | | | | |
Collapse
|
80
|
Chang J, Zhao J, Tian X. In silico prediction of neuropeptides in Hymenoptera parasitoid wasps. PLoS One 2018; 13:e0193561. [PMID: 29489917 PMCID: PMC5831470 DOI: 10.1371/journal.pone.0193561] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 02/13/2018] [Indexed: 12/21/2022] Open
Abstract
Parasitoid wasps of the order Hymenoptera, the most diverse groups of animals, are important natural enemies of arthropod hosts in natural ecosystems and can be used in biological control. To date, only one neuropeptidome of a parasitoid wasp, Nasonia vitripennis, has been identified. This study aimed to identify more neuropeptides of parasitoid wasps, by using a well-established workflow that was previously adopted for predicting insect neuropeptide sequences. Based on publicly accessible databases, totally 517 neuropeptide precursors from 24 parasitoid wasp species were identified; these included five neuropeptides (CNMamide, FMRFamide-like, ITG-like, ion transport peptide-like and orcokinin B) that were identified for the first time in parasitoid wasps, to our knowledge. Next, these neuropeptides from parasitoid wasps were compared with those from other insect species. Phylogenetic analysis suggested the divergence of AST-CCC within Hymenoptera. Further, the encoding patterns of CAPA/PK family genes were found to be different between Hymenoptera species and other insect species. Some neuropeptides that were not found in some parasitoid superfamilies (e.g., sulfakinin), or considerably divergent between different parasitoid superfamilies (e.g., sNPF) might be related to distinct physiological processes in the parasitoid life. Information of neuropeptide sequences in parasitoid wasps can be useful for better understanding the phylogenetic relationships of Hymenoptera and further elucidating the physiological functions of neuropeptide signaling systems in parasitoid wasps.
Collapse
Affiliation(s)
- Juhua Chang
- College of Life Science, Yangtze University, Jingzhou, China
- Pesticide Research Institute, Yangtze University, Jingzhou, China
- * E-mail:
| | - Jianhua Zhao
- Vegetable Technology Center of Xiyang County, Xiyang, China
| | - Xiaoli Tian
- College of Life Science, Yangtze University, Jingzhou, China
| |
Collapse
|
81
|
Gui SH, Pei YX, Xu L, Wang WP, Jiang HB, Nachman RJ, Kaczmarek K, Zabrocki J, Wang JJ. Function of the natalisin receptor in mating of the oriental fruit fly, Bactrocera dorsalis (Hendel) and testing of peptidomimetics. PLoS One 2018; 13:e0193058. [PMID: 29474388 PMCID: PMC5825034 DOI: 10.1371/journal.pone.0193058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 02/02/2018] [Indexed: 11/18/2022] Open
Abstract
Natalisins (NTLs) are conservative neuropeptides, which are only found in arthropods and are documented to regulate reproductive behaviors in insects. In our previous study, we have confirmed that NTLs regulate the reproductive process in an important agricultural pest, Bactrocera dorsalis (Hendel). Hence, in this study, to further confirm the in vivo function of NTL receptor (NTLR) and assess the potential of NTLR as an insecticide target, RNA interference targeting NTLR mRNA was performed. We found that mating frequencies of both males and females were reduced by RNAi-mediated knockdown of the NTLR transcript, while there was no effect on mating duration. Moreover, we functionally expressed the B. dorsalis NTLR in Chinese Hamster Ovary (CHO) cells and was co-transfected with an aequorin reporter to measure ligand activities. A total of 13 biostable multi-Aib analogs were tested for agonistic and antagonistic activities. While most of these NTL analogs did not show strong activity, one analog (NLFQV[Aib]DPFF[Aib]TRamide) had moderate antagonistic activity. Taken together, we provided evidence for the important roles of NTLR in regulating mating frequencies of both male and female in this fly and also provided in vitro data on mimetic analogs that serve as leading structures for the development of agonists and antagonists to disrupt the NTL signaling pathway.
Collapse
Affiliation(s)
- Shun-Hua Gui
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection and Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Yu-Xia Pei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection and Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Li Xu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection and Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Wei-Ping Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection and Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Hong-Bo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection and Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Ronald J. Nachman
- Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research Center, USDA, College Station, Texas, United States of America
| | - Krzysztof Kaczmarek
- Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research Center, USDA, College Station, Texas, United States of America
- Institute of Organic Chemistry, Lodz University of Technology, Lodz, Poland
| | - Janusz Zabrocki
- Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research Center, USDA, College Station, Texas, United States of America
- Institute of Organic Chemistry, Lodz University of Technology, Lodz, Poland
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection and Academy of Agricultural Sciences, Southwest University, Chongqing, China
- * E-mail:
| |
Collapse
|
82
|
Marchal E, Schellens S, Monjon E, Bruyninckx E, Marco HG, Gäde G, Vanden Broeck J, Verlinden H. Analysis of Peptide Ligand Specificity of Different Insect Adipokinetic Hormone Receptors. Int J Mol Sci 2018; 19:ijms19020542. [PMID: 29439466 PMCID: PMC5855764 DOI: 10.3390/ijms19020542] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/06/2018] [Accepted: 02/08/2018] [Indexed: 02/02/2023] Open
Abstract
Adipokinetic hormone (AKH) is a highly researched insect neuropeptide that induces the mobilization of carbohydrates and lipids from the fat body at times of high physical activity, such as flight and locomotion. As a naturally occurring ligand, AKH has undergone quite a number of amino acid changes throughout evolution, and in some insect species multiple AKHs are present. AKH acts by binding to a rhodopsin-like G protein-coupled receptor, which is related to the vertebrate gonadotropin-releasing hormone receptors. In the current study, we have cloned AKH receptors (AKHRs) from seven different species, covering a wide phylogenetic range of insect orders: the fruit fly, Drosophila melanogaster, and the yellow fever mosquito, Aedes aegypti (Diptera); the red flour beetle, Tribolium castaneum, and the large pine weevil, Hylobius abietis (Coleoptera); the honeybee, Apis mellifera (Hymenoptera); the pea aphid, Acyrthosiphon pisum (Hemiptera); and the desert locust, Schistocerca gregaria (Orthoptera). The agonistic activity of different insect AKHs, including the respective endogenous AKHs, at these receptors was tested with a bioluminescence-based assay in Chinese hamster ovary cells. All receptors were activated by their endogenous ligand in the nanomolar range. Based on our data, we can refute the previously formulated hypothesis that a functional AKH signaling system is absent in the beneficial species, Apis mellifera. Furthermore, our data also suggest that some of the investigated AKH receptors, such as the mosquito AKHR, are more selective for the endogenous (conspecific) ligand, while others, such as the locust AKHR, are more promiscuous and can be activated by AKHs from many other insects. This information will be of high importance when further analyzing the potential use of AKHRs as targets for developing novel pest control agents.
Collapse
Affiliation(s)
- Elisabeth Marchal
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium.
| | - Sam Schellens
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium.
| | - Emilie Monjon
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium.
| | - Evert Bruyninckx
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium.
| | - Heather G Marco
- Department of Biological Sciences, University of Cape Town, Private Bag, Rondebosch ZA-7700, South Africa.
| | - Gerd Gäde
- Department of Biological Sciences, University of Cape Town, Private Bag, Rondebosch ZA-7700, South Africa.
| | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium.
| | - Heleen Verlinden
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium.
| |
Collapse
|
83
|
Elphick MR, Mirabeau O, Larhammar D. Evolution of neuropeptide signalling systems. ACTA ACUST UNITED AC 2018; 221:221/3/jeb151092. [PMID: 29440283 PMCID: PMC5818035 DOI: 10.1242/jeb.151092] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Neuropeptides are a diverse class of neuronal signalling molecules that regulate physiological processes and behaviour in animals. However, determining the relationships and evolutionary origins of the heterogeneous assemblage of neuropeptides identified in a range of phyla has presented a huge challenge for comparative physiologists. Here, we review revolutionary insights into the evolution of neuropeptide signalling that have been obtained recently through comparative analysis of genome/transcriptome sequence data and by ‘deorphanisation’ of neuropeptide receptors. The evolutionary origins of at least 30 neuropeptide signalling systems have been traced to the common ancestor of protostomes and deuterostomes. Furthermore, two rounds of genome duplication gave rise to an expanded repertoire of neuropeptide signalling systems in the vertebrate lineage, enabling neofunctionalisation and/or subfunctionalisation, but with lineage-specific gene loss and/or additional gene or genome duplications generating complex patterns in the phylogenetic distribution of paralogous neuropeptide signalling systems. We are entering a new era in neuropeptide research where it has become feasible to compare the physiological roles of orthologous and paralogous neuropeptides in a wide range of phyla. Moreover, the ambitious mission to reconstruct the evolution of neuropeptide function in the animal kingdom now represents a tangible challenge for the future. Summary: A review of the revolutionary advances in our knowledge of the evolution of neuropeptide signalling systems that have been enabled by comparative genomics and neuropeptide receptor deorphanisation.
Collapse
Affiliation(s)
- Maurice R Elphick
- School of Biological & Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Olivier Mirabeau
- Genetics and Biology of Cancers Unit, Institut Curie, INSERM U830, Paris Sciences et Lettres Research University, Paris 75005, France
| | - Dan Larhammar
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Box 593, 75124 Uppsala, Sweden
| |
Collapse
|
84
|
Jékely G, Melzer S, Beets I, Kadow ICG, Koene J, Haddad S, Holden-Dye L. The long and the short of it - a perspective on peptidergic regulation of circuits and behaviour. J Exp Biol 2018; 221:jeb166710. [PMID: 29439060 DOI: 10.1242/jeb.166710] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Neuropeptides are the most diverse class of chemical modulators in nervous systems. They contribute to extensive modulation of circuit activity and have profound influences on animal physiology. Studies on invertebrate model organisms, including the fruit fly Drosophila melanogaster and the nematode Caenorhabditis elegans, have enabled the genetic manipulation of peptidergic signalling, contributing to an understanding of how neuropeptides pattern the output of neural circuits to underpin behavioural adaptation. Electrophysiological and pharmacological analyses of well-defined microcircuits, such as the crustacean stomatogastric ganglion, have provided detailed insights into neuropeptide functions at a cellular and circuit level. These approaches can be increasingly applied in the mammalian brain by focusing on circuits with a defined and identifiable sub-population of neurons. Functional analyses of neuropeptide systems have been underpinned by systematic studies to map peptidergic networks. Here, we review the general principles and mechanistic insights that have emerged from these studies. We also highlight some of the challenges that remain for furthering our understanding of the functional relevance of peptidergic modulation.
Collapse
Affiliation(s)
- Gáspár Jékely
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Sarah Melzer
- Howard Hughes Medical Institute, Department of Neurobiology, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Isabel Beets
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Ilona C Grunwald Kadow
- Technical University of Munich, TUM School of Life Sciences, ZIEL - Institute for Food and Health, 85354 Freising, Germany
| | - Joris Koene
- Vrije Universiteit - Ecological Science, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Sara Haddad
- Volen Center for Complex Systems, Brandeis University, Mailstop 013, 415 South Street, Waltham, MA 02454, USA
| | - Lindy Holden-Dye
- Biological Sciences, Highfield Campus, University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
85
|
Alexander JL, Oliphant A, Wilcockson DC, Audsley N, Down RE, Lafont R, Webster SG. Functional Characterization and Signaling Systems of Corazonin and Red Pigment Concentrating Hormone in the Green Shore Crab, Carcinus maenas. Front Neurosci 2018; 11:752. [PMID: 29379412 PMCID: PMC5775280 DOI: 10.3389/fnins.2017.00752] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/26/2017] [Indexed: 12/27/2022] Open
Abstract
Neuropeptides play a central role as neurotransmitters, neuromodulators and hormones in orchestrating arthropod physiology. The post-genomic surge in identified neuropeptides and their putative receptors has not been matched by functional characterization of ligand-receptor pairs. Indeed, until very recently no G protein-coupled receptors (GPCRs) had been functionally defined in any crustacean. Here we explore the structurally-related, functionally-diverse gonadotropin-releasing hormone paralogs, corazonin (CRZ) and red-pigment concentrating hormone (RPCH) and their G-protein coupled receptors (GPCRs) in the crab, Carcinus maenas. Using aequorin luminescence to measure in vitro Ca2+ mobilization we demonstrated receptor-ligand pairings of CRZ and RPCH. CRZR-activated cell signaling in a dose-dependent manner (EC50 0.75 nM) and comparative studies with insect CRZ peptides suggest that the C-terminus of this peptide is important in receptor-ligand interaction. RPCH interacted with RPCHR with extremely high sensitivity (EC50 20 pM). Neither receptor bound GnRH, nor the AKH/CRZ-related peptide. Transcript distributions of both receptors indicate that CRZR expression was, unexpectedly, restricted to the Y-organs (YO). Application of CRZ peptide to YO had no effect on ecdysteroid biosynthesis, excepting a modest stimulation in early post-molt. CRZ had no effect on heart activity, blood glucose levels, lipid mobilization or pigment distribution in chromatophores, a scenario that reflected the distribution of its mRNA. Apart from the well-known activity of RPCH as a chromatophorotropin, it also indirectly elicited hyperglycemia (which was eyestalk-dependent). RPCHR mRNA was also expressed in the ovary, indicating possible roles in reproduction. The anatomy of CRZ and RPCH neurons in the nervous system is described in detail by immunohistochemistry and in situ hybridization. Each peptide has extensive but non-overlapping distribution in the CNS, and neuroanatomy suggests that both are possibly released from the post-commissural organs. This study is one of the first to deorphanize a GPCR in a crustacean and to provide evidence for hitherto unknown and diverse functions of these evolutionarily-related neuropeptides.
Collapse
Affiliation(s)
- Jodi L. Alexander
- School of Biological Sciences, Brambell Laboratories, Bangor University, Bangor, United Kingdom
| | - Andrew Oliphant
- Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - David C. Wilcockson
- Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | | | | | - Rene Lafont
- IBPS-BIOSIPE, Sorbonne Universités, UPMC Univ Paris 06, Paris, France
| | - Simon G. Webster
- School of Biological Sciences, Brambell Laboratories, Bangor University, Bangor, United Kingdom
| |
Collapse
|
86
|
Nguyen TV, Rotllant GE, Cummins SF, Elizur A, Ventura T. Insights Into Sexual Maturation and Reproduction in the Norway Lobster ( Nephrops norvegicus) via in silico Prediction and Characterization of Neuropeptides and G Protein-coupled Receptors. Front Endocrinol (Lausanne) 2018; 9:430. [PMID: 30100897 PMCID: PMC6073857 DOI: 10.3389/fendo.2018.00430] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 07/11/2018] [Indexed: 12/26/2022] Open
Abstract
Multiple biological processes across development and reproduction are modulated by neuropeptides that are predominantly produced and secreted from an animal's central nervous system. In the past few years, advancement of next-generation sequencing technologies has enabled large-scale prediction of putative neuropeptide genes in multiple non-model species, including commercially important decapod crustaceans. In contrast, knowledge of the G protein-coupled receptors (GPCRs), through which neuropeptides act on target cells, is still very limited. In the current study, we have used in silico transcriptome analysis to elucidate genes encoding neuropeptides and GPCRs in the Norway lobster (Nephrops norvegicus), which is one of the most valuable crustaceans in Europe. Fifty-seven neuropeptide precursor-encoding transcripts were detected, including phoenixin, a vertebrate neurohormone that has not been detected in any invertebrate species prior to this study. Neuropeptide gene expression analysis of immature and mature female N. norvegicus, revealed that some reproduction-related neuropeptides are almost exclusively expressed in immature females. In addition, a total of 223 GPCR-encoding transcripts were identified, of which 116 encode GPCR-A (Rhodopsin), 44 encode GPCR-B (Secretin) and 63 encode other GPCRs. Our findings increase the molecular toolbox of neural signaling components in N. norvegicus, allowing for further advances in the fisheries/larvae culture of this species.
Collapse
Affiliation(s)
- Tuan V. Nguyen
- GeneCology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sunshine Coast, QLD, Australia
| | - Guiomar E. Rotllant
- Institute de Ciències del Mar, Consejo Superior de Investigaciones Científicas, Passeig Marítim de la Barceloneta, Barcelona, Spain
| | - Scott F. Cummins
- GeneCology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sunshine Coast, QLD, Australia
| | - Abigail Elizur
- GeneCology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sunshine Coast, QLD, Australia
| | - Tomer Ventura
- GeneCology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sunshine Coast, QLD, Australia
- *Correspondence: Tomer Ventura
| |
Collapse
|
87
|
Senatore A, Reese TS, Smith CL. Neuropeptidergic integration of behavior in Trichoplax adhaerens, an animal without synapses. J Exp Biol 2017; 220:3381-3390. [PMID: 28931721 PMCID: PMC5612019 DOI: 10.1242/jeb.162396] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/04/2017] [Indexed: 12/17/2022]
Abstract
Trichoplax adhaerens is a flat, millimeter-sized marine animal that adheres to surfaces and grazes on algae. Trichoplax displays a repertoire of different feeding behaviors despite the apparent absence of a true nervous system with electrical or chemical synapses. It glides along surfaces to find food, propelled by beating cilia on cells at its ventral surface, and pauses during feeding by arresting ciliary beating. We found that when endomorphin-like peptides are applied to an animal, ciliary beating is arrested, mimicking natural feeding pauses. Antibodies against these neuropeptides label cells that express the neurosecretory proteins and voltage-gated calcium channels implicated in regulated secretion. These cells are embedded in the ventral epithelium, where they comprise only 4% of the total, and are concentrated around the edge of the animal. Each bears a cilium likely to be chemosensory and used to detect algae. Trichoplax pausing during feeding or spontaneously in the absence of food often induce their neighbors to pause as well, even neighbors not in direct contact. Pausing behavior propagates from animal to animal across distances much greater than the signal that diffuses from just one animal, so we presume that the peptides secreted from one animal elicit secretion from nearby animals. Signal amplification by peptide-induced peptide secretion explains how a small number of sensory secretory cells lacking processes and synapses can evoke a wave of peptide secretion across the entire animal to globally arrest ciliary beating and allow pausing during feeding.
Collapse
Affiliation(s)
- Adriano Senatore
- University of Toronto Mississauga, Mississauga, ON, Canada L5L 1C6
| | | | | |
Collapse
|
88
|
Shen Z, Chen Y, Hong L, Cui Z, Yang H, He X, Shi Y, Shi L, Han F, Zhou N. BNGR-A25L and -A27 are two functional G protein-coupled receptors for CAPA periviscerokinin neuropeptides in the silkworm Bombyx mori. J Biol Chem 2017; 292:16554-16570. [PMID: 28842502 DOI: 10.1074/jbc.m117.803445] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/11/2017] [Indexed: 01/14/2023] Open
Abstract
CAPA peptides, such as periviscerokinin (PVK), are insect neuropeptides involved in many signaling pathways controlling, for example, metabolism, behavior, and reproduction. They are present in a large number of insects and, together with their cognate receptors, are important for research into approaches for improving insect control. However, the CAPA receptors in the silkworm (Bombyx mori) insect model are unknown. Here, we cloned cDNAs of two putative CAPA peptide receptor genes, BNGR-A27 and -A25, from the brain of B. mori larvae. We found that the predicted BNGR-A27 ORF encodes 450 amino acids and that one BNGR-A25 splice variant encodes a full-length isoform (BNGR-A25L) of 418 amino acid residues and another a short isoform (BNGR-A25S) of 341 amino acids with a truncated C-terminal tail. Functional assays indicated that both BNGR-A25L and -A27 are activated by the PVK neuropeptides Bom-CAPA-PVK-1 and -PVK-2, leading to a significant increase in cAMP-response element-controlled luciferase activity and Ca2+ mobilization in a Gq inhibitor-sensitive manner. In contrast, BNGR-A25S was not significantly activated in response to the PVK peptides. Moreover, Bom-CAPA-PVK-1 directly bound to BNGR-A25L and -A27, but not BNGR-A25S. Of note, CAPA-PVK-mediated ERK1/2 phosphorylation and receptor internalization confirmed that BNGR-A25L and -A27 are two canonical receptors for Bombyx CAPA-PVKs. However, BNGR-A25S alone is a nonfunctional receptor but serves as a dominant-negative protein for BNGR-A25L. These results provide evidence that BNGR-A25L and -A27 are two functional Gq-coupled receptors for Bombyx CAPA-PVKs, enabling the further elucidation of the endocrinological roles of Bom-CAPA-PVKs and their receptors in insect biology.
Collapse
Affiliation(s)
- Zhangfei Shen
- the Department of Economic Zoology, College of Animal Sciences, and
| | - Yu Chen
- From the Institute of Biochemistry, College of Life Sciences
| | - Lingjuan Hong
- the Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zijingang Campus, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Zhenteng Cui
- the Department of Economic Zoology, College of Animal Sciences, and
| | - Huipeng Yang
- From the Institute of Biochemistry, College of Life Sciences
| | - Xiaobai He
- From the Institute of Biochemistry, College of Life Sciences
| | - Ying Shi
- From the Institute of Biochemistry, College of Life Sciences
| | - Liangen Shi
- the Department of Economic Zoology, College of Animal Sciences, and
| | - Feng Han
- the Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zijingang Campus, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Naiming Zhou
- From the Institute of Biochemistry, College of Life Sciences,
| |
Collapse
|
89
|
Ragionieri L, Özbagci B, Neupert S, Salts Y, Davidovitch M, Altstein M, Predel R. Identification of mature peptides from pban and capa genes of the moths Heliothis peltigera and Spodoptera littoralis. Peptides 2017; 94:1-9. [PMID: 28502715 DOI: 10.1016/j.peptides.2017.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/05/2017] [Accepted: 05/06/2017] [Indexed: 11/18/2022]
Abstract
By transcriptome analysis, we identified PBAN and CAPA precursors in the moths Spodoptera littoralis and Heliothis peltigera which are among the most damaging pests of agriculture in tropical and subtropical Africa as well as in Mediterranean countries. A combination of mass spectrometry and immunocytochemistry was used to identify mature peptides processed from these precursors and to reveal their spatial distribution in the CNS. We found that the sites of expression of pban genes, the structure of PBAN precursors and the processed neuropeptides are very similar in noctuid moths. The sequence of the diapause hormone (DH; tryptopyrokinin following the signal peptide), however, contains two N-terminal amino acids more than expected from comparison with already published sequences of related species. Capa genes of S. littoralis and H. peltigera encode, in addition to periviscerokinins, a tryptopyrokinin showing sequence similarity with DH, which is the tryptopyrokinin of the pban gene. CAPA peptides, which were not known from any noctuid moth so far, are produced in cells of abdominal ganglia. The shape of the release sites of these hormones in H. peltigera represents an exceptionally derived trait state and does not resemble the well-structured abdominal perisympathetic organs which are known from many other insects. Instead, axons of CAPA cells extensively ramify within the ventral diaphragm. The novel information regarding the sequences of all mature peptides derived from pban and capa genes of H. peltigera and S. littoralis now enables a detailed analysis of the bioactivity and species-specificity of the native peptides, especially those from the hitherto unknown capa genes, and to explore their interactions with PBAN/DH receptors.
Collapse
Affiliation(s)
- Lapo Ragionieri
- Department of Biology, Institute for Zoology, Functional Peptidomics Group, University of Cologne, D-50674 Cologne, Germany.
| | - Burak Özbagci
- Department of Biology, Institute for Zoology, Functional Peptidomics Group, University of Cologne, D-50674 Cologne, Germany
| | - Susanne Neupert
- Department of Biology, Institute for Zoology, Functional Peptidomics Group, University of Cologne, D-50674 Cologne, Germany
| | - Yuval Salts
- Department of Entomology, The Volcani Center, Bet Dagan 50250, Israel
| | | | - Miriam Altstein
- Department of Entomology, The Volcani Center, Bet Dagan 50250, Israel
| | - Reinhard Predel
- Department of Biology, Institute for Zoology, Functional Peptidomics Group, University of Cologne, D-50674 Cologne, Germany
| |
Collapse
|
90
|
Yeoh JGC, Pandit AA, Zandawala M, Nässel DR, Davies SA, Dow JAT. DINeR: Database for Insect Neuropeptide Research. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 86:9-19. [PMID: 28502574 DOI: 10.1016/j.ibmb.2017.05.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/03/2017] [Accepted: 05/08/2017] [Indexed: 06/07/2023]
Abstract
Neuropeptides are responsible for regulating a variety of functions, including development, metabolism, water and ion homeostasis, and as neuromodulators in circuits of the central nervous system. Numerous neuropeptides have been identified and characterized. However, both discovery and functional characterization of neuropeptides across the massive Class Insecta has been sporadic. To leverage advances in post-genomic technologies for this rapidly growing field, insect neuroendocrinology requires a consolidated, comprehensive and standardised resource for managing neuropeptide information. The Database for Insect Neuropeptide Research (DINeR) is a web-based database-application used for search and retrieval of neuropeptide information of various insect species detailing their isoform sequences, physiological functionality and images of their receptor-binding sites, in an intuitive, accessible and user-friendly format. The curated data includes representatives of 50 well described neuropeptide families from over 400 different insect species. Approximately 4700 FASTA formatted, neuropeptide isoform amino acid sequences and over 200 records of physiological functionality have been recorded based on published literature. Also available are images of neuropeptide receptor locations. In addition, the data include comprehensive summaries for each neuropeptide family, including their function, location, known functionality, as well as cladograms, sequence alignments and logos covering most insect orders. Moreover, we have adopted a standardised nomenclature to address inconsistent classification of neuropeptides. As part of the H2020 nEUROSTRESSPEP project, the data will be actively maintained and curated, ensuring a comprehensive and standardised resource for the scientific community. DINeR is publicly available at the project website: http://www.neurostresspep.eu/diner/.
Collapse
Affiliation(s)
- Joseph G C Yeoh
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8QQ Glasgow, Scotland, UK
| | - Aniruddha A Pandit
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8QQ Glasgow, Scotland, UK
| | - Meet Zandawala
- Department of Zoology, Stockholm University, S-10691 Stockholm, Sweden
| | - Dick R Nässel
- Department of Zoology, Stockholm University, S-10691 Stockholm, Sweden
| | - Shireen-Anne Davies
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8QQ Glasgow, Scotland, UK
| | - Julian A T Dow
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8QQ Glasgow, Scotland, UK.
| |
Collapse
|
91
|
Adamo SA. The stress response and immune system share, borrow, and reconfigure their physiological network elements: Evidence from the insects. Horm Behav 2017; 88:25-30. [PMID: 27746212 DOI: 10.1016/j.yhbeh.2016.10.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/04/2016] [Accepted: 10/11/2016] [Indexed: 01/16/2023]
Abstract
The classic biomedical view is that stress hormone effects on the immune system are largely pathological, especially if the stress is chronic. However, more recent interpretations have focused on the potential adaptive function of these effects. This paper examines stress response-immune system interactions from a physiological network perspective, using insects because of their simpler physiology. For example, stress hormones can reduce disease resistance, yet activating an immune response results in the release of stress hormones in both vertebrates and invertebrates. From a network perspective, this phenomenon is consistent with the 'sharing' of the energy-releasing ability of stress hormones by both the stress response and the immune system. Stress-induced immunosuppression is consistent with the stress response 'borrowing' molecular components from the immune system to increase the capacity of stress-relevant physiological processes (i.e. a trade off). The insect stress hormones octopamine and adipokinetic hormone can also 'reconfigure' the immune system to help compensate for the loss of some of the immune system's molecular resources (e.g. apolipophorin III). This view helps explain seemingly maladaptive interactions between the stress response and immune system. The adaptiveness of stress hormone effects on individual immune components may be apparent only from the perspective of the whole organism. These broad principles will apply to both vertebrates and invertebrates.
Collapse
Affiliation(s)
- Shelley A Adamo
- Dept. Psychology and Neuroscience, Dalhousie University, Halifax, NS,Canada, B3H4R2.
| |
Collapse
|
92
|
Milograna SR, Ribeiro MR, Bell FT, McNamara JC. Pigment Translocation in Caridean Shrimp Chromatophores: Receptor Type, Signal Transduction, Second Messengers, and Cross Talk Among Multiple Signaling Cascades. ACTA ACUST UNITED AC 2016; 325:565-580. [PMID: 27935256 DOI: 10.1002/jez.2052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 10/17/2016] [Accepted: 10/30/2016] [Indexed: 11/07/2022]
Abstract
Pigment aggregation in shrimp chromatophores is triggered by red pigment concentrating hormone (RPCH), a neurosecretory peptide whose plasma membrane receptor may be a G-protein coupled receptor (GPCR). While RPCH binding activates the Ca2+ /cGMP signaling cascades, a role for cyclic AMP (cAMP) in pigment aggregation is obscure, as are the steps governing Ca2+ release from the smooth endoplasmic reticulum (SER). A role for the antagonistic neuropeptide, pigment dispersing homone (α-PDH) is also unclear. In red, ovarian chromatophores from the freshwater shrimp Macrobrachium olfersi, we show that a G-protein antagonist (AntPG) strongly inhibits RPCH-triggered pigment aggregation, suggesting that RPCH binds to a GPCR, activating an inhibitory G-protein. Decreasing cAMP levels may cue pigment aggregation, since cytosolic cAMP titers, when augmented by cholera toxin, forskolin or vinpocentine, completely or partially impair pigment aggregation. Triggering opposing Ca2+ /cGMP and cAMP cascades by simultaneous perfusion with lipid-soluble cyclic nucleotide analogs induces a "tug-of-war" response, pigments aggregating in some chromatosomes with unpredictable, oscillatory movements in others. Inhibition of cAMP-dependent protein kinase accelerates aggregation and reduces dispersion velocities, suggesting a role in phosphorylation events, possibly regulating SER Ca2+ release and pigment aggregation. The second messengers IP3 and cADPR do not stimulate SER Ca2+ release. α-PDH does not sustain pigment dispersion, suggesting that pigment translocation in caridean chromatophores may be regulated solely by RPCH, since PDH is not required. We propose a working hypothesis to further unravel key steps in the mechanisms of pigment translocation within crustacean chromatophores that have remained obscure for nearly a century.
Collapse
Affiliation(s)
- Sarah Ribeiro Milograna
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Márcia Regina Ribeiro
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Fernanda Tinti Bell
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - John Campbell McNamara
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil.,Centro de Biologia Marinha, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
93
|
Caers J, Van Hiel MB, Peymen K, Zels S, Van Rompay L, Van Den Abbeele J, Schoofs L, Beets I. Characterization of a neuropeptide F receptor in the tsetse fly, Glossina morsitans morsitans. JOURNAL OF INSECT PHYSIOLOGY 2016; 93-94:105-111. [PMID: 27677695 DOI: 10.1016/j.jinsphys.2016.09.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 09/21/2016] [Accepted: 09/22/2016] [Indexed: 06/06/2023]
Abstract
Neuropeptides related to mammalian neuropeptide Y (NPY) and insect neuropeptide F (NPF) are conserved throughout Metazoa and intimately involved in a wide range of biological processes. In insects NPF is involved in regulating feeding, learning, stress and reproductive behavior. Here we identified and characterized an NPF receptor of the tsetse fly, Glossina morsitans morsitans, the sole transmitter of Trypanosoma parasites causing sleeping sickness. We isolated cDNA sequences encoding tsetse NPF (Glomo-NPF) and its receptor (Glomo-NPFR), and examined their spatial and temporal expression patterns using quantitative PCR. In tsetse flies, npfr transcripts are expressed throughout development and most abundantly in the central nervous system, whereas low expression is found in the flight muscles and posterior midgut. Expression of npf, by contrast, shows low transcript levels during development but is strongly expressed in the posterior midgut and brain of adult flies. Expression of Glomo-npf and its receptor in the brain and digestive system suggests that NPF may have conserved neuromodulatory or hormonal functions in tsetse flies, such as in the regulation of feeding behavior. Cell-based activity studies of the Glomo-NPFR showed that Glomo-NPF activates the receptor up to nanomolar concentrations. The molecular data of Glomo-NPF and Glomo-NPFR paves the way for further investigation of its functions in tsetse flies.
Collapse
Affiliation(s)
- Jelle Caers
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, Leuven, Belgium.
| | - Matthias B Van Hiel
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, Leuven, Belgium.
| | - Katleen Peymen
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, Leuven, Belgium.
| | - Sven Zels
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, Leuven, Belgium.
| | - Liesbeth Van Rompay
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, Leuven, Belgium.
| | - Jan Van Den Abbeele
- Unit of Veterinary Protozoology, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium; Laboratory of Zoophysiology, Department of Physiology, University of Ghent, Krijgslaan 281, 9000 Ghent, Belgium.
| | - Liliane Schoofs
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, Leuven, Belgium.
| | - Isabel Beets
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
94
|
Jayakumar S, Richhariya S, Reddy OV, Texada MJ, Hasan G. Drosophila larval to pupal switch under nutrient stress requires IP3R/Ca(2+) signalling in glutamatergic interneurons. eLife 2016; 5:e17495. [PMID: 27494275 PMCID: PMC4993588 DOI: 10.7554/elife.17495] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/04/2016] [Indexed: 12/19/2022] Open
Abstract
Neuronal circuits are known to integrate nutritional information, but the identity of the circuit components is not completely understood. Amino acids are a class of nutrients that are vital for the growth and function of an organism. Here, we report a neuronal circuit that allows Drosophila larvae to overcome amino acid deprivation and pupariate. We find that nutrient stress is sensed by the class IV multidendritic cholinergic neurons. Through live calcium imaging experiments, we show that these cholinergic stimuli are conveyed to glutamatergic neurons in the ventral ganglion through mAChR. We further show that IP3R-dependent calcium transients in the glutamatergic neurons convey this signal to downstream medial neurosecretory cells (mNSCs). The circuit ultimately converges at the ring gland and regulates expression of ecdysteroid biosynthetic genes. Activity in this circuit is thus likely to be an adaptation that provides a layer of regulation to help surpass nutritional stress during development.
Collapse
Affiliation(s)
- Siddharth Jayakumar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
- Manipal University, Manipal, India
| | - Shlesha Richhariya
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - O Venkateswara Reddy
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Michael J Texada
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Gaiti Hasan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| |
Collapse
|
95
|
Hamoudi Z, Lange AB, Orchard I. Identification and Characterization of the Corazonin Receptor and Possible Physiological Roles of the Corazonin-Signaling Pathway in Rhodnius prolixus. Front Neurosci 2016; 10:357. [PMID: 27536213 PMCID: PMC4971055 DOI: 10.3389/fnins.2016.00357] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 07/18/2016] [Indexed: 01/18/2023] Open
Abstract
Neuropeptides control many physiological and endocrinological processes in animals, acting as neuroactive chemicals within the central and peripheral nervous systems. Corazonin (CRZ) is one such neuropeptide that has a variety of physiological roles associated with control of heartbeat, ecdysis behavior initiation, and cuticle coloration. These physiological effects are mediated by the CRZ receptor (CRZR). In order to understand the role of the CRZ-signaling pathway in Rhodnius prolixus, the cDNA sequence encoding the Rhopr-CRZR was isolated and cloned revealing two splice variants (Rhopr-CRZR-α and β). Sequence analysis revealed characteristics of rhodopsin-like GPCRs. Rhopr-CRZR-α and β were dose-dependently activated by Rhopr-CRZ with EC50 values of 2.7 and 1 nM, respectively, when tested in a functional receptor assay using CHOKI-aeq cells. Neither receptors were activated by the evolutionarily-related peptides, Rhopr-AKH, or Rhopr-ACP. For 5th instars, qPCR revealed expression of Rhopr-CRZR transcript in the CNS, the dorsal vessel, abdominal dorsal epidermis, and prothoracic glands with associated fat body. Interestingly, transcript expression was also found in the female and male reproductive tissues. Rhopr-CRZR transcript was reduced after injection of dsCRZR into adult R. prolixus. In these insects, the basal heartbeat rate was reduced in vivo, and the increase in heartbeat frequency normally produced by CRZ on dorsal vessel in vitro was much reduced. No effect of dsCRZR injection was seen on ecdysis or coloration of the cuticle.
Collapse
Affiliation(s)
- Zina Hamoudi
- Department of Biology, University of Toronto MississaugaMississauga, ON, Canada
| | | | | |
Collapse
|
96
|
Zemanová M, Stašková T, Kodrík D. Role of adipokinetic hormone and adenosine in the anti-stress response in Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2016; 91-92:39-47. [PMID: 27374982 DOI: 10.1016/j.jinsphys.2016.06.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/24/2016] [Accepted: 06/29/2016] [Indexed: 06/06/2023]
Abstract
The role of adipokinetic hormone (AKH) and adenosine in the anti-stress response was studied in Drosophila melanogaster larvae and adults carrying a mutation in the Akh gene (Akh(1)), the adenosine receptor gene (AdoR(1)), or in both of these genes (Akh(1) AdoR(1) double mutant). Stress was induced by starvation or by the addition of an oxidative stressor paraquat (PQ) to food. Mortality tests revealed that the Akh(1) mutant was the most resistant to starvation, while the AdoR(1) mutant was the most sensitive. Conversely, the Akh(1) AdoR(1) double mutant was more sensitive to PQ toxicity than either of the single mutants. Administration of PQ significantly increased the Drome-AKH level in w(1118) and AdoR(1) larvae; however, this was not accompanied by a simultaneous increase in Akh gene expression. In contrast, PQ significantly increased the expression of the glutathione S-transferase D1 (GstD1) gene. The presence of both a functional adenosine receptor and AKH seem to be important for the proper control of GstD1 gene expression under oxidative stress, however, the latter appears to play more dominant role. On the other hand, differences in glutathione S-transferase (GST) activity among the strains, and between untreated and PQ-treated groups were minimal. In addition, the glutathione level was significantly lower in all untreated AKH- or AdoR-deficient mutant flies as compared with the untreated control w(1118) flies and further declined following treatment with PQ. All oxidative stress characteristics modified by mutations in Akh gene were restored or even improved by 'rescue' mutation in flies which ectopically express Akh. Thus, the results of the present study demonstrate the important roles of AKH and adenosine in the anti-stress response elicited by PQ in a D. melanogaster model, and provide the first evidence for the involvement of adenosine in the anti-oxidative stress response in insects.
Collapse
Affiliation(s)
- Milada Zemanová
- Institute of Entomology, Biology Centre, CAS, and Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Tereza Stašková
- Institute of Entomology, Biology Centre, CAS, and Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Dalibor Kodrík
- Institute of Entomology, Biology Centre, CAS, and Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic.
| |
Collapse
|
97
|
Buček A, Brabcová J, Vogel H, Prchalová D, Kindl J, Valterová I, Pichová I. Exploring complex pheromone biosynthetic processes in the bumblebee male labial gland by RNA sequencing. INSECT MOLECULAR BIOLOGY 2016; 25:295-314. [PMID: 26945888 DOI: 10.1111/imb.12221] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Male marking pheromones (MPs) are used by the majority of bumblebee species (Hymenoptera: Apidae), including a commercially important greenhouse pollinator, the buff-tailed bumblebee (Bombus terrestris), to attract conspecific females. MP biosynthetic processes in the cephalic part of the bumblebee male labial gland (LG) are of extraordinary complexity, involving enzymes of fatty acid and isoprenoid biosynthesis, which jointly produce more than 50 compounds. We employed a differential transcriptomic approach to identify candidate genes involved in MP biosynthesis by sequencing Bombus terrestris LG and fat body (FB) transcriptomes. We identified 12 454 abundantly expressed gene products (reads per kilobase of exon model per million mapped reads value > 1) that had significant hits in the GenBank nonredundant database. Of these, 876 were upregulated in the LG (> 4-fold difference). We identified more than 140 candidate genes potentially involved in MP biosynthesis, including esterases, fatty acid reductases, lipases, enzymes involved in limited fatty acid chain shortening, neuropeptide receptors and enzymes involved in biosynthesis of triacylglycerols, isoprenoids and fatty acids. For selected candidates, we confirmed their abundant expression in LG using quantitative real-time reverse transcription-PCR (qRT-PCR). Our study shows that the Bombus terrestris LG transcriptome reflects both fatty acid and isoprenoid MP biosynthetic processes and identifies rational gene targets for future studies to disentangle the molecular basis of MP biosynthesis. Additionally, LG and FB transcriptomes enrich the available transcriptomic resources for Bombus terrestris.
Collapse
Affiliation(s)
- A Buček
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - J Brabcová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - H Vogel
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - D Prchalová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - J Kindl
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - I Valterová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - I Pichová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
98
|
Abstract
Many exciting studies have begun to elucidate the genetics of the morphological and physiological diversity of ants, but as yet few studies have investigated the genetics of ant behavior directly. Ant genomes are marked by extreme rates of gene turnover, especially in gene families related to olfactory communication, such as the synthesis of cuticular hydrocarbons and the perception of environmental semiochemicals. Transcriptomic and epigenetic differences are apparent between reproductive and sterile females, males and females, and workers that differ in body size. Quantitative genetic approaches suggest heritability of task performance, and population genetic studies indicate a genetic association with reproductive status in some species. Gene expression is associated with behavior including foraging, response to queens attempting to join a colony, circadian patterns of task performance, and age-related changes of task. Ant behavioral genetics needs further investigation of the feedback between individual-level physiological changes and socially mediated responses to environmental conditions.
Collapse
Affiliation(s)
- D A Friedman
- Department of Biology, Stanford University, Stanford, California 94305-5020;
| | - D M Gordon
- Department of Biology, Stanford University, Stanford, California 94305-5020;
| |
Collapse
|
99
|
Esquivel CJ, Cassone BJ, Piermarini PM. A de novo transcriptome of the Malpighian tubules in non-blood-fed and blood-fed Asian tiger mosquitoes Aedes albopictus: insights into diuresis, detoxification, and blood meal processing. PeerJ 2016; 4:e1784. [PMID: 26989622 PMCID: PMC4793337 DOI: 10.7717/peerj.1784] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 02/19/2016] [Indexed: 01/17/2023] Open
Abstract
Background. In adult female mosquitoes, the renal (Malpighian) tubules play an important role in the post-prandial diuresis, which removes excess ions and water from the hemolymph of mosquitoes following a blood meal. After the post-prandial diuresis, the roles that Malpighian tubules play in the processing of blood meals are not well described. Methods. We used a combination of next-generation sequencing (paired-end RNA sequencing) and physiological/biochemical assays in adult female Asian tiger mosquitoes (Aedes albopictus) to generate molecular and functional insights into the Malpighian tubules and how they may contribute to blood meal processing (3–24 h after blood ingestion). Results/Discussion. Using RNA sequencing, we sequenced and assembled the first de novo transcriptome of Malpighian tubules from non-blood-fed (NBF) and blood-fed (BF) mosquitoes. We identified a total of 8,232 non-redundant transcripts. The Malpighian tubules of NBF mosquitoes were characterized by the expression of transcripts associated with active transepithelial fluid secretion/diuresis (e.g., ion transporters, water channels, V-type H+-ATPase subunits), xenobiotic detoxification (e.g., cytochrome P450 monoxygenases, glutathione S-transferases, ATP-binding cassette transporters), and purine metabolism (e.g., xanthine dehydrogenase). We also detected the expression of transcripts encoding sodium calcium exchangers, G protein coupled-receptors, and septate junctional proteins not previously described in mosquito Malpighian tubules. Within 24 h after a blood meal, transcripts associated with active transepithelial fluid secretion/diuresis exhibited a general downregulation, whereas those associated with xenobiotic detoxification and purine catabolism exhibited a general upregulation, suggesting a reinvestment of the Malpighian tubules’ molecular resources from diuresis to detoxification. Physiological and biochemical assays were conducted in mosquitoes and isolated Malpighian tubules, respectively, to confirm that the transcriptomic changes were associated with functional consequences. In particular, in vivo diuresis assays demonstrated that adult female mosquitoes have a reduced diuretic capacity within 24 h after a blood meal. Moreover, biochemical assays in isolated Malpighian tubules showed an increase in glutathione S-transferase activity and the accumulation of uric acid (an end product of purine catabolism) within 24 h after a blood meal. Our data provide new insights into the molecular physiology of Malpighian tubules in culicine mosquitoes and reveal potentially important molecular targets for the development of chemical and/or gene-silencing insecticides that would disrupt renal function in mosquitoes.
Collapse
Affiliation(s)
- Carlos J Esquivel
- Department of Entomology, The Ohio State University/Ohio Agricultural Research and Development Center , Wooster, OH , United States
| | - Bryan J Cassone
- Department of Biology, Brandon University , Brandon, Manitoba , Canada
| | - Peter M Piermarini
- Department of Entomology, The Ohio State University/Ohio Agricultural Research and Development Center , Wooster, OH , United States
| |
Collapse
|
100
|
Davis SM, Thomas AL, Nomie KJ, Huang L, Dierick HA. Tailless and Atrophin control Drosophila aggression by regulating neuropeptide signalling in the pars intercerebralis. Nat Commun 2016; 5:3177. [PMID: 24495972 DOI: 10.1038/ncomms4177] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 12/23/2013] [Indexed: 01/21/2023] Open
Abstract
Aggressive behaviour is widespread throughout the animal kingdom. However, its mechanisms are poorly understood, and the degree of molecular conservation between distantly related species is unknown. Here we show that knockdown of tailless (tll) increases aggression in Drosophila, similar to the effect of its mouse orthologue Nr2e1. Tll localizes to the adult pars intercerebralis (PI), which shows similarity to the mammalian hypothalamus. Knockdown of tll in the PI is sufficient to increase aggression and is rescued by co-expressing human NR2E1. Knockdown of Atrophin, a Tll co-repressor, also increases aggression, and both proteins physically interact in the PI. tll knockdown-induced aggression is fully suppressed by blocking neuropeptide processing or release from the PI. In addition, genetically activating PI neurons increases aggression, mimicking the aggression-inducing effect of hypothalamic stimulation. Together, our results suggest that a transcriptional control module regulates neuropeptide signalling from the neurosecretory cells of the brain to control aggressive behaviour.
Collapse
Affiliation(s)
- Shaun M Davis
- 1] Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA [2]
| | - Amanda L Thomas
- 1] Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA [2]
| | - Krystle J Nomie
- 1] Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA [2]
| | - Longwen Huang
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Herman A Dierick
- 1] Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA [2] Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, USA [3] Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA [4] Program in Developmental Biology, Houston, Texas 77030, USA
| |
Collapse
|