51
|
Modulation of single cell circadian response to NMDA by diacylglycerol lipase inhibition reveals a role of endocannabinoids in light entrainment of the suprachiasmatic nucleus. Neuropharmacology 2021; 185:108455. [PMID: 33444638 DOI: 10.1016/j.neuropharm.2021.108455] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/23/2020] [Accepted: 01/05/2021] [Indexed: 12/11/2022]
Abstract
Suprachiasmatic nucleus (SCN) of the hypothalamus is the master clock that drives circadian rhythms in physiology and behavior and adjusts their timing to external cues. Neurotransmitter glutamate and glutamatergic receptors sensitive to N-methyl-d-aspartate (NMDA) play a dual role in the SCN by coupling astrocytic and neuronal single cell oscillators and by resetting their phase in response to light. Recent reports suggested that signaling by endogenous cannabinoids (ECs) participates in both of these functions. We have previously shown that ECs, such as 2-arachidonoylglycerol (2-AG), act via CB1 receptors to affect the SCN response to light-mimicking NMDA stimulus in a time-dependent manner. We hypothesized that this ability is linked to the circadian regulation of EC signaling. We demonstrate that circadian clock in the rat SCN regulates expression of 2-AG transport, synthesis and degradation enzymes as well as its receptors. Inhibition of the major 2-AG synthesis enzyme, diacylglycerol lipase, enhanced the phase delay and lowered the amplitude of explanted SCN rhythm in response to NMDAR activation. Using microscopic PER2 bioluminescence imaging, we visualized how individual single cell oscillators in different parts of the SCN respond to the DAGL inhibition/NMDAR activation and shape response of the whole pacemaker. Additionally, we present strong evidence that the zero amplitude behavior of the SCN in response to single NMDA stimulus in the middle of subjective night is the result of a loss of rhythm in individual SCN cells. The paper provides new insights into the modulatory role of endocannabinoid signaling during the light entrainment of the SCN.
Collapse
|
52
|
Basharat S, Gilani SA, Iftikhar F, Murtaza MA, Basharat A, Sattar A, Qamar MM, Ali M. Capsaicin: Plants of the Genus Capsicum and Positive Effect of Oriental Spice on Skin Health. Skin Pharmacol Physiol 2021; 33:331-341. [PMID: 33401283 DOI: 10.1159/000512196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 08/28/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Capsaicin, the main pungent ingredient in hot chili peppers, causes excitation of small sensory neurons. It also provides the basic pungent flavor in Capsicum fruits. SUMMARY Capsaicin plays a vital role as an agonist for the TRPV1 (transient receptor potential cation channel, subfamily V, member 1) receptor. TRPV1 is essential for the reduction of oxidative stress, pain sensations, and inflammation. Therefore, it has many pros related to health issue. Activation and positive impact of TRPV1 via capsaicin has been studied in various dermatological conditions and in other skin-related issues. Past studies documented that capsaicin plays a vital role in the prevention of atopic dermatitis as well as psoriasis. Moreover, TRPV1 is also very important for skin health because it acts as a capsaicin receptor. It is found in nociceptive nerve fibers and nonneural structures. It prompts the release of a compound that is involved in communicating pain between the spinal cord nerves and other parts of the body. Key Messages: Here, we summarize the growing evidence for the beneficial role of capsaicin and TRPV1 and how they help in the relief of skin diseases such as inflammation, permeation, dysfunction, atopic dermatitis, and psoriasis and in pain amplification syndrome.
Collapse
Affiliation(s)
- Shahnai Basharat
- University Institute of Diet & Nutritional Sciences, The University of Lahore, Sargodha, Pakistan,
| | - Syed Amir Gilani
- Dean, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Faiza Iftikhar
- University Institute of Diet & Nutritional Sciences, The University of Lahore, Sargodha, Pakistan
| | | | - Ayesha Basharat
- Sargodha Medical College, University of Sargodha, Sargodha, Pakistan
| | - Ahsan Sattar
- Food Microbiology and Technology, Bahaudin Zikriya University, Multan, Pakistan
| | - Muhammad Mustafa Qamar
- Department of Physical Therapy, Sargodha Medical College, The University of Sargodha, Sargodha, Pakistan
| | - Muhammad Ali
- Institute of Allied Health Sciences, Sargodha Medical College, The University of Sargodha, Sargodha, Pakistan
| |
Collapse
|
53
|
Aseer KR, Egan JM. An Autonomous Cannabinoid System in Islets of Langerhans. Front Endocrinol (Lausanne) 2021; 12:699661. [PMID: 34290671 PMCID: PMC8287299 DOI: 10.3389/fendo.2021.699661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/08/2021] [Indexed: 12/31/2022] Open
Abstract
While endocannabinoids (ECs) and cannabis were primarily studied for their nervous system effects, it is now clear that ECs are also produced in the periphery where they regulate several physiological processes, including energy storage, glucose and lipid metabolism, insulin secretion and synthesis, and hepatocyte function. Within islet of Langerhans there is an autonomous EC system (ECS). Beta (β)-cells contain all the enzymes necessary for EC synthesis and degradation; ECs are generated in response to cellular depolarization; their paracrine influence on β-cells is mostly through the cannabinoid 1 receptor (CB1R) that is present on all β-cells; they modulate basal and glucose- and incretin-induced insulin secretion, and β-cell responses to various stressors. Furthermore, there is now accumulating evidence from preclinical studies that the autonomous islet ECS is a key player in obesity-induced inflammation in islets, and β-cell damage and apoptosis from many causes can be mitigated by CB1R blockers. We will thoroughly review the literature relevant to the effects of ECs and their receptors on β-cells and the other cell types within islets. Therapeutic potential of agents targeting EC/CB1R and CB2R is highly relevant because the receptors belong to the druggable G protein-coupled receptor superfamily. Present research in the ECS must be considered preliminary, especially with regards to human islet physiology, and further research is needed in order to translate basic cellular findings into clinical practice and the use of safe, clinically approved CBR modulators with and without glucose lowering combinations presently in therapeutic use for diabetes and obesity needs to be studied.
Collapse
|
54
|
Díaz-Rúa A, Chivite M, Velasco C, Comesaña S, Soengas JL, Conde-Sieira M. Periprandial response of central cannabinoid system to different feeding conditions in rainbow trout Oncorhynchus mykiss. Nutr Neurosci 2020; 25:1265-1276. [DOI: 10.1080/1028415x.2020.1853412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Adrián Díaz-Rúa
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña-CIM, Universidade de Vigo, Vigo, Spain
| | - Mauro Chivite
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña-CIM, Universidade de Vigo, Vigo, Spain
| | - Cristina Velasco
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña-CIM, Universidade de Vigo, Vigo, Spain
| | - Sara Comesaña
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña-CIM, Universidade de Vigo, Vigo, Spain
| | - José L. Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña-CIM, Universidade de Vigo, Vigo, Spain
| | - Marta Conde-Sieira
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña-CIM, Universidade de Vigo, Vigo, Spain
| |
Collapse
|
55
|
He H, Ma Y, Huang H, Huang C, Chen Z, Chen D, Gu Y, Wang X, Chen J. A comprehensive understanding about the pharmacological effect of diallyl disulfide other than its anti-carcinogenic activities. Eur J Pharmacol 2020; 893:173803. [PMID: 33359648 DOI: 10.1016/j.ejphar.2020.173803] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022]
Abstract
Diallyl disulfide (DADS), an oil-soluble sulfur compound that is responsible for the biological effects of garlic, displays numerous biological activities, among which its anti-cancer activities are the most famous ones. In recent years, the pharmacological effects of DADS other than its anti-carcinogenic activities have attracted numerous attentions. For example, it has been reported that DADS can prevent the microglia-mediated neuroinflammatory response and depression-like behaviors in mice. In the cardiovascular system, DADS administration was found to ameliorate the isoproterenol- or streptozotocin-induced cardiac dysfunction via the activation of the nuclear factor E2-related factor 2 (Nrf2) and insulin-like growth factor (IGF)-phosphatidylinositol-3-kinase (PI3K)-protein kinase B (Akt) signaling. DADS administration can also produce neuroprotective effects in animal models of Alzheimer's disease and protect the heart, endothelium, liver, lung, and kidney against cellular or tissue damages induced by various toxic factors, such as the oxidized-low density lipoprotein (ox-LDL), carbon tetrachloride (CCl4), ethanol, acetaminophen, Cis-Diammine Dichloroplatinum (CisPt), and gentamicin. The major mechanisms of action of DADS in disease prevention and/or treatment include inhibition of inflammation, oxidative stress, and cellular apoptosis. Mechanisms, including the activation of Akt, extracellular signal-regulated kinase 1/2 (ERK1/2), protein kinase A (PKA), and cyclic adenosine monophosphate-response element binding protein (CREB) and the inhibition of histone deacetylases (HDACs), can also mediate the cellular protective effects of DADS in different tissues and organs. In this review, we summarize and discuss the pharmacological effects of DADS other than its anti-carcinogenic activities, aiming to reveal more possibilities for DADS in disease prevention and/or treatment.
Collapse
Affiliation(s)
- Haiyan He
- Department of Respiratory Medicine, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, 6 North Road Hai'er Xiang, Nantong, 226001, Jiangsu, China
| | - Yaoying Ma
- Department of Pharmacology, School of Pharmacy, Nantong University, 19# Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Huaxing Huang
- Department of Nephrology, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, 6 North Road Hai'er Xiang, Nantong, 226001, Jiangsu, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, 19# Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Zhuo Chen
- Invasive Technology Department, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, 6 North Road Hai'er Xiang, Nantong, 226001, Jiangsu, China
| | - Dongjian Chen
- Invasive Technology Department, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, 6 North Road Hai'er Xiang, Nantong, 226001, Jiangsu, China
| | - Yiming Gu
- Department of Pharmacology, School of Pharmacy, Nantong University, 19# Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Xiaohua Wang
- Department of Endocrinology, The Second Affiliated Hospital of Nantong University, 6 North Road Hai'er Xiang, Nantong, 226001, Jiangsu, China
| | - Jinliang Chen
- Department of Respiratory Medicine, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, 6 North Road Hai'er Xiang, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
56
|
Guo BC, Kuo KL, Chen CH, Chen SL, Tsou TC, Lee TS. Di-(2-ethylhexyl) phthalate limits the pleiotropic effects of statins in chronic kidney disease patients undergoing dialysis and endothelial cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115548. [PMID: 32892025 DOI: 10.1016/j.envpol.2020.115548] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/04/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
The level of di-(2-ethylhexyl) phthalate (DEHP) is elevated in chronic kidney disease patients undergoing dialysis. However, statins are unable to reduce the cardiovascular events in chronic dialysis patients. In this study, we investigated the effects of DEHP on statin-conferred pleiotropic effects and the underlying molecular mechanism in peritoneal dialysis (PD) patients and endothelial cells (ECs). In PD patients with serum DEHP level ≥0.0687 μg/mL, statin treatment was not associated with lower risk of cardiovascular disease. In ECs, exposure to DEHP abrogated the simvastatin-induced NO bioavailability and EC-related functions. Additionally, DEHP abolished the anti-inflammatory effect of simvastatin on the tumor necrosis factor α-induced upregulation of adhesion molecules and monocyte adhesion to ECs. Mechanistically, DEHP blunted the activation of transient receptor potential vanilloid type 1 (TRPV1), which is required for NO production by simvastatin in ECs. Notably, DEHP increased the activity and expression of protein phosphatase 2B (PP2B), a negative regulator of TRPV1 activity. The effect of DEHP on PP2B activation was mediated by the activation of the NADPH oxidase/reactive oxygen species (NOX-ROS) pathway. Inhibition of PP2B activity by pharmacological antagonists prevented the inhibitory effects of DEHP on simvastatin-induced Ca2+ influx, NO bioavailability, and EC migration, proliferation, tube formation, and anti-inflammatory action. Collectively, DEHP activates the NOX-ROS-PP2B pathway, which in turns inhibits TRPV1/Ca2+-dependent signaling and abrogates the statin-conferred pleiotropic protection in ECs.
Collapse
Affiliation(s)
- Bei-Chia Guo
- Graduate Institute and Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ko-Lin Kuo
- Division of Nephrology, Taipei Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, New Taipei, Taiwan; School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chia-Hui Chen
- Graduate Institute and Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shen-Liang Chen
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Tsui-Chun Tsou
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Tzong-Shyuan Lee
- Graduate Institute and Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
57
|
Jang HH, Lee J, Lee SH, Lee YM. Effects of Capsicum annuum supplementation on the components of metabolic syndrome: a systematic review and meta-analysis. Sci Rep 2020; 10:20912. [PMID: 33262398 PMCID: PMC7708630 DOI: 10.1038/s41598-020-77983-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/28/2020] [Indexed: 01/07/2023] Open
Abstract
Metabolic syndrome (MetS) has increasingly gained importance as the main risk factor for cardiovascular diseases and type II diabetes mellitus. Various natural compounds derived from plants are associated with beneficial effects on the incidence and progression of MetS. This study aimed to evaluate the effects of Capsicum annuum on factors related to MetS by assessing randomized controlled trials (written in English). We searched the online databases of PubMed, Embase, Google scholar, and Cochrane Library up to April 2020. 'Patient/Population, Intervention, Comparison and Outcomes' format was used to determine whether intervention with C. annuum supplementation compared with placebo supplementation had any effect on the components of MetS among participants. We considered standardized mean differences (SMD) with 95% confidence intervals (CI) as effect size measures using random-effects model. Analysis of the included 11 studies (n = 609) showed that C. annuum supplementation had significant effect on low density lipoprotein-cholesterol [SMD = - 0.39; 95% CI - 0.72, - 0.07; P = 0.02; prediction interval, - 1.28 to 0.50] and marginally significant effect on body weight [SMD = - 0.19; 95% CI - 0.40, 0.03; P = 0.09]. However, larger and well-designed clinical trials are needed to investigate the effects of C. annuum on MetS.
Collapse
Affiliation(s)
- Hwan-Hee Jang
- Functional Food Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, South Korea
| | - Jounghee Lee
- Department of Food and Nutrition, Kunsan National University, Gunsan, 54150, South Korea
| | - Sung-Hyen Lee
- Functional Food Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, South Korea
| | - Young-Min Lee
- Division of Applied Food System, Major of Food and Nutrition, Seoul Women's University, Seoul, 01797, South Korea.
| |
Collapse
|
58
|
Primdahl KG, Nolsøe JMJ, Aursnes M. A pyridinium anionic ring-opening reaction applied to the stereodivergent syntheses of Piperaceae natural products. Org Biomol Chem 2020; 18:9050-9059. [PMID: 32945321 DOI: 10.1039/d0ob01745k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A stereodivergent strategy has been devised to access the diene motif found in biologically active compounds from the Piperaceae family. Herein the first total syntheses of 2E,4E configured piperchabamide E (2) and its enantiomer (ent-2), as well as 2E,4Z configured scutifoliamide B (3), are narrated. The mainstay in the adopted approach is the gram-scale conversion of quaternized pyridine in a practical three-step sequence to access isomerically pure conjugated bromodiene esters 2E,4E8 and 2E,4Z9 by differential crystallization. Even though the developed oxidation protocol forms the basis of the entailed divergent strategy, the geometrical integrity of the involved bromodiene motive can be controlled by the choice of solvent. Thus, while oxidation of pure bromodienal 2E,4Z7 in methanol yields equal amounts of bromodiene esters 2E,4E8 and 2E,4Z9, only bromodiene ester 2E,4Z10 is formed in isopropanol. Subseqently, capitalizing on a stereoretentive Suzuki cross-coupling and direct amidation of the corresponding esters, the featured natural products can be accessed in five and six steps, respectively. The somewhat surprising (R)-configured amine portion, which has been assigned to piperchabamide E (2), is facilitated by a Curtius rearrangement. Following this, the actual amine portion is shown to be (S)-configured.
Collapse
Affiliation(s)
- Karoline G Primdahl
- Department of Pharmaceutical Chemistry, University of Oslo, P.O. Box 1068, 0316 Oslo, Norway.
| | - Jens M J Nolsøe
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - Marius Aursnes
- Department of Pharmaceutical Chemistry, University of Oslo, P.O. Box 1068, 0316 Oslo, Norway.
| |
Collapse
|
59
|
Abstract
The transient receptor potential vanilloid-1 (TRPV1) is a non-specific cation channel known for its sensitivity to pungent vanilloid compound (i.e. capsaicin) and noxious stimuli, including heat, low pH or inflammatory mediators. TRPV1 is found in the somatosensory system, particularly primary afferent neurons that respond to damaging or potentially damaging stimuli (nociceptors). Stimulation of TRPV1 evokes a burning sensation, reflecting a central role of the channel in pain. Pharmacological and genetic studies have validated TRPV1 as a therapeutic target in several preclinical models of chronic pain, including cancer, neuropathic, postoperative and musculoskeletal pain. While antagonists of TRPV1 were found to be a valuable addition to the pain therapeutic toolbox, their clinical use has been limited by detrimental side effects, such as hyperthermia. In contrast, capsaicin induces a prolonged defunctionalisation of nociceptors and thus opened the door to the development of a new class of therapeutics with long-lasting pain-relieving effects. Here we review the list of TRPV1 agonists undergoing clinical trials for chronic pain management, and discuss new indications, formulations or combination therapies being explored for capsaicin. While the analgesic pharmacopeia for chronic pain patients is ancient and poorly effective, modern TRPV1-targeted drugs could rapidly become available as the next generation of analgesics for a broad spectrum of pain conditions.
Collapse
Affiliation(s)
- Mircea Iftinca
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta, T2N 4N1, Canada
| | - Manon Defaye
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta, T2N 4N1, Canada
| | - Christophe Altier
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta, T2N 4N1, Canada.
| |
Collapse
|
60
|
Long W, Fatehi M, Soni S, Panigrahi R, Philippaert K, Yu Y, Kelly R, Boonen B, Barr A, Golec D, Campbell SA, Ondrusova K, Hubert M, Baldwin T, Lemieux MJ, Light PE. Vitamin D is an endogenous partial agonist of the transient receptor potential vanilloid 1 channel. J Physiol 2020; 598:4321-4338. [PMID: 32721035 PMCID: PMC7589233 DOI: 10.1113/jp279961] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/20/2020] [Indexed: 12/30/2022] Open
Abstract
KEY POINTS 25-Hydroxyvitamin D (25OHD) is a partial agonist of TRPV1 whereby 25OHD can weakly activate TRPV1 yet antagonize the stimulatory effects of the full TRPV1 agonists capsaicin and oleoyl dopamine. 25OHD binds to TRPV1 within the same vanilloid binding pocket as capsaicin. 25OHD inhibits the potentiating effects of PKC-mediated TRPV1 activity. 25OHD reduces T-cell activation and trigeminal neuron calcium signalling mediated by TRPV1 activity. These results provide evidence that TRPV1 is a novel receptor for the biological actions of vitamin D in addition to the well-documented effects of vitamin D upon the nuclear vitamin D receptor. The results may have important implications for our current understanding of certain diseases where TRPV1 and vitamin D deficiency have been implicated, such as chronic pain and autoimmune diseases, such as type 1 diabetes. ABSTRACT The capsaicin receptor TRPV1 plays an important role in nociception, inflammation and immunity and its activity is regulated by exogenous and endogenous lipophilic ligands. As vitamin D is lipophilic and involved in similar biological processes as TRPV1, we hypothesized that it directly regulates TRPV1 activity and function. Our calcium imaging and electrophysiological data demonstrate that vitamin D (25-hydroxyvitamin D (25OHD) and 1,25-hydroxyvitamin D (1,25OHD)) can weakly activate TRPV1 at physiologically relevant concentrations (100 nM). Furthermore, both 25OHD and 1,25OHD can inhibit capsaicin-induced TRPV1 activity (IC50 = 34.3 ± 0.2 and 11.5 ± 0.9 nM, respectively), but not pH-induced TRPV1 activity, suggesting that vitamin D interacts with TRPV1 in the same region as the TRPV1 agonist capsaicin. This hypothesis is supported by our in silico TRPV1 structural modelling studies, which place 25OHD in the same binding region as capsaicin. 25OHD also attenuates PKC-dependent TRPV1 potentiation via interactions with a known PKC phospho-acceptor residue in TRPV1. To provide evidence for a physiological role for the interaction of vitamin D with TRPV1, we employed two different cellular models known to express TRPV1: mouse CD4+ T-cells and trigeminal neurons. Our results indicate that 25OHD reduces TRPV1-induced cytokine release from T-cells and capsaicin-induced calcium activity in trigeminal neurons. In summary, we provide evidence that vitamin D is a novel endogenous regulator of TRPV1 channel activity that may play an important physiological role in addition to its known effects through the canonical nuclear vitamin D receptor pathway.
Collapse
Affiliation(s)
- Wentong Long
- Alberta Diabetes InstituteFaculty of Medicine & DentistryUniversity of AlbertaEdmontonCanada
- Departments of PharmacologyFaculty of Medicine & DentistryUniversity of AlbertaEdmontonCanada
| | - Mohammad Fatehi
- Alberta Diabetes InstituteFaculty of Medicine & DentistryUniversity of AlbertaEdmontonCanada
- Departments of PharmacologyFaculty of Medicine & DentistryUniversity of AlbertaEdmontonCanada
| | - Shubham Soni
- Alberta Diabetes InstituteFaculty of Medicine & DentistryUniversity of AlbertaEdmontonCanada
| | - Rashmi Panigrahi
- BiochemistryFaculty of Medicine & DentistryUniversity of AlbertaEdmontonCanada
| | - Koenraad Philippaert
- Alberta Diabetes InstituteFaculty of Medicine & DentistryUniversity of AlbertaEdmontonCanada
- Departments of PharmacologyFaculty of Medicine & DentistryUniversity of AlbertaEdmontonCanada
- Laboratory for Ion Channel ResearchDepartment of Cellular and Molecular MedicineVIB Center for Brain and Disease ResearchKU LeuvenLeuvenBelgium
| | - Yi Yu
- Alberta Diabetes InstituteFaculty of Medicine & DentistryUniversity of AlbertaEdmontonCanada
- Departments of PharmacologyFaculty of Medicine & DentistryUniversity of AlbertaEdmontonCanada
| | - Rees Kelly
- Medical Microbiology & ImmunologyFaculty of Medicine & DentistryUniversity of AlbertaEdmontonCanada
| | - Brett Boonen
- Laboratory for Ion Channel ResearchDepartment of Cellular and Molecular MedicineVIB Center for Brain and Disease ResearchKU LeuvenLeuvenBelgium
| | - Amy Barr
- Alberta Diabetes InstituteFaculty of Medicine & DentistryUniversity of AlbertaEdmontonCanada
- Departments of PharmacologyFaculty of Medicine & DentistryUniversity of AlbertaEdmontonCanada
| | - Dominic Golec
- Alberta Diabetes InstituteFaculty of Medicine & DentistryUniversity of AlbertaEdmontonCanada
- Departments of PharmacologyFaculty of Medicine & DentistryUniversity of AlbertaEdmontonCanada
| | - Scott A. Campbell
- Alberta Diabetes InstituteFaculty of Medicine & DentistryUniversity of AlbertaEdmontonCanada
- Departments of PharmacologyFaculty of Medicine & DentistryUniversity of AlbertaEdmontonCanada
| | - Katarina Ondrusova
- Alberta Diabetes InstituteFaculty of Medicine & DentistryUniversity of AlbertaEdmontonCanada
- Departments of PharmacologyFaculty of Medicine & DentistryUniversity of AlbertaEdmontonCanada
| | - Matt Hubert
- Alberta Diabetes InstituteFaculty of Medicine & DentistryUniversity of AlbertaEdmontonCanada
- Departments of PharmacologyFaculty of Medicine & DentistryUniversity of AlbertaEdmontonCanada
| | - Troy Baldwin
- Medical Microbiology & ImmunologyFaculty of Medicine & DentistryUniversity of AlbertaEdmontonCanada
| | - M. Joanne Lemieux
- BiochemistryFaculty of Medicine & DentistryUniversity of AlbertaEdmontonCanada
| | - Peter E. Light
- Alberta Diabetes InstituteFaculty of Medicine & DentistryUniversity of AlbertaEdmontonCanada
- Departments of PharmacologyFaculty of Medicine & DentistryUniversity of AlbertaEdmontonCanada
| |
Collapse
|
61
|
Modulation of TRPV1 channel function by natural products in the treatment of pain. Chem Biol Interact 2020; 330:109178. [DOI: 10.1016/j.cbi.2020.109178] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/22/2020] [Accepted: 06/09/2020] [Indexed: 01/01/2023]
|
62
|
Díaz-Rúa A, Chivite M, Comesaña S, Velasco C, Valente LMP, Soengas JL, Conde-Sieira M. The endocannabinoid system is affected by a high-fat-diet in rainbow trout. Horm Behav 2020; 125:104825. [PMID: 32771417 DOI: 10.1016/j.yhbeh.2020.104825] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 01/07/2023]
Abstract
The endocannabinoid system (ECs) is a well known contributor to the hedonic regulation of food intake (FI) in mammals whereas in fish, the knowledge regarding hedonic mechanisms that control FI is limited. Previous studies reported the involvement of ECs in FI regulation in fish since anandamide (AEA) treatment induced enhanced FI and changes of mRNA abundance of appetite-related neuropeptides through cannabinoid receptor 1 (cnr1). However, no previous studies in fish evaluated the impact of palatable food like high-fat diets (HFD) on mechanisms involved in hedonic regulation of FI including the possible involvement of ECs. Therefore, we aimed to evaluate the effect of feeding a HFD on the response of ECs in rainbow trout (Oncorhynchus mykiss). First, we demonstrated a higher intake over 4 days of HFD compared with a control diet (CD). Then, we evaluated the postprandial response (1, 3 and 6 h) of components of the ECs in plasma, hypothalamus, and telencephalon after feeding fish with CD and HFD. The results obtained indicate that the increased FI of HFD occurred along with increased levels of 2-arachidonoylglycerol (2-AG) and AEA in plasma and in brain areas like hypothalamus and telencephalon putatively involved in hedonic regulation of FI in fish. Decreased mRNA abundance of EC receptors like cnr1, gpr55 and trpv1 suggest a feed-back counter-regulatory mechanism in response to the increased levels of EC. Furthermore, the results also suggest that neural activity players associated to FI regulation in mammals as cFOS, γ-Amino butyric acid (GABA) and brain derived neurotrophic factor (BDNF)/neurotrophic receptor tyrosine kinase (NTRK) systems could be involved in the hedonic eating response to a palatable diet in fish.
Collapse
Affiliation(s)
- Adrián Díaz-Rúa
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Spain
| | - Mauro Chivite
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Spain
| | - Sara Comesaña
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Spain
| | - Cristina Velasco
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Spain
| | - Luisa M P Valente
- CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões. Av. General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - José L Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Spain
| | - Marta Conde-Sieira
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Spain.
| |
Collapse
|
63
|
Abstract
While the relationship between obesity and reproductive dysfunction is well known, the physiological mechanism behind obesity-related infertility remains unclear. Previous work suggests that follicle development prior to ovulation is disrupted in obese individuals. Follicle-stimulating hormone (FSH) and anti-Mullerian hormone (AMH) are two key regulators of follicle development, and the poorest reproductive outcomes have been recorded when these hormones are imbalanced. In order to understand how obesity impacts the reproductive axis, the present study induces reproductive dysfunction in female rats using a high-fat, high-sugar diet (HFHS). Results: In our study, several animals on the HFHS diet displayed abnormal estrous cycles. The HFHS diet also resulted in an increased prevalence of ovarian cysts and decreased formation of corpora lutea. Across all groups, the FSH/AMH ratio displayed a strong negative correlation with pre-antral, antral, and total follicle counts. Moreover, rats on the HFHS diet displayed larger adipocytes and produced higher levels of leptin than controls. When combined with average adipocyte size in multiple regression, the FSH/AMH ratio was strongly associated with cyst formation in the ovary. Conclusions: These findings provide strong evidence for the potential relevance of a combined FSH/AMH ratio as a marker of ovarian health and follicular status. Therefore, this ratio reflects a complex interaction between the reproductive and metabolic systems.
Collapse
Affiliation(s)
- Jackson A Roberts
- Neuroscience Program, Washington and Lee University , Lexington, VA, USA
| | - Ryann M Carpenter
- Neuroscience Program, Washington and Lee University , Lexington, VA, USA
| | - Sarah N Blythe
- Neuroscience Program, Washington and Lee University , Lexington, VA, USA
- Department of Biology, Washington and Lee University , Lexington, VA, USA
| | - Natalia Toporikova
- Neuroscience Program, Washington and Lee University , Lexington, VA, USA
- Department of Biology, Washington and Lee University , Lexington, VA, USA
| |
Collapse
|
64
|
Zhai K, Liskova A, Kubatka P, Büsselberg D. Calcium Entry through TRPV1: A Potential Target for the Regulation of Proliferation and Apoptosis in Cancerous and Healthy Cells. Int J Mol Sci 2020; 21:E4177. [PMID: 32545311 PMCID: PMC7312732 DOI: 10.3390/ijms21114177] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
Abstract
Intracellular calcium (Ca2+) concentration ([Ca2+]i) is a key determinant of cell fate and is implicated in carcinogenesis. Membrane ion channels are structures through which ions enter or exit the cell, depending on the driving forces. The opening of transient receptor potential vanilloid 1 (TRPV1) ligand-gated ion channels facilitates transmembrane Ca2+ and Na+ entry, which modifies the delicate balance between apoptotic and proliferative signaling pathways. Proliferation is upregulated through two mechanisms: (1) ATP binding to the G-protein-coupled receptor P2Y2, commencing a kinase signaling cascade that activates the serine-threonine kinase Akt, and (2) the transactivation of the epidermal growth factor receptor (EGFR), leading to a series of protein signals that activate the extracellular signal-regulated kinases (ERK) 1/2. The TRPV1-apoptosis pathway involves Ca2+ influx and efflux between the cytosol, mitochondria, and endoplasmic reticulum (ER), the release of apoptosis-inducing factor (AIF) and cytochrome c from the mitochondria, caspase activation, and DNA fragmentation and condensation. While proliferative mechanisms are typically upregulated in cancerous tissues, shifting the balance to favor apoptosis could support anti-cancer therapies. TRPV1, through [Ca2+]i signaling, influences cancer cell fate; therefore, the modulation of the TRPV1-enforced proliferation-apoptosis balance is a promising avenue in developing anti-cancer therapies and overcoming cancer drug resistance. As such, this review characterizes and evaluates the role of TRPV1 in cell death and survival, in the interest of identifying mechanistic targets for drug discovery.
Collapse
Affiliation(s)
- Kevin Zhai
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, PO Box 24144, Qatar;
| | - Alena Liskova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, PO Box 24144, Qatar;
| |
Collapse
|
65
|
Wang YB, de Lartigue G, Page AJ. Dissecting the Role of Subtypes of Gastrointestinal Vagal Afferents. Front Physiol 2020; 11:643. [PMID: 32595525 PMCID: PMC7300233 DOI: 10.3389/fphys.2020.00643] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/20/2020] [Indexed: 12/22/2022] Open
Abstract
Gastrointestinal (GI) vagal afferents convey sensory signals from the GI tract to the brain. Numerous subtypes of GI vagal afferent have been identified but their individual roles in gut function and feeding regulation are unclear. In the past decade, technical approaches to selectively target vagal afferent subtypes and to assess their function has significantly progressed. This review examines the classification of GI vagal afferent subtypes and discusses the current available techniques to study vagal afferents. Investigating the distribution of GI vagal afferent subtypes and understanding how to access and modulate individual populations are essential to dissect their fundamental roles in the gut-brain axis.
Collapse
Affiliation(s)
- Yoko B Wang
- Vagal Afferent Research Group, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Guillaume de Lartigue
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, United States.,Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL, United States
| | - Amanda J Page
- Vagal Afferent Research Group, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia.,Nutrition, Diabetes and Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| |
Collapse
|
66
|
Saheb Sharif-Askari F, Saheb Sharif-Askari N, Halwani R, Abusnana S, Hamoudi R, Sulaiman N. Low Vitamin D Serum Level Is Associated with HDL-C Dyslipidemia and Increased Serum Thrombomodulin Levels of Insulin-Resistant Individuals. Diabetes Metab Syndr Obes 2020; 13:1599-1607. [PMID: 32494176 PMCID: PMC7231785 DOI: 10.2147/dmso.s245742] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/24/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Insulin-resistant individuals are known to have dyslipidemia and are predicted to be at high risk of cardiovascular events. Vitamin D deficiency was shown to be associated with dyslipidemia; however, the type of dyslipidemia associated with vitamin D deficiency in insulin-resistant individuals is not determined. Furthermore, there is evidence linking insulin resistance with low-grade inflammation suggesting levels of pro-inflammatory cytokines to be increased in insulin-resistant states. OBJECTIVE This study was performed to evaluate the impact of vitamin D deficiency, defined as serum level of 25(OH)D below 20 ng/mL, on lipid profile and inflammatory markers such as interleukin (IL-6) and IL-8, as well as soluble thrombomodulin (TM) in the serum of insulin-resistant individuals. METHODS A total of 4114 individuals had simultaneous serum 25(OH)D, insulin, and lipid panel testing during 2013 as part of the United Arab Emirates National Diabetes and Lifestyle (UAEDIAB) study. Multivariate logistic regression analysis was used to assess the association between serum level of 25(OH)D and lipid profile in insulin-sensitive versus -resistant individuals. The lipid panel was stratified into high total cholesterol (TC: >6.2 mmol/L), high low-density lipoprotein-cholesterol (LDL-C: >2.59 mmol/L), high triglycerides (TG: >2.3 mmol/L), and low high-density lipoprotein-cholesterol (HDL-C: <1.55 mmol/L) dyslipidemia. Furthermore, the immunomodulatory and vasculoprotective effects of 25(OH)D were assessed by measuring the levels of IL-6, IL-8, and soluble TM in serum using ELISA. RESULTS More than half of the 4114 individuals were insulin resistant (n=2760, 67%) and around one-fifth of them were vitamin D-deficient (n=796, 19%). After adjusting for age, gender, body mass index, smoking, ethnicity, and educational level, the only dyslipidemia associated with vitamin D-deficient-insulin-resistant individuals (OR 2.09 [95]; P=0.009) was lower HDL-C. Furthermore, deficient 25(OH)D individuals with low HDL-C levels had higher circulatory IL-6 and IL-8 levels, and higher serum soluble TM compared to individuals with sufficient 25(OH)D and normal lipid profiles (median, IL-6 pg/mL 0.82 vs 1.71, P=0.001; median, IL-8 pg/mL 51.31 vs 145.6, P=0.003; and median, soluble TM ng/mL 5.19 vs 7.38, P<0.0001; in sufficient vs deficient groups, respectively). CONCLUSION The results of our study showed that in insulin-resistant individuals, vitamin D deficiency status is associated with HDL-C dyslipidemia and higher serum inflammatory and endothelial damage markers.
Collapse
Affiliation(s)
- Fatemeh Saheb Sharif-Askari
- Sharjah Institute of Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Narjes Saheb Sharif-Askari
- Sharjah Institute of Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Rabih Halwani
- Sharjah Institute of Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Salah Abusnana
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Department of Diabetes and Endocrinology, University Hospital Sharjah, Sharjah, United Arab Emirates
| | - Rifat Hamoudi
- Sharjah Institute of Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Nabil Sulaiman
- Sharjah Institute of Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Department of Family and Community Medicine, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Department of Epidemiology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| |
Collapse
|
67
|
Tutunchi H, Saghafi-Asl M, Ostadrahimi A. A systematic review of the effects of oleoylethanolamide, a high-affinity endogenous ligand of PPAR-α, on the management and prevention of obesity. Clin Exp Pharmacol Physiol 2020; 47:543-552. [PMID: 31868943 DOI: 10.1111/1440-1681.13238] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/23/2019] [Accepted: 12/17/2019] [Indexed: 02/06/2023]
Abstract
Along with an increase in overweight and obesity among all age groups, the development of efficacious and safe anti-obesity strategies for patients, as well as health systems, is critical. Oleoylethanolamide (OEA), a high-affinity endogenous ligand of nuclear receptor peroxisome proliferator-activated receptor alpha (PPAR-α), plays important physiological and metabolic actions. OEA is derived from oleic acid, a monounsaturated fatty acid, which has beneficial effects on body composition and regional fat distribution. The role of OEA in the modulation of food consumption and weight management makes it an attractive molecule requiring further exploration in obesogenic environments. This systematic review was conducted to assess the effects of OEA on the obesity management, with emphasizing on its physiological roles and possible mechanisms of action in energy homeostasis. We searched PubMed/Medline, Google Scholar, ScienceDirect, Scopus, ProQuest, and EMBASE up until September 2019. Out of 712 records screened, 30 articles met the study criteria. The evidence reviewed here indicates that OEA, an endocannabinoid-like compound, leads to satiation or meal termination through PPAR-α activation and fatty acid translocase (FAT)/CD36. Additionally, the lipid-amide OEA stimulates fatty acid uptake, lipolysis, and beta-oxidation, and also promotes food intake control. OEA also exerts satiety-inducing effects by activating the hedonic dopamine pathways and increasing homeostatic oxytocin and brain histamine. In conclusion, OEA may be a key component of the physiological system involved in the regulation of dietary fat consumption and energy homeostasis; therefore, it is suggested as a possible therapeutic agent for the management of obesity.
Collapse
Affiliation(s)
- Helda Tutunchi
- Student Research Committee, Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Saghafi-Asl
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Ostadrahimi
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
68
|
Manca C, Boubertakh B, Leblanc N, Deschênes T, Lacroix S, Martin C, Houde A, Veilleux A, Flamand N, Muccioli GG, Raymond F, Cani PD, Di Marzo V, Silvestri C. Germ-free mice exhibit profound gut microbiota-dependent alterations of intestinal endocannabinoidome signaling. J Lipid Res 2020; 61:70-85. [PMID: 31690638 PMCID: PMC6939599 DOI: 10.1194/jlr.ra119000424] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/26/2019] [Indexed: 01/10/2023] Open
Abstract
The gut microbiota is a unique ecosystem of microorganisms interacting with the host through several biochemical mechanisms. The endocannabinoidome (eCBome), a complex signaling system including the endocannabinoid system, approximately 50 receptors and metabolic enzymes, and more than 20 lipid mediators with important physiopathologic functions, modulates gastrointestinal tract function and may mediate host cell-microbe communications there. Germ-free (GF) mice, which lack an intestinal microbiome and so differ drastically from conventionally raised (CR) mice, offer a unique opportunity to explore the eCBome in a microbe-free model and in the presence of a reintroduced functional gut microbiome through fecal microbiota transplant (FMT). We aimed to gain direct evidence for a link between the microbiome and eCBome systems by investigating eCBome alterations in the gut in GF mice before and after FMT. Basal eCBome gene expression and lipid profiles were measured in various segments of the intestine of GF and CR mice at juvenile and adult ages using targeted quantitative PCR transcriptomics and LC-MS/MS lipidomics. GF mice exhibited age-dependent modifications in intestinal eCBome gene expression and lipid mediator levels. FMT from CR donor mice to age-matched GF male mice reversed several of these alterations, particularly in the ileum and jejunum, after only 1 week, demonstrating that the gut microbiome directly impacts the host eCBome and providing a cause-effect relationship between the presence or absence of intestinal microbes and eCBome signaling. These results open the way to new studies investigating the mechanisms through which intestinal microorganisms exploit eCBome signaling to exert some of their physiopathologic functions.
Collapse
Affiliation(s)
- Claudia Manca
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Québec, Canada; Département de Médecine, Faculté de Médecine, Université Laval, Québec, Canada; Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Québec, Canada
| | - Besma Boubertakh
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Québec, Canada; Département de Médecine, Faculté de Médecine, Université Laval, Québec, Canada; Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Québec, Canada
| | - Nadine Leblanc
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Québec, Canada; Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Québec, Canada; Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, Canada
| | - Thomas Deschênes
- Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Québec, Canada; Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, Canada; École de Nutrition, Faculté des Sciences de l'Agriculture et de l'Alimentation (FSAA), Université Laval, Québec, Canada
| | - Sebastien Lacroix
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Québec, Canada; Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Québec, Canada; Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, Canada
| | - Cyril Martin
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Québec, Canada; Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Québec, Canada
| | - Alain Houde
- Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Québec, Canada; Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, Canada
| | - Alain Veilleux
- Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Québec, Canada; Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, Canada; École de Nutrition, Faculté des Sciences de l'Agriculture et de l'Alimentation (FSAA), Université Laval, Québec, Canada
| | - Nicolas Flamand
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Québec, Canada; Département de Médecine, Faculté de Médecine, Université Laval, Québec, Canada; Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Québec, Canada
| | - Giulio G Muccioli
- Louvain Drug Research Institute (LDRI), Bioanalysis and Pharmacology of Bioactive Lipids Research Group, UCLouvain (Université Catholique de Louvain), Brussels, Belgium
| | - Frédéric Raymond
- Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Québec, Canada; Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, Canada; École de Nutrition, Faculté des Sciences de l'Agriculture et de l'Alimentation (FSAA), Université Laval, Québec, Canada
| | - Patrice D Cani
- Louvain Drug Research Institute (LDRI), Bioanalysis and Pharmacology of Bioactive Lipids Research Group, UCLouvain (Université Catholique de Louvain), Brussels, Belgium; Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Metabolism and Nutrition Research Group, UCLouvain (Université Catholique de Louvain), Brussels, Belgium
| | - Vincenzo Di Marzo
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Québec, Canada; Département de Médecine, Faculté de Médecine, Université Laval, Québec, Canada; Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Québec, Canada; Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, Canada; École de Nutrition, Faculté des Sciences de l'Agriculture et de l'Alimentation (FSAA), Université Laval, Québec, Canada
| | - Cristoforo Silvestri
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Québec, Canada; Département de Médecine, Faculté de Médecine, Université Laval, Québec, Canada; Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Québec, Canada.
| |
Collapse
|
69
|
Zhang M, Liu S, Xu J, Lv S, Fan Y, Zhang Y, Zhang Y, Wu Y, Su Y, Yu H, Song S, He J, Li H. TNFSF15 Polymorphisms are Associated with Graves’ Disease and Graves’ Ophthalmopathy in a Han Chinese Population. Curr Eye Res 2019; 45:888-895. [PMID: 31869260 DOI: 10.1080/02713683.2019.1705494] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Meiqin Zhang
- Department of Ophthalmology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Shichun Liu
- Department of Ophthalmology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Ji Xu
- Department of Ophthalmology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Sha Lv
- Department of Ophthalmology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Yujie Fan
- Department of Ophthalmology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Yao Zhang
- Department of Ophthalmology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Yongye Zhang
- Department of Ophthalmology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Yufei Wu
- Department of Ophthalmology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Yang Su
- Department of Ophthalmology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Hongsong Yu
- Department of Immunology, Zunyi Medical University, Guizhou, China
| | - Shengfang Song
- Department of Ophthalmology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Jianhua He
- Department of Nuclear Medicine, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Hua Li
- Department of Ophthalmology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
70
|
Sládek M, Houdek P, Sumová A. Circadian profiling reveals distinct regulation of endocannabinoid system in the rat plasma, liver and adrenal glands by light-dark and feeding cycles. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:158533. [DOI: 10.1016/j.bbalip.2019.158533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/19/2019] [Accepted: 09/25/2019] [Indexed: 12/17/2022]
|
71
|
Uddin MA, Akhter MS, Singh SS, Kubra KT, Schally AV, Jois S, Barabutis N. GHRH antagonists support lung endothelial barrier function. Tissue Barriers 2019; 7:1669989. [PMID: 31578921 DOI: 10.1080/21688370.2019.1669989] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Growth Hormone-Releasing Hormone (GHRH) regulates the release of growth hormone from the anterior pituitary gland. GHRH also acts as a growth and inflammatory factor in a variety of experimental models in oncology. In the current study, we used bovine pulmonary arterial cells in order to investigate the effects of GHRH and its antagonistic and agonistic analogs in key intracellular pathways that regulate endothelial permeability. GHRH antagonists suppressed the activation of MLC2, ERK1/2, JAK2/STAT3 pathway and increased the intracellular P53 and pAMPK levels. In contrast, both GHRH and GHRH agonist MR409 exerted the opposite effects. Furthermore, GHRH antagonists supported the integrity of endothelial barrier, while GHRH and GHRH agonists had the contrary effects, as reflected in measurements of transendothelial resistance. Our observations support the evidence for the anti - inflammatory role of GHRH antagonists in the vasculature. Moreover, our results suggest that GHRH antagonists should be considered as promising therapeutic agents for treating severe respiratory abnormalities, such as the lethal Acute Respiratory Distress Syndrome (ARDS).
Collapse
Affiliation(s)
- Mohammad A Uddin
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, USA
| | - Mohammad S Akhter
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, USA
| | - Sitanshu S Singh
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, USA
| | - Khadeja-Tul Kubra
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, USA
| | - Andrew V Schally
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center, Miami, FL, USA.,Divisions of Medical Oncology and Endocrinology, Department of Medicine and Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Seetharama Jois
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, USA
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, USA
| |
Collapse
|
72
|
Page AJ, Hatzinikolas G, Vincent AD, Cavuoto P, Wittert GA. The TRPV1 channel regulates glucose metabolism. Am J Physiol Endocrinol Metab 2019; 317:E667-E676. [PMID: 31408376 DOI: 10.1152/ajpendo.00102.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Endocannabinoids (ECs) mediate effects via cannabinoid receptor types 1 and 2 (CB1 and 2) and transient receptor potential channel-vanilloid subfamily member 1 (TRPV1) channels. In high-fat diet (HFD)-induced obese mice overactivity of the EC system and inhibition of CB1 increase skeletal muscle glucose uptake. We explored the role of TRPV1. Male TRPV1+/+(WT) and TRPV1-/-(KO)-mice were fed (20 wk) a standard laboratory diet (SLD) or HFD. An intraperitoneal glucose tolerance test was performed. RT-PCR was performed to measure mRNA of genes involved in glucose/lipid metabolism and the EC system in soleus (SOL) and extensor digitorum longus (EDL) muscles. Cultured L6 cells were used to measure glucose uptake in skeletal muscle. HFD mice weighed more and had higher insulin levels than SLD mice, with no genotype differences. Basal and peak glucose were higher in HFD mice irrespective of genotype, but glucose cleared faster in HFD WT vs. HFD KO-mice. 2-Arachidonoylglycerol augmented insulin-induced glucose uptake in skeletal L6-cells, an effect blocked by the TRPV1 antagonist SB-366791. In EDL, fatty acid amide hydrolase (FAAH) mRNA was increased in KO vs. WT mice, irrespective of diet. Pyruvate dehydrogenase kinase isozyme 4 (PDK4) and mitochondrial uncoupling protein 3 (UCP3) were elevated and FA desaturase 2 (FADS2) mRNA lower in HFD mice, irrespective of genotype. CB1 and stearoyl-CoA desaturase 1 (SCD1) were lower in HFD WT mice only. In SOL, PDK4, UCP3, hormone-sensitive lipase (LIPE), fatty acid translocase (CD36), and carnitine palmitoyl transferase 2 (CPT2) were elevated and SCD1, FAAH, FADS2, and Troponin 1 (TNNC1) mRNA lower in HFD mice, irrespective of genotype. In conclusion, TRPV1 regulates glucose disposal in HFD mice. We propose that TRPV1 plays a role in coordinating glucose metabolism in EDL under conditions of metabolic stress.
Collapse
Affiliation(s)
- Amanda J Page
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - George Hatzinikolas
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Andrew D Vincent
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, South Australia, Australia
| | - Paul Cavuoto
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Gary A Wittert
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
73
|
Park H, He A, Lodhi IJ. Lipid Regulators of Thermogenic Fat Activation. Trends Endocrinol Metab 2019; 30:710-723. [PMID: 31422871 PMCID: PMC6779522 DOI: 10.1016/j.tem.2019.07.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 12/16/2022]
Abstract
The global prevalence of obesity continues to increase, suggesting a need for alternative treatment approaches. Targeting brown fat function to promote energy expenditure represents one such approach. Brown adipocytes and the related beige adipocytes oxidize fatty acids and glucose to generate heat and are activated by cold exposure or consumption of high-calorie diets. Alternative, more practical means to activate thermogenic fat are needed. Here, we review emerging data suggesting new roles for lipids in activating thermogenesis that extend beyond their serving as a fuel source for heat generation. Lipids have also been implicated in mediating interorgan communication, crosstalk between organelles, and cellular signaling regulating thermogenesis. Understanding how lipids regulate thermogenesis could identify innovative therapeutic interventions for obesity.
Collapse
Affiliation(s)
- Hongsuk Park
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Anyuan He
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Irfan J Lodhi
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
74
|
Parker A, Fonseca S, Carding SR. Gut microbes and metabolites as modulators of blood-brain barrier integrity and brain health. Gut Microbes 2019; 11:135-157. [PMID: 31368397 PMCID: PMC7053956 DOI: 10.1080/19490976.2019.1638722] [Citation(s) in RCA: 358] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/22/2019] [Accepted: 06/26/2019] [Indexed: 02/03/2023] Open
Abstract
The human gastrointestinal (gut) microbiota comprises diverse and dynamic populations of bacteria, archaea, viruses, fungi, and protozoa, coexisting in a mutualistic relationship with the host. When intestinal homeostasis is perturbed, the function of the gastrointestinal tract and other organ systems, including the brain, can be compromised. The gut microbiota is proposed to contribute to blood-brain barrier disruption and the pathogenesis of neurodegenerative diseases. While progress is being made, a better understanding of interactions between gut microbes and host cells, and the impact these have on signaling from gut to brain is now required. In this review, we summarise current evidence of the impact gut microbes and their metabolites have on blood-brain barrier integrity and brain function, and the communication networks between the gastrointestinal tract and brain, which they may modulate. We also discuss the potential of microbiota modulation strategies as therapeutic tools for promoting and restoring brain health.
Collapse
Affiliation(s)
- Aimée Parker
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, UK
| | - Sonia Fonseca
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, UK
| | - Simon R. Carding
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
| |
Collapse
|
75
|
Oral gavage of capsaicin causes TRPV1-dependent acute hypothermia and TRPV1-independent long-lasting increase of locomotor activity in the mouse. Physiol Behav 2019; 206:213-224. [DOI: 10.1016/j.physbeh.2019.04.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 02/20/2019] [Accepted: 04/17/2019] [Indexed: 12/18/2022]
|
76
|
Multifunctional TRPV1 Ion Channels in Physiology and Pathology with Focus on the Brain, Vasculature, and Some Visceral Systems. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5806321. [PMID: 31263706 PMCID: PMC6556840 DOI: 10.1155/2019/5806321] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/15/2019] [Accepted: 04/28/2019] [Indexed: 02/06/2023]
Abstract
TRPV1 has been originally cloned as the heat and capsaicin receptor implicated in acute pain signalling, while further research has shifted the focus to its importance in chronic pain caused by inflammation and associated with this TRPV1 sensitization. However, accumulating evidence suggests that, apart from pain signalling, TRPV1 subserves many other unrelated to nociception functions in the nervous system. In the brain, TRPV1 can modulate synaptic transmission via both pre- and postsynaptic mechanisms and there is a functional crosstalk between GABA receptors and TRPV1. Other fundamental processes include TRPV1 role in plasticity, microglia-to-neuron communication, and brain development. Moreover, TRPV1 is widely expressed in the peripheral tissues, including the vasculature, gastrointestinal tract, urinary bladder, epithelial cells, and the cells of the immune system. TRPV1 can be activated by a large array of physical (heat, mechanical stimuli) and chemical factors (e.g., protons, capsaicin, resiniferatoxin, and endogenous ligands, such as endovanilloids). This causes two general cell effects, membrane depolarization and calcium influx, thus triggering depending on the cell-type diverse functional responses ranging from neuronal excitation to secretion and smooth muscle contraction. Here, we review recent research on the diverse TRPV1 functions with focus on the brain, vasculature, and some visceral systems as the basis of our better understanding of TRPV1 role in different human disorders.
Collapse
|
77
|
Hossain MZ, Bakri MM, Yahya F, Ando H, Unno S, Kitagawa J. The Role of Transient Receptor Potential (TRP) Channels in the Transduction of Dental Pain. Int J Mol Sci 2019; 20:ijms20030526. [PMID: 30691193 PMCID: PMC6387147 DOI: 10.3390/ijms20030526] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 01/18/2019] [Accepted: 01/24/2019] [Indexed: 12/18/2022] Open
Abstract
Dental pain is a common health problem that negatively impacts the activities of daily living. Dentine hypersensitivity and pulpitis-associated pain are among the most common types of dental pain. Patients with these conditions feel pain upon exposure of the affected tooth to various external stimuli. However, the molecular mechanisms underlying dental pain, especially the transduction of external stimuli to electrical signals in the nerve, remain unclear. Numerous ion channels and receptors localized in the dental primary afferent neurons (DPAs) and odontoblasts have been implicated in the transduction of dental pain, and functional expression of various polymodal transient receptor potential (TRP) channels has been detected in DPAs and odontoblasts. External stimuli-induced dentinal tubular fluid movement can activate TRP channels on DPAs and odontoblasts. The odontoblasts can in turn activate the DPAs by paracrine signaling through ATP and glutamate release. In pulpitis, inflammatory mediators may sensitize the DPAs. They could also induce post-translational modifications of TRP channels, increase trafficking of these channels to nerve terminals, and increase the sensitivity of these channels to stimuli. Additionally, in caries-induced pulpitis, bacterial products can directly activate TRP channels on DPAs. In this review, we provide an overview of the TRP channels expressed in the various tooth structures, and we discuss their involvement in the development of dental pain.
Collapse
Affiliation(s)
- Mohammad Zakir Hossain
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan.
| | - Marina Mohd Bakri
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Farhana Yahya
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Hiroshi Ando
- Department of Biology, School of Dentistry, Matsumoto Dental University, 1780 Gobara, Hirooka, Shiojiri, Nagano 399-0781, Japan.
| | - Shumpei Unno
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan.
| | - Junichi Kitagawa
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan.
| |
Collapse
|
78
|
Laleh P, Yaser K, Alireza O. Oleoylethanolamide: A novel pharmaceutical agent in the management of obesity-an updated review. J Cell Physiol 2018; 234:7893-7902. [PMID: 30537148 DOI: 10.1002/jcp.27913] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 11/16/2018] [Indexed: 01/05/2023]
Abstract
Obesity as a multifactorial disorder has been shown a dramatically growing trend recently. Besides genetic and environmental factors, dysregulation of the endocannabinoid system tone is involved in the pathogenesis of obesity. This study reviewed the potential efficacy of Oleoylethanolamide (OEA) as an endocannabinoid-like compound in the energy homeostasis and appetite control in people with obesity. OEA as a lipid mediator and bioactive endogenous ethanolamide fatty acid is structurally similar to the endocannabinoid system compounds; nevertheless, it is unable to induce to the cannabinoid receptors. Unlike endocannabinoids, OEA negatively acts on the food intake and suppress appetite via various mechanisms. Indeed, OEA as a ligand of PPAR-α, GPR-119, and TRPV1 receptors participates in the regulation of energy intake and energy expenditure, feeding behavior, and weight gain control. OEA delays meal initiation, reduces meal size, and increases intervals between meals. Considering side effects of some approaches used for the management of obesity such as antiobesity drugs and surgery as well as based on sufficient evidence about the protective effects of OEA in the improvement of common abnormalities in people with obese, its supplementation as a novel efficient and FDA approved pharmaceutical agent can be recommended.
Collapse
Affiliation(s)
- Payahoo Laleh
- Department of Nutrition, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Khajebishak Yaser
- Talented Student Center, Student Research Committee, Nutrition Research Center, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ostadrahimi Alireza
- Department of Nutrition, Nutrition Research Center, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|